
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
1954-2016 University of Wollongong Thesis Collections

1999

Application of mainstream object relational database to real time database Application of mainstream object relational database to real time database

applications in industrial automation applications in industrial automation

Saugato Mukerji
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Mukerji, Saugato, Application of mainstream object relational database to real time database applications
in industrial automation, Master of Science (Hons.) thesis, Department of Computer Science, University of
Wollongong, 1999. https://ro.uow.edu.au/theses/2794

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages

APPLICATION OF MAINSTREAM OBJECT
RELATIONAL DATABASE TO REAL TIME
DATABASE APPLICATIONS IN INDUSTRIAL
AUTOMATION

A Thesis submitted in fulfillment of the requirements

for the award of the degree

M.Sc. (Hons.)

from

UNIVERSITY OF WOLLONGONG

By

SAUGATO MUKERJI, B Tech EE, MBA

Department of Computer Science

1999.

Acknowledgements

I thank my supervisor Dr. Janusz Getta for his guidance,
support in completion of my thesis. I am particularly grateful
for the encouragement to pursue independent ideas.

I also acknowledge the support I received from Howard
Chapman, Husseyin Erkoru, John Conran and other colleagues
and finally my employers BHP Steel for supporting me as an
approved student.

Contents

Section 1.0 Introduction

Abstract

1.1 Overview 1

1.1.1 The Problem 5

1.2 Review of Previous work 7

1.3 Directions - Emerging T rends 10

1.4 Case Studies 13

1.5 How the rest of this document is organized 16

Section 2.0 Real-time vs Mainstream Object Relational
Database
2.1 Real-time databases 19

2.2 Relational databases 23

2.3 Comparison of Relational and Real-time Database Features 26

Section 3.0 The Solution

3.1 Implementation Real Time Database Features - Probleml

3.1.1 Implementation issues - significance of j ava in the database 2 8

3.1.2 Automatic Replication for online querying 31

3.1.3 Remote Access and administration tools 33

3.1.4. Change of State Detection by Triggers 35

3.1.5 Alarm Management Subsystem 39

3.1.6 Statistical functions, averaging, integration, moving average.. 48

3.2 Implementing Compression - Problem2

3.2 Need for online real time synchronous compression. 49

3.2.1 High throughput Data storage estimate 51

3.2.1.1 Strip Mill Data Compression results 53

3.2.2 Synchronous Compression technique applied to high volume .. 56

3.2.3 algorithm design for Adaptive Tuning 64

3.2.4 Using tables with many columns to improve data rate 65

3.2.5 Effect of sparseness on amount of space used per row 66

3.2.6 Effect of sparseness on Tables with Varray Columns 70

3.2.7 Partitioning a high throughput database for administrative ease 76

3.3 Implementing Software Engineering approach - Problem 3

3.3.1 Database configuration tools and API available in a typical Real-Time 78

database for Application development

3.3.2 Autogenerating Table definition from j ava class definition 79

3.3.3 Generating a j ava Wrapper Library to access Tables 81

3.4 Performance Issues - Problem4

3.4.1 IP21 Real Time Database benchmarks with multiple processes.. 83

3.4.2 Relational Database benchmarks 85

3.4.2 Update/Insert rate limitation in Relational Databases 91

3.4.3 Using Solid State Disk as shared memory 94

3.4.4 Shared memory using memory based file systems 96

3.4.5 A proposed design of a shared memory data server 99

Section 4.0 Conclusions
4.0 Conclusions 106

Section 5.0 References
5.0 References 109

Section 6.0 Appendix

6.1 Solid State disk performance figures

6.2 Source for java triggers that generate automatic updates to a GUI running in a

browser when a table gets updated

6.3 Object relational table read/write benchmark code in PLSQL

6.4 Source code for Synchronous Compression prototype

6.5.1 Application code to test autogenerated accessor functions

6.5.2 Primary data class

6.5.3 Autogenerated database access helper

6.5.4 Autogenerated table creation script that maps the java class data members

6.6 Scripts used in section 3.2.6

6.7 Vendor benchmarks related to 3.4.4

6.8 Code for testing JDBC performance Ref 3.4.1

6.9 PLSQL Scripts and batch files for testing performance with multiple concurrent

processes Ref 3.4.1

7.0 Glossary
7.0 Glossary

Abstract

This thesis examines the proposition that because of recent huge increases in

processing power, disk and memory capacities the commercial mainstream

object relational databases may now be a viable option to replace dedicated

real-time databases in industrial automation. The benefits are lower product

cost, greater availability of trained manpower for development and

maintenance and lower risks due to larger installed base and larger number

of platforms supported. The issues considered in testing this proposition

were performance, ability to mimic critical real-time database features,

replication of the real-time database application development and

administration tools and finally the low overhead high speed, real-time data

compression facility available in real-time databases. An efficient yet simple

real-time compression algorithm was developed for use with relational

databases and benchmarked. Extensive comparative benchmarking has been

done to convincingly prove the proposition. The results overwhelmingly

show, that for a majority of industrial real-time database applications, the

performance offered by a commercial object relational database on a current

platform are more than adequate.

1.0 Introductioit

LI Overview

Until recently memory resident Real-time Databases had a specialized niche which

matched a set of functional requirements necessary for deterministic real world

automation systems. Commercial mainstream database products were usually too slow

and failed to meet the deterministic performance levels, which are required by the real

world processes.

Recent dramatic increases in processor performance, easy availability of large amounts

of cheap RAM estimated at A$1500 per giga byte and the emergence of low cost fast sub

10ms disk drives of more than 10GB capacity together have created the reason for the

topic o f this research. This study looks at the possibility of using commercial

mainstream database products in real world automation applications.

The main application of real-time databases in automation is described here. The Real

time database has often been used as a shared memory record structure, which keeps

track of the different states of the manufacturing process for each item. At any time there

may be several items in different stages (or states) of the manufacturing process. A

number of cooperating applications work together to help transform the input raw

material to the finished product while conforming to a series of pre-calculated

intermediate stages. Before the manufacturing process begins for a input item, its input

characteristics and planned output schedule are obtained from other enterprise level

systems and stored into the real-time database. Then some other applications read this

schedule data and use process dependent mathematical models and tuning parameters

based on previously measured data to generate a detailed manufacturing setup for each

stage. As the item proceeds through each stage the measured data is gathered and fed

into the Real-time database. One or more application processes monitor the variation

between the setup parameters and the returned measurements. The deviations are

subjected to the same models to calculate the adjustments, which must be applied to the

setup for the next stage(s) to ensure the finished product meets the specified tolerances

1

and has the desired properties. On completion of the manufacturing, the tuning

parameters are recomputed and the record structures used for the item just manufactured

are snapshotted and stored, to allow future postmortem of aspects including product

defects, model performance, change in process operating conditions. The critical aspect

here is the fast access to the measurement, setup, schedule data in the real-time database

for timely completion of the required setup generation for each stage of manufacturing.

Typically the most stringent requirements of the time allowed for such data access and

model computations may be sub second where critical manufacturing stages may be 3-6

seconds.

In the last decade an additional functional requirement has emerged for real-time

database applications in industrial automation systems. It is now required that the actual

parameters measured during the manufacturing process be logged to sub 100 millisecond

resolutions and be easily retrievable. This requirement is driven by the need to be able to

provide proof of manufactured product quality as a statutory legal requirement for 7

years. Another important reason for such logging of process data is the need to attain

higher product quality and tolerance to meet the quality standards specified by the

customer and to reduce wastage and improve the process yields by manufacturing to

tighter tolerances. To improve product quality it is very important to be able to replay

incidents where lapses in quality occurred. This allows the process engineers to analyze

and rectify the underlying problems. To respond to these needs, real-time databases now

implement mechanisms for compressing and storing such large volumes of process data

in proprietary formats on disk. However such proprietary data storage is obviously not

attractive since it is less accessible due to the non-open nature.

Another equally important issue associated with storing 7 years of sub 100 millisecond

resolution data is the sheer volume of the data. Uncompressed, this quickly exceeds even

the huge 100Gb to 200Gb capacities of commercially available RAID arrays. Assembling

and administering larger batteries of RAID or other storage solutions is a very expensive

and commercially unviable proposition. The challenge therefore is to devise compression

2

algorithms that compress the data by a factor of 10 or more while preserving the intrinsic

accuracy of the data. Such compression also must not compromise the easy online and

open access to data by tools like SQL without any intermediate manipulation or

massaging

At this time several projects have used a mainstream relational and a real-time database

together, to provide the fast performance of the real-time database coupled with the

scalable and open data storage offered by the mainstream relational database. While

having two databases does address the problem, it is not without a price. There is

additional software life cycle cost associated with licensing and administering two

separate database products. All application software has to be able to interface with two

different databases. Further maintenance problems arise when software changes have to

be synchronized in the relational database, in the real-time database and in the

application software. This synchronization process is potentially error prone and can lead

to expensive downtime in a 7x24 scenario and is also a strong disincentive to make

process improvements requiring software changes.

The emerging object relational features now being incorporated into mainstream

relational databases too are of great relevance to developers of automation applications.

The object relational features allow a natural mapping of the application objects being

manipulated in the program code to customized object data types and object relational

tables. This makes it easier to log and retrieve the application objects to and from the

database without any error prone hard coded mapping. Real-time databases have always

provided developer configurable record structures for such a natural mapping for

application objects and also come with a library to easily access the record structures.

We have also disproved the common misconceptions that object relational table access is

less efficient conventional table access. We found the results were similar for both. The

likely explanation is the fact that the object relational features are only a thin wrapper on

the relational DBMS , hence it does not degrade performance. The time taken to execute

3

the wrapper code is negligible as compared to the time taken for the disk i/o based

journalizing o f transactions in the relational DBMS (this is central to the operation of a

relational DBMS and can not be switched off).

4

1.1.1 The Problem

Global Objective is:

To replace real-time database with a commercial relational DBMS.
The sub problems are
1. Performace and throughput issues.
2. Compression of online data.
3. Ease of development.
4. Replication of important real-time database constructs and features.

1. To benchmark the performance of real-time databases and real-time databases when

performing read/write operations (on a single field and full record) from a single

application and from multiple applications concurrent applications. The intention is

to measure and quantify the limitations in using mainstream relational database. This

information should provide a means to select automation applications where the

requirements can be adequately met by a mainstream relational database. The

benchmarking also leads to recommendations on how to overcome limitations

observed in using relational databases in real-time database applications.

2. .To design a online low overhead compression algorithm that can be used when

loading hundreds of columns of real time process data, at sub 100 millisecond

intervals, into a mainstream relational database. The ability to do this compression

may allow a relational database to completely replace a real-time database or replace

a combination of a real-time and a relational database. Equally important side benefit

of such compression is the ability to make the data small enough to fit into a

commercially available and relatively inexpensive RAID array. The point here is the

fact that the direct and indirect costs associated with the disk storage system rises

sharply once the capacity exceeds the commonly used RAID arrays (currently 100 to

200Gb).

5

3. To analyze the important features of an established real-time database and to attempt

to realize the same functionality using the common functions and features o f a

leading mainstream relational database. These features make it easy to implement

real time automation solutions without writing a lot of application code.

4. To investigate the software engineering issues involved in seamlessly auto-generating

the object relational database datatypes, tables and accessor classes using scripts. We

developed such a script using the popular Perl scripting language. The autogeneration

script parses the class stubs generated by a modem case tool and generates the object

relational database datatypes, tables and accessor classes. With this approach the

software changes are much easier since the engineer is only required to make the

change in the case tool and then run the script. The error prone synchronization is

eliminated.

3

1.2 Review of Existing Work

While a large amount of research has occurred in real-time databases it has been

mainly aimed at devising algorithms and approaches to enhance the performance of

real-time databases operating under resource and time constraints.

Nobody seems to have considered using a mainstream object relational database in

real-time applications and how with the great increases in processing power they may

now be a viable solution in certain applications. So in our study we may have the

privilege to tread down a relatively un-trodden trail when we attempt to measure the

performance of mainstream object relational database when applied to a real-time

application environment.

We did not find any published work on using mainstream object relational

databases in real-time application environment in industrial automation.

In reviewing publications on real-time databases, the following issues were found to

be related to this study.

1. Timeliness of transactions in real-time databases.

2. Transactions with temporal data constraints in real-time databases.

3. Implementation o f a real-time database system by retrofitting a commercial
database.

1. Significant work has occurred in analyzing the importance of timeliness of

transactions in real-time databases. In many applications timeliness is most important

and other aspects of a transaction like completeness, accuracy, consistency of results

may have to be traded off to achieve timely processing. The paper “Real-time

Databases” by K Ramamritham which appeared in Distributed and Parallel databases,

Vol 1, 1993, [1] examines the issues involved in such a trade off. Interestingly while

the paper is now 7 years old and the processing power of cpu(s) and resources like

speed of disks, memory capacity have all increased hugely, the issues discussed in the

paper remain relevant. This is due to the fact that as the processing power has

7

increased so has the expectation of users, who now expect to run a more detailed

online model, sample and process data 10 times faster or more and expect to store the

hugely increased volume of data in the same time interval. Therefore though not

identical constraints very similar to those considered in the paper are alive and well
today.

2. Some real-time database applications also have data with time constraints. The

paper “Scheduling Access to Temporal Data in Real-time Databases” by Ming Xiong

et al [6] shows how a forced wait policy can be implemented to delay a transaction

that is attempting to use data that has expired or is about to expire, by forcing the

transaction to wait, till it can be assured that valid fresh data will be used. Examples

of such transactions where using expired data is not acceptable are auto pilot systems

and programmed stock trading. It is easy to appreciate this if we consider a

programmed trading system which is calculating the volume and type of the buy or

sell decisions after sizable calculation based on the trend produced by share price

updates. Assume it is about to commit the order and the data deadline expires. It is

right to hold the order back because the share price trend could have reversed.

However if the new trend value is similar then instead of wasting time in

recalculation of the order, the halted transaction should be revived to save time and

increase chance of making a profitable trade.

3. We found one example o f an experiment to retrofit a commercial database by

altering its internals to make it work as a real-time database. The paper

“Implementation of a Real-time Database System” by Aranha,

Narayanan,Muthukrishnan,Ganti,Prasad and Ramamritham [fl]which appeared in

Information Systems 1997 describes an experimental work in which a commercial

database system Genesis was adapted to create its real-time version RT-Genesis to

support the firm deadline transaction requirements. The adaptation allowed priority

based program execution where priorities determined deadlines of transactions under

the sole control o f the database system. Conflict resolution over data and other

8

resources were done on the basis of the transaction deadlines. The paper considered a

database populated by a mixture o f tables, some of which had only 10 rows whereas

others had 100 rows. Transactions with randomly created different priorities were

applied to test the performance. Transactions, which failed to meet the timing

constraint, were aborted since they were deemed to be useless. The paper described

comparative performance achieved by the scheduling, buffer management and lock

management algorithms used in RT-Genesis. While the algorithms performed as

expected the results indicate above a certain rate of arrival aborts started occurring

and the performance was well short of a typical real-time database. There seems to be

an assumption that it is essential to be able to perform transactions with a 2 phase

commit and frequent occurrence of non trivial SQL queries. In our experience in

automation applications, much of the need for conflict resolution can be designed out

by recognizing the following common aspects. The process is sequential in nature,

that only one object can occupy a physical process zone at a time and that the tables

can be designed in such a way that the minimum number of applications share a table.

The typical usage of real-time databases in automation is as a shared memory. The

transactions are often a single field update, which are performed more efficiently

using an API call and execute without significant delay. SQL procedures are used

only for non-repetitive one off functions where the logic is complex and coding the

implementation using the real-time database API will be laborious. By designing

with the factors outlined above it should be possible to sidestep resource and data

conflicts when implementing applications in automation using relational databases.

We agree though that SQL and ability to roll back unsuccessful transactions are

important in real time commercial applications like e-commerce.

9

1.3 Directions - Emerging Trends
Looking at the current emerging products aimed at the real-time end of the database

market we observed the following common trend. Several new memory resident

relational databases have appeared. These products which mimic to a large extent the

features o f a mainstream relational database. These new products claim to be 10 to 20

times faster because of the fact that the code is designed to operate the relational database

entirely in the main memory. These products offer the familiar SQL and C/C++/Java

API’s as development tools aiming to attract developers experienced in the relational

databases to develop high performance web based real-time applications. TimesTen,

PolyHedra and Angara are examples of such databases.

We will look briefly at the features supported by these new memory resident relational

databases

Angara Database Systems

Angara Database Systems, Inc. is a developer of ultra high-performance memory-resident

relational databases. The Angara main memory database (MMDB) is a software product

with a relational database engine explicitly designed to handle in-memory data. This

engine, run in conjunction with a standard disk-based database management system

(DBMS), and accessed through a C application programming interface (C API) or a

standard SQL interface, handles small read-intensive or temporary tables over ten times

faster than the cache of any standard disk-based DBMS. Using the Angara MMDB, while

simultaneously delivering the ability to handle extremely large data sets, sophisticated

backup and recovery functionality, extensive administrative tools and visual

programming tools of the standard disk-based DBMS.

TimesTen

TimesTen is a relational database optimized for in-memory performance. TimesTen

databases reside entirely in memory at runtime--a principle that allows for highly

efficient instruction paths for performing relational operations, as compared to fully

cached data in a disk-optimized RDBMS. The flip side to performance is the size

10

constraint of memory, which presents a practical limit to the kinds of applications that

will derive the most benefit. In-memory databases should contain highly active,

performance-critical data, such as subscriber profiles, open orders, service records,

translation tables, etc. Ideal applications are those that demand the fastest response times

possible, and those that ask the database to perform extraordinary amounts of processing

within an ordinary response interval.

TimesTen is focused on enabling application innovations at the forefront of Internet

computing, and in the infrastructures of today's voice and data networks. With the

performance opportunities provided by TimesTen, application designers now have the

ability to include greater amounts of data and sophisticated on-the-fly database

processing. And because of TimesTen's efficient design, a workload that used to require

much larger systems can often be handled by PC-class server hardware running

TimesTen.

Presented below is a performance benchmark achieved by a recently
launched non mainstream memory resident database

TimesTen Throughput Performance

</> 4Q.m
Cl

(p x

t&ZQRAJ 700% Cfcdtafc

Transaction Profile

The reason for presenting this benchmark is to show the performance achievable by non

mainstream recent memory resident database(MRDBs) products. Low cost systems

l

3 0009 03255907 7

delivered 25000 reads and 5000 writes per second when used in a read only or write only

operation. These access rates are already good enough for many real-time applications

and are helping the new MRDB’s find ready application as low cost high performance

web server backends. Typically automation real-time applications are developed using

mainstream products with a significant installed base. The reason is the typical 10 year+

post commissioning life cycles of automation projects. The project managers are unlikely

to adopt non mainstream MRDB products (even though they offer better benchmarks)

due to concerns about the future availability of necessary support and upgrades.

The results shown above are from three different platforms: a small, rack-mountable 2-

CPU UNIX system favored in voice and data network solutions; a 4-CPU Pentium II

Windows NT server; and a new mid-range UNIX server with a state-of-the-art memory

subsystem, using 2-CPUs for this test. In the performance chart, we will refer to these

systems as UNIX1, NT, and UNIX2, respectively.

To anyone familiar with traditional database system performance, these results speak for

themselves. The UNIX2 machine, with its highly optimized memory subsystem,

generated an impressive 65,000 read transactions per second, using only 2 CPUs. In

application terms, an internet commerce system could compare a purchase intention with

over 100,000 previous orders, and recommend additional items that were most often

purchased, all in less than 2 seconds. When measured by response times, all of the

workloads represented in this benchmark completed in microseconds (millionths of a

second), meaning the time to look up a phone number or network address is practically

immaterial.

12

1.4 Case presentation of two different real-time
database applications in steel rolling

Case 1 Plate rolling mill control system

Outlined here is a recently completed successful industrial automation project. The

design and system architecture aspects have been highlighted.

The mill control computer (MCC) system was implemented using an object oriented

design and implemented in C++ at the server and Java at the GUI front end.

The server was implemented as a set of co-operating executable applications that referred

to a common shared memory visible to all the applications. A leading memory resident

real-time database was used to provide the shared memory. The shared memory was

accessed using a user written access library. The access library in turn was coded using

the low level C language API library provided with the real-time database. The access

library allowed the application programmers coding in C++ to access the real-time

memory a without having to learn the low-level API.

Each class in the applications was auto generated into a real-time database record using

PERL and SQL scripts. The Access API provided the means to read or write at the

granularity of a single field, an array field or the entire record. Writing or reading an

entire record allowed complete mapping between the C++ class and shared memory

record.

In this application the real-time database was used to store the process state, the setup

parameters for each processing step and the measurements obtained from the process

instruments at each stage. The above information was created or recorded for the item

being manufactured from before the start of processing to the exit of the finished product.

13

In this case typically there could only be about 10 individual slabs aka pieces which were

being processed. This was dictated by the fact that only one item could occupy a process

state. This followed logically from the fact that each state represented an operation by a

physical piece of equipment located at a specific position in the plate rolling line.

We implemented 15 instances of each such record type in the database. Each such

instance record had a common part plus a postfix that consisted o f a number between 1

and 15. Such record types were called piece dependent since they contained rolling

setups, measured data and schedule information related to a specific piece. The database

consisted of over 200 record types of which about 150 were piece dependent. The entire

set o f 150 records associated with a specific piece was collectively called a piece file.

Each individual item was allocated a free piece file prior to the start. During the rolling

process the piece file is used to store all the data related to the item. At the end of the

rolling process the piece file is copied to a separate historical data storage system and the

piece file is released for use by new items.

In this application there is no attempt to record the historical data in the real-time

database consequently its footprint in memory as well as its disk usage remains constant.

Case 2 High speed data logger system for a strip rolling mill

A strip rolling operation is a high-speed operation where the strip velocity can be as high

as 20 meters/second. As a statutory requirement the manufacturer is obliged to maintain

and record the in process measured parameters for a number of designated quality

variables. It is desired to record this information at the granularity of every meter, this

means the data rate could be as high as 20 readings/ second.

14

At the end of the rolling process which is around 200 seconds all the observations are

retrieved and a number of statistical computations performed on the data to establish the

quality status of the finished product. A summary of the statistical quality results is

forwarded to the customer and the detailed data is available on demand for a number of

years.

Additionally the maintenance engineers use this per meter data to perform post trip

analysis. The data must be time stamped immediately on capture and should be time-

stamped to a resolution of 1 ms or better. The accuracy of the timestamp is important to

determine the variable sequence, which caused the trip or incident. Typical post trip

queries select a number of related parameters over the trip duration. If this information is

located in archived history files it has to be retrieved before the query can be applied.

Since this data is arriving at a very high rate 4000 reading/ second(200 inputs scanned

every 50 ms) and each value must be recorded with timestamp. It was observed that it

took 15 bytes to store one timestamp and the associated reading. The data stream needs

to be compressed by rejecting the values that are not significantly different for the

previously recorded observations. Such compression techniques are built in the real-time

database history subsystem.

15

1.5 How the rest of this document is organized

This sub section describes how the rest o f this document is organized. The
reader may use the roadmap presented here to navigate the document.

Section 2
The following section 2 presents the typical features of real time and mainstream object

relational databases and compares the features. The section intends to make the reader

familiar with the typical features of the two database types to allow a better

understanding of the implementation details and design decisions proposed in the

following section.

Section 3
The following Section 3 titled “The Solution” deals with the outlines the feature by

implementation of real time database using a mainstream object relational database.

3.1
The first subsection 3.1 starts by explaining the significance of the recent introduction of

embedded Java in the object relational database. Section 3.1.3 describes the

implementation of the shared memory access A P I. Section 3.1.4 outlines the

implementation of the powerful change of state - event detection and action triggering

construct central to real time databases. This implementation is done as a combination o f

triggers and Java stored procedures. The section 3.1.5 ends with the implementation of

the alarm subsystem using a combination of a master alarms table with views for

selecting specific subsets. Again Java stored procedures, JDBC, triggers are utilised as

the means of turning alarms on and off and receiving operator acknowledgement. Section

3.1.6 describes the remote access tools.

3.2
This subsection starts by explaining the role of the online real time compression feature

o f real time databases. Next the implementation of the fast online synchronous real time

16

compression algorithm developed by us is explained and possible approaches for further

improvement are pointed out. Subsections 3.2.4 through to 3.2.6 explain how the storing

the compressed data using a few tables with a large number of columns is efficient and

that the compressed data can be efficiently stored by saving it as sparse data into

relational tables. The rejected data are represented by null. Storing null instead of data

gives a compression of 1:10. The actual results achieved using compression are presented

next. The concept of partitioning the stored compressed data is explored. The ability to

make read only the partitions containing the historical data is explored to simplify the

backups.

3.3
This subsection is devoted mainly to software engineering issues and starts by explaining

the database configuration tools and access API offered by real time databases. The

section outlines the need to provide similar ease of development when developing a real

time application using only a mainstream object relational database. The section 3.3.2

describes our implementation of the technique for directly generating the database

schema from the data members in the Java source files describing the application classes.

The Section 3.3.3 describes the script to directly generate the Java wrapper library to

access the table rows mapping the class instances on the application code. Again this

auto-generation of the wrapper code is done by directly processing the Java source file

with a script.

3.4
This section contains performance benchmarks for real-time and relational databases

explores other techniques to implement fast-shared memory between co-operating

applications that together offer a real time industrial automation solution. Solid state

disks and software driven file systems in memory are two promising approaches

explored.

17

Section 4
Our conclusions and recommendations are presented in this section. We try to identify

applications in industrial automation where mainstream object relational databases are

already a viable alternative to dedicated real-time databases. We also try to point out

applications, where at this time there is no alternative to dedicated real-time databases.

Section 5
Contains a list o f relevant references

Section 6
This section is the appendix and contains code listings,

scripts, programs runs and screen captures

Section 7
This section is a glossary

18

2.0 Real-Time vs Mainstream Object
Relational

2.1 Typical features of real-time databases

This section describes in more detail typical features of real-time databases. The purpose

of this section is to explain the features which we will mimic in a subsequent section

using an object relational database. These features have evolved over time to serve the

needs of industrial automation systems. For the purpose of our study we will describe in

detail some the features of the EP21 real-time database.

2.1.1 Shared memory access using the API library
All the application programs using the real-time database open a connection to it by

executing a API call. Applications can then freely access the records of the database

using the API calls described below. Each API call executes within 10s o f microseconds.

The database is locked while any write call executes. All the API access to the database

are performed in chronological order of receipt. While this seems to be unsophisticated it

assures deterministic behavior. Application software writers use the appropriate API

from the library to make the database appear as a shared memory between different

applications. A popular real-time database was clocked at 100000 separate read/write

API calls per second. Higher rates of data transfer are achieved by the array read write

API calls.

API calls are grouped in the following functional groups.

• Read/write single data base functions for data types including

Shorts

Longs

Char buffer

Timestamp

Real

Double

• Read/write array fields of the datatypes supported for single read/write.

19

Read write single fields of any type with ASCII data

• Read/Write multiple fields of the same record in a single call

• Read / write multiple fields in different records in a single call

2.1.2 Change of state(COS detection)

The IP21 real-time database has a template record called COSACTDef to create

COSACT application records for monitoring COS events and generating activations on

detecting the COS event. The COSAct records contain a reference to the field to be

monitored and have a field containing the type of COS change to be recognized. The

COS event types are ‘all’ , ‘change to default’, ‘non default’ and ‘none’ . The COSAct

record also contains a list of records to activate on detecting the specified COS event.

When the change of state occurs in a monitored field, the COSAct record activates the

record(s) in its list. Applications execute an API function that blocks until it detects an

activation. The call returns the reference to the activated record. The application then

decides the functions to execute based on the source of the activation. Thus an update of

a field in the database by an application can make a different application execute a

specified function. This is a powerful loosely coupled run time reconfigurable low

overhead event driven switching facility

2.1.3 Data base structure
Real-time databases have for a long time allowed great flexibility in defining the records

in the database. It is allowed to have a record containing a mix of fixed area fields and

multiple repeat area blocks. Each repeat area may contain one or more fields. This

flexibility allows a far superior and simple modeling of the real world objects than what

can be achieved by a series of related relational tables. In IP21 the DefinitionDef record

is the master template record which was used to define the other template (aka

definition) records. Any number of instance or application records as required by the

application can be created using the template records.

20

2.1.4 Highly configurable alarm handling and event logging

Real-time databases typically have an in-built alarm handling subsystem which

automatically inserts and removes alarms from pre configured alarm summaries based on

occurrence of alarm events. Alarm summaries contain specified grouping of alarms by

specifying the selection criteria. Alarm events could be any one of values moving past

preset limits, the alarm state being set by program code for derived alarms, users

acknowledging alarms and alarms timing out.

2.1.5 Compression and history storage

Real-time databases usually provide compression and historical storage for time series

data. However this is usually an auxiliary feature and in no way impacts on the real-time

database if there is no space on the disk to store more history. The default operation is to

do a round robin and overwrite old history. The whole approach is to ensure availability

and uptime whereas in relational databases the ensuring integrity of transactions is the

highest priority even if it means sacrificing availability.

2.1.6 Inbuilt configurable PLC and SCADA protocol support

Real-time databases usually have a suite of layered products which allow easy

communication with typical automation data sources such as PLC’s DCS’s and others

SCADA systems. Integrating these communication links typically involves no

compilation of protocol handler code. Mere configuration of special database records

related to the layered products is sufficient.

2.1.7 Statistical and quality control functions
Real-time databases have a add on layered product to do averaging, integration weighted

average, control charts. These features can be configured without compiling any code.

2.1.8 Scheduling or Timing records

IP21 real-time database has a template record called ScheduledActDef which allows one

or more records to be activated when a predefined period expires after a specified

starting time. Additionally the EP21 supports SQL stored procedures, which have a

scheduling, feature, which allows the stored procedure to be auto, executed periodically.

2.1.9 ANSI SQL support

Most real-time databases support a variant of the ANSI SQL 92 or later. IP21 comes with

both command line and GUI based SQL engine. The SQL can be invoked via code

command line, by triggering a stored query using COS detection on a monitored database

field or by a scheduling event defined in the database.

2.1.10 Stored SQL query records

SQL queries can be tested on the GUI SQL tool called SQL plus and can then be saved

into a file. The query output can be directed to other database fields. Stored SQL queries

are a powerful feature which are often preferable to coded programs when implementing

application features.

22

2.2 Typical relational database features
Relational databases on the other hand conventionally have a different suite o f features

which have evolved according to the needs of the applications which used them. Not all

o f these features are of great help in a real time situation.

2.2.1 Online storage of transaction logs
Some central features specific to relational databases are the ability to maintain on disk a

log of transactions(aka redo logs) and resulting ability to recover transactions upto the

point of failure by restoring a previous backup re-applying the journalized transactions.

There are further specialized features, which allow the archiving of these logged files

before they are over written. This archiving of the transaction log ensures the ability to

recover completely even when the online logs have been overwritten by subsequent

transactions.

2.2.2 Tables grow and can auto extend if configured to do so
The typical usage of relational databases involves inserting more rows to store new data

with persistence. Hence the database grows with time as more and more data is stored.

Persistence by definition means the database can never be entirely memory resident and

therefore needs to read and write the transactions to disk within seconds of its occurrence.

The disk space has to be monitored carefully by an administrator since the database is

designed to halt if data file space or disk space runs out. Relational databases can be

configured to auto extend data files to acquire more disk space when required. However

they will normally stop further operation if the disk fills up. In a real time situation such

an occurrence will bring production to a halt.

2.2.3 Operation is not deterministic

The typical access of a relational databases is performed using SQL to perform select,

update, insert or delete operations (called queries) on rows of one or more relational

tables. Depending on the associated criteria and other factors like the size of the table, use

o f indexes and the number of tables involved the access time could vary significantly. In

any write operations the associated rows and columns are locked to prevent other similar

queries from interfering and compromising the results of a query that is in progress.

23

2.2.4 Failed or aborted transactions are automatically rolled back

Relational databases support rollback which means they store the before value to the

rollback segment on disk before making the change. This information is guaranteed for

the life o f the transaction. If the user issues a rollback command or exits the session

before completing the transaction with a commit the transaction is rolled back by

restoring the changed data from the rollback segment. The rollback feature is very useful

because it allows any transaction that failed to complete for any reason to be rolled back

automatically to the state before starting the transaction. The downside is that a large

amount of rollback segment is used for large sized transactions as often occur in large

batch jobs. The ability to rollback transactions that have not been committed also causes

complexity because the associated rows and columns are locked until the transaction is

committed. This in leads to a second transaction failing if it attempts to update insert or

delete information into the rows and columns locked by the uncommitted query. In case

of selects the uncommitted transaction will not be reflected. So the accessing query must

have the failure handling code built in to take care of such cases.

2.2.5 Performance cost of the rollback and redo features

These roll back and redo features of relational databases which provide the guaranteed

integrity of transactions come at a cost, the numbers of separate transactions that can be

processed per second is much lower. This can however be compensated to some extent

by reading or writing many data values in the same transaction. We will explore this

further.

Relational databases do not guarantee maintaining the chronological order when a

number o f operations are performed from multiple processes simultaneously.

24

2.2.6 Stored Procedure and Triggers

Relational databases allow SQL code to be stored in the database as stored procedures.

The stored procedures execute faster as they have been preprocessed at creation. Now

stored procedures can be written in Java in most current object relational databases.

Relational databases support a mechanism called triggers which allow SQL commands or

a stored procedure to be invoked when the trigger condition occurs. Typically the trigger

condition is an update insert or delete on a table at a row level or table level. The trigger

action can be specified to occur before or after the triggering transaction is executed.

Triggers have many uses. Generating audit logs is a important application which uses

triggers.

2.2.7 Automatic replication and snapshots

Most current relational databases support automatic replication. This allows changes on

tables in master database instances to be propagated automatically to the replication

target databases instances. This is very useful since local users can query a local database

and get fast response to queries without impinging on the master database. The data is

however maintained in synch with the master database. The replication can be done at the

granularity of a table. So only a sub set o f the master data base tables can be selected for

replication. The replication feature enables efficient operation of distributed databases

and supports automatic store forward ability to be resilient to communication and other

faults.

25

2.3 Comparison of relational and real-time database features

Conventionally relational and real-time databases offer a different set of features. These

features have evolved based on the requirements of the typical applications of the

relational and real-time databases. Here is a comparison of the typical features of both.

feature Object Relational Real-Time
Read/write call rate 1 ~500 calls /sec -100000 calls /sec
COS(change of state Yes using triggers Native support for COS
detection) detection
Auto launching query on
COS detection

Yes Yes

Switching on COS
detection to cause remote
method execution

Yes using java triggers Yes

Alarm Handling Subsystem No but can be implemented
easily

Yes

Historical data storage Yes Yes
Automatic Timestamping of
inputs to subsecond

No Yes

resolution
Drivers for common PLC’s
DOS’s

No No

Native averaging,
integration of inputs, SQC
functions

No Yes

Replication master to
standby database

Yes Yes

SQL engine, stored queries Yes Yes
Logging of transactions to
support recovery

Yes No

Ability to rollback
uncommitted transaction

Yes No

CORBA support Yes No
Data Compression based on
trends

No Yes

A client GUI package for No Yes

1 The Relational Database achieved 500 calls/sec on a 2 processor 400MHz pentium II using a JDBC
prepared statement Rates of 5000/ sec are achievable with PLSQL

26

dynamic displays of
Alarms, field data and
trends
Tables grow and can auto-
extend

No Yes

Timing/Scheduling feature No Yes

27

3.1 Implementing Real-Time Database
Features - Problem 1

3.1.1 Implementation of real-time features - significance of
Java in the database

This section examines the issues involved in implementing the typical features of real -

time databases discussed in the preceding section. We will demonstrate by example how

almost all the important real-time database can be implemented using an object relational

database. The availability of a full-featured programming language like Java as a native

component of the object relational database has simplified the task of mimicking a real

time database.

3.1.1.1 Fast read and write to the database using access API.
As we will demonstrate later advent of open interfaces like JDBC have allowed easier

access to the database from application programs. We will demonstrate how an API can

be auto generated to allow the application programmer to access the Tables in the object

relational database with the same simplicity as available using the real-time databases and

their proprietary API. Infact an interesting side issue is portability of applications so

developed across different platforms and operating systems. In case o f the IP21 real-time

database it was limited to NT4.0 and with some additional work to Aix, HPUX and VMS.

However if the applications are developed with Java and a JDBC wrapper is used to

access the database the applications are portable automatically. Portability is guaranteed

by WORA the central paradigm of Java. Write once run anywhere. Almost all popular

platforms now support Java and JDBC ie NT4.0, Unix dialects including Solaris, Aix,

HP-UX, SCO, Linux, VMS, AS400, and many more. The mainstream object relational

database tested by us is available in all the operating systems listed above. We will

investigate and compare the level of performance achieved by a object relational database

using a JDBC wrapper when providing a shared memory behavior. The throughput

achieved will define the applications which may be implemented using a object relational

database instead of a real-time database.

28

3.1.1.2 Automatic change of state detection

Typically the ability to configure automatic detection of changes of state to specified

fields has been a design construct used in real-time database application in implementing

efficient event driven applications that provide fast response without any ongoing

overhead. Without this feature the application programmer is forced to poll and test for

change of state and this leads to a continuous CPU overhead. Relational databases have a

construct called trigger which can allow specified action to be taken using a SQL

commands when the triggering condition is encountered. The triggering condition is a

any of an Insert, update or a delete on a table. The trigger action can be at the granularity

o f a field or a row and can be initiated both before and after the triggering event. While

triggers were powerful, previously they could only execute SQL statements or launch

stored SQL procedures. While this was a powerful feature it still did not provide full

blown programming language support. Using trigger initiated stored procedures it was

quite hard to invoke methods in other applications. To do so an external C language

function had to be written and linked and the communications functionality would have

to be built into the external function. With Java now embedded in the database triggers

can be written in Java. The full communication features of Java including sockets and

HOP are available. We will develop a Trigger which uses the java.net.Multicaster to

multicast the COS data monitored by a trigger to GUI’s running in a browser. The COS

detection will be done by a trigger written in Java. In fact this is a common COS

detection application in real-time databases ie value changes in the database are

monitored and automatically transmitted to the GUI without any application code.

3.1.1.3 Alarm and event logging interface

A typical alarm subsystem in a real-time database allows the creation of a series of alarm

records. Each alarm record has a set of configurable attributes. The alarm records may

feature in one or more alarm summaries depending on the value of the AlarmState

attribute being on and a series of other conditions associated with the alarm being

satisfied. Thus an alarm may feature in multiple alarm summaries and the alarm record

contains a reference to the alarm summaries it may be visible in. The alarm summaries

29

attempt to group the alarms by criteria including function or by the plant location or by

maintenance discipline. When an alarm goes from alarmState OFF to alarmState ON it

becomes the most recent alarm in one or more summaries and shows up on the top of the

summary. The alarm may be turned on by an application program writing a ON value

into the alarmState field when the scenario related to the alarm occurs. This turning on of

the alarm can also be done by value in 10 input records crossing alarm limits. Alarm

summaries are automatically displayed on GUT when the screen containing a reference to

the summary is opened. We will use tables and views to create an alarm system in a

object relational database which will behave like the alarm subsystem in a real-time

database. In many ways the object relational design may seem more elegant and powerful

because we are able to use constructs which are native to relational databases. Java will

again allow easy addition of features and integration to GUI and the client application

programs.

3.1.1.4 Compression of IO-input data and storage to disk history

Real-time databases offer a facility to timestamp data written to IO-input records and add

the freshly timestamped data to the history along with the timestamp. A limited amount

o f the histoiy is kept in memory. There is normally a facility to save the values that fall

off the history array in memory to a disk history file system. This disk history facility can

be turned on and off on a per point basis. There is a facility to apply compression to the

input data and save only those that satisfy the compression parameters. There is also an

API available to insert data directly into history. This is often required when remotely

acquired and timestamped data has to be saved in disk history. We have attempted to

reproduce this functionality using relational tables and JDBC with our own compression

algorithm coded in Java.

30

3.1.2 Automatic replication for online querying

In a typical 7x24 hour automation application the deterministic performance requirements

often make it impossible for multiple users to do online querying on the table data. The

problem gets worse when the span of the queried data is several years and has to be

extracted from a number of different partitions. Such data warehousing features are better

handled in object relational databases as compared to conventional real-time databases.

In the IP21 real-time database used for comparison the historical data is streamed into

predefined filesets. When a fileset fills up the datastream switches to the next fileset in

round robin group. It is the job of the user application to archive the just filled up fileset

to preserve the information. It is necessary to manually restore the older archived filesets

before any data contained in them could be retrieved. Naturally this process becomes

even more cumbersome when the time span of the query involved several filesets.

The processor loading resulting from executing queries is unpredictable and likely to

impact on the deterministic performance requirements of the primary system. Therefore

the best solution is to run a standby system which continuously replicates the primary

system. All user queries should be run on the standby system.

In case of IP21 the loading the archived primary fileset into the secondary real-time

database is manual.

The Oracle 8i object relational database has built in support for automatic replication. We

can specify that the replication be done synchronously. Synchronous data propagation

occurs, when an application updates a local table, and within the same transaction also

updates all other replicas of the same table. Consequently, synchronous data replication is

also called real-time data replication. Use synchronous replication only when applications

require that replicated sites remain continuously synchronized.

31

Asynchronous replication is the other option. In this case procedural replication can offer

performance advantages for large batch-oriented operations operating on large numbers

of rows that can be run serially within a replicated environment.

Alternately we can use the update and select together to access the table information. The

end result is to update a target table when the snapshot is periodically done.

All user querying is done on the standby object relational database. This way the primary

is not impacted when the query(s) execute.

The snapshot can be triggered automatically to maintain the standby and master in synch.

32

3.1.3 Remote access and administration tools

Increasingly organizations are capitalizing on their investment in an enterprise-wide high

speed LAN by using centrally located common system administration resources and

engineering to control and administer database installations which are geographically

widely dispersed. This feature proves extremely useful. It allows expert troubleshooters

to login and solve the problem remotely. In some cases there could be the vendors

support staff who are able to participate in the diagnosis and resolution..

Utilizing a software agent running on the local installation facilitates the remote access.

The remote user runs a client application on a desktop computer somewhere on the

enterprise wide LAN(inside the company firewall),

In case of the IP21 real-time database, the IP21 administrator is a client-end software that

provides the remote access and control. The IP21 administrator can be installed on any

NT4.0 based PC. The administrator attempts to discover all IP21 nodes in the subnet,

using a broadcast protocol. Alternatively the user can prompt the IP21 administrator with

the IP of the remote EP21 instance. The IP21 administrator then makes contact with an

agent running on the local node and establishes communications. The client can then

perform all database operations from the remote node. Another similar remote access

compliant tool is SQLPLUS. This allows sql to be executed on a remote IP21 host and

display the results on the users desktop window.

The Oracle database offers its own SQL remote client as well as the point and click

OEM(Oracle enterprise manager). Both the tools allow remote access and

administration of the Oracle database instance. The OEM in fact generates the SQL to

perform the administrative task specified using the point and click GUI interface. The

OEM allows a DBA to instantly view all the Database nodes running on the LAN.

Another important benefit of these GUI based remote access tools is that they allow the

DBA to view the database status quickly and efficiently without having to remember the

33

gory details of the system tables and views and clunky SQL syntax needed to extract

relevant parameters from them. OEM is also useful since the security can be setup once

in the OEM security manager and the access can be securely performed by a authorized

DBA by logging in at the OEM console.

34

3.1.4 Change of state detection by triggers

Detection of the change of state(COS) of any field in the database due to an update or

insert and the ability to trigger specific functions based on the change of state is a typical

feature of real-time databases. This COS detection is the central technique behind the

event driven functions of real-time databases. COS detection allows a real-time database

to deliver efficient data driven switching without having to resort to polling.

Typical examples of event driven functions are

1. COS driven GUI updates for process values

2. Exception based alarm updates to alarm screens

3. Alarm and even logging to history tables/files

4. Automatic Initiating control tasks based on change of state of hi and low limit alarms

5. Initiating of control tasks due to COS of database field due to operator key/mouse

input

Such event driven functionality is very useful in providing a fast response to the COS

event while monitoring a large number of potential COS event sources.

In a typical real-time database application in steel rolling the data from over 1000

individual fields out of the real-time database needed to be displayed on the mimic

screens. The maximum lag between the value changing in the database and the mimic

screen icon displaying the value being updated was specified as 1 second.

There were 30 operator GUI terminals, each of which could be displaying any one of 50

different mimic screens. Each mimic contained between 1 to 100 fields, drawn from the

total set of 1000 monitored fields.

As is apparent any attempt to provide a polled solution with a similar sub second

response will be prohibitive in terms of processing power and will impose a severe

performance penalty on account of the background polling action.

35

We have attempted to show how such a COS driven solution for GUI update could be

implemented using database triggers coupled with a Java stored procedure.

COS detection and function Invocation implementation using a Java
enabled object relational mainstream database

We implemented the COS detection feature and invocation of functions using Java

stored procedure triggers. In end of 1998 and 1999 vendors have started integrating Java

and object features into their mainstream relational database products. The result is very

powerful because it brings allows the stored procedures and triggers written in Java to be

stored in the database. The Java code is actually executed in a JVM(Java virtual

machine), which is integrated into the database. This provides a significant performance

benefit since the net layer is eliminated. Being able to code in Java allows the usage of all

the standard Java packages and programming techniques with potential reuse of code.

The current product still runs the Java stored procedure as interpreted code. We were not

able to notice any slowness in our Java trigger execution. It may be noted that the

vendors have promised to allow the Java stored procedure to be natively complied in the

next release of their product. This should take care of performance limitations in case of

applications with heavier throughput.

Implementing COS on table cell to update GUI update

To do this we used a GUI applet that ran in IE4.0 from and was hosted from a web server

running Apache (1.3.6 for Win32). We were able to shoe horn a small Java application,

which used the java.net.MulticastSocket class to multicast strings on the LAN into a

stored procedure.

We then created a row trigger, which invoked the stored procedure on detecting any

change of state in the stringValue column of the TestClass table.

36

SQ L> desc testclass
Name Type
INTVALUE NUMBER
FLOATVALUE NUMBER
SHORTVALUE NUMBER
DOUBLEVALUE NUMBER
STRINGVALUE VARCHAR2(: i o)
DATEVALUE DATE
STRINGVALUEARRAY1DIM VARCHAR2 <:4o)
INTVALUEARRAY1DIM NUMB E R_ARR_ 5
FLOAT VALUEARRAY1D IM NUMBER_ARR_ 6
S HORTVALUEARRAY1DIM NUMB E R_ARR_ 7
DOUBLEVALUEARRAY1DIM NUMBER_ARR_ 8
INTVALUEARRAY2DIM NUMB E R_ARR_ 6
INTVALUEARRAY3DIM NUMB E R_ARR_ 24
DAT EVALUEARRAY1D IM DATE ARR 4

Automatic Update Generation to GUI

Fig 3.1

38

3.1.5 Alarm management subsystem

In this section we describe the implementation of an alarm management system in an

object relational mainstream database. The alarm management system implemented here

mimics the alarm management features available in the EP21 real-time database.

The implementation of the alarm management subsystem consists of a master alarm table

called SYSTEM.ALARM_MASTER. This table has 1000 rows each defining an alarm.

To turn on a specific alarm the application process has to update the ALARM_STATE

field master alarm table. Note this act of turning on an alarm could also be done by a

trigger which monitors a field in the database and compares it against Hi and Low limits.

If after an update the field breaks the Limit the alarm is turned on.

The recently turned on alarm may be a member of several views. The different views

are used to logically group the alarms. Different users may open the view that contains

the alarm group of interest to them. Examples of such groupings are:

1. plant areas ie. furnace, roughing mill, finishing mill, down coilers,

2. engineering functions like electrical, mechanical, instrumentation

3. functional groupings like operator alarms, maintenance alarms

In this case there are 12 views called ALARM_VTEW1 through to ALARM_VIEW12

which are subsets of the SYSTEM.ALARM_MASTER table.

To make an alarm visible in ALARM_VIEW4.

turn the alarm_state column is 'on' and the alarm_view4 column is set to ’view4'.

To make the alarm disappear from ALARM_VIEW4

turn the alarm_state = 'off or by set the alarm_view4 column = 'off;

The alarm subsystem can be controlled by setting or clearing the alarm in the

SYSTEM.ALARM_MASTER table from the user applications.

39

Sensor data

Table
RoughingMillInputs Table

FurnaceZoneData

Table
AlarmLimitValues

\
\ \4 1 i 1 i 1 i 1 i 1 « 1 i 1 i 1 i 1 « 1 i 1 i 1 i 1 i 1 i 1 i

,,
—

.

Trigger on

HiHi, Hi, to, loLo limit viola
Rate of Change

ttion ■

;!!!!i!j!!l!i!!|!liilS!!j!:

Table AlarmM aster CApplication code/
Alarm Timer object

Formatted
Alarm string

Acknowledgment

timestamp No. Alarm text \
\ \

statuJ a c k viewl i
\

view 10

12:02:34.3 102 Alarm Roughing mill Exit (1100 C) Temp hi ON UNACK null view2 view 10

Viewl
View2

► 12:02:34.3 102 Alarm Roughing mill Exit

View entry
condition

View2.
ifeSïf i
..

ri I." ! f t * ■ f : i 'T ". ; ; i ‘ : : 1 : 1 f T

¡£;í:;í: ?ÍÉjí|0|ts

Fig 3.2 A larm Subsystem Im plem entation

SQ L> desc alarm master

Name Type

ALARM_NUMBER NOT NULL

NUMBER(5)

ALARM_TIME DATE

ALARM_PRIORITY NUMBER

ALARM_TYPE VARCHAR2(10)

ALARM_ACK_REQUIRED VARCHAR2(3)

AL ARM_ST ATE VARCHAR2(3)

ACK_STATUS VARCHAR2(10)

ALARM_ENABLE VARCHAR2(8)

ALARMJSOLATED VARCHAR2(8)

ALARM_VIEW1 VARCHAR2(8)

ALARM_VIEW2 VARCHAR2(8)

ALARM_VIEW3 VARCHAR2(8)

ALARM_VTEW4 VARCHAR2(8)

ALARM_VTEW5 VARCHAR2(8)

AL ARM_VIE W 6 VARCHAR2(8)

ALARM_VIEW7 VARCHAR2(8)

AL ARM_VIE W 8 VARCHAR2(8)

ALARM_VIEW9 VARCHAR2(8)

AL ARM_VIE W 10 VARCHAR2(8)

ALARM_VIEW11 VARCHAR2(8)

AL ARM_VIE W 12 VARCHAR2(8)

ALARM_TEXT VARCHAR2(200)

ALARM_FORMAT VARCHAR2(200)

SQL>

41

1. Show the current active alarms in view4

SQL> select alarm_number, alarmjpriority, alarm time from alarm_view4;

ALARM NUMBER ALARM PRIORITY ALARM TIM

57 7 01-JAN-99

145 6 01-JAN-99

149 1 01-JAN-99

150 9 01-JAN-99

262 4 01-JAN-99

329 1 01-JAN-99

423 4 01-JAN-99

580 5 01-JAN-99

615 2 01-JAN-99

796 5 01-JAN-99

858 10 01-JAN-99

993 3 01-JAN-99

12 rows selected.

2. Now turn the alarm 993 off

SQL> UPDATE SYSTEM.ALARM_MASTER SET ALARM_STATE = ’off WHERE

ALARM_NUMBER=993;

SQL> UPDATE SYSTEM.ALARM_MASTER SET ALARM_STATE =

'on,,alarm_time=sysdate WHERE

ALARM_NUMBER=423;

1 row updated.

SQL> select TO_CHAR(alarm_time,MM/DD/YYYY HH24:MI:SS'), alarm_number,

alarm_priority from alarm_view4

order by alarm_priority, alarm_time;

TO_CHAR(ALARM_TIME, ALARM_NUMBER ALARM_PRIORITY

01/01/1999 00:00:00 149 1

01/01/1999 00:00:00 329 . 1

01/01/1999 00:00:00 615 2

01/01/1999 00:00:00 262 4

01/01/1999 00:00:00 423 4

01/01/1999 00:00:00 580 5

01/01/1999 00:00:00 796 5

01/01/1999 00:00:00 145 6

01/01/1999 00:00:00 57 7

01/01/1999 00:00:00 150 9

01/01/1999 00:00:00 858 10

11 rows selected.

Note alarm 993 has been removed

43

3. Now update an existing alarm and note the change in the time.
The time can also be updated using a trigger.

SQL> UPDATE SYSTEM.ALARM_MASTER SET ALARM_STATE =

'on,,alarm_time=sysdate

WHERE

ALARM_NUMBER=423;

1 row updated.

Commit complete.

SQL> select TO_CHAR(alarm_time,MM/DD/YYYY HH24:MI:SS'), alarm_number,

alarmjpriority from alarm_view4

order by alarmjpriority, alarm_time;

T0_CHAR(ALARM_TIME, ALARM_NUMBER ALARM_PRIORITY

01/01/1999 00:00:00 149 1

01/01/1999 00:00:00 329 1

01/01/1999 00:00:00 615 2

01/01/1999 00:00:00 262 4

06/10/1999 02:41:57 423 4

01/01/1999 00:00:00 580 5

01/01/1999 00:00:00 796 5

01/01/1999 00:00:00 145 6

01/01/1999 00:00:00 57 7

01/01/1999 00:00:00 150 9

01/01/1999 00:00:00 858 10

11 rows selected.

4. Now turn the alarm_view4 fo ff for alarm 796 and observe it is
removed from the view

SQL> UPDATE SYSTEM.ALARM_MASTER SET alarm_view4 = 'off,

alarm_time=sysdate WHERE

ALARM_NUMBER=796;

1 row updated.

Commit complete.

SQL> select TO_CHAR(alarm_time,,MM/DD/YYYY HH24:MI:SS‘), alarm_number,

alarm_pr

iority from alarm_view4

2 order by alarm__priority, alarm_time;

T0_CHAR(ALARM_TIME, ALARM_NUMBER ALARM_PRIORITY

01/01/1999 00:00:00 149 1

01/01/1999 00:00:00 329 1

01/01/1999 00:00:00 615 2

01/01/1999 00:00:00 262 4

06/10/1999 02:41:57 423 4

01/01/1999 00:00:00 580 5

01/01/1999 00:00:00 145 6

01/01/1999 00:00:00 57 7

01/01/1999 00:00:00 150 9

01/01/1999 00:00:00 858 10

10 rows selected.

45

User Acknowledgement of alarms

The users view the alarm screen in an applet running in a browser. The applet interfaces

with the relational database tables using the JDBC API. The alarm views are displayed in

the browser window and the user gets to select and acknowledge individual alarms on the

browser screen. The acknowledged alarm is then updated in the AlarmMaster table using

another JDBC call which in turn updates the alarm views.

46

3.1.6 Statistical functions , averaging, integration, moving
average,control charts

Real-time databases have configurable facilities for performing statistical functions on

the gathered process data. No code needs to be written to implement these features. In

EP21 real-time database, the process data is stored in trend records as timestamp, data

value pairs. To generate 10 minute or hourly averages for a process data an averaging

record has to be configured and pointed to the original trend record. Counting functions

can be provided to count the number of occurrences of digital inputs in specified intervals

ie. per hour. Integrating records can be configured to integrate instantaneous values ie.

To derive the volume of liquid from the instantaneous flow rate. Again the integrating

record has to be configured and pointed towards the trend record storing the flow rate.

Moving averages can be performed to smooth noise by configuring moving average

records and pointing them to the original trend record.

A generic Java trigger can be provided to handle each of the different statistical functions

described above. The results would be collected in another table. The trigger can be

added as a row trigger to the table where the timestamped process data is being stored.

The implementation of the statistical functions is relatively simple using Java.

48

3.2 Implementing Compression - Problem 2

3.2 Synchronous online compression - why do we need
compression ?

To improve product quality and to be able to quickly detect and arrest

any aberrations in quality we need to do the following

1. Continuously measure and store process data for 5 years or more to allow comparison

across the same product group when analyzing quality problems. Typically the same

product may be made in batches which are months apart.

2. Sampling data at a rate fast enough to catch significant events and the cause and

effect associated with them.

3. To retrieve easily stored data for detailed statistical analysis to be able to explore the

cause and effect relations.

While the above requirements seem simple they soon run into severe implementation

problems when the storage requirements are sized. All current real-time databases

recognize this problem and have provided a configurable per point compression ability

that operates on the data before storing it. Any attempt to use a mainstream relational

database for real-time applications will therefore need to build data compression into the

solution.

We will attempt to show how a compression algorithm coupled with an understanding of

the nature of the process data can provide a solution.

Some of the criteria the compression mechanism must satisfy are:

• Integrity of the data must be preserved during compression to ensure recording of

ALL variations.

• Timestamp must be recorded with sub millisecond accuracy to allow comparison of

related process parameters.

49

• The Compressed Hata should be selectable across a multi year timespan. Shortcut

solutions like zipping of datafiles are not acceptable.

• The compression technique must be fast and simple executing in sub microsecond

times per input to allow deployment at the source of the data. Potential deployment

targets are the low level devices like the PLC or DCS.

• The data must be compressed by 10 times or better to provide meaningful reduction

in storage requirements

• Must allow merging of older data into history to allow lab results insertion.

In the rest of this chapter we will attempt to implement such a historical data system

which synchronously compresses the data before writing it into the database meeting the

criteria outlined above.

50

3.2.1 High throughput data storage estimate

We will study the volume of data generated in a real life automation application and

observe the need to compress the gathered data. In manufacturing applications similar to

the strip mill it is often a statutory requirement to store the complete log of the

manufacturing data for a defined period of 7 - 10 years. This is driven by the legal need

to be able to certify the quality of the manufactured product in any legal issues arising

from any failures of any downstream product manufactured using the strip. Where the

manufacturing process is a fast moving operation like strip rolling, the sheer volume of

date being generated can be staggering. Also important is the requirement that users

should be able to get at the stored data with simple tools like SQL preferably without any

manual intervention by a database administrator. We will now attempt to estimate the

volume of data in the strip rolling operation.

The data is gathered at a periodicity of 20 observations per second from 200 measured

inputs. Each data point is stored as a 8 byte long number. Since this is a continuous

operation the amount of space needed to store the equivalent of one days data is

200 * 8 * 20 * 60 * 60 * 24 = 27648000000 bytes = 2.765 Giga Bytes

1 months data = 30 * 2.765 = 82.95Gb

1 years data= 365 * 2.765 = 1009.225 Gb

Each data value store must be stored with its 8byte timestamp. However savings can be

achieved by storing a common timestamp for a number of different inputs. This is not

hard because low level io devices usually scan all their inputs at the same time.

Even with common timestamps'at this rate of generation of data it may be very difficult

to store data for more than a month using the currently available RAID arrays of 18Gb

SCSI disks.

51

Once the database grows to such a huge size normal DBA(database administration)

activities like backing up data files becomes a technical feat since the backup spans

multiple tapes and takes several hours to perform. The latter can be a problem in the 7x24

hour operation environment o f plants like a strip mill.

The actual cost of the hardware rises significantly once the typical expandability of the

platform is exceeded. Additional cabinets power supplies and cabling and RAID

controller cards have to be catered for all this adds cost increases complexity and lowers

reliability.

Compression of the data before writing it to disk seems to offer a wonderful opportunity

to be able to achieve the desired data storage functionality using a commercially used and

much cheaper and more manageable computer and RAID configuration

Keeping in mind the large volume of data, the following are desirable features to make

the system meet user expectations.

1. A fast compression algorithm needs to be devised to compress the data by rejecting

those observations, which do not represent any significant deviation from the

previous trend.

2. To be able to partition the stored data based on time to allow partitions to be taken off

line and restored online easily when required.

3. It should be possible to load the stored data into an offline database to allow users to

query at will without affecting the production system.

52

3.2.1.1 Strip mill data compression results

The compression algorithm described in 3.2.2 was deployed on the SOFTLOGEX

SoftPLC, which is a NT4.0 COM application. RTP data consists of 128 inputs

sampled at 50ms. The ESP GEM Data is obtained from the 7 GEM PLC’s which are

polled by a Java application at a rate of 32 16 bit words every 250 ms. All the data

was put through the compression algorithm. The RTP data was compressed

dramatically to 1.15% of the total samples. Whereas the ESP GEM data was

compresses only to 31% of the total samples. The compressibility was not as much in

case of the ESP GEMS because some of the data consisted of digital inputs for which

the passband had to be kept to 0. It is possible to set the passband on an input by input

basis so adjusting the pass band for the analog inputs from the GEMs will realize

further compression.

The compression results overall are very encouraging because the most of the data

volume was resulting from the 128 inputs sampled at 50 ms. And these were

compressing beautifully. Based on these results we concluded that the estimated raw

data of 5GB / day would compress to -500 MB/day without losing data integrity.

Further compression is possible by identifying the signals which generate the most

data and critically looking at these signals to see if the passbands could be increased

to reduce the sensitivity of the compression. In other cases there could be a need to

increase the sensitivity for some other parameters.

1. RTP - Analog Data

The following results were taken overnight (5/11/99). Each result

represents one hour of data, with the data being sampled every 50msecs.

The compression pass-band was setup at 0.5% FSD and each value stored

as a float (32 bits).

53

RTP Data

H our Intervals Uncompressed
Signals

Compressed Signals % of Compression
Signals

1 9216128 1013134 10.99
2 9213824 853476 9.26

3 9215232 996755 10.82
4 9216000 1103892 11.98
5 9214976 932043 10.11
6 9216256 867110 9.41
7 9215360 1069575 11.61
8 9216256 917267 9.95
9 9216256 1013742 11.00
10 9216256 1012508 10.99

Total 92156544 9779502 10.612

Table 3.1

As a result of further tuning subsequent results show we are getting around

a compression figure of ~6%.

2. E S P -G E M Data

The following results were taken overnight (5/11/99). Each result represents one hour

of data, with the data being sampled every lsec (Existing system). The compression

pass-band was setup at 0.0% FSD and each value stored as a integer (16 bits). Note

the passband was set to 0% to record all changes. The reason for this was the fact that

some of the data was digital inputs saved as an integer and every change had to be

recorded. We may be able to get more by altering the pass band for non digital inputs.

54

GEM Data

Total Number O f Total Number After Compression

Samples Compression percentage

691200 223785 32.38

691200 218575 31.62

691200 216531 31.33

691200 217319 31.44

691232 211100 30.54

690528 201089 29.12

691264 212573 30.75

691200 229260 33.17

691200 230415 33.34

Table 3.2

55

3.2.2 Synchronous compression technique

Compressing the data at the source is very attractive because it reduces the network

traffic and the processor load in marshalling and unmarshalling the data at the data

source and at the Server end before saving to the database. By profiling the Java code on

the data source and receiving end we noted that almost half the cpu time was spent in

marshalling and unmarshalling.

The following is a low overhead algorithm to compress and timestamp multiple streams

of synchronous data while preserving the fidelity of the trend. The algorithm can be

deployed wherever it is convenient. It simplicity and resulting speed allows it to be

deployed without any concern about performance.

The algorithm derives its simplicity from the fact that for synchronous data, the delta

time is constant so the slope is equal to the difference between the current and last data

value multiplied by a constant.

The algorithm coded in java2 and run on a 300Mhz Pentium II executed in 16

microseconds for a block of 200 data points, this translates to 80 nanoseconds per point.

Each point was executing a sine wave of amplitude +-4000. This means we will be able

to deploy the algorithm on a variety of platforms perhaps even inside PLC’s

Here is textual description of the compression algorithm

1. The passband is computed by projecting the slope from the previous 2 points and

adding and subtracting a nominated passband.

2. If the current value is within the computed passband it is rejected.

3. If the current value breaks the passband we log the previous value and the current

value. Logging of the previous value is skipped where it had already been logged

56

4. If the time span in milliseconds since the last recorded value exceeds a configured

maximum then the value is logged anyway.

5. reject the measured value anyway if it is less than a low limit or above a high limit.

This is to take care o f misleading observations i.e. temperatures measured when there

is no metal in mill.

57

Java Implementation o f the compression Algorithm

presented here is the java routine which implements the compression
algorithm described above. The complete source is also available in the
appendix

!h
II
II
n
ii
h
//
ii
u
//
//
i i

u
//
//
//
//
//
//
//■■

Function
processData

= DESCRIPTION
This routine recieves an raw data array containing a measured value for each input point in the .
system. The routine iterates through the array testing the measured value against the trend established
by the previous measured values. If the measured value differs significantly it is selected for
storage. The selected value is saved in a the output array called values. The index o f the measured
value in the raw data array is saved in another output array. The output arrays contain now a subset
o f the original values the extent o f compression depends on the per point configuration parameters.
The routine also updates the trend data in its static arrays for each point.

params:
rawData[] is an array o f the input scan data for all the values.
timeStamp is the long number representing the ms since 1970 associated with this scan. All values

share the common timestamp since the data was gathered by the same input device.
value[] is the array o f values which were not rejected after processing the rawData[]
tags[] is the input tag id associated with the corresponding entry in the values[] array

¡I---------------- - ----- -------------------- ,,

// Function
// processData
II
// = DESCRIPTION
// run through the array of data and processes one point for compression in each array
// '
// ■ - ------- ---------------

public short processData(int[] rawData, int[] values,
int[] tags, long timeStamp)

{
if(myProcessingBusy = true)
{

return -1;
}

myProcessingBusy = true;

58

Trace.level5("in processData");

int tagCount=0;
// index of non rejected data entries

for(int i=0; i<myIo Array Size; i++)
{

myDeltaY[i]=myYi[i]-myYi_l [i];
// delta y from last time

my Yi_l [i]=myYi[i];
// set the value prior to last equal to the last value

my Y i [i]=rawData[i];
// read the new value

int c = myYi_l[i] + myDeltaY[i] + myPassBand[i];
int d = myYi_l[i] + myDeltaY[i] - myPassBand[i];

// calculate pass band limit

i f (i = 10)
{

System, out.println("entering loop in processData. myDeltaY[i]="+
myDeltaY[i]+" myYi[i]"+myYi[i]+" myYi_l[i]"+myYi_l[i]+" c="+c+"
d="+d+" mypb[i]="+myPassBand[i]);

}

myl=i;
boolean skipFlag = false;

// record the event that a value is about to be logged because the
// number of allowed skips has been exceeded
if((timeStamp - myLastLoggedTime[i]) > myMaxSkip[i])
{

skipFlag = true;
}

if((myYifi] > c) || (myYifi] < d) || (skipFlag = true))
// test if the new data is outside the allowable pass band

{

if(myFlagYi_lLogged[i] = false && skipFlag = false)
// log the last value too if it was a point skipped by the compression logic
// earlier. The myFlagYi_lLogged[i] is set true when a new point is logged

{
values [tagCount]=myYi_l [i];

// save value

59

tags[tagCount]=i+1;
//save index of non rejected tag. This will point to the history record
// i.e.History54 where i = 53

if(i = 1 0)
{

System.out.println("i="+i+" Retaining Yi-1
values["+^gCount+"]="+values[tagCount]+" sf="+skipFlag);

}

tagCount++;
// increment count o f non rejected tags

}
values[tagCount]=my Yi [i];

// save value
if(i = 1 0)
{

System.out.println(,,i=,,H-iH-,f Retaining Y i
values["+tagCount+"]-’+values[tagCount]+" sf="+skipFlag);

}
tags[tagCount]=i+1;

//save index '
tagCount++;

// increment count

myFlagYi_lLogged[i] = true;
// flag the logging into history of the current point

myLastLoggedTime[i]=timeStamp;
// save the time when last reading was logged

}
else

// skip the point for now it is within the pass band
{

mySkipCount[i]++;
myFlagYi_lLogged[i] = false;

}
int k = Math.max(0,tagCount-l);
myT otalCount[i]++;

// count total vlues for this point
}
myProcessingBusy = false;
return (short)tagCount;

The following is an extract from a configuration file which is dynamically monitored by

the compression algorithm to allow the compression criteria to be tuned while it is

operating

Configuration file

#— -■ -
FILE NAME: HSM.config
DESCRIPTION: 10 compression parameters for 200 points
AUTHOR: Saugato Mukeiji
CREATED: 08 Mar 1999
LIBRARY:
#
REVISION HISTORY:
Initial revision
#
#
#---------- ■ ------- - - -
#

the following defines the max interval for which data may be skipped
#

HSM.skipl = 300
HSM.skip2 = 300
HSM.skip3 = 300

HSM. skip199 = 1000
HSM.skip200 = 1000

— = ====
the following define the deadband
...............

HSM.passBandl = 150
HSM.passBand2 = 110
HSM.passBand3 = 10

HSM.passBandl 98 =110
HSM. passBand 199 = 110
HSM. passBand200 = 110

61

This figure shows graphically, how the compression algorithm decides to reject or save a

datapoint based on the computed passband. Typically only the points falling outside the

passband are saved. The point preceding the point being saved is saved too, if it not

DegC

A graph showing the pass band based operation of the compression algorithm

© P.ejected point

□ Point before pom
change where the
previous point w
not saved.

Q Point of change

Computed
passband

Time in 50 ms divisions
>

Fig 3.2

already saved. The examples of this are at the top and bottom of the sine wave. This

allows the algorithm to record faithfully the points of discontinuity.

62

Fig 3.3

A graph showing the max skipped time-span based operation of the compression
algorithm

The above figure shows two variables one of which is compressed and the other

uncompressed. The two variables were given the same simulated data with a small delay.

The simulated data was a sine wave with disturbances. The compression algoritm was set

up in this case to have a very high passband so that only when the maximun interval was

exceeded was the value recorded. The compressed variable shows that the shape of the

graph was preserved and the disturbances were recorded faithfully. As expected the

number of datapoints saved was much less in the compressed variable.

63

3.2.3 Algorithm design with adaptive tuning

Further compression may be achieved by selectively tuning the compression parameters

associated with each individual input. Such tuning can be done based on the domain

knowledge about the input. When tuning the parameters for an input information about

the basic sensor accuracy, noise level of the signal, nature of the signal ie fast or slow

changing.

What may be even more powerful is adaptively switching the compression parameters to

high sensitivity for related groups of signals which become relevant when the

manufacturing process is executing a specific unit operation. This would prevent

gathering of excessive data during quiescent periods but the data would be recorded with

the highest allowable resolution when it is valid.

Where such domain knowledge is not available the compression algorithm itself can be

made self timing by monitoring the statistical variability of each input. This variability

can be used to dynamically specify the compression parameters. This may be a highly

relevant approach where the number of inputs are in the order of 10000 to 20000 as is the

case in thermal or nuclear power plants.

Further sophistication can be built to allow compression parameters to switch

automatically to high sensitivity when a bump or a large variation is observed. The

sensitivity can be gradually relaxed to a relatively less sensitive quiescent setting(which

yields better compression) once the variation in the data has declined.

64

3.2.4 Using tables with many columns to improve the data rate

When benchmarking the object relational database for inserts it was soon realised that the

number of separate inserts which could be performed per second was limited. Increasing

the number of columns in each row did reduce the insertion rate but the decline was not

in proportion with the increase in the number of columns. The bench mark figures in the

earlier section on update/insert rate limitations show that the insert rate fell from 150 to

80 inserts per second when the number of columns in the table increased from 10 to 289.

So a 30 fold increase in the number of columns led to the insert rate falling by a little less

than 2 times. The CPU loading was never more than 30% since the task seemed to be

disk bound.

Obviously the object relational database is incurring a certain fixed overhead when we

insert a row into a table irrespective o f the number of columns inserted. The number of

columns can best be treated as a variable overhead.

So where we need to insert large amounts of data at a high scan rate (ie the 200 points

per second at 50ms per scan) it is probably best to keep the data in a single table if

possible. If that is not possible then the number of tables should be kept as low as

possible.

Since the task is disk bound it would be effective to locate the tables on separate spindles.

Further the object relational databases are designed for symmetric multiprocessor

architectures so the data rate would improve if a 4 cpu or 8 cpu box was used.

Further benefits are realised when additional instances of data inserting programs are

used. While the individual insertion rate per insertor may drop the cumulative insertion

rate increases. A bench mark on a 300 column table using a single insertor inserted 80

rows/second whereas two instances of the insertor running together inserted 60 rows each

taking the total to 120 rows/second.

65

3.2.5 Effect of sparseness on amount of space used per row

Time series data from sensors lends itself very well to compression. Compression in this

case means not storing those measurements, which do not deviate significantly from the

trend, defined by the stream of measured values.

Where the time series data is being gathered synchronously at predefined intervals by the

data acquisition system a complete set of measurements and the absolute time is stored as

a row in the relational table. It is typical to store the time in terms of the number of

milliseconds since midnight of 01-01-1970. Most operating systems provide a call, which

returns this.

However when the compression algorithm rejects the data for a particular measurement it

still has to be stored in the table. It is possible to store a null in place of the rejected data.

Where the data trends are slowly varying the compression algorithm will replace many of

the observations by nulls leading to the rows becoming highly sparse.

We did a practical experiment by inserting in turn 10000 rows each of 0%, 90% and

100% sparseness into a table called NUMBERTABLE. NUMBERTABLE has 289

columns o f numbers. We observed the free space used space, blocks and extents used by

the number table using the DBMS_DDL. ANALYZE_OBJECT (...) function after

inserting each lot of 1000 rows.

0% sparseness
Let us first consider the results for 0% sparseness i.e. there are no null values in any row.

Predictable the space used increased and the free space declined by an identical amount

o f 2000kb after inserting each lot of 1000 rows. The blocks used increased by 1000 for

each 1000 rows. Considering the block size is 2kb this matches perfectly the changes in

free space and used space.

66

Considering each row has 289 columns the space taken to store a single number is

= (2000x1024)/ (289*1000) = 7.986 bytes/ value. This may go up by a small amount

when we add an index.

90% sparseness

Next let us consider the scenario most likely to occur when storing process trend data

after rejecting the values not significantly differing from the trend. Typically an online

compression algorithm is used to reject the values not significantly differing from the

trend by replacing such values by nulls. Such data may end up having a sparseness of

around 90% i.e. only every 10th value is non null in each column or in other words 10%

of the measured values are sufficient to represent the trend accurately. The Compression

algorithm described in earlier chapters achieved the 90% rejection rate on sample data.

As before the space used and free space, changed in opposite directions by identical

amounts. The space was measured after inserting each lot of 1000 rows. In this case

amount of change in space was 600kb for 1000 rows. The change in the number of

blocks used by the NUMBERTABLE for each 1000 rows was 300 blocks of 2kb each.

Since the original pre compression data was of the same size the effective storage used

per value with 90% sparseness is

=(600x1024)/ (289*1000) = 2.126 bytes/ value.

That’s a saving o f 100*(7.986 - 2.125)7.986 = 73.37%

Thus the effective space needed per day to store 200 points of data measured 20 times a

second after compression =200* 24*60*60*20*2.125/ 1000000 = 734.4Mb/day

67

100% sparseness i.e. down day

To simulate the condition when the plant is down where no new measured values are

being generated - we tested with 100% sparseness.

10000 rows needed 200kb. So the effective space, required to store each null value, was

=(200x1024)/(289* 10000) = 0.0708 bytes/value

That’s a saving of 100*(7.986 - 0.0708)/7.986 = 99.11%

Thus the effective space needed per day to store the 200 points of on a plant down day

=200* 24*60*60*20*0.0708/ 1000000 = 24.5Mb/day

If the compressed data were to be stored in a real-time database with a compression ratio

of 1:10 the volume of data per day would only be a little lower. The real-time stored 15

bytes for the timestamp and value, however there was no overhead associated with the

rejected values

Ie 200* 24*60*60*20*0.1*15/ 1000000 = 518.4Mb/day

Conclusions

There is a 70% reduction in volume of disk space used if a slow moving time-series data

are compressed with a trend based rejection algorithm and then stored into a relational

table columns formatted with a variable length data type. This technique achieves the

benefits of compression while retaining the ability to perform SQL queries on the entire

or any sub part of the entire chronological dataset.

A related observation was that the insert rate improved as the sparseness of the table

increased. We observed that the time taken to insert 1000 rows was 16.5, 13 and 9.5

second for sparseness values of 0%, 90% and 100%. This is explainable by the fact that

as data becomes sparser less bytes have to be written to rollback and redo log segments.

68

Storing the compressed data in relational tables with nulls representing data took 734.4

MB/'day whereas storing the same data at the same i : iO ratio in the real-time database

took 518.4MB. So while the relational data took a little more space it may still be a better

choice from the scalability and robustness point oi view.

69

3.2.6 Effect of sparseness on table with varray columns

The Oracle VARRAY datatype allows a predefined array structures to be used to define a

column in a table just like any conventional primitive datatype like number, char, varchar

etc. The VARRAY construct is extremely useful in mapping the data structure of real

world objects into the object relational tables in the RDBMS.

In this section we have examined the space occupied by a row of such a object relational

table which has half its columns defined as VARRAYS. We will also examine the

reduction in space occupied when the row becomes highly sparse. Reduction in space

occupied with increase in sparseness is a highly useful attribute when gathering data

synchronously at a high scan rate. Real world data often alternates between relatively

non sparse and very sparse. A typical example is data resulting from process

measurements on in a batch process. Typically data is generated in different process

stages by different input sensors. As a result the data from a particular sensor is sparse

except when the batch process is operative in the section of plant where the sensor is

located.

To examine the effect of sparseness on the amount of space saved when inserting a row

we tested a table called TESTCLASS with NON-NULL data and then with highly sparse

data where every column an VARRAY element was NULL except one column. We

inserted data in blocks of 10000 rows at a time and analysed the table after each block.

The results are tabulated below and also presented as a graph.

The enclosed graph and table clearly shows that significant saving could be obtained by

ensuring that the data null when the values are insignificant.

70

The Physical significance of sparseness in a real life

To illustrate the point let us consider the process of rolling of a coil. The process starts at

the roughing mill which we designate as zone 1 and proceeds through zone 2 and zone 3

to end up in the delivery area designated as zone 4. in each zone there are 75 sensors

making a total of 300 sensors, which gather process data. Typical process parameters are

strip width, thickness, length, tension, roll motor amps, strip temperatures across the

width of the strip from top and bottom metal detectors for position sensing etc. The

sensors are mounted at several locations in each zone to monitor the progress of the slab.

The data from each sensor is scanned at a high speed of 20 scans /sec. This data is written

into the database immediately. It is now obvious that the data from each sensor is

relevant for only a small fraction of the rolling period of the coil. The rest of the time the

sensor data in many cases is irrelevant. It is relatively easy to detect the relevance or

irrelevance of the data by comparing it with predefined HiHi and LoLo limits.

Roughing Finishing Coil box Delivery Area
mill zone 1 mill zone 2 Zone 3 Zone 4

ABR125
-- ►

Fig 3.4

In real life the situation is a little more complicated as there is usually several bars in the

mill at the same time. The number of zones too is further broken up into many more.

A very important requirement is the ability to be able to quickly retrieve in real time the

data from an adhoc subset of the 300 data points for an arbitrary time span in history.

Typically such data is used to perform fault analysis, prepare response to customer

queries about product quality etc.

71

Arguably this is easy if you had a table with 300 columns. Oracle can handle the data rate

of inserting 20 rows per second with no trouble. Elsewhere in this thesis there are

benchmarks of upto 60 rows of 300 columns on a pentium 300Mhz running NT4.0 with a

single ide 8GB disk. The bottleneck is disk io. The cpu usage was only 30%.

The problem however is in the volume of the actual stored data. Benchmark data

elsewhere in the thesis shows it takes 2MB to store 1000 rows of 300 columns of NON

NULL data.

Considering we have 20 rows to insert per second and there are 86400 seconds/ we are

looking at inserting of NON NULL data, we are looking at

(2.048/1000)*20*86400 = 3539.9MB /day

Note even if a row has all zero values it is still non sparse because Oracle has no way of

distinguishing a 0 from 234.56 hence it allocates the same amount of space to store both.

As we have noted in section 3.2.5 replacing 90% of the column values with nulls the

storage requirement reduced by 73.37% to 942.67 MB/day.

The table below shows that this benefit of saving in space extends to tables with Varrays

as well. In the example below each row in the table has 66 effective colums after

counting all the Varray elements. We stored only one non null value per row to get a

spareseness of 1 by 66 or 98.5% spareseness.

Space needed to store 50000 rows on NON Null data - 21053440 bytes

Space needed to store 50000 rows on 98.5% Null data = 1597440 bytes

72

% reduction when 98.5% sparse data used

= 100*(1 - (1597440 / 21053440))

= 92.41%

Fig 3.5

Comparision of Space used when inserting rows of Sparse and
non sparse data into a Table with Varray columns

70 -- 3000

—♦— extents Spar?

—♦— extents

— blocksSparsi

—m— blocks

74

Table 3.3

Table with 7 primitive and 7 VARRAY datatypes with non-Null data in every cell

sparse% rows bytes Extents blocks free used delta_time
0 0 81920 1 10 178344 188592 0
0 10000 4136960 23 505 175176 192872 48
0 20000 8396800 36 1025 170496 197712 61
0 30000 12615680 46 1540 165896 202152 65
0 40000 16588800 54 2025 161456 206592 67
0 50000 21053440 62 2570 156496 211552 65

Table with 7 primitive and 7 VARRAY datatypes with all Null except two colu T ins
sparse% rows bytes Extents blocks free used delta_time

0 0 81920 1 10 178344 188592 0
98.5 10000 409600 4 50 177704 189232 48
98.5 20000 655360 6 80 177448 189712 50
98.5 30000 942080 8 115 176696 190592 55
98.5 40000 1269760 10 155 176112 191432 55
98.5 50000 1597440 12 195 175528 192152 55
98.5 60000 1802240 13 220 174864 192992 56
98.5 70000 2211840 15 270 174400 193632 55
98.5 80000 2416640 16 295 173976 194072 50

blocksize 8192 initial 57344 Max 121
extent extent

SQL> DESCRIBE SCOTT.TESTCLASS

Name__________ _______
INTVALUE
FLOATVALUE
SHORTVALUE
DOUBLEVALUE
STRINGVALUE
DATEVALUE
STRINGVALUEARRAY1DIM
INTVALUEARRAY1DIM
FLOATVALUEARRAY1DIM
S HORTVALUEARRAY1DIM
DOUBLEVALUEARRAY1DIM
INTVALUEARRAY2D IM
INTVALUEARRAY3D IM
DAT E VALUEARRAY 1DIM

Type_____________
NUMBER
NUMBER
NUMBER
NUMBER
VAR CHAR2(10)
DATE
VARCHAR2 (40)
SCOTT.NUMBER_ARR_5
SCOTT.NUMBER_ARR_6
SCOTT.NUMBER_ARR_7
SCOTT.NUMBER_ARR_8
SCOTT.NUMBER_ARR_6
SCOTT.NUMBER_ARR_24
SCOTT.DATE ARR 4

Table 3.4

75

3.2.7 Partitioning a large high throughput database for
administrative ease

Even with data compression the high throughput table with 300 columns will grow at 0.5

GB /day when data is scanned 20 times a second. When the database stores 5 years of

data its size is likely to be more than 800GB.

Partitioning the table can offer great benefits when performing administrative tasks like

backups. If partitioning was not available we would have to backup the entire table.

Current fast tape speeds are at best 4MB/sec on a 70GB DLT tape. At this rate a backup

would span 12 tapes and would take over 55 hours. Needing to swap tapes 12 times

makes backing up impossible to automate. Also such a long backup duration makes

online backups unwieldy. In many cases a 55 hour down time for a closed full backup is

impossible.

It is now possible to partition the table into many smaller manageable partitions. The

benefits are

• We get complete control over exactly where each portion of the table gets created.

Each partition can have its individual storage parameters.

• The backup process is greatly simplified because each partition can be backed up

separately.

• The older partitions, which contain historical data that does not change can be made

read only. Read only partitions do not need to be backed up.

• Users can query more efficiently by focussing on rows within the partition of interest.

• Block corruption in one partition of the table can be isolated and fixed while users

continue to work on the rest o f the table.

76

• Preferably partitions of a large table should be in their own tablespaces. This will

allow the DBA to take individual partitions offline without disturbing the rest of the

table.

77

3.3 Implementing Software Engineering
approach - Problem 3

3.3.1 Database configuration tools and API available in a
typical real-time databases for application development

Typical real-time database provide out of the box tools for creating record structures or

templates with a GUI driven point and click interface. The application developer is able

to define the database structure without having to write a single line of code.

The tools allow complex record structures to be constructed which include a mixture of

fixed or array fields. The arrays can consist of a single or a collection of primary fields.

The sizes of the arrays are resizable in real time by altering the sizing field in the record.

The tools allow record structures to be duplicated and altered easily.

To complement the flexibility in the record structure there is a suite of API functions to

access and manipulate the database records. The application programmer can manipulate

the Real time database fields from the program in the language of his choice using the

API calls.

The real-time database administrative tools are now network wise and are able to talk to

and administer the different database instances running on the LAN.

The challenge here is to provide software engineering tools to ease the development

when we attempt to use the object relational database for developing real time

applications.

78

3.3.2 Auto-generating table definition from .java class
definition

The challenge here is to provide software engineering tools to provide similar ease ot

development when we attempt to use the object relational database tor developing real

time applications.

Object modeling tools like Rational Rose or Software Through Pictures are now

commonly used to design applications in modeling languages like UML. The Java or

C++ skeletal code is generated automatically from the case tools as a deliverable output.

It is very useful to be able to forward generate the object relational database structure

based on the skeletal code produced by the case tool. In this section we will describe the

implementation of such forward generation scripts. The actual script and the skeletal

classes and the table creation sql files produced are contained in the appendix.

The main benefit of forward generating the table definition lies in the fact that there is no

manual typing or editing involved in creating the table structure given the .java or .cpp

source files. This leads to great ease in creating the database tables where the number of

such tables is large. Also there is a great reduction in the risk of introducing errors when

making changes and improvements during the rest of the software life cycle.

79

Fig 3.6

3.3.3 Auto-generating Java wrapper library to access object
relational tables

To make the task of accessing the application data stored in the object relational tables

we need to have a wrapper library which encapsulates the entire activities involved in

opening a connection to a database, performing a select, update, insert as applicable and

exchanging the query output with the appropriate data members in the Java class

instance.

The task involved here is to parse the skeletal Java class and identify the data members.

Then special access functions have to be created to exchange data between class

instances and the object relational table.

The wrapper functions are incorporated into the skeleton .java file and the augmented

source file is created. The augmented file is placed in the appropriate directory structure

as defined by the package statement. The application developers can use the assessor

functions in the wrapper to manipulate the object relational tables without having to

know much about the database and its location. Since the wrapper is auto-generated the

incremental effort involved in adding more tables is small. The auto-generation method

provides great help in maintenance during the life cycle of the installation.

81

Fig 3.7

3.4 Performance Issues - Problem 4

3.4.1 IP21 real-time database benchmarks with multiple processes
on a multiprocessor system.

3.1.4.1 Test Conditions

Read and write tests were performed on Dual Pentium II 400 MHz, 256 MB, VM limit

857752 KB. We are testing IP21 in a dual processor SMP(symmetric multiprocessing)

environment to see if it is able to benefit from the additional processor. To test this we ran

several instances of the Java program TestClassTestHamess. The test consisted of repeated

reads and / or writes to IP/21 running on the same computer. The IP21 C API library was

accessed using JNI from the Java program.

Memory usage before tests was around 310000 KB, usage with all Java programs running was

335000 KB

3.1.4.2 Results

Test results for reading / writing single integer values to / from IP/21, as fast as possible.

Number of reads / writes in each test = 10,000,000.

Test conditions Number
of
processes

Approx
CPU

Average # calls /
second / process

Total # calls /
second

Reading 1 50% 140597.55 140597.55
Writing 1 50% 135107.75 135107.75
Reading same data
point

2 60% 41540.92 83081.84

Reading different
data points

2 60% 40607.7875 81215.575

Reading / writing to
the same data point

2 60% 41972.719 83945.438

Writing to the same
data point

2 60% 40191.0235 80382.047

Reading various data
points

j 65% 17810.2103 53430.631

Table 3.5

3.1.4.3 Explaination

The benchmark results using the EP21 real-time database did not improve as multiple

instances of the benchmark applications were used. It seems the IP21 real-time database is

83

not able to exploit the additional processor, which is available. Additionally it incurs

significant overhead in context switching, locking and unlocking in the SMP environment

which degrades performance as additional instances are used. However this degradation may

not be experienced in real life situations where the database access will be sporadic unlike the

benchmark setup.

84

3.4.1.1 Relational database benchmarks

We tested the insert performance using JDBC and PLSQL on Oracle 8.1.5 database

running on a Pentium II 300 Mhz single processor using tables with 69 and 300 columns

The insertion task appeared to be 10 bound with significant disk activity and the cpu

running at 25%. We observed the following.

Performance on tables with 300 columns on a single cpu system

Table with 300 columns inserted 75 rows/second on a continuous basis using JDBC with

all columns having data. This amounts to writing 300 x 75 = 22500 data values/second.

The cpu loading was observed to be 28%.

When a second instance of the same program was run the insertion rate on both the

programs dropped to 50 rows/second. This amounts to a rate of 300 * 50 = 15000 data

values ./ second per program, which is a drop of 33.33%. However the two programs

together inserted 30000 data values per second which is an overall increase of 33.33%.

The Cpu loading with the two programs running was around 38%. The disk activity was

significantly higher.

Relational databases are designed to exploit parallel operation opportunities in multi cpu

SMP systems and they also react well to high performance disk controllers and RAID

arrays as we will see in the 4 processor benchmark.

Performance on table with 69 columns on a single 300MHz cpu PC
We inserted using a PLSQL program upto 50000 rows of data in blocks of 10000 rows

and measured the insertion time for each block. The results from Section 3.2.6 on page 75

show the insert times for the table with 69 columns were 181 rows/second (12545

values/second) where the data was highly sparse and 154 rows per second (10615

values/second) where all the data were non null. As expected the effective throughput

declined as the number of columns in each transaction declined. The number of

transactions per second did increase from 75 to 153 transactions but failed to match the

decline in the column numbers from 300 to 69.

85

Benchmark using a single under powered single processor
(150 MHz AMD K-6 CPU) PC

Table 3.6
No. of Loop count Elapsed Calls per Combined Cpu % Comment
instances seconds second calls/sec

Select Benchmark
1 10000 6 1666.7 1666.7 100 single instance
2 10000 11, 12 869.6 1739.2 100 each selecting same

data
3 10000 16,16,17 612.4 1837.2 100 each selecting same

data
5 10000 26,27,29

,29,26
364.96 1824.8 100 each selecting same

data

1 10000 6 1666.7 1666.7 100 single instance
2 10000 11,11 909.1 1819.2 100 each selecting different

row data
3 10000 17,17,17 588.23 1764.69 100 each selecting different

row data
5 10000 27,28,28

,28,28

Update Benchmark

359.7 1798.5 100 each selecting different
row data

1 10000 14 714.28 714.28 100 single instance
2 10000 28 ,28 357.14 714.28 100 each updating a different

row
3 10000 43,43,43 232.56 697.68 100 each updating a different

row
5 10000 79,77,76

,74,78
130.21 651.05 100 each updating a different

row

The under-powered 150 MHz CPU makes the task CPU bound which in turn causes the
available CPU to be rationed among the concurrent processes. The calls per process
decline but the combined calls to the database remains the same. The results here are in
contrast with the results on the 300MHz Pentium II where the task was 10 bound and
running concurrent processes actually enhanced the combined performance by 33.3%.

86

Multiprocessor benchmarks

Select benchmark on 4 processor 550 MHz Xeon Netfinity 7010
___________ Table 3.7 *
ft of
instance

Loop
count

elapsed
sec

avg.
elapsed
sec

Avg.
calls/sec

combined
calls/sec

cpu % ! comments
used

1 100000 9 9 11111.11 11111.11 28 single
instance

2 100000 11, 11 11.5 8695.652 17391.3 ! 53
i

each selecting
same data

3 100000 11,11,10 10.66 9380.863 28142.59 78 | each selecting
I same data

5 100000 13,12,12,
14,14

13 7692.308 38461.54 100 j each selecting
! same data

1 100000 9 9 11111.11 11111.11 ! 28 single
instance

2 100000 10,10 10 10000 20000 53 each selecting
different row
data

3 100000 10,10,10 10 10000 30000 77.5 each selecting
different row
data

5 100000 13,13,12,
15,14

13.4 7462.687 37313.43 100 each selecting
different row
data

update benchmark on 4 processor 550 MHz Xeon Netfinity 7010
Table 3.8

ft of
instance

Loop
count

elapsed
sec

avg.
elapsed

Avg.
calls /sec

combined cpu %
used

comments

1 100000 21 21 4761.905 4761.905 29.5 single
instance

2 100000 26 ,26 26 3846.154 7692.308 47.5 each updating
a different row

3 100000 36,36,39 37 2702.703 8108.108 58 each updating
a different row

5 100000 53,45,53,
44,49

48.4 2066.116 10330.58 68 each updating
a different row

87

Analysis of performance
It is obvious from the experimental results that the select and insert rate are directly

dependent on the CPU rating. The select rate went from 1667/sec for 150MHz K6 to

4545/sec for 300MHz Pentium II to 11111/sec for a 550MHz Xeon. The cpu loading was

100% tor the under powered 150 MHz K6. In the under powered cpu the select rate

declined proportionally as more instances were started since the cpu was already

saturated. The combined call rate increased marginally as the saturated cpu was rationed

between the concurrent processes. In the 550MHz Xeon the select rate did not decline

when the 2nd or 3rd concurrent processes were used since the cpu climbed from 28 to 53

to 78%. The net effect of maintaining the select rate as additional concurrent processes

were run was to lift the combined select rate over the test period from 11111 to 20000 to

30000 as the 2nd and 3rd concurrent process were used. On starting the 4rth and 5th

however the cpu hit 100%, the individual call rates fell sharply by 25% causing the

combined rate to increase at a much slower rate to 37313. This tapering off is directly

caused by the cpu saturating to 100%.

se lect rate and cpu loading vs number of
concurren t programs fo r 150 MHz AMD K-6

COc
t:<tso
3
CLO

• selects/;
sec

■ % cpu

No. o f concurren t programs

Fig 3.8

88

se
cone

40000 i
35000

o 30000
S> 25000
*2 cnnnn _

ect rate and cpu loading vs num ber o f
u rren t program s fo r 4 proc 550M Hz Xeon

- 120

^ T 1 00 O)

/ f 80 T3 , ^ +c// y ' \ nj —♦— selects/
....... ♦ X O n O carzuuuu

« 15000 -
w 10000

5000 -
0

WS ■■ ! OU o C
/ r I 3

¿ y f 40 S’ —* — % cpu
■ ! vP

r 20 ^
. ...I nu

3 2 4 6
No. o f concu rren t program s

Fig 3.9

Update rate performance as expected is lower than the select rate. The update rates for a

single process varied from 714/secfor 150MHz K6 to 3333/sec for 300MHz Pentium II to

4761/sec for a 550MHz Xeon.

In the under powered 150 MHz cpu the update call rate declined proportionally as more

instances were started since the cpu was already saturated. As before the combined call

rate however only declined marginally as the saturated cpu was rationed between the

concurrent processes In the 550MHz Xeon the update rate declined from 4761 to 3846

top 2702 to 2066 updates/sec when the 2nd ,3rd and 4rth-5lh concurrent processes were

used. The cpu climbed from 28 to 48% to 58 to 68%. The update rate decline as more

update rate and cpu loading vs num ber o f
co n cu rre n t programs fo r 4 proc 550MHz Xeon

0 2 4 6
No. o f concu rren t program s

o>c
<0O
3
ao

-♦— selects/:
sec

% cpu

Fig 3.10

89

instances are started is expected as the system becomes more 10 bound. However the

disk system though decreasing in response has obviously not saturated, because as the

additional available cpu’s are pressed into service and the combined call rate lifts steadily

from 4761 to 7692 to 8108 to 10330.

90

3.4.2 Update / insert rate limitations in relational databases

One of the main drawbacks of the mainstream relational databases is the low number of

transactions per second, which can be achieved. The reason for this lies in the higher

overhead involved in ensuring integrity of transactions by the commit and rollback

mechanism. We noted that the overhead applied to each transaction irrespective of the

number of columns updated or inserted in the transaction. Our observations show the

update rate was similar whether all columns or only one column of a table with many

columns was updated in a transaction. Inserts to behaved similarly, we noted this as we

timed insertion of a row with non-null data and insertion of a row with almost 90% sparse

data.

Lower performance of JDBC as compared to PLSQL and roadmap for
the future.
We measured equivalent update and select benchmarks using JDBC. Java database

connectivity (JDBC) is a standard SQL database access interface, providing uniform

access to a wide variety of databases. However in the rush to launch object relational

databases with in built java virtual machines which supported the JDBC standard,

vendors were unable to optimize performance to the levels of native procedural SQL

languages native to their database.

JDBC Prepared statement update Benchmark on 4 processor 550MHz
Xeon Netfinity 70110
o f
instance

Loop
count

updates/sec combined
updates/
sec

cpu % Comment

1 100000 663 663 28 single instance
2 100000 494,496 990 50 each updates same row

and column same
3 100000 379,378,374 j 1131

i

71 each updates same row
and column same

5 100000 261,258,258, j 1285
249.259 !

100 each updates same row
and column same

Table 3.9

We found the performance of JDBC thin driver from Oracle more than 10 times slower

than PLSQL for tables with around 10 columns, this difference is lower for tables with

91

large number of columns. In the next release of the product the vendors expect to close

this performance gap by using compiled Java instead of the current interpreted Java. The

claim is not implausible because the performance of the C and C++ interfaces to the

RDBMSs are comparable with their procedural SQL equivalents.

To measure the maximum update rate we updated a single row in the emp table

distributed as part of the demo. This table has only 14 rows and 10 columns. To test the

update rate we ran a JDBC application on a client PC which updated the server using a

PreparedStatement. The source is in the appendix. The PreparedStatement is a JDBC

Interface which allows the prepared SQL statement to be parsed in advance. When the

prepared statement is executed, it executes directly on the server without incurring the

parsing overhead for each call in real time. This is something like the execution of a SQL

statement inside a PLSQL loop.

We ran this update test on a Oracle 8.14 , Pentium II 400 MHz NT4.0 platform with a

8GB SCSI disk, the measured rate for only the execution, was timed over 1000 loops.

The results varied from 141 to 153 updates/ second. The server loading was between 10 -

20% as measured on Task manager. On a 4 processor 550MHz Xeon the same test ran on

one processor and returned 663 updates/sec this out of proportion increase may be due to

the superior performance of the RAID subsystem as opposed to a single SCSI disk.

A similar test was run on a table called vchartable, which contains 289 columns each of

which is formatted with VARCHAR2. This test when run from the client inserted 80.4 '

rows per/second on the 400MHz Pentium II server. The point to note is the insert rate

dropped from around 150 to 80 transactions per second though the number of columns

increased almost 30 times from 10 to 289.

Overhead is not linear where transaction results have multiple rows. Some test data using

JDBC on the 400MHz Pentium II showed it took 41ms to return all values from each of

the 14 rows and 30ms to return a single value from each of the 14 rows of the emp table.

92

The current performance is already viable

With a powerful CPU or preferably multiple CPU mainstream RDBMS we may already

be able to implement a non-demanding real-time database application. As was shown in

the last section where with a 4 processor 550MHz server we were able to achieve 37000

selects/sec and 10330 updates/sec. Such rates are more than adequate for many

applications especially if the vendors deliver on their promise of lifting the JDBC

performance to PLSQL levels. Here is the explanation supporting the above assertion.

We observed a 2 processor 550MHz Xeon Server was running at less than 10% when

performing its rated load. The tasks it was doing included communication with a IO

gateway using CORBA, tracking, driving gui trends and logging over 350 points of strip

mill data, out of which 150 were at a fast rate of 50ms scan and computing quality data

and verdicts. The real time database benchmark in section 3.4.1 showed around 80000

read/write calls/sec. If we assume that half of the cpu usage occurred in making calls to

the real-time database, then the required maximum read or maximum write rate is

80000*0.5*0.10=4000 calls/sec.

The viability of using mainstream RDBMS instead of a real- time database can be further

improved by reading and writing the entire class instead of doing single accesses of a

column from some row. This is borne out by the observation that the performance only

declines by around 30% when all 10 columns from a table with 14 rows are returned

instead of just one column from each row.

Finally more power is under way 1000MHz processors on 8 cpu SMP representing a 8

fold increase in computing power over the 4processor 550 MHz 7000M10 server

benchmarked has been announced. If historic trends are any guide the price for this is

expected to fall to the current 4 processor server prices within an year. So the price

performance will make up soon for any shortfall in transaction rate grunt when a pure

object relational option is considered for more demanding real time applications.

93

3.4.3 Solid state disks as shared memory

Solid state disks are a viable and under used option at present. The solid state disks implement a

regular external SCSI interface. Internally they consist of arrays of battery-backed DRAMs.

They offer access times of around 20microseconds and offer sustained throughputs 5MB/sec,

lOMB/sec or 20MB/sec depending on the SCSI bus variant i.e. normal, fast or ultra SCSI. The

50000 read/wntes per second is available through this technology using normal file access

mechanisms. With the recent declines in memory costs per unit storage a solid state disk of

130MB was quoted as USD 15000. Higher capacity upto several GB are available at higher costs.

Where the application processes are all on the same server the solid state disk is actually superior

both in terms of access rate as well as data throughput when compared with CORBA or other

middleware technologies. Where however the application processes are distributed the solid state

disk does not outperform the current middleware technologies. The performance when using

solid state disks as shared memory between distributed applications depends on the speed and

performance of the network connection the distributed nodes.

We benchmarked CORBA and achieved a top rate of 2500 calls per second between applications

on two different hosts over a LAN. The rate is dependent on the rate at which the TCPIP stack

performs on the distributed nodes. The CORBA performance actually declined to 1000 calls /sec

when both the communicating applications were on the same node. One exception to this is the

case where the different applications are actually run under different threads inside a common

JVM or executable, for this case the CORBA communications between different objects on

different threads can be a blazing 1 millon calls/sec since the communication bypasses the

protocol stack. Middlewares like CORBA incur the additional overhead of marshalling and

unmarshalling the data at the source and destination. This is a significantly CPU intensive

activity as was observed by profiling Java code that was used to benchmark the performance.

The access of a solid state disk over a network does not incur any such overhead since the file is

read from or written to directly at a lower level by the application.

94

In our opinion in applications where high speed and throughput both are critical solid state disks

are a very effective option. Only dedicated memory resident real-time databases can approach

the read/wnte performance offered by solid state disks. In mission critical failsafe application it

may actually be more effective and efficient to store the shared data in solid state disks as

compared to a memory resident dedicated real-time database. This is due to the fact that solid

state disks are battery backed and the data is safe even if the server crashes on account of an

operating system or hardware failure. Whereas the memory resident data would be lost if it were

held in the server ram using a real-time database. Here are some of the urls for vendors of solid

state disks ...

95

3.4.4 Shared memory using memory based file systems

Using a memoiy based file system it is possible to implement shared memory by storing

the shared data structures in different files in the memory based file system. Typically

such a disk based filing system emulates a hardware disk drive in memory. Application

programs see the memory based file system as just another disk. With the recent decline

in the cost of memory and the ever-increasing memory density, such memory based file

systems are becoming an viable option. This can be an attractive low-cost alternative to a

real-time database, in applications where large amounts of data have to be stored in

high-speed bursts and the stored data has to be accessed by multiple processes at fast

access rates.

A typical application which requires such features is a geo physical prospecting system

where a blast is triggered by an explosive and the geo-phone data from a large number of

sensors is acquired and stored at millisecond or faster scan rates for a few seconds. The

analysis programs then access such data to compute results. Tens or even hundreds of

MB of data may be generated in a few seconds and stored in the memory based file

system. Then the analysis programs crunch this data by reading it at a fast rate to produce

computed results on the spot.

Another typical application could be to act as an buffering cache to smooth out peaks in

the data flow between a high speed data acquisition system and a conventional relational

database.

Third party products are available which simulate a file system on disk. We tested a

product called SuperDisk.

The following characteristics were noted

a) Application programs can access the data by normal file read write calls from

application code in any language.

96

b) The effective rate of data transfer is high since the media is not a magnetic disk but

actual memory. We achieved upto 25MB/sec

c) The relatively low number of file read and writes /second was limited by the number

o f 10 related system calls the OS could handle. This meant

d) There was degradation in data throughput, as the data size became smaller. A 50-byte

write gave 400 writes/sec while the rate fell to 91 writes/sec for a 250kb write.

The last o f the above restricts the possibility o f using a memory based file system in

many applications. However in some applications it is possible to implement the shared

memory as large data structures. These can be read into the applications local memory

and manipulated and only the final results need to be written back to the memory based

filing system.

97

Fig 3.11

RAMDisk performance with different fiiesize

file fize in kb

Table 3.10

File Size Throughput read and writes
Kb Mb/sec Rd/W r /sec

0.05 0.02 393.7
0.2 0.07 344.8
0.4 0.15 384.6
0.6 0.21 346.0

1 0.34 343.6
2 0.69 344.8
4 1.34 335.6
8 2.67 333.3

16 5.13 320.5
128 24.71 193.1
256 23.27 90.9

98

3.4.5 Proposed design of a shared memory data server.

This section is a bit of the diversion from the main theme of this thesis. It is nevertheless

presented here since it contains ideas how high performance shared memory can be

implemented. It may be possible to use such a home grown high performance shared

memory in tandem with conventional relational databases to implement a high

performance real time system.

Real time databases have been often implemented by using a pattern similar to the one

described here. The language used has been typically C or C++ using sockets.

A proposed design

With the advent o f languages like Java which allow multithreading and socket

communications to be done with relative ease, it is not difficult to implement a shared

memory. Convenient building blocks including JNI, thejava.net classes and threads are

available to achieve an acceptable performance..

A common shared memory server process instantiates all the shared memory class

instances using autogenerated initialise() function. The footprint of the shared data server

process is fixed and does not grow since the class instances are static datamembers of the

shared data server. A data file containing the stored data for the class instance is used to

initialise the data members to the last saved values.

At startup the shared memory server instantiates the class instances as its static data

members and loads the saved data and waits for application processes to connect.

The application processes start up and open a socket to the shared memory server. Which

in turn spawns a new thread to service the incoming socket connects. This Thread will

remain alive until the application process dies and communications can not be

maintained.

99

If we autogenerate the SDSV class it is possible to have 5 combined read and 5 combined

write functions. Each o f which will return or accept as a parameter, a specific datatype.

Each combined function will contain large case statements of several thousand cases.

Each case will refer to a specific accessor method in a specific instance.

The SharedDataServer class may look like this:

Public class SDSV{

static TestClassl testCIassl = new TestClassl();
static TestClass2 testClass2 = new TestClass2();

static TestClassN testClassN = new TestClassN();

1 1 = = = = = =
I I static methods
II ===================

static float readFloats(int classMethodld)
{;}

static double readDoub!es(int classMethodld)
{;}

static long readLongs(int classMethodld)
{;}

static short readShorts(int classMethodld)
{;}

static Date readDates(int classMethodld)
{;}
static String readStrings(int classMethodld)
{;}

static int readlnts(int classMethodld)
{ int retumlnt = 0;

switch(classMethodId)
{

100

retumlnt = testClass l.int Value;
break;

case 2:
retumlnt = testClass l.anotherlntValue;
break;

case 3:
retumlnt = testClass2.intValue;
break;

case 4:
retumlnt = testClass2.anotherIntValue;
break;

case 1:

case 2N-1:
retumlnt = testClassN.intValue;
break;

case 2N:
retumlnt = testClassN. anotherlntValue;
break;

default
throw new DataNotFoundException();

}
return retumlnt;

}

static void writeFloats(int classMethodld, float value)
{
}

static void writeLongs(int classMethodld, long value)
{
}
static void writeShorts(int classMethodld, short value)
{
}

static void writeDoubles(int classMethodld, double value)
{
}

static void writeDates(int classMethodld, Date value)
{
}

101

static void writeStrings(int classMethodld, String value)
{
}

static void writelnts(int classMethodld, int value)
{

switch(classMethodId)
{

case 1 :
testClass 1 .intValue=value;
break;

case 2:
testClass 1 .anotherIntValue=value;
break;

case 3:
testClass2.intValue=value;
break;

case 4:
testClass2.anotherIntValue=value;
break;

case 2N-1:
testClassN. intValue=value;
break;

case 2N:
testClassN. anotherIntValue=value;
break;

default
throw new DataNotFoundException();

}
}

} _______

The application class Applicationl may look like

Import SDSV;
Public class Applicationl {

Static void main(String argsQ } {
}

void someMethod()
{

int intValue =SDSV.readInts(
LU.testClassl_intValue);

int intValue 1 =SDSV.readInts(
LU.testClassl_anotherIntValue);

float floatValue = SDSV.Floats(
LU.testClassl_floatValue);

SDS V. writeDates(
LU.testClass24_intValue, new D ate());

SDS V. writeShorts(
LU.testClass 15_shortValue, (short) 100);

}

void anotherMethod()
{

Date date Value =SDSV.readDates(
LU.testClass51_dateValue);

double doubleValuel =SDSV.readDoubles(
LU.testClass 12_anotherDoubleValue);

SDSV.writeInts(
LU.testClass24_intValue, (int) 100);

SDS V. writeFloats(
LU.testClass 15_anotherIntV al ue, 1 OOf);

}
>

The autogenerated lookup class may look like this

public class LU{

public static int testClassl_intValue = 1;
public static static int testClassl_anotherIntValue = 2;

public static int testClassN int Value = 2N-1;
public static int testClassN_anotherIntValue = 2N;

public static int testClassl_floatValue = 1;

public static int testClassl_anotherFloatValue = 2;

public static int testClassN_floatValue = 2N-1;
public static int testClassNanotherfloat Value = 2N;

public static int testClassl_dateValue = 1;
public static int testClassl_anotherDateValue = 2;

public static int testClassN_dateValue = 2N-1;
public static int testClassN_anotherDateValue = 2N;

}

In this technique we are able to access the specific data member in a shared memory

instance record using only 4 basic operations which are

1. Reading a data member from a static Look up class

2. Invoking a static method on SharedMemoiyServer class

3. Do a case statement inside the static method

4. Read/assign values to or from a member of the shared memory class instance. Which

in turn is a static data member of SDSV.

While the 4 operation are likely to be very fast we need to pass the parameters from the

application to the SDSV process between steps 1 and 2 and after step 4 as well in case of

a read. This can be done over Sockets or JNI. It is obvious JNI is going to be the fastest

of these methods though sockets are easier to implement.

Multi threaded in one JVM

Alternatively if we run the shared memory server and all the applications on different

threads o f the same process then the execution will be really fast because there is no need

to use an external transport between steps 1 and 2

Using RMI
Another alternative is to use RMI. Have the shared memory server process instantiate all

the shared data class instances. Each class is to implement remotely invokable accessor

104

methods. The application processes will invoke the accessor methods to read/write the

shared data.

While the RMI approach will work the performance may need to be benchmarked to

determine its viability where high access rates are required.

105

4.0 Conclusions

Section 4.0 Conclusions

The central conclusion of the research is - we may be able to
use an object relational database to entirely replace a
dedicated real-time database in a significant proportion of the
real-time industrial automation applications.

Real-time applications which can be
implemented using an object relational
database (green indicate suitable)

hi

A
Importance
of logging
measured
process
data

lo

Steel Rolling Mill
data logging only

Power Grid
SCADA

Air
TrafficControl

Conveyor Fruit
Sortine

Irrigation
control

Rail Yard
control Continuous or

batch Process plant

Harbor tunnel
traffic

0.001 0.01 0.1 1 10

Fig 4.1
-------------------------------------- ►

Deterministic access speed in seconds

Many applications impose such stringent deterministic response requirements that they

can only be met by a dedicated real-time database. However with the increasing

processing power o f fast multi CPU SMP servers these applications are getting fewer

every day. Increasingly more and more applications which were earlier considered too

demanding will be addressed using a mainstream object relational database.

The ever growing requirement of more accurate and higher resolution process data

storage is being driven by the quality standards being followed by the manufacturers,

106

who in tum are responding to the quality assurance demanded by their customers. Such

historical data warehousing with user friendly desktop browser driven retrieval, is a

another important requirement well addressed by mainstream object relational databases.

We have accordingly presented the suitability matrix to test applications using their need

for temporal determinism and importance of datalogging to help decide if they are

suitable to be implemented using a mainstream object relational database.

Based on our research and analysis we found that a real-time database typically provides

a more than 10 distinct features which are very useful in real time applications in

automation. All these features could be replicated in a object relational database using its

native constructs and features. When compared with a actual real-time database all

features except “shared memory between applications” performed comparably.

The shared memory performance was slower than an actual real-time database by more

than 10 times for single read writes. This gap was closed significantly when full record

block reads and writes of large objects with several thousand fields. The relative

performance of the object relational database was better for block reads and writes

because the overhead associated with the read or write did not increase in proportion with

the number of fields in the record. Whereas in case of a record with several thousand

individual fields a block read or write would bring down the call rate to ~ 100000/number

of fields in the record calls /second. This when calculated for a record with 4000

individual fields translates to 25 block read/writes /second which is worse than what can

be achieved in an object relational database. So by structuring the applications to do most

o f the shared memory access as block reads we may be able to achieve the required

shared memory performance. Naturally this can only be done where the application

allows the use of this pattern. We were able to research the performance of third party

hardware and software disk-caching tools which are aimed to speed object-relational

databases by attacking their current disk i/o bound nature. The benchmark figures

107

gathered by us indicate improvements in the order of 2 to 20 times are possible. In fact

similar 10 times faster results are already offered by newer and non mainstream memory

resident relational databases like TimesTen. We have largely ignored them because they

do not qualify as mainstream and are considered too risky to be used in industrial

automation where the software lifecycles are typically 7-10 years after commissioning.

As expected the historical data storage and archival features required in current real-time

applications are easier and more scalable robust and easier to implement in the object

relational database. Due to their commercial origin the object relational database offered

much better error recovery options and fault tolerance by supporting multiplexing of

control files and journalized transactions to different target disks. Thus a object relational

database can be configured to continue operating through a disk crash which would in

most cases bring down or cripple a real-time database which is not normally designed for

this.

As a small nevertheless very important diversion from the main investigation we looked

at a mechanism for the online compression of the synchronously scanned measured plant

data. The simple but effective technique developed here was able to preserve the integrity

of the data yet achieve a compression ratio of 1:10 when storing the time-stamped data to

the object relational tables. We were able to use the fact that object relational databases

are optimized to save storage when null values are written. Using the compression

algorithm we were able to replace all the non trend significant data readings with nulls

prior to storage. We saved additional storage by storing all the data for the scan against a.

common time-stamp, by noting the fact that the data gathering device scanned all its

inputs in the same scan. The compression of data is vital in large industrial systems with

hundreds and thousands of sensors. If such large volume data were not compressed well

prior to storage, the capacity requirements of the historical data storage systems would

soon exceed the current commercially available - competitively priced storage solutions.

While significantly larger storage solutions are available the cost of acquiring,

maintaining and backing up these rises astronomically making them almost impossible.

108

5.0 References

5.0 References
1. K. Ramamritharn Real-Time Databases, (invited paper) In te rn a tio n a / J o u rn a l o f D is tr ib u te d

a n d P a ra lle l D a ta b a se s 1 (1993), pp. 199-226, 1993.
2. TimesTen - http://www.timesten.com/
3. Angara Database Systems - http:/Avww.angara.com/
4. http://www.bitmicro.com/ProductLine.htm
5. http://www,soliddata.com/technology/white.html
6. M. Xiong. R. Sivasankaran, K. Ramamritharn, J.A. Stankovic and D. Towslev. Scheduling

Access to Temporal Data in Real-Time Databases. R e a l-T im e D a ta b a se Sys tem s: Issu es a n d
A p p lic a tio n s , Sang H. Son, Kwei-Jay Lin and Azer Bestavros ed., Kluwer Academic
Publishers, pp. 167-191, 1997.

7. R.F.M. Aranha, V. Ganti, S. Narayanan, C.R. Muthukrishnan, S.T.S. Prasad andiC
Ramamritharn, Implementation of a Real-Time Database Svstem. In fo rm a tio n S y s te m s ,
Volume 21, Number 1, March 1996.

109

http://www.timesten.com/
http://www.bitmicro.com/ProductLine.htm
http://www,soliddata.com/technology/white.html

5.1 Bibiliography

1 • K- Ramamritham. Real-Time Databases, (invited paper) International Journal o f Distributed
and Parallel Databases 1 (1993), pp. 199-226, 1993.

2. A. Bums. D. Prasad, A. Bondavalli, F. Di. Giandomenico, K. Ramamritham.. J. A.
Stankovic, and L. Strigini, The Meaning and Role of Value in Scheduling Flexible Real-time
Systems (to appear in) J o u rn a l o f S y s tem s A rc h ite c tu re

3. W. Burleson, J. Ko, D. Niehaus, K. Ramamritham. J.A. Stankovic. G. Wallace and C.
Wgems: The Spring Scheduling Co-Processor: A Scheduling Accelerator, (to appear in)
IE E E Trans, on V LSI System s.

4. J. M. Adan, M. F. Magalhaes and K. Ramamritham : Developing Predictable and Flexible
Distributed Real-time systems, Control Engineering Practice, Vol 6, 1998, pp. 67-81.

5. G. Manimaran, S. R. Murthy and K. Ramamritham. A New Algorithm for Dynamic
Scheduling of Parallelizable Tasks in Real-Time Multiprocessor Systems, R ea l-T im e S y s tem s
J o u r n a l Vol. 15, 1998, pp.39-60.

6. M- Xiong, R. Sivasankaran. K. Ramamritham, J.A. Stankovic and D. Towslev, Scheduling
Access to Temporal Data in Real-Time Databases. R ea l-T im e D a tabase System s: Issues a n d
A p p lic a tio n s , Sang H. Son, Kwei-Jay Lin and Azer Bestavros ed., Kluwer Academic
Publishers, pp. 167-191, 1997.

7. G. Manimaran, S. R. Murthy and K. Ramamritham : New Algorithms for Resource
Reclaiming from Precedence Constrained Tasks in Multiprocessor Real-time Systems,
J o u rn a l o f P a ra lle l a n d D is tr ib u te d C o m p u tin g , vol.44, no.2, Aug. 1997, pp. 123-132.

8. K. Ramamritham: Predictability: Demonstrating Timing Requirements, A C M C o m p u tin g
S u r v e y s , 28A(4), December 1996.

9. K. Ramamritham: Where Do Deadlines Come from and Where Do They Go?, invited paper,
J o u r n a l O f D a ta b a se M a n a g em e n t, Vol 7, No. 2, pp. 4-10, Spring 1996.

10. K, Ramamritham: Allocation and Scheduling of Precedence-Related Periodic Tasks, IE E E
T ra n sa c tio n s on P a ra lle l a n d D is tr ib u te d S ys tem s, Vol 6, No 4, April 1995, pp. 412-420.

11. R.F.M. Aranha, V. Ganti, S. Narayanan, C.R. Muthukrishnan, S.T.S. Prasad andK.
Ramamritham. Implementation of a Real-Time Database System. In fo rm a tio n S y s te m s ,
Volume 21, Number 1, March 1996.

12. F.Wang, K. Ramamritham and J. A. Stankovic: Determining Redundancy Levels for Fault
Tolerant Real-Time Systems. Special Issue of IE E E T ransactions on C om pu ters on Fault
Tolerant Computing, Vol. 44, No. 2, February 1995, pp. 292-301.

13. K.Ramamritham and J.A. Stankovic: Scheduling Algorithms and Operating Systems Support
for Real-Time Systems, invited paper. P roceed in gs o f the IEEE, Jan 1994, pp. 55-67.

14. Chia Shen, Oscar Gonzalez. Krithi Ramamritham and Ichiro Mizunuma: User Level
Scheduling of Communicating Real-Time Tasks, in Proceedings of the F ifth IE E E R ea l-T im e
T ec h n o lo g y a n d A p p lic a tio n s , Vancouver, Canada, June 1999.

15. Jesus Fernandez, Krithi Ramamritham. Adaptive Dissemination of Data in Real-Time
Asymmetric Communication Environments, to appear in Euro M icro C on ference on R ea l
T im e S y s te m s , June 1998.

16. Krithi Ramamritham, Chia Shen, Oscar Gonzalez. Shubo Sen, and Shreedhar B Shirgurkar:
Using Windows NT for Real-Time Applications: Experimental Observations and

no

Recommendations, in Proceedings of the F o u r th IE E E R ea l-T im e T echno logy a n d
A p p lic a t io n s , Denver, CO, June 1998.

17. Oscar Gonzalez, H. Shrikumar, John A. Stankovic and Krithi Ramamritham: Adaptive Fault
Tolerance and Graceful Degradation Under Dynamic Hard Real-time Scheduling.
Proceedings of th e 18th IE E E R ea l-T im e S y s te m s S y m p o s iu m , San Francisco, California,
December 1997. 7
Oscar Gonzalez, Chia Shen, Ichiro Mizunuma and Morikazu Takegaki: Implementation and
Performance of MidART, Proceedings of IE E E W orkshop on M id d lew a re f o r D is tr ib u te d
R e a l- tim e S y s te m s a n d S e rv ic e s , San Francisco, California, December 1997.

19. Ping Xuan, Subhabrata Sen, Oscar Gonzalez. Jesus Fernandez and Krithi Ramamritham:
Broadcast on Demand: Efficient and Timely Dissemination of Data in Mobile Environments
Proceedings of the T h ird IE E E R ea l- T im e T e c h n o lo g y a n d A p p lica tio n s , Montreal Canada
June 1997. 7 ’

20. Hirovuki Kaneko, John A. Stankovic. Subhabrata Sen, and Krithi Ramamritham: Integrated
Scheduling of Multimedia and Hard Real-Time Tasks. Proceedings of the / 7th IE E E R e a l
T im e S y s te m s S y m p o s iu m , Washington, DC, December 1996.

21. Marty Humphrey and John A. Stankovic: CAISARTS: A Tool for Real-Time Scheduling
Assistance, Proceedings of the S e c o n d IE E E R ea l-T im e T echno logy a n d A p p lic a tio n s ,
Brookline, MA, June, 1996. * ’

22. M. Xiong, K. Ramamritham, Specification and Analysis of Transactions in Real-Time Active
Databases, R e a l- T im e D a ta b a se a n d In fo rm a tio n S ys tem s: R esearch A d v a n c e s , Azer
Bestavros and Victor Fay-Wolfe ed., Kluwer Academic Publishers, pp. 327-354, 1997.

23. S. Sen, O. Gonzalez, K. Ramamritham. J.A, Stankovic. C. Shen, and M. Takegaki,
Multimedia Capabilities in Distributed Real-Time Applications, in R ea l-T im e D a tabase
S y s te m s: Issu e s a n d A p p lic a tio n s , Sang H. Son, Kvvei-Jay Lin and Azer Bestavros ed.,
Kluwer Academic Publishers, 1997.

24. J. Shanmugasundaram, A. Nithrakashvap. J. Padhve. R. Sivasankaran. M. Xiong and K.
Ramamritham, Transaction Processing in Broadcast Disk Environments, in A d v a n c e d
T ra n sa c tio n M o d e ls a n d A rc h ite c tu re s , S. Jajodia and L. Kerschberg ed., Kluwer Academic
Publishers, 1997, pp. 321-338.

25. P. O'Neil, K. Ramamritham. C. Pu, A Two-Phase Approach to Predictably Scheduling Real
Time Transactions, Chapter 18, P e rfo rm a n ce o f C o n cu rre n cy C o n tro l M ec h a n ism s in
C e n tr a liz e d D a ta b a se S y s te m s , V. Kumar (ed.), Prentice-Hall, Sep 1995, pp. 494-522.

26. B. Purimetla, R. Sivasankaran, K. Ramamritham and J. A. Stankovic, Real-Time Databases:
Issues and Applications, in P rin c ip le s o f R e a l-T im e S ystem s, Sang Son, Ed. Prentice-Hall,
1994, pp. 487-507. *

27. J.A. Stankovic, K. Ramamritham, D. Towslev, Scheduling in Real-Time Transaction
Systems, C h a p te r in F o u n d a tio n s o f R ea l-T im e C o m p u tin g : S c h e d u lin g a n d R eso u rce
A llo c a tio n , edited by Andre van Tilborg and Gary Koob, Kluwer Academic Publishers, pp.
157-84, 1991. ~

111

28- K. Ramamritham. Where do Time Constraints Come From and Where Do They Go?
International Journal of Database Management (invited paper), Vol. 7, No. 2, Spring 1996,
pp. 4-10. ’

29. R.„ Sivasankaran. J.A. Stankovic. D. Towslev. B. Purimetla, and K. Ramamritham, Priority
Assignment in Real-Time Active Databases. VLD B Jo u rn a l, Vol. 5, No. 1, pp. 19-34, 1996.

->0. B. Hamidzadeh, Y. Atif, K. Ramamritham. To Schedule or to Execute: Decision Support and
Performance Implications, (to appear in) R ea l-T im e S ystem s

31. J. Huang, J.A. Stankovic. K. Ramamritham. D. Towslev. B. Purimetla, On Using Priority
Inheritance in Real-Time Databases, S p e c ia l Issue o f R ea l-T im e S ys tem s J o u rn a l on R e a l
T im e D a ta b a se s , Vol. 4, No. 3, September, 1992, pp. 243-68. *

32. Chen, J.A. Stankovic. J. Kurose. D. Towslev. Performance Evaluation o f Two New Disk Scheduling
Algorithms for Real-Time Systems, R e a l-T im e S ystem s J o u rn a l, Vol. 3, #3, 1991, pp. 307-336.

33. Ming Xiong, Knthi Ramamritham. Deriving Deadlines and Periods for Update Transactions
in Real-Time Databases, to appear in th e 20 th IE E E R ea l-T im e S ys tem s Sym p o siu m
(R T S S '9 9) , Phoenix, Arizona, December, 1999.

34. Ming Xiong, Krithi Ramamritham. Jayant Haritsa, John A. Stankovic. MIRROR: A State
Conscious Concurrency Control Protocol for Replicated Real-Time Databases, to appear in
th e 5 th IE E E R ea l-T im e T echno logy a n d A p p lica tio n s S ym posium (R T A S '99), Vancouver,
Canada, 1999.

35. R. Gupta, J. Haritsa, K. Ramamritham. More Optimism about Real-Time Distributed
Commit Processing, 18th IE E E R ea l-T im e System s S y m p o siu m , 1997, San Francisco,
California.

36. M. Xiong, R. Sivasankaran. K. Ramamritham, J.A. Stankovic and D. Towslev, Scheduling
Transactions with Temporal Constraints: Exploiting Data Semantics. 17th IE E E R ea l-T im e
S y s te m s S ym p o siu m , 1996, Washington, DC. .

37. R. Gupta, J. Haritsa, K. Ramamritham and Seshadri, Commit Processing in Distributed Real
Time Database Systems. 17th IE E E R ea l-T im e S ystem s S ym p o siu m , 1996, Washington, DC.

38. M. Xiong, K. Ramamritham. J.A. Stankovic D. Towslev and R. Sivasankaran. Maintaining
Temporal Consistency: Issues and Algorithms. First International Workshop on Real-Time
Databases, March 1996, Newport Beach, California.

39. R. Sivasankaran. K. Ramamritham, J.A. Stankovic and D. Towslev. Data Placement.
Logging and Recovery in Real-Time Active Databases. A R T D B -9 5 , Skovde, Sweden, 1995,
Workshops in Computing, Mikael Bemdtsson and Jorden Hansoon (Eds), pp. 226-41.

40. M. Kamath. K, Ramamritham and D. Towslev. Continuous Media Sharing in Multimedia
Database Systems, F o u rth In te rn a tio n a l C o n feren ce on D a tabase S y s tem s f o r A d v a n c e d
A p p lic a tio n s (D A S F A A '9 5), Singapore, pp. 79-86.

41. K. Ramamritham, Time for Real-Time Temporal Databases? P ro ceed in g s o f the
In te rn a tio n a l W orkshop on an In fra s tru c tu re f o r T em pora l D a ta b a ses , June 1993,

42. R. Sivasankaran, Purimetla, J.A. Stankovic, K. Ramamritham, Network Services Database -
A Distributed Active Real-Time Database(DARTDB) Application, P ro ceed in g s F irst IE E E
W orksh o p on R ea l-T im e A p p lica tio n s , May 1993.

43. Purimetla, R, Sivasankaran. J.A. Stankovic, K. Ramamritham. A Study of Distributed Real
Time Active Database Applications, IE E E W orkshop on P a ra lle l a n d D is tr ib u te d R ea l-T im e
S y s te m s , April 1993.

112

6.0 Appendix.

6.1 Solid State Disk Performance Data

References from url 3.4.2

SolidData
• Provides ultra high-speed access to I/O-intensive Unix and NT data files
• Turbocharges existing RAID and JBOD storage systems
• Scales from 536 MB to 2.7 GB capacity per system
• Incorporates a non-volatile system architecture

Excellerator 600 is an affordable, entry-level solid state storage system that enables customers to achieve dramatic
performance improvements in I/O intensive applications such as electronic commerce, Internet email and news,
billing, messaging, and customer care. Excellerator 600 uses DRAM technology to turbocharge existing RAID and
JBOD storage systems. It runs on all major Unix and NT platforms and incorporates an industry-standard SCSI
interface.
Ultra High-Speed Performance for I/O-Intensive Applications
Excellerator 600 eliminates bottlenecks that are created by high-usage data files known as "hot files." These hot files
usually comprise only 5% to 10% o f an application's data, yet they constitute over 50% o f the I/O activity. When the
hot files are moved onto Excellerator 600, overall system performance is dramatically increased because DRAM
technology eliminates the mechanical delays associated with magnetic disk drives. As a result, Excellerator 600 has
a data transfer rate that is over 90% faster than traditional disk storage.
To further accelerate performance, Excellerator 600 incorporates a patented Direct Addressing™ technology. Direct
Addressing translates SCSI addresses received from the host directly into DRAM array addresses. The translation
uses high-speed dedicated circuits, eliminating intermediate microprocessor-to-insert latencies, overhead, and time
delays. Accordingly, Excellerator 600 routinely outperforms the competition by a factor o f two to three times in raw
data access speed.
Solid, Non-Volatile System Architecture
Recognizing the inherent volatile nature o f DR AM components, Excellerator 600 was designed with a patented Data
Retention System™ including: integral battery backup, an on-board disk drive with a separate data path that is
independent o f the host CPU, automatic backup control logic, and RAIC (Redundant Array o f Independent Chips).
In the event o f a power failure, the Data Retention System provides uninterrupted power to the DRAM array. After a
prescribed time period (typically 8 minutes), Excellerator 600 will back up all data onto the internal disk drive,
providing full data integrity. The DRAM array has been architected with built-in parity protection so that it can
tolerate the failure o f an entire memory chip without experiencing loss o f data.
Plug-and-Play Installation
Because Excellerator 600 incorporates an industry-standard SCSI interface, it can be readily integrated into any
Unix or NT server, just like another disk drive. Simply connect Excellerator 600 to an available SCSI bus, move the
selected data files to the system, and it is ready to go. The process typically takes less than an hour and requires no
special configuration o f the operating system or database engine. And if you don't know which files to move, Solid
Data has the applications expertise to assist you.
Field-Proven Reliability
Excellerator 600 uses high-reliability components and undergoes extensive burn-in and testing before shipment.
Demonstrated field MTBF is greater than two million hours, translating to an annual system availability in excess o f
9 9 .9 9 9 %. All Solid Data products include a full one-year warranty supported by Hewlett-Packard's On-Site Next-
Day Service Program.

Excellerator 600 Technical Specifications
High Performance

• Delivers 50% to 200% improvement to target applications
• 18 microsecond data access time

Com patibility
Plug-and-play installation
• SCSI-2 Fast and Wide interface
• Compatible across all Unix and NT server platforms (with no device driver installation), including:

Hewlett-Packard
Silicon Graphics
Sun
IBM
Compaq
Dell

Supported relational databases:
Sybase SQL Server
Oracle
Informix
Most proprietary RDBMS

Scalability
• 536 MB to 2.7 GB, based on number and capacity of array boards
• System self-configures to number of array boards installed
• Up to 15 systems can be configured on a single SCSI Wide bus

Reliability
• Field-measured mean-time-between-failure (MTBF) is over 2 million hours
Battery backup specifications:
• Dual internal lead acid gel cell batteries
• Internal, full-time battery charging with automatic charge monitoring
• Automatic sensing of power outage conditions
• Battery operation of 1 to 2.5 hours
• Backup and restore data rate of 536 MB/minute
Internal backup disk drive
• Disk is powered down during normal system operation
• Automatic backup to disk during extended power failures
• Automatic restore when power resumes
Full-syndrome error correction coded (ECC) integrated circuits
• 8 bits per 72 dedicated for ECC
• Two bit error detection and single bit error correction
Regulatory approvals
• Underwriters Laboratory and C-UL listed
• FCC certified
• VDE/TUV certified to EN60950
Field diagnostics
• Host-resident I/O Test software provides detailed performance, reliability, and maintenance information
• Uses RS-232 output port
• Provides detailed diagnostic and repair information____________

Excellerator 600 Solid State Storage System
System Capacity
Minimum 536 MB
and 2.68 GB
Maximum capacity

bitmicro

E-Disk™
Flash Disk and Solid State Disk Storage Solutions

Solid State Storage Advantage
Storage Area Network SAN and Network Attached Storage NAS

E-Disk™ SCSI Narrow Product Matrix

E-DISK
MODEL

SNX25

SFX25

SNX35

SFX35

SUX35

SC SI N ARROW
S-bit INTERFACE

FORM
FACTO
--- T>-----

BURST
R/WRATES

SUSTAINED
R/\V RAT ES

Normal SCSI SE 2.5” 5 MB/sec >4.5 MB/sec <0.25 ms 128MB-2GB

Fast SCSI SE 2.5” 10 MB/sec >9 MB/sec <0.2 ms 128MB-2GB

Normal SCSI SE 3.5" 5 MB/sec >4.5MB/sec <0.25 ms 128MB-18.5GB

Fast SCSI SE 3.5” 10 MB/sec >9 MB/sec <0.2 ms 128MB-18.5GB

Ultra SCSI SE 3.5” 20 MB/sec >18 MB/sec <0.1 ms 256MB-18.5GB

E-Disk™ SCSI W ide Product Matrix

FORM
FACTO B E S E S S i SUSTAINED

J& W RATES:

SFVV3:5 Fast Wide SCSI SE 3.5”

mm;«««

20 MB/sec
!

>18 MB/sec <0.1 ms J2 5 6 MB-1 8 .5GB

SUW35 ultra w ide SCSI SE 3.5" 40 MB/sec >34 MB/sec <0.049 ms |256MB-18.5GB

SIID3f
- - ■ Ultra Wide SCSI LVD 3.5" 40 MB/sec >34 MB/sec <0.049 ms p56MB-18.5GB

SCW35
— ■ - - SCA Ultra Wide SCSI SE 3.5” 40 MB/sec >34 MB/sec <0.049 ms |256MB-18.5GB

SCD35
—- - - - - SCA Ultra Wide SCSI LVD 3.5" 40 MB/sec >34 MB/sec <0.049 ms |256MB-18.5GB

E-Disk™ ATA/IDE Product Matrix

. . _ !K 1 B 8 H E 5 S S

A T E 5 roE 2.5" 5 MB/sec >4.5 MB/sec <0.25 ms 128MB-2GB

ATE25 EIDE 2.5" 10 MB/sec >9 MB/sec <0.2 ms 128MB-2GB

ATO 5 [DE 3.5" 5 MB/sec >4.5MB/sec <0.25 ms 128MB-18.5GB

ATE35 EIDE 3.5" 10 MB/sec >9 MB/sec <0.2 ms 128MB-18.5GB

A™ - Ultra DMA 3.5" 16.6 MB/sec >14 MB/sec <0.1 ms 256MB-18.5GB

A — 3-5- Ultra DMA/33 3.5" 33.3 MB/sec >30 MB/sec <0.05 ms
'
256MB-18.5GB

6.2 Source for Java Triggers that generate
automatic updates to a GUI in a browser
when a table gets updated.

Java Source for Stored Procedure:

The J developer offers a built menu option to publish the class to a stored
procedure though this can be done even from the command line using the
loadjava utility.

/ / ------ - --------
//Title: COSNotifierStoredProc.java
//Version:
//Copyright: Copyright (c) 1999
//Author: Saugato Mukeiji
//Company: Saugato Mukeiji
//Description: The source for the java stored procedure that provides a method that
// accepts a String as a parameter and multicasts the string on the
// Address 224.5.6.7
//---------------- — - ----- ----------- ---- —
package COSUPDATE;

importjava.net.*;
import java. io. IOException;

public class COSNotifierStoredProc {
// static data members for cennect information
static MulticastSocket multicastSocket;
static InetAddress group;
static long messageCount=0;

public COSNotifierStoredProc() {
}

public static void main(String[] args) {
new COSNotifierStoredProc();

}

public static void send(String messageString)
{

try {
if(multicastSocket = null)
{

group = InetAddress.getByName("224.5.6.7");
multicastSocket = new MulticastSocket(6789);
multicastSocket.joinGroup(group);

}
messageCount++;

// increment message count

39

messageString = "<"+messageCount+"> "+messageString;
int messageLength = messageString. length();

byte [] msgBuffer = new byte[messageLength+10];

for(int i=0; i<messageLength; i++)
{

msgBuffer[i] = (byte)messageString.charAt(i);
i

DatagramPacket datagramPacket =
new DatagramPacket(msgBuffer, messageLength,

group, 6789);
multicastSocket.send(datagramPacket);

} catch (UnknownHostException e) {
System.err.println("Host not found: " + e);

} catch (IOException e) {
System.err.printing"10 exception: " + e);

Testing the COSUPDATE.send() stored procedure from SQLPLUS
prom pt to update GUI Applet

D:\>Sqlplus scott/tiger

SQL> call COSUPDATE.send('this is a very long message says harry');

Call completed.
SQL> /

Call completed.
SQL> /

Call completed.
SQL>

SQL> /

Call completed.
SQL> /

Call completed.

' 3 A u t o g e n e r a t e d H T M L M i c r o s o f t I n t e r n e t E x p l o r e r - [W o r k i n g O f f l i n e] ,

F i l e E d i t V i e w G o F a v o r i t e s H e l p

: v f ^ ■ “ “S1"; „ © [ä ä
B a c k F o r , ^ r : S t o p R e f r e s h H o m e

S s 0 I p
S e a r c h F a v o r i t e s H i s t o r y C h a n n e l s

11 ...W M :..
F u l l s c r e e n M a i l

j j A d d r e s s | < 3] h t t p : / / f a s t ^ m u l t i / m u l t i . h t m l
1- -

Fig 2.6.1

Causing Trigger Action to invoke the stored procedure by updating
field in the emp table with SQLPLUS. The changed table value is
transm itted to the GUI Applet by the java stored procedure

SQL> CREATE OR REPLACE TRIGGER gui_regresh_trigger
2 AFTER UPDATE OF stnngValue ON TestCIass
3 FOR EACH ROW
4 WHEN (new.stnngValue o old.stringValue)
5 CALL COSUPDATE.send(:new.stringValue)
6 /

Trigger created.

Inserting a row, look at fig 2.6.2 to verify the data reached the A pplet.

SQL> update testclass set stringValue-hello 12';

1 row updated.

SQL>

3 A u t o g e n e r a t e d H T M L - M i c r o s o f t I n t e r n e t E x p l o r e r - [W o r k i n g O f f l i n e]

F i e E d i t V i e w G o F a v o r i t e s H e l p

V"“*
B a c k Pjivord

a ds m a
S t o p R e f r e s h H o m e S e a r c h F a v o r i t e s

f A d d r e s s &~\ K t t p : / / f â s t / m u l t i / m u l t i . h t m l

q u i t

h e l l o 1 2

Fig 2.6.2

SQL> update testclass set stringValue-hello 13';

1 row updated

SQL> update testclass set stringValue-'hello 14';

1 row updated.

Updated the row twice, look at fig 2.6.3 to verify the data reached the Applet.

¿ j A u l o g e n e r a t c d H T M L M i c r o s o f t I n t e r n e t E x p l o r e r [W o r k i i

. ! F i l e E d i t V i e w G o F a v o r i t e s h e l p

j B a c k Forward S t o p

A d d r e s s 4 S] h t t p : / / f a s t / m u l t i y m u l t i . h t m l

R e f r e s h H o m e S e a r c

q u i t

rig 2.6.3

h e l l o 1 2 < 2 t > h e ß o 1 3 < 2 2 > h e l l o 1 4

SQL> /
1 row updated.
Note trigger did nor activate since same value was updated in the table

SQL> /
1 row updated.
Note trigger did nor activate since same value was updated in the table

SQL> /
1 row updated.
Note trigger did nor activate since same value was updated in the table

SQL> /
1 row updated.
Note trigger did nor activate since same value was updated in the table

SQL> /
1 row updated.

Updated the row 5 times but value remained same so no Change of State caused, look at
fig 2.6.4 to verify that data was not sent to the Applet.

'J A t i t o generated H TM L - Microsoft internet Explorer [W orki

F i l e E c â V i e w G o F a v o r i t e s H e l p

nH
B a c k Fenc'd

& a r2r
S t o p R e f r e s h H o m e

A Ü e s s m h t t p : / / f a s t / m u i t i / m u l t i , h t m i
S e a r c

q u i t

Fig 2.6.4

h e f i o 1 2 < 2 1 > h e l l o 1 3 < 2 2 > h e B o 1 4

Updated the row, look at fig 2.6.5 to verify the changed data “hello 15” reached the
A pplet.

SQL> update testclass set stringValue-hello 15';

1 row updated.

SQL>

3 Autogenerated HTML - Microsoft internet Explorer - [Working Offline]

■J » E d i t V i e w £ o F j v o n t e s H e l p

•4-i
B a c k FortÄä r Q

<Q 0 £ 3
S t o p R e f r e s h H o m e S e a r c h F a v o r i t e s

A d d r e s s m h t t p : / / f a s t / m u l t i / m u l t i . h t m l

h e f t o 1 2 < 2 1 > b e i l o 1 3 < 2 2 > h e f t o 1 4 < 2 3 > h e ö o 1 5

6.3 Object Relational Table read write
benchmark code in plsql.

File: M:\oracleTest\throughput\multiInsertsPLSQL\read.me.troys 7/05/99, 11:56:05
SQL> ©nlsnolog
SP2-0310: unable to open file "nlsnolog.sql"
SQL> ©nlunolog

Table altered.

start_time=42210 end_time=42218 loopcount=10000 aSal=10800

PL/SQL procedure successfully completed.

Commit complete. -
SQL> ©nlunolog

Table altered.

start_time=42227 end_time=42233 loopcount=10000 aSal=20800

update emp nologging on troys

PL/SQL procedure

Commit complete.
SQL> ©nlunolog

Table altered.

start_time=42241

PL/SQL procedure

Commit complete.
SQL> ©nlunolog

Table altered.

start_time=42255

PL/SQL procedure

Commit complete.
SQL> ©nlunolog

Table altered.

start_time=42269

PL/SQL procedure

Commit complete.
SQL> ©nlunolog

Table altered.

start_t ime= 42286

PL/SQL procedure

Commit complete.

successfully completed.

end_time=42247 loopcount=10000 aSal=30800

successfully completed.

end_time=42260 loopcount=10000 aSal=40800

successfully completed.

end_time=42275 loopcount=10000 aSal=50800

successfully completed.

end_time=42291 loopco\mt=10000 aSal=60800

successfully completed.

Page: 1

F i l e : M : \ o r a c l e T e s t \ t h r o u g h p u t \ m u l t i I n s e r t s P L S Q L \ r e a d . m e . t r o y s 7/05/99, 11:56:05
S Q L >

update emp logging enabled on troys

SQL> ©nlulog

Table altered.

Logging on start_time=42599 end_time=42606 loopcount=10000 aSal=70800

PL/SQL procedure successfully completed.

Commit complete.
SQL> @nlulog

Table altered.

Logging on start_time=42613 end_time=42619 loopcount=10000 aSal=80800

PL/SQL procedure successfully completed.

Commit complete.
SQL> ©nlulog

Table altered.

Logging on start_time=42625 end_time=42630 loopcount=10000 aSal=90800

PL/SQL procedure successfully completed.

select emp on troys

Connected to:
0racle8 Enterprise Edition Release 8.1.4.0.0 - Beta
With the Partitioning and Objects options
PL/SQL Release 8.1.4.0.0 - Production

start_time=43049 end_time=43076 loopcount=100000 aname=SMITH

PL/SQL procedure successfully completed.

SQL> @nls
start time=43110 end_time=43137 loopcount=100000 aname=SMITH

PL/SQL procedure successfully completed.

SQL> /
start time=43143 end_time=43169 loopcount=100000 aname=SMITH

PL/SQL procedure successfully completed.

SQL> /start time=43173 end_time=43199 loopcount=100000 aname=SMITH

Page -. 2

File: D:\masters\RC1\Section 6.0 Appendix^plsql benchmark code\nlu.sql 7/28/99, 7:15:01 F
3M

— Name nlu.sql
— Description a test to determine the update performance

set serveroutput on
alter table emp NOLOGGING;
set autocommit on
DECLARE

ITEM_COUNT NUMBER;
start_t ime CHAR(5);
end_t ime CHAR(5);
aname CHAR(30);
aSal NUMBER;

BEGIN
ITEM_COUNT := 10000;
select sal into aSal from emp WHERE EMPNO = 7369;
SELECT T0_CHAR(SYSDATE, 'SSSSS') INTO start_time FROM sys.dual;
FOR J IN 1. . ITEM_COUNT LOOP

aSal :- aSal + 1;
UPDATE EMP SET sal = aSal WHERE EMPNO = 7369;

END LOOP;
SELECT TO_CHAR(SYSDATE, 'SSSSS') INTO end_time FROM sys.dual;
select sal into aSal from emp WHERE EMPNO = 7369;
DBMS_OUTPUT.PUT_LINE (' start_time=*' | |start_time| | ' end_time-' | |end_time| |

' loopcount=' j jITEM_COUNT|| ' aSal='||aSal);
END;
/

Page: 1

File: D:\masters\RCl\Section 6.0 Appendix\plsql benchmark code\nls.sql 7/28/99, 7'14’OIF
'

— Name nls.sql
-- Description a test to determine the select performance

set serveroutput on

DECLARE
STATUS NUMBER(10);
MESSAGE VARCHAR2(80);
ITEM_COUNT NUMBER;
start_time CHAR(5);
end_t ime CHAR(5);
aname CHAR (30);
X NUMBER;

BEGIN
ITEM_COUNT :=■ 10000;
SELECT T0_CHAR(SYSDATE, 1SSSSS1) INTO start_time FROM sys.dual;FOR J IN 1. .ITEM_COUNT LOOP

SELECT ENAME INTO aname FROM EMP WHERE EMPNO = 7369;END LOOP;
SELECT T0_CHAR(SYSDATE, 'SSSSS1) INTO end_time FROM sys.dual;
DBMS_OUTPUT. PUT_LINE (1 start_time= 1 | | start_time | | ' end_time= ' | | end_time | |

' loopcount='||ITEM_COUNT||1 aname='||aname);

Page: 1

File: D :\m asters \S ectio n 3.0 Need for online real tim e c o m p re s s io n ^ .5 .Effect of sp aresene

ss on space used per row \usingnum bertab le \num bertab le .sq l 5 /3 0 /9 9 , 6 :52:22P M

-- Copyright Saugato Mukerji
-- SYSTEM:
— SUBSYSTEM:
-- FILE NAME:
— DESCRIPTION:
— AUTHOR:
— CREATED:
— USAGE:
-- INPUTS:
— OUTPUTS:
-- NOTES:

Thesis
Sparse Data
NumberTable.sql
generates the table with 300 numbers
used to test with sparse data resulting from compression
Saugato Mukerj i
10-05-99

— REVISION HISTORY:
-- $Author$
— Id
-- Log

--PROMPT *
--PROMPT * executing NUMBERTABLE.sql script — PROMPT ***
DROP TABLE NUMBERTABLE;
CREATE TABLE numbertable
(TIME_STAMP DATE,

PATTERN_ID VARCHAR2(6),
SPARE_B_1 NUMBER,
SPARE_B_2 NUMBER,
SPARE_B_3 NUMBER,
SPARE_B_4 NUMBER,
SPARE_B_5 NUMBER,
SPARE_B_6 NUMBER,
SPARE_B_7 NUMBER,
SPARE_B_8 NUMBER,
SPARE_B_9 NUMBER,
SPARE_B_10 NUMBER,
SPARE_B_11 NUMBER,
SPARE_B_12 NUMBER,
SPARE_B_13 NUMBER,
SPARE_B_14 NUMBER,
SPARE_B_15 NUMBER,
SPARE_B_16 NUMBER,
SPARE_B_17 NUMBER,
SPARE_B_18 NUMBER,
SPARE_B_19 NUMBER,
SPARE_B_20 NUMBER,
SPARE_B_21 NUMBER,
SPARE_B_22 NUMBER,
SPARE_B_23 NUMBER,
SPARE_B_24 NUMBER,
SPARE_A_1 NUMBER,
SPARE_A_2 NUMBER,

P a g e :1

File: D :\m asters\Section 3.0 Need for online real tim e co m p res s io n ^ .5 .Effect of sparesene
ss on space used per row \usingnum bertable\num bertable.sql 5 /30 /99 , 6:52:22PM

SPARE_A_3 NUMBER,
SPARE_A_4 NUMBER,
SPARE_A_5 NUMBER,
SPARE_A_6 NUMBER,
SPARE_A_7 NUMBER,
SPARE_A_8 NUMBER,
SPARE_A_9 NUMBER,
SPARE_A_10 NUMBER,
SPARE_À_11 NUMBER,
SPARE_A_12 NUMBER,
SPARE_A_13 NUMBER,
SPARE_A_14 NUMBER,
SPARE_A_15 NUMBER,
SPARE_A_16 NUMBER,
SPARE_A_17 NUMBER,
SPARE_A_18 NUMBER,
SPARE_A_19 NUMBER,
SPARE_A_20 NUMBER,
SPARE_A_21 NUMBER,
SPARE_A_22 NUMBER,
SPARE_A_23 NUMBER,
SPARE_A_24 NUMBER,
SPARE_c_l NUMBER,
SPARE_c_2 NUMBER,
SPARE_c_3 NUMBER,
SPARE_c_4 NUMBER,
SPARE_c_5 NUMBER,
SPARE_c_6 NUMBER,
SPARE_c_7 NUMBER,
SPARE_c_8 NUMBER,
SPARE_c_9 NUMBER,
SPARE_c_10 NUMBER,
SPARE_c_11 NUMBER,
SPARE_c_12 NUMBER,
SPARE_c_13 NUMBER,
SPARE_c_14 NUMBER,
SPARE_c_15 NUMBER,
SPARE_c_16 NUMBER,
SPARE_c_17 NUMBER,
SPARE_c_18 NUMBER,
SPARE_c_19 NUMBER,
SPARE_c_20 NUMBER,
SPARE_c_21 NUMBER,
SPARE_c_22 NUMBER,
SPARE_c_23 NUMBER,
SPARE_c_24 NUMBER,
SPARE_D_1 NUMBER,
SPARE_D_2 NUMBER,
SPARE_D_3 NUMBER,
SPARE_D_4 NUMBER,
SPARE_D_5 NUMBER,
SPARE_D_6 NUMBER,
SPARE_D_7 NUMBER,
SPARE_D_8 NUMBER,
SPARE_D_9 NUMBER,
SPARE_D_10 NUMBER,
SPARE_D_11 NUMBER,
SPARE_D_12 NUMBER,
SPARE_D_13 NUMBER,

Page: 2

File: D :\m asters \S ectio n 3.0 N eed for online real tim e c o m p re s s io n ^ .5 .Effect of sparesen e

ss on space used per row \usingnum bertab le \num bertab le .sq l 5 /3 0 /9 9 , 6 :52 :22P M

SPARE_D_14 NUMBER,
SPARE_D_15 NUMBER,
SPARE_D_16 NUMBER,
SPARE_D_17 NUMBER,
SPARE_D_18 NUMBER,
SPARE_D_19 NUMBER,
SPARE_D_20 NUMBER,
SPARE_D_21 NUMBER,
SPARE_D_22 NUMBER,
SPARE_D_23 NUMBER,
SPARE_D_24 NUMBER,
SPARE_E_1 NUMBER,
SPARE_E_2 NUMBER,
SPARE_E_3 NUMBER,
SPARE_E_4 NUMBER,
SPARE_E_5 NUMBER,
SPARE_E_6 NUMBER,
SPARE_E_7 NUMBER,
SPARE_E_8 NUMBER,
SPARE_E_9 NUMBER,
SPARE_E_10 NUMBER,
SPARE_E_11 NUMBER,
SPARE_E_12 NUMBER,
SPARE_E_13 NUMBER,
SPARE_E_14 NUMBER,
SPARE_E_15 NUMBER,
SPARE_E_16 NUMBER,
SPARE_E_17 NUMBER,
SPARE_E_18 NUMBER,
SPARE_E_19 NUMBER,
SPARE_E_20 NUMBER,
SPARE_E_21 NUMBER,
SPARE_E_22 NUMBER,
SPARE_E_23 NUMBER,
SPARE_E_24 NUMBER,
SPARE_F_1 NUMBER,
SPARE_F_2 NUMBER,
SPARE_F_3 NUMBER,
SPARE_F_4 NUMBER,
SPARE_F_5 NUMBER,
SPARE_F_6 NUMBER,
SPARE_F_7 NUMBER,
SPARE_F_9 NUMBER,
SPARE_F_9 NUMBER,
SPARE_F_10 NUMBER,
SPARE_F_11 NUMBER,
SPARE_F_12 NUMBER,
SPARE_F_13 NUMBER,
SPARE_F_14 NUMBER,
SPARE_F_15 NUMBER,
SPARE_F_16 NUMBER,
SPARE_F_17 NUMBER,
SPARE_F_18 NUMBER,
SPARE_F_19 NUMBER,
SPARE_F_20 NUMBER,
SPARE_F_21 NUMBER,
SPARE_F_22 NUMBER,
SPARE_F_23 NUMBER,
SPARE_F_24 NUMBER,

Page: 3

File: D :\m asters\Section 3.0 Need for online real tim e com pressio n^ .5 .E ffect of sparesene
ss on space used per row \usingnum bertable\num bertable.sql 5 /30 /99 , 6:52:22PM

SPARE_G_1 NUMBER,
SPARE_G_2 NUMBER,
SPARE_G_3 NUMBER,
SPARE_G_4 NUMBER,
SPARE_G_5 NUMBER,
SPARE_G_6 NUMBER,
SPARE_G_7 NUMBER,
SPARE_G_3 NUMBER,
SPARE_G_9 NUMBER,
SPARE_G_10 NUMBER,
SPARE_G_11 NUMBER,
SPARE_G_12 NUMBER,
SPARE_G_13 NUMBER,
SPARE_G_14 NUMBER,
SPARE_G_15 NUMBER,
SPARE_G_16 NUMBER,
SPARE_G_17 NUMBER,
SPARE_G_18 NUMBER,
SPARE_G_19 NUMBER,
SPARE_G_20 NUMBER,
SPARE_G_21 NUMBER,
SPARE_G_22 NUMBER,
SPARE_G_23 NUMBER,
SPARE_G_24 NUMBER,
SPARE_H_1 NUMBER,
SPARE_H_2 NUMBER,
SPARE_H_3 NUMBER,
SPARE_H_4 NUMBER,
SPARE_H_5 NUMBER,
SPARE_H_6 NUMBER,
SPARE_H_7 NUMBER,
SPARE_H_8 NUMBER,
SPARE_H_9 NUMBER,
SPARE_H_10 NUMBER,
SPARE_H_11 NUMBER,
SPAREJ i_12 NUMBER,
SPARE_H_13 NUMBER,
SPARE_H_14 NUMBER,
SPARE_H_15 NUMBER,
SPAREJi_16 NUMBER,
SPARE_H_17 NUMBER,
SPARE_H_18 NUMBER,
SPARE_H_19 NUMBER,
SPARE_H_20 NUMBER,
SPARE_H_21 NUMBER,
SPAREJ ÌJ22 NUMBER,
SPARE_H_23 NUMBER,
SPARE_H_24 NUMBER,
SPARE_I_1 NUMBER,
SPARE_I_2 NUMBER,
SPARE_I_3 NUMBER,
SPARE_I_4 NUMBER,
SPARE_I_5 NUMBER,
SPARE_I_6 NUMBER,
SPARE_I_7 NUMBER,
SPARE_I_8 NUMBER,
SPARE_I_9 NUMBER,
SPARE_I_10 NUMBER,
SPÀRE_I_11 NUMBER,

Page: A

R ie : D:\m astersVSection 3-0 Need for online real tim e c o m p re s s io n ^ .5 .Effect of sparesene
ss on space used per row \usingnum bertab le \num bertab le .sq l 5 /3 0 /9 9 , 6 :52:22P M

SPAR£_I_12 NUMBER,
SPARE_I_13 NUMBER,
SPARE_I_14 NUMBER,
SPARE_I_15 NUMBER,
SPARE_i_15 NUMBER,
S?AR£_I_17 NUMBER,
SPARE_I_i8 NUMBER,
SPARE.!.!? NUMBER,
SPARE_I_20 NUMBER,
5PARE_I_2Î NUMBER,
SPARE_I_22 NUMBER,
SPARE_i_23 NUMBER,
SPARE_I_24 NUMBER,
SPARE_J_1 NUMBER,
SPARE.J_2 NUMBER,
SPARE.J_3 NUMBER,
SPARE.J.4 NUMBER,
SPARE.J.5 NUMBER,
SPARE.J.6 NUMBER,
SPARE.J.7 NUMBER,
SPARE.J.3 NUMBER,
SPARE.J.9 NUMBER,
SPARE.J_10 NUMBER,
SPARE_J.il NUMBER,
SPARE.J.12 NUMBER,
SPARE.J.13 NUMBER,
SPARE.J.14 NUMBER,
SPARE.J.15 NUMBER,
SPARE.J.16 NUMBER,
SPARE.J.17 NUMBER,
SPARE.J.ia NUMBER,
SPARE.J.19 NUMBER,
SPARE.J.20 NUMBER,
SPARE. J.21 NUMBER,
SPÀRE.J.22 NUMBER,
SPARE.J.23 NUMBER,
SPARE.J.24 NUMBER,
SPARE.R.i NUMBER,
SPARE.K.2 NUMBER,
SPARE.R.3 NUMBER,
SPARE.K.4 NUMBER,
SPARE.K.5 NUMBER,
SPÀRE.K.6 NUMBER,
SPARE.R.7 NUMBER,
SPARE.K.8 NUMBER,
SPÀRE.K.9 NUMBER,
SPARE.K.10 NUMBER,
SPARE_R.il NUMBER,
SPARE.R.I2 NUMBER,
SPARE.R.13 NUMBER,
SPARE.R.I4 NUMBER,
SPARE.R.i5 NUMBER,
SPARE.R.i6 NUMBER,
SPARE.R.I7 NUMBER,
SPARE.R.I8 NUMBER,
SPARE.R_19 NUMBER ,
SPARE.R.20 NUMBER,
SPARE.R.21 NUMBER,
SPARE.R.22 NUMBER,

Page: 5

R ie : D :\m asters\Section 3.0 Need for online real tim e com pression^.5-E ffect of sparesene
ss on space used per row \usingnum bertable\num bertable.sql 5 /30 /99 , 6:52:22PM

SPARE_K_23 NUMBER,
SPARE_K_24 NUMBER,
SPARE_L_1 NUMBER,
SPARE_L_2 NUMBER,
SPARE_L_3 NUMBER,
SPARE_L_4 NUMBER,
SPARE_L_5 NUMBER,
SPARE_L_6 NUMBER,
SPARE_L_7 NUMBER,
SPARE_L_3 NUMBER,
SPARE_L_9 NUMBER,
SPARE_L_10 NUMBER,
SPARE_L_11 NUMBER,
SPARE_L_12 NUMBER,
SPARE_L_13 NUMBER,
SPARE_L_14 NUMBER,
SPARE_L_15 NUMBER,
SPARE_L_16 NUMBER,
SPARE_L_17 NUMBER,
SPARE_L_18 NUMBER,
SPARE_L_19 NUMBER,
SPARE_L_20 NUMBER,
SPARE_L_21 NUMBER,
SPARE_L_22 NUMBER,
SPARE_L_23 NUMBER,
SPARE_L_24 NUMBER

)pctfree 30 pctused 60
STORAGE (INITIAL 200R NEXT 200K
PCTINCREASE 0 MAXEXTENTS 500)
TABLESPACE USERS;

grant all on numbertable to public;

P a g e :6

R ie : D :\m astersVSection 3 .0 N eed for online real tim e com pressio n^ .B .E ffect of sparesen e

ss on space used per row \usingnum bertab le \runN um bertab le .sq l 5 /3 0 /9 9 , 9 :57:20P M

Copyright. Saugato Mukerji
— SYSTEM:
— SUBSYSTEM :
— FILE NAME :
— DESCRIPTION

mesis
Sparse Data
Ru nNumbe rTa b1e .sq1
runs a sql script to insert rows of 300 numbers into the
numbertable and measures space used m datafiles.

— AUTHOR:
— CREATED:
— USAGE:
— INPUTS:
— OUTPUTS:
— NOTES:

Saugato Mukerj i
10-05-99

— REVISION HISTORY:
-- SAuthorS
— SIdS
— SLogS

set sen/eroutput on

DECLARE
start_time CHAR(5);
end_t ime CHAR(5);
free_Space NUMBER;
used_Space NUMBER;
table_extents NUMBER;
table_blocks NUMBER;
segment_name varchar2(30);
segment_owner varchar2(30);
segment_initial_extent number;
segment_max_extents number;
aname CHAR(3 0) ;
X NUMBER;
Y NUMBER;
numRcws NUMBER;

BEGIN
X :» 10;
Y: - 1000;
SELECT T0_CHAR (SYS DATE, ' SSSSS1) INTO start_time FROM sys.dual;

|j 'name 1
j|'extents'
j |'blocks 1
J j ' initial_extent'
j|'max_extents1
j j ' start_time'
j|'end_time'
j|'free space in kb
J I ' used space '
j j ’numRows’);

FOR J IN 1..X LOOP

D BMS_OUTPUT.PUT_LINE('owner

Page: 1

File: D :\m asters \S ectio n 3.0 N eed for online real tim e co m p re s s io n ^ .5 .Effect of sparesene

ss on space used per row \usingnum bertab le \runN um bertab le.sq l 5 /30 /99 , 9:57:20PM

SELECT T0_CHAR(SYSDATE, 'SSSSS') INTO start_time FROM sys.dual;
FOR K IN 1..Y LOOP

insert into NUMBERTABLE
values(sysdate, 1 ax 122',

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 .
3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 ,
6.7 .8 .9 .0 . 1.2 .3 .4 .5.6 .7 .8 .9,

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 .
3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 ,
6.7 .8.9 .0 . 1.2.3.4.5 .6 .7 .8 .9,
0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 ,
3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 ,
6,7

);
COMMIT;

END LOOP;
SELECT T0_CHAR(SYSDATE, 'SSSSS1) INTO end_time FROM sys.dual;
-- time the end of the 1000 inserts
DBMS_DDL.ANALYZE_OBJECT (

'TABLE',
NULL,
'NUMBERTABLE',
'COMPUTE',
NULL,
NULL,
NULL,
NULL);

SELECT OWNER , SEGMENT_NAME, EXTENTS , BLOCKS, INITIAL_EXTENT, MAX_EXTENTS
INTO
segment_owner, segment_name, table_extents, table_blocks,
segment_initial_extent, segment_max_extents
FROM DBA_SEGMENTS
WHERE SEGMENT_NAME-'NUMBERTABLE';

select sum(bytes)/1024 INTO free_space from dba_free_space;
select sum (bytes)/1024 INTO used_space from dba_segments;
select count(*) INTO numRows from NUMBERTABLE;
DBMS_OUTPUT.PUT_LINE(segment_owner

||' '||segment_name
¡I' 'I|table_extents
||' '¡Itable_blocks
j|' '| jsegment_initial_extent
||' ‘IIsegment_max_extents
II' '||start_time
||' 1||end_time
II' '||free_space
||' '¡j used_space
¡j' '¡j numRows);

Page: 2

END LOOP;
END;

File: D :\m asters \S ection 3.0 Need for online real tim e c o m p re s s io n ^ .5 .Effect of sparesene

ss on space used per row \usingnum bertab le \runN um bertab le.sq l 5 /3 0 /9 9 , 9 :57:20P M

Page: 3

File: D :\m asters\Section 3.0 Need for online real tim e com pression\3.5.Effect of sparesene
ss on space used per row \usingnum bertable\runN um bertable90pcNull.sql 5 /31 /99 ,12 :16 :2

-- Copyright Saugato Mukerji
-- SYSTEM:
— SUBSYSTEM:
— FILE NAME:
-- DESCRIPTION:

Thesis
Sparse Data
RunNumberTable90pcNull.sql
runs a sql script to insert rows of 300 numbers into the
numbertable and measures space used in datafiles. 90 % of
values inserted in each row were null creating a sparse table.

-- AUTHOR:
— CREATED:
— USAGE:
— INPUTS:
— OUTPUTS:
— NOTES:

Saugato Mukerj i
10-05-99

— REVISION HISTORY:
— $Author$
— Id
— Log

set Serveroutput on

DECLARE
start_t ime CHAR(5);
end_t ime CHAR(5);
free_Space NUMBER;
used_Space NUMBER;
table_extents NUMBER;
table_blocks NUMBER;
segment_name varchar2(30);
segment_owner varchar2(30);
segment_initial_extent number;
segment_max_extents number;
aname CHAR(30);
X NUMBER;
Y NUMBER;
numRows NUMBER;

BEGIN
X :- 10;
Y:« 1000;
SELECT T0_CHAR(SYSDATE, 1SSSSS') INTO start_time FROM sys.dual;
DBMS_OUTPUT.PUT_LINE('owner1

||' '|| 'name'
||' 1 | | 1 extents 1
j j * ' l l ' blocks 1
|I' 'll'ini_ext'
j j1 '¡I'max_ext'
II' '¡I'start'
M' ' || 'end'
M' 'M' free kb '
||' '||'used kb'
|j' '||'numRows');

FOR J IN 1..X LOOP

Page: 1

File: D :\m asters \S ectio n 3.0 Need for online real tim e c o m p re s s io n ^ .5 .Effect of sparesene

ss on space used per row \usingnum bertab le \runN um bertab le90pcN ull.sq l 5 /3 1 /9 9 ,1 2 :1 6 :2

SELECT T0_CHAR(SYSDATE, 1SSSSS') INTO start_time FROM sys.dual;
FOR K IN 1..Y LOOP

insert into NUMBERTABLE
values(sysdate, ' axl22'„

0„null„null,null„null,null„null„null„null,null,0„null,null,null,null„null„null,null„nu
Il„null,0 ,null,null„null„null„null„null„null„null„null,0 „null,null,null,null,null,null
,null„null„null„0 ,null,null,null„null„null„null„null„null„null,0 ,null,null,null„null,null,null„null„null,nul1,0,null,null, null, null, null, null,null,null,null,0,null,nu11,nul
I, null„null„null„null„null,null,0 „null„null„null„null„null,null„null„null,null„0,null„
null„null„null,null„null„null „null „null,
0 „nul 1„nul1„null„null„null„null„null„null,null„0„null„null,null„null„null,null„null„nu
11„null,0„null„null„null„null„null „null „null„null„null,0„null„null„null„null„null„null„nul1„nul1„null,0„nul1„null„null„null„null„null„null,null„null„0,nul1„null„null„null,n
ull„null„nul1,nu11,nu11,0,null„null „null „null,null„null,null„null„null,0,null„null„nul
1 „null,null„null„null„null„null,0„null„null„null„null„null,null,null,null,nul1,0,null,
null„null„null„null„null „null„null „null „
0„nul1„null„null„nul1„nul1„nul1„null„null„null„0„nul1„null„null„null,null„null„null,nu
II, null„0„null„null„null„null„null„null „null„null„null,0„null„null„null„null„null„null
„null„null„null,0„null„null„null„null„null„null„null„null„null,0„null„null„null„null,n
ull„null„null„null„null,0,null„null„null „null „null„null„null„null„null,0,null„null„nul
1„nu11„nu11„nu11„nu11,nu11, nu11,0, null „null,null „null,null,null„null

);
COMMIT;

END LOOP;
SELECT T0_CHAR(SYSDATE, 'SSSSS') INTO end_time FROM sys.dual;
— time the end of the 1000 inserts
DBMS_DDL.ANALYZE_OBJECT (

'TABLE'„
NULL,
'NUMBERTABLE'„
'COMPUTE'„
NULL,
NULL,
NULL,
NULL);

SELECT OWNER „ LTRIM(RTRIM(SEGMENT_NAME)), EXTENTS „ BLOCKS,
INITIAL_EXTENT „ MAX_EXTENTS

INTO
segraent_owner, segment_name„ table_extents, table_blocks,
segment_initial_extent„ segment_max_extents
FROM DBA_SEGMENTS
WHERE SEGMENT_NAME-' NUMBERTABLE ' ;

select sum(bytes)/1024 INTO free_space from dba_free_space;
select sum(bytes)/1024 INTO used_space from dba_segments;
select count(*) INTO numRows from NUMBERTABLE;
DBMS_OUTPUT.PUT_LINE(segment_owner

Page: 2

File: D :\m asters\Section 3.0 Need for online real tim e com pression\3.5.Effect of sparesene
ss on space used per row \usingnum bertable\runN um bertable90pcNull.sql 5 /31 /99 ,12 :16 :2

11 •
11 '

11 '
11 '

11 '

11 '

11 '

11 '

11 '

11 'END LOOP;

'||segment_name
' j |table_extents
1 j |tabie_falocks
'||segment_initial_extent
1 j j segment_max_extents
'||start_time
' | j end_time
11j free_space
'||used_space
1||numRows);

END;

Page: 3

6.4 Source code for synchronous compression algorithm
prototype

F ile : D : \c o d e \te s tin g c o m p re s s io n \C o m p re s s A rra y .ja v a 5 /2 8 /0 , 2 :4 4 :0 8 A M

/ / C o p y r i g h t 1 9 9 6 BHP I T A l l R i g h t s L i m i t e d

/ / SYSTEM:
/ / SUBSYSTEM:
/ / F I L E NAME:
/ / DESCRIPTION:
/ / AUTHOR:
/ / CREATED:
/ / LIBRARY:
/ /

P l a t e R o l l i n g M i l l C o n t r o l S y s t e m 10
C o m p r e s s A r r a y . j a v a
a j a v a i o c o m p r e s s i o n f o r 2 0 0 p o i n t s
S a u g a t o M u k e r j i
25 J a n 1 9 9 8

/ / REVISION HISTORY:
/ / I n i t i a l r e v i s i o n
/ /
/ /

/ / P a c k a g e n a m e .
p a c k a g e h s m . C o m p o n e n t s ;

/ / J a v a i m p o r t s ,
i m p o r t j a v a . a w t . * ;
i m p o r t j a v a . a w t . i m a g e . * ;
i m p o r t j a v a . a p p l e t . * ;
i m p o r t j a v a . a w t . e v e n t . * ;
i m p o r t j a v a . n e t . * ;
i m p o r t j a v a . u t i l . * ;
i m p o r t j a v a . i o . * ;
i m p o r t j a v a . n e t . * ;
i m p o r t h sm C l i e n t . * ;

/ / - CLASS NAME
/ / C o m p r e s s A r r a y
/ /
/ / = DESCRIPTION
/ / T h i s c l a s s i s t h e m a i n c l a s s o f t h e E S P P r o t o c o l H a n d l e r . T h e
c l a s s r e c i e v e s
/ / d a t a f o r t r a n s m i s s i o n t o a n d f r o m t h e t e r m i n a l s e r v e r p o r t
i n e r f a c i n g t h e
/ / e x t e r n a l ESP d e v i c e s .
/ /

p u b l i c c l a s s C o m p r e s s A r r a y
{

s t a t i c f i n a l i n t PASS_BAND = 1 2 0 ; / / h a d 5 5 ^ c om p w i t h
10 0 ;

/ / d e f a u l t a l l o w e d p a s s b a n d

s t a t i c f i n a l i n t MAX_SKIP = 3 0 0 ;
/ / d e f a u l t ma x n u m b e r o f s k i p p e d t i m e i n m i l l i s e c o n d

i n t m y l n [] ;

P ag e : 1

R ie : D :\c o d e \te s tin g c o m p re s s io n \C o m p re s s A rra y .ja v a 5 /2 8 /0 , 2 :4 4 :0 8 A M

b o o l e a n m y P r o c e s s i n g B u s y = f a l s e ;
/ /

i n t m y l = 0 ;
/ / n e s s a g s c o u n t . We a r e g e t t i n g m e s s a g e s s y n c h r o n o u s l y

i n 5 0 ms i n t e r v a l s

l o n g m y L a s t L o g g e d T i m e [] ;
/ / l a s t r e c o r d e d m e s s a g e c o u n t f o r e a c h .

i n t m y M a x S k i p [] ;
/ / max n u m b e r o f s k i p p e d v a l u e s ,

i n t m y Y i _ l [] ,
/ / l a s t v a l u e i n l o c a l m em or y

i n t m y Y i [] . :
/ / c u r r e n t v a l u e i n l o c a l m em or y

i n t m y P a s s B a n d [] ; / / 19/£ w i t h 3 ;
/ / a l l o w e d p a s s b a n d c a l c u l a t e d i n a b s o l u t e v a l u e s f u l l

s c a l e . i . e . 0 . 5 ^ F S

i n t m y D e l t a Y [] ;
/ / t h e d e l t a v a l u e c o m p u t e d a s m y D e l t a Y * myYi -

m y Y i - 1

b o o l e a n m y F l a g Y i _ l L o g g e d [] ; / / * f a l s e ;
/ / f l a g t o i n d i c a t e i f t h e l a s t v a l u e i n m e m or y h a d

b r o k e n t h e c r i t e r i a a n d
/ / b e e n l o g g e d a s a r e s u l t .

l o n g m y S k i p C o u n t [] ;
/ / c o u n t o f s k i p p e d v a l u e s

l o n g m y T o t a l C o u n t [] ;
/ / c o u n t o f a l l v a l u e s

i n t

l i s t

m y l o A r r a y S i z e = 2 0 0 ;
/ / v a r i a b l e t o a l o o w c o f i g u r a t i o n o f t h e s i z e o f t h e i o

p u b l i c v o i d i n i t ()
{

S y s t e m . o u t . p r i n t I n (" i n i n i t () - = » =

m y l o A r r a y S i z e ■ 2 0 0 ;
/ / s e t a r r a y s i z e

m y L a s t L o g g e d T i m e ” n e w l o n g [m y l o A r r a y S i z e] ;
m y Y i _ l * n e w i n t [m y l o A r r a y S i z e] ;
m yY i ■ n e w i n t [m y l o A r r a y S i z e] ;
m y P a s s B a n d - n e w i n t [m y l o A r r a y S i z e] ;
m y D e l t a Y - n e w i n t [m y l o A r r a y S i z e] ;
m y F l a g Y i _ l L o g g e d M n e w b o o l e a n [m y l o A r r a y S i z e] ;
m y S k i p C o u n t - n e w l o n g [m y l o A r r a y S i z e] ;
m y T o t a l C o u n t ■ n e w l o n g [m y l o A r r a y S i z e] ;

P a g e : 2

m y M a x S k i p = n ew i n t [m y l o A r r a y S i z e] ;

/ / a l l o c a t e m e m o r y f o r a r r a y s t o h o l d i n t e r m e d i a t e
v a l u e s d u r i n g c o m p r e s s i o n

f o r (i n t i = 0 ; i <m y l o A r r a y S i z e ; i + +)
{

m y L a s t L o g g e d T i m e [i] = 0 ;
m y Y i _ l [i] = 0 ;
m y Y i [i] = 0 ;
m y P a s s B a n d [i]= PASS_BAND;
m y M a x S k i p (i] = MAX_SKIP;
m y D e l t a Y [i] = 0 ;
m y F l a g Y i _ l L o g g e d [i] = t r u e ; / / f a l s e ; d o n e t o s k i p

l o g g i n g f i r s t v a l u e
m y S k i p C o u n t [i] = 0 ;

}
l o a d T h e P r o p s () ;

/ / l o a d t h e u s e r s p e c i f i e d p r o p e r t i e s

F ile : D : \c o d e \te s tin g c o m p re s s io n \C o m p r e s s A r ra y .ja v a 5 /2 8 /0 . 2 :4 4 :0 8 A M

}

/ / F u n c t i o n
/ / s e t l o A r r a y S i z e
/ /
// - DESCRIPTION
/ / C o n s t r u c t o r
/ /

p u b l i c v o i d s e t I o A r r a y S i z e (i n t a l o A r r a y S i z e)
{

m y l o A r r a y S i z e * a l o A r r a y S i z e ;
>

//>
/ / F u n c t i o n
/ / C o m p r e s s A r r a y/ /
/ / - DESCRIPTION
/ / C o n s t r u c t o r
/ /

//«

v o i d C o m p r e s s A r r a y ()
{

S y s t e m . o u t p r i n t l n (" C o n s t u c t i n g C o m p r e s s A r r a y ■ ■ ') ;
}

Page: 3

F ile : D :\c o d e \te s tin g c o m p re s s io n \C o m p re s s A rra y .ja v a 5 /2 8 /0 , 2 :4 4 :0 8 A M

//=
/ / F u n c t i o n
/ / s t o r e
/ /
/ / - DESCRIPTION
/ / l o g t h e v a l u e t o h i s t o r y
/ /

//*

v o i d s t o r e (i n t v a l u e , i n t c o u n t)
{

/ / S y s t e m . o u t . p r i n t l n (" v r i t i n g t o h i s t o r y i " " + c o u n t +
v a l u e ® " + v a l u e) ;

/ / S y s t e m . o u t . p r i n t l n (" " + c o u n t + " , “+ v a l u e) ;
}

//>
/ / F u n c t i o n
/ / s e t D a t a A r r a y
/ /
/ / - DESCRIPTION
/ / l o g t h e v a l u e t o h i s t o r y
/ /

v o i d s e t D a t a A r r a y (S t r i n g r a w D a t a)
{

S t r i n g t o k e n ;
i n t i - 0 ;
S t r i n g T o k e n i z e r s t ■ n ew S t r i n g T o k e n i z e r (r a v D a t a) ;
w h i l e (s t . h a s M o r e T o k e n s ())
{

t o k e n ■ s t . n e x t T o k e n () ;
t r y
{

d a t a A r r a y [i] * I n t e g e r . p a r s e l n t (t o k e n) ;
>
c a t c h (N u m b e r F o r m a t E x c e p t i o n e)
{

d a t a A r r a y [i] ■ Ox FF FF ;
S y s t e m . o u t . p r i n t I n
(" \ n s e t t i n g d a t a A r r a y [" + i + “] ■ " + d a t a A r r a y [i]) ;

}
}

>*/

/ /

P a g a : 4

/ / F u n c t i o n

F ile : D : \c o d e \te s tin g c o m p re s s io n \C o m p re s s A rra y .ja v a 5 /2 8 /0 , 2 :4 4 :0 8 A M

/ / p r o c e s s D a t a/ /
/ / = DESCRIPTION
/ / r u n t h r o u g h t h e a r r a y o f d a t a a n d p r o c e s s e s o n e p o i n t f o r

c o m p r e s s i o n i n e a c h a r r a y/ /

p u b l i c s h o r t p r o c e s s D a t a (

t i m e S t a m p)
{

i f (m y P r o c e s s i n g B u s y =
{

r e t u r n - 1 ;
>

i n t [] r a w D a t a , i n t [] v a l u e s ,
i n t [] t a g s , l o n g

t r u e)

m y P r o c e s s i n g B u s y = t r u e ;

T r a c e . l e v e l 5 (" i n p r o c e s s D a t a ") ;

i n t t a g C o u n t = 0 ;
/ / i n d e x o f n o n r e j e c t e d d a t a e n t r i e s

f o r (i n t i = 0 ; i < m y I o A r r a y S i z e ; i+ +)
{

m y D e l t a Y [i] = m y Y i [i] - m y Y i _ l [i] ;
/ / d e l t a y f r o m l a s t t i m e

/ / 2 7 / 0 5 / 0 0
m y Y i _ l [i] = m y Y i [i] ;
/ / 2 7 / 0 5 / 0 0

/ / m y Y i [i] = d a t a A r r a y [i] ;
m y Y i [i] = r a w D a t a [i] ;

/ / r e a d t h e n ew v a l u e

i n t c = m y Y i _ l [i] + m y D e l t a Y [i] + m y P a s s B a n d [i] ;
i n t d = m y Y i _ l [i] + m y D e l t a Y f i] - m y P a s s B a n d [i] ;

/ / c a l c u l a t e p a s s b a n d l i m i t

i f (i == 1 0)

S y s t e m . o u t . p r i n t l n (" e n t e r i n g l o o p i n
p r o c e s s D a t a . m y D e l t a Y [i] = ”+

m y D e l t a Y [i] + " myY i [i] " +myY i [i] + "
myYi _ 1 [i] " +myYi _ 1 [i] + " c= " + c + " d= "+ d+ " m y p b [i] = " + m y P a s s B a n d [i]
);

}

P a g e : 5

m y l = i ;

F ile : D :\c o d e \te s tin g c o m p re s s io n \C o m p re s s A rra y .ja v a 5 /2 B /0 . 2 :4 4 :0 8 A M

b o o l e a n s k i p F l a g = f a l s e ;

/ / r e c o r d t h e e v e n t t h a t a v a l u e i s a b o u t t o b e
l o g g e d b e c a u s e t h e

/ / n u m b e r o f a l l o w e d s k i p s h a s b e e n e x c e e d e d
i f ((t i m e S t a m p - a y L a s t L o g g e d T i m e [i]) >

m y M a x S k i p [i])
{

s k i p F l a g * t r u e ;
>

== t r u e)

p a s s b a n d

i f ((m y Y i [i] > c) || (m y Y i [i] < d) || (s k i p F l a g

/ / t e s t i f t h e new d a t a i s o u t s i d e t h e a l l o w a b l e

{

i f (myY i t i] > 4 0 0 0 || m y Y i [i] < - 4 0 0 0)
{

; / / S y s t e m . o u t . p r i n t I n (” » = = * “ = « - » « - » c m +c+
d="+d+" m y Y i [* + i + "] = " + m y Y i [i]) ;

>

i f (m y F l a g Y i _ l L o g g e d [i] “ “ f a l s e && s k i p F l a g “ ■
f a l s e)

/ / l o g t h e l a s t v a l u e t o o i f i t w a s a p o i n t
s k i p p e d b y t h e c o m p r e s s i o n l o g i c

/ / e a r l i e r . T h e m y F l a g Y i _ l L o g g e d [i] i s s e t
t r u e w h en a n ew p o i n t i s l o g g e d

{
v a l u e s [t a g C o u n t] * m y Y i _ l [i] ;

/ / s a v e v a l u e
t a g s [t a g C o u n t] “ i + 1 ;

/ / s a v e i n d e x o f n o n r e j e c t e d t a g . T h i s
w i l l p o i n t t o t h e h i s t o r y r e c o r d

/ / i . e . H i s t o r y 54 w h e r e i - 53

i f (i “ - 1 0)
{

S y s t e m . o u t . p r i n t l n (■ i M" + i+ ” R e t a i n i n g
Y i - 1 v a l u e s [" + t a g C o u n t + "] “ " + v a l u e s t t a g C o u n t]+" s f - " + s k i p F l a g) ;

>

t a g C o u n t + + ;
/ / i n c r e m e n t c o u n t o f n o n r e j e c t e d t a g s

/ / T r a c e . I e v e l 4 (“ A t a g C o u n t “ " + t a g C o u n t + "

);
/ / s t o r e (m y Y i _ l [i] , M a t h . m a x (0 , m y l - l)

/ / m a k e n e c e s s a r y c a l l s t o l o g t h e p o i n t

Page: 6

F ile : D :\c o d e \te s tin g c o m p re s s fo n \C o m p re s s A rra y .ja v a 5 /2 8 /0 , 2 :4 4 :0 8 A M

b e f o r e t h e c u r r e n t t o h i s t o r y
>

/ / S y s t e m . o u t . p r i n t (" l o g g i n g c u r r e n t : ") ;
/ / C o m p r e s s e d S t r i n g + =" " + m y I ;
/ / s t o r e (m y Y i [i] , m y l) ;
/ / m a k e n e c e s s a r y c a l l s t o l o g t h e c u r r e n t

p o i n t t o h i s t o r y

v a l u e s [t a g C o u n t] = m y Y i [i] ;
/ / s a v e v a l u e

i f (i = = 1 0)
{

S y s t e m . o u t . p r i n t l n (" i= " + i + " R e t a i n i n g Y i
v a l u e s t " + t a g C o u n t + "] = " + v a l u e s [t a g C o u n t]+ " s f =" + s k i p F l a g) ;

>
t a g s [t a g C o u n t] = i + l ;

/ / s a v e i n d e x
t a g C o u n t + + ;

/ / i n c r e m e n t c o u n t

c u r r e n t p o i n t

m y F l a g Y i _ l L o g g e d [i] = t r u e ;
/ / f l a g t h e l o g g i n g i n t o h i s t o r y o f t h e

/ / m y l a s t L o g g e d I [i] = m y l ;
/ / s a v e l a s t i n d e x

m y L a s t L o g g e d T i m e [i] = t i m eS t a m p ;
/ / s a v e t h e t i m e w h e n l a s t r e a d i n g w a s l o g g e d

/ / T r a c e . I e v e l 4 (" B t a g C o u n t =" + t a g C o u n t + " i = " + i

/ / S y s t e m . o u t . p r i n t I n (i + " , " + m y Y i [i]) ;

}
e l s e

/ / s k i p t h e p o i n t f o r now i t i s w i t h i n t h e p a s s
b a n d

{
m yS k i p C o u n t [i]++;

/ / c o u n t s k i p s f o r t h i s p o i n t

/ / S y s t e m . o u t . p r i n t l n (" f o r now s k i p p i n g
i= " + m y l+ " m yY i= < n+ m y Y i+ " > m y Y i _ l [i] = " + m y Y i _ l [i]) ;

/ / S y s t e m . o u t . p r i n t (" s k i p " + (t i m e S t a m p -
m y L a s t L o g g e d T i m e f i]) + " , "+ m y l + " Y i = " + m y Y i [i] + " i = ,,+ i) ;

m y F I a g Y i _ l L o g g e d [i] = f a l s e ;

P a g e : 7

F ile : D : \c o d e \te s tin g c o m p re s s io n \C o m p re s s A rra y .ja v a 5 /2 8 /0 , 2 :4 4 :0 8 A M

/ / m y Y i _ l [i] *=myYi [i] ;
>
i n t k * M a t h . m a x (0 , t a g C o u n t - 1) ;
/ / T r a c e . l e v e l 4 (" l o o p e n d

v a l u e s t t a g C o u n t - 1] ■ " + v a l u e s [k] +
/ / “ t a g s [t a g C o u n t - 1] * " + t a g s [k] +
/ / " t a g C o u n t - 1 * " + k) ;

nyTotalCount[i]++;
// count total vlues for this point

>
myProcessingBusy * false;
return (short)tagCount;

//»
// Function
// loadTheProps/ /
// - DESCRIPTION
// loads the configurable properties

//■
public void loadTheProps()
{ String skipString ■ ’";

s k i p S t r i n g = S y s t e m . g e t P r o p e r t y (" u s e r . d i r ") ;
S y s t e m . o u t . p r i n t l n (" s k i p S t r i n g * " + s k i p S t r i n g) ;

// test using default system property
// System.setProperty("HSM.skip"."a.b,cd.efgh,g");
// this forces a new System.property entry HSM.skip

// This code loads property strings from a file in the
classpath

Properties prop * new E^pertiesC);
try
{ prop.load(new FileInputStream(“HSM.config"));
>catch (Exception e)
{ System.out.printIn("Error loading CORVUS or

Securities property file: "+ e .toString());

Page: 8

>
System.setPropert ies(prop);

// force the properties loaded from the file into the System Property
Enumeration propertyEnum *

System getProperties().propertyNames();
Object propertyKey;
int i*0 ;
int j = 0 ;
while (propertyEnum.hasMoreElements())

propertyKey * propertyEnum.nextElement();
String propString - (String)propertyKey;
if(propString.indexOf("HSM.skip") I - -1)
{ String indxString *

propString substring(“HSM skip”.length(),
propString.length());
//System out.print In("indxString*["+indxString+"]");

F ile : D : \c o d e \te s tin g c o m p re s s io n \C o rn p re s s A rra y .ja v a 5 /2 8 /0 . 2 :4 4 :0 8 A M

S t r i n g p ■ S y s t e m . g e t P r o p e r t y (p r o p S t r i n g) ;
/ / S y s t e m . o u t . p r i n t l n (" p r o p S t r i n g * " + p r o p S t r i n g + "

P="+P)-
try{

i* Integer.parselnt (indxString);
i * i - 1;
myMaxSkip[i] * Integer.parselnt(p);

>catch(Exception e)
{ System.outprintln("skip*["+propString+"]

i-"+i+" Error in parsing skip value: "+ e .toString());
>

if(propString.indexOf("HSM.passBand") !■ -1)
{ String indxString *

propString.substring("HSM passBand".length(),
propString.length());

String p - System.getProperty(propString);
//System.out.println("propString*"+propString+

P*"+P);
try{

i"Integer.parselnt(indxString);
i * i - 1 ;
myPassBand[i] - Integer.parselnt(p);

>catch(Exception e)
{

P ag e : 9

F ile : D :\c o d e \te s tin g c o m p re s s lo n \C o m p re s s A rra y .ja v a 5 /2 8 /0 . 2 :4 4 :0 8 A M

S y s t e m . o u t . p r i n t l n (“m y P a s s B a n d * [" + p r o p S t r i n g + "] + E r r o r i n
p a r s i n g m y P a s s B a n d v a l u e : "+ e . t o S t r i n g ()) ;

>
>

>

f o r (i * 0 ; i < m y I o A r r a y S i z e ; i+ +)
{

S y s t e m . o u t . p r i n t l n (“m y P a s s B a n d [" + i + *] ■ " + m y P a s s B a n d [i]+"
m y M a x S k i p [" + i + "] ■ " + m y M a x S k i p [i]) ;

>

>

// Function
// printSkipStats
/ /
/ / - DESCRIPTION
// run through the array of data and processes one point for

compression in each array
/ /

void printSkipStats()
{ for(int i-0 ; i<myIoArraySize; i++)

{ System.out.println(" Total count -"+
myTotalCount[i]+

" skip count for "+i+“th input
*"+mySkipCount[i]+

" compression ratio«"-*-
(100 » (myTotalCount[i] -

mySkipCount[i]) / myTotalCount[i]));
>

}

Page: 10

Fi 1 e : E : \ o r a c l e T e s t \em p lo y ee8 . I \n e t8 \ jd b c _ v a rc h a r_ p re p a re d \M e s s a g e C li e n t . ja v a 2 4 /
0 4 /9 9 , 2 2 :2 7 :5 1

// Package name,
package hsm.Client;

import java.lang.*;
import qava.utii.*;
import java.io.*;
// You need to import the java.sql package to use JDBC
import java.sql.*;
// System imports
import hsm.Components.*;

public class Messagedient implements Runnable
// The connect string
//static final string connect_string =
// "jdbc:oracle:thi n:scott/ti ger@home: 1521:ORCL";
static final string connect_string =

"jdbc:oracle:thi n:scott/ti ger@iSDWOL-PC5952:1521:ORCL";
static Resultset rset;
Preparedstatement aninsertStatement;
static final string null_mar k e r = " ' ;
static String nullAndComma = ""+null_m a r k e r+",";
static int count = 0;
static final int numColumnslnTable = 288;
static final long FULLSCALE = 4096;

// base address for cisco terminal servers
static int myoffset =0;

// offset for generating varying data from fixed array
static long startTime=System.currentTimeMillis();
int myloArraySize = 200;

// set array size
short myDeviceld = 0;

// short myNumberOfPoints = 0;
String argstrinq[] = new string[10];

// storage for command line arguments
compressArray myCompressArray;

// declare the compressor object
int [] myvalues;

// array of not rejected data values
// int [] myRawDataArray ;
int myRawDataArrayd =

{-2409,-2329,-3273,-3189,461,-3056,455,-3079,448,-3099,429,-3139,418,-3164,401,-3
190,384,-3227,369,-2248,-2533,-2608,-2656,-2687,-2667,-2733,-2725,-2757,-2761,-27
63,-2767,-2763,-2765,-2751,-2737,-2671,-2651,-2623,-2603,-2596,-2592,-2584,-2580,
-2579,-2577,-2573,-2569,-2570,-2572,-2159,-2138,-1958,-1940,-1923,-1909,-1891,-18
80,-1863,-1846,-1834,-1812,-1790,-1774,-1751,-1729,-1713,-1691,-1673,-1650,-1627,
-1613,-1584,-1560,-1531,-1500,-1471,-1433,-1384,-1353,-1305,-1274,-1236,-1208,-11
87,-1161,-1133,-1116,-1083,-1062,-1031,-1002,-978,-944,-916,-898,-875,-859,-835,-
813,-796,-774,-755,-742,-725,-711,-695,-678,-670,-656,-643,-635,-623,-613,-603,-5
92,-582,-572,-565,-556,-548,-544,-542,-536,-531,-526,-521,-514,-499,-486,-469,-44
7,-435,-420,-409,-398,-385,-378,-368,-358,-352,-343,-336,-325,-319,-310,-301,-294
,-286,-277,-271,-262,-252,-246,-238,-232,-226,-217,-211,-203,-197,-190,-183,-177,
-171,-161,-156,-148,-139,-136,-127,-121,-114,-106,-101,-95,-88,-82,-76,-70,-63,-5
6,-51,-44,-40,-32,-25,-22,-15,-7,-2,4,11,17,25,29,36,44,47,52,56,59,62,65,67,68,7
2 72,76,77,79,81,85,86,87,90,89,91,94,94,96,97,101,102,105,107,110,111,114,116,11
7 11$, 122,125,127,129,133,134,134,137,138,137,138,138,138,136,137,136,136,135,133
,133,133,132,131,130,131,131,129,130,129,129,128,128,128,127,127,126,126,127,127,
I27,i26,i26,126,126,125,126,126,126,126,125,125,125,125,124,125,124,123,118,115,1
13, ill, il2,i09,i07,108,104,104,102,98,96,91,87,83,81,78,74,72,69,67,67,66,64,62,6
0,58,55,52 48,44,45,41,39,37,36,28,30,31,26,22,23,22,20,19,15,15,13,11,7,8,5,3,1,
-2,1 0,-2,-3,-6,-6,-7,-7,-9,-10,-10,-10,-12,-13,-15,-14,-14,-14,-14,-15,-18,-38,
19 -i6 -17,-i8,-19,-18,-22,-21,-24,-25,-26,-27,-26,-27,-30,-29,-32,-34,-34,-37,-3
6,-39,-37,-41,-40,-41,-42,-44,-44,-46,-45,-44,-44,-47,-47,-47,-47,-48,-46,-48,-51

Page : 1

Fi 1 e : E : \ o r a c l eT est\em ployee8 . I \n e t8 \ jd b c _ v a rc h a r_ p re p a re d \M e s sa g e d i e n t . ja v a 24/
04 /99 , 22 :27 :51

, - 4 9 , - 5 2 , - 4 9 , - 4 8 , - 4 9 , - 4 9 , - 5 1 , - 5 4 , - 4 9 , - 4 9 , - 4 9 , - 5 0 , - 4 9 , - 4 9 , - 5 0 , - 5 0 , - 5 0 , - 5 0 , - 5 0 , - 5 3 ,
- 5 2 , - 5 3 , - 5 3 , - 5 4 , - 5 2 , - 5 2 , - 5 1 , - 5 2 , - 5 3 , - 5 1 , - 4 9 , - 4 8 , - 4 9 , - 4 7 , - 4 7 , - 4 7 , - 4 9 , - 5 0 , - 5 4 , - 4 9 , -
5 0 , - 5 0 , - 5 0 , - 5 1 , - 5 3 , - 5 6 , - 5 6 , - 5 4 , - 5 5 , - 5 6 , - 5 5 , - 5 6 , - 5 5 , - 5 6 , - 5 5 , - 5 6 , - 5 3 , - 5 2 , - 5 1 , - 5 3 , - 5
3 , - 5 2 , - 5 2 , - 5 2 , - 5 0 , - 5 1 , - 5 1 , - 5 4 , - 4 9 , - 4 7 , - 4 6 , - 4 4 , - 4 5 , - 4 5 , - 3 9 , - 4 1 , - 4 1 , - 3 8 , - 3 6 , - 3 7 , - 3 6
, - 3 5 , - 3 5 , - 3 6 , - 3 6 , - 3 6 , - 3 3 , - 3 4 , - 2 9 , - 3 1 , - 2 9 , - 2 7 , - 2 7 , - 2 6 , - 2 3 , - 2 3 , - 2 1 , - 1 8 , - 1 8 , - 2 0 , - 1 9 ,
- 2 1 , - 1 5 , - 1 5 , - 1 6 , - 1 6 , - 1 4 , - 1 4 , - 1 4 , - 1 5 , - 1 2 , - 1 1 , - 1 0 , - 8 , - 6 , - 8 , - 4 , - 4 , - 4 , - 2 , 1 , 0 , 2 , 2 , 3 , 2 ,
7 , 6 , 9 , 8 , 1 1 , 1 1 , 1 3 , 1 2 , 1 6 , 1 6 , 1 5 , 1 8 , 1 8 , 1 7 , 1 7 , 1 7 , 1 9 , 2 0 , 2 1 , 2 0 , 2 2 , 2 4 , 2 4 , 7 , 2 5 , 2 5 , 2 8 , 2 8 , 3 1
, 3 2 , 3 2 , 3 2 , 3 4 , 3 3 , 3 4 , 3 6 , 3 4 , 3 6 , 3 8 , 3 8 , 4 0 , 4 1 , 4 2 , 4 4 , 4 5 , 4 5 , 4 6 , 4 6 , 4 8 , 4 5 , 4 9 , 5 0 , 5 4 , 5 3 , 5 5 , 5 4
, 5 4 , 5 4 , 5 6 , 5 3 , 5 6 , 5 7 , 5 5 , 5 5 , 5 1 , 5 2 , 5 0 , 4 8 , 5 0 , 5 0 , 4 7 , 4 9 , 4 7 , 4 4 , 4 4 , 4 5 , 4 2 , 4 1 , 3 9 , 3 9 , 3 8 , 3 6 , 3 4
, 3 0 , 2 6 , 2 4 , 2 2 , 2 0 , 1 7 , 1 4 , 1 1 , 1 1 , 1 0 , 1 0 , 1 0 , 8 , 1 0 , 1 0 , 1 0 , 9 , 1 0 , 9 , 8 , 8 , 8 , 8 , 7 , 8 , 7 , 7 , 7 , 8 , 8 , 8 , 6 ,
5 , 5 , 6 , 4 , 5 , 4 , 6 , 6 , 4 , 5 , 6 , 5 , 6 , 5 , 5 , 3 , 4 , 5 , 4 , 4 , 4 , 3 , 3 , 3 , 3 , 4 , 4 , 2 , 1 , 1 , 0 , 2 , 2 , 1 , 0 , - 1 , - 1 , 1 , 0 , 0
, 0 , 0 , - 2 , - 2 , - 2 , - 2 , - 2 , - 1 , - 1 , - 4 , - 4 , - 4 , - 4 , - 3 , - 3 , - 4 , - 4 , - 4 , - 4 , - 5 , - 3 , - 4 , - 5 , - 5 , - 5 , - 6 , - 6 , -
5 , - 6 , - 7 , - 6 , - 6 , - 6 , - 6 , - 6 , - 6 , - 8 , - 7 , - 7 , - 9 , - 8 , - 8 , - 8 , - 8 , - 8 , - 9 , - 1 0 , - 1 1 , - 1 9 , - 1 4 , - 1 1 , - 9 , - 1
0 , - 1 1 , - 1 0 , - 1 0 , - 1 2 , - 1 3 , - 1 3 , - 1 2 , - 1 3 , - 1 2 , - 1 3 , - 1 3 , - 1 3 , - 1 3 , - 1 4 , - 1 4 , - 1 3 , - 1 3 , - 1 5 , - 1 5 , - 1 4
, - 1 6 , - 1 4 , - 1 4 , - 1 5 , - 1 5 , - 1 5 , - 1 6 , - 1 8 , - 1 7 , - 1 6 , - 1 7 , - 1 7 , - 1 8 , - 1 8 , - 2 0 , - 1 9 , - 1 8 , - 2 0 , - 1 9 , - 2 1 ,
- 2 1 , - 2 1 , - 2 1 , - 2 1 , - 2 1 , - 2 2 , - 2 2 , - 2 2 , - 2 2 , - 2 2 , - 2 3 , - 2 5 , - 2 4 , - 2 4 , - 2 5 , - 2 4 , - 2 3 , - 2 3 , - 2 2 , - 2 2 , -
2 3 , - 2 3 , - 2 2 , - 2 0 , - 1 9 , - 1 9 , - 1 5 , - 1 6 , - 1 3 , - 1 1 , - 1 0 , - 7 , - 4 , - 2 , - 1 , 2 , 9 , 1 3 , 1 9 , 2 6 , 3 0 , 3 2 , 3 5 , 3 8 , 3
9 , 4 4 , 4 5 , 4 2 , 3 9 , 3 6 , 3 4 , 3 4 , 3 2 , 3 3 , 3 3 , 3 5 , 3 2 , 3 2 , 3 5 , 3 7 , 3 7 , 3 8 , 3 7 , 3 8 , 3 9 , 3 9 , 3 9 , 4 0 , 4 0 , 4 1 , 4 5 , 4
6 ,46 , 50 , 51 , 53 , 55 , 53 , 60 , 63 , 64 , 69 , 74 , 79 , 80 , 87 , 91 , 96 , 103 , 113 , 118 , 126 , 135 , 144 , 151 , 161
, 168 ,178 ,188,195,200 ,209 ,221 ,233,241 ,250 ,258 ,276 ,298,319 ,348 ,364 ,394 ,403,446 ,471 ,
506,546 ,611 ,618 ,633 ,626 ,636 ,636 ,655 ,681 ,711 ,721 ,799 , - 3466,2840 ,5101,5024 ,0 ,0 ,0 ,0 , 0,0
, 0 ,
0 ,0
, 0 ,
0 ,0
, 0 , 0,0
, 0 , 0,0
, 0 ,
0 , 0
, 0 ,
0 , 0
, 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

// array of raw data data values
int [] myDataArray;

// array of data values extrcted at a progressive offset to simulate
// progress of the sine wave

int [] myTags; .
// array of index values corresponding to the not rejected data

long myTimestamp = 0;
// time stamp of the observation in milliseconds

short myNumberofvalues = 0;
// count of the number of selected values

public static void main(String args[])
Messageclient aMessageClient = new Messagedient();

// instantiate a Messagedient
short portNumber=0;
aMessagedient.setParamsC args, portNumber);
System.out.println(" here 1");

MessageTimer aMessaqeTimer = new MessageTimer(aMessageClient, 50);
// setup for a 50 ms timer and pass reference to aMessageClient

aMessagedient.initCompressorC args, portNumber);
aMessagedient.startO ;

// start aMessageClient

Page: 2

F il e : E : \ o r a c l eT est\em ployee8 . I \n e t8 \jd b c_ v a rch a r_ p rep a re d \M essa g eC li e n t . j ava 24/
04 /9 9 , 22 :27 :51

aMessageTimer.startC);
// start timer

refreshconfig refresh = new refreshconfigC aMessageClient, "HSM.config"
refresh. r u n O ;

// allow dynamic change of per input compression parameters
}

public void setParamsC string astring[], short aDeviceld)
// save parameters

{
for(int i =0; i < astring.length; i++)

argstring[i] = astring[i];
} }

public void initCompressorC string astring[], short aDeviceld)

System.out.println("entering initCompressor.");
myCompressArray = new CompressArrayO ;

// instantiate the Compressor object
myCompressArray.init();
System.out.println(" after creating compressArrayO") ;
myDeviceld = aDeviceld;
myRawDataArray = new int[myloArraySize];
myDataArray = new int[myioArraySize];
myvalues = new int[2*myioArraySize];
myTags = new int[2*myloArraySize] ;

// set up sin values 180/200 degree apart.
for(int i =0; i<200; i++)
 ̂ myRawDataArray[i] = (int)(FULLSCALE * Math.sin((2*3.14 / 200) * i

// system.out.println("myRawDataArray["+i+"]"+myRawDataArray[i]);
}
System.out.print!n("exitting initCompressor.");

V01 ̂ Systemiout.println(" entering MessageClient.startO") ;
}

Page: 3

Fi 1 e : E : \ o r a c l eTest\em pl oyee8 . I \ n e t 8 \ jdbc_varchar_prepared\M essageCl i e n t . j ava 24/
04 /99 , 22 :27 :51

public void runO {
S ys tem .o u t.p r in t ln C ” entering run");

whi1e (t ru e)

t r y {
Thread.sieepC 1000);

catchC interruptedException e)
System.out.print!n(""+e);

}
}

void triggerMessageO

sendDataC);

}

void loadThePropsO
myCompressArray.loadThePropsC);

/ / cause re loading o f congi parameters

}

public void sendDataC)

// call the Message server object and print results
myTimestamp = System.currentTimeMi11is() ;

// System.out.pri ntln("Messaged i ent.sendData time="+myTimestamp);
long tenPluscount = 0;
long zerocount = 0;
long tencount = 0;
long result = 0;
long total = 0;
long delta = 0;
long sleepPeriod = 0;
long loopcount = 10000000;
long cumCallTime = 0;
long cumDataVolume = 0;
String datastring =
int j=0;

// create a short lived disturbance by forcing a small spike
myRawDataArray[51 = -4001;
myRawDataArray[6j = 4001;
myRawDataArray[1051 = 400;
myRawDataArray[106] = -400;

for(int i=0; i<myloArraySize; i++)
// copy with an offset from raw data, wrap around at end *

* j= (myoffset + i) % myioArraySize;

Page: 4

Fi 1 e : e : \ o r a c l eT est\em p loyee8 . l \n e t8 \ jd b c _ v a rc h a r_ p re p a re d \M e ssa g e C li e n t . ja v a 24/
04 /9 9 , 22 :27 :51

myDataArray[i] = myRawDataArray[j] ;
myvalues[i]=0 ;
myTags[i]=0;

}
myoffSet++;

// incr offset
myNumberOfvalues =
myCompressArray.processDataC myDataArray, myvalues, myTags, myTimestamp
//System.out.printC

sendMessageC myvalues, myTags, myTimestamp, myNumberOfvalues, myDeviceld);

public void sendMessageC int[] values,
int[] tags,
long timestamp,
short numberofvalues,
short deviceld)

{
/ / i fC count%100 == 0) .
/ / S y s te m .o u t.p r in t!n ("\n.numberOfvalues=”+numberofvalues+" timestamp =
”+timestamp);

int [] localvalues = values;
int [] localTags = tags;
long localTimestamp = timestamp;
short localNumOfvalues = numberofvalues;
short loca lD ev ice ld = deviceld;

// copy the passed in values to local variables to release
// the remote variables

System. o u t . pri n t (" . ") ;
i fC aninsertStatem ent == null)
{

System.out.pri ntln("Connecting ") ;
// Load the Oracle JDBC driver
Cl ass.forName ("oraci e.jdbc.dri ver.oracieDri ver") ;

URL.
cut
syntax.

// Connect to the database
/ / y o u must put a database name after the @ sign in the connection
// You can use either the fully specified SQL*net syntax or a short
// syntax as <host>:<port>:<sid>. The example uses the short cut

Connection conn =
DriverManager.getConnection (connect_string);
conn.setAutoCommitC true);
System.out.pri ntln("got connecti on..... ");
aninsertStatement = conn.prepareStatement
("insert into vchartable values(?, "+

• _ i . 5 . 1 « . a • • • « • « • • • I T7 7
* » • > ■ » • :
7 7 7 7■ I • I • » • !

Page: 5

Fi 1 e : E : \ o r a c l eTest\em ployee8 . I \n e t8 \jd b c_ v arch ar_ p rep a red \M essag ed i e n t . iava 24/
04 /99 , 22:27:51

II Z 7 7 7 7 7 7 7 7 ? , " +It Z 7 ' 7 1 7 1 7 7 7 7 7 ? , " +«1 Z 7 1 7 1 7 7 1 7 7 ' 7 ' 7 1 ? , " +II Z Z z Z z, z z z z ? f " +• 1 Z Z z, z, z, z z z z ? , " +II Z Z z, z, Z z z z 7) ? , " +II Z Z Z z, z, z z z z ? , " +II Z z, z, z, z, z z z 7\ ? , ” +II Z z, z, z, z, z z z z ? , ” +II Z Z z, 7_ Z z z z 7\ ? , " +II Z z, z, Z z, z z ? f " +II Z z, z z, z, z z 7 ’ 7] ? , " +II Z z, z, z, z, z z z ? ; ? , " +II Z z, Z z, Z z z z 7 t ? , ” +II 7^ Z Z z, z z z 7] 7\ ? , " +II Z z, 7 Z z z z 7 j 7 ' ? , " +II 7^ z, ? , z, z z z z ? i ? , " +II Z z, z, z, z 7 z z 7 f ? , " +II Z 7_ z, z, z ? , ? ; 7 \ 7) ? , " +II Z z, z, z, z z z z ? , ” +II Z z, z, z, z z z z 7 1 ? , " +II Z Z Z z, z z z 7 1 7] ? , " +If Z z, z, z z z z z 7 1 ? , " +II Z z, z, z, z z z 7] 7] ? , " +II z z, z, z, z z z z 7 1 ? , ” +II z z, z, z, z z 7 ’ 7 ’ 7 \ ? , " +If 7 7 7 7 9 ■P •p 9 II '

/*
System.out.print!n("after prepare statement
for(int k=0; k<289; k++)

anlnsertStatement.setString(k+l, String.valueofC k));

anlnsertStatement.setStringCl, String.valueofC timestamp));
// write timestamp value into the first column

// skip 1st column so go from col 2 to numColumnslnTable
int j=0;
int nextDataindex = 0;
int datavaiue = 0;
boolean foundDataFlag = false;
for(int i =0; i < numColumnslnTable ; i++)
{

if(j < numberofvalues)
nextDataindex = tags[i];

// the values[j] nas the next non null data
i fC nextDataindex == i)

datavalue = values[j];
i++;foundDataFlag = true;

}
}

ifC foundDataFlag == true)
 ̂ anlnsertStatement.setStringCi+2, String.valueOf(datavalue));

// place the non null data at (i+2;th column because
// i goes fom 0..n and the first data value column is 2

Page: 6

Fi 1 e : e : \ o r a c l eT est\em ployee8 . I \n e t8 \ jd b c_ v a rch a r_ p rep a re d \M essa g eC li e n t . j ava 24 /
0 4 /9 9 , 22 :27 :51

>
else
{

aninsertStatement.setStringC i+2, N U L I__ M A R K E R) ;
// fill remaining columns with null marker

}
aninsertStatement.executeO ;

}
catchC java.sql.SQLException e)

System.out.printlnC "Exception :"+e);
catch(ClassNotFoundException e)

System.out.printlnC "Exception :"+e);
}
}

Page: 7

Fi 1 e : E : \ o r a c l eTest\em ployee8 . I \n e t8 \ jd b c _ v a rc h a r_ p re p a re d \re f re s h c o n f i g . j ava 9/0
3/99 , 11:33:30

package hsm.Client;

import java.io.*;
//import java.util.*;

class refreshconfig implements Runnable {
static final int refresh_check_period = 2000;

// interval in ms after which the file is checked fot config changes
Messagedient myParentRef;

// reference to the parent class which instantiated this
String myFileName =

// local copy of filename

public refreshConfig(Messaged ient aMessagedient, String fileName)
myParentRef = aMessagedient;

// save reference to the parent.
myFileName = fileName;

// save passed file name.

public void run()
File fileRef = new FileC myFileName);

// create file handle
long lastModifiedTime = 0;

// last modification time on file in ms from 1-1-1970
lastModifiedTime = fileRef.lastModified();

// save the last file mod time

// enter endless loop to look for file mod times
whileC true)
{

try{
Thread.sieep(refresh_check_period);

}catch(interruptedException e)
System.out.printlnC "Error "+e);

if(fileRef.lastModifiedO > lastModifiedTime)
myParentRef.loadThePropsO;

// force the reading of the configuration data
lastModifiedTime = fileRef .lastModifiedO ;

// save the last file mod time

}
}

Page: 1

Fi 1 e : e : \ o r a c l eT est\em ployee8 . I \n e t8 \ jd b c _ v a rc h a r_ p re p a re d \c o m p i1e _ ja v a . b a t
/9 9 , 22 :17 :30

rem *************************
rem Setup java home directoryrem ************************* <
SET 1AVA_HOME=m:\jdkl.2
rem *************************
rem Setup java bin path rem *************************
SET PATH=%3AVA_HOME%\bin;%PATH%
rem SET CLASSPATH=
rem *********************************
rem compile java code and place under
rem javaclasses directory rem ********************************

javac -d .\javaclasses *.java
pause

11/04

Page: 1

Fi 1 e : e : \ o r a c l eTest\em ployee8 . l\ne t8 \jdbc_varchar_p repared \M essageT im er. ja v a 20/0
4 /99 , 19 :59:20

// add a sleep equal to the the timer interval less the
// time taken by the last sendMessage call
long callTime =
System.currentTimeMi11is() - myStartOfSleepMiHi Seconds ;
ifC callTime > mylnterval)

// if call time exceeded 50 ms
{

myStartOfSleepMi11iseconds += callTime;
System.out.printC " call="+callTime);
continue;

}
long sleepTime =
mylnterval - Math.min(mylnterval, callTime);

try
Thread.sieep(sleepTime);

catch C interruptedException e)

mystartofSleepMi11iSeconds = System.currentTimeMi11is();
myMessaged ient. triggerMessageO ;

// trigger the sending of the message

}
}

// = FUNCTION NAME
// start
//// = DESCRIPTION
// This function starts the timer thread.

public void startO
// Overridden start method to start timer thread.
Thread thread = new ThreadC this);
thread.startQ ;

}

// Private Data Members
MessageClient myMessagedient; .

// space for reference to passed MessageClient object.
// will be used to invoke the methods in the passed
// MessageClient object ie myMessageClient.pollTimerExpired()

long mylnterval;
// space for passed timer interval

long myStartOfSleepMiHi Seconds = 0;
// the starting time of the current period

>

Page: 2

Fi 1 e : e : \ o r a c l eT est\em ployee8 . I \ne t8 \jdbc_varchar_p repared \M essageT i mer. ja v a 20/0
4 /9 9 , 19 :59 :20

/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /=

Copyright 1996 BHP i t All Rights Limited
SYSTEM :
SUBSYSTEM:
FILE NAME:
DESCRIPTION :
AUTHOR:
CREATED:
LIBRARY:

Plate Rolling Mill control System
GUI
MessageTi me r.j ava
Java implementation of BarTemperatureScanScreen
Saugato Mukerii
12 November 1998 17:45:00
hsm.Components

REVISION HISTORY:
SAuthor: macorv $
Sid: MessageTimer.java,v 1.1 1999/02/16 08:08:20 macorv Exp macorv $
$Log: MessageTimer.java,v S
Revision 1.1 1999/02/16 08:08:20 macorv
initial revision

// Package name
package nsm.client;
// Java imports
import java.awt.*;
import qava.awt.event.*;
import qava.beans.*;
import qava.text.*;
import java.util.*;
import hsm.Client.*;

// = CLASS NAME
// MessageTimer
/ /
// = DESCRIPTION
// This class provides a DateTime tick. The TimerBean can be placed at a
// suitable location on any screen page.
public class MessageTimer implements Runnable

// Public Methods
//---------------------------

public MessageTi mer (Messaged ient aMessagedient, long aPeriod)
// Constructor

{
myMessagedient = aMessagedient;

// save reference to caller,
myinterval = aPeriod;

// save timer interval
}

/ /
// = FUNCTION NAME
// run
//// = DESCRIPTION
// This is the main loop of the timer thread.

public void run()
// overridden run method executed by timer thread.
while C true)
{

Page: 1

Fi 1 e : e :\oracleTest\employee8.I\net8\jdbc_varchar_prepared\run_cart.bat
1 8 : 4 2 : 3 6

rem *************************
rem Setup java home directory rem *************************
SET JAVA_HOME=m:\jdkl.2
rem *******************
rem Setup java bin path rem *******************
PATH=m:\jdkl.2\bi n;%PATH%
set CLASSPATH=m:\orant\3DBC\li b\classeslll.zip;.
java -cp .\javaclasses;%CLASSPATH%;. hsm.client.Messaged ient
pause

1 2 / 0 4 / 9 9 ,

Page: 1

6.5.1 Application code to test auto generated Relational
Table accessor functions.

/»==
* = FUNCTION NAME
* testSingleObject
*
* = DESCRIPTION
* /

/»«
* Tests ROMIS access functions that work on single objects.
* /

* /
Dublic void testSingleObject()
{

Trace . startBlock (Trace . LEVEL3, "TestClassTestHarness : : testSmgleObj ect") ;
boolean error = false;
TestClass testClass = new TestClass();
testClass .setTestClassData (TEST_CLASS_DATA_1) ;
startScenario("Test ROMIS access functions for single objects");
startCase("Insert / Select");
{ TestClass tel = new TestClass();

TestClass tc2 = new TestClass();
tel.setTestClassData(TEST_CLASS_DATA_1);
tc2.setlntValue(tel.getlntValue());
tc2.setDateValue(tel.getDateValue());
try
{ tel.insert();

tc2.select();
}catch (DataAlreadyExistsException daee)
{ error = true;

Trace.error("Insertion failed, record already exists", daee);
}catch (IllegalDataAccessException idae)
{ error = true;Trace.error("Can not access data, access denied", idae);
}catch (InvalidDataException ide)
{ error = true;Trace.error("Attempt to insert / retrieve invalid data", ide);
catch (DataNotFoundException dnfe)
{ error - true;Trace.error("Can not find record to retreive", dnfe);
> . , , catch (DataRetrievalException dre)
{ error * true;Trace.error("Unable to retrieve data , dre).

Page: 1

File: D :\m asters \R C 1\Section 6.0 Appendix\6.4 Autogenerated co de\ExtractFromAp pi ¡cation'
Code.txt 8 /18 /99 , 9 :42:37P M

}
catch (DataStorageException dse)
{ error = true;

Trace.error("Unable to insert data", dse);
catch (DataException de)
{

Trace.error("Can not perform insert / select", de); error = true;
}
if (error == false)
{

testEquality(tel.getTestClassData(), tc2.getTestClassData());
}
error - false;
startCase("Update / Select");
{ TestClass tel = new TestClass();

TestClass tc2 = new TestClass();
// Change every attribute of tel except the promary key values.
tc1.setTestClassData(TEST_CLASS_DATA_2);
tel.setlntValue(testClass.getlntValue());
tc1.setDateValue (testClass.getDateValue());
tc2.setlntValue(tel.getlntValue());
tc2.setDateValue(tel.getDateValue());
// Perform the update and select
try
{ tel.update();

tc2.select();
}catch (IllegalDataAccessException idae)
{ error = true;

Trace.error("Can not access data, access denied", idae);
} . catch (InvalidDataException ide)
{ error - true;Trace.error("Attempt to update / retrieve invalid data", ide);
}catch (DataNotFoundException dnfe)
{ error - true;Trace.error("Can not find record to retreive", dnfe);
}catch (DataStorageException dse)
{ error - true;

T r a c e .error("Unable to update data", dse);
catch (DataRetrievalException dre)
{

Page: 2

File: D :\m asters \R C 1\Section 6.0 A p p e n d ix ^ Autogenerated code\ExtractFromAppficationi
Code.txt 8 /18 /99 . 9 :42:37P M

error = true;
Trace.error("Unable to retrieve data", dre);

}
catch (DataException de)
{ error = true;

Trace.error("Unkown data exception", de);

if (error = = false)
{

testEquality(tel.getTestClassData(), tc2.getTestClassData());
}
startCase("Remove / Select");
{ TestClass tel = new TestClass();

TestClass tc2 = new TestClass();
tc1.setTestClassData(testClass.getTestClassData());
tc2.setTestClassData(testClass.getTestClassData());
try
{ tc1.remove();
}catch (IllegalDataAccessException idae)
{ Trace.error("Can not perform remove", idae);
}catch (DataNotFoundException dnfe)
{ Trace.error("Can not find row to delete", dnfe);
}catch (DataException de)
{ Trace.error("Unexpected data exception occurred".
}
boolean dataNotFoundFlag = false;
try
{ tc2.select();
}catch (IllegalDataAccessException idae)
{ Trace.error("Can not perform remove", idae);
}catch (DataNotFoundException dnfe)

de) ;

{ dataNotFoundFlag - true;
Trace.debug(Trace.LEVEL2, "DataNotFoundException Occurred");

}catch (DataRetrievalException dre)
 ̂ Trace.error("Can not retrieve data", dre);

}catch (DataException de)

Page: 3

{
Trace.error(Unexpected data exception occurred", de);

check (dataNotFoundFlag == true, "Remove");

Trace.endBlock(Trace.LEVEL3, "TestClassTestHarness: :testSingleObject");

File. D .\m asters \R C 1\S ection 6.0 Appendix\6.4 Autogenerated code\ExtractFromApplication'
Code.txt 8 /1 8 /9 9 , 9 :42:37P M

Page: 4

6.5.2 primary data class

File: D :\m asters\R C 1\Section 6.0 Appendix\6.4 Autogenerated code\TestC lass.java 9/28/99
I, 9:46:26A M

* SYSTEM: Hot Strip Mill Data Logger
* SUBSYSTEM: data_objects
* FILE NAME: TestClass.java
* DESCRIPTION:
* AUTHOR: $Author$
* CREATED: 9/28/99 9:44:09 AM*
* REVISION HISTORY:
* $Author: $
* $Id: $*
* $Log: $

»/

package bhpit.hsmics.database.data_objects;
import java.text.DateFormat;
import j ava.util.Date;

* = CLASS NAME
* TestClass
*

* - DESCRIPTION
*/

/**
* ^author $Author$
* (»version $Revision$
*/

/*
* - RAPID TABLE INSTANCES*
* Format - RAPID--Def Ree Name--Inst Ree Name--No. Instances--Piece Dep (Y/N)*
* RAPID--TestC1assDef =-TestClass = = 0»=Y

* - ROMIS LOGGING
*
* Format - R0MIS_L0GGING=-(Y/N)
* ROMIS_LOGGING— 'Y
*

* « ROMIS INDEXES*
* Format - DATABASE_INDEX--IndexName(col 1, col2, etc)*
* DATABASE_INDEX»-TestClass_I1(intValue, dateValue)
* DATABASE_INDEX--Teste1ass_12(dateVa1ue)
* /

*/
public class TestClass
{

Page: 1

File: D :\m asters\R C 1\Section 6.0 A ppendix\6.4 Autogenerated code\TestC lass.java 9/28/9S
I, 9:46:26A M

public static final int TEST_BIT_1 = 1;
//STARTOFDATAMEMBERSECTION /**

* int value*
* CONSTRAINTS: <intValuePK PRIMARY KEY>
*/
public int intValue = -1;
public boolean booleanValue;
/**
» float value
»/

public float floatValue = -2.45f;
/»*
* short value*
* CONSTRAINTS: <shortValueNN NOT NULL>, <shortValueU UNIQUE> »/

public short shortValue = 1234;
/»*
* double value
* /

public double doubleValue;
/**
* Date value.
*/

public Date dateValue;
/**
* String value
*/

public char stringValue[] ■ new char[10];
/**
* stringvalue array 1 dimension.*
*/

public char stringValueArraylDim[][] - new char[4][10];
/*»
* stringvalue array 2 dimension.
*

*/
public char stringValueArray2Dim[][][] - new char[4][5][10];
/**
* long value array 1 dimension.*
*/

public int intValueArraylDimf] - new int[5];
/**
» long value array 2 dim

Page: 2

File: D :\m asters\R C 1\Section 6.0 Appendix\6.4 Autogenerated code\TestC lass.java 9/28/99
I, 9:46:26A M

* /
public int intValueArray2Dim[] [] = new int[4][5];
/**
* long value array 3 dim*
* /

public int intValueArray3Dim[][][] = new int[4][5][6]; -
/**
* float value array 1 dim.*
* /

public float f1oatVa1ueArrayIDim[] - new float[6];.
/**
* Float value array 2 dim */
public float floatValueArray2Dim[][] = new float[4][5];
/**
* Float value array 3 dim */

public float floatValueArray3Dim[][][] = new float[4][5][6];
/**
* short value array 1 dim.
*

*/
public short shortVa1ueArrayIDim[] =■ new short[7];
/**
* Short value array 2 dim
*/

public short shortVa1ueArray2Dim[][] = new short[4][5];
/**
* Short value array 3 dim
»/

public short shortVa1ueArray3Dim[][][] - new short[4][5][6];
/**
» double value array 1 dim* ,

public double doubleValueArrayIDim[] - new double[8];
/**
* Double value array 2 dim
* /

public double doubleValueArray2Dim[][] - new double[4][5];
/**
* Double value array 3 dim
* /

public double doubleValueArray3Dim[][][] - new double[4][5][6];
/»*

Page: 3

File: D :\m asters \R C 1\Section 6.0 A ppendix\6.4 Autogenerated code\TestC lass.java 9/28/99
I, 9:46:26A M

* boolean value array 1 dim.
* /

public boolean booleanValueArraylDim[] = new boolean[4];
/**
* boolean value array 2 dim.
*/

public boolean booleanValueArray2Dim[][] = new boolean[4][5];
/**
* boolean value array 3 dim.
* /

public boolean booleanValueArray3Dim[][][] = new boolean[4][5][6];
/»*
* Date value array 1 dim
* /

public Date dateValueArraylDim[] = new Date[4];
/»»
* Date value array 2 dim
* /

public Date dateValueArray2Dim[][] = new Date[4][5];
/*»
* Date value array 3 dim
*/

public Date dateValueArray3Dim[][][] = new Date[4][5][6];
//ENDOFDATAMEMBERSECTI ON
}

Page: 4

6.5.3 Auto generated database access helper

File: D :\m asters \R C 1\Section 6.0 Appendix\6.4 Autogenerated code\TESTCLASSROMISACCI
ESS JAVA 8 /1 8 /9 9 , 9 :50:09P M

* SYSTEM: Hot Strip Mill Data Logger
* SUBSYSTEM: database
* FILE NAME: TestClassROMISAccess.java
* DESCRIPTION: Interface functions that call the Oracle API and allow JDBC
* access to data stored in the database.
* AUTHOR: Saugato Mukerji
* CREATED: Wed Sep 1 16:19:53 1999
* LIBRARY: test.hsmics.database.data_objects*
* REVISION HISTORY:
*
*
*

* /
package test.hsmics.database.data_objects;
// Java imports
import java.math.BigDecimal;
import java.sql.ResultSet;
import java.sql.SQLException ;
import java.sql.Statement;
import java.util.Vector;
// Oracle imports
import oracle.jdbc.driver.*;
import oracle.jdbc.oracore.Util ;
import oracle.sql.*;
// Common imports
import test.common.exceptions.DataException;
import test.common .exceptions.DataStorageException;
import test.common.trace.Trace;
import test.common.util.ConnectionManager;
// Proj ect imports
import test .hsmi cs.database.romi s .ROMISHe1per;

* - CLASS NAME
* TestClassROMISAccess
*

* - DESCRIPTION
»/

/**
* This class provides access to Oracle via the jdbc thin driver.
*/
* /
public class TestClassROMISAccess
{ //------------------------

// Public static functions ---------------------------

Page: 1

File: D :\m asters\R C 1\Section 6.0 Appendix\6.4 Autogenerated code\TESTCL4SSROMISACCI
ESS.JAVA 8 /18 /99 , 9 :50:09P M

* = FUNCTION NAME ~
* select*
* = DESCRIPTION
* /

/**
* Selects an array of database objects from Oracle.
*/

*/
public static TestClassData[] select(String selectString)

throws SQLException, DataException
Trace.startBlock(Trace.LEVEL5, "TestClassROMISAccess::select");
ResultSet resultSet;
ConnectionManager connectionManager = ConnectionManager.getInstance();
Statement statement = ConnectionManager.obtamStatement();
try
{

resultSet = statement.executeQuery(selectString);
}catch (SQLException sqle)
{

connectionManager.releaseStatement(statement); throw sqle;
}int size = 0;
TestClassData data;
TestClassData[] dataArray;
Vector vector = new Vector(256, 256);
while (resultSet.next())
{ data = new TestClassData();

data.intValue = resultSet.getInt("INT_VALUE");
data.booleanValue * ROMISHe1per.getBoolean(resultSet, "B00LEAN_VALUE");
data.floatValue - resultSet.getFIoat("FLOAT_VALUE");
data.shortValue - resultSet.getShort("SHORT_VALUE");
data.doubleValue - resultSet.getDouble("DOUBLE_VALUE");
data.dateValue » ROMISHelper.getDate(resultSet, "DATE_VALUE");
data.stringValue - ROMISHelper.getString(resultSet, "STRING_VALUE", 10);
data . stringVa 1 ueArray IDim - ROMISHe 1 per. getStringArray IDim (resu 1 tSet,

"STRING_VALUE_ARRAY 1_DIM" , 4) ;
data .stri ngVal ueArray 2D im - ROMISHelper .ge tSt ri ngArray 2D im(result Set,

"STRING_VALUE_ARRAY2_DIM", 4, 5);
data . intVa 1 ueArray ID im =- ROMISHelper .getlntArray IDim (resultSet,

" INT_VALUE_ARRAY1_DIM", 5);data . intVa lueArray2Dim - ROMISHelper. get I ntArray2Dim(resultSet,
"INT_VALUE_ARRAY2_DIM", 4, 5);data . intValueArray3Dim - ROMISHelper. getlntArray 3D im(resultSet,
"INT_VALUE_ARRAY3_DIM", 4, 5, 6);data . floatVal ueArray IDim - ROMISHelper .getFloatArray IDim (resultSet,
"FL0AT_VALUE_ARRAY1_DIM", 6);data . f1oatVa1ueArray2Dim - ROMISHelper.getFloatArray2Dim(resultSet,

Page: 2

File: D :\m asters\R C 1\Section 6.0 Appendix\6.4 Autogenerated code\TESTCU\SSROM ISACCI
ESS.JAVA 8 /18 /99 , 9 :50:09P M

"FL0AT_VALUE_ARRAY2_DIM", 4, 5);
data.floatValueArray3Dim = ROMISHelper.getFloatArray3Dim (resultSet, "FLOAT_VALUE_ARRAY3_DIM", 4, 5, 6);
data.shortVa1ueArray IDim = ROMISHelper.getShortArrayIDim(resultSet,"SHORT_VALUE_ARRAY1_DIM", 7);
data.shortVa1ueArray 2D im = ROMISHelper.getShortArray2Dim(resultSet, "SH0RT_VALUE_ARRAY2_DIM", 4, 5);
data.shortVa1ueArray3Dim = ROMISHelper.getShortArray3Dim(resultSet,1 'SHORT_VALUE_ARRAY3_DIM", 4, 5, 6);
data.doubleValueArrayIDim = ROMISHelper.getDoubleArraylDim(resultSet,

"DOUBLE_VALUE_ARRAY1_DIM", 8);
data.doub1eVa1ueArray2D im = ROMISHelper.getDoubleArray2Dim(resultSet,

"D0UBLE_VALUE_ARRAY2_DIM", 4, 5);
data.doubleValueArray3Dim = ROMISHelper.getDoubleArray3Dim(resultSet, "D0UBLE_VALUE_ARRAY3_DIM", 4, 5, 6);
data.dateValueArrayIDim = ROMISHelper.getDateArrayIDim(resultSet,

"DATE_VALUE_ARRAY1_DIM", 4);
data.dateValueArray2Dim =» ROMISHelper.getDateArray2Dim(resultSet,"DATE_VALUE_ARRAY2_DIM", 4, 5);
data.dateValueArray3Dim = ROMISHelper.getDateArray3Dim(resultSet,

"DATE_VALUE_ARRAY3_DIM", 4, 5, 6);

vector.insertElementAt(data, size);
size++;

}connectionManager.releaseStatement(statement);
dataArray =■ new TestClassData [size];
vector.copylnto(dataArray);
Trace.endBlock(Trace.LEVEL5, "TestClassROMISAccess::select");
return dataArray;

}

* = FUNCTION NAME
» select
* - DESCRIPTION
»/

/**
* Inserts an array of database objects into Oracle.
// =
public static void insert(TestClassData[] dataArray)

throws SQLException, DataException
 ̂ Trace.startBlock(Trace.LEVEL5, "TestClassROMISAccess::insert");

int rows - 0;ConnectionManager connectionManager - ConnectionManager.getlnstance();
Statement statement - connectionManager.obtainStatement();
StringBuffer sbuf;
String queryString;
for (int i - 0; i < dataArray.length; i++)
 ̂ sbuf - new StringBuffer(10000);

Page: 3

File: D :\m asters\R C 1\Section 6.0 Appendix\6.4 Autogenerated code\TESTCLASSROMISACCI
ESS.JAVA 8 /18 /99 , 9 :50:09P M

sbu f . append (" INSERT INTO TEST_CLASS (");
sbu f.append("INT_VALUE");
sbuf.append(", ");
sbuf.append("BOOLEANJ/ALUE"); sbuf.append(", ");
sbuf.append("FLOAT_VALUE");
sbuf.append(", ");
sbuf .append("SHORT_VALUE");
sbuf.append(", ");
sbuf.append("DOUBLE_VALUE");
sbuf.append(", ");
sbuf.append("DATE_VALUE");
sbuf.append(", ");
sbuf.append("STRING_VALUE");
sbuf.append(", ");
sbuf .append ("STRING_VALUE_ARRAY 1_DIM") ;
sbuf.append(", ");
sbuf .append (''STRING_VALUE_ARRAY2_DIM") ;
sbuf.append(", ");
sbuf.append("INT_VALUE_ARRAY1_DIM");
sbuf.append(", ");
sbuf .append ("INT_VALUE_ARRAY2_DIM11);
sbuf.append(", ");
sbuf . append (" INT_VALUE_ARRAY3_DIM");
sbuf.append(", ");
sbuf.append("FLOAT_VALUE_ARRAY1_D IM");
sbuf.append (" , ");
sbuf.append("FL0AT_VALUE_ARRAY2_DIM");
sbuf.append (" , ");
sbuf . append ("FL0AT_VALUE_ARRAY3_DIM");
sbuf.append(", ");
sbuf . append ("SHORT_VALUE_ARRAY 1_DIM") ;
sbuf.append(", ");
sbuf.append("SH0RT_VALUE_ARRAY2_DIM");
sbuf.append (" „ ");
sbuf . append ("SH0RT_VALUE_ARRAY3_DIM");
sbuf.append (", ");
sbuf .append ("DOUBLE_VALUE_ARRAY 1_DIM");
sbuf.append(", ");
sbuf.append("D0UBLE_VALUE_ARRAY2_DIM");
sbuf.append (", ");
sbuf .append ("D0UBLE_VALUE_ARRAY3_DIM");
sbuf.append(", ");
sbuf .append ("DATE_VALUE_ARRAY 1_DIM");
sbuf.append(", ");
sbuf .append ("DATE_VAHJE_ARRAY2_DIM");
sbuf.append(", ");
sbuf .append ("DATE_VALUE_ARRAY3_DIM") ;

sbuf.append(") VALUES (");
sbuf.append(dataArray[i].intValue);
sbuf .append(", ");

sbuf .append (ROMISHelper .convertBooleanToSQLStrmg (dataArray [1] .booleanValue)) ;
sbuf.append(", ");sbuf.append(dataArray[i].floatValue);

Page: 4

File: D :\m asters \R C 1\S ection 6.0 Appendix\6.4 Autogenerated code\TESTCLASSROMISACCI
ESS.JAVA 8 /1 8 /9 9 , 9 :50 :09P M

sbuf.append(", ");
sbuf.append(dataArray[i].shortValue);
sbuf.append (" , ") ;
sbuf.append(dataArray[i].doubleValue);
sbuf.append (", ") ;
sbuf .append (ROMISHelper .convertDateToSQLString (dataArray [i] .dateValue)) ;
sbuf.append(", ");

sbuf .append (ROMISHelper . convertStringToSQLStrmg (dataArray [i] .stringValue, 10)) ;
sbuf.append(", ");

sbuf .append (ROMISHelper .convertStringlDToSQLString (dataArray [i] .stringValueArraylDim,
10, 4));

sbuf.append (",");
sbuf .append (ROMISHelper.convertString2DToSQLString (dataArray [i] .stringValueArray2Dim,
10, 4, 5));

sbuf.append(", ");
sbuf .append (ROMISHelper .convertInt lDToSQLString (dataArray [i] . intValueArraylDim, 5));

sbuf.append(", ");
sbuf .append (ROMISHelper .convertInt2DToSQLString (dataArray [i] . intValueArray2Dim, 4,
5)); sbuf.append (" , ");
sbuf .append (ROMISHelper .convertInt3DToSQLString (dataArray [i] . intValueArray3Dim, 4, 5,
6)); sbuf.append (" , ");
sbuf .append (ROMISHelper .convertFloat lDToSQLString (dataArray [i] . f loatValueArraylDim,
6)); sbuf.append (", ");
sbuf .append (ROMISHelper .convertFloat2DToSQLString (dataArray [i] . floatValueArray2D im, 4,
5)); sbuf.append(", ");
sbuf .append (ROMISHelper .convertFloat3DToSQLString (dataArray [i] . f loatValueArray3Dim, 4,
5, 6));

sbuf.append(", ");
sbu f . append (ROMI SHe 1 per. convert Short lDToSQLString (dataArray [i] . shortVa 1 ueArray ID im,
7)) ; sbuf.append(", ");
sbuf .append (ROMISHelper. convertShort2DToSQLString (dataArray [ij.shortValueArray2Dim, 4,
5)): sbuf.append(", ");
sbuf . append (ROMISHelper. convert Short 3DToSQLSt ring (dataArray [i] . shortVa lueArray3Dira, 4,
5, 6)); sbuf.append(", ");
sbuf .append (ROMISHelper. convert Double lDToSQLString (dataArray [i] .doubleValueArraylDim,
8)); 1IXsbuf.append(",);
sbuf .append (ROMISHelper.convertDouble2DToSQLStnng (dataArray [i] .doubleValueArray2Dim.

Page: 5

m

File: D :\m asters\R C 1\Section 6.0 Appendix\6.4 Autogenerated code\TESTCLASSROMISACCI
SS.JAVA 8 /1 8 /9 9 , 9 :50:09P M

5));
sbuf .append(", ");

sbuf .append (ROMISHelper.convertDouble3DToSQLString (dataArray [1] .doubleValueArray3Dim,4, 5, 6)) ;
sbuf.append (", ");

sbuf .append (ROMISHelper.convertDate lDToSQLString (dataArray [i] .dateValueArraylDim, 4)) sbuf .append(", ");
sbuf .append (ROMISHelper .convertDate2DToSQLString (dataArray [1] .dateValueArray2Dim, 4,5)),

sbuf.append(", ");
sbuf .append (ROMISHelper.convertDate3DToSQLString (dataArray [i] .dateValueArray3Dira, 4,5, 6)) ;

sbuf.append(")");
queryString = new String(sbuf);
Trace.debug(Trace.LEVEL6, "The query string is: ", queryString);
try
{

rows += statement.executeUpdate(queryString);
}catch (SQLException sqle)
{ connectionManager.releaseStatement(statement);

throw sqle;
}

}connectionManager. releaseStatement(statement);
if (rows != dataArray.length)
{ throw new DataStorageException("Not all objects were successfully

inserted");
}
Trace.endBlock(Trace.LEVEL5, "TestClassROMISAccess::insert");

}

* - FUNCTION NAME
* update
* - DESCRIPTION
* /

/**
* Updates an array of database objects
* /

/*-■

in Oracle.

* /
public static void update(TestClassData[] dataArray)

throws SQLException, DataException
 ̂ Trace .startBlock (Trace .LEVEL6, "TestClassROMISAccess : :update");

Page: 6

File: D :\m asters \R C 1\S ection 6.0 Appendix\6.4 Autogenerated code\TESTCLASSROMISACCI
ESS.JAVA 8 /1 8 /9 9 . 9 :50:09P M

int rows =0;
ConnectionManager ConnectionManager = ConnectionManager.getlnstance();
Statement statement = ConnectionManager.obtainStatement();StringBuffer sbuf;
String queryString;
for (int i = 0; i < dataArray.length; i++)

sbuf = new StrmgBuffer(10000);
sbuf.append("UPDATE TEST_CLASS SET ");
sbuf.append("INT_VALUE = ");
sbuf.append(dataArray[i].intValue);
sbuf.append (" , ") ;
sbuf.append("B00LEAN_VALUE = ");

sbuf.append(ROMISHelper.convertBooleanToSQLString(dataArray[i].booleanValue)); sbuf.append (" , ");
sbuf.append("FLOAT_VALUE = ");
sbuf.append(dataArray[i].floatValue);
sbuf.append(", ");
sbuf.append("SHORT_VALUE = ");
sbuf.append(dataArray[i].shortVa1ue);
sbuf.append (" , ");
sbuf.append("DOUBLE_VALUE = ");
sbuf.append(dataArray[i].doubleValue);
sbuf.append(", ");
sbuf.append("DATE_VALUE = ");
sbuf.append(ROMISHelper.convertDateToSQLString(dataArray[i].dateValue));
sbuf.append(" , ");
sbuf.append("STRING_VALUE = ");

sbuf.append(ROMISHelper.convertStringToSQLString(dataArray[i].stringValue, 10));
sbuf .append (", ");
sbuf.append("STRING_VALUE_ARRAY1_DIM - ");

sbuf .append (ROMISHelper.convertStringlDToSQLString (dataArray [i] .stringValueArrayIDim,
10, 4));

sbuf.append(", ");
sbuf.append("STRING_VALUE_ARRAY2_DIM -

sbuf .append (ROMISHelper .convertString2DToSQLString (dataArray [i] .stringValueArray2Dim,
10, 4, 5));

sbuf .append(", ");
sbuf.append("INT_VALUE_ARRAY1_DIM - ");

sbuf .append (ROMISHelper .convertInt lDToSQLString (dataArray [i] . intValueArraylDim, 5));
sbuf.append(", ");
sbuf.append("INT_VALUE_ARRAY2_DIM - ");

sbu f . append (ROMI SHe 1 per. convert Int 2DToSQLStn ng (dataArray [i] . i n tVa 1 ueArray2D im, 4,
5)) ; sbuf.append (", ");

sbuf.append("INT_VALUE_ARRAY3_DIM - ");
sbuf .append (ROMI SHe lper.convert Int SDToSQLStnng (dataArray [l] . intVal ueArray 3D im, 4, 5,
6)); sbuf.append (", ");

Page: 7

File: D :\m asters \R C 1\Section 6.0 Appendix\6.4 Autogenerated code\TESTCLASSROMISACCI
ESS.JAVA 8 /18 /99 . 9 :50:09P M

sbuf.append("FL0AT_VALUE_ARRAY1_DIM = ");
sbuf .append (ROMISHelper .convertFloatlDToSQLString (dataArray[1] . f loatValueArraylDim,
6));

sbuf.append(", ");
sbuf.append("FL0AT_VALUE_ARRAY2_DIM = ");

sbuf . append (ROMISHe 1 per. convertF1 oa12DToSQLStri ng (dataArray [1] . f 1 oatVa 1 ueArray2Dlm
5)) ,

sbuf.append(", ");
sbuf.append("FL0AT_VALUE_ARRAY3_DIM = ");

4,

sbuf .append (ROMISHelper. convertFloat 3DToSQLString (dataArray [i] . f 1 oatVa lueArray 3D im 5, 6)) ;
sbuf.append(", ");
sbuf.append("SHO RT_VALUE_ARRAY1_DIM = ");

4,

sbuf . append (ROMI SHe 1 per. convertShort lDToSQLString (dataArray [i] . short Va 1 ueArray ID im,
7));

sbuf.append(", ");
sbuf.append("SHORT_VALUE_ARRAY2_DIM = ");

sbuf .append (ROMISHelper .convertShort2DToSQLString (dataArray [i] .shortValueArray2Dim, 4,
sbuf.append(", ");
sbuf.append("SHORT_VALUE_ARRAY3_DIM = ");

sbuf .append (ROMISHelper .convertShort3DToSQLString (dataArray[i] .shortVa lueArray 3D im, 4,
5, 6));

sbuf .append(", ");
sbuf.append("DOUBLE_VALUE_ARRAY1_DIM = ");

sbuf .append (ROMISHelper. convertDouble lDToSQLString (dataArray [i] . doub leVa lueArray ID im,
8)); sbuf .append(", ");

sbuf.append("D0UBLE_VALUE_ARRAY2_DIM = ");
sbuf .append (ROMISHelper .convert Double 2DToSQLString (dataArray [i] . doub leVa lueArray 2D im,
4. 5));

sbuf.append(", ");
sbuf.append("D0UBLE_VALUE_ARRAY3_DIM = ");

sbuf .append (R0MISHelper.convertDouble3DToSQLString (dataArray [i] . doub leVa lueArray 3D im,
4, 5, 6));

sbuf.append(", ");
sbuf.append("DATE_VALUE_ARRAY1_DIM - ");

sbuf .append (ROMISHelper .convertDate lDToSQLString (dataArray [i] .dateVa lueArray ID im, 4));
sbuf.append(", ");
sbuf.append("DATE_VALUE_ARRAY2_DIM - ");

sbuf .append (ROMISHelper .convertDate 2DToSQLString (dataArray [i] .dateVa lueArray 2D im, 4,
5)); sbuf.append(", ");sbuf.append("DATE_VALUE_ARRAY3_DIM - ");
sbuf .append (ROMISHelper .convertDate3DToSQLString (dataArray [i] .dateValueArray3Dim, 4,
5, 6));

Page: 8

File: D :\m asters \R C 1\S ection 6.0 Appendix\6.4 Autogenerated code\TESTCLASSROMISACCI
ESS.JAVA 8 /1 8 /9 9 , 9 :50:09P M

sbuf. append (" where INT_VALUE = " + dataArray [1] . intValue + " and
DATE_VALUE = " + ROMISHelper.convertDateToSQLString (dataArray[1] .dateValue));

queryString = sbuf.toString();
Trace.debug(Trace.LEVEL6, "The query string is: ", queryString);
try
{

rows += statement.executeUpdate(queryString);
}catch (SQLException sqle)
{ connectionManager.releaseStatement(statement);

throw sqle;
}

}connectionManager.releaseStatement(statement);
if (rows != dataArray.length)
{ throw new DataStorageException("Not all objects were successfully

updated");
}
Trace.endBlock(Trace.LEVEL6, "TestClassROMISAccess::update");

}

* * FUNCTION NAME
* remove*
* - DESCRIPTION
//•»
* Removes a number of database objects from Oracle.
»/

*/
public static int remove(String sqlString)

throws SQLException
 ̂ Trace .startB lock (Trace .LEVEL 6, "TestClassROMISAccess: :remove");

int rows = 0;ConnectionManager connectionManager - ConnectionManager.getlnstance();
Statement statement - connectionManager.obtainStatement();
try

rows - statement .executeUpdate(sqlString);
}catch (SQLException sqle)

connectionManager.releaseStatement(statement);
throw sqle;

connectionManager.releaseStatement(statement);
Trace. endBlock (Trace. LEVEL 6, "TestClassROMISAccess: : remove") ;
return rows;

Page: 9

File: D :\m asters\R C 1\Section 6.0 A ppendix\6.4 Autogenerated code\TESTCLASSROMISACCI
ESS.JAVA 8 /18 /99 , 9 :50:09PM

}
}

Page: 10

6.5.4 Auto generated table creation script that maps the
java class data members.

File: D :\m asters\R C 1\Section 6.0 A ppendix\6.4 Autogenerated code\createTestC lass.sqi 8/
18/99, 10 :54 :22P M

-- SYSTEM: Hot Strip Mill Data Logger
— SUBSYSTEM: ROMIS
■“ FILE NAME: createTestClass.sql
-- DESCRIPTION: Creates table and types associated with TestClass obiect— AUTHOR: Saugato Mukerji
— CREATED: Mon Oct 11 13:02:01 1999
— USAGE:
— INPUTS:
— OUTPUTS:
— NOTES:
— REVISION HISTORY:
— $Author$
— Id
— Log

PROMPT
PROMPT
PROMPT
CREATE
/
CREATE
/
CREATE
/
CREATE
/
CREATE
/
CREATE
/
CREATE
/
CREATE
/
CREATE
/
CREATE
/
CREATE
/

* executing createTestClass.sql script

TYPE STRING.10_ARR_4 AS VARRAY(4) OF VARCHAR2(10);
TYPE STRING.10_ARR_20 AS VARRAY(20) OF VARCHAR2(10);
TYPE NUMBER.ARR.5 AS VARRAY(5) OF NUMBER;
TYPE NUMBER.ARR.20 AS VARRAY(20) OF NUMBER;
TYPE NUMBER.ARR.120 AS VARRAY(120) OF NUMBER;
TYPE NUMBER.ARR.6 AS VARRAY(6) OF NUMBER;
TYPE NUMBER.ARR.7 AS VARRAY(7) OF NUMBER;
TYPE NUMBER.ARR.8 AS VARRAY(8) OF NUMBER;
TYPE DATE.ARR.4 AS VARRAY(4) OF NUMBER;
TYPE DATE.ARR.20 AS VARRAY(20) OF NUMBER;
TYPE DATE.ARR.120 AS VARRAY(120) OF NUMBER;

CREATE TYPE TEST.CLASS.T AS OBJECT
(INT.VALUE NUMBER,

BOOL EAN.VALUE VARCHAR2(5),
FLOAT.VALUE NUMBER,
SHORT.VALUE NUMBER,
DOUBLE.VALUE NUMBER,
DATE.VALUE NUMBER,
STRING.VALUE VARCHAR2(10),

Page: 1

File: D :\m asters \R C 1\S ection 6.0 Appendix\6.4 Autogenerated code\createTestC lass.sql 8 /
18 /99 , 10 :54 :22P M

STR I NG_VALUE_ARRAY 1_DIM STRING. 10_ARR_4,
STR I NG_VALUE_ARRÀY 2.D IM STRING. 10.ARR.2 0,
INT.VALUE.ARRAYl.DIM NUMBER.ARR.5,
INT.VALUE_ARRAY2.DIM NUMB E R.ARR.20,
INT.VALUE.ARRAY3.DIM NUMBER.ARR.120,
FLOAT.VALUE.ARRAYl.DIM NUMBER.ARR.6,
FLOAT.VALUE.ARRAY2.DIM NUMBER.ARR.20,
FL0AT.VALUE_ARRAY3.DIM NUMBER.ARR.120,
SHORT.VALUE.ARRAYl.DIM NUMBER.ARR.7,
SHORT.VALUE.ARRAY2.DIM NUMBER.ARR.20,
SHORT.VALUE.ARRAY3.DIM NUMBER.ARR.120,
DOUBLE.VALUE.ARRAYl.DIM NUMBER.ARR.8,
DOUBLE.VALUE_ARRAY2.DIM NUMBER.ARR.20,
DOUBLE.VALUE.ARRAY3.DIM NUMBER.ARR.120,
DATE.VALUE.ARRAY l.D IM DATE^ARR_4,
DATE.VALUE.ARRAY2.DIM DATE.ARR.2 0,
DATE.VALUE_ARRAY3.DIM DATE.ARR.120

CREATE TABLE TEST.CLASS OF TEST.CLASS.T
tablespace AUTO.GEN;
ALTER TABLE TEST.CLASS
ADD (CONSTRAINT TEST.CLASS.PK PRIMARY KEY (

INT.VALUE,
DATE.VALUE

));CREATE INDEX TEST.CLASS__12 ON TEST.CLASS (
DATE.VALUE

);
exit;

Page: 2

Scripts related to section 3.2.6.

Scripts Associated with section 3.2.6

The following scripts were used to create the TESTCLASS table and gather the
experimental data

RunAndAnalyse.bat
analyseClass.sql
timedT estClassInsert. sql
timedTestClassInsertNull.sql

Reproduced here are contents of the scripts

>type testClass.sql

— Copyright 1996 BHP IT All Rights Limited
— SYSTEM:
-- SUBSYSTEM:
— FILE NAME:
-- DESCRIPTION:
— AUTHOR:
-- CREATED:
— USAGE:
— INPUTS:
— OUTPUTS:
— NOTES:

Plate Rolling Mill Control System
ROM IS
testClass.sql
Generates TestClass object in Oracle database.
Saugato Mukerji

— REVISION HISTORY:
— $Author$
— Id
— Log

PROMPT ***
PROMPT * executing TestClass.sql script
PROMPT ***

DROP TABLE TestClass ;
DROP TYPE TestClass_T ;
DROP TYPE NUMBER_ARR_5;
DROP TYPE NUMBER_ARR_6;
DROP TYPE NUMBER_ARR_7;
DROP TYPE NUMBER_ARR_8;
DROP TYPE NUMBER_ARR_2 4 ;
CREATE TYPE NUMBER_ARR_5 AS VARRAY (5) OF NUMBER;
/ ”CREATE TYPE NUMBER ARR_6 AS VARRAY (6) O F NUMBER;

/
CREATE TYPE NUMBER ARR 7 AS VARRAY (7) OF NUMBER ■
/ ~ '
CREATE TYPE NUMBER_ARR_8 AS VARRAY (8) OF NUMBER;
CREATE TYPE NUMBER_ARR_24 AS VARRAY (24) OF NUMBER;
CREATE TYPE DATE_ARR_4 AS VARRAY (4) OF DATE;

CREATE TYPE TestClass_T AS OBJECT
(

intValue NUMBER,
floatValue NUMBER,
shortValue NUMBER,
doubleValue NUMBER,
stringValue VARCHAR(10),
dateValue DATE,
stringValueArraylDim VARCHAR(40),
intValueArraylDim NUMBER_ARR_5,
floatValueArraylDim NUMBER_ARR_6,
shortValueArraylDim NUMBER_ARR_7,
doubleValueArraylDim NUMBER_ARR_8,
intValueArray2Dim NUMBER_ARR_6,_
intValueArray3Dim NUMBER_ARR_24,
dateValueArraylDim DATE ARR 4

/

CREATE TABLE TestClass OF TestClass T;
//---- - .. -

>type timedTestClassInsert.sql
set serveroutput on
— set feedback off
DECLARE

STATUS NUMBER(1 0) ;
MESSAGE VARCHAR2(80);
ITEM_COUNT NUMBER;
start_time CHAR(5);
end_time CHAR(5);
aname CHAR(30);
X NUMBER;
numRows NUMBER;

BEGIN
ITEM COUNT := 10000;

SELECT TO CHAR(SYSDATE, ' SSSSS') INTO start_time FROM sys.dual;
FOR J IN I..ITEM COUNT LOOP

INSERT INTO SCOTT.TESTCLASS
VALUES (5,
1 .1 ,

2 0 0 ,
400.4,
'hello',
sysdate,
'qwertyuiopasdfghj klzxcvbnm',
SCOTT.NUMBER_ARR_5(101, 201, 301, 401, 501),
SCOTT.NUMBER_ARR_6(1.1, 1.2, 1.3, 1.4, 1.5, 1.6666) ,
SCOTT.NUMBER_ARR_7(11,12,13, 14,15,16, 17) ,
SCOTT.NUMBER_ARR_8(2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8),
SCOTT.NUMBER_ARR_6(101,102, 103, 104, 105, 106) ,

SCOTT.NUMBER_ARR_2 4(1,2,3,4,5,6,7,8,
9,10,11,12,13,14,15,16,
17, 18, 19,20,21,22,23,24) ,

SCOTT . DATE_ARR_4 (SYSDATE, SYSDATE, SYSDATE, SYSDATE)) ;
END LOOP;

SELECT TO_CHAR(SYSDATE, 'SSSSS') INTO end_time FROM sys.dual
— time the end of the 1000 inserts

select count (*) INTO numRows from SCOTT.TESTCLASS;
DBMS_OUTPUT.PUT_LINE('owner'

II' 'll' tablename'
II' '||'start_time'
II' 'll'end_time'
||' 'll'numRows');

DBMS_OUTPUT.PUT_LINE('scott'
||' 'll 'TESTCLASS'
II' '||start_time
II' 'llend_time
||' '||numRows);

END;

/

exit;

/ / =

>type timedTestClassInsertNull.sql

set serveroutput on
— set feedback off

DECLARE
S TATUS NUMBER(10);
MESSAGE VARCHAR2(80) ;
ITEM_COUNT NUMBER;
start_time CHAR(5);
end_time CHAR(5);
aname CHAR(30);

X NUMBER;
numRows NUMBER;

BEGIN

ITEM COUNT := 10000;

SELECT TO_CHAR(SYSDATE, 'SSSSS') INTO start_time FROM sys.dual;
FOR J IN 1..ITEM_COUNT LOOP

INSERT INTO SCOTT.TESTCLASS
(intvalue)

VALUES (J);
END LOOP;

SELECT TO_CHAR(SYSDATE, 'SSSSS') INTO end_time FROM sys.dual;
— time the end of the 1000 inserts

select count(*) INTO numRows from SCOTT.TESTCLASS;
DBMS_OUT PUT.PUT_LINE('owner'

II' 'll'tablename'
II' 'll'start_time'
II' 'll'end_time'
II' 'll'numRows');

DBMS_OUTPUT.PUT_LINE('scott'
M' '||'TESTCLASS'
II' 'llstart_time
II' 'llend_time
||' '||numRows);

END;

/

— exit;

// -

>type runandanalyse.bat

SQLPLUS scott/tiger @TIMEDTESTCLASSINSERT
SQLPLUS SYSTEM/MANAGER @ANALYSECLASS scott TESTCLASS

// - - - .. -

>type analyseClass.sql

— Name analyseClass.sql tableowner TABLENAME
— NOTE THE CASE OF THE TABLENAME MUST BE CORRECT

— THE DBA_SEGMENTS TABLE IS ONLY VISIBLE TO SYSTEM OR SYS
— OR SVRMGRL

ANALYZE TABLE &1..&2 COMPUTE STATISTICS;

SELECT COUNT(*) FROM &1..&2;

SELECT OWNER , SEGMENT_NAME, EXTENTS , BYTES, BLOCKS,
INITIAL_EXT ENT, MAX_EXTENTS

FROM DBA_SEGMENTS
WHERE SEGMENT NAME=' & 2 ' ;

6.7 Vendor benchmarks related to 3.4.4

V endor benchm ark data related to 3.4.4

Improvements in Disk I/O performance with Advanced Cache Mechanisms

Presented here are benchmarks provided by the vendor to show how impressive disk
I/O performance can be extracted by using specialised cacheing Software coupled
with a fast multiprocessor system and a good SCSI drive. Infact the measured
benchmarks of 70Mb/sec indicate that it is possible to achieve shared memory
like performance especially where the data size of each read/write is large.The
I/O rate of 8800 - 10000 calls/second is an egually impressive figure. This is
more than adequate for many Automation situations.

The response time is however is significantly lower at an average of 1ms and
worst case of 2ms. This will mean the developers will have to code sensibly and
read the data into their local memory manipulate and then write back. They will
not have the luxury of using the shared memory as a scratchpad or accessing
the shared memory inside loops of > 20 iterations without crippling
performance. It is worth observing that the vendor used SCSI disk and
multithreading with 4 worker threads to improve the throughput.
The platform was an Intel Pentium II/Xeon 450MHz server with 4 CPUs and 8GB of
RAM. The hard disk on the system was an IBM 8GB SCSI drive. The SuperCache
partition size was set to 1.7 GB.
However it may be worth noting is that the impressive hardware used for this
benchmark is not cheap the price at this time is estimated to be in the
USD30000-40000 region.
In our opinion this technology may still be a viable as a means of implementing
shared memory between co operating applications where the project size already
justifies the hardware investment. Though the best application of this caching
technology is in situations where large data size and a high number of separate
10 calls/second occur together. An example of this may be a Internet Web Server
which has to sustain a high hit rate when serving multimedia data to many
concurrent users.

Given below are test results reported by the vendor of the SuperCache-NT disk
caching product.
EEC Iometer Results Using SuperCache-NT/Enterprise Edition

What is Iometer?
The Iometer benchmark is a new I/O performance analysis tool forservers
developed by Intel. It measures system I/O performance while stressing the
system with a controllsd workload. A full description is available at
http i / / developer. in tel. com/des ign/ servers/ dev tool s/ iometer / index . htm.

The Iometer benchmark enabled EEC to quantitatively test the effects of
SuperCache on system performance. Tests under a range of workloads were
conducted both with and without SuperCache. The results showed that performance
is dramatically accelerated
with SuperCache.

SuperCache Set Up and Results
As the results below show, SuperCache provided speedups which were often greate
than 100 times on the benchmark system. The system used for this test was an
Intel Pentium II/Xeon 450MHz server with 4 CPUs and 8GB of RAM. The SuperCache
partition size was set to 1.7 GB. The hard disk on the system was an IBM 8GB
SCSI drive.

The Iometer test was configured with four worker threads. The outstanding queue
depth was set to eight. Transfer size was 8Kb and I/O was set to 100% random.
The relationship of reads to writes
was varied from 90%-10% to 0%-100% yielding the results below.

90% Reads, 10% Writes
With
SuperCache

Without
SuperCache

Speedup with
SuperCache

I/O per second 8781.28 111.4 78.8
MB/s 68.69 0.87 79

response time(ms)
average 0.919 44.6 48.5
maximum 1.956 206.38 105.5

80% Reads, 20% Writes
With Without Speedup with
SuperCache SuperCache SuperCache

I/O per second 8833.76 109.4 80.7
MB/s 69.04 0.86 80.3

response time(ms)
average 0.9155 45.59 49.8
maximum 1.89 248.8 131.6

50% Reads, 50% Writes
With Without Speedup with
SuperCache SuperCache SuperCache

I/O per second 9066.2 107 84.7
MB/s 70.87 0.84 84.4

response time(ms)
average 0.9073 37.44 41.3

maximum 2.041 109.07 53.4

0% Reads, 100% Writes
With Without Speedup with
SuperCache SuperCache SuperCache

I/O per second 10203.1 102.6 99.4
MB/s 79.69 0.8 99.6

response time(ms)
average 0.81 57 70.4
maximum 1.88 217 115.4

6.8 Code for testing JDBC performance. Ref 3.4.1

/>type run.bat
@echo off
rem *
rem Setup java home directory rem *************************
SET JAVA_HOME-d : vj dk 1.2.1
rem *******************
rem Setup java bin path rem *******************
PATH=?£JAVA_HOME?£\bin ; ZPhTrtX
set CLASSPATH=e:\Oracle\JDBCMib\classes111.zip;.
java -cp . ;?iCLASSPATH^;. Employee
pause

/>type! run2.bat
start run
start run
pause

/>type! run3.bat
start run
start run
start run
pause

/>type run5.bat
start run
start run
start run
start run
start run
pause

Page: 1

* This sample shows how to list all the names from the EMP table -»
* It uses the JDBC THIN driver. See the same program in the
* oci7 or oci8 samples directories to see how to use the other drivers. »/

/ *

/ / You need to import the java.sql package to use JDBC
import java.sql.»;
class Employee
{ // The connect string

static final String connect_string =
"jdbc roracle:thin:scott/tiger@fast:1521:oraglob";

//static final String connect_string =
/ / "jdbc:oracle:thin:scott/tiger@home:1521:ORCL";
static ResultSet rset;
PreparedStatement anlnsertStatement;
int salary = 1000;
public static void main (String args [])

throws SQLException„ ClassNotFoundException
{ // Load the Oracle JDBC driver

Class.forName ("oracle .jdbc.driver.OracleDriver");
// Connect to the database
// You must put a database name after the @ sign in the connection URL.
// You can use either the fully specified SQL*net syntax or a short cut
// syntax as <host>:<port>:<sid>. The example uses the short cut syntax.
// System.out.println("time after="+System.currentTimeMillis());
Employee emp = new Employee();
long startTime - System.currentTimeMi11 is() ;
int loopCount - 10000;
for(int i-0; i<loopCount; i++)
{ emp.send();
}long endTime - System.currentTimeMi11 is();
long delta = endTime - startTime;
System.out.println ("rate in updates/second ="+(long)((1000*loopCount)/delta)

):

}
void send ()
{ try

{ • ii %// System.out.print(.);
if(anlnsertStatement -- null)
 ̂ System.out.println("Connecting ");

// Load the Oracle JDBC driverClass.forName (" o r a c l e .jdbc.driver.OracleDriver");

Page: 1

URL.
cut
syntax.

}
}

// Connect to the database
// You must put a database name after the @ sign in the connection
// You can use either the fully specified SQL*net syntax or a short
// syntax as <host>:<port>:<sid>. The example uses the short cut

Connection conn =
DriverManager.getConnection (connect_string);
conn.setAutoCommit(true);
System.out.println("got connection.....");
anlnsertStatement =• conn . prepareStatement
("update emp set sal=? where empno = 7934");

}salary++;
anlnsertStatement.setlnt(1, salary);

// write timestamp value into the first column
anlnsertStatement.execute();

}catch(java.sql.SQLException e)
{ System.out.println("Exception
}catch (ClassNotFoundException e)
{ System.out.println("Exception
}

: "+e) ;

:"+e);

Page: 2

* This sample shows how to list all the names from the EMP table
*

* It uses the JDBC THIN driver. See the same program in the
* oci7 or oci8 samples directories to see how to use the other drivers.
* /

/ *

/ / You need to import the java.sql package to use JDBC import j ava.sq1.*;
class Employee
{ // The connect string

static final String connect_string =
"jdbc roracle:thin:scott/tiger@fast:1521:oraglob";

//static final String connect_strmg =
// "jdbc:oracle:thin:scott/tiger@home:1521:ORCL";
static ResultSet rset;
PreparedStatement anlnsertStatement;
int salary - 1000;
public static void main (String args [])

throws SQLException, ClassNotFoundException
{ // Load the Oracle JDBC driver

Class.forName ("oracle.jdbc.driver.OracleDriver");
// Connect to the database
// You must put a database name after the @ sign in the connection URL.
// You can use either the fully specified SQL*net syntax or a short cut
// syntax as <host>:<port>:<sid>. The example uses the short cut syntax.
// System.out.printIn("time after="+System.currentTimeMi11 is());
Employee emp * new Employee();
long startTime = System.currentTimeMi11 is();
int loopCount - 10000;
for(int i-0; idoopCount; i++)
{ emp.send();
}long endTime - Systern.currentTimeMi11 is();
long delta » endTime - startTime;
System.out .printIn ("rate in updates/second -"+(long)((1000*loopCount)/delta)

);

}
void send()
{ try

{ // System.out.print(".);
if(anlnsertStatement -- null)
 ̂ System.out.println("Connecting");

// Load the Oracle JDBC driver
Class.forName (" o r a c l e .jdbc.driver.OracleDriver");

Page: 1

URL.
cut
syntax.

// Connect to the database
// You must put a database name after the @ sign in the connection
// You can use either the fully specified SQL*net syntax or a short
// syntax as <host>:<port>:<sid>. The example uses the short cut

Connection conn =
DriverManager.getConnection (connect_string);
conn.setAutoCommit(true);
System.out.println("got connection.....");
anlnsertStatement =■ conn.prepareStatement
("update emp set sal=? where empno = 7934");

}salary++;
anlnsertStatement.setlnt(1, salary);

// write timestamp value into the first column
anlnsertStatement.execute();

}catch(java.sql.SQLException e)
{ System.out.println("Exception
}catch(ClassNotFoundException e)
{ System.out.println("Exception
}

: "+e) ;

:"+e);

}
}

Page: 2

6.9 PLSQL Scripts and batch files for testing
performance with multiple concurrent
processes Ref 3.4.1

sqlplus scott/tiger&raglob éils

Dtype msel2proc.bat

start sqlplas scott/tigerfcraglob @q1s
start sqlplus scott/tigerfcraglob §als

/>type m sel.bat

f)type masel5proc.bat

start sqlplas scott/tigerfcraglob §nls
start sqlplus scott/tigar̂ oraglob §als
start sqlplas scott/tigerfcraglob éils
start sqlplas scott/tigeifcraglob éils
start sqlplus scott/tigerfcraglob §nls

/>type ruas8l2procDifniow.bat

start sqlplus scott/tiger̂ oraglob §als
start sqlplus scott/tigerfcraglob §nlsl

/>type msel5procDiffIlow.bat

start sqlplas scott/tigerfcraglob frls
start sqlplas scott/tigerfcraglob §alsl
start sqlplas scott/tigeréiraglob §nls2
start sqlplas scott/tigerfcraglob §als3
start sqlplus scott/tigerfcraglob §als4

/)type rannpd.bat

sqlplus scott/tigerfcraglob élla

/)type ranapd2procDiffRow.bat

start sqlplas scott/tigerfcraglob éilu
start sqlplas scott/tigsrfcraglob éilul

/)type ruanpd5procDiffRow.bat

start sqlplas scott/tigerfcraglob élla
start sqlplus scott/tigsr&ragiob éilul
start sqlplas scott/tigaréiraglob éilu2
start sqlplus scott/tigeréiraglob éila3
start sqlplas scott/tigefàraglob éila4

/ > t y p e n l s . b a t

-- Name nls.sql
Description a test to determine the select performance

set serveroutput on

DECLARE
STATUS NUMBER(10);
MESSAGE VARCHAR2(80);
ITEM_COUNT NUMBER;
start_time CHAR(5);
end_time CHAR(5);
aname CHAR(30);
X NUMBER;

BEGIN
ITEM_COUNT := 10000;
SELECT T0_CHAR(SYSDATE, 'SSSSS') INTO start_time FROM svs.dual; FOR J IN 1..ITEM_COUNT LOOP

SELECT ENAME INTO aname FROM EMP WHERE EMPNO =■ 7369;END LOOP;

END;

SELECT T0_CHAR(SYSDATE, 'SSSSS') INTO end_time
DBMS_OUTPUT.PUT_LINE('start_time='||start_time||

' loopcount=' j IITEM_COUNT|I
FROM sys.dual;
end_time='||end_time||
aname='||aname);

/

/>type nlsl.bat

— Name nlsl.sql
-- Description a test to determine the select performance

set serveroutput on

DECLARE
STATUS NUMBER(10);
MESSAGE VARCHAR2(80);
ITEM_COUNT NUMBER;
start_t ime CHAR(5);
end_t ime CHAR(5);
aname CHAR(30);
X NUMBER;

BEGIN
ITEM_COUNT 10000;
SELECT T0_CHAR(SYSDATE, 'SSSSS') INTO start_time FROM sys.dual;
FOR J IN 1..ITEM_COUNT LOOPSELECT ENAME INTO aname FROM EMP WHERE EMPNO - 7782;
END LOOP;

Page: 1

END;

SELECT TQ_CHAR(SYSDATE, 'SSSSS') INTO end_time FROM sys.dual;
DBMS_OUTPUT.PUT_LINE(1start_time='||start_time||' end_time=1||end_time|

1 loopcount=' I IITEM_COUNT| | ' aname=1 | |aname);

/

/>type nls2.bat

-- Name nls2.sql
-- Description a test to determine the select performance

set serveroutput on

DECLARE
STATUS NUMBER(10);
MESSAGE VARCHAR2(80);
ITEM_COUNT NUMBER;
start_time CHAR(5);
end_time CHAR(5);
aname CHAR(30);
X NUMBER;

BEGIN
ITEM_COUNT 10000;
SELECT T0_CHAR(SYSDATE, 'SSSSS') INTO start_time FROM sys.dual;
FOR J IN 1..ITEM_COUNT LOOPSELECT ENAME INTO aname FROM EMP WHERE EMPNO = 7499;
END LOOP;
SELECT T0_CHAR(SYSDATE, 'SSSSS')
DBMS_OUTPUT.PUT_LINE('start_time=1

' loopcount-'
END;

INTO end_time FROM sys.dual;
|start_time||' end_time='||end_time
I ITEM_COUNT j I ' aname='||aname);

/

/>type nls3.bat

-- Name nls3.sql-- Description a test to determine the select performance

set serveroutput on

DECLARESTATUS NUMBER(10);
MESSAGE VARCHAR2(80);
ITEM_COUNT NUMBER;
start_t ime CHAR(5);
end_time CHAR(5);
aname CHAR(30);
X NUMBER;

BEGIN
ITEM_Co u n t := im. inni) ;

END;

"ELECT TO_CHAR (SYSDATE, ' GSSSS') INTO start_time FROM pys . dual ;
FOR T i n i ..ITEM_COUNT LOOP

."ELECT ENAME INTO aname FROM EMP WHERE EMPNO = 7721;END Lonc>;

"ELECT To_('HAR (SYSDATE, 'SSSS3') INTO end_time FROM cyr. .dual;
DBM7_Oi ITPUT . PUT_LINE (' s Far t_time = ' | j start_time | I' end_time=' | |end_hime| I

' loopcounh-' I | ITEM_COUNT I I ' aname=' I | aname) ;

/
/ hype n Ls4 . sqi

BEGIN

ITEM_COT JNT : = 1 0 0 (11) (I ;

SELECT TO_CHAR(SYSDATE, ' o o o G T) INTO start_time FROM sys.dual;
FOR ,J IN 1 . . ITEM_COUNT LOOP

SELECT ENAME INTO aname FROM EMP WHERE EMPNO = 7521;
END LOOP;

END ;

SELECT TO_CHAR (SY3DATE, 'SSSSS') INTO end_time FROM sys.dual;
DBMS_OUTPUT . PUT_LINE (' starh_time=' | |start_time| | ' end_time=' | |end_time| |

' ioopcount-' | |ITEM_COUNT| | ' aname=' | |aname) ;

/ • h ype nlu . sq L

- Name nlu.sql
- Desrriph ion a tey t to determine the update performance

net serveroutput on
alter table emp NOLOGGING;
set autocommit on

DECLARE
ITEM_COUMT NUMBER;
.*■ tart_time CHAR (5) ;
"lid_time c.HAR(7) ;
aname C H A R (3 0);
aSal NUMBER;

BEGIN

ITEM_COUNT := 100000;
select sal into aSal from emp WHERE EMPNO = 7369;
SELECT T O _ C H A R (SYSDATE, ' 3SS33') INTO start_time FROM sys.dual;
FOR J IN 1..ITEM_COUNT LOOP

aSal := 1000; -•aSal + 1;
UPDATE EMP SET sal = aSal WHERE EMPNO = 7 360 ;

END LOOP;

ENI'

SELECT TO_C H A R (SYSDATE, 'SSSSS') INTO end_time FROM .sys.dual;
¡■•.elect .< ;;t L into aSal from emp WHERE EMPNO = 7 369;
DBMS OUTPUT . PUT_LINE (’ start_time=' | |start_time| | ' end_time=' | |end_time|

' loopcount=' | | ITEM_OOUNT| | ' aSai = ' | |aSal) ;

/

/ type nlul.sql

Marne n L u 1 . s < [iDes.cr Lpt i on a test to determine the update performance

set- serve routput on
alter table emp NOLOGGING;
set a u tocomm it o n

declare
ITEM_COUNT NUMBER;
start_time CHAR (5) ;
end_time CHAR(5);
a name CHAR (3 <)) ;
aHal NUMBER;

BEGIN
ITEM_C.OUNT -.= loonno;
■'•elect rial into a Hal from emp WHERE EMPNO = 7 7 3 3;
GELECT TO_CHAR(SYGDATE, '3S3SS') INTO start_time FROM sys.dual;
FOR J IN I ..ITEM_COUNT LOOP

a Gal ;= 1000; - -aSa1 + 1;
UPDATE EMP SET sal = aSal WHERE EMPNO = 7788;

END LOOP;
SELECT TO..CHAR (S Y SPATE, 'SSSSS') INTO end_tirae FROM sys.dual;
"• e L e < ■ t sal into aSal from emp WHERE EMPNO ~ 77 83;
DBMG_/ UJTPUT . PUT__LINE (' s tart__time = ' j |start_time| | ' end_time='] I end. _t irne

' looprount=' I !ITEMJGOUNTI | ' a3al~' ! |aGaL) ;
END;
/
/ - type n Lui.sql

Name nlu2.sql
Description a test to determine the update performance

set serveroutput on
alter table emp NOLOGGING;
set autocommi.t on
DECLARE

ITEM_COUNT NUMBER;
r. ta r t_t ime CHAR (5) ;
end_time CHAR(5);
aname CHAR(3D);
aGal NUMBER;

BEGIN
IT EM_C0UNT := 10 00 () 0;
select sal into aGal from emp WHERE EMPNO = 7521;
GELECT T0_CHAR(SYSPATE, 'SSGGS') INTO start_time FROM sys.dual;
FOR J IN 1..ITEMJGOUNT LOOP

a Gal - 1000; ■ • aSa 1 + 1;
UPDATE EMP GET sal = aGal WHERE EMPNO = 7 521;

END LOOP;
GELECT T0_CHAR(SYGDATE, 'SSSGS') INTO end_time FROM sys.dual;
select sal into aGal from emp WHERE EMPNO = 7521;
DBMG_OUTPUT. PUT_LINE (' start_t.ime=' | |start_time| |' end_time=' | |end_time

' loopcount=' | |ITEM_COUNT| | ' aSal=' | |aGal) ;
END;
/
/•■type n lu 3. sql

Name nin 3.sql
Description a (-pst to determine the update performance

set serveroutput on
alter table ~mp NOLOGGING;
set autocommit on
DECLARE

ITEM_COUNT NUMBER;
s t-.-ir•|-__tirn-' CHAR(5) ;
e:ifl_tim» CHAR (5) ;
aname CHAR(80);
a Sal NUMBER;

BEGIN
IT EM_CO UNT : = 10 0 0 0 0 ; „ ̂ _
select cal into aGal from emp WHERE EMPNO - 7 d66;

"ELECT TO_CHAR(SYSDATE, 'SSSSS') INTO start_time FROM sys.dual;
FOR J i n 1..ITEM_COUNT LOOP

aSal := 1 0 0 0 ; - - aSa 1 + i ;
UPDATE EMP SET sal = aSal WHERE EMPNO = 7566;

END LOOP;

SELECT TO_CHAR(SYSDATE, 'SSSSS') INTO end_time FROM sys.dual;
eiect sal into aSal from emp WHERE EMPNO = 7566;

DBMG_OUTPUT . PUT_LINE (' start_time=' | | start_time | | ' end_time=' | | end_time | |
' lnopcount='||ITEM_COUNT||' aSal='||aSal);

/

/ - t y p e n l u 4 .sq L

Name nlu4.sql
Description a test to determine the update performance

set serveroutput on
alter table emp NOLOGGING;
set autocommit on
DECLARE

ITEM_COUNT NUMBER;
start._time CHAR(5);
end_time CHAR(5) ;
a n a m e C H A R (S O) ;
aSal NUMBER;

BEGIN
ITEM_COUNT ;= 100000;
select sal into aSal from emp WHERE EMPNO = 7654;
SELECT TO_CHAR (SYSDATE, 'SSSSS') INTO start_t.ime FROM sys.dual;
FOR J IM 1..ITEM_COUNT LOOP

a Sal := 1000; --aSal + 1;
UPDATE EMP SET sal = aSal WHERE EMPNO = 7654;

END LOOP;
SELECT TO_CHAR(SYSDATE, 'SSSSS') INTO end_time FROM sys.dual;
select sal into aSal from emp WHERE EMPNO = 7654;
DBMS_.OUTPUT. PUT„LINE (' s tart_ time=' | |start_time| |' end_time=' | |end_t.ime| |

' loopcount=' | |ITEM-COUNT| |' aSal = ' | |aSal) ;
EMI) ;
/

7.0 Glossary.

Glossary
7x24 24 hour operation
AKA also known as
API Application Program Interface
CORBA Common Object Request Broker Architecture. Refer

www.omg.com
cos Change of State. Occurs when a field in the database is altered

by an update.
DCS Distributed Control System
ESP Extended Simple Protocol - used on GEM PLCs
JDBC Java Database Connectivity (JDBC) is a standard SQL database

access interface, providing uniform access to a wide range of
relational databases.

JVM Java Virtual Machine

PLC Programmable Logic Controller
RAID Redundant Array Integrated Disk
SCADA Supervisory Control and Data Acquisition
VARRAY An array object in Oracle 8i
WORA Write Once Run Anywhere

http://www.omg.com

	Application of mainstream object relational database to real time database applications in industrial automation
	Recommended Citation

	tmp.1450422890.pdf.5ztPV

