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Abstract

The application of Artificial Neural Networks has traditionally been restricted to 
fixed size data and data sequences. However, there are a large number of applica­
tions which are more appropriately represented in the form of graphs. Such appli­
cations include learning problems from the area of molecular chemistry, software 
engineering, artificial intelligence, image and document processing, and numerous 
others. The inability of conventional Artificial Neural Networks to encode this kind 
of data has motivated for research in this field.

Early successes with multilayer perceptron (MLP) based and auto-associative mod­
els for adaptive processing of graph models demonstrated that classic models of 
artificial neural networks can be extended so as to allow the encoding of graph 
structured information. This thesis continues this line of research and proposes 
further neural architectures for this kind of domains. Most noteworthy is the devel­
opment of Self Organising Map (SOM) based models which extend the capabilities 
of standard SOM to allow the mapping of graph structures onto an n-dimensional 
map. This ability and the efficiency of this model is illustrated quantitatively on 
a range of experiments. A further extension of this model allows the inclusion of 
supervision to the learning process. It is demonstrated that this extension has a 
significant benefit on the network performance. It is also shown that the proposed 
models are a superset which includes the standard SOM algorithm as a special case, 
and that the extension of the models does not impose additional cost to the learning 
process. Hence, the proposed models represent a more general form of SOM capable 
of processing graphs, data sequences, and also fixed size input vectors.
The recent introduction of a Cascade Correlation (CC) based model for problems 
which are governed by graph based domains motivated a further modification of the 
CC model and the MLP based model. These modifications give respectively two 
models which are of similar network architecture. Since CC and MLP based models 
build and train the network in a very different manner, it is interesting to compare 
their performances with similar architectures. It is shown that each of the two new 
models feature advantages as well as disadvantages but that the combination of the 
underlying ideas may help to eliminate some of the disadvantages. Again, these 
models include their traditional counterparts as a special case, and hence, mark 
these model to be a more general form.

The above mentioned models have been analysed individually on practical exam­
ples, and the findings are then compared with one another. The result of these 
comparisons allows the drawing of conclusions stating the pros and cons for each 
model. In order to allow such comparison, a benchmark problem is deployed. The 
learning problem defined by this benchmark is a classification task. The flexibility 
and other advantages of this benchmark problem are illustrated, contributing to 
its acceptance by the research community. Experimental findings are confirmed 
through the application to a real world problem, viz., the logo recognition problem.
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Contribution of this thesis

The contributions of this thesis are multifold. This is in great parts due to the 
fact that research in the area of Adaptive Processing of Data Structures is very 
new, which is in particular true when deploying Artificial Neural Networks for the 
processing of graph structured information. There were few models available when 
this project started. Most noteworthy are a MLP based architecture known as re­
cursive multilayer perceptron (RMLP) introduced by [33, 86], a cascade correlation 
based model known as recursive cascade correlation (RCC) introduced by [9], and 
a type of auto-associate memory known as labelled recursive auto-associative mem­
ory (LRAAM) introduced by [80]. A more complete list of literature available at 
that time is available in Appendix C. At that stage it was not known whether it 
is possible to extend other popular neural models, e.g., the Self Organising Map 
(SOM), to the processing of graph structured information. In addition, only a lim­
ited set of practical experience existed with the existing models and a comparison 
of the models had not yet been addressed which was mainly due to the lack of a 
benchmark problem which would have allowed such a comparison.
The contributions of this thesis can be categorised into three sections as follows:

1. The introduction of four novel neural network models capable of processing 
graph structured information. The first model, which we called a SOM- 
SD (Self-Organising Map for Structured Data) extends the capabilities of 
Self-Organizing Maps [58]. This is done by adding information about the 
structure of the input data to the network input. While Self-Organizing 
Maps traditionally are trained in an unsupervised fashion, this thesis also 
proposed a novel model, called supervised SOM-SD (sSOM-SD) which in­
corporates a supervisor signal into the learning process if such a signal 
exists. It is demonstrated that this model which is capable of mapping 
graph structured information onto a Self-Organizing Map in a supervised 
fashion is capable of handling incomplete or missing target information. 
The third and fourth of the new models are respectively a modification of 
the existing RMLP and RCC models. The thesis proposes a novel model, 
called extended RMLP model to incorporate additional network parame­
ters (additional connections) into a RMLP architecture to make it more 
similar to the RCC architecture. In turn, the modification of the RCC 
model suggests the removal of some network parameters (removal of con­
nections) so that the resulting network architecture is similar to the RMLP 
architecture. This is called a reduced RCC model. These are particularly 
interesting modifications since these two models, extended RMLP, and re­
duced RCC, build up the architecture in a very different manner, and hence, 
it is interesting to learn how these two models compare if the underlying 
architecture is similar.

2. A comparison of adaptive models which are capable of processing graph 
structured information is not possible without a generally agreed bench­
mark problem. This thesis introduces the first benchmark problem, called 
a policeman problem, for this area. The benchmark problem is aimed at 
providing an arbitrarily sized set of data for a classification learning task. 
The benchmark allows the construction of a policeman with various fea­
tures, e.g., raised or lowered left arm, whether wearing a hat, etc. This 
benchmark problem is also extended to give the extended policeman prob­
lem, which in addition, allows incorporation of other entities, e.g., house 
boat. The advantages of these proposed benchmark problems are multi­
fold. Firstly, it is created through a formal language, viz. an attributed
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plex language. Hence, a potentially infinite large dataset can be distributed 
easily by simply providing a relatively small set of formal productions. Sec­
ondly, since the dataset is produced by a grammar and not by random 
distributions, it resembles training tasks which are more closely related to 
real world learning problems. Thirdly, the interpreter for the attributed 
plex language which is provided with the dataset produces pairs of outputs 
which give both an image and a graph representing this image. Using im­
ages instead of graphs makes it easier for a human observer to understand 
the relationship between any two graphs, and help to evaluate models to 
which this dataset is applied.
These benchmark problems have been presented to the research community 
and has already been accepted, and is currently being applied by a number 
of researchers, some of which are active in the area of statistical models.

3. This thesis is furthermore applying the extended policeman benchmark 
problem to nearly all known neural network models which are capable of 
processing graph structured information. The experiments aim at the prac­
tical evaluation of the various models. The models have to demonstrate 
the ability to efficiently encode graph structured information. Also, the be­
haviour of the models during training is observed. Both performance and 
behaviour of the models are then compared with each other and conclusions 
are drawn.
Of particular interest of these experiments is the comparison between the 
new models, viz., extended RMLP, and reduced RCC, introduced in this 
thesis, and models, viz., RMLP, and RCC, that have already existed. In 
addition, the models are also applied to a real world learning problem, 
viz., logo recognition problem, which allows the observation of whether the 
proposed benchmark problem sufficiently represents real world cases.

The following list of publications were a direct result of research done on this 
project1.

• M. Hagenbuchner, A.C. Tsoi, A. Sperduti, “A Self-Organizing Map for 
Adaptive Processing of Structured Data” , Submitted to IEEE Transac­
tions on Neural Networks in November 2001. (FVom materials contained in 
Chapter 4 and Chapter 5)

• Z. Wang, M. Hagenbuchner, A.C. Tsoi, S.Y. Cho, Z. Chi, “Image Classi­
fication with Structured Self-Organization Map” , Accepted for publication 
in IJCNN 2002. (Main results not contained in this thesis. But the concept 
is mentioned in Chapter 4)

• M. Hagenbuchner, M. Gori, A.C. Tsoi, H. Bunke, C. Irniger, “Us­
ing attributed Plex Grammars for the generation of Image and Graph 
Databases” , Accepted for publication in Mario Vento, editor, Special is­
sue PRL-Graph-based, Representations, 2002. (From materials contained in 
Appendix A)

• M. Hagenbuchner, A.C. Tsoi, M. Gori, H. Bunke, C. Irninger, “Generation 
of Image Databases using Attributed Plex Grammars” , in 3rd IAPR-TC15 
Workshop on Graph-based Representations in Pattern Recognition, pages 
200-209, 2001. (From materials contained in Appendix A) .

• M. Hagenbuchner, A.C. Tsoi and A. Sperduti. “A Supervised Self­
Organizing Map for Structured Data” . In N.Allinson, H.Yin, L.Allinson *

^ h e  list of publications is sorted by date.
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and J.Slack, editors, Advances in Self-Organising Maps, Pages 21-28, 
Springer, 2001 (From materials contained in Chapter 5)

• M. Hagenbuchner, A. Micheli, and A.C. Tsoi, “Building MLP Networks by 
Construction” , in Proceedings of the IEEE-INNS-ENNS International Joint 
Conference on Neural Networks (IEEE Computer Society Press), pages 549­
554, volume 4, 2000. (Preliminary results presented. Detailed experimental 
results (not yet published) are contained in Chapter 7)

• Hagenbuchner, Markus and Tsoi, Ah Chung. The Traffic Policeman Bench­
mark. In Michel Verleysen, editor, European Symposium on Artificial Neu­
ral Networks, D-Facto, pages 63-68, April 1999. (Preliminary results pre­
sented. Further experiments axe contained in Appendix A)

The following publication was an indirect outcome of research done for this thesis:

• H.A. Kestler, S. Simon, A. Baune, M. Hagenbuchner, F. Schwenker, 
and G. Palm, “A Hierarchical Neural Object Classifier for Subsymbolic- 
Symbolic Coupling” , in Mustererkennung, volume 21, Springer, 1999. (The 
material described in this paper uses a superset of utilities developed for 
the policemen benchmark. Basic concepts are presented in Appendix A)
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Glossary

A N N  Artificial Neural Networks aim at emulating the behaviour of neurons or 
neural assemblies in the brain.

B P T S  Backpropagation through structure, a gradient based updating rule for re­
cursive network models.

C C  Cascade correlation is a neural network model that dynamically adjusts the 
number of parameters, e.g., hidden layer neurons and their associated con­
nections.

D O  A G  Directed ordered acyclic graph.
Leaf node is a node in a graph which has no outgoing links. This is sometimes 

called a frontier node.
L R A A M  Labelling Recursive Auto-Associative Memory.
LVQ Learning vector quantization.
M L P  Multilayer Perceptron is a neural network model based on artificial neurons 

that are arranged in layers.
M SE Mean Squared Error.
N A P E  An N-attachment point entity is a terminal or non-terminal symbol in a 

plex grammar.
P lex Is a type of grammar where each terminal or non-terminal symbol can feature 

attachment points which can be used to interconnect those symbols.
Q S A R  Quantitative Structure-Activity Relationship models attempt to predict 

the activity of chemical compounds by looking at the molecule structure.
Q S P R  Quantitative Structure-Property Relationship models attempt to predict 

the property of chemical compounds by looking at the molecule structure.
R C C  Recurrent Cascade correlation is similar to CC but aims at the encoding of 

structured information.
R M L P  Recursive multilayer perceptron is similar to MLP but aims at the encoding 

of structured information.
R o o t  node is a node in a graph which has no incoming links.
R P R O P  Resilient propagation, an updating method for artificial neural network 

models.
SO M  Self Organizing Map, a neural network model where neurons are arranged on 

an n-dimensional grid, with n =  2 most commonly. This is used often used 
for the projection of high dimensional data to one with lower dimensions, 
with grid points being represented by neurons.

SO M -SD  Self Organizing Map for Structured Data. Similar to SOM but for the 
encoding of structured data.

sSO M -SD  Supervised Self Organizing Map for Structured Data. This is a SOM- 
SD which includes supervision to the learning process.

SSE Summed Squared Error.
Tree A tree is a particular type of acyclic connected graphs where each node has 

at most one parent.
V Q  Vector quantization.
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N otation

The following uniform notation is used throughout this thesis. Scalars and constants 
are indicated by lowercase script letters e.g., c. Parameters for dynamic processes 
are stated as lowercase Greek letters such as a. Vectors are denoted by lowercase 
bold letters, e.g., v. Sets and matrices are denoted by upper case letters, e.g ,̂ 
S. Sometimes, in order to avoid confusion, we use uppercase bold letters e.g., 
to denote matrices. Calligraphic letters e.g., Q are used for representing grap s. 
Domains are indicated by bold calligraphic letters e.g., X. Lowercase script letters 
are used to access elements of a vector or matrix. As an example, in order to access 
the z-th element of a vector v  we use v*. Letters when used in combination with 
brackets such as in / (x ,  y) denote functions. A few examples are given below.

n =  |x| n is the dimension of vector x
x  =  (x i , . . . ,  x n) Vector x  consisting of n elements.
F (x ) A function taking a vector as argument.
C =  A I C  is the result of a matrix multiplication.
S =  {0,1,2} A set with three elements.
m* =  am* Recursive update of the z-th element of vector m
a(t) The parameter a  depends on time t.

In the Appendix, uppercase letters are also used to specify nonterminal symbols of 
a grammar, lowercase letters refer to terminal symbols, and lowercase Greek letters 
refer to strings of mixed terminals or nonterminals.

Hardware Environm ent

This thesis will address results from an extended set of experiments on various 
neural models. Hardware that was available for these experiments is as follows:

Hardware
Type

OP Number 
CPU 2

CPU
Speed3

Yea
1 CN

diable
3

PC Linux 1 0.2 V vT
PC Linux 2 0.4 V V V
PC Linux 3 0.45 >/
PC Linux 1 0.85 V
PC Linux 1 0.93 V
SGI iHlX 7 1.3 V
SGI IRIX 64 1.5 V
PC Linux 5 2

Throughout the thesis, when referring to CPU times, we actually refer to relative 
times required by a Pentium type CPU of speed 1GHz. Note that times and the 
speed indices are approximate values. The actual speed of a system has many other 
dependencies such as the speed of storage devices such as hard-discs and memory, 
the load of the machine, the efficiency of the operating system, and to lesser extend' 
the speed of display devices, network speed, and many others. ’

2Total number of CPUs of same type and speed.
3Relative to a Intel Pentium CPU with 1GHz
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Chapter 1

Introduction and Motivation

1.1 Introduction

This thesis is in the area of the application of artificial neural network techniques to 
processing of data structures. In this chapter, we will give a number of motivating 
examples indicating why a data structure is a convenient representation of a large 
number of artificial and practical examples. In chapter 2, we will give more detailed 
account of how to represent some of these practical examples using data structures.

This chapter gives a number of examples, the aim of these is to motivate and demon­
strate that it is more economical to use structural information where such informa­
tion exists to represent a problem. It will be demonstrated that there are many 
challenging real-world problems in fields as diverse as image processing, molecular 
chemistry, document and logo analysis, characterization of relationships among a 
number of web pages in the world wide web (W W W ), handwritten character recog­
nition, software engineering, and numerous others. In these areas, we find that the 
representation of data is more appropriately modeled by data structures 1 [86] , e.g., 
lists, trees, graphs [37] than atomic entities such as vectors as employed in more 
traditional data representation methods.
In the following sections, we will give a description of some of these artificial and 
practical examples. In Section 1.2, we will give an example of how an image can be 
represented using a tree structure; in Section 1.3, we will illustrate how a document, 
e.g., an envelope can be represented using a tree structure; in Section 1.4, we will il­
lustrate how the surfing behaviour of web pages can be more conveniently considered 
using a data structure; in Section 1.5, we will discuss a class of molecular chemistry 
modeling problems which had been posed and studied in terms of structured data 
representations; in Section 1.6, we will describe a simple example in representing 
a program using structured information; in Section 1.7 we will illustrate how data 
structure can be applied to online handwritten character discriminations; in Section 
1.8, we will show that a simple robot navigation problem can be reformulated in 
terms of a tree structure.

1In this thesis, we will use the terms “structured data” , “structured domains” , “struc­
tured information” , “data structures” synonymously.
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2 Introduction

In image processing, a central issue is how to understand a particular given scene 
[53, 78]. Representing an image by its pixels requires significant memory storage. 
For example, if the image consists of 1,000 x 1,000 pixels, then the memory require 
to store it is 1 Mbits, assuming that it is a black and white image, i.e., it has 
levels of gray only. The amount of memory will increase significantly if the image 
is a colour one. Representing images using pixels does not take into account any 
possible relationships among the objects in the image, assuming that the image 
contains a number of objects. On the other hand, if we pre-process the image so as 
to extract some primitives (objects), the image could be represented using a muc 
smaller amount of memory. This fact is self evident in that if an image is represented 
using pixels, no relationship is assumed among any pixels or groups of pixels within 
the image. On the other hand, if a number of pixels is grouped together to form 
a primitive (in the form of an object), then we can reduce memory storage as we 
can depict the relationships among these objects 2. In addition, the relationships 
among the objects become more transparent. We will illustrate this idea using the 
scene as shown in Figure 1.1.

1.2 Image Processing

Figure 1.1: A scene showing some details of a house.

This scene has been pre-processed using, say, an edge detector [53], so that most 
of the non-essential details, e.g., shading, textures, have been eliminated. Each 
extracted part is labelled. Such a scene can be represented by a tree structure 
as shown in Figure 1.2. In this tree, it is noted that there is a root node, which 
we labelled “Scene” . This is the starting point of the analysis. This node has a 
number of leaves, corresponding to the scene. For example, we have a leaf labelled 
“C” representing the roof; a leaf labelled “A” representing one side of the house, 
facing the reader; and another leaf labelled “B” representing another side of the 
house. Each of these sides has their own details. For example, side “A” consists of 
four windows, labelled “a” , “b” , “c” , and “d” . These are represented as children of 
the node labelled as “A” . Node “A” is said to be the parent of the children nodes 
“a” , “b” , “c” , and “d” . Thus representing the pre-processed image using a tree 
model is more economical on the data storage as we only need to store the objects 
“Scene” , “A” , “B” , “C” , “a” , “b” , “c” , “d” , etc, and their relationship as expressed

2This statement begs the question: how can we “recognise” an object in an image in 
the first instance. Here we assume that the set of object recognition software has been 
applied to the image to recognise the embedded objects first, and that we also have some 
software to work out how these objects are related to one another. In doing so, we have 
placed some a priori assumptions on the image, e.g., the existence of objects, the type of 
objects that we expect, etc. An example of such object extraction algorithm as well as the 
underlying assumptions is shown in Appendix A.
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in the tree. Secondly, it also clearly shows the relationship of individual objects 
with one another. For example, it shows that the side “B” consists of two objects, 
viz., “e” and “f” . Furthermore, such a tree representation can be noise tolerant. 
If, at some stage, the pre-processor had failed to extract certain features (such as a 
window or door) due to the presence of noise in the image, then the extracted tree 
would still maintain great similarities to a noiseless representation of the image, as 
only some of the leaves are missing, while the overall tree structure of the image 
would still be intact.

Scene

Sky House Ground

A B C

y f c  A
a b e d  e f

Figure 1.2: Representation of the house scene using a tree

One can imagine that there are many situations when a scene is more appropriately 
represented using a tree model, after suitable pre-processing. A question that is 
often asked is: given a number of scenes depicting different sceneries, can we recog­
nise the differences among the scenes. If we can represent these scenes using tree 
models, an equivalent question to ask is: can we distinguish one class of trees from 
another. If we are given a number of trees, can we separate them into categories. 
Answers to such questions would be useful in scene analysis.

1.3 Document Processing

Document processing has emerged as one of the major practical problems related 
to office automation. It is claimed that everyday in a large enterprise, many docu­
ments are created. For example, in a large insurance company, everyday, there will 
be many forms filled in. These forms contain information which would be useful 
to the insurance company. In addition, there are many internal documents being 
created concerning these forms, e.g., accounts paid, transaction details, claims de­
tails, payment details. Depending on the company, these documents can be stored 
in paper form, or at least some of these documents will be stored in electronic form. 
Daily, these forms will accumulate. If they are in paper form, it would be quite 
time consuming to retrieve the information contained on a particular form. If they 
are stored electronically, again, often it is quite difficult to search for and retrieve 
a particular document with prescribed contents, especially if the description of the 
contents is “fuzzy” , i.e., the user is not too certain of the exact content of the doc­
ument. In other words, it is quite difficult to retrieve the exact document if the 
content of the documents cannot be categorised easily (in database terminology, to 
index the contents of the documents), as this would render it difficult to use modern 
database techniques to retrieve the particular document containing the information.

For example, every country has tax returns by citizens or businesses. A typical US 
Federal tax return form for single or joint partners with no dependents is shown in 
Figure 1.3 (left). This form is different from one which is used by employers filling
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in their quarterly returns as shown in Figure 1.3 (right). The US Tax Department 
has an automated process which scans in the information contained on these orms 
directly to an automated tax processing machine. Once the information is scanne 
in, it can be processed using software, which in simple cases, resulted in automa ic 
assessment of tax returns 3. In complicated cases, or cases where the software cannot 
resolve the content, the tax return form would be routed to a human assessor. It is 
claimed that using such automated processes, many thousands of tax returns can 
be processed per hour.

Figure 1.3: A typical US Federal Tax return form for single and joint partners 
without any dependents (left), and a typical US Federal Tax return form for business 
(right)

Document processing is a significant part of this automatic tax assessment process 
[88, 89]. As a preliminary step, it would be useful if we can automatically distinguish 
these two types of forms into separate piles. It is noted that the two forms are 
distinct. The scanned in image can be pre-processed to extract areas which contain 
information. These areas together with the details can be represented by a tree 
model. Once they are represented as tree models, then the question is: can they 
be distinguished from one another. In other words, can we recognise the differences 
between the two tree models. This question, for example, has been addressed in [3].

As another example of document processing, there have been much recent interest 
in machine recognition of mail envelopes in automatic mail sorting applications 
[87, 96]. One of the issues involved in automatically recognising mail envelopes lies 
in the ability to recognise the form of the envelope and to locate where the address 
block is. Figure 1.4 shows a typical example of an envelope. It is noted that it 
consists of a number of separate blocks, e.g., the logo block, the address block, the

Note that one of the main reasons why such forms can be automatically processed lies 
in the careful design of the form, whereby there are redundant information coded into the 
questions that a person needs to provide in order to overcome some of the ambiguities 
caused by the inherent inaccuracies of the scanning process.
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Figure 1.4: A typical handwritten mail envelope

stamp block, etc. This can be represented as a tree as shown in Figure 1.5. The tree 
model makes it transparent on how the various blocks are related to one another.

Envelope

Figure 1.5: A tree representation of the mail envelope shown in figure 1.4

Again, one of the questions which one would wish to ask is: given many envelopes, 
can we “categorise” them into different categories. A tree representation of the 
envelops would be very useful in providing the first step in this recognition problem.

A sub-problem of the document/envelope recognition problem involves the problem 
of logo recognition [19, 28]. The issue is: given a large number of company logos, 
is it possible to recognise them individually. It is trivial to observe that each logo 
can be represented in terms of a tree representation, with each part giving the 
relationships among the components of the logo. Each company would have a 
different logo. Hence, each tree representing the logo is different.



1.4 Internet Behaviour

6 Introduction

The previously discussed examples are all static, in the sense that the problems 
do not change with time. For example, the logo recognition problem: over the life 
span of a project, it is unlikely that a company would change its logo. Similarly, 
the address recognition problem in the document processing application would not 
change once it is written. On the hand, there are problems which are inherently 
time varying, i.e., the system behaviour varies with time. One such problem is the 
behaviour of users on the internet. When a person is searching for information on 
the internet, often the person would follow link after link in search of relevant infor­
mation. If the person searches for the information today, there is no guarantee that 
the person will follow the same path if the person searches for the same information 
some time later. This is partly because the information contained in web pages is 
known to be changing. Indeed, it is claimed that on an average, the information on 
web pages changes once every 30 days. On the other hand, there are often multiple 
references to the same information contained from different pages. Hence a user 
can access the same information using different routes. A typical user behaviour is 
shown in Figure 1.6. The user first accesses document 1. Then the user pursues a 
link to page 2 which subsequently leads to page 3 or page 4, depending on what the 
user is doing. Pages 3 and 4 respectively have their own linkages. Also it is possible 
for the user to jump from page 1 to page 7 as indicated in the figure.

Figure 1.6: A diagram illustrating the behaviour of an internet user

This figure illustrates a time varying behaviour of the user. At one instant, the user 
could go through to the information contained on page 7 via pages 2, and 4. On 
the other hand, at other time instants, the user could go directly to page 7 from 
page 1. Thus, the behaviour of the user depends on what the user is looking for at 
a particular instant.

It is simple to observe that tree representation is ideally suited to represent the 
information that describes such user behaviour in this situation.

1.5 Molecular Chemistry

A central issue in modern drug design is how to correlate the biological activities 
to physical and chemical properties of biologically active compounds. There are
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already well developed models for this [47, 103], for example, development of mod­
els which can exploit a wide variety of molecular properties, including structural 
descriptors such as topological indices. The importance of Quantitative Structure 
Activity Relationship (QSAR) analysis is that it enables the design of new drugs 
on the basis of known structure-activity relationships supplied by the QSAR anal­
ysis. Quantitative Structure-Property Relationship (QSPR) can be considered as a 
generalization of QSAR concept. It assumes that general properties, e.g., physical 
properties of the compounds can be related to their chemical and morphological 
structures. An example of a structure for a chemical compound is as shown in 
Figure 1.7.

n h 2

Software Engineering

c h 2

Figure 1.7: A diagram showing a chemical compound

Neural network methods, e.g., multilayer perceptrons have been applied to QSAR 
and QSPR analyses [17, 31]. However, they require task specific representations, 
e.g., physico-chemical parameters, topological indices, and vertical graph codes, as 
features. On the other hand, there are inherent structural contents in the QSAR 
and QSPR. Hence, it would be useful if these structural properties can be used 
specifically in the encoding of the neural network. In other words, it would be 
useful if we can devise a neural network architecture which explicitly takes into 
account the chemical structural properties [9, 10]. A method has been devised to 
convert the chemical structure into a tree structure, thus permitting analysis of the 
QSAR or QSPR using neural networks [8]. This method is rather involved, relying 
on some specific properties of chemical structures to avoid the possibility of having 
to deal with cyclic graphs explicitly. Hence, we will not include it here but refer the 
interested reader to the reference [8] for further details.

1.6 Software Engineering

A major issue in software engineering is the quality of the software. One way in 
which software quality can be measured is by using what is commonly called a 
software metric [62, 68]. A software metric attempts to measure the complexity of 
a given software package or program. Thus, if the metric indicates that the software 
is complex, then implicitly the software concerned would be more prone to error, 
and difficult to maintain. On the other hand, if the metric shows that the software 
concerned is less complex, then implicitly it is easier to maintain, and less error 
prone.

One of the earliest software metrics devised is called the McCabe metric [62] which
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attempts to measure the complexity of the software concerned. This method works 
by counting the number of juncture points, and decision points. To make the method 
less dependent on a particular programming language, it is common to transform 
the program into an intermediate representation. A suitable intermediate represen­
tation of programming languages is given by dependency graphs. In dependency 
graphs, statements are represented by nodes while directed edges are used to repre­
sent the statement ordering implied by the dependencies in a source program. There 
are various different kinds of dependency graphs, e.g., control dependency graphs, 
data dependency graphs, control flow graphs, and instance dependency graphs [68].

It is a common belief that most procedural languages can be represented as a flow 
graph consisting of a number of basic elements, e.g., decision node, junction node, 
“begin” , and “end” node. Hence, once a source program is transformed into a flow 
graph, it is relatively simple to compute the McCabe metric. The flow graph itself 
can be represented in a graph format showing the skeleton structure of the program 
source code. It is trivial to see that the flow graph can be represented in terms o f a 
graph. In this case, there are cyclic paths in the graph (representing “do loops” and 
“if .. then .. else” structures). An example of a flow graph is displayed in Figure 
1.8.

p rogram  name (list) 
var

beg in  
i f  T1 then

a
else

b;

w hile T2 do  
beg in
d;
i f  T3 then  
w hile T4 do

e
end;

f
end

Figure 1.8: A flow graph and the corresponding program code of a small portion of 
a software package

Software engineering includes the reuse of software components as another impor­
tant problem. There, the task is to find parts o f existing software which can be useful 
for the implementation of new software products. This problem can be solved by 
developing a role model for a given task [69]. For example, the role model may 
express how objects o f a software product interact. Hence, a role model can be ex­
pressed in the form of a graph. A more comprehensive example of this application 
is given in Section 2.6.



Character Recognition

1.7 Handwritten Character Recognition
9

Handwritten Chinese character recognition is an important problem which could 
lead to significant advances in information processing of non-alphabetic languages 
[16], e.g., Japanese, Korean. The written language uses an ideographic concept, 
i.e, each character represents a pictorial concept which was evolved from earlier 
pictorial representation of the concepts conveyed by the character. Hence, there is 
significant structural information contained in the character.

There are two types of character recognition, viz., off-line and online. In the off-line 
character recognition case, the character is presented as it is, while in the online 
situation, information concerning the formation of the character is also available.

There have been much research in handwritten Chinese character recognition using 
syntactical and semantic approaches [16]. These approaches intend to capture the 
information contained in the handwritten character, and to determine what the 
character is.

Figure 1.9: A Chinese character showing two alternative sequences of strokes and 
a possible graphical representation.

The online handwritten character recognition has the added information concerning 
the formation of the character [101]. This may assist in the recognition of the 
character, as it gives more information. On the other hand, because there are 
various ways in which the same character can be formed, thus, this may introduce 
some confusion. For example, Figure 1.9 shows two different ways of writing the 
same character. Both are equally valid. It depends on how the person learned to 
write that particular character. It would be important to ensure that no matter how 
the person writes the character that if it is the same character being written then it 
should lead to the same conclusion, i.e., the same character is being recognised. This 
is especially important since there are people who learned how to write Chinese as an 
adult from books, e.g., learning Chinese as a second language. Hence the sequence 
of strokes could be quite different from native Chinese who learned how to write 
characters using a particular sequence of strokes.

It is possible to represent the different ways of writing Chinese characters using 
graph structures. For example, in Figure 1.9, the sequence of strokes involved in 
writing the character on the left hand side can be represented as a graph involv­
ing nodes and links among the nodes representing the sequence of strokes. Nodes 
are connected if the strokes are connected, strokes drawn first build the parent of



10 Introduction

connected strokes. In a similar manner, the strokes involved in writing the char­
acter on the right hand side of Figure 1.9 can also be represented in terms o a 
graph. This example demonstrates that there are cases where the extracted grap 
is disconnected (i.e. a graph without a common supersource). This problem can be 
overcome simply by introducing a new node and connecting it to the root nodes o 
all graphs extracted from a single pattern. In the given example, node numbered 0 
builds the new root node which connects the extracted structures.
It is quite obvious that the two graphs are different. However, these two graphs 
represent the same character. Hence, we can put them into the same category. It 
is possible to imagine that we can go through all the common Chinese characters, 
enumerate possible ways in which each character can be formed, and represent them 
each in graphs. A question to ask is: can we distinguish the various ways in which 
a character is written from other characters. Such question can be formulated in 
terms of whether it is possible to recognise graphs which are of different structures, 
but nevertheless belong to the same category from a set of given graphs which might 
contain other categories.

1.8 Robot Navigation

There have been much interest in autonomous robot navigation. A particular inter­
esting problem is to assume that the robot has no inbuilt plan of its environments. 
The problem is: if the robot is navigating in a Manhattan environment with similar 
landmarks, how could the robot determine if it has visited the same location before. 
This is illustrated in Figure 1.10. The robot is assumed to be able to move left, 
right, or forward. The robot needs to learn about the environment as it proceeds. 
A tree representing the robot movement at some of the junctions is illustrated in 
Figure 1.11.

T
i—r

S E 1

Figure 1.10: A robot navigating in a Manhattan environment with no explicit 
landmarks

The problem of whether the robot can recognise if it has visited the same place 
before can be formulated in terms of the recognition of the pattern in the graph 
representation. Hence, the task would be to recognise cycles in a graph since this 
these are produced by a robot having visited the same place. However, the general 
handling of cyclic graphs is known to be difficult. This thesis does not attempt to
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Start Postion

Figure 1.11: A possible tree representation of the robot navigating in a Manhattan 
environment with no explicit landmarks

address models capable of handling cyclic graphs 4.

1.9 Conclusions

In this chaptej, we have considered a number of motivating examples of why graph 
representation^ problems would be advantageous. For example, it is illustrated 
that using a graph structure, an image might be more economically represented 
than a pixel map representation. It is illustrated that graph structure underlies 
some problems associated with document processing, e.g., mail envelope routing, 
logo recognition. It is suggested that graph structure may be one way of modelling 
the behaviour of a user surfing the internet. It is indicated that graph structure 
might be one way in which QPAR and QPSR of chemical activities can be repre­
sented. It is illustrated that a flow graph in evaluation of the McCabe metric in the 
determination of the complexity of software packages may be a candidate for graph 
representation. In handwritten recognition of online Chinese character recognition, 
it is illustrated that a graph structure might be a simple way to represent the vari­
ous ways of writing a particular Chinese character thus facilitating the processing of 
information. In robot navigation under a Manhattan environment, it is illustrated 
that a graph structure may be a convenient way to facilitate the recognition of 
whether the robot has visited the same place before.
In this chapter we have refrained from giving detailed information on exactly how 
a graph is obtained from a given problem. Our main aim here is to show the 
plenthora of artificial and practical examples in which graph structure may be a 
convenient way to represent the underlying information. This is best done without 
the cluttering of details of how to obtain a graph structure from a given problem. 
In the next Chapter, we lay the theoretical foundation to represent such problems 
using data structures, and will give details on how to obtain a graph structure from 
a given problem, illustrated by a number of problems.

4The models described in this thesis are capable of handling certain types of cyclic 
graphs. However, we will not focus on this property.
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Chapter 2

Data structures

2.1 Introduction

In Chapter 1, we have illustrated the idea of graph representation of the information 
underlying problems with a number of examples from a large variety of artificial 
and practical problems. We did not give any detailed information on how this can 
be done. It is found that the methods involved in obtaining a graph representation 
differ with the type of data in consideration. Hence, there is no uniform graph 
extraction mechanism that can be applied to various type of data. In this Chapter, 
we will give a number of suggestions on how to obtain graph structures from a given 
problem.
The structure of this chapter is as follows: a review of some relevant concepts in data 
structures is given in Section 2.2. Section 2.3 illustrates the extraction of a graph 
structure using an image; and Section 2.4, illustrates the concept using document 
processing. In Section 2.5, more details are given on how to obtain a graph structure 
from a molecule while avoiding the issue of having to deal with cyclic graphs; and 
finally, Section 2.6 presents a concept using a software engineering example.

2.2 Fundamental concepts of Data Structures

In this section, we will give some relevant concepts in data structures. A distin­
guishing feature in data structures as compared to the common non-structured data 
representation is the possibility of representing variable data length. In multilayer 
perceptron applications, it is necessary that we nominate to use a set of fixed length 
data structure, even though the data structure may be variable. Because of this 
restriction, often we need to augment the variable length data structure by padding 
with zeros. Dependent on the problem, this may result in an oversized network 
(as it requires a larger network to represent the additional zeros in the fixed length 
data format), and possibly longer training time. On the other hand, using data 
structures to represent variable length data, this artifact is not necessary [29].

Data structures are commonly referred to as diagrams or graphs. A graph consists 
of a set of vertices or nodes which are connected by an edge to indicate a relationship 
between the nodes. Formally, a graph Q -  (V, E) is a finite nonempty set of vertices 
V  together with a set of edges E. Elements in E  consist of two element subsets 
indicating which element in V  is connected with which other element in V. For

13
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example, the tuple (v ,w )  G E  indicates that node v  G V  is connected with node 
w  G V .  For convenience, the set of vertices V  from a graph Q is denoted as v er t(Q ), 
and the set of edges E  belonging to graph Q is denoted as egd{Q ).

An edge is considered to be directed if a tuple (v ,w )  G E  is seen as an ordered 
pair rather than a set. In this case, a natural direction from the first vertex of the 
pair to the second can be associated with the edge. Every undirected graph can 
be represented as a directed graph by adding to every tuple (v ,w )  G E  the reverse 
link (w ,v )  G E  [37]. In this thesis, we consider directed graphs only. Hence, when 
referring to graphs, we implicitly mean directed graphs.

An example of a simple directed graph with four nodes V  =  {a, 6, c, d }, and six 
edges V  =  {(a, 6), (a, c), (6, c), (6, d), (c, d)} is as shown in Figure 2.1. Here, a graph 
is graphically represented by using circles to represent nodes and arrows for the 
directed edges.

Figure 2.1: An example of a simple directed graph. Each node in the graph is 
identified by a unique symbol.

An incoming edge to a node 'a' is called an inlink of node 'a1 and the total number of 
inlinks to a node is referred to as the indegree of this node. Similarly, outgoing edges 
are called outlink and the total number of outlinks of a node is called outdegree. The 
maximum number of outlinks at any node of a graph or a set of graphs is called the 
m axim um  out-degree.

A graph is called rooted if there is at least one node with zero inlinks, i.e., a node 
without any incoming links. Nodes with this property are called roots or super­
sources. Nodes with zero outlinks are referred to as term inal nodes or leaf or fron tier  
nodes. Nodes that have both inlinks and outlinks are called interm ediate nodes. An 
intermediate node is said to be located at level l if the shortest sequence of edges 
leaving from this node to a terminal node of the same graph is l [37]. Thus, in 
Figure 2.1 the node a is the root of the graph, node d is the terminal node of this 
graph. All other nodes are intermediate nodes, where both nodes b and c are located 
at level 1. The maximum out-degree of this graph is 2. The maximum in-degree of 
this graph is also 2.

The source of an inlink is called the parent of a node v  G V  and is sometimes denoted 
as pufu]. The destination of an outlink of a node v  G V  is called child or offspring  
and is denoted as c/ift?]. The A:-th child of v  is denoted as ch f̂t?]. Using the graph 
depicted in Figure 2.1 as an example, node a is the parent of nodes b and c. Nodes 
b and c are respectively parents of node d. In addition, node b is also a parent of 
node c. As a consequence, node d is a child of both nodes b and c, whereas b and c 
are both the children of node a. Node c is also a child of node b.

A graph is said to contain a cycle if there is a sequence of edges leading from one 
node in the graph back to the same node. Graphs not containing any cycles are 
called acyclic. A collection of cyclic graphs is given in Figure 2.2.

An ordered graph is a graph Q with a vertex set vert(<?) and an edge set egd(£),
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Figure 2.2: An collection of simple cyclic graphs. Note that none of the nodes in 
these graphs is either a root or a terminal node.

where for each v 6 vert(^), a total order on the edges leaving from v is defined. A 
superclass to ordered graphs is the set of positional graphs. A positional graph is a 
graph Q with a vertex set vert(£y) and an edge set egd(^), where for each vertex v  
a bijection P  : egd(£)-> IN is defined on the edges leaving from v. Nodes that have 
an associated label (symbolic or numeric) are said to be labelled nodes. Graphs 
consisting of labelled nodes are referred to as labelled graphs. An example of a 
labelled graph is shown in Figure 2.3.

Figure 2.3: An example of a simple directed acyclic labelled graph. Labels are real 
valued vectors. The dimension of the data label is the same for all nodes.

A subgraph of a graph Q is any graph Ft such that V  {Ft) C V (Q) and E(FL) C E (Q ), 
and it is said that Q contains Ft.

In this thesis, we consider the use of labelled directed ordered acyclic graphs 
(DOAGs) which does not necessarily impose a restriction. Every undirected graph 
can be represented by a directed graph. In addition, the consideration of ordered 
graphs allows us to distinguish graphs such as those shown in Figure 2.4.

Figure 2.4: Two simple graphs which can be distinguished when considering ordered 
graphs.

Furthermore, the class of labelled graphs contain the class of unlabelled graphs 
as a subset. The use of data labels is often useful. For example, labels can hold 
attributes associated with an object which is represented by a node in the graph. 
The use of acyclic graphs imposes a restriction to the domain of directed graphs.
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This restriction is necessary since nodes interacting through a loop define a infinite 
recursive problem, a problem which is hard to solve. However, it is possible in many 
cases to overcome this restriction by replacing nodes involved in a loop by a single 
node. This, for example, is commonly done in the area of molecular chemistry.

A tree is a particular type of DAG where the graph is connected, i.e. there is exactly 
one root node for each graph. Contrary to a physical tree, a node can have more 
than one parent. Sometimes we refer to tree data structures in order to simplify 
the notation.

The following sections illustrate on a number of real world applications how a graph 
representation is obtained from raw data.

Image processing

2.3 Application to Image processing

Consider an example from the area of image processing. The task is to find a 
mechanism that is able to efficiently represent a given image in the form of a graph 
structure. One way of achieving this is by pre-processing a given image using 
common filter mechanisms e.g., low-pass filters and high-pass filters. The high pass 
filter will retain the external shape of the object by accentuating the edges, while 
the low pass filter will smooth out the interiors of an object [53]. An example of 
such a mechanism is shown in Figure 2.5.

Figure 2.5: A photograph of a house (left), and the same image after pre-processing 
with low-pass and high-pass filters (right). Regions that are enclosed by edges are 
marked with unique symbols.

Here, the image of a house has been pre-processed using a low-pass filter for the 
removal of noise and small unwanted features (as these will be smoothed), and a 
high-pass filter for edge detection. The resulting image is then processed further to 
detect areas that are enclosed by edges. Each of the enclosed areas is marked by a 
unique symbol to allow the buildup of a graph representation. For example, Figure
2.6 displays a graph structure obtained from the image shown in Figure 2.5.

Each area in the image produces a node in the graph where relationships between 
the areas are used to build up the structure of the graph. This effectively represents 
structural relationships between elements in the original image (For example. 02 is 
inside the area enclosed by w 3). A numeric 1 data label is attached to each node *

^ h e  labels are numeric in this particular case as they represent the features of the
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Figure 2.6: The graph representation of the house shown in Figure 2.5. Note that 
data labels which are associated with each node in the graph are not shown here.

in the graph holding information about the area represented by the node. This 
information can include shape, colour, size, location, and other details about this 
area. These are often referred to as features. Since every node exhibits the same 
number of features, the dimension of the data label is constant over all nodes in the 
graph.

This filter mechanism unfortunately has some drawbacks. First, it is computational 
expensive so that the processing of very large image database becomes quickly 
infeasible. Secondly, it can produce unreliable results on images with low contrast. 
In this case, edges in the image are very weak and it becomes difficult to reliably 
detect areas enclosed by edges. For example, parts of an edge may be missing 
due to a low contrast in the original image. Thirdly, graphs produced by this 
mechanism tend to be rather wide and flat. This effectively reduces the variety of 
graphs extracted from a large database of images, making the task of differentiating 
between graphs produced by different images a more difficult task.

An alternative approach based on the quadtree algorithm [53] has been applied to 
image processing tasks with more success [97]. Quadtree recursively decomposes 
an image into four equally sized rectangles as illustrated in Figure 2.7. The recur­
sion continues until a stopping condition has been encountered. Common stopping 
conditions are based on reaching a certain depth in the subdivision process of the 
image, or an image segment featuring a small variety of colours, indicating that the 
segment does not contain significant features so that there is little variation in the 
colour of the segment.

There are a number of advantages associated with the application of the quadtree 
algorithm. First, it is simple to obtain a graph representation. It is convenient to 
elect the initial area (the entire image) as a root node for the graph. The offsprings 
are formed by attaching the areas formed by the decomposition of the original image 
into four segments. Selected segments are further sub-divided into four segments, 
as shown in Figure 2.7 and so on. Thus, the graph structure is built recursively with 
the application of the quadtree algorithm. The result is a simple type of graphs 
known as trees. The second advantage of using a quadtree representation is that the 
graph produced nodes that have either an out-degree of zero (for terminal nodes), 
or an out-degree of four (for all other nodes). This allows the implementation of

object, e.g., the colour, the size, the location, etc. In general, labels can be either numeric 
in value, or logical in value. Logical values are often used to indicate if a feature is present 
or not.
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Figure 2.7: The quadtree algorithm. An image is recursively segmented into four 
equally sized parts (left). From this, a corresponding graph structure can be ob­
tained (left).

“optimized” algorithms for the processing of such graphs taking advantages of these 
special properties.

Graphs produced through the application of the quadtree algorithm tend to feature 
a large number of nodes, because each time a segment is subdivided, four sub­
segments are created, no matter whether these sub-segments will be useful or not. 
This may slow down an algorithm for processing graphs. However, having graphs 
with a relatively large number of nodes minimizes the risk of producing identical 
(or very similar) graphs from different images.

Again, each node in the graph receives a data label containing information about 
the area represented by this node. For example, in [97], each data label is a six­
dimensional vector containing visual features consisting of four colour attributes, 
and two texture attributes. The colour attributes include the number of quantizised 
colours, and the percentage of the three most dominant colours in RGB (red, green 
and blue, the three primary colours) format. The average pixel value and the 
corresponding standard deviation are used to characterize the texture attributes.

There are many other techniques for representing images as graphs. Some of the 
better known ones are contour trees [104] and region adjacency graphs [18, 74]. This 
indicates that there is no graph extraction algorithm which is generally applicable to 
all types of images. Hence, the suitability of a graph extraction mechanism depends 
on the undelying task.

2.4 Document Processing

Logo recognition can be seen as a special case of image processing. Similarly, docu­
ments can be seen as images with particular properties. Since documents typically 
feature a geometric layout, the task of document processing is simpler than the 
processing of general images. A successful approach to the processing and classifi­
cation of documents relies on a graph extraction method called X Y -tr e e  algorithm
[65]. The idea of the XY tree algorithm is simple. A document is scanned in as 
a gray scaled image. The image content is then segmented into areas that could 
be separated through a straight horizontal or vertical line without crossing signifi­
cant amount of text or graphic content. These segments are recursively segmented 
into smaller areas until no further line can be drawn without crossing a significant 
amount of text or graphic material. An example of applying this idea is shown in
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Figure 2.8: A document segmented into blocks of text, tables, and graphics using 
the XY-tree algorithm. The original document is shown on the left, the segmented 
result is shown on the right. The segmentation process has been stopped at the 
second level to avoid cluttering.

Figure 2.8. Here, the first step of the segmentation process produced three blocks 
identified by H , H, and F .  These blocks are then divided into further blocks de­
noted by lower case identifiers. From this, a graph representation is obtained by 
representing the entire document as the root of the graph. The root’s offsprings are 
formed by the result of the first iteration of the segmentation process. The graph 
structure is built up recursively in a similar manner to the quadtree algorithm pre­
sented in Section 2.3. Figure 2.9 depicts the graph representation of the document 
shown in Figure 2.8.

Figure 2.9: The graph representation of the document shown in Figure 2.8. Note 
that data labels are not shown here.

Dependent on the document types, the features used in the data labels can be quite 
different. For example, in the case which requires text recognition as part of the ap­
plication, one can process the segments by first ignoring those which contain graphic 
materials. The segments which contain text materials can then be processed. If we 
assume that the words of the total vocabulary of the text be represented in a vector, 
then the occurrence of a word or not can be represented in this vector by using 0 or 
1. If we assume that there is a “stop” list which contain words which should not be 
included in the vocabulary, e.g., the words “the” , “a” , “and” etc. Then, the words 
occurring in a text segment can be represented by 0 and 1 of a feature vector. Thus,
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in this case, the data label could include this feature vector. In addition, it may 
include information on the size of the segment, the fonts used in the segment etc.

2.5 Molecular chemistry

Another interesting example is from the area of molecular chemistry. In [8], a task 
is described in which the properties, e.g., the boiling point, of a particular group 
of molecules, the benzodiazepines, are to be predicted from structural properties of 
the chemical molecules. A method suitable for representing molecular structures 
was studied in [8, 9]. The method works by selecting a particular ring structure 
of the molecule to be the root of a graph. This ring structure is present in all 
benzodiazepines and hence is a suitable starting point for building up a graph 
structure. Offsprings are formed by atoms or structures directly attached to this 
ring structure. The graph is built up recursively as illustrated in Figure 2.10. The

Figure 2.10: Generating a graph representation from a molecule can be performed 
by collating ring structures, and by respecting the connectivity between atoms in 
the structure.

method shown in Figure 2.10 represents ring structures by a single node. This is to 
avoid the generation of cyclic graphs which can cause problems with many graph 
processing methods.

The label associated with each node in the graph is a unique numeric representation 
of the chemical element (or compound) represented by the node. An example: 
The data label associated with the nodes shown in Figure 2.10 may be 1 if a node 
represents hydrogen (H), 2 if a node represents fluoride (F), 3 for nodes representing 
the compound PH, and so on.

2.6 Software engineering

Another group of challenging real world problems comes from the area of soft­
ware engineering. Tasks can be the measurement of software quality as described in 
[62, 68], or the effective reuse of software components, and many other tasks In [201 
a model is described that represents object oriented code by a graph These struc­
tures are then used for training a connectionist network (neural networks) where 
the goal is to find a representation of object-oriented specifications to be used in 
analogical mapping. The hope is that through analogical reasoning, object oriented 
specifications can be found that are suitable for reuse in other environments. The 
framework set by [20] includes a schema for representing object oriented specifica-
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tions in terms of directed graphs. The example given in Figure 2.11 illustrates how 
an object oriented role model is represented by a graph.

Figure 2.11: An object oriented role model (left), and a graph representation (right). 
The notation is explained in the text.

Here, the model represents an object by a super-ellipse, where collaborating objects 
are connected by a solid line. This line effectively represents a message path be­
tween objects where semantic relationships are represented by small circles, called 
ports. A port defines the knowledge an object has about the remote object. If an 
object knows exactly about one collaborator, then this is denoted by a small circle. 
A double circle indicates that the object knows about any number of the collab­
orator; a missing circle indicates that the object does not know the collaborator. 
A graph representation is obtained by creating a node for each object in the role 
model. Nodes are connected by directed links if there is a semantic relationship 
defined between the nodes. Note that the role model carries more information than 
the graph representation. This is because no distinction is made between the re­
lationship which knows about one collaborator and which knows about any num ber 
o f collaborators. This limitation may contribute to the limited success achieved by 
[20] when applying this method to a neural network known as LRAAM (Labelling 
Recursive Auto-Associative Memory) [83].

The label associated with each node in a graph is a composition of a unique binary 
node identifier and binary values to indicate the state of outlinks. Missing outlinks 
are encoded as 0, otherwise the value 1 is used to indicate an existing outlink. 
Hence, if there are n  binary values to represent the node ID, and m  binary values 
to represent the outlinks (where m  must be greater or equal to the maximum out- 
degree of any node in the data set), then the dimension of the data label 1 is: 
Jlj =  n  +  m . For example: If m  =  n — 2, then the data label associated with the 
nodes shown in Figure 2.11 is given as follows:

lGarage =  (0> 0j l j  1)
lCustomer=  (0 j T  1? 0 )
Êmployee — (T  1? 1)

2.7 Conclusion

In this Chapter, we have considered a number of practical examples which can be 
represented in terms of graph structures. We have indicated in each example how 
a graph structure can be obtained. In addition, we showed how features can be 
extracted and arranged in data labels.

The techniques for extracting graph structures and their associated data labels are 
specific to the practical examples we have indicated in this Chapter. While it is 
difficult to generalize these techniques and give a universal graph and data label 
extraction method as each practical problem may require different graph and data
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label extraction methods, nevertheless the examples given in this Chapter serve as 
prototypes of such process. By considering a particular problem at hand, and by 
assuming some a priori knowledge on the practical situation, it is normally not too 
difficult to*extract an underlying graph structure and its associated data labels, if 
a graph structure is a convenient way to represent the problem.

There are a number of interesting questions associated with the extraction of a 
graph structure and its associated data labels:

• Given a particular practical problem, is it always possible to find a graph 
structure representation? We know that the answer to this question is 
false. For example, there are images which simply cannot be represented in 
terms of a graph structure, e.g., random visual patterns, smooth textural 
patterns. However, a different question to ask is: what characteristics o f a 
problem would allow it to be represented by a graph structure. We do not 
know the answer to this question. It is suspected that this question is hard 
to answer.

• Given a particular problem, and given that we know a graph structure can 
be extracted, is it always possible to extract a unique graph representation? 
We do not know the answer to this question. However, it appears from our 
own experience there are different ways of extracting a graph structure. 
Sometimes the graph structures produced visibly different (though there 
might exist some underlying equivalence). Hence there is a high possibility 
that the answer to this question might be false.

• Given a practical problem and given that we know we can extract a graph 
structure from this problem, is it possible to extract a set of unique data 
labels. For simplicity, we assume that we can extract a unique graph repre­
sentation from this practical problem. We know the answer to this question 
is false. We know that there are different ways to extract data labels de­
pendent on the aim of data processing. However, another question to ask 
is: under the same assumptions given previously, if it is for a particular 
aim, can we still obtain a unique set of data labels. We suspect the answer 
to this question is still false, as we know we can either add more features or 
less features to the data labels. But here is an interesting question: would 
the result of computation be different. In other words, if we are given a 
set of graphs representing various practical situations. If we extract two 
different set of data labels for the same graph, one more elaborate, e.g., 
in the case of image processing, including size, colour, location, while the 
second set of data labels is less elaborate, including, e.g., only size. If the 
aim of data processing is to recognise different categories of images from 
this given set of graphs, the question is: would the results be different if 
we use the set of more elaborate data labels, and if we use the set of less 
elaborate data labels. Again we do not know the answer to this question. 
We suspect that the answer would depend on the particular problem at 
hand.

In this thesis, we will not answer any of these interesting questions as we suspect 
that these questions are not answerable, at least in the loose informal manner which 
we defined them here. Instead, we propose to develop algorithms which can be used 
to process given graph structures. Implicitly we assume that through preliminarv 
experimentations, we have found that the set of data labels used would be good 
enough for the problem at hand. Naturally, in this thesis, we will only consider 
problems which can be represented in terms of graph structures.



Chapter 3

Self Organizing Maps

3.1 Introduction

This chapter gives an introduction to vector quantization (VQ) and Kohonen’s self 
organizing map (SOM) m odel1. A SOM typically performs a mapping from a high 
dimensional continuous input space to a low dimensional display space. It is com­
mon to discretise the display space using a layer of sensorial units. Such units are 
commonly referred to as neurons in recognition of their observed properties which 
are similar to those observed in biological neurons. Biological neurons demonstrate 
self-organizing properties in that different areas of the brain serves different pur­
poses. This segmentation of biological neurons takes place during early stages of 
the brain’s development and seems to be the result of some learning process. In 
this chapter, when referring to neurons, we actually mean models of artificial neu­
rons. Note that these neural models differ from those used in describing artificial 
neurons in other neural architectures such as Multilayer Perceptron and Cascade 
Correlation networks (in terms of their learning behaviour and their architectures). 
In the literature, the neurons in a SOM are always arranged as a ^-dimensional 
layer where often q =  2, and the layer is commonly called a map. Hence, one im­
portant property of the SOM model is that it reduces the dimensionality of input 
data through some mapping process to one with a lower dimension. In addition, 
the SOM model exhibits a topology preserving mechanism that has the effect of 
mapping related (similar) data in the high dimensional input space onto topological 
close areas of the display space. In other words, if two points are topologically close 
in the high dimensional space, then they will be remain topologically close in the 
low dimensional space.
In practice, the SOM model has become a widely applied mechanism which is used 
to either detect and visualize properties of high dimensional input data, or as a 
pre-processing step to filter out essential properties of a data set, and hence reduce 
the complexity of processing that data by reducing its dimensionality.

This chapter introduces the SOM-model and illustrates the learning algorithm in 
some detail. The theory introduced in this chapter forms the basis of an extended *

xIn this thesis, we abuse the terminology slightly by referring synonymously to a “self 
organizing map model” and a “self organizing map” method or technique. In strict terms, 
self organizing map is a technique to visualise a set of high dimensional data. However, in 
common with normal usage, many people refer to it as a self organizing map method or a 
self organizing map model.
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model of the SOM. The extended SOM-model, which is addressed in Chapter 4, 
enhances the capabilities of SOM by allowing the SOM concept to map more com­
plex data structures such as DOAGs. A further advancement o f the SOM model is 
introduced in Chapter 5 where a supervised SOM model for the structured domain 
is introduced. As will be observed, the extended models contain the standard model 
as a special case, and hence are backward compatible in the sense that the same 
data applied to the standard SOM can be processed by the SOM-SD algorithm. 
The common feature of all the models described respectively in Chapter 3, Chapter 
4 and Chapter 5 is that input data, either flat structures or graphs, are mapped 
onto a fixed dimensional display space. This is a particular interesting property 
when considering the processing of graph structured information.

The standard SOM model is a direct outcome of work in the area of “vector quan­
tization” and “learning vector quantization” . The SOM model as introduced by T. 
Kohonen was a logical next step in the evolution of methods for vector quantization.

Vector quantization (VQ) and self organizing maps (SOMs) are popular and well 
studied methods for quantizing sets of input vectors [59]. These methods are typi­
cally trained in an unsupervised fashion though some supervised ones do exist [55].

This chapter is structured as follows: The basis for understanding of self organizing 
maps is laid through Section 3.2 which introduces the topic of vector quantization, 
and Section 3.3 which addresses learning vector quantization. The description of 
the SOM model is given in Section 3.4, and a detailed overview to the SOM learning 
algorithm is presented in Section 3.4.1. Finally, Section 3.5 gives a summary of this 
chapter and motivates for Chapter 4 which will address a SOM model for graphs.

3.2 Vector quantization

Vector quantization (VQ) is a technique whereby the input space is subdivided into 
a number of distinct regions [61]. Each region is represented by an n-dimensional 
reference vector m* <E Mn, i =  1 , . . . ,  k. The reference vectors together form a code­
book,, hence, reference vectors are also called codebook vectors 2. Given a new input 
vector u £ lFtn, a vector quantiser determines the region in which the vector lies. 
Then, the quantiser outputs the codebook vector that represents this region. This 
is performed through the computation of the closest Euclidean distance between the 
input u and all codebook entries. The competitive learning rule shown in (Equation 
3.1) is then applied.

Self Organizing Maps

Am*
■{

a(t)(u  -  m ;) if m ; is the closest codebook to u . v
0 else (3-1)

where a is a learning rate, typically much smaller than 1. This algorithm is applied 
recursively over the entire set of training data until a convergence criterion is met. 
Often, a  decreases monotonically with the number of iterations. Indeed the formal 
theory for the convergence of this algorithm requires that a  must decrease at least 
at a rate inversely proportional to the number of iterations. Effectively vector 
quantization is an unsupervised learning scheme which can find clusters in the input 
space, and can be seen as a method that compresses information by representing 
the training set through a relatively small collection of codebook entries.

nr frn m t^ p f fhf  Codebo°kvectors may be obtained using a random initialisation process, or trom a set of training data set. ’
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The supervised version of vector quantization is called Learning Vector Quantization 
or LVQ, and is addressed in the following section.

3.3 Learning Vector Quantization

Learning vector quantization (LVQ) is a group of supervised vector quantization 
methods introduced by Kohonen in 1986 [54, 56]. The goal of LVQ is to have the 
neural network “discover” an underlying structure in the data by finding how the 
data is clustered. Classes are represented by a relatively small number of codebook 
vectors, properly placed within each class zone such that the decision boundaries are 
approximated by the nearest-neighbour rule. Unlike the normal k-nearest-neighbour 
classification, the original samples are not used as codebook vectors, but they are 
used to tune the codebook vectors. LVQ aims for the optimal placement of these 
codebook vectors.

A classifier based on LVQ employs k codebook vectors m* 6 lRn, i =  1 , . . . ,  k. Each 
codebook vector is labelled with an integer representing the class. Usually, several 
codebook vectors are assigned to each class. An input vector u is said to belong to 
the same class as the nearest codebook vector m c. This is illustrated in (Equation 
3.2):

c =  argmin ||x — m*
i

(3.2)

There are three different updating rules for LVQ, namely LVQ1, LVQ2, and LVQ3. 
The simplest version of LVQ, commonly referred to as LVQ1, adapts only the closest 
codebook entry as shown in (Equation 3.3):

. f a (t ) (u -m .i )  if x  and m i belong to the same class. ,0
A m i =  (  —a ( t ) ( u - m i) else (3'3)

All other codebook entries m j,i  /  c remain unchanged. The learning rate a  is 
normally defined to be 0 <  a  <  1 and decreases monotonically with the number of 
iterations until zero. Other versions of LVQ also adapt the second closest codebook 
in a similar manner. There is no VQ method which adapts all codebook entries in 
its learning rule. This is due to the existence of undesired side effects which would 
arise out of such an approach.
A method that extends the ideas expressed in VQ arranges the codebook entries 
onto a two-dimensional plane allowing the updating of all codebooks in a learning 
step. This method has become known as a Self Organizing Kohonen Map or SOM, 
and is addressed in the following section.

3.4 The classic Self Organizing Map

Kohonen’s [58, 57] self-organizing (feature) map (SOM) has become one of the 
most well known form of unsupervised learning. It expands the ideas expressed 
in Section 3.2 and Section 3.3 in that it defines a neighbourhood relation on the 
codebook entries. In addition, SOM updates all codebook entries, not just the 
closest codebooks as in VQ or LVQ.
SOM was developed to help identify clusters in multidimensional datasets. The



SOM does this by effectively packing the dataset onto a two-dimensional plane . 
The result is that data points that were “similar” to each other in the original mul­
tidimensional data space are then mapped onto nearby areas of the two dimensiona 
output space. SO Ms combine competitive learning with dimensionality reduction 
by smoothing the clusters with respect to an a priori grid. The SOM algorithm 
involves a trade-off between the accuracy of the quantization and the smoothness 
of the topological mapping. The SOM is called a topology-preserving map because 
there is a topological structure imposed on the nodes in the network. A topological 
map is simply a mapping that preserves neighbourhood relations.

3.4.1 T he S O M  learning algorithm

The basic idea of SOM is simple. The SOM defines a mapping from high dimensional 
input data space onto a regular two-dimensional array of neurons. Every neuron i of 
the map is associated with an n-dimensional codebook vector m¿ =  {m u , . . . ,  m¿n) . 
The neurons of the map are connected to adjacent neurons by a neighbourhood 
relation, which defines the topology, or the structure, of the map. The most common 
topologies in use are rectangular and hexagonal [59].
Adjacent neurons belong to the neighbourhood Ni of the neuron i. Neurons be­
longing to Ni are updated according to a neighbourhood function / ( . ) .  Most often, 
/ ( . )  is a Gaussian-bell or a Mexican-hat function. In the basic SOM algorithm, the 
topology and the number of neurons remain fixed from the beginning. The number 
of neurons determines the granularity of the mapping, which has an effect on the 
accuracy and generalization of the SOM [59].
During the training phase, the SOM forms an elastic cover that is shaped by input 
data. The algorithm controls the cover so that it strives to approximate the density 
of the data. The reference vectors in the codebook drift to the areas where the 
density of the input data is high. Eventually, only few codebook vectors lie in areas 
where the input data is sparse.
The training algorithm of the weights associated with each neuron in the q- 
dimensional lattice can be trained [59] using a three step process as follows:

Step 1 Competitive step. One sample vector u is randomly drawn from the input 
data set and its similarity to the codebook vectors is computed. There are 
two possible matching mechanisms:

1. Similarity. In this case, we evaluate the dot product between the 
weight of the neuron and the input, i.e.,

Si =  uTm¿ (3.4)

where u denotes the input vector and m¿ denotes the weight vector 
associated with neuron i. The winning neuron, denoted by the neuron 
r, satisfies the relationship:

r =  argm inuTm¿ (3.5)

2. Minimum Euclidean distance. In this case, we measure the Euclidean 
distance ||u — m¿|| between the input and the weights o f the neurons. 3

3For simplicity reasons, we restrict ourself to two-dimensional Kohonen maps. In theory 
the input data can be mapped into a ^-dimensional maps, where q € ÍV+ are possible.
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The winning neuron is obtained through 4:

Self Organizing Maps

r =  argmin ||u — mi|| (3.6)
i

Step 2 Cooperative step. After the best matching unit m r has been found, the 
codebook vectors are updated. m r itself as well as its topological neighbours 
are moved closer to the input vector in the input space i.e. the input 
vector attracts them. The magnitude of the attraction is governed by the 
learning rate a  and by a neighbourhood function / ( Afr), where A¿r is the 
topological distance between m r and mi. As the learning proceeds and new 
input vectors are given to the map, the learning rate gradually decreases 
to zero according to a specified learning rate function type. Along with the 
learning rate, the neighbourhood radius decreases as well 5. Again we have 
two cases:

1. Similarity. In this case, the updating algorithm is given by:

Am i
mi+r;u

| | m i + 7 j u | |

0

if i E Nr 

if i # Nr
(3.7)

where Nr denotes the neighbourhood of the winning neuron r, mi 
the weight vector, and 77 is a learning coefficient. The neighbourhood 
function can be either rectangular or hexagonal as long as it forms a 
lattice.

2. Euclidean distance. In this case, the updating algorithm is given by:

A m i =  a (t ) /(A ir)(irii -  u) (3.8)

where a is a learning coefficient, and instead of a neighbourhood re­
gion, we have used a neighbourhood function / ( . ) ,  which controls the 
amount which the weights of the neighbouring neurons are updated. 
The neighbourhood function / ( . )  can take the form of a Gaussian 
function:

/(A ir ) =  exp )  (3-9)

where a is the spread, and lr is the location of the winning neuron, and 
li is the location of the ¿-th neuron in the lattice. Other neighbourhood 
functions are possible.

Step 3 Recursion. The steps 1 and 2 together constitute a single training step and 
they are repeated until the training ends. The number of training steps 
must be fixed prior to training the SOM because the rate of convergence in 
the neighbourhood function and the learning rate is calculated accordingly.

After the training is over, the map should be topologically ordered. This means 
that n topologically close (using some distance measure e.g. Euclidean) input data 
vectors map to n adjacent map neurons or even to the same single neuron.

4Note that minimizing the Euclidean distance is equivalent to maximizing inner product 
(axgmaxi(u, mi)) if u  and m i have unit length.

5Generally, the neighbourhood radius in SOMs never decreases to zero. Otherwise, if 
the neighbourhood size becomes zero, the algorithm reduces to vector quantization (VQ) 
and no longer has topological ordering properties (Kohonen 1995 [59], p. 111).
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After the SOM has been trained, it is important to know whether it has properly 
adapted itself to the training data. Because it is obvious that one optimal map for 
the given input data must exist, several map quality measures have been proposed. 
Usually, the quality o f the SOM is evaluated based on the mapping precision and 
the topology preservation.

The mapping precision measure describes how accurately the neurons respond to 
the given data set. For example, if the reference vector o f the best matching unit 
calculated for a given testing vector X{ is exactly the same as Xi then the error in 
precision is 0. Normally, the number of data vectors exceeds the number of neurons 
and the precision error is thus always different from 0. A common measure that 
calculates the precision of the mapping is the average quantization error E q over 
the entire data set [59]:

Self Organizing Maps

E, = ^ ¿ | | x J- m r|| (3.10)
3 = 1

The topology preservation measure describes how well the SOM preserves the topol­
ogy of the studied data set. Unlike the mapping precision measure, it considers the 
structure of the map. For a strangely twisted map, the topographic error is large 
even if the mapping precision error is small. A simple method for calculating the 
topographic error is [59]:

Et
1 N  

k = l
(3.11)

where g (x*) is 1 if the first and second best matching units o f x* are not next to 
each other. Otherwise g(xk) is 0.

The SOM can be applied to tasks where large amounts o f unclassified data is avail­
able. Important practical applications of SOMs are in exploratory data analysis, 
pattern recognition, speech analysis, robotics, industrial and medical diagnostics, 
instrumentation and control.

3.5 Conclusions

The Self Organizing Map model allows to find clusters in high dimensional data sets 
by means of a topological preserving mapping process. This is performed without 
the use of a supervisor or a teacher signal. The SOM algorithm is relatively simple 
and grows in complexity linear with the number of input data and the number of 
neurons on the map.

There are a number of issues associated with SOM which include:

.  Convergence o f the SOM algorithm. There does not exist a convergence 
for SOMj even though a convergence theorem exists for VQ or 

Ly Q [59]. The reason may be attributed to the fact that it is rather difficult 
to handle the neighbourhood function in convergence analysis.

.  It appears quite difficult to formulate SOM from the minimisation o f a cost 
function point of view. Even though there were various attempts in formu­
lating the algorithm from an error function point o f view, these were often
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viewed as “un-natural” [50]. A major reason for the desire to formulate the 
algorithm in terms of an error function is that it would be much easier to 
consider the convergence of the algorithm from this point of view.

• A natural question to ask is: is it possible to map the continuous input space 
onto a continuous display space, rather than a discrete display space. This 
appears to be possible. However, the algorithm is far more complicated 
[93]. We will not consider this aspect in this thesis.

• Recently an interesting view of SOM is from a generative point o f view [11]. 
This is known as generative topological map (GTM) [12, 94]. Instead of 
viewing the input from the point of view as illustrated in this chapter, the 
generative point of view considers the generation of the map from an input 
data set based on a priori model. The problem then becomes the estimation 
of the parameters of the model from the input data set. In other words, 
the generative topological map can be considered as the inverse of the SOM 
as considered in this chapter. We will not consider this point of view, as 
currently it is not clear how to extend our work to be presented in Chapter 
4 to this formulation.

However, SOM is limited to the processing of fixed sized input vectors. This is 
because the methods employed do not allow the consideration of variable sized 
inputs such as data sequences or richer structured data. An approach which relaxes 
this limitation is described in the following chapter.
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Chapter 4

SOM for structured 
information

4.1 Introduction

This section introduces a self organizing map which can process structured data 
(SOM-SD). A feature of the proposed method is that structures e.g., DOAGs, can 
be processed in an unsupervised fashion. Moreover, there are two different retrieval 
possible methods, demonstrating the flexibility of SOM-SD. As will be demon­
strated, a SOM-SD model defines a general mechanism which includes standard 
SOMs as a special case. The behaviour and performance of the SOM-SD model is 
investigated through its applications to benchmark problems. It will be found that 
the SOM-SD model provides an efficient mechanism for tasks involving graphs.

As far as we are aware, the concepts and ideas presented in this chapter are novel. 
The work has been inspired by the original work of Kohonen [59].

The structure of this chapter is as follows: Section 4.2 demonstrates various ways 
in which data can be represented. This helps with the understanding on how to 
process graph structured information using a SOM. In Section 4.3 an alternative 
approach of presenting a SOM architecture is displayed. It is assumed that a SOM 
consists of two tightly connected maps, one for the mapping of data label, the other 
for the mapping of the underlying structure of the data. As will be observed, it is 
trivial to merge the two maps into just one. The training mechanism for SOM-SD is 
illustrated using a step-by-step example in Section 4.3.1. A more formal approach 
for describing the learning algorithm is taken in Section 4.3.2. Section 4.3.3 de­
fines measurements for the network error, viz. the quantization error. Retrieval 
mechanisms which are available for SOM-SD are given in Section 4.3.4. Tips for 
speeding up network training are given in Section 4.3.5, and similarities with other 
neural network models for structured domains are shown in Section 4.3.6. A com­
prehensive set of experiments in Section 4.4 is used to illustrate the capabilities of 
the SOM-SD model. Experiments were conducted on a simple learning task (Sec­
tion 4.4.1), a more complex data set (Section 4.4.2), and a large, relatively difficult 
learning task (Section 4.4.3). A short note on the long term dependency problem is 
given in Section 4.4.4. Finally, Section 4.5 summarizes the findings and draws some 
conclusions.
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4.2 Data presentation

There are numerous ways to display and present graph structured data. In this 
section we will give an overview of some common methods for graph representations. 
To do this, we restrict ourselves to labelled directed acyclic graphs 1. This section 
addresses ‘external’ data representation which is the structure of data as presented 
to the network. The ‘internal’ representation as encoded by the network is addressed 
in Section 4.3.1.
A common method for presenting graphs is shown in Figure 4.1. Such a represen­
tation allows a simple analysis of the structure by a human observer. However, for 
machine learning, such a representation is not suitable.

Figure 4.1: An example of a labelled directed graph. Each node in the graph is 
identified by a unique symbol (here numbers). Associated with each node is a 
2-dimensional real valued data label. The node numbered 1 is called root or su per­
source, node 3 is the term inal node of this graph. All other nodes are in term ediate  
nodes. The maximum out-degree (the maximum number of children at any node) 
of this graph is 2.

In machine learning, a data representation such as the one defined in Section 2.2 can 
be chosen. Thus, a graph representation can be given as follows: let V  be a finite 
non-empty set of nodes, each representing a node in the graph which is associated 
with a p-dimensional data label. Further, let E  C V  x V, where (tq, v 2) G E  if and 
only if there is a connection between the nodes Vi and v2 . Then the pair ( V ,E )  is 
a directed graph representation of the data structure. With this, the graph shown 
in Figure 4.1 can be written as: V  =  {1 ,2 ,3 }, and E  =  {(1 ,2 ), (1,3), (2 ,3 )}.

Such a representation is easily transformed into a tabular form such as demonstrated 
in Table 4.1. It can be observed that this representation effectively transforms a 
graph structure into a set of vectors. These vectors can be made constant in size 
if the maximum out-degree and the maximum data label dimension are known. 
For nodes with missing children or smaller data label size, padding with a suitable 
constant value can be deployed. Fixed sized vectors are useful to serve as an input for 
an artificial neural network. Traditional neural models use fixed size data labels as 
input where relationships between the data is not considered. In the case of graphs, 
relationships between the data labels are well defined, and hence, can be used to 
assist network training. In practical terms, graphs are processed in a bottom-up 
fashion (from the terminal nodes towards the root). This is necessary in order to 
make available information about the children when the parent node is processed. *

The SOM-SD described in this thesis allows the processing of some special classes of 
directed cyclic graphs. We will not describe it as our main aim is the processing of acyclic 
graphs.
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Node id Data label Children
1 (0.07, 0.51) 2,3
2 (3.14, 0.27) 3
3 (2.27, 1.30)

Table 4.1: This table represents a directed labelled graph in a tabular form. The 
structure, content, and maximum out-degree o f this graph are identical to the graph 
displayed in Figure 4.1.

In contrast with many other neural models, SOM-SD is unable to receive feedback 
from other neurons in a conventional sence since there are no weighted links between 
the neurons. An alternative method of passing information from one neuron to 
another needs to be found. SOM-SD maps data onto a two-dimensional map so 
that data can be represented at a particular “location” on the map. This suggests 
that for a recursive processing of data structures such as the processing of graphs 
and sequences, is to include some information about the mapping of offsprings into 
the feature vector o f parent nodes. One way of achieving this is by adding the 
spatial location, i.e., the location of the winning neuron of the offsprings to the set 
of features o f the parent node. As a result, the network needs to know where the 
winning neurons for all children nodes are located on the map when processing the 
parent node. Thus, the network utilizes not only the data label of a node as input 
but also include some information about the best matching codebook vector for 
each offspring. This forces the SOM-SD network to process the data in a bottom- 
up fashion.

In practice, for each node in the graph, the network input will be vectors which 
consist of:

(a) the p-dimensional data label 1,
(b) the coordinates c of the winning neuron for each child,

The vector c is go-dimensional, where o the maximum out-degree of any graph in 
the data set, and q is the dimension of the map. Without loss of generality of the 
model described, we set q to be 2. Hence, c consists of o tuples, each tuple being 
a 2 dimensional vector representing the x-y coordinates of the winning neuron of a 
child node or an offspring node. Offsprings, which essentially are sub-graphs, are 
represented at a particular position within the map. Hence, the tuples in c contain 
the coordinates o f codebook vectors which were associated with the offsprings of the 
current node. This dictates a bottom-up processing of data where terminal nodes 
are processed first. Once it is known where the children are represented on the map, 
we can update the vector component c of the parent node accordingly.

4.3 The SO M -SD  architecture

The previous section defined a suitable input for a SOM-SD network and suggested 
already a way of processing graph structured data. In this section, the network 
architecture will be described.

Analogous to the classical SOM, the SOM-SD network is a two dimensional map. 
But since we have two components in the input data, the vectors 1 and c, there are 
two SOM layers (illustrated in Figure 4.2). The first layer is denoted as M l which 
processes the labels 1, and the second layer is M c which processes the location c
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(the coordinates) of the offsprings. These two layers are strongly linked in that a 
neuron i consists of two codebook vectors m* e M l , and m£ E M c. Thus, each of 
the two codebook vectors belonging to a neuron i is located at a congruent position 
within the corresponding layer.

Figure 4.2: The SOM-SD architecture. Two layers of codebook vectors, one for each 
component of the input, are present. The two layers are strongly linked together in 
that a neuron i consists of two codebook vectors, one from each layer, located at 
congruent positions.

Alternatively, it is possible to combine the two layers of a SOM-SD network into a 
single layer requiring the concatenation of the two input vector component into a 
single vector. During learning, the similarity measure (e.g. the Euclidean distance) 
has to weight the input elements 1, and c. This weighting is necessary to balance 
the influence of the elements to the training algorithm. For example: 1 may be 
high dimensional with elements larger than the elements in c. The network would 
be unable to learn relevant information provided through c. This is overcome by 
weighting the network input components. This will become clearer in Section 4.3.1. 
when the training algorithm is given.

A network input vector x  is built through the concatenation of 1 and c so that 
x  =  [lT,c T]T. As a result, x  is a n =  p  +  2o dimensional vector. The codebook 
vectors m  are of the same dimension.

It is more convenient to utilize a single layer of neurons since it simplifies the nota­
tion and the learning algorithm. In fact, a single layer SOM-SD network features a 
network architecture which is identical to the original SOM. Hence, in the follow­
ing, when addressing SOM-SD networks, we implicitly refer to a SOM-SD model 
featuring a single layer.

4.3.1 Training the SO M -SD

The neural network architecture of a SOM-SD is identical to Kohonen’s original 
self-organising map, and also the input data are fixed sized vectors. However, data 
need to be processed differently since we need to take into account that the input 
vector is a composition of data label, and structural information. While the data 
label remains constant during learning, the structural information for all except the 
terminal nodes changes. This is because a terminal node needs to be mapped before 
a parent node can be processed. The parent node requires the mapping of all its 
offsprings in order to initialize c. The mapping of the terminal node will change 
during training, and hence will influence the network input for the parent node. 
The following example illustrates this concept.

Let us assume that we wish to process the data graph shown in Figure 4.1. For
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(0.07,0.51, c\x, c\2 , c21, c22) root node
(3.14,0.27, cfl5 C1 2 , c21, c22) node number 2
( 2 . 2 7 , 1 . 3 0 , ^ , l eaf  node

The first two elements are initialized with the data label of the node. The tuples 
(c fi , cf2) are the coordinates of the f-th child of node k. For each missing offspring 
we initialize (cfl5c*2) with ( - 1 , - 1 ) .  This tuple marks the data vector with some 
illegal elements 2. In particular, terminal nodes will always have all coordinates 
initialized with ( - 1 , - 1 ) .  All other coordinates will be initialized with proper values 
later during the training phase. As a result, the initial set of data vectors can be 
re-written as follows:

(0.07,0.51, c\i, C1 2 , c21, c22) root node
(3.14, 0.27, c?!, c?2, —1, —1) node numbered 2
(2.27,1.30, —1, —1, —1, —1) le a f node

Note that the vector associated with node numbered 2 considers the leaf node to 
be its first child. The vector would look different if the leaf node was considered to 
be the second offspring. In this case, the vector associated with node numbered 2 
would be (3.14,0.27, —1, —1, c21, c22). This shows that the proposed model handles 
ordered graphs as compared to unordered graphs for which the order of children 
does not matter.

Training proceeds in a bottom-up manner. Hence, the first node presented to the 
network is the terminal node. A distance measure (e.g. the Euclidean distance) is 
used to determine the best matching codebook entry. Let us assume that we have 
a 7 x 4 Kohonen map as shown in Figure 4.3. Assume further, that for the terminal 
node the best matching codebook entry was associated with a neuron located at 
(5,2). Then we have a situation as shown in Figure 4.3. Essentially, the codebook 
entry located at (5,2) is assumed to be most similar to the vector associated with 
the terminal node, and hence, is a representation of this node.

0 1 2 3 4 5 6

Figure 4.3: A sample SOM-SD architecture, a 7 x 4 map of 7-dimensional codebook 
vectors. Gray field highlights the best matching neuron for the given terminal node.

Since the structural representation of the sole offspring of node numbered 2 is avail­
able, we are able to proceed with processing the input graph. This is performed

2The tuple (—1, —1) is illegal since c holds coordinates which can only be positive or 
zero. These illegal elements are used to mark missing children. Note that any other illegal 
combination can be used for the initialization.



36 S O M  for structured information

by taking the data vector associated with node 2 and initializing (c fl5cf2) with the 
values (5,2) (the information about where the offspring is located). The remaining 
( - 1 , - 1 )  tuple remains unchanged since this node has no other offspring. As a 
result, we have:

(3 .1 4 ,0 .2 7 ,5 ,2 ,-1 ,-1 )

We can now obtain the best matching codebook entry. Let us assume that the best 
match was found at (3,1). We then obtain a situation as displayed in Figure 4.4. 
The codebook entry at (3,1) represents the sub-graph consisting of node number 2 
and the terminal node.

0 1 2  3 4 5 6

Figure 4.4: A sample SOM-SD architecture, a 7 x 4 map of 7-dimensional codebook 
vectors. The gray fields highlight the best matching codebook entry for the nodes 
processed so far.

Since the root node has only those nodes as offsprings that have already been 
processed, we can proceed further. Similarly as demonstrated at node 2, the input 
data vector associated with the root node is updated resulting in an input vector:

(0.07,0.51,3,1,5,2)

which is presented to the network and the closest matching codebook entry is ob­
tained. A situation such as the one shown in Figure 4.5 may arise.

0 1 2 3 4 5 6
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In this last step, the root node may have found its best match at the location (1,3). 
Then, this winner neuron will be a representation of the graph structure on the 
map, and we have completed the forward-step for this graph. The network is then 
updated by some updating rule which essentially will modify the winning codebook 
entries to become more similar to the input vectors. The introduction of a suitable 
updating mechanism is made in Section 4.3.2.

Other graphs from a data set can be processed in the same manner. We have 
completed an iteration after having presented all graphs in the data set exactly 
once. Typically, many iterations are performed during network training.

This example suppresses an important detail. Input data are composed of mutually 
different vector components. These components may differ in magnitude and di­
mension. Hence, for the similarity measure we need to weigh the influence of these 
components in order to balance the impact on the similarity value. The following 
section illustrates this, and formalizes the learning algorithm in more detail.

4 .3 .2  T h e  S O M -S D  learning a lgorithm

Training a SOM-SD is performed in a similar manner to the classical approach [59]. 
The difference is that for computing the similarity, the similarity measure needs to 
be weighted. Also, some components (the vector c) of the input vector need to be 
updated at every training step. The following training algorithm illustrates this:

S tep 1 A node j  is chosen from the data set. When choosing a node special care 
has to be taken that the children of that node have already been processed. 
Hence, at the beginning the terminal nodes of a graph are processed first, 
the root node is considered last. Then, vector x j  is presented to the net­
work. The winning neuron r is obtained by finding the most similar code­
book entry m r. This can be achieved, e.g., by using the Euclidean distance 
as follows:

r — argmin ||(xj -  rrii)A|| (4.1)
i

where A  is a n x n dimensional diagonal matrix. Its diagonal elements 
An- - - A  pp are set to fi i, all remaining diagonal elements are set to ¡12  ■ 
The constant ¡i\ influences the contribution of the data label component 
to the Euclidean distance, and P2 controls the influence of the children’s 
coordinates to the Euclidean distance.

Step 2 After the best matching neuron has been found, the winning codebook 
vector and its neighbours are updated.

Am* =  a { t ) f ( A ir)(mi  -  Xj) (4.2)

where a  is a learning rate which gradually decreases to zero, / ( . )  is the 
neighbourhood function depending on A ir which is the topological distance 
between neuron i and neuron r.

S tep 3 The coordinates of the winning neuron are passed on to the parent node 
which in turn updates its vector c accordingly 3.

3This step neglects the potential changes in the state of the desendants due to the 
weight change in step 2. This approximation is required to speed up the training process. 
The approximation works best when processing all the nodes from one graph before moving 
to the next graph.
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Step 4 Cycles of Steps 1 to 3 are executed repeatedly until a given number of 
training iterations is performed, or when the mapping precision has reached 
a given threshold.

Note that step 2 requires that all vector elements in x  are real values. During train­
ing, the vector components c are treated as reals. During retrieval, the components 
in c are converted back to natural numbers by using a common rounding function.

Gonzales et.al. [35] describes problems when applying SOM to non-stationary data. 
In our case, the weight change in training step 2 may produce non-stationary input 
data as the desendant vector component c may change at successive iterations. 
In practice, however, this issue was not found to cause any particular problem. 
We contribute this to a.) the fact that c contains cardinal values and hence, small 
weight changes do not have an immediate effect on the values in c, and b.) choosing 
a small initial learning rate a(t) decreasing linearly with the number of iterations 
to zero ensures network convergence.
The optimal choice of the weight values Mi and M2 depends on the dimension of the 
data label 1, the magnitude of its elements, the dimension of the coordinate vector 
c, and the magnitude of its elements. The Euclidean distance in Equation 4.1 is 
computed as follows:

d =
N

p 2 o

Ml 5^(li -  nii)2 +  M2 -  m n + j ) 2
i=1 J=1

(4.3)

Hence, it becomes clear that the sole role of Mi and m2 is to balance the influence 
of the two terms to the behaviour of the learning algorithm. Ideally, the influence 
of the data label and the coordinate vector on the final result is equal. One way of 
obtaining the pair of weight values is through the following equation:

Mi
n 1 ¿(11,1)
m E IU  / ( c f)

(4.4)

where (̂(1̂ 1) is the average absolute value of the z-th element of all data labels in 
the data set. Similarly, /(c*) is the average of the z-th element of all coordinates. 
The data label I is available for all nodes in the data set, however, the coordinate 
vector becomes only available when training has started. Hence, ^(cj) needs to be 
approximated by assuming that the mapping of nodes is at random. As a result, 
the values in /(c¿ ) are simply half the dimension of the map.

Alternatively, good values for fii and M2 can be obtained through Equation 4.5. 
This equation takes the distribution of the input data into account and produces 
more appropriate weight values.

Mi _ n ~<K|Ijl))
2̂ rn ¿ ”=i(/(ci) -  a{ci)) ' ' '

where cr(vj) is the standard deviation of the z-th vector element of a vector v. It has 
been found that Equation 4.5 predicts the weight values Mi and m2 more accurately 
since it suppresses the negative influence of rare extreme values, and hence will be 
used throughout this thesis. In order to obtain unique value pairs, we can make the 
assumption that Mi +  M2 =  1-
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4.3.3 Q uantization error

During and after network training, it is important to know how well the network 
has learned to represent the input data. The quantization error as displayed in 
Equation 3.10 gives a good indication of the overall network performance in the 
case of standard SOM. However, when working in a graph structured domain then 
Equation 3.10 does not take into account the structural relationships between input 
vectors. Finding a perfectly matching codebook entry for a node xj  means that 
the quantization error for this node is zero. But this does not tell us how well 
the structure rooted by xj  has been mapped. Since the network is to learn graph 
structures and not single nodes, a measure has to be found which describes the 
accuracy of the mapping of graphs. An enhancement of Equation 3.10 adds the 
weighted quantization error of all offsprings to the quantization error of the current 
parent node.

ei =  ¿ T T  +  ^ (9i (4-6)

where dj is the error (e.g. Euclidean distance) associated with node Xj, k is the 
number of children of node Xj , and gz~1e is the quantization error associated with 
the i-th child. Here, q~l is a device denoting the availability of e from a child. The 
network’s overall quantization error is computed as follows:

1 N
E, =  T r E e> (4-7)

3= 1

4.3.4 R etrieval w ith  SO M -SD

Information, i.e., DOAGs stored in the output lattice can be retrieved. For example, 
if we are given a DO AG structure which is noisy or distorted, we can work through 
the mapping procedures to find a winning neuron j. We can then retrieve DOAGs 
by looking at which graphs from the training set activated the same neuron. Hence, 
this mechanism allows to retrieve graphs which are similar to a given graph. There 
are two ways in which the associated tree structure can be retrieved [41]. •

• Retrieval by  association  -  Traditionally, retrieval in SOMs is performed 
by association. During training, input patterns are associated with the 
winning neurons. During a retrieval, or validation phase the best match 
with respect to a test pattern responds with the data (from the training 
set) that were linked to this neuron. Similarly, this can be done with SOM- 
SD. Here, every neuron is associated with the (sub-)structure that was 
activating the neuron. Note that not all neurons on the map are winning 
neurons for a pattern in the test set. Hence, it is possible that, during 
retrieval, a neuron is activated which does not have a link to a pattern from 
the training set. Commonly, this is avoided by finding the best matching 
neuron that has such a link. This method is memory intensive, as each 
winning neuron in the output layer would need to have an associated graph 
structure encoded.

• R etrieval through recursive decod in g  -  Implicit in each input vector 
is an associated immediate subgraph structure of the previous step. For ex­
ample, if we assume the weights of the winning neuron to be [u c i c2 . . .  c j .
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The vector c i denotes the location of the winning neuron for child i- Thus 
it is possible to go to location c*, and consider the composite vector there. 
We can obtain the tree structure recursively using this step. Recursion 
stops when an illegal coordinate value is found in c N o t e  that Cj is real 
valued whereas coordinate values are discrete. Hence, rounding is necessary 
to obtain the actual coordinate value.

4.3.5 Implementation issues

Typically a SOM-SD network is larger than traditional SOMs. This is because each 
input pattern is a graph which produces a set o f input vectors for the network so 
that the input data set tends to become quite large (especially for very wide, or deep 
data structures). Fortunately, the complexity of the training algorithm for SOM- 
SD is the same as for SOM in that it grows linearly with the number of neurons in 
the network and the dimension of the data. However, the network has to be given 
more freedom to allow a suitable mapping according to data label and structure. 
With the increase of network dimension, training time increases as well. Hence, it 
becomes desirable to look for ways of optimizing the training algorithm.

Optimizations

Network training can be accelerated in a number of ways. An idea which has been 
suggested for traditional SOMs takes into account that the map becomes somewhat 
smoothly ordered after only a few iterations through the algorithm. So, searching 
the entire map for a particular feature vector’s winning neuron is not necessary; 
the new winning neuron is likely to be close to the old winning neuron from the 
previous iteration. Hence, only nearby neurons need to be examined to obtain the 
new best match. This effectively speeds up training by a factor o f possibly up to 
10 or greater, depending on how large the map is.

A SOM-SD specific optimization has already been implicitly applied in the training 
algorithm stated in Section 4.3.2. By the very fact that in step 2, not only the 
best matching codebook vector is updated but also its neighbours, we would have 
to recalculate the correct position of all other nodes that are offsprings before the 
parent node can be processed. However, this change of position (of offsprings) can 
be assumed to be small for small learning rates. Since the learning rate decreases to 
zero during the training procedure, the error can eventually be neglected. Moreover, 
the error introduced by not updating the position of all offsprings is partially com­
pensated in the next training iteration. By not retrieving the exact position o f all 
offsprings before processing the parent node, the algorithm can become significantly 
faster depending on the out-degree of the input graphs.

Parallelization

The SOM and SOM-SD training algorithms are perfectly suited for parallel imple­
mentation. Hence, training times can be reduced multifold by processing the SOM 
or SOM-SD in parallel. A parallel implementation is performed most effectively 
by splitting the network into s pieces, where s is the number of processes (slaves 
or threads) running in parallel. Each process is given the entire training data set, 
and is assigned to one of the network pieces. This approach reduces the commu­
nication overhead during training to an absolute minimum. At each iteration, the 
slave processes report the local best matching neuron to the master process. The 
master process then determines the global best match and sends this information 
back to the slaves, which in turn update their part o f the network. At the end of
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the training session, the slaves send back their portion of the trained map. The 
master collects those pieces to rebuild the entire map.

4.3.6 Similarities with other methods

Structural elements of an input graph (the nodes of the graph) are given to the 
network as vectors of constant dimension. These input vectors are mapped onto 
codebook entries that are of constant dimension and are located in a fixed dimen­
sional network. Hence, an input graph and its sub-structures are encoded and 
represented internally as fixed size vectors. Surprisingly, this is a common feature 
that is shared with all known neural network models which are capable of encoding 
graph structures. For example, the LRAAM model [81] encodes and represents a 
labelled graph and all its sub-structures by a single hidden layer, where the number 
of hidden neurons is constant. Hence, LRAAM represents structural information 
by means of a fixed size vector in a way that is more restrictive than with SOM- 
SD. Two other architectures known as Recursive Multi-Layer Perceptron (RMLP) 
networks and Recursive Cascade Correlation (RCC) networks (see Chapter 6 and 
Chapter 7 in this thesis) also encode input graphs recursively by processing terminal 
nodes first and proceed towards the root of the graph. Each node, and hence each 
sub-structure, is given to the network as a fixed size representation in a manner 
similar to SOM-SD. Graphs, and sub-structures are then encoded and represented 
by a layer of so-called state neurons or a layer of output neurons. These layers 
consist of a fixed number of neurons and hence, once again graphical information is 
represented by means of fixed sized vectors. Both, RCC and RMLP are described 
in greater detail in Chapter 6 and Chapter 7.

Similar to Kohonen’s original SOM, the SOM-SD algorithm does not optimize an 
energy function [59, 22]. The SOM-SD algorithm involves a trade-off between the 
accuracy of the quantization and the smoothness of the topological mapping, but 
there is no explicit combination of these two properties into an energy function. 
Hence SOM-SD is not simply an information-compression method like most other 
unsupervised learning networks. Neither does SOM-SD have a clear interpretation 
as a density estimation method. Convergence of Kohonen’s SOM original algorithm 
is allegedly demonstrated by Yin and Allinson [102], but their proof assumes the 
neighbourhood size becomes zero, in which case the algorithm reduces to VQ and no 
longer has topological ordering properties ([59], p. 111). Thus, there is no definite 
answer to the question of what SOM and SOM-SD learns.

4.4 Experimental results for SO M -SD

This section reports the results of applying the unsupervised SOM for structured 
data (SOM-SD) on three benchmark problems. These three benchmark problems 
are described in detail in Appendix A. The benchmark problem used in this section 
is a composition of artificial learning tasks. The use of an artificial learning problem 
allows the evaluation and comparison of the model in a controlled manner. A real 
world learning problem is applied later in Chapter 8.

A brief description of the benchmark problem is as follows:

• The first data set is referred to as dataset-1. It consists of 500 DOAGs 
belonging to two different classes which are linearly separable 4. Hence, 
this data set represents an easy learning problem.

4The classes are separable by the data label associated with one of the leaf nodes. 
Further details on this property are available in Appendix A.
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• The second data set combines 1250 patterns from 3 different domains pro­
ducing a set o f 3750 graphs each for the training and test set respectively. 
The learning task is considered to be more difficult than that o f dataset-1 
since patterns belonging to different domains are to be distinguished where 
some graphs belonging to different classes may feature a similar structure. 
This dataset is referred to as dataset-2.

• The third data set features the same set o f graphs as dataset-2 with the 
difference that 12 classes are defined over the graphs. In this data set, 
some patterns can only be distinguished by information provided by the 
data label, while other data require structural information in order to be 
distinguished.

During training, the class membership o f the data is ignored. The information of 
class memberships is used during evaluation to allow the visualization o f how the 
graphs were encoded.
The aim of this section is to illustrate the general behaviour o f SOM-SD, and its 
ability to encode structural information e.g., directed acyclic graphs. Results from 
the application of SOM-SD to the first two data sets are described briefly. Results 
obtained from the third data set are presented in greater detail.

Unless stated otherwise, all tests described in this section use networks with hexag­
onal topology and a Gaussian neighbourhood function. The displayed results reflect 
typical results obtained from random initial states. Experiments conducted on par­
ticular learning parameters have been started from identical initial conditions, and 
results are generally shown in a single plot.

Results obtained in this section will serve as a benchmark against which other 
methods such as the supervised SOM-SD, recursive MLP (multilayer perceptron) 
and recursive CC (cascade correlation), and their associated extended models will be 
measured 5. These comparisons are given in Chapter 5 and Chapter 9 respectively. 
In order to allow a comparison between the various models described in this thesis, 
we chose to select the classification result as a performance meassure. Hence, unless 
stated otherwise the performance o f a model refers to the classification performance.

4.4.1 Results using dataset-1

This section describes results as obtained when training the SOM-SD on a basic 
policemen benchmark problem (Dataset 1) which consists o f a collection o f patterns 
belonging to two linearly separable classes6. Since the classes are separable by the 
data label associated with one of the leaf nodes SOM-SD has to demonstrate that it 
is capable of encoding information encoded in data labels. The structure o f the data 
does not contribute to the class definition. The information which distinguished the 
classes is whether the policeman has a raised left arm or a lowered left arm. Training 
is performed in an unsupervised fashion, i.e., the class information is unknown. 
However, in order to evaluate the model’s performance, we use the class information 
during the evaluation process.

For the experiments we choose a neural network featuring roughly 1 /3  as many 
neurons as nodes in the data set. As a result, a neural network featuring 45 neurons 
horizontally, and 40 neurons vertically is generated. Codebook vectors associated 
with the neurons are initialized by random values from within a valid range o f values

5The description of supervised SOM-SD, recursive multilayer perceptron, and recursive 
cascade correlation techniques will be considered in later chapters of this thesis.

6For details on the policeman benchmark, please see Appendix A

Experimental results for SOM-SD
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obtained by scanning the training set. The state of the initial network is as shown 
in Figure 4.6. Displayed in the Figure are the neurons that were activated by root 
nodes belonging to graphs in the training data set. The mapping of nodes other 
than root nodes is not shown to avoid cluttering. It can be observed that at this 
initial state, the data is distributed randomly across the map. Neurons involved in 
the mapping of multiple nodes belonging to a different class are made visible by 
overlapping symbols (i.e. a plus inside a diamond shaped symbol). Neurons not 
involved in the mapping of any node produce empty spaces in this figure. As can 
be observed, at this initial stage, most neurons are not involved in the mapping 
process. In fact, only 12.6% of neurons are involved in the mapping.

class 1 
class2 +

Figure 4.6: Mapping of the root nodes on a randomly initialized SOM-SD network 
of size 45 x 40. Diamond shaped symbols represent the location of neurons activated 
by nodes belonging to class 1 (policemen with lowered left arm). Neurons marked 
by pluses were activated by class 2 (policemen with raised left arm).

The neural network was then trained for just 50 iterations where the weighting value 
p 2 is varied from within the range [0 ... 140]/zi. This illustrates the importance of 
structural information to the learning process. All other parameters were left at 
a(0) =  0.08 and a =  40. The result is as shown in Figure 4.7 which gives the 
network performance in relation to the weight value /¿2.

In Figure 4.7 it can be observed that the network performance is poor if the weight 
value /i2 is chosen too small. This illustrates that structural information significantly 
assists the learning process. The network performance increases smoothly with 
increasing ¿¿2 reaching a performance level of 100% with /¿2 =  90/ri. Increasing p 2 
to values beyond 90p i produces unstable network performances. Performance levels 
drop significantly for /r2 larger than 100/ri.

O bservations

• Firstly, this result has demonstrates that SOM-SD is able to encode graph 
structured information and to discriminate linearly separable data when 
appropriate values of /i2 are chosen.

• Secondly, the importance of structural information whose influence is con­
trolled by the weight value //2, to the learning process is demonstrated.
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Figure 4.7: Training a network of size 45 x 40 for 50 iterations. Varying the weight 
value fi2 produced networks with varying performance. Pluses and diamond shaped 
symbols indicate measuring points. Lines are a linear interpolation between mea­
suring points.

As mentioned earlier, the definition of the two classes are independent of the un­
derlying structure of the patterns. Nevertheless, due to the recursive nature of the 
learning process, it is important to pass the encoding of offsprings accurately to 
parent nodes. This is particularly true in the present case where vital information 
is presented in the leaf nodes. The optimal weight values suggested by Equation 4.5 
are for the given task p 2 =  6 .22 /zi but best results are obtained when choosing p 2 
approximately 10 times larger than this value. This demonstrates the importance 
of structural information to the learning process. It is to be noted that informa­
tion provided through c is in fact knowledge about features encoded in the children 
nodes. Since the algorithm is recursive, this knowledge can only be passed on to the 
root of the graph in an accurate manner if the influence of c to the mapping process 
is sufficiently strong. Note also that the network was trained in an unsupervised 
fashion. Hence, the network was not given information about which features are 
involved to produce the two classes.

The following result will illustrate how the input graphs were encoded in the net­
work. For this we mark neurons that were activated by a root node with a symbol. 
A plus shaped symbol is used to reflect neurons activated by root nodes belonging 
to class ’1 ’ , diamond shaped symbols give the location of neurons involved in the 
mapping of root nodes that belong to class ’2 ’ . The result is given in Figure 4.8.

It is observed that during training, the mapping of root nodes has drifted to the 
right and formed clusters. The two clusters that are clearly separated are encircled 
in Figure 4.8. Apparently, these clusters were not formed by the two classes defined 
over the data set but by some other means. Root nodes belonging to the two classes 
have formed sub-clusters within the main clusters. From Appendix A we know that 
dataset-1 consists of 500 graphs where a graph can only have one of two possible 
structures: (1) one structure features a root node with two offsprings, (2 ) another 
structure has only one offspring. The graphs are identical in structure otherwise. 
An example of such pattern is given in Figure 4.9.
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Figure 4.8: The mapping of root nodes after training a network of size 45 x 40 for 
50 iterations with a(0) set to 0.08 and p 2 set to 95/ii.

The two classes in this set are formed by information presented by the data label 
attached to one of the leaf nodes of the graph. The structure does not contribute 
to the class definition. Investigating how the clusters in Figure 4.8 were formed, 
we found that all patterns represented in cluster 1 featured a root node with two 
offsprings, whereas in cluster 2 we found only patterns whose root node had a single 
offspring. Since the network was trained in an unsupervised fashion, it appears 
that SOM-SD considered the structural difference between the patterns as more 
significant than the difference presented by the data label. This property can be 
attributed to the influence of p 2 which was set to 90 times larger than p i ,  and 
hence weighting structural information considerably stronger than the data label. 
In addition, a good network performance was only observed with such large p 2 
even so the class memberships as considered during the evaluation do not have a 
dependency on structural information but on information provided by a data label.

The reason for such behaviour becomes clear when considering that geographical 
location of the mapping of offsprings is passed on to the parent node. Since this 
process is recursive, it needs to be assured that this information is passed on cor­
rectly as the algorithm proceeds towards the root of the graph. The accuracy with 
which vital information about offsprings is passed on is controlled by p 2 . In the 
present case, vital information is available in the leaf nodes (i.e. the state of the left 
arm). A strong focus needs to be placed on p 2 so as to ensure that these features 
have an effect on the mapping of the root node. However, choosing p 2 too large 
causes SOM-SD to neglect information provided by data labels. Since it is the data 
label associated with a leaf node in dataset- 1 which controls the class membership 
of patterns, there is a trade-off in the choice of p 2. It is clear that the choice of p 2 
is application dependent. In the case of dataset-1, the best choice for p 2 is 9 0 p i.

From Figure 4.8 we find where root nodes are mapped, and how clusters among 
those nodes are built. In this figure, large areas are left blank. It can only be 
assumed that these areas are involved in the mapping of nodes other than root 
nodes. This is shown in Figure 4.10.

It is observed that the blank area which were visible in Figure 4.8 is indeed consumed
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bull564 bull571

Figure 4.9: Two policemen figures and the graph representation. Dataset-1 consists 
of 500 graphs that have either one of these structures. Other structures are not 
present in dataset-1 . Graphs in this data set differ otherwise only by the label 
attached to each node in the graph. Two classes are defined over the data set. 
Class 1 is a collection of graphs representing policemen with a raised left arm. All 
other graphs belong to class 2. The information about the location of the left arm is 
encoded in the data label associated with node 6 and node 7 (the nodes representing 
the left arm and hand) respectively.

root nodes O 
intermediate nodes + 

leaf nodes □

Figure 4.10: A network trained on dataset-1 for 50 iterations. The mapping of root 
nodes, intermediate nodes, and leaf nodes are shown in this Figure.

by neurons mapping nodes other than root nodes. Furthermore, it can be observed 
that intermediate nodes are mapped closer to areas where root nodes are found, 
and that leaf nodes are mapped furthest away from root nodes. This is an expected 
result because input vectors formed by leaf nodes differ greatly from input vectors 
formed by the root node since leaf nodes do not feature any offsprings.

A further observation is that relative large areas of the trained SOM-SD map are not 
marked by any symbols and hence, are areas that are not involved in the mapping 
of any node from the data set. In fact it is found that only 28.88% of all neurons 
are activated by a node from the training set. This demonstrates two aspects of the 
algorithm: firstly, the map leaves room to generalize “fuzzy” or inaccurate data.
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This is confirmed by Figure 4.7 which shows that the generalization performance 
as obtained from the test set matches the performance achieved on the training set. 
Secondly, the map has demonstrated its ability to efficiently compress information. 
For example, the 5095 nodes given through dataset-1 are mapped onto just 512 
neurons. This implies that SOM-SD may be efficient for data mining tasks; an 
issue which will be considered further in Section 4.4.3.

This experiment has demonstrated that SOM-SD is capable of encoding graph struc­
tured input data. The algorithm has demonstrated its ability to ’learn’ the structure 
of a graph as it could be observed from the two clusters in Figure 4.8. The algorithm 
has furthermore demonstrated that information made available by the data label is 
learned. This was shown by the performance graph in Figure 4.7.

In the next section, the SOM-SD algorithm is applied to dataset-2. This data 
set does not necessarily represent a more difficult learning problem than dataset-1. 
However, SOM-SD will have to demonstrate its capability to encode a large amount 
of graphs, and its ability to handle graphs from different domains which may share 
common features.

4.4.2 Results using dataset-2

This section discusses the behaviour of a SOM-SD network when applied to dataset- 
2. This data set consists of a total of 3750 graphs, or 29864 nodes, from three 
different domains where some graphs from one domain can feature a similar graph 
or same structure as some graphs from another domain. Hence, the network needs to 
demonstrate its ability to cluster input data according to data label associated with 
each node in the graph. Training is performed in an unsupervised fashion, i.e., the 
class information is not available to the training algorithm. However, we encode the 
plots according to the original class membership of the data. The visualization of 
these classes gives implications on how well the SOM-SD network encodes structure 
and the data label.

We trained a network which had about 1/16 as many neurons as nodes in the data 
set. For the given learning problem, we generated a 45 x 40 output map, and 
initialized it with random values.

For this experiment we made a more exhausting search for suitable values of fi2 and 
the number of training iterations. Weight values were chosen from within the range 
[0. ..  200]pi and the number of training iterations ranged from just 1 to 350. The 
initial learning parameter a (0) was set to 0.08, the initial neighbourhood spread a 
was 40. During training, the learning rate gradually decreased to zero while the 
neighbourhood radius decreased to 1. The result shown in Figure 4.11 gives the 
network performance depending on training iterations and ¡1 2 -

From this figure, we find that the network performance is always better than 90% 
if trained for more than 100 iterations independent of the value of p 2 - The best 
performance is achieved when training for 300 iterations or more with (¿2 set to 
values between lpi  and . This shows that this learning task requires considerably 
less focus on structural information when compared to the results obtained from 
dataset-1.
The network trained for 300 iterations with p,2 =  2/ii is used for further evaluations. 
The mapping of root nodes on a network trained with these parameters is shown in 
Figure 4.12.
It can be observed that during training, the mapping of root nodes has drifted 
into clusters, and that the SOM-SD has found an ordering that discriminates the
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Figure 4.11: Network performance obtained when training the network with p 2  

as indicated for a given number of iterations. Intersection points o f the grid give 
the actual sample points. Lines are a linear interpolation between two sample 
points, and the surface is an linear interpolation of its four corners. A white surface 
indicates a performance level of 100%. Darker areas represent configurations with 
poorer network performance.

Figure 4.12: Mapping of the root nodes after training the network for a total of 300 
iterations.

classes ‘a’ M ic e m e n V b ’ (ships), and V  (houses). This demonstrates an important 
property. The SOM-SD network is well capable of encoding structural information.

From Figure 4.12 we can only assume that the empty space on the map is consumed



Experimental results for SOM -SD 49

by all other except the root nodes. This assumption can be confirmed by considering 
Figure 4.13.

root □ 
intermediate O 

leaf +

Figure 4.13: Neurons as activated by nodes from the training set. Boxes represent 
neurons activated by root nodes, the diamonds are neurons activated by intermedi­
ate nodes. Codebook entries that matched leaf nodes best are shown by plusses.

In 4.13 we display neurons whose codebook vector best matched any node from the 
input data set. Neurons are coded depending on the type of nodes. The diamond 
shaped symbols indicate neurons that were activated by the root nodes independent 
of the class to which they belong. Plus symbols give the location of neurons that 
were associated with leaf nodes, and the squares are neurons activated by nodes 
other than leaf or root nodes.
Figure 4.13 shows that the network is mapping nodes according to their location 
within the data graph. When comparing this figure with Figure 4.10 from dataset-1 
we find that there are now considerably less blank areas. This is the result of training 
the network on a data set that is approximately 2.5 times larger than dataset-1. In 
fact, the network shown in Figure 4.13 displays just 27.89% neurons that were not 
activated by any node in the training set. Nevertheless, the 29864 nodes found a 
mapping on just 1298 active neurons. Hence, the compression is even greater than 
the one observed with dataset-1. Furthermore, in this figure (and in most other 
test runs) we did not find many neurons that were activated by two different types 
of nodes (e.g. intermediate and root node).
This experiment has demonstrated that SOM-SD is capable of dealing with large 
data sets even if patterns are retrieved from different domains. In this case, SOM- 
SD is able to find a discrimination between patterns from a different domain if the 
weight value p 2 is chosen appropriately. In the present case, p 2 is roughly twice 
the value of p i , and hence, considerably smaller than the p 2 that was chosen for 
dataset-1. This demonstrates that the weight values p i and p 2 are an effective 
mechanism for controlling the focus of the training algorithm on either the data 
label component or the structural component of input vectors.

The aim of the following section is to evaluate the SOM-SD in greater detail. For this 
experiment, dataset-3  is used which features an identical set of graphs as those found 
in dataset-2. The only difference is that 12 classes are defined over this third data 
set. While SOM-SD is trained in an unsupervised fashion, it has to demonstrate
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that it is able to map patterns in a range of conditions. This is most effectively 
evaluated by utilizing class membership information during the evaluation process.

4.4.3 Results using dataset-3

This section trains networks on dataset-3 where class membership information was 
not available during training. However, to allow the evaluation of the network 
performance, we labelled the neurons by a symbolic class label after training the 
network. The visualization of these classes gives indications on how well the network 
encodes the set of graph structures and their associated data labels.

Here we present a network for with about one third as many neurons as nodes in 
the data set. We generated a 114 x 87 output map, and initialized it with random 
values. Figure 4.14 shows the state of the initial network.
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Figure 4.14: Mapping of the root nodes on a randomly initialized network of size 
114 x 87=9,918 neurons (ratio 1.31:1). To avoid the cluttering of symbols, the 
mapping of nodes other than root nodes is not shown here.

The locations of neurons that were activated by root nodes only are displayed. It 
can be observed that, at this initial state, the data is distributed randomly across 
the map. Note that there are less neurons marked than the number of root nodes in 
the data set. This is because some neurons were activated by several root nodes. In 
the case where root nodes belonging to different classes activating the same neuron 
this is made visible through overlapping symbols (e.g., a cross within a square).

In a first attempt, the network was trained for a total of 350 iterations The initial 
learning parameter a (0 ) was set to 0.08, the initial neighbourhood spread a was 
60. During training in order to assure convergence, the learning rate gradually 
decreased to zero while the neighbourhood radius decreased linearly to 1 . The 
input vector components in c and 1 were weighted by p 2 =  1 .9 /^  7 . The resulting 
mapping of the root nodes after training is shown in Figure 4.15. In Figure 4.15 
a unique symbol is used to indicate the location of neurons that were activated by

According to Equation 4.5 this value pair balances the vector components in x  best.
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root nodes belonging to a particular class. The property and description of the 12 
classes is given in Appendix A and is summarized by Table A .2 .1 .

Figure 4.15: Mapping of the root nodes after training a network of size 114x87 for 
a total of 350 iterations. A typical sample has been retrieved for many sub-clusters 
and are displayed accordingly. The graph representation of a sample is displayed 
to its left, and its identity is plotted underneath.

It can be observed that during the training process, the mapping of root nodes has 
drifted into clusters, and that the network has found an ordering that discriminates 
the classes “house” , “ship” , and “policeman” , i.e., the network is able to encode 
structural information. A further observation is that policeman patterns are repre­
sented in two distinct clusters but not according to the two policemen classes defined 
earlier. Upon closer inspection we found that the cluster in the upper right hand 
corner is formed by all patterns featuring policemen wearing long pants (no legs 
visible) such as shown in pattern bl08, whereas the other cluster next to it holds all 
policemen that show two legs (wear a skirt or short pants) such as the pattern iden­
tified as blOO. The difference between these two instances is that graphs obtained 
from policemen wearing long pants have a root node with a single offspring, where 
the single offspring is the long pants. All other graphs featured two offsprings, one 
for each visible leg. Hence, the network seems to have difficulties to finely encode 
the information given in the data label. For example, policemen with a raised arm 
and policemen with a lowered arm, which can only be discriminated by looking 
at the label attached to the node representing the arm are not mapped onto two 
distinct clusters. This observation mirrors the findings made earlier with dataset-1 
and dataset-2  and is an issue which will be considered further later in this section.

Another interesting observation is that patterns belonging to the domain “ship” are 
mapped onto a relatively large region whereas the patterns representing “house” are 
mapped into two regions, one of which is just above the region that mapped the 
patterns representing “ship” , the other is below. We found that the patterns of 
“house” mapped into the lower region featured a chimney so that the associated 
graph is of depth two. Patterns of “house” mapped into the upper region did not
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feature a chimney so that the associated graphs were o f depth one. Interestingly, 
the same was true for “ship” . Patterns of “ship” mapped closer to the upper end 
of the region did not feature flags so that the graphs representing those pattern oj 
“ship” were also of depth one. Patterns o f “ship” mapped closer to the lower end 
of the region always featured some flags and thus their associated graphs were of 
depth 2. Similarly, we found that patterns o f “house” and “ship” were mapped 
closer together featuring the same out-degree such as illustrated by patterns hl815 
and sl705, or patterns sl071 and hl45.
In addition, it is found that most classes were mapped onto distinct clusters with 
little overlap between the clusters. Since some clusters represented patterns with 
similar structures such as the clusters associated with patterns hl815 and h643, 
the network has demonstrated that it is able to distinguish graphs by considering 
information stored in the data labels.
There is very little overlap between clusters formed by different classes with the 
exception for the graphs produced from “policemen” patterns. This finding suggests 
that it is probably more advisable to train the network with a modified set o f 
weights pi so that the focus on the data label is strengthened. Experiments shown 
later in this section will find that the opposite is true. Nevertheless, the SOM-SD 
has produced an impressive first results given that the general performance of this 
network was near 92.03% on the training data, and 91.52% on the validation data 
set.
From Figure 4.15 we can assume that the empty space on the map is consumed by 
all other but root nodes. This assumption can be confirmed by considering Figure 
4.16. In this figure, we display neurons whose codebook vector best matched any 
node from the input data set. Activated neurons are marked depending on the type 
of node that activated the neuron. The plus shaped symbols are the neurons that 
were activated by the root nodes independently of the class to which they belong. 
Square shaped symbols indicate neurons that were associated with intermediate 
nodes, and neurons marked by crosses were activated by at least one leaf node.

It can be observed that there are areas for which neurons were not activated by any 
node in the data set. It is found that 3894 neurons (39.26%) are unused. We will find 
later, that the large number of unused neurons contribute to a good generalization 
performance. Of the 6025 neurons activated, 785 neurons are used by root nodes, 
2022 by intermediate nodes, and 3227 by leaf nodes. 10 neurons were activated 
by at least one root and one intermediate node (overlap). There was no overlap 
between intermediate and leaf nodes or between leaf nodes and roots. In fact, in 
almost all other experiments we found only few neurons that were activated by two 
different types of nodes (e.g., intermediate and root nodes).

At this point, we know where the root and leaf nodes are located and that root 
nodes are ordered mainly according to a structural criterion. But what about in­
termediate nodes? One could expect that intermediate nodes located closer to a 
leaf node of a graph are also mapped to nearby codebook entries representing leaf 
nodes. Also, intermediate nodes nearer to the root may be expected to be mapped 
near codebook entries representing root nodes. Hence, one would assume that the 
mapping of intermediate nodes drifts from clusters representing leaf nodes towards 
clusters holding root nodes depending on the relative position of the intermediate 
node within the graph. This assumption is confirmed through the sequence o f plots 
shown in Figure 4.17. This plot shows nodes obtained from policeman images ac­
cording to their relative position within the graph. We considered plotting nodes 
associated with “policeman” patterns since they featured the deepest graph struc­
ture, and hence are best suited to demonstrate the ordering of nodes on the map.

Experimental results for SOM-SD
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Figure 4.16: Neurons activated by nodes from the training set. Plus shaped symbols 
mark the location of neurons that represent root nodes, the squares are neurons 
activated by intermediate nodes. Codebook entries that matched leaf nodes best 
are shown as crosses.

Nodes from other domains are not plotted to avoid cluttering of the data displayed. 
In Figure 4.17 it is observed that the mapping of nodes drifts starting from the left 
edge for leaf nodes over to the upper edge and right edge for intermediate nodes 
to the lower edge for root nodes. It is also observed that the clusters often are not 
connected. This is because the space between the clusters is consumed by neurons 
which were activated by data from other classes which are not shown in this figure. 
We attribute this observation to a particular property of the data: Leaf nodes do 
not feature any offsprings and hence, the vector component c differs most signifi­
cantly to nodes having a large number of offsprings which is often the property of 
a root node.

The network displayed in Figure 4.15 showed that the network was not always 
able to build distinct clusters according to information stored in the data label. 
The reason for this can be twofold. One reason might be that the network has 
been chosen too small (only 9, 918 neurons compared with 29,808 different input 
nodes) so that there was not enough space to map the data according to both the 
structure and the data label. Another reason might be the wrong choice of weighting 
parameters p i, i =  1,2. The following two experiments are designed to bring more 
light to illuminate this behaviour. First, networks of different sizes were trained. 
The initial neighbourhood radius was set to the maximum extension of a map while 
all other learning parameters remained unchanged.

The result shown in Figure 4.18 is that the network performance can be increased 
significantly if more neurons are used. However, a performance level of 100% is 
never achieved. In addition, the level of performance increase is getting weaker as 
the network grows. As a result, a network of size 114 x 87 seems an appropriate 
choice when considering that the network performance increases only slightly for 
networks larger than this but at the cost of increased computational requirements. 
Also, when choosing large networks, we lose the advantage of SOM to perform 
data compression on large amount of data. It is interesting to note that even for
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Figure 4.17: Nodes from “policeman” patterns sorted by the distance to the leaf 
nodes. The upper left plot shows neurons as activated by the leaf nodes (depth 0), 
the next plot to the right are nodes at depth 1, and so on. The lower right plot 
shows the root nodes located at depth 5. Note that the network has been trained on 
the entire data set and is the same as those shown in Figure 4.15. Nodes belonging 
to a class other than policemen are not displayed here.

small networks not all neurons are activated by nodes in the training or test data 
set. Only for extremely small networks that featured just one neuron for every 300 
nodes in the data set that all neurons were utilized.

The second set of experiments is to determine the influence of the weighting param­
eters p i and p 2 on the network performance. For this, the ratio p i / P 2 was varied 
within [0;oo]. The neighbourhood spread o  was set to 114, and other training pa­
rameters are left the same as the initial experiment and the network size remained 
at 114 x 87. The result is as shown in Figure 4.19.

As stated earlier, the two weighting values balanced the vector components best for 
p 2 =  1 .9 p i . However, best results are obtained when emphasizing the influence of 
structural information (p 2) compared with that o f the data label. The experiment 
shows that with p 2 chosen 100 times larger than p i ,  the network performs best. 
This result is not surprising when considering that vital information is often given 
in nodes far away from the root node (i.e. only the data label associated with leaf 
nodes distinguishes between policemen with a raised or a lowered arm). Thus, it 
is essential, that information derived from a node’s offsprings is passed to parent 
nodes accurately. This can be achieved by choosing large value for p 2.

An additional finding was that when choosing the optimal configuration only 4234 
neurons are activated by nodes in the training set. Hence, only 42.69% of neurons on 
the map are used as compared to 51.07% when having p 2 =  1.9/ii. This shows that 
the representation of the nodes is more compact, and explains why the generalization 
performance on the validation set is best.

This experiment has shown another very interesting result. Note that we trained a 
network with p 2 set to zero. In this case the algorithm reduces itself to the standard 
SOM. Another network was trained with p\ set to zero in which case only structural
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Figure 4.18: Performance of the SOM-SD when varying the size of the network. 
The left hand plot illustrates the overall performance, the right hand plot gives the 
amount of neurons activated by at least one node.

Figure 4.19: Performance of the SOM-SD when varying po and p\. The network 
performance is shown on the left; the right hand plot illustrates the network uti­
lization in percent.

information is encoded. It was found, that information encoded in the data label 
contributes more strongly to a good network performance (~  73% with p 2 =  0) 
than pure structural information (~  67% with p i = 0 ) .  Also, when considering the 
network usage rates, it is found that data compression is growing with smaller p \ /p 2 
ratio. With Figure 4.20 we illustrate the mapping of root nodes when choosing 
¿¿2 =  0 (left plot), and p\ =  0 (right plot). With p 2 =  0, the network has particular 
difficulties in distinguishing the classes derived from within each domain. The three 
domains are well distinguished. This shows that classes within each domain can be 
distinguished only when considering the structural information as well. This result 
is not s surprise since the data labels in the root nodes are not too different from 
each other. In contrast, the right hand plot in Figure 4.20 shows the mapping of 
root nodes after training the network with p i =  0. Here the reasons for the network 
having difficulties in distinguishing the classes is caused by the sole consideration of 
the topology of the graphs as the graphs contain relatively few nodes and hence, the 
dataset does not show a great variability. This observation may pinpoint reasons 
for poor network performance. This shows that p 2 controls the “focus” of the 
SOM-SD on features while p i  affects the “separation” of features. However, it 
has become evident that well performing SOM-SD network can only be achieved 
through the combination of both numerical information presented in the data label
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Figure 4.20: Neurons as activated by root nodes when setting p 2 — 0 (left), and 
Pi = 0  (right).

and structural information respectively. However it is not possible to accurately 
predict the best combination of values for p\ and p 2 .

The mapping of nodes for the optimal set of pi is illustrated in Figure 4.21. The 
left hand plot shows the mapping of nodes depending on their class memberships. 
It shows that there is very little overlap between nodes from different classes. The 
interesting observation is that the training algorithm has placed a considerable focus 
on structural information even when structural information itself does not help to 
separate the classes, as shown in this experiment for the “policeman” classes. Here, 
the focus on the structure assures that vital information encoded in the data label 
associated with nodes away from a root node are passed back to the root node 
accurately. The plot on the right hand side shows the mapping of nodes depending 
on the type of the node.

Figure 4.21: The mapping of nodes when p 2 «  1 0 0 p i .  This setting produced a well 
performing network.

In this figure, a plus shaped symbol corresponds to a root node, squares represent 
the mapping of intermediate nodes, and crosses show the location on which leaf 
nodes are mapped. It can be observed that relatively large areas (48.73% of the 
map) are left blank. This resembles neurons which were not activated by any node 
in the training set, and contributes to a good generalization performance.

It has been demonstrated that SOM-SD’s generalization performance is generally
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very good in that the performance on validation data is typically less than 1% 
behind the performance achieved on the training data. This gives no indications 
as whether this is due to data of low complexity, the sheer size of the data set, 
or a strength of the SOM-SD model. The following experiment varies the size of 
the data set to give a better insight. The quantity of training data is gradually 
reduced until only 61 graphs (1/64 of the original set) are left. The network is then 
tested against the test set where no pattern in the training set is present in the 
validation set. Training parameters and the size of the network are the same as the 
first experiment described in this section with the exception of a which was set to 
114. The result is illustrated in Figure 4.22.

Size of data set (#nodes)

Figure 4.22: Network performance vs. size of the training set. The network perfor­
mance is shown on the left hand plot. The right hand plot illustrates the amount 
of neurons activated by at least one node.

It is found that the network performance is always around the 90% mark on the 
training data independent of how many patterns are present during training. In 
contrast, generalization performance decreases as soon as the training set consists 
of less than 16000 nodes. Also illustrated is the network utilization rate where 
the amount of neurons actually activated by any node from the training (test) set 
is plotted against the size of the data set. Lesser number of neurons is activated 
as the size of the training set is reduced. Interestingly, network utilization rates 
also decrease for the test set when the training set gets smaller despite the test set 
remaining static in size. From this observation, it appears that a reduction of the 
training set size has an effect on SOM-SD’s ability to generalize since fewer neurons 
are involved in the generalization process.
In the following, we consider the influence of the number of training iterations on 
the performance of a SOM-SD network. One would assume that due to the large 
size of the training data, only a relatively small number of iterations is required to 
achieve good results. To verify this, we trained some networks for just 50 iterations 
while others with as many as for 500 iterations. The result of these experiments is 
as shown in Figure 4.23.
It is found that the network performance increases steadily with the number of 
training iterations. However, training the network for more than 350 iterations did 
not help to improve the performance much further. Instead, the generalization per­
formance was observed to decrease slightly which perhaps is caused by overfitting. 
Also shown in this figure is the quantization error as obtained at the last training 
iteration. The quantization error shown is the total sum of quantization errors as 
defined by Equation 4.7. It is observed that while the network performance is at
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Figure 4.23: Network performance versus the total number of iterations trained. 
The left hand plot shows the network performance while the right hand plot gives 
the quantization error.

about 85% when training only 50 iterations, the quantization error is more than 
twice as large when trained for 500 iterations where the increase in performance is 
just about 6 %. Thus, the quantization error does not necessarily reflect how the 
network performs on a given task.

So far, most experiments were based on an initial learning parameter set to 0.08 
and a neighbourhood radius set to the maximum dimension of the SOM. During 
training, the learning parameter decreases linearly to zero while the neighbourhood 
radius decreases linearly to 1. Traditionally, the initial neighbourhood radius is 
chosen large so as to reduce the chances of falling into a local minima situation [59]. 
To verify whether this is true for SOM-SD, we conducted the following experiments. 
Networks were trained with different initial radius, then the network performance 
was evaluated. From the results displayed in Figure 4.24 it can be observed that 
SOM-SD’s performance actually increases with smaller initial radius. This is in 
contrast to observations typically made on traditional SOM. An explanation to this 
behavior is that SOM-SD clusters input data into areas depending on the types 
of nodes (root, intermediate at different levels, leaf). This clustering has been 
observed to be established very early during training (within the first or second 
iteration). From then on, those clusters change their locations only little whereas 
major updates are happening only within each cluster. Thus, it is beneficial for the 
network to have a small neighbourhood function so that training can be focused on 
smaller areas of the network. Evidently, large radius does have a rather disturbing 
effect. This is supported by considering the plot showing the minimum quantization 
error as obtained after training. The quantization error actually increases with large 
initial radius.

The last parameter to be considered for experiments is the initial learning parame­
ter. So far, all experiments were conducted based on an initial learning rate starting 
at 0.08 which decreased linearly with the training iterations down to zero. Kohonen 
described that in the standard SOM [57], too large and too small learning rates can 
lead to poor network performances. There is no clear guideline which suggests good 
learning rates to any given learning problem. Hence, the following experiments aim 
to find the optimal learning rate for the benchmark problem under consideration. 
Networks of size 114 x 87 were trained with a range o f different initial learning 
parameters a(0). All other parameters were left the same as the first experiment 
described in this section. Results are illustrated in Figure 4.25.
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Initial radius

Figure 4.24: Network performance ver­
sus initial neighbourhood radius. The 
upper left hand plot visualizes the net­
work performance. The amount of neu­
rons utilized in the final mapping is 
shown in the upper right hand plot. The 
plot to the left illustrates the quantiza­
tion error.

It is found, that the SOM-SD can be trained using a wide range of initial learning 
rates. Any initial learning rate larger than 0.32 and smaller than 1.5 can produce 
good results. Learning rates larger than 2 produced data overflow errors, rates 
smaller than 0.32 were insufficient to make the SOM-SD converge to high perfor­
mance levels. The ability of this model to accept a large range of a(0) together with 
the observation that a local minimum situation was never observed in any of the 
106 training sessions conducted on this experiment indicates that this model may 
be more robust than the original SOM. This finding is supported by [97] where a 
SOM-SD is applied to a real world learning task.

Sum m ary o f  the experim ental results:
By putting all results described in this section together, we find that for the given 
learning problem, and for a network of size 114 x 87 (number of neurons approxi­
mately 1 /3  the number of nodes in the training set), that the best set of parameters 
is g  7n 60, a(0) 6  [0.32; 1.5], P 2 ~  100/ri, and the number of training iterations is 
greater 450.
A network trained with this set of parameters produced the following results: 
97.63% performance on the training set, 97.33% on the validation set. 54.19% 
network utilization on the training set, and 54.40% utilization on the test set. The 
quantization error was 90.9 x 106. This indeed is the best result; no better perfor­
mance was observed by any other experiment conducted so far. Nevertheless, there 
is still an error of about 2.5%.
It was observed that the greatest contributors to the network error are patterns 
belonging to classes that are represented by a small number of samples. Also some 
“ship” patterns and “policeman” patterns contributed to the total error. It was
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Figure 4.25: The plot gives an overview of the network performance dependent on 
the initial learning parameter.

found that these misclassifications were caused by the fact that the patterns actually 
shared an identical structural representation with some patterns from another class. 
Evidently, information provided by the data label was insufficient to produce a 
better mapping.

Note that an optimal set of training parameters can only be found through trial- 
and-error. The parameters suggested here are the best as far as the learning task 
provided with dataset-3 is concerned. Other learning problems may benefit from a 
different set of training parameters. However, by showing this set of parameters, 
it is hoped that this gives a good indication of what to expect in other practical 
problems. Perhaps this set of parameters could be used as an initial set of param­
eters for other practical problems. In addition, by considering various aspects of 
the implementation of SOM for this problem, it is observed that there are many 
aspects to the practical application of such techniques which need to be considered 
in practice.

4.4.4 Long term  d ep en d en cy  p rob lem

Gradient based learning techniques such as the back-propagation algorithm [73] 
suffer from a phenomenon known as long term  depen dency problem  [5]. In the 
area of learning graph structured information, this implies that the network loses 
information about the nodes processed first when recursing through the graph. As 
a result, gradient based methods have a limited ability to learn deep structures.

SOM-SD training does not rely on gradient based information during training and 
hence does not suffer from long term dependency problem. As a result, using a 
self organizing map for the mapping of (potentially deep) graph structures does not 
impose a problem.

An experiment has been crafted to confirm this. A set consisting of two input 
graphs was generated such that the graphs were identical up to a certain depth. 
This depth was varied from zero (the root nodes differ) to 16. A network was 
trained for each of the cases. The result is as shown in Figure 4.26. It is observed 
that the depth of a graph structure has little or no influence on the number of 
iterations required to distinguish the graphs. Note that this experiment does not 
take the influence of data labels into consideration. The weight value p 2 was chosen
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Iterations

Figure 4.26: Learning deep structures. Shown in the diagram are the minimum and 
average number of iterations required to perfectly map two graphs that are different 
only at the indicated depth.

to be large (/12 =  100) to assure that structural information is passed on to parent 
nodes accurately.

4.5 Conclusions

In this chapter, we described a new way of formulating unsupervised learning prob­
lem of graphs structured architectures using self organizing map techniques. The 
major innovation is to treat each leaf node as a self organizing map, and the co­
ordinates of the winning neuron is transferred to the parent node. In other words, 
we assume that the information transferred between the children and the parent is 
conveyed by the coordinates of the winning neuron in the child node. The technique 
has been applied to three benchmark problems: dataset-1, dataset-2, and dataset-3. 
It is shown that the proposed technique is able to cluster data according to some 
prescribed classes.
An important finding is that the weight values ¡ii provide an effective mechanism for 
controlling the influence of structural information to the learning process. Moreover, 
it was demonstrated that the quality of the mapping can benefit by including a 
strong emphasis on structural information.

It is trivial to observe that in the case where the maximum out-degree of the data 
is zero, the SOM-SD reduces to the standard SOM model. In addition, a SOM-SD 
model is capable of encoding data sequences by providing DO AGs with out-degree 
1 . Hence, the model introduced in this chapter extends the general form of SOM.

The SOM-SD suffers a number of deficiencies which also afflict the general SOM 
model. These include:

• There is no convergence proof of the SOM-SD training algorithm.
• We cannot formulate an energy function to derive the training algorithm.

In addition, the SOM-SD model has the following parameters which need to be
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considered:

• The interaction between the structural information and the data labels. 
In this thesis, this relationship is embodied in the parameters /¿i and M2 
respectively. In general it is useful to assume that ¡1 2  in comparison to /¿1 
is larger than suggested by equation Equation 4.5, though as shown in our 
experiments in this chapter, this rule may not hold in some cases.

• The number o f neurons in the display space. In this thesis we have made 
the assumption that the number o f neurons in the display space should be 
about I  o f the total number o f the nodes in the input graphs. In practice 
we do not know the number o f nodes in the input graphs. Hence this 
parameter can be obtained by some trial and error process. One could, if 
desired, use evolutionary methods to determine this parameter.

• The shape of the initial neighbourhood whether it is a hexagonal shape or 
a rectangular shape.

• The initial learning rate.
• The stopping criterion, whether it should be the number o f training steps, or 

whether the quantisation error should be smaller than a prescribed thresh­
old.

It is noted that while we considered three datasets: dataset-1, dataset-2, and 
dataset-3, in effect, dataset-1 is logically a subset o f dataset-2. Dataset-2 and 
dataset-3 are the same except that dataset-3 has 12 classes. Hence, from now on 
we will only consider dataset-3. Dataset-1 and dataset-2 are used only in this chap­
ter, as one way to introduce the reader to the complexity o f applying SOM-SD to 
graphical structures.

The SOM-SD model addressed in this section was trained in a unsupervised manner. 
In its present form, the model is unable to incorporate class information to assist the 
learning process in cases where such information exists. In the following chapter, 
the SOM-SD model is extended so as to allow supervised training.



Chapter 5

Supervised SOM for 
structured information

5.1 Introduction

This chapter presents an extension of the unsupervised SOM for graph structured 
data to incorporate a teacher signal when processing nodes for which a (symbolic) 
target label exists. The idea is to assign codebook vectors to the same class as 
the node that was mapped at this location. If several nodes from different classes 
are mapped at the same location, then the class of the codebook entry is obtained 
through majority voting. Training proceeds in a similar manner as the unsuper­
vised case with the difference that codebook entries are rejected if they belong to a 
different class as the input vector. The advantage of this method is as follows: by 
adding supervision to the learning process, the network performance is improved. 
With the method proposed in this chapter, the system can handle problems which 
feature incomplete or missing class labels.
The structure of this chapter is as follows: in Section 5.2, some theoretical back­
ground for supervised self organising map will be introduced. In Section 5.3 a 
training algorithm for the supervised SOM-SD model will be given. In Section 5.4 
some experimental results will be given in applying the supervised SOM-SD to a 
benchmark problem, viz., dataset-3. In Section 5.5 some conclusions will be drawn.

5.2 Theoretical background

Kohonen describes in [59] a mechanism for training a SOM supervised. The idea is 
to produce input vectors through the concatenation of the (numeric) target vector 
with the data label, and then to proceed training in the usual manner. However, 
the extension of this idea to the class of SOM-SD did not produce a well performing 
model. A supervised SOM-SD model which has been developed with considerably 
more success is presented in this chapter 1.
Given a self organizing map M  with k neurons. Each neuron is associated with a 
codebook entry m  G Mn. The best matching neuron m r for an input node x  is 
obtained in a similar manner as the unsupervised case (see Chapter 4). The *-th

1 As fax as we axe awaxe, the training algorithm presented in this chapter is novel.
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element of the ,7-th codebook vector nij is updated as follows:

a  _  /  —e a(t) f ( A j r)h (x i : mij) if x  and rrij are in different classes.
Am ij =  \ a(t) f ( A jr )(xi — rriij) else.

where / ( A jr) is the neighbourhood function as before, a  is the learning rate which 
decreases to zero in time, e is a rejection rate which weights the influence of the 
rejection term h{.). The purpose of the rejection term is to move and its near 
neighbours away from x. The effect is a reduction of the likelihood that an input 
node activates a codebook vector which is assigned to a foreign class in subsequent 
iterations. In order to improve efficiency, the rejection term should dictate stronger 
actions if a codebook entry is very similar to the input node and have a lesser 
influence on codebook vectors which are already very different to x. Initially, we 
shall define the rejection term as follows:

h(xi, rriij) exp (5.2)

where <Tj is the standard deviation defined as follows:

Oi — E ? = i (*k - 5 *)2
Q

(5.3)

where q is the total number of nodes in the training set, and Xi =  l/qJ2i=i x u-

Oi can be approximated by a constant when assuming that the mapping of nodes is 
random. This approximation significantly reduces the computational complexity o f 
Equation (5.2). Another way of reducing the computational demand is by imitating 
the behaviour of (Equation 5.2) by the following (Equation 5.4):

h(xi, rriij) =  - £  sgn(xi -  rriij) ^1 -  j— q j  , * =  1 , . . . ,  n (5.4)

where e is a normalization value, sgn(.) is the signum function returning the sign of 
its argument, and Oi is the maximum absolute distance between any two nodes in 
the data set and is defined as Oi =  | maxfxj — X j)|, i =  0 , . . . ,  q j  =  0 , . . . ,  q .

The use of (Equation 5.4) is a preferred option because the rejection term is applied 
to the innermost loop (i.e. it is applied to every element of every codebook vector 
in the map and for every node of all graphs in the data set.). Hence, (Equation 5.4) 
facilitates the reduction of the computational demand of the rejection term.

However, when applied in practice, it has been found that the application of (Equa­
tion 5.2) and (Equation 5.4) produce unstable networks. This can be attributed to 
the influence of the term 1 /  (x — m ). If x  and m  are very similar 2 then the update 
step becomes very large. As a result, it has been found that network training can 
produce data overflow errors even when the rejection rate e has been chosen to be

2x —m cannot be zero because the updating rule in (Equation 5.1) allows this to happen 
only asymptotically. However, x — m can become smaller than a computer’s floating point 
precision and hence cause a division by zero problem.
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very small. One way of overcoming this is to limit the rejection rate for the cases 
when |x — m| reaches a certain threshold as suggested by (Equation 5.5)

=  (  - £ s^ Xi -  "H i) i 1 -  k P f c n )  if \x * -  >  A ' (5.5)
[ k else.

where A  is a threshold and k is a small constant. While this approach eliminates 
the problem described above, it adds two more parameters to the system that need 
to be adjusted manually to achieve optimal performance. This can be a difficult 
and time consuming task since the choice of both A  and k are dependent on the 
learning task.

An alternative formulation of the rejection term in (Equation 5.6) which achieves 
similar results without having the burden of extra parameters is as follows:

h(xi,m ij) =  sgn(xi -  mij)(pi -  \xi -  mi3J) (5.6)

It is useful to note that (Equation 5.6) is not an approximation of (Equation 5.2) 
but has the benefit o f simplicity, and eliminates the possibility of runaway values or 
overflow errors. The goal o f (Equation 5.6) is to reject codebook vectors belonging 
to a different class such that the distance between codebook entry and the input 
vector is the same distance as the maximum distance between the vectors in the 
data set. The disadvantage of this approach is that (Equation 5.6) does not take 
into account the distribution of the input data. Hence, the rejection rate may be 
unreasonably high for some of the vector elements. By using the standard deviation 
a instead of the maximum distance value o we obtain an improved rejection term 
as defined by (Equation 5.7).

h(xi,m ij) =  sgn (xi -  mij)((Ti -  | Xi -  rriij\) (5.7)

The standard deviation is as defined by Equation 5.3. In practice, the application 
of (Equation 5.7) has produced the best results and will be used throughout this 
chapter.

5.3 Training algorithm

Training a supervised SOM-SD network is very similar to the training of an un­
supervised SOM-SD network. The difference between the two approaches is that 
codebook vectors are assigned to a class during training, and the use of a rejection 
term for codebook entries that do not belong to the same class as the input vector. 
Training a SOM-SD network in a supervised fashion is as follows:

S tep  1 A node j  from the training set is chosen and presented to the network. 
When choosing a node special care has to be taken that the children of 
that node have already been processed. Hence, at the beginning of this 
process terminal nodes for each graph are processed first, the root node is 
considered last. Then, vector Xj is presented to the network 3. A winning 
neuron r is obtained by finding the most similar codebook entry m r. This 
can be achieved, e.g., by using the Euclidean distance as follows:

3Note that x_, is a concatenation of lj and Cj similar to the unsupervised case.
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r =  argmin ||(xj — nii)A|| (5-8)
i

where A  is a n x n dimensional diagonal matrix. Its diagonal elements 
An • • • App are assigned to be p i,  all remaining diagonal elements are set 
to /i2- The winning neuron is assigned to the same class as the node. 
Step 1 is repeated until all nodes in the training set have been considered 
exactly once. Codebook vectors that were activated by nodes belonging to 
different classes are assigned to the class which activated this neuron most 
frequently. Note that this step does not involve any training. It is solely 
used to initialize neurons with class labels. Neurons that were not activated 
by any node from the training set are assigned to the class unknown.

S tep  2 A node j  is chosen from the data set in the same way as step 1. Hence, 
when choosing a node special care has to be taken that the children of 
that node have already been processed. Then, vector Xj is presented to the 
network and the winning neuron r is obtained by finding the most similar 
codebook entry m r, e.g., by using Equation 5.8.

S tep  3 After the best matching neuron has been found, the winning codebook 
vector and its neighbours are updated so that codebook entries belonging 
to the same class as the input vector are moved closer to vector x , and 
those of other classes are moved away from it.

A m i = I - e a { t )  / ( A J> )/i(xJ-,m <) 
a{t) f ( A jr ) (x j  -  m i)

if x  and m  are in different classes, 
else.

(5.9)
Note that if either m  or x  belong to an unknown class that updating is 
performed as if they belong to the same class.

S tep  4 The coordinates of the winning neuron are passed on to the parent node 
which in turn updates its vector c  accordingly.

Step  5 Steps 1 to 4 are executed until a given number of training iterations are 
performed, or when the mapping precision has reached a given threshold.

It is not absolutely necessary to execute step 1 for every iteration. It is sufficient to 
initialize the class membership of codebook vectors when training starts. Then, a 
change of class membership can be detected during the execution o f step 2. Hence, 
training can be performed by recursively running steps 2 to 4.

5.4 Experimental results for supervised SO M -S D

From Section 4.4.3 we know that the best result obtained when training SOM- 
SD in an unsupervised fashion was 96.8% (train), and 96.72% (test). This result 
shall serve as a benchmark for the experiments described in this chapter. Such a 
comparison is valid because we aimed our previous experiments on the finding o f an 
optimal set of parameters which produce the best classification result 4. In addition, 
from the experiments conducted by the unsupervised method, we already have a 
very good idea about useful values for the parameters p i , p 2 , &■> ck, and the number

One may argue that it is obvious that a supervised algorithm will outperform an 
unsupervised algorithm. However, this is not always true as we found e.g. in Kohonen’s 
original idea [57] of padding class information to the input vector actually produces results 
which are worse than the model trained in an unsupervised mode.
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of training iterations. In this section, we will use a network of size 114 x 87 and 
the same set of parameters that produced the best results for unsupervised trained 
network. Thus, for the first experiments we will use the following parameters: 
cr =  60, a(0) =  0.32, p 2 =  100/ii, and the number of training iterations is 450. 
Supervised trained SOM-SD networks do have one additional learning parameter e 
which controls the rejection rate for codebook entries that were found to represent a 
different class as the current input node. We restrict the set of experiments given in 
this section to the finding a value for e that produces the best performing network. 
At the same time we will monitor the influence of e on the network’s performance. A 
more comprehensive set of experiments with supervised SOM-SD is given in Section 
5.4.1.

Networks were trained with e varying from 0 to 10. Choosing values for e greater 
than 10 produced unstable networks in that data overflow errors started to occur. 
Figure 5.1 shows the behaviour of the network performance with the choice of e:

train supervised -------
test supervised ........

train unsupervised-------
test unsupervised • • • •

Figure 5.1: Training a network in a supervised fashion. Shown in the Figure is 
the network performance dependence on the rejection rate e. Sample points are 
indicated by pluses and diamond shaped symbols. Lines are a linear interpola­
tion between sample points. In comparison, the two horizontal lines are the best 
performance achieved by the unsupervised training method.

It is found that the network performance exceeds the performance of the unsuper­
vised trained networks for any value of e smaller than 10. Note that even networks 
trained with e equal to zero outperform the unsupervised SOM-SD. In this case, 
codebook vectors that are associated with a class other than the current input node 
are not updated. This apparently has a rather beneficial effect on the performance. 
The performance is increased by setting e to be a small positive value. Choosing e 
to be 0.1 produced the best performing network. Here, the performance is 99.68% 
on the training set and 99.47% on the test set. It is noted that the results shown 
in Figure 5.1 are typically achieved by the proposed algorithm on this problem. 
Best and worst case performances are not shown because the training time require­
ments of the learning task did not allow us to conduct a sufficiently large number 
of experiments for each instance of e using different initial network conditions.

The mapping of root nodes after having trained a network supervised with e =  0.1 
is shown in Figure 5.2. It can be observed that the general arrangement of the 
root nodes does not significantly differ compared with the mapping obtained when 
training in an unsupervised fashion. The difference is mainly a better ordering 
of patterns within sub-clusters so that nodes belonging to the same class form a
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Figure 5.2: Mapping of root nodes after training a network in a supervised fashion 
with e set to 0.1. Neurons are marked according to the class membership in which 
they belong.

cluster. It is observed that clusters belonging to different classes but in the same 
domain are often located very close to each other. There is very little overlap of 
clusters formed by different classes.

In Figure 5.3 we show the mapping of all nodes from the data set. It is observed that 
the network utilization rate is higher compared with the one obtained when training 
the network in an unsupervised fashion. In fact, 55.93% of the neurons on the map 
are involved in the mapping of at least one node from the training set 5. Hence, 
it appears that the incorporation of supervision to the learning process results in a 
more efficient use of neurons.

Section 6.2 addresses another supervised neural model which is able to process 
graph structured information. The model described in Section 6.2 is based on an 
MLP type architecture and training is performed using a gradient decent method. 
A comparison of the supervised SOM-SD model with the unsupervised counterpart 
is given in Section 5.4.2. The following subsection gives a more comprehensive 
evaluation of the supervised SOM-SD model.

5.4.1 Supervised S O M -S D  on  dataset-3

This section presents a more comprehensive set of results as obtained when training 
a SOM-SD in a supervised manner on dataset-3 (see Appendix A). The experiments 
conducted in this section were kept as similar as possible to those described for the 
unsupervised SOM-SD method in Section 4.4.3. This will allow a fair comparison

5The large size of symbols used in Figure 5.3 may produce the false impression of a 
higher usage rate.
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Figure 5.3: Mapping of all 29864 nodes in the training set. Neurons are marked 
according to the type of nodes that activated the neuron. Note that there is very 
little overlap between the different types of nodes.

between the two models later in this chapter. As a result, a network with hexagonal 
topology and a Gaussian neighbourhood function was chosen, and the rejection rate 
e remained at 0.1 for all experiments. All other parameters, including the extension 
of the network were varied as described by the individual experiments.

Findings obtained from unsupervised trained SOM-SD networks demonstrated that 
the performance of the network increases with the size of the display map, but that 
the performance increase weakens as the display map grows beyond a certain size. 
This is an expected result because an increase of a SOM network means a liberation 
of the mapping conditions. The following experiment repeats this experiment on 
the supervised SOM-SD model.
Networks of various sizes were trained on dataset-3, a data-set featuring 29864 
(sub-)graphs. The number of neurons in a network ranged from just 10 (a network 
with 2 x 5  neurons) to 84992 neurons (a network of size 332 x 256). All other 
parameters remained fixed at p 2 =  l-9/ii, <*(0) =  0.08, o  -  114, and the number of 
iterations was 350. Typical results obtained are shown in Figure 5.4

It is observed that the performance of the network increases relatively smoothly 
with the number of neurons. Furthermore, it is found that the performance of the 
network featuring approximately 10000 neurons gives the best “training time to 
performance” ratio because the increase of network performance is only minor for 
those larger than 10000 neurons.
Despite having trained the SOM-SD network in a supervised manner, it was not 
possible to achieve a performance level of 100% even for the largest network con­
sidered. This implies that the task of mapping graphs from this set of data onto a 
two-dimensional map cannot be done without compromise. In addition, it is found 
that the generalization performance can degrade when choosing large networks. 
This observation is quite typical for most type of neural network models. The prob­
lem here is called overfitting. Overfitting occurs when a network is trained for too 
long or with too many parameters so that the network is allowed to focus too much
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Figure 5.4: Performance of the SOM-SD trained in a supervised manner when vary­
ing the size of the network. The left hand plot illustrates the overall performance, 
the right hand plot gives the amount of neurons activated by at least one node.

on the training set and reducing its ability to generalize over unseen data.

Also shown in Figure 5.4 are the network utilization rates. These rates indicate 
how many neurons are involved in the mapping of nodes of the data set. It is 
found that the utilization rate decreases monotonically from 100% for the smallest 
network to less than 16% for the largest network. Networks with more than 25000 
neurons feature more unused neurons than neurons that were activated at least 
once. The ratio between network use on the training set and network use on the 
test set gives some idea as to how well the network generalizes. From Figure 5.4 
it is found that the network usage rate is nearly identical for both the training set 
and the test set on networks featuring more than 15000 neurons. This indicates 
that generalization does not occur and supports an earlier observation about the 
overfitting problem. Hence, the finding of this experiment is that it may not be 
beneficial to choose arbitrarily large networks. The appropriate sized network is 
application dependent but it is generally a good idea to choose a network featuring 
less neurons than (sub-)graphs in the data set. In the present case, an appropriate 
size for the network is approximately 114 x 87, a network featuring about 1 /3  the 
number of neurons as compared to the number of nodes in the training set.

The next experiment focuses on the influence of the weight values p\ and p 2 on the 
performance of a SOM-SD network when trained in a supervised mode on dataset-
3. This experiment utilizes networks of size 114 x 87 which were trained with the 
parameters a(0) =  0.08, o  — 114, and the number of iterations was 350. The 
weight values ranged from { p i , p 2) =  (0,1) to ( p i , p 2) =  (1 ,0). The result is shown 
in Figure 5.5.

It is observed that the performance of the worst performing network is already near 
90% and that the performance increases with a stronger emphasis on p 2 . The best 
performances are achieved when choosing p 2 between 50 to 1600 times larger than 
Pi .  In these cases, performance levels can exceed 98%. In cases where the focus 
on p 2 increases to over I6OO//1, the network performance starts decreasing and this 
becomes 67.07% when p i  =  0.

An interesting observation is that the choice o f p\ and p 2 appears to have no effect 
on the generalization performance of the network. The performance achieved by 
using the test set is always about 1.5% below the performance obtained by the 
training set.
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Figure 5.5: Performance of the SOM-SD model trained in supervised mode with 
varying p 0 and The network performance is shown on the left; the right hand 
plot illustrates the network utilization in percent.

A further interesting observation is made by investigating the network utilization 
rates. These rates decrease with larger p 2 from a peak at 55% to a low of 36%. 
This shows that the data compression ratio obtained during the mapping process 
can be controlled through the choice of the weight values; a stronger focus on p 2 

results in a higher compression. A higher compression ratio has a similar effect as 
choosing a larger network in that the algorithm is given more room for the mapping 
of the data. The result is an improvement in network performance. However, p 2 

cannot be chosen arbitrarily large since the algorithm starts losing vital information 
provided by the data label. Hence, the network performance starts decreasing for 
very large p 2 -

Dataset-3 features a total of 29864 graphs and subgraphs. An experiment has been 
crafted to determine whether the size of the dataset is appropriate for the underlying 
learning task. A SOM-SD network of dimension 114 x 87 was trained in a supervised 
manner on subsets of the training set. The number of the training data ranged from 
just 61 subgraphs (1/64 of dataset-3) to the full 29864 subgraphs in the training 
set of dataset-3. Training parameters were identical to those used when conducting 
this experiment on the unsupervised SOM-SD method (see Chapter 4). The result 
of the experiments is as shown in Figure 5.6.
It is observed that the network performs above the 90% mark whenever the data set 
features more than 1/8-th of the size of dataset-3. The performance falls sharply 
with smaller training sets. In addition, the generalization performance was observed 
to be the best when using just 1 / 8-th of the size of data set-3. Also shown in Figure
5.6 are the network utilization rates. The network utilization rate decreases with the 
size of the training set. This can be attributed to the fact that the compression ratio 
decreases with smaller training sets since the size of the network remains constant. 
However, the decrease of the utilization rate is not proportional to the size of the 
training set because the fewer input data are given a higher degree of freedom to 
spread over the network. Interestingly, the network utilization rate as obtained by 
the full test set (for all the experiments) follows sharply the rates obtained from the 
training set. An observation which cannot be not fully explained yet.
The question of how many training patterns are required for a successfully perform­
ing SOM-SD trained in supervised mode is application dependent. However, it can 
be stated that due to the incorporation of a supervisor signal into the learning pro­
cess, a higher compression ratio can be achieved compared with that obtainable by
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Figure 5.6: Network performance versus 
performance of a SOM-SD network trained in supervised 
hand plot. The right hand plot illustrates the amount of neurons 
least one node.

Figure 5.7: Network performance versus the total number of iterations trained. The 
left hand plot shows the network performance when trained in supervised mode, the 
right hand plot gives the quantization error.

unsupervised trained networks. It is interesting to observe that the generalization 
performance may decrease if the training set is chosen too large, an observation 
which is also often made with other supervised neural models such as MLP based 
architectures.

Next, the influence of the number of training iterations on the network performance 
is investigated. For this experiment a network of size 114 x 87 is trained on dataset-3 
for a given number of iterations. All other parameters remained fixed at p 2 =  1.9/ii, 
cr =  114, and a(0) =  0.08. The results are as shown in Figure 5.7.

It is found that the network is unable to perform satisfactory if trained for less 
than 100 iterations. Training the network for more than 200 iterations produced 
stable and well performing networks. However, it is also observed that the increase 
of network performance becomes less significant for larger number of training iter­
ations, at the same time, the generalization performance tends to decrease. This 
is an indication that overfitting occurs if the network is trained for too long. This 
result agrees with observations typically made on other supervised trained neural 
models.
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Initial radius

Figure 5.8: Network performance versus 
initial neighbourhood radius. Networks 
are trained supervised. The upper left 
hand plot visualizes the network perfor­
mance. The amount of neurons utilized 
in the final mapping is shown in the up­
per right hand plot. The plot to the left 
illustrates the quantization error.

The number of training iterations required for a given learning task is application 
dependent. However, it can be stated that self-organizing maps tend to require 
more iterations for smaller datasets.

Also shown in Figure 5.7 is the quantization error obtained when training a super­
vised SOM-SD network for a given number of iterations. It is observed that the 
quantization error decreases significantly with the number of training iterations. 
Comparing this with the increase of the network performance, it is found that a 
decrease of the quantization error is by no means proportional to the performance 
gain. Hence, judging the network performance by looking at the quantization error 
alone is not an appropriate approach.

In Section 4.4.3 an experiment was crafted to determine the influence of the initial 
neighbourhood spread to the final network performance. The following experiment 
repeats this efforts on a SOM-SD network trained in supervised mode. A network 
of size 114 x 87 was trained for 350 iterations using p 2 =  1-9/ri and a(0) =  0.08. 
The initial neighbourhood spread was varied as indicated in Figure 5.8 which gives 
the results o f the experiments.

It is observed that the network performance exceeds 90% for any cr(0) values chosen 
in these experiments. However, the performance level fluctuates between 90.67% 
and 97.65% without a clear indication to a dependency on n(0). By looking at 
the network utilization rates, we find that the rates decrease relatively smoothly 
with larger cr(0 ) which indicates that the network compresses the information more 
efficiently. However, at the same time the quantisation error increases. This demon­
strates that the network performance is governed more strongly by other parameter 
rather than d (0 ), and that an optimal choice for cr(0 ) can only be found through 
trial-and-error.
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The following experiment targets the remaining free adjustable parameter a(0). 
Networks with dimension 114 x 87 were trained on dataset-3 using p-i =  1-9/xi, 
cr(0) =  114, and the number of training iterations are 350. Results are shown in 
Figure 5.9.

Experimental results for supervised SOM-SD

initial te am in g  rate

Figure 5.9: Network performance versus the initial learning parameter. The plot to 
the right gives an overview over the network performance.

It is observed that the network performs above the 90% level for all but the smallest 
initial learning rates. Good performances can be achieved for a large range of a(0) 
but it was observed that when choosing a(0) >  2 that networks suffered from 
data overflow errors. Hence, a supervised trained SOM-SD network demonstrates 
robustness to the initial learning rate. However, in order to obtain optimal results, 
trial-and-error approaches need to be applied. In the present case, the best result 
was obtained when choosing a(0) =  0.99.

In addition, no evidence was found for effects of a(0) on the generalization perfor­
mance. The network always performed around 1.5% less well on the test set when 
compared with the training set.

Summarizing the results conducted in this section, it is possible to define a set o f 
parameters that are best suited for the given data set. Hence, the most appropriate 
network configuration would feature an architecture with 114 x 87 neurons which 
is to be trained for 350 to 450 iterations using ¡i2 ~  1600/ii, (j(0) «  80, e ~  0.1, 
and a(0) «  0.99. Networks trained with this set o f parameters performed at 99.72 
(training set) and 99.53 (test set).

This concludes the experiments conducted on the supervised SOM-SD model. A 
comparison of the results with the unsupervised SOM-SD is given in the following 
section.

5.4.2 C om parison  w ith  u n supervised  S O M -S D

This section compares the performance of the supervised SOM-SD network with 
the unsupervised version of SOM-SD which was described in Chapter 4. Overall, 
the performance of a SOM-SD network trained in supervised mode exceeds the 
performances obtained from an unsupervised SOM-SD network significantly in all 
observed circumstances. Nevertheless, none of the 184 experiments conducted were 
able to achieve a 100% performance level. We find that a supervised SOM-SD 
network was only able to achieve 99.72% under optimal conditions. The following 
gives a more detailed comparison and analysis:
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N etw ork size Experiments revealed that for both models the best suitable net­
work architecture for the given learning problem features approximately 
10000 neurons which is about 1/3-rd of the size of the training set. While 
the performance of a supervised trained SOM-SD network exceeds that 
of the unsupervised counterpart, it is noted that the generalization per­
formance is weaker for the supervised model. The unsupervised trained 
network demonstrated that the performance on the test set is always less 
that 1% below the performance achieved on the training set. This value 
increased to typically 1% to 2% for the supervised method. In addition, it 
is found that the network utilization rate is much the same for both models.

V ector weight values The supervised model demonstrated great robustness to 
the choice of ¡i\ and /¿2, performing well for any values between p,2 =  200/zi 
and p2 =  1600/xi. This is in contrast to the unsupervised model which 
performed best when /¿2 =  100/ii. This demonstrates that the introduc­
tion of supervision to the learning process dominates the influence of the 
vector-weight values. Nevertheless, it is observed that the generalization 
performance obtained with the supervised model is not as good as with the 
unsupervised method. Statements concerning generalization made previ­
ously also apply for this scenario. Also, network utilization rates appeared 
to be similar for both models.

Size o f  the training set The behavior of the two models is remarkably different 
as soon as the size of the training set is reduced. While the unsupervised 
model requires at least 50% of the samples in dataset-3, the supervised 
model is able to achieve good results with just 12.5% of training data. 
Evidently, due to the incorporation of supervision to the learning process, 
fewer training samples are needed. The supervisor guides the network into 
the “right” direction while the unsupervised model has to derive desired 
features from the samples alone.

N um ber o f  iterations The unsupervised SOM-SD network requires considerably 
more training iterations as the supervised method. While the supervised 
model is able to achieve good results with as few as 100 iterations, the 
unsupervised model requires at least 4 times as many. This observation is 
consistent with the previous observation on the size of the data set. Hence, 
the supervisor signal governs the learning process into the “right” direction 
whereas the unsupervised model is controlled only through statistical infor­
mation encoded in the training set. Consistent with this are the observed 
quantization error rates which are considerably lower for the supervised 
method.

N eigh bou rh ood  radius The supervised SOM-SD network has demonstrated 
great robustness on the choice of <j(0). Nearly any value of <r(0) produces 
good results though fluctuations are also observed. In contrast, unsuper­
vised trained SOM-SD networks perform best with small <r(0). A smaller 
neighbourhood radius means that the updating rule has a lesser effect on 
areas away from a winning neuron, and hence is not able to affect infor­
mation learned and encoded in distant areas of the map. In contrast, the 
presence of a supervisor during the learning process assures that negative 
effects on distant areas are minimized so that it is possible to achieve good 
results even with large <r(0). In addition, the quantization error in the su­
pervised model is at least a magnitude smaller when compared with results 
from the unsupervised model.

Learning rate A learning rate has to be chosen carefully when training a SOM-SD 
network without supervision. In the present case, the best value for a(0) is
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0.4. In comparison, the supervised SOM-SD network gives superior results 
on a large range of learning parameters. Any value from within the range 
[0.02 : 2] enabled the network to perform well. However, both networks 
failed to be trained successfully due to data overflow errors when cn(0) is 
set to values larger than 2.

In summary, the incorporation of supervision to the learning process produces ro­
bust and well performing networks even when trained with fewer training samples 
and for fewer iterations. Hence, training a SOM-SD in supervised mode should be 
the preferred method if a supervisor signal is available.

5.5 Conclusions

This chapter introduced a new method that allows the training o f self organizing 
maps on graphs in a supervised fashion. It was demonstrated that through the 
incorporation of class membership information into the learning process the perfor­
mance of the network is increased considerably. The proposed method appears to be 
very stable and is not very sensitive to the rejection rate. In addition, the supervised 
trained SOM-SD model has demonstrated great robustness to initial conditions for 
P2 , £*(0) and cr(0) rendering this model considerably more robust to learning pa­
rameters when compared with the unsupervised counterpart. This improvement 
comes at almost no additional computational cost. A simple i f  statement in the 
neuron update algorithm is all that is different between the training algorithms of 
supervised and the unsupervised SOM-SD models.

Additional benefits of this method are that the complexity o f the training algorithm 
is not greater than the one for unsupervised trained networks, and that the algo­
rithm is capable of handling missing or incomplete class information. In the case 
where data have no class label available, the training algorithm reduces to the un­
supervised mechanism. Hence, the supervised learning mechanism generalizes the 
method introduced in the unsupervised SOM-SD chapter.

Note that there is no convergence theorem for this training algorithm introduced in 
this chapter. This deficiency also afflicts the general SOM model.

A supervised SOM for structured data



Chapter 6

Multilayer Perceptron 
Networks on graphs

6.1 Introduction to supervised learning with M LP

Multilayer Perceptions (MLPs) are perhaps the most well known form of artificial 
neural networks [49]. MLP networks gained considerable fame from the fact that 
even the simplest o f its structures (i.e. a single hidden layer multilayer perceptron 
network) has universal approximation property [52]. MLP networks consist of a 
collection of artificial neurons arranged in layers and are massively interconnected 
by “communication” lines. The artificial neurons in an MLP network are simple 
models o f brain cells, trying to emulate the behaviour of their natural counterpart. 
Essentially, an artificial neuron is a simple device which produces an output by 
passing the sum of all its inputs through a memoryless nonlinearity. Inputs are 
received from other artificial neurons in the network through the “communication” 
lines associated with constant weights. These communication lines are often referred 
to as synapses and the associated weights are called synaptic weights or simply 
weights [48]. The output of an artificial neuron is transmitted to other artificial 
neurons in the network via those weights.

Artificial neurons must not be misunderstood to be purely theoretical or a software 
implementation. It is an abstract mathematical model of the biological counterpart 
intending on capturing the most important aspect as far as pattern recognition is 
concerned. It does not pretend to be an accurate model, e.g., of the living nature 
of the biological neuron. A network of artificial neurons could be considered as a 
hardware device designed based on a theoretical abstract model. It could be im­
plemented using software simulation so that its behaviour with various parameters 
or inputs can be studied. Software simulations allow a fast, flexible, and affordable 
mechanism for evaluating new neural network models. This is because of the fact 
that the mathematical model o f a network of artificial neurons could be very diffi­
cult to analyse, and very few qualitative or quantitative results exist for a network 
of artificial neurons connected together in an arbitrary manner. In these situations, 
software simulation is probably one of the quickest way to gain some insight into 
the behaviour of the network under various working conditions.

There are three different types of layers in an MLP network [48]. The output of 
an artificial neuron is transmitted to other artificial neurons in the network via
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those weights. The output layer is a collection of artificial neurons which produce 
the output of the network. Hence, neurons located in this layer are called output 
layer neurons or in short output neurons. Dependent on the problem, the output 
neurons can either have a linear transfer function (in regression type problems) or a 
memoryless nonlinearity (in classification type problems). Another layer is the input 
layer which takes the input o f the network. This layer does not actually contain 
artificial neurons but rather sensory devices called input nodes. For simplicity, input 
nodes are sometimes seen as simple neurons with a linear transfer function. The 
third type are layers that are located inbetween the input layer and the output 
layer. Such layers are called hidden layers, and artificial neurons located within â 
hidden layer are referred to as hidden layer neurons or in short hidden neurons . 
The hidden layer neurons have memoryless nonlinearity.

Typically, the dimension of the input layer and the dimension o f the output layer is 
dictated by input/output data pairs provided with a training set used for training 
a network. As is well known, a major difficulty in the deployment o f multilayer 
perceptrons is that the number of hidden layer neurons is obtained by trial and 
error. There are no known practical methods which can provide an estimate o f the 
number of hidden layer neurons [49] 1 2.

On the other hand, there exist a number of constructive methods which can be 
deployed to design a feedforward neural network 3. Some methods result in feedfor­
ward neural networks which do not have the usual multilayer perceptron architec­
ture. One of the earliest constructive method is the cascade correlation [23]. This 
method is a step by step constructive method, adding hidden layer neurons, one at 
a time, until the training data set is suitably modelled, i.e., until a suitably chosen 
error criterion is minimised. However, it results in an architecture, which is o f the 
feedforward type, but not of the multilayer perceptron type.

Generally, MLP networks are trained by minimising a cost function. Because of 
the nonlinear nature of the optimisation problem, often one means o f obtaining a 
solution is to apply some kind of gradient descent techniques. This is often referred 
to in neural network literature as a learning rule or an updating rule. A learning 
rule adjusts the strength of the synaptic weights in the network and thus, influences 
how information is transmitted between the neurons.

MLP networks are typically trained in a supervised fashion. Supervised training 
means that for every given network input vector, a target (numeric or symbolic vec­
tor) is given. The target represents the desired network output. Hence, the primary 
purpose of the learning rule is to adjust the network weights so that the desired net-

1 Henceforth, there will not be any danger of confusion whether we are referring to a 
biological neuron, or an artificial neuron. Hence, we will use the term “neuron” to denote 
an artificial neuron.

2There are various information criteria based methods, e.g., Bayesian information cri­
terion [76], Akaike Information criterion [2]. However, these information criteria based 
methods have not proved to be useful in the determination of the number of hidden layer 
neurons required for a particular problem.

3In this chapter, we make a difference between multilayer perceptron, and feedforward 
neural network architectures. We use the term ‘multilayer perceptron’ to denote an ar­
chitecture which has at least one hidden layer. There are no interconnections among the 
hidden layer neurons. On the other hand, we use the term ‘feedforward neural network’ 
to denote an architecture, which has at least one hidden layer; the hidden layer neurons 
are permitted to have zero time delay interconnections with other hidden layer neurons, 
and/or the output neurons. However, we do not allow any connections from the hidden 
neurons to the input neurons. This distinction will be made clear in Section 6.2.2 and in 
Chapter 7 respectively.
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work output meets the target value in the best possible way, e.g., in minimising an 
accumulated squared error function; the error is defined as the difference between 
the target and the actual output from the network. The difficulty of the learning 
task is that it has to update the weights for a possibly large collection of different in­
put/output data pairs. To produce a good network, training is generally performed 
in small steps (controlled by a learning rate) for many iterations. The weight up­
dating mechanism performs modification of the weights based on the error so as to 
adjust the weights in a direction that reduces that error. The procedure of reporting 
the error to the network (the output error would be modified as it makes its journey 
through the multilayer perceptron) and updating of the weights is called an error 
back-propagation algorithm or in short backpropagation. Hence, MLP networks are 
sometimes referred to as backpropagation networks by some researchers.

MLP networks have been well studied [23, 51, 63, 64]. There exist a number of 
updating algorithms, most of them either attempt to improve the performance of a 
simple gradient descent type algorithm, or attempt to give a faster convergence.

Traditionally, MLP networks are restricted to the processing of fixed size data struc­
tures such as vectors. Some extended models exist which allow the processing of 
data sequences [21, 99, 100]. Such networks are called time-delay neural networks 
or recurrent neural networks. Often, recurrent neural network process data by split­
ting up sequences into equally sized, possibly overlapping portions. These portions 
are then presented to the network one by one where the activation of the network 
from processing the previous portion is used as an additional network input when 
processing the next portion.
However, the processing of data structures such as graphs has not been possible until 
recently. In this chapter we will describe a method that has become known as recur­
sive MLP or in short RMLP. RMLPs are networks that encode graph structured 
information in a recursive manner. Training of an RMLP network is performed 
through BPTS which is an acronym for backpropagation through structure. The 
updating rule can be considered as the extension of the backprop updating algo­
rithm in the MLP networks to the processing of data structures. In this chapter, 
when referring to BPTS we mean a neural network architecture updated through 
the BPTS updating rule.
The structure of the chapter is as follows: in Section 6.2, we will describe and 
derive the BPTS algorithm. In Section 6.2.1, we will give a brief overview of the 
representational models for data structures, with special emphasis on tree models. 
In Section 6.2.2, we will describe a data structure representational model based on 
the multilayer perceptron for each node, together with its training algorithms. This 
is a slight generalization of the models introduced in [29]. In Section 6.3, we will 
present results of experiments on MLP networks for data structures. A summary 
of findings made in this chapter is given in Section 6.4. Constructive models are 
addressed in Chapter 7. In Chapter 7 we will also introduce an extended MLP 
based neural network model for data structures which features greater similarities 
with a cascade correlation type network.

6.2 Back-propagation through structure (BPTS)

As indicated in Section 6.1 earlier, data structures can be represented using multi­
layer perceptrons with fixed input vector lengths [14, 86]. Recent activities made 
efforts to reformulate the problem into one which does not require a fixed length 
input vector [29, 86]. In essence, this methods employs a divide and conquer like 
approach in that it builds a neural network model for each node in the data struc-
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ture. The novelty o f the method lies on the fact that the model for each node has 
the same parameters. This is akin to weight sharing, except that it is arrived from 
quite different perspective and considerations. Once such a model is furnished, the 
unknown parameters can be learned minimizing a cost criterion.

In [86], a particular neural network model is employed to model each node in the 
data structure, viz., a multilayer perceptron. This section will give a rigorous math­
ematical formulation of the MLP algorithm for representing the DO AG data struc­
tures. Then a training algorithm for RMLP type networks is derived. We start 
with a mathematical formulation of a representation model for a special class of 
data structures, viz., a graph. This is a slight extension o f the work presented by 
[29].

6.2.1 D ata  S tructure M od e ls

Consider a general tree model 4 * *, with M  nodes. Each node has a maximum of c 
out degrees, i.e., each node can only have a maximum of c children. Each node also 
has a label u, which is assumed to be an m-dimensional vector. We will denote the 
labels by m-dimensional vectors: it7, j  =  1 , 2 , . . . ,  M. The label may consist o f real 
values, or integer values. It is assumed that m  will be the maximum dimension of 
the labels at any node. If there are less than m-dimensional labels, say, at node 
j ,  the vector uJ will be padded with zeros. It is further assumed that the output 
of the tree is obtained at the root node, i.e., y , which is a p-dimensional vector. 
The structure of the model will be given by the structure of the tree. Note that 
the definition of the tree only as a set of nodes u  neglects the topology o f the tree. 
However, such a definition greatly simplifies the notation used later in this section. 
The underlying topology of the data will be respected in the text so that there is 
no reason for confusion.

Thus the question of tree structure representation is as follows: given a training 
set uJ'(i), t(i); j =  1 ,2 , . . . ,  M*; i =  1 ,2 , . . . ,  AT, can we find a tree neural network 
architecture which will minimize the error criterion:

Back-propagation through structure
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where y  is the output o f the tree, tr(-) denotes the trace operator which in this 
case is the sum of the diagonal values of the matrix. The superscript T  denotes the 
transpose of a vector or a matrix. Note that in (Equation 6.1), we have used the 
least square error criterion. In general, we may use other types of cost criteria, e.g., 
a maximum absolute error criterion.

Furthermore, here we assume that the output data is only available at the root node. 
This is in recognition of the special nature of the problem formulation. In general, it 
is possible to assume that output data are also available at the intermediate nodes. 
But this situation is rare in data structures, as we do not normally assume that 
output data are available at the intermediate nodes in this type o f problems.

The tree architecture dictates a hierarchical approach, as one needs to process the 
data in a systematic hierarchical fashion. In this case, we need to process the

4A tree data structure differs slightly from a DOAG data structure in that a tree is a
connected DOAG. The use of a tree model in this section helps to simplify the notation.
The capabilities of the neural model under consideration are not affected by this restriction.



data from the bottom up, i.e., from the frontier nodes first towards the root node. 
Frontier nodes are defined as ones which do not have any children.

A device which has been found to be extremely useful in formulating this type of 
problems is the q operator, alternatively known as the shift operator. This is defined
as follows: q~l x{k) =  x(k  -  1), where k denotes the k-th stage in which the data 
is being processed. For example, q~1x(k) denotes the data which is available from 
the processing performed at the previous stage. Note that this operator does not 
involve any computations at all. It is merely used as a device to denote the data 
which was processed in the previous stage, and is available in the current stage 
for further processing. The significance of this notation will become clear in both 
Section 6.2.2, and later in Chapter 7.

As the structure of the tree is dictated by the nodes of the tree, the data structure 
model depends on possible mathematical models used to represent each node. There 
are many models available. For example, [86] employed a multilayer perceptron 
model, while in [29], this is generalized to a hidden Markov model.

A fundamental assumption which we place on the problem is: the data is struc­
turally invariant [86]. By this we mean the data does not change in time, or with 
respect to the structure. From this assumption, we can assume that all nodes have 
the same neural network model, all having the same weights. This assumption sig­
nificantly reduces the number of parameters to be estimated in the model. Without 
further mention, this will be the assumption which we will place on the problems 
at hand.

6 .2.2  M u ltilayer P erceptron s

The architecture of a classic Multilayer perceptron (MLP) is given as follows:
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y  =  Fp (C x) (6.2)
x  =  Fn (Bu) (6.3)

where u  is an m -dimensional input vector, x  is an n-dimensional vector denoting 
the outputs o f the hidden layer neurons, or units, and y  is an p-dimensional output 
vector. B  and C  are matrices of appropriate dimensions, denoting the weights 
connecting the input to the hidden layer neurons, and from the hidden layer neurons 
to the outputs respectively. Fn{-) is an n-dimensional vector:

r /(•) l
/(•)

.  / ( • ) .

(6.4)

/(•) is a nonlinear function. This can be a sigmoidal function, or a hyperbolic 
tangent function. Fp(-) is a p-dimensional vector, defined similarly to Fn(-).

We will refer to this architecture as the ‘classic’ MLP architecture. Note that we 
have abused the notation here slightly in that we include the bias in the model. 
Each hidden layer neuron and each output neuron is assumed to include a bias 
term. This is commonly handled by assuming an extra node which has a constant 
output [49]. In order not to clutter the notation too much, we include this in the 
model, rather than denoting it explicitly.



It has been found by [77], that it is more beneficial to include a direct feedthrough of 
the input to the output. Hence we can use a more extended architecture as follows:

g2 Back-propagation through structure

y  =  Fp (C x  +  D u) (6-5)
x  =  Fn (B u) (6 -6 )

We will refer to this as the MLP architecture. The total number of parameters is 
nm +  np -{- rnp. A modular representation of this model is illustrated by Figure 6.1.

Figure 6.1: A modular representation of the MLP architecture. Arrows indicate 
the flow of information.

The classic MLP architecture has been applied to many problems, and found to be 
successful in modelling the underlying data. As indicated in Section 6.1, it has also 
been applied to data structures. But it was found that the classic MLP architecture 
requires that the input vectors all to be of the same fixed length. This has been 
found to be an impediment, as data structures giving the same output classifications 
may vary in length. This would necessitate the input vector to be the maximum of 
the set of input vectors of individual data structures. For those data structures with 
a shorter input vector, zero padding is employed. This technique of using the classic 
MLP architecture for data structure modelling has been found to be cumbersome, 
as well as adding to the complexity of the problem.

Instead, as indicated in Section 6.1, a suggestion to model each node in the data 
structure using a MLP has been introduced [86]. This opens the way to a more 
efficient modelling of data structures. We will describe how such technique can be 
deployed below.

In the tree architecture, we will use the MLP representation in each node. We 
assume that there are a maximum of c children in the tree, hence, any node in the 
tree incorporating a multilayer perceptron can be represented as follows:

y  =  Fp (C x  +  D u) (6.7)
x  =  Fn (B u  +  Aq~l z) (6.8)

where y, and u are respectively the p-dimensional output and the m-dimensional 
label (input) to the node. The labels can be either integer or real values. If we



Back-propagation through structure 83

denote the elements of the label (input) vector as i =  1 ,2 , . . . ,  m. In each node, 
it is not necessarily true that all the elements Ui need to be present. If the element 
is not present then it is replaced by a value of 0. This device allows us to represent 
the labels in each node by using the same symbol, x denotes the n-dimensional 
output of the hidden layer neurons. Now because each node has a maximum of c 
children, the hidden layer neurons are influenced by the data which were processed 
by the children of the current node. This forms effectively an extra set of inputs 
to the hidden layer neurons. But these inputs from the children are dependent on 
the weights in the MLP, as each node is modelled by the same MLP architecture. 
Hence, the inputs to the parent node from the children nodes depend on the same 
model as the parent node. This is the main reason why such a model is called a 
“recursive neuron” in [86]. In order to denote that the data is available from the 
children, we use the q operator described in Section 6.2.1 to denote this, z may 
be the output of the children, or the outputs of the hidden layer neurons of the 
children, as will be explained below.

Now each hidden layer neuron is influenced by the output from the previous stage,
i.e., from the children. Each child could make available to the parent node two 
types of outputs, viz., the output y, or the outputs of the hidden layer neurons x. 
If the available child’s output is y, this is known as a two layer network, and if the 
available child’s output is x, then this is known as a one layer network [86]. We find 
this nomenclature quite confusing, as it does not clearly indicate the situation. As 
a result, we will call the one when the child makes available to the parent node the 
hidden layer neuron outputs as a ‘state MLP tree architecture’ . The one when the 
child makes available its output to the parent, we will call it an ‘output MLP tree 
architecture’ . This nomenclature, we feel, is more appropriate.
Thus, in the state MLP tree architecture, each node is described by the following 
model:

x =  Fn (B u  +  Aq *x)

where A q '1*. is a shorthand form to represent the following:

(6.9)

Aq *x =  [ A\ A 2 . . .  A c

Q ijxi
921x2

(6.10)

where x* denotes the n-dimensional vector of the hidden layer neurons of the i-th 
child. Ai denotes the n x n matrix depicting the weights connecting the hidden layer 
neurons of the i-th child to the hidden layer neurons of the current node. Note that 
as the hidden layer neurons in the children are different, hence we have used the 
notation q^ 1 to denote the relationship between the ¿-th child and the current node. 
A modular representation of a state MLP tree network architecture is illustrated 
by Figure 6.2.
Similarly in the output MLP tree architecture each node is described by the follow­
ing model:

y  =  Fp (C x  +  Du)
=  Fn (B u  +  A q '1 y)x

(6.11)
(6.12)
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Figure 6 .2 : A modular representation of a state MLP architecture. Arrows indicate 
the flow of information.

where again A q 1y  is a shorthand form of the following:

A q  V  =  [ A i  A 2 . . .  A c ]

Qi 1y i
Q ^ y  2

Qc V c  .

(6.13)

where y i is the p-dimensional output vector of the i-th child. A i  is a n  x p  matrix, 
denoting the weights connecting the outputs from the ¿-th child to the hidden layer 
neurons of the current node.

Note that in the case of the output MLP architecture, we assume that the root 
node has an output layer 5, i.e.,

y R =  F p (G x  +  H u) (6.14)

where y R is a r-dimensional output vector denoting the output of the root node. 
G  and H  are respectively r x n  and r  x m  matrices. This device is required as the 
output MLP tree architecture has only hidden layer neuron outputs at each node. 
Thus, we include an output stage for the root node, so that the root node output 
is r-dimensional rather than an p-dimensional vector. A modular representation of 
an output RMLP architecture is as shown in Figure 6.3. It is noted that recursion 
is performed via the output layer y  whereas a state MLP tree architecture uses 
the hidden layer x as the recursive layer. In order to avoid confusion we call the 
recursive layer a state layer because it recursively passes the state o f the network 
back when processing a parent node.

The number of network parameters available for each of the two models is summa­
rized in Table 6.1. Hence, dependent on whether it is a state MLP tree architecture, 
or an output MLP tree architecture the number of parameters are different.

This equation is the same as the one shown in (Eq. 6.8). Here we use different symbols 
to emphasise the fact that it is only at the output of the entire network, rather than at 
each node, as is the case of the ‘state MLP’ model described earlier in this section.
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Figure 6.3: A modular representation of an output MLP architecture. Arrows 
indicate the flow of information.

Architecture Number of parameters in each node
State MLP p m  +  pn  +  n m  -I- cn 2
Output MLP p m  +  pn +  n m  4- cnp

Table 6.1: A table showing the number of parameters in each node in the MLP tree 
architectures.

We have assumed that all the nodes are governed by the same model, with the same 
parameters. In the case of the output MLP tree architecture, we need to add the 
extra number of parameters due to the output at the root node, i.e., we need to add 
rn  +  r m  parameters. These will need to be added to the total number of parameters 
which are required to be learned from the set of training data.

To avoid the cluttering of symbols, we note that the root node output of the state 
MLP tree architecture is essentially the same as the output MLP tree architecture 
for each node. Hence, we will abuse the notation by denoting the output of the state 
MLP tree architecture by the same symbols, i.e., we denote G  — C  and H — D. 
There is no risk of confusion as in the state MLP case, the matrices C  and D  are 
only active at the root node, while in the output MLP case, C  and D  are active in 
all the nodes.

R em arks:

1. In the above formulation we have assumed that the output of the root node 
lies within a range; if we use a sigmoidal nonlinear activation function, this 
range will be between 0 and 1. This is most convenient for classification 
studies.

2. We can modify the above formulation for regression type of problem, if we 
relax the output of the root node to be linear, i.e.,

y  R =  C x  +  D u  (6.15)

This simple device will allow the tree architectures to be deployed for re­
gression type problems.
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3. It was shown by [45] that the state MLP architecture has a universal ap­
proximation property. However, as common with universal approximation 
theorems, [45] did not give any results on how to determine the required 
number of state neurons for a particular problem. In practice, the number 
of required state neurons is obtained by a trial and error process, as will be 
indicated in this chapter.

6.2.3 Training a lgorithm s

We can train the parameters of the MLP ((Eq. 6.7), and (Eq. 6.8)) using a batch 
update algorithm, minimising the error criterion J .

J =  \ ^ 2 tr ( (* (0  - y (0 )  (*(0  - y W ) T)  (6-16)
i—1

where t(i)  are the target values. The weight updating algorithm is given as follows:

Back-propagation through structure

C(i + 1)
dJ

=  C M - V g z (6.17)

D(i + 1)
dJ

= (6.18)

B (i + 1)
dJ (6.19)

A(i + 1) . . . .  dJ  
=  M O - V g Z (6.20)

where rj is a global learning constant, and needs to be evaluated. This can be 
evaluated element by element, due to the recursive nature of the processing steps. 
Let the i j -th element of the matrix C  be .

dJ
dcij E e ( * ) TA(C) ( e g ;

k=1 V OCtJ
(6.21)

where e(i) =  t(t) — y (i). A(£) is a p  x p  diagonal matrix, defined as follows:

"  / ( C l ) 0 0  . . 0

M O  —
0 / ( C 2 ) 0  . . 0

. o 0 0  . - / ( C p )

(6.22)

where /  (•) denotes the derivative o f the nonlinear activation function /(•) o f the 
neuron. £ =  C x  +  Du, a p-dimensional vector, and is the ¿-th element of the 
vector £. Qi3 is a p  x n matrix with all elements 0 except a value of 1 in the ¿-th 
row and j -th column. Note that we can define S(i) =  the backprop
error. Thus, (Eq. 6.21) can be written more conveniently as:

+  e ( i )TA (C )Q ijX (6.23)
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The second term within the parenthesis is the common term which is associated 
with the backprop algorithm. The first term is new. This term arises as x  depends 
on C, as the value of x  depends on hidden layer neuron outputs from children of 
the root node. The quantity can be evaluated from the following:

dx A A -1=  A (OAq 1dcij dcij
(6.24)

where £ =  B u  +  A q_1x. It is noted that the right hand side of (Eq. 6.24) depends 
on g_ 1x, i.e., the outputs of the children of the current node. But the output of the 
children nodes are themselves dependent on their children. Thus the evaluation of 
this derivative is dependent on the tree structure. Hence we cannot continue with 
the formal derivation without referring to a specific tree structure. It suffices to 
say that the evaluation 6 of g_1 depends on the tree structure; and needs to be
evaluated first before we can evaluate on the left hand side. The term q~l in 
turn needs to be evaluated dependent on their children. Thus it is observed that the 
evaluation of - in (Eq. 6.24) depends on the tree structure. It must commence 
from the frontier nodes first, compute this value, and then forward them to their 
parent nodes. The parent nodes evaluate this quantity based on information from 
the children nodes, and in turn forward them to their parent nodes, and so on. This 
process goes on until it reaches the root node, in which stage it will be evaluated, 
before the value of cij can be updated. This forward evaluation of the quantity ^ 7  
until the frontier nodes, and then the backward evaluation towards the root node 
is a characteristic feature of the updating algorithms for this type of architectures. 
This algorithm is an extension of the RTRL algorithm. Its behaviour is the same7 
as the BPTS algorithm as obtained by Kuechler [60]8.
In a similar manner we can compute the derivative with respect to the elements of 
D. Let dij be the i j -th element of D. Then,

^  =  - £ « ( i f A ( 0 ( c ^  +  0 «  u )  (6.25)

where Qij in this case 9 is a p x m matrix with all elements 0, except a value 
of 1 in the i j -th position. Again, the second term in (Eq. 6.25) is the common 
term associated with the backprop algorithm. The first term is the one which is 
associated with the fact that we are dealing with a tree structure. The value of ^ 7-
can be evaluated from the following:

<9x
ddij

=  A (O A q -1
<9x

ddij
(6.26)

6Here in order to differentiate the two on both sides of (Eq. 6.24), we use q 1 ̂
to denote the quantity on the right hand side of (Eq. 6.24).

7In view of their equivalent behaviour from henceforth we abuse the notation and refer 
to this as BPTS algorithm.

Recurrent neural networks are known to have similar behaviour. From our experiments 
with recursive neural networks we find this is true as well though there is no formal proof 
of their equivalence.

9Here we have abused the notation by denoting this matrix using the same symbol Q i j , 
even though their dimensions are different.
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where £ =  B u  +  Aq~1x. The evaluation of q~l depends on the tree structure. 

Let a,ij denote the i j -th element of the matrix A. Then we have:

and

dJ
ddij ¿=i

dx
ddij

(6.27)

=  m  ( A q - 1 +  Q ijq - ^  (6.28)

where Qij is a n x n  matrix in this case. The quantity q~l again can be evaluated 
from the architecture.

Let bij be the i j -th element o f the matrix B . Then we have

and

dJ
dbij £ < 5 « r C

1=1

dx
dbij (6.29)

dx  * ( a -1 ^  \
d h j A f  d h j +  Q ,} U )  (6'3°)

where Qij in this case i s a n x m  matrix with all elements zero except a value o f 1 
in the ijf-th position, ç - 1 ^ -  can be evaluated from the tree structure.

The unknown parameters A, B , C  and D  can be updated accordingly. These updat­
ing algorithms are jointly called the backprop through structure (BPTS) algorithm.

In the above formulation of the updating rules, we used the simple gradient update. 
However, in practice it is known that the simple gradient update rules are slow. 
There are a number of ways to speed up the updating process by incorporating 
second order information on the curvature of the error criterion without actually 
evaluating the Hessian matrix. Quickprop is one of the more successfully updating 
mechanisms incorporating second order information. Two further algorithms, viz 
incorporation of a momentum term, and the Rprop algorithm are considered.’ ’

Incorporation of a momentum term

The definition of a learning algorithm which incorporates a momentum term can 
be made quite simply as follows [48, 49]:

A  Wij (h +  1 )  =  - 7 7 dJ
dwij +  aAw ij (k) (6.31)

where a  is commonly called the momentum term. (k) is the value of w  at the 
k~th instant. Wij denotes any weight in the network; in this case, it is used to denote 
the connection between neuron i and neuron j  in the network. The addition o f this 
term incorporates some second order information into the training algorithm We 
will refer to this algorithm as the momentum BPTS algorithm.
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Quickprop

Quickprop [24] is a method which attempts to speed up learning by using infor­
mation about the curvature of the error surface. Normally, this would require the 
computation of the second order derivative. Quickprop avoids this by assuming 
that the error surface is locally quadratic. During learning, it attempts to jump 
directly into the minimum of the assumed parabola (the local approximation of the 
error surface). Quickprop does this by computing the derivatives o f each weight 
using regular backpropagation. A direct jump into the error minimum is attempted 
through the following algorithm:

A Wij (k +  1)
S(k +  1) 

S(k) -  S(k +  1)
A  (k) (6.32)

where

Awij(k + 1)
A  Wij(k)
S(fc +  1) 
S(k)

weight change of the connection between neuron i and j  
previous weight change 
Partial derivative of the error function at 
The previous partial derivative at w^.

Rprop

Introduced by Riedmiller in 1993, RProp 10 is a local adaptive learning scheme 
performing supervised batch mode learning. For a detailed discussion see [71, 70]. 
The idea is to eliminate possibly harmful influence of the size of the gradient. As 
a consequence, only the sign of the derivative is used to indicate the direction of 
the weight step. The weight step is exclusively determined by a locally dynamic 
learning rate as follows:

A  =  <
-A < ‘ > •f dE (fc) 

» 11 dw^
+A^fe)~  tj

:r dE (*)
’ 11 dwij

0 , else

> 0
< 0 (6.33)

where denotes the summed gradient over all patterns. The dynamic learning
rate is adapted by:

i
•r dE  (* _ 1 )

’ 11 dwij

> II

r *  A i r 11
•r dE  (fc“ 1)

’ 11 dwij

[ A i r *
, else

* >  0
O W i j

dE  (fc)
* dwij < 0 (6.34)

where 0 <  if  < 1 < r)+ . Often, r)+ and rj~ are set to fixed values e.g. 77 :=  0.5
and 1 :=  1.2 are often a good choice.

A modification of this adaptation schema is to use a global learning rate which is 
adjusted as follows:

10 Resilient backpropagation
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= rj+ * A^k ^ 
rj~ * A (k~^

if 4 ‘ - 1} < sik) 
if 4 *_1) > Sik)

(6.35)

where Se is the summed absolute network error. t}+ and tj are not fixed. Values 
are chosen which will lead to a smaller This modification has been found to 
have similar effects as standard RProp, and it reduces the computational expenses.

In practice, RProp was found to have the most efficient behaviour of all updating 
mechanisms listed here. It will be interesting to observe how RProp performs on 
recursive models. This will be investigated in this chapter.

Note that the classic BPTS training algorithm uses a static learning rate. However, 
M. Maggini suggests that the use o f an adaptive learning rate in BPTS produces 
networks which converge faster. This was supported by initial experiments which 
demonstrated benefits o f using an adaptive learning rate where the learning rate rj 
is adapted by a similar mechanism as described in Equation 6.35. Hence, for the 
experiments described in this chapter we use an adaptive learning rate rj for BPTS, 
BPTS with momentum, and RProp.

6.3 Experimental results on R M L P

In this section, we will present some computational experience which we have had 
with the BPTS algorithm. At this stage, we will concentrate on using only one class 
o f problems, viz., the extended traffic policeman benchmark problem which we will 
refer to as dataset-3. The benchmark problem described in Section A actually 
provides three data sets. The reason why we restrict the experiments in this section 
to dataset-3 is that this dataset is a combination and extension o f the other two 
data sets, dataset-1, and dataset-2 respectively. Hence, the careful evaluation o f 
experimental results will allow us to draw conclusions on how the network models 
would have performed on the other two data sets as well. A  short description o f 
dataset-3 is as follows: the extended traffic policeman benchmark problem features 
a collection of 7500 graphs split equally to create a train and a test set. There 
are 12 classes defined over the patterns. Some classes have more data than others,
i.e., each class does not have equal number o f training data. Some classes can be 
distinguished through information encoded by the labels while other classes require 
structural information in order to be distinguished. The learning task is to process 
and to classify the graphs. The ideal results will be: train the network on the 
training data and when test on the test data it will correctly classify all the graphs 
into their respective classes. The dataset has been created artificially using our own 
software as described in Appendix A. The reason why we chose this one, instead o f 
another problem is that this problem has a well controlled environment within which 
we can experiment with the method. Dataset-3 was used in the evaluation o f self 
organising maps in Chapter 4. Hence it will be possible to compare the performance 
of supervised SOM-SD with that o f the RMLP. Furthermore, experimental results 
obtained from the application o f RMLP to a real world problem, viz., the logo 
recognition problem will be addressed later in Chapter 8.

Dataset-3 is a collection of graphs which feature a 12-dimensional binary target 
vector, and a 2-dimensional data label. Hence, for all the networks discussed in this 
section, the dimensionality o f the output layer y (or y R in the case o f output MLP 
architecture) remains fixed at 12 and the dimension o f the input layer u  is 2. The 
maximum out-degree o f any graph in the dataset is six.
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Unless stated otherwise, the format of the plots is as follows: Sample points are 
indicated as points represented by various symbols. Lines connecting sample points 
are a linear interpolation. The vertical axis is usually used to give the network 
performance expressed in percent. A value of 100% indicates that the network was 
successful in classifying all patterns correctly. Similarly, a performance level of 0% 
means that no pattern was classified correctly. Since the dataset features 12 classes, 
it is expected that the network performance is at least 1/12 * 100% -  8.33%. Such 
performance charts are unable to express how the networks perform on a class by 
class basis. Confusion matrices represented by various shades of gray are used to 
visualise how a network performed on individual classes. Darker fields in a confusion 
matrix represent a high classification rate (e.g. black = 100%), whereas lighter areas 
represent lower percentages (e.g. white =0%). The scale of the gray colors used is 
linear.

The experiments are split into several sections. A performance evaluation of state 
MLP networks is given in Section 6.3.1 whereas Section 6 .3.2 gives the performance 
of output MLP networks. A comparison between the two models: state MLP model 
and output MLP model is given in Section 6.3.3. Extensions to these two models 
will be discussed later in Chapter 7.

6.3.1 E xperim ents w ith state M L P  networks

This section evaluates the performance of a state MLP architecture when applied 
to dataset-3. With state MLP networks, the only variable layer of neurons is the 
state layer x. The dimensionality of the input layer u and the output layer y is 
controlled by the given data. The first experiment investigates the influence of the 
dimension of x  on the network performance.

Varying the N um ber o f  State Neurons

We performed this experiment by using networks with a varying number of state 
neurons and trained for 400 iterations with an adaptive learning rate which was 
initialized with rj(0) =  0.04. The result of this experiment is shown in Figure 6.4.

Figure 6.4: A diagram showing the recognition of the samples using a state MLP 
network trained using the BPTS updating rule. The number of state neurons are 
plotted against the network performance.
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The finding of this first experiment is that at least 10 state neurons are required 
to obtain reasonable classification results on the given data set and that increasing 
the number of state neurons beyond 10 does not increase the network performance 
significantly. Also illustrated in Figure 6.4 is the generalization performance which 
is never more than 2% below the performance achieved by the training set.

Two properties are observed:

• The network does not appear to be overtrained

• The number of training patterns in the train set sufficiently represent pos­
sible instances of the learning problem.

Overtraining or too few training patterns often cause a poor generalization per­
formance of a network which is not observed in this case. The performance levels 
observed in Figure 6.4 were obtained when updating the network weights with the 
BPTS training rule with dynamic learning rate. A comparison of performances 
achieved when training network with the RPROP learning rule or the BPTS with 
momentum learning rule is given in Figure 6.5.

Experimental results on RMLP

Figure 6.5: A diagram showing the recognition of the samples using a state MLP 
network featuring 10 state neurons. Three training rules: BPTS with dynamic 
learning rate, BPTS with RPROP learning rule, and BPTS with momentum learn­
ing rule, are considered.

Figure 6.5 demonstrates that the network performance can increase significantly 
when choosing “improved” learning rules instead of standard BPTS. Using the 
RPROP rule produced the best and also very stable results. A common property 
for all updating rules is that the network needs to feature at least 10 neurons in x  
to produce reasonably good results. The best result was obtained when training a 
network featuring 32 state neurons using RPROP updating; a performance level of 
99.55, with only 17 patterns classified incorrectly, was achieved.

Table 6.2 presents the confusion matrix obtained from networks featuring 10 hidden 
neurons and trained for 400 iterations using the BPTS 11 and RProp learning rule.

11 Henceforth, we will call a training algorithm BPTS to denote the BPTS training 
algorithm with a dynamic learning rate.
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Table 6.2: Confusion matrix as obtained from training a state MLP featuring 10 
hidden neurons with BPTS (left) and RProp (right) for 400 iterations.

It is observed that a network trained using BPTS performs unsatisfactory on the 
classes f , g, and i  whereas an RProp trained network has the same problems with 
classifying patterns from the classes e to g correctly. The reason for this behaviour 
can be found in the properties of the training set. Given that there are 3750 graphs 
in the training set which would mean an average of 312 patterns for each class. 
However, the number of sample patterns in dataset-3 is not balanced. There are 
classes which feature up to 645 samples (class a) while other classes are represented 
poorly with as few as 28 samples. As it turns out, the classes e, f , g, and i  are 
represented respectively with only 28, 59, 58, and 53 samples. This finding demon­
strates that this recursive MLP model suffers from the same problem as the classic 
MLP model. For the classic MLP, it is observed that the network may perform 
poorly if training samples are not represented in approximate equal numbers. This 
is because in those cases, the learning rule adjusts the network weights more often 
in the direction of the class which is represented by a larger number of samples. 
In practice, one way to overcome this is by repeating the presentation of training 
data belonging to classes for which only few samples a number of times. Another 
way to avoid this is to use some a priori information, e.g., prior probability of the 
occurrence of samples in various classes, and use such information in the learning 
process.

N u m b er o f  Training Iterations
Each of the past experiments executed 400 training iterations. Whether this is 
an appropriate value is investigated in the next experiment. Networks featuring 
10 state neurons were trained for up to 2000 iterations. The performance of the 
network was probed at the end of every iteration. The result is as shown in Figure 
6.6.
It is found that the application of the BPTS learning rule causes the network to 
converge slowest. Using BPTS updating rule requires at least 700 training iterations 
on the current dataset. In addition, the network performance increases very slowly 
when training for longer than 700 iteration which indicates the presence of a local 
minima or the learning landscape is almost flat. In comparison, the incorporation of 
a momentum term can speed up network conversion significantly. 400 training iter­
ations suffice when using this weight adaptation mechanism. The RPROP updating 
rule converged fastest out of the three learning rules and produced networks that 
outperformed networks trained by using other rules at any stage during training. 
This finding confirms that 400 training iterations suffice for the current simulation



94 Experimental results on R M LP

Figure 6.6: A diagram showing the recognition of the samples using a state MLP 
network featuring 10 state neurons. The number of training iterations are plotted 
against the network performance. Three learning rules: BPTS, BPTS with RPROP, 
and BPTS with momentum term, are used. The left plot shows the performance as 
obtained on the train set, the right plot is from applying the test set.

environment if the updating rule is either RPROP or BPTS with a momentum 
term. If network performance is critical and training time is not crucial, then train­
ing 1000 or more iterations can assure a slightly improved network performance. In 
addition to this finding, it is observed that the generalization performance (right 
plot of Figure 6.6) does also increase with the number of training iterations. This 
confirms an earlier observation which stated that the cardinality o f the training set 
(the number of training samples) is sufficiently large to represent most instances of 
the learning problem, and thus, helps avoiding the problem with overtraining.

All networks are trained using adaptive learning rates which were initialized with 
77(0 ) =  0.04. During training, the learning rates are adjusted dynamically using the 
rule given by Equation 6.35. Figure 6.7 demonstrates how the learning rate changes 
during training.

0*

0.1

a 0.1 
2bOCI 0.1

o.<

0 500 1000 1500 20(
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Figure 6.7: A diagram showing the adaptive learning rate values when training state 
MLP networks featuring 10 state neurons for 2000 iterations. Again three learning 
rules: BPTS, BPTS with RPROP, and BPTS with momentum term are used.

It is found that the development of the learning rate is different for different up­
dating rules. In particular, learning with a momentum term causes the learning



Experimental results on RM LP 95

rate to fluctuate considerably stronger than when learning with other rules. One 
reason for this fluctuation of the learning rate can be attributed to the influence of 
the momentum term. From the weight updating rule described in Equation 6.31 
we find that the momentum term increases with every training step into the same 
‘direction’ . Hence, at some stage, the size of the momentum term could increase to 
a value which is of no benefit to the training process. At this stage, an adjustment of 
the updating ‘direction’ is performed which has as an effect a significant adjustment 
of the learning rate causing the fluctuations of the learning rate as observed. Stan­
dard BPTS updating does not feature a momentum term and hence, behaves more 
smoothly. In comparison, the RPROP updating rule proves to be very efficient in 
making the network converge quickly. The efficiency of this updating mechanism is 
reflected by a relatively smooth learning rate which converges to relatively early in 
the training session.

Next, the development of the mean square error (MSE) during a training session is 
investigated. Figure 6.8 compares the MSE obtained when training networks with 
either BPTS, BPTS with momentum, or RPROP.

Figure 6.8: A diagram showing the mean square error when training state MLP 
networks featuring 10 state neurons for 2000 iterations. Three learning rules are 
used: BPTS, BPTS with RPROP and BPTS with momentum term.

Figure 6.8 confirms earlier findings which state that RPROP is the most efficient 
updating mechanism. However, this plot suggests that the number of training 
iterations is best chosen to be above 750 iterations whereas earlier findings showed 
that the classification performance is good after only 400 iterations (for the case of 
RPROP learning). Hence, the observation of the MSE alone does not lead to an 
optimal choice of learning parameters. In addition, it can be observed that the MSE 
curve for BPTS follows closely the curve of BPTS with momentum for the first 200 
iterations. Only then, the incorporation of the momentum term to the updating 
rule starts to show benefits. The behaviour of the MSE curves support an earlier 
finding which suggested the presence of a flat learning landscape. A flat landscape 
is more easily overcome by a learning rule which features a momentum, or a learning 
rule which does not rely on the steepness of the gradient. The RProp updating rule 
demonstrated a good performance because it avoids the harmful influence of the size 
of the gradient. Quickprop, the fourth learning rule considered for the experiments
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12 failed to produce any reasonable results. The network error remained at a very 
high level independent of the parameters chosen for the network training sessions. 
Quickprop’s assumption of a local parabola is clearly incorrect for the learning 
task at hand. As a result, we removed results obtained by utilizing this updating 
mechanism from the figures in order to improve the quality of the plots.

Size o f  the Training Set

The next experiment is to investigate the influence of the size o f the training set to 
the overall network performance. The following experiment was conducted: Net­
works featuring 10 state neurons were trained for 400 iterations using the BPTS 
updating rule 13. The size of the training set was reduced gradually from a total 
of 3750 graphs down to just 1% of this number. The result of this experiment is 
shown in Figure 6.9.

Experimental results on R M LP

o 10 20 30 40 50 60 70 80 90 10
Size of training set in %

Figure 6.9: A diagram showing the recognition of the samples using a state MLP 
network featuring 10 state neurons. The number of training patterns are plotted 
against the network performance.

The experiments illustrate that just 10% or 375 of the graphs in the training set are 
sufficient to produce networks that generalize well. It is also shown that the network 
performance remains stable when using more than 375 data. This finding explains 
why the generalization performance was very good in the previous experiments.

Since there is no harm in using any number of training patterns between 375 and 
the full set of 3750 graphs, we continue to utilize the entire dataset for future 
experiments. This is done to allow a fair comparison with other methods described 
in this thesis. As will be found, there are models which may require substantially 
more than 350 graphs in the training set to perform satisfactory.

Summary

Summarising the findings of the experiments, it is found that state MLP networks 
are well able to encode graph structured data. A condition for obtaining a good

13Not shown in this thesis as it failed too often on many other tasks as well.
We chose to use BPTS learning rule because it performs the worst out of the three 

learning rules considered in this chapter. Hence, if the results work for the BPTS learning 
rule, it will work on the other two learning rules.
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network performance is that sufficient network parameters (network weights) exist 
to allow the encoding of information provided by the data set. In the case of state 
MLP networks, the number of network weights is controlled by the number of state 
neurons in layer x. As with standard MLP networks, no general rule can be given 
on how many network weights and training iterations are required for any given 
learning problem. This can only be obtained through trial and error. Similarly, 
this is true for the cardinality o f the training set. For the current case we find that 
a state MLP network will perform well on dataset-3 if it features at least 10 state 
neurons trained by the RPROP learning rule for 400 or more iterations using at 
least 375 graphs for training. The network performed stable under these conditions.

Similar experiments were conducted on the output MLP network model. Results 
are given in the following section. A comparison of the performance between state 
MLP and output MLP is given in Section 6.3.3.

6 .3 .2  E xperim en ts w ith  ou tpu t M L P  netw orks

This section discusses the performance of networks which feature the output MLP 
architecture when applied to dataset-3. Experiments are conducted in a way which 
allow for a fair comparison of their performance with other models such as those 
obtained by the state MLP in Section 6.3.3.

The main difference between the state MLP and output MLP architectures is that 
recursion is performed over layer y  instead of layer x  and that there is an additional 
output layer y R. Hence, the layer x  acts like a hidden layer in the output MLP 
networks and layer y  as the ‘state’ layer 14. From experiments conducted in the 
previous section it was found that an appropriate choice of state neurons for the 
given learning problem is 10. We shall use this number of state neurons as a starting 
point for the experiments in this section.

N u m ber o f  H idden  Layer N eurons

The first experiment is to investigate the influence of the dimension of the hidden 
layer x  to the network performance. Networks with the number of hidden neurons 
ranging from 1 to 64 were trained for 400 iterations using the BPTS updating rule. 
The initial learning rate 77(0) was 0.04 and network weights were initialized with 
random values from within the range [—1 : 1]. The result is shown in Figure 6.10.

It is somewhat surprising to find that the network performed best with 32 hidden 
layer neurons and that the network performance was unstable when using less than 
16 hidden layer neurons. Reasons for this relatively poor classification performance 
may be due to a number of reasons: It can range from a local minima problem, 
inappropriate learning parameters or insufficient training iterations to network ar­
chitecture that simply does not work well. However, a local minima problem is 
highly unlikely to occur in this case since it was not observed with the state MLP 
network which can be seen as a substructure of this output MLP network. It is also 
unlikely to be caused by a failure of the architectural design for the same reason. 
Inappropriate learning parameters are also very unlikely to cause these problems 
because o f the use of an adaptive learning rate, and the lack of other free train­
ing parameters that may have influenced the outcome. The most likely reason for 
the lack of good performance is an insufficient number of training iterations or the

14 The nomenclature may appear a bit clumsy here as we use the word “state” to refer to 
the output of the node model. This can be confused with the “state” MLP architectures. 
However, this can be overcome by more clearly indicating the term, which is what we have 
done in this section.
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Figure 6.10: A diagram showing the recognition of the samples using an output MLP 
network trained through the BPTS updating rule. The number of state neurons is 
plotted against the network performance.

learning rule converging too slowly. This idea is supported by the very fact that ob­
servations on the results in the state MLP network experiments suggest at least 400 
training iterations would be required for a good performance. In the case of the out­
put MLP architecture, an additional layer of network weights need to be updated. 
The gradient based updating method has the effect that changes in network weights 
are smaller the further away a weight is from the output layer (this is a commonly 
known problem and an effect referred to as the long term dependency problem). 
Hence, it is well expected that 400 training iterations might not be sufficient for this 
model. Hence the observed behaviour shown in Figure 6.10 can be explained by 
the fact that a training session being stopped too soon. To investigate this line of 
reasoning, we conducted two experiments. First, the influence of the learning rule 
to the classification performance is investigated. Secondly, the number of training 
iterations are increased gradually to explore the influence of this parameter to the 
final outcome.

Learning Algorithm

The influence of the type of updating mechanisms to the network performance is 
investigated by the following experiment: Different weight updating mechanisms 
such as BPTS with momentum and RPROP are attempted. The result is pre­
sented in Figure 6.11. Again, it was found that the network performance depends 
significantly on the updating rule chosen.

It is found that the incorporation of a momentum term into the BPTS updating 
rule produces networks outperforming those trained by BPTS only. However, both 
updating rules show similar behaviour in that they feature a performance peak 
at around 32 hidden layer neurons, and unstable behaviour when choosing less 
than 16 hidden layer neurons. In comparison, the utilization of RPROP produces 
a very different behaviour. Networks trained with RPROP outperformed all other 
updating mechanisms significantly. In addition, RPROP produced good results with 
just 8 hidden layer neurons and demonstrated a stable behaviour over the entire 
range, and no significant decrease of performance is observed when choosing more 
than the optimum of 8 hidden layer neurons. This is in contrast to performance
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Figure 6.11: A diagram showing the recognition of the samples using an output 
MLP network featuring 10 state neurons. The updating rule is plotted against the 
network performance.

obtained from BPTS based updating rules.

N um ber o f  Training Iterations
As will be shown next, the behaviour of BPTS based updating rules can be ex­
plained by the following experiment which investigates the influence of the number 
of training iterations to the network performance. For this experiment, networks 
with various training rules were trained for up to 2000 iterations where the perfor­
mance was measured at every iteration. The result is as shown in Figure 6.12.

Figure 6.12: A diagram showing the recognition of the samples using an output 
MLP network featuring 10 state neurons. The number of training iterations are 
plotted against the network performance. The results obtained with the training 
set (left) and the test set (right) are shown. Three learning rules are used: BPTS, 
BPTS with momentum term, and RPROP.

The networks used for this experiment featured 8 hidden layer neurons and 10 ‘state5 
layer neurons. It is found that more than 1400 training iterations are required when 
updating the network weights with BPTS. Similarly, BPTS with momentum up­
dating require about 1000 training iterations for convergence while RPROP has 
converged after just about 400 iterations. This explains the unexpected behaviour 
of earlier experiments which were executed with just 400 iterations. At this stage,
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neither BPTS nor BPTS with momentum were able to adjust the network weights 
sufficiently well which resulted in unstable and/or less than optimal network per­
formances.
The classification performance is investigated further by considering the confusion 
matrix given in Table 6.3. The confusion matrices obtained after training an output 
MLP network for 1500 iterations using BPTS updating (left matrix), and after 
training the network for 400 iterations using RPROP updating (right matrix) are 
shown.

9 6 .0%

7 9 .2 %

8 9 .3%

100%

0 .0%

100%

1 1 .3 %

100%

100%

100%

9 8 .8%

9 7 .4%

9 2 .6%

g
h

O l e f g h i j k l c d

9 4 .7%

1 0 0%

7 8 .6%

8 6 .4 %

5 6 .9%

100%

9 8 .1%

100%

9 9 .5 %

100%

9 7 .7%

9 6 .2 %

9 7 .1%

Table 6.3: Confusion matrix obtained from training an output MLP featuring 8 
hidden nodes and 10 ‘state’ neurons with BPTS (left) for 1500 iterations, and 
RProp (right) for 400 iterations.

As can be observed clearly, the performance of the network trained through BPTS 
is significantly worse when compared to the network which was updated through 
the RProp rule even though the BPTS trained network was updated nearly four 
times as many iterations. In addition, the network trained using BPTS also have 
considerable problems with correctly classifying patterns belonging to the classes g 
and i . The problem with classifying patterns from class g is also present for the 
network trained using RProp. This is a repetition of a problem described earlier. 
It was found that some classes are represented by fewer training patters. Amongst 
those classes were the classes g and i. Hence, the output MLP network exhibited 
the same problems with classes which are poorly represented. It appears that the 
problem is less severe when applying the RProp learning rule.

Size o f  the Training Set

The next set of experiments investigates the minimum size o f a training set such 
that an output MLP network performs well on the given benchmark problem. The 
experiment was conducted as follows: Training sets were formed by randomly se­
lecting graphs from dataset-3, where the size of the training set was varied between 
1% and the full size o f dataset-3. Output MLP networks featuring 8 hidden and 
10 state layer neurons were trained on those datasets for 1500 iterations using the 
BPTS updating mechanism. The result of this experiment is shown in Figure 6.13.

It is found that only 375 of the 3750 graphs in dataset-3 are sufficient to produce 
a well performing output MLP network. Choosing more than the minimum of 375 
training patterns had little effect on the network performance. The network was 
unable to generalize well when the training set consisted of less than 375 graphs.

Summary
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Figure 6.13: A diagram showing the recognition of the samples using an output 
MLP network featuring 8 hidden and 10 state neurons. The number of training 
patterns are plotted against the network performance.

Overall, the best performing network is produced when applying the RPROP learn­
ing rule for 400 or more iterations. Where network performance needs to be max­
imised and training time is not an issue, then training a network for substantially 
more than the minimum of 400 iterations can help to improve the generalization 
performance. The best performance was registered to be at 99.68% where only 12 
graphs are classified incorrectly.
A comparison of the findings from this section with the findings from experiments 
conducted on state MLP networks is given in the following section.

6 .3 .3  C om parisons betw een  state M L P  and output M L P  networks

Experiments conducted in Section 6.3.1 on state MLP models and in Section 6.3.2 
on output MLP models demonstrated that both models are well able to encode 
and classify graph structured information. Moreover, both models behave similarly 
during training and produced best results when applying the RPROP learning rule. 
The performance of a state MLP architecture on dataset-3 was generally very good. 
A classification rate of 99.55% was achieved with a good set of initial parameters. 
In comparison, the output MLP architecture produced 99.68% classification rates 
which is marginally better than the performance of the state MLP network. It 
may seem that the given learning task is not sufficiently complex to allow the 
detection of more significant advantages of a output MLP structure over a state 
MLP structure. This assumption is confirmed by experiments conducted on a real 
world problem as addressed in Chapter 8. In Chapter 8 the output MLP architecture 
does demonstrate some advantages over a state MLP architecture.

A more detailed comparison and analysis is as follows:

U pdatin g  rule It was observed that the RProp learning rule is the most efficient 
and stable mechanism for updating weights in a MLP network. In contrast, 
the BPTS updating mechanism made MLP networks converge considerably 
slower and have problems with the error surfaces which feature fiat regions. 
The incorporation of a momentum term or the use of RProp are effective
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mechanisms for overcoming such flat regions.
N u m ber o f  train ing iterations The number of training iterations required chf 

fers greatly with the choice of network architecture and updating ru e- n 
output MLP architecture is essentially a state MLP architecture with an 
additional hidden layer. It is well known that gradient based weight upda - 
ing mechanisms that rely on the size of a gradient have problems with deep 
network structures since the gradient tends to become smaller the deeper 
a weight is located inside a network. As a result, an output MLP network 
requires considerable more training iterations than a state MLP network. 
RProp does not rely on the size of the gradient, so a problem with small 
gradients is not observed. Both network types considered in this chapter 
required a similar number of iterations when trained by RProp.

P erform ance Both network architectures performed well on the given learning 
task. It was observed that the output MLP network has a slight advantage 
over an state MLP network in terms of performance. This observation 
becomes particularly interesting when considering that an output MLP 
with 8 hidden and 10 state neurons featured a total o f 672 network weights 
15 which is less than the number of weights in a state MLP network which 
has 740 weights when the number of neurons in the hidden layer is 10. 
Hence, the efficiency of a RMLP network can increase by the introduction 
of an additional layer.

Size o f  the training set Both network architectures have an equal demand on 
the training set. It was demonstrated that the networks can produce good 
results even if the training set is relatively small. However, this can also be 
observed as a side effect of a problem generally observed with MLP type 
networks: Classes that are represented only by few samples are often not 
classified well. The network may demonstrate a good performance globally, 
but the performance for some classes represented by few samples may be 
very poor. As a result, the reduction of the size of the training set has no 
effect until too few training samples are left for even those classes that were 
originally represented by a large number of samples.

Both types of network are a generalization of the ’classic’ MLP and recurrent MLP 
type networks. This can easily be observed by considering a learning problem which 
consists of a set of graphs featuring only a single (root) node. In this case, the state 
MLP architecture reduces to a standard MLP architecture with a hidden layer. 
Using single node data reduces the output MLP architecture to a standard MLP 
architecture with a second hidden layer where the second layer is not used. We 
find from this observation that the two architectures are in fact very similar, and 
hence, demonstrate quite similar behaviours. Moreover, recurrent MLP models are 
also special cases of the state MLP model if the input data are sequences o f nodes 
(i.e. graphs with maximum out-degree of one). Hence, both state MLP and output 
MLP models can be seen as a more general form of MLP architectures.

6.4 Conclusions

This chapter presented MLP type architectures providing effective means for tasks 
requiring the encoding of graph structured information in a supervised fashion.

15The networks considered for the experiments given in this chapter all featured an input 
dimension of 2 and an output dimension of 12. Note, that for the experiments we chose 
to set all weights in matrix D  and H  (direct connection of the input with the output) to 
be zero.
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The models discussed are able to encode graphs as well as data sequences and 
fixed size input vectors. It was demonstrated that the use of the RProp updating 
rule produces networks that perform best in a relatively short time of training. 
Both network models have demonstrated a similar behaviour when applied to a 
benchmark problem. Nevertheless, the output MLP architecture, which features an 
additional hidden layer may have a slight advantage over the state MLP architecture 
which does not feature such a layer.

However, the two models also revealed a number of problems:

• It was demonstrated that patterns that belong to classes that are insuffi­
ciently represented in the training set are classified poorly. While this is a 
serious problem, it can be overcome quite easily in most cases by presenting 
data which are given in small numbers more often to the network.

• A second problem is that RMLP type networks are to date unable to encode 
graphs in an unsupervised fashion. This problem has been recognized, and 
research into solving this issue is presented as a challenge for future research.

• Another problem with this type of networks is that the number of hidden 
(state) layer neurons can only be obtained through trial and error. In 
practical terms, time and expertise is required to find an appropriate MLP 
architecture for a given learning problem. A model which aims at solving 
this problem is given in the following chapter.
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Chapter 7

Cascade Correlations

Cascade Correlation (CC) is a method which builds a feedforward neural network 
through construction [23]. With Cascade Correlation we do not have the problem 
of finding the number of hidden neurons required for a given learning task in a trial 
and error approach. Originally, CC type networks were unable to process data other 
than fixed sized vectors and sequences. In [8, 82], a version of cascade correlation, 
called recursive cascade correlation (RCC), is applied to processing data structures 
with considerable success.

In this chapter, we will first describe the training algorithm of a cascade correlation, 
before extending it to the situation of data structures. This is necessary because, as 
far as we are aware, there is not yet any useful exposition of cascade correlation in 
the format which we seek. Secondly the formulation would be useful as a precursor 
for applying cascade correlation on data structures.

As far as we are aware, there has never been any comparison made between the cas­
cade correlation, and the multilayer perceptron applied to data structure problems. 
In this chapter, we wish to consider the following questions:

1. What are the differences in performance between cascade correlation neural 
networks, and multilayer perceptron as applied to data structures.

2. Comparing the two architectures, are there other related architectures 
which might be useful to data structure problems.

3. How do they perform on a series o f practical problems.

This chapter gives answers to these questions and defines two new architectures 
which allow a more thorough comparison of architectures based on MLP and CC.

The structure of this chapter is as follows: In Section 7.1, we will give a thorough 
description of the cascade correlation (CC) neural network architecture . Section 
7.2 extends the theory employed in CC to derive a data structure representational 
model known as a RCC (recursive cascade correlation) model and gives the associ­
ated training algorithm. Experiments with RCC are presented in Section 7.3. Based 
on the materials presented in Section 6.2.2, and Section 7.2, we will give a number 1

1Here we will abuse the terminology by calling a neural network model resulting from a 
cascade correlation constructive training algorithm as a cascade correlation neural network
model.
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outputs

Figure 7.1: A diagram showing a cascade correlation neural network architecture 
with two hidden units, three input units, and two output units. The hidden units 
have nonlinear activation functions. The output units either have nonlinear activa­
tions, for classification problems; or linear activations, for regression problems. The 
input units all have linear activation functions. The square symbol denotes that the 
weights of the unit, once obtained will be frozen. The cross symbol denotes weights 
which are required to be trained.

of extended neural network architectures which can be used for data structure mod­
elling in Section 7.4. It is proposed to reduce an RCC architecture in Section 7.4.1 
and to extend the RMLP architecture in Section 7.4.2. Experimental results with 
extended RMLP are given in Section 7.5 whereas experimental results with reduced 
RCC neural models are given in Section 7.6. Finally, a summary and conclusions 
are drawn in Section 7.7.

7.1 Introduction to Cascade Correlations

The cascade correlation neural network architecture, as introduced by Fahlman [23], 
shown in Figure 7.1, can be described by the following model 2 :

y  =  F p ( C x  +  D  u) (7.1)
x  =  F n ( A x  +  5u ) (7.2)

where u is a m-dimensional input, x is an n-dimensional vector denoting the hidden 
layer neuron activations, and y  is a p-dimensional output. A ,  B , C, and D  are 
respectively n x n ,  n x m ,  p x n  and p  x  m  matrices.

Note that A  has a special structure: it is a lower triangular matrix with zero diagonal 
elements. Note that while this has a similar form to the recurrent neural networks 
[91], in actual fact, it is not. With the lower triangular structure, it indicates that 
successive elements of x  are influenced by the predecessor values of x. In other 
words, Xi depends on X j, j  =  1 , 2 , . . . , «  -  1, where X{ is the «-th element in the 
vector x.

It is noted that the cascade correlation architecture has n m  +  n p + p m + ^ n ( n - 1) =  
p ( m  +  n) +  n m  +  \ n (n  — 1) parameters. Thus, the cascade correlation architecture

2The exposition given in this section, though not containing any new results, is new. 
It forms the background for the derivation of training algorithm in Section 7.2.
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has more parameters than the MLP with the same number of hidden layer neu­
rons. Specifically, it has \n(n -  1) parameters more than the corresponding MLP 
case. These extra parameters are contributed by the matrix A, i.e., the additional 
connections from the preceding neurons to the succeeding neurons in the hidden 
layer.

It is known that the MLP architecture is a universal approximator [52], i.e., it 
can approximate a given input-output set of data arbitrarily well, provided that a 
sufficient number of hidden layer neurons is used. It is curious what effect would the 
additional parameters \n{n — 1) have on the performance of the cascade correlation 
architecture compared with the MLP architecture. This will be one of the questions 
we wish to answer in this chapter.

It is also known that the cascade correlation architecture is not a universal approx­
imator. However, it is known that the architecture is good in practice in classifica­
tion as well as in regression problems. Hence, it can be anticipated that the cascade 
correlation architecture as applied to the structured data domain will not have a 
universal approximator property.

7.1.1 Training algorithm

The training of a cascade correlation architecture is by construction, i.e., it builds 
the architecture step by step, by adding one hidden layer neuron one at a time. 
Since it is a feedforward neural network framework, it has to solve the issue of 
how to train hidden layer neurons without information concerning the hidden layer 
neuron behaviours. In this instance, Fahlman [23] used two ideas:

(a) Use a number of candidate units 3 *. Candidate units are units which can be 
used as intermediate devices in the training process. Their use is associated 
with the correlation measure described in (b).

(b) Use the correlation between the output of the hidden layer neuron and the 
error, as obtained from a previous iteration as a measure of how well the 
candidate units perform in modelling the residual errors. The correlation 
gives a criterion in the choice of the candidate units. The candidate unit 
with the highest correlation will be selected to be the hidden layer neuron. 
The other candidate units are discarded.

We will consider the training of a cascade correlation neural network step by step 
as follows:

Step 1 Given a training data set T  =  (t(i),u (*),* =  1 ,2 ,... ,1V}. t and u are 
respectively p-dimensional vector denoting the target values and m-dimensional 
vector denoting the inputs. At the beginning of the training process, we assume a 
cost criterion:

j = i  ^ 2 tr (w*) ”  y(*)) (*(*)-  y(*))T) (7-3)
2— 1

where tr(-) is the trace operator of a matrix and the superscript T  denotes the 
transpose of a vector or a matrix. Note that the initial architecture is an input­
output architecture:

3 Candidate units differ from one another in the initial conditions only. Otherwise they
axe identical.
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y  =  F„(D 0u) (7.4)

where D 0 is a p x m  matrix. The unknown matrix D 0 can be trained by minimising 
the cost function J. This can be obtained by differentiating the cost function J 
with respect to the elements of matrix D 0. It can be easily proven that the training 
algorithm is given by the following equations:

D0(i +  1) =  D0(i) - i)Qjj- (7.5)

where D q{i) is the z-th iterate of the matrix D q, r) is a learning constant, and

=  “  5 3  A(C)e(z)u(z)T (7.6)
¿=i

where e(z) =  t(z) — y(z) is a p-dimensional vector denoting the error for the z-th 
training vector. A(£) is a p  x p  diagonal matrix, of the following form:

^5 

1______ 0 0 . . 0 '

A (0  =
0 / t e ) 0 . . 0

(7.7)

.  - t  ,  v -

. 0 0 0 .

where /  (■) denotes the derivative o f the nonlinear function /(•). £ =  D 0u. 
denotes the z-th element in the p-dimensional vector £.

Note that this is a batch training algorithm for a multilayer perceptron without any 
hidden layers. Hence, the computation should be very fast.

We store the error vector e(z) for the current computational step. This will be used 
in Step 2. Furthermore, we denote the average of this vector by è. In other words,

1 N
e = 7 v £ e W

¿=1
(7.8)

Step 2 In the second step, there are two sub-steps:

1. Train candidate units. Select the one which is most correlated with the 
previous error as the hidden unit.

2. Compute the weights from the hidden unit to the output.

We use a number of candidate units. The difference between the candidate units 
les m the difference m initial conditions. These units all have direct connections to 

the input vector u . Hence, the architecture of each candidate unit is as follows:

x  =  f  (b fu ) (7.9)
where b i is a m-dimensional vector, 
of the candidate unit.

Note that x  is a scalar, denoting the output
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Since we do not have any output to train this unit, we cannot use J. Instead we 
use the following correlation measure:

3=1

N

X ^ W  “  W -  e3 W)
i=l

(7.10)

where x(i) is the output of x  in response to the ¿-th input, and e j( i ) is the j -th 
error in response to the ¿-th training input in the previous cycle, i.e., in step 1. x 
denotes the average value of x  over the training data set. (Eq. 7.10) can be written 
more compactly in the following form:

J c  = E \t r  (<ef
‘ z ( l )  '

j - 1

’ x  "

where x.N =
x (2) X

, =

. x(N )  . _ X .

(7.11)

e f ,  and e^ , j  =  1, 2, . . .  ,p  are defined

similarly.

x =  -h x (i)> t îe average of the output of the candidate unit, e is defined 
similarly.
This is a simple one layer network, and can be trained by maximising the value of
Jc •

b 1(i +  l)  =  b 1(i) +  r,c^ -  (7.12)

where T)c is a learning constant. Note that in general, rjc ^  77. Furthermore,

sig11̂  (Z U))) (A (C " ) (e f  -  eJV)(u 7V)T  ̂ (7-13)
1 3=1

where Z (j )  =  (e^  — e ^ )(x N x N)T and sign(x) | —1 if x <  0 

N  x N  diagonal matrix defined as follows:

A ((N) is a

r / ( C M ) 0 0 .. . 0

A (iN) =
0 /(C (2 )) 0 .. . 0

0 0 0 .. . f ' i c m

(7.14)

C =  b f  u, a scalar variable. CM denotes the ¿-th instant of the scalar 0  

UN is a N m  vector defined as follows:
T

(UN)T _  [ Ul(l)  . . .  Ui{N) u2{ 1) U2(N) . . .  Um{ 1) ••• Um(N) ]
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We train a number of candidate units; each candidate unit differs from the other 
only in the initial conditions. We find the best suitable candidate unit by selecting 
the one with the largest correlation measure. This will be the first hidden unit. All 
the other candidate units are discarded. Once this is chosen, we fix t e weig o 
the vector b i . We denote the output of the first hidden unit by x \.

Once b i is fixed, then we can train the weights of the following architecture.

y  =  Fp (D 1u +  c 1x l ) (7-15)

where ci is a p-dimensional vector. Note that D\ ^  Do-

Since the incoming weights to x\ are fixed, x\ can be computed for each input 
training pattern. Hence it is simple to treat x\ as though it is an input. Thus, we 
can use the single layer training algorithm to find the unknown matrix D \, and Ci.

[ D i ( i  +  1) c ,  ( * ) ]  =  [ -Di(*) C i(t) ] - n d y ^  C i- j  ( 7 -16)

where

d\ L ) J c i  I =  A ( ^ e W  [ u r ( 0  * 1 (0  ] (7 .!7 )
 ̂ 1 i=1

where (  =  D\u +  c i^ i, a p-dimensional vector. Once D i  and c i are found, we 
can compute the corresponding output errors e. Again we store the error e(i) =  
t(i) — y(i)  for use in Step 3.

Step 3 Now the way ahead is clear. We can use the error sequence e obtained in 
Step 2 to train another set of candidate units, each candidate unit has the following 
architecture:

x  ~  f  (b i u +  ai x i)  (7-18)

where b 2 is a ra-dimensional vector, and a\ is an unknown constant.

Now, x\ is known, and hence it is the same as an input. Thus again we can find the 
unknown vector b 2, and the unknown constant a\ by maximising the correlation 
measure (see (Eq. 7.10) and (Eq. 7.11)).

The unknown vector b 2 and constant a\ can be found by maximising the following 
correlation measure.

p
{ Is f  i f  ] =  ¿ s ig n iz y jJ A ir K e f -^ )  [ (uN)T ( x " ) r ] (7.19)

i= 1

where f  =  b j u  +  aixi.

We choose the candidate unit with the largest correlation measure and discard all 
the other candidate units. Once that is chosen, we fix the incoming weights b 2, and 
ai to the neuron. This will be the second hidden layer neuron. Denote this by x 2.

The output will then be given by:
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y Fp (D 2u +  C1 X1 +  c2x2) 

Fp ^D2u +  [ ci c2 ] 

Fp (D 2u +  Cx)

xi
X2

(7.20)

where C  =  [ ci c2 ] , p x 2  matrix.

Once again the unknown matrix D 2 and unknown vectors Ci, i =  1,2 can be found 
by minimising the cost criterion J.

N
[ $ k  U  §f2 ] = ^ A ( 0 e ( i ) [ u T{i) Xl(i) * 2(i) ] (7.21)

¿=i

This is again a single layer training algorithm, as Xi, i =  1,2 can be considered as 
inputs.

Step 4 We can follow the same procedures as carried out in Step 3.
Using this method recursively, we can find the cascade correlation neural network 
architecture which can represent the given set of input-output training data.
Here in this section, we have formulated the classification problem. Hence, the 
stopping criterion used would be either when all the outputs are correctly classified, 
or that there is no change in the classification error.
The formulation can be modified easily for regression problems. In this case, instead 
of the output equation:

y  =  Fp (Cx  +  Du) (7.22)

we assume a linear output neuron, i.e.,

y =  Cx  +  Du (7.23)

The training algorithm can be modified suitably for this case to constructively find 
an architecture which can be used for regression analysis.

7.2 Cascade Correlation applied to Tree Data Structures

Prom the observation made in the MLP tree architecture section, we can treat the 
inputs from the children as extra inputs to the current node, and the exposition 
of the cascade correlation in the previous section, it is quite simple to modify the 
approach so that it can be applied to model tree architectures 4.

Each node in the tree architecture can be modelled as follows:

x  =  Fn (Bvl +  Aq xx) (7.24)

4The training algorithm presented here is similar to the ones given in [8]. However, the 
way how it is derived is new.
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The output o f the root node is given by

y =  Fp (C x  +  Du)  (7.25)

where Aq~xx  is a shorthand form for denoting the inputs from the children to the 
current node. Note that this model is similar to the state MLP tree architecture. 
The matrix A  is constructed in a step by step manner.

The recursive cascade correlation algorithm can be stated as follows:

Step 1 Since we are dealing with a tree architecture, it does not make sense to 
build first a direct input-output model as in the classic cascade correlation situation. 
Hence in the first step, we just assume that the outputs to be zero. The error 
sequence in this case becomes t(«), i =  1 ,2 , . . . ,  N. This error sequence will be used 
in Step 2 in the determination of the correlation measure.

Step 2 We assume that the candidate unit in each node can be described by the 
following model:

x =  f  (bTu +  aq 1x )

where ag-1 x  is a shorthand form denoting:

aq *x =  [ ai a2 .. .ac ]

Qi
<l2lx  2

. Qc l x c

(7.26)

(7.27)

where ai are unknown constants. X{ corresponds to the hidden layer neuron in the 
¿-th child, and qi 1 is a device to denote the input from the 2-th child to the current 
node.

Since we do not have the output available at the intermediate nodes, and hence we 
use the correlation measure:

v

*  = £
3=1

N

£ ( * ( * )  -  * (0 )M « ')  -  e j) (7.28)

This correlation criterion can be maximised with respect to the unknown parameters
b, and a. The updating rules are as follows:

b(» +  1) =  b(i) + Vc
dJc
3b

and

(7.29)

a(* +  1) =  a(t) + Vc
dJc
3a (7.30)

The partial derivatives o f the correlation measure with respect to the parameters 
can be obtained as follows: let the k-th element of b be denoted by bk. Then,
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8Jc
dbk

S s ig n ^ )  £ (e j(i)  -
j=1 ¿=1 ° ° k

(7.31)

and we have

^  =  /(C )(< ?*u « +  a<r1g )  (7.32)

where £ =  b Tu + a g -1 x. Qk is a m-dimensional vector with all elements zero except 
a value of 1 in the k-th position. The derivative q~l is dependent on the tree
structure. Zj =  X li= i(x (i ) ~  x (l)) (ej ( 0  — ej). The derivatives of x(i) with respect 
to bk are obtained accordingly. Then, in a similar manner, we have:

dJc v—> . . . \ . __ dx(i) . .
f a -  =  w  -  (7-33)

j = i  t = i

and

^  =  / ( C ) ( a < / - 1£  +  0 « - 1x )  (7.34)

Qjfc is a n-dimensional vector with all elements 0 except a value of 1 in the fc-th 
position. Again the evaluation of the derivative q~l is dependent on the tree
structure, and the derivatives of x(i) with respect to a* are obtained accordingly.

The candidate unit with the maximum correlation will be chosen as the hidden 
unit and the other candidate units are discarded. Once the unit is chosen, the 
parameters b  and a are frozen.
Then we will determine the values of the output by minimising the error criterion. 
The output model is given by:

y  =  Fp(cx  +  D m) (7.35)

The unknowns c, a j>-dimensional vector, and the p x m matrix D  can be determined 
by using the error criterion. Now x  is fixed once the weights b  and a are frozen. 
Hence x  can be considered as an extra input in the single layer network. Thus, the 
unknown can be trained readily.
We then compute the error sequence e(i) =  t(i') -  y (*)> for * =  1 ,2 , . . . ,  N. This 
will be used in step 3.

S tep  3 This again can be decomposed into two sub-steps, one for finding a suitable 
candidate unit so that the number of hidden units is increased by one; and then 
find the weights for the output layer.
We can use the following model for the candidate unit:

x — f  (bTu + d\X\ +  rTg-1Xi +  sTq xx) (7.36)
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where x 1 is the output of the hidden unit chosen in Step 2; ai is the corresponding 
weight connecting this to the candidate unit, x i are the output o f the children from 
the hidden unit as determined in Step 2. r is a vector for weights connecting the 
candidate unit with the first hidden unit (as determined in Step 2) o f each child 
node. sTg-1 x  is a shorthand form denoting the following:

sTq *x =  [ Si S2 ••• sc ]

Q ijxi
q2 1x 2

Qclx c

(7.37)

where Xk denotes the output of the candidate unit in the A;-th child. The unknown 
parameters ai, r, s and b  can be found by maximising the correlation measure (Eq. 
7.28).
The weight a\ can be updated as follows:

g  =  ¿ ^ © ¿ ( f e W - e ^ g ) (7.38)

=  X l sign®  ( ( ci (0  -  i )
3=1

(7.39)

Let rk denote the k-th element in the c-dimensional vector r. Then we have

5 T  =  E - W i > E ( M < > - 5 > £ ) (7.40)

We then have:

g  =  / © ( Q * 9- 1x 1 + s V 1g ) (7.41)

where Qk is a c-dimensional vector with all elements 0 except 
k-th position. The evaluation of this quantity is dependent on 
In a similar manner, let sk be the k-th element in the vector s,

a value of 1 in the 
the tree structure, 
we can obtain

&JC v -  ̂ . ( v y 'V  r\ __N dx
dTk =  . L sis n(zi ) 2 > i «  -

j=l ¿=1 k
(7.42)

and

g / i i i f e ^ x + s v g (7.43)

Let bk be the &-th element in the vector b , then we have
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dJc N __x dx
= 2 ^ slSn(zi) 2 > i W  -  ei ) g f  (7-44)

j =1 i— 1 *

and

g = /'«)(eiu+sV1£) <7-45)
Thus using these equations, the unknown parameters can be updated. Then we 
choose the candidate unit which maximises the correlation measure. We then freeze 
the weights which are associated with this unit. We denote the output of the second 
hidden unit as X2 .

Then, we use the following output model:

y  =  Fp (Du  +  c ixi +  c2x2) (7.46)

Since both X\ and x 2 can be evaluated, they can be treated as though they are 
additional inputs for the output layer. Thus the unknown weights D, c i, and c2 
can be obtained by minimising the error criterion.
The way ahead is clear from here. We can progressively add hidden units, one at a 
time, until the error criterion is small.
The resulting architecture from this constructive process will be called a recursive 
cascade correlation (RCC) model.
It is noted that the RCC architecture has nm +  np +  |n(n -  1) +  Jcn(n +  1) 
parameters as compared to nm +  np +  cn2 parameters in an RMLP network. Thus, 
depending on the outdegree of the graphs and the number of hidden neurons, the 
cascade correlation architecture has a different number of parameters to that of the 
RMLP. Specifically, the difference is §  (n -  cn +  c -  1), and hence, the number of 
parameters in an RCC is greater than the number of parameters in an RMLP if 
c <  JfL. Because n is never negative and because values for c must be cardinal, 
it is noted that in practical terms, RCC always features less parameters than a 
state MLP network architecture that has the same number of hidden layer neurons 
unless c is zero. In the case where c =  0, the RCC reduces to CC and features more 
parameters than an MLP network.
The RCC model has been tried on a benchmark problem. Many of the experimental 
findings are given in Section 7.3.

7.3 Experimental results with RCC

This section reports some experience in applying the RCC architecture to the bench­
mark problem dataset-3 which is described in Appendix A. The task of this bench­
mark problem is to classify all 3750 graphs in the training/test set correctly. 12 
classes are defined over the dataset. The dimension of the data label u is 2, the 
dimension of the binary target vector t is 12, and the maximum out-degree c is 6.
Experimenting with RCC is easier than with the corresponding RMLP architecture. 
This is because the algorithm is able to find an appropriate number of hidden nodes 
by itself With RMLP, an appropriate choice of the number of hidden nodes can
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only be found through a trial and error process. As a result, the training of an 
RCC network requires only few parameters. The only parameters which we can 
play with are (1) the type of updating rule, and (2) the number of candidate units. 
However, preliminary training sessions with RCC indicated that the training of an 
RCC architecture requires considerably more time than the training of a corre­
sponding RMLP network. A great contributor to the training time requirements is 
the complexity of the training algorithm which is found to be greater than that of 
the RMLP algorithm. This difference between these two models will be discussed 
further in Section 7.6.2. Other reasons for the increased training time requirements 
are that the output layer has to be re-trained every time a new hidden layer is 
added to the network. In addition, before a hidden neuron can be added, n  can­
didate units have to be trained. Only the best candidate is chosen whereas the 
others are discarded. Training an RCC network can take magnitudes longer than 
the training of RMLP networks so that the utilization of a relatively large set of 
data such as dataset-3 quickly exceeds reasonable training times. In response to 
this, we restricted our experiments to training sessions with the RProp learning rule 
since RProp has been found to be the most efficient updating mechanism for this 
type of networks. Also, we chose to set the size of the pool of candidate neurons 
for the hidden layer evaluations to be 15. A larger pool did not appear to have a 
significant effect on the final network performance. However, it was observed that 
when choosing a pool size of 8 or smaller, the networks obtained performed poorly.

The first experiment is to demonstrate how the network performance evolves as 
hidden layer neurons are added to the system. This is shown if Figure 7.2.

Figure 7.2: Training RCC on the benchmark problem: dataset-3. The number of 
hidden neurons is plotted against the network performance.

Figure 7.2 gives the percentage of correctly classified patterns from the training/test 
set in relation to the number of hidden layer neurons added to the RCC network. 
Two important findings are associated with this result:

• RCC provides an effective mechanism for the encoding of graph structured 
information. •

• The algorithm found that at least 9 hidden layer neurons are needed for a 
good performance on the given learning learning task.



Experimental results 117

This is an interesting result because earlier findings with state MLP networks sug­
gested that 10 hidden neurons are required for this learning task. An RCC with 9 
hidden nodes has 306 network parameters less than a state MLP with 10 hidden 
nodes. An explanation for this observation is found in Section 7.6.2 where an appro­
priately modified version of a state MLP network is compared with RCC, and also 
in Section 7.6.1 where the effects of a modified RCC architecture is investigated. 
Note that training the RCC was interrupted after 21 hidden neurons were added 
because training times exceeded reasonable levels (more than 20 days of clock time). 
At that stage, the RCC with 21 hidden layer neurons classified only one training 
pattern and 30 test patterns incorrectly.

In Figure 7.3 we present the confusion matrices as obtained from a RCC network 
featuring 10 neurons in the hidden layer. We use an RCC with 10 hidden layer 
neurons to allow a direct comparison with earlier findings from RMLP network 
experiments. It is found that the classification performance is reasonable well bal­
anced over the different classes. This is a positive result when considering that 
some classes are represented only by relatively few samples while other classes have 
a large number of samples. In comparison with findings made with a state MLP 
architecture previously in Figure 6.2, it is found that the overall performance on 
an RCC architecture is slightly better despite the fact that the RCC architecture 
is featuring fewer network parameters. The most significant difference is that RCC 
has no apparent problems with classes that are represented by only few training 
patterns. State MLP networks had considerable difficulties with such cases. This 
may be attributed to the fact that the RCC models have direct input output con­
nections, while the state MLP models, at least in the experiments which we have 
conducted, do not have direct input output connections 5. It is known that a multi­
layer perceptron with direct input output connections can outperform ones without 
direct input output connections.
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Figure 7.3: Confusion matrix as obtained from a RCC with 10 hidden neurons. The 
table on the left hand side refers to the training set, the table on the right hand 
side refers to the test set.

The following experiment is to investigate the impact of training an RCC network 
on a reduced set of training data. Preliminary experiments showed that RCC gen­
eralizes well on this benchmark problem. The question we would like to ask is: how 
many training pattern are required by the RCC algorithm in order to obtain a good

5in the models given in Chapter 6, we have made provisions that it is possible to include 
direct input output connections. However, the programming of such inclusion is far more 
complex.
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Figure 7.4: Network performance of a RCC model featuring 10 hidden nodes plotted 
against the number of training patterns.

The interesting observation is that RCC requires at least half of the training samples 
in dataset-3 to generalize well. This is in contrast to earlier findings with state MLP 
networks which performed well with about 10% of training patterns from dataset-3. 
An explanation of this particular property can be surmised intuitively as follows: 
in the MLP type of networks, the supervisor signal is present at the output of 
the network. This manifests itself in the formulation of the error signal which is 
then used in the update of the network weights. On the other hand, for the RCC 
type of models the determination of the hidden layer neurons is achieved through 
a correlation measure. This is not as strong as the error measure in the MLP type 
models. Hence, it is surmised that it will take the network much more training 
samples to achieve similar performance as the MLP type models. In addition, 
choosing more than the 50% of training data from dataset-3 helps to improve the 
general performance of the RCC network.

This section made attempts to compare the performance of RCC networks with 
that of the state RMLP networks that feature the same number of hidden neurons. 
However, such a comparison is not sufficiently expressive because the network archi­
tectures differ despite the many similarities between these two models. One major 
difference is the connections between hidden layer neurons which are not present in 
the case of state MLP models. The second difference is that recursive connections 
(the matrix A )  is not fully connecting hidden layer neurons with all states from 
the processing of children nodes in the case of RCC. Hence, the number of network 
weights is different for the two models even if the number of hidden layer neurons 
is the same. Moreover, the interconnections between hidden nodes have the effect 
that nodes added earlier during the training process act like hidden layer neurons 
at different levels. This too can have a significant impact on experimental results 
As a consequence, we suggest two slightly modified architectures for RCC and state 
MLP models which allow a better comparison of the two models, and help to clarify 
what impacts the additional or missing links among the hidden layer neurons in a 
network model can have. This is addressed in the following section.
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7 .4  Extended classes o f architecture
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This section proposes a modification of the MLP and CC type networks respec­
tively. These modifications are first explained on classic models before applying the 
underlying ideas to the more general data structure models 6.

From a comparison between the MLP, and the cascade correlation neural network 
architectures, it is clear that we can formulate other neural network architectures 
within these classes. The only difference between the cascade correlation neural 
network architecture and the MLP is the \n{n — 1) weights from the preceding 
hidden units to the succeeding units in the case of the cascade correlation architec­
ture. Based on this observation, it is possible to formulate two novel neural network 
architectures:

7.4.1 R edu ced  cascade correlation

This architecture is obtained by disallowing the connections from the previous hid­
den layer units to the succeeding hidden layer units. In other words, we have the 
following architecture:

y  =  Fp (Cx +  Du) (7.47)
x  =  Fn {Bu) (7.48)

This will be equivalent to the multilayer perceptron architecture, except that the 
training algorithm is a step by step constructive training algorithm, in the sense 
that the hidden units are found one by one, instead of being the usual backprop 
training algorithm, in which all the hidden units are present, as in the case of the 
multilayer perceptron situation.

The step by step training algorithm can be described as follows: Given a training 
data set T — {u(z'), t(i); i =  1 ,2 , . . . ,  N },  we wish to find a MLP architecture which 
will represent this set of training data.

Step 1 We form a direct input-output model as follows:

y  =  Fp(D0u) (7.49)

where D 0 is a p x m matrix, which can be obtained by minimising the error criterion. 
Store the error sequence e(i) =  t(i) — y ( i ) for use in Step 2.

Step 2 We use candidate units, each candidate unit is modelled as follows:

x =  / ( b iu)  (7.50)

where b x is a ra-vector. The unknown parameter bi can be trained by maximising 
the correlation measure between the previous error sequence e(i), and the outputs 
o f the candidate unit.
The candidate unit with the largest correlation measure will be selected as the 
hidden unit and the other candidate units are discarded. The corresponding weight 
b i is frozen. Let us denote the output of the hidden unit by x \.

6 The ideas presented in this section are new.
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Then, we can use this hidden unit together with the inputs to form the following 
output model:

y  =  Ep (D iu  +  C1X1) (7.51)

where ci is a p-dimensional vector. The unknowns D i and c i can be determined 
by minimising the error criterion.

Step 3 The way ahead is clear as we can determine the next hidden unit using 
the correlation measure, and so on until a satisfactory network is obtained giving 
an acceptable error rate.

For tree architectures applied to structured data domain, we have the following 
candidate unit model:

x  =  f  (b Tu +  sTq *x) (7-52)

In this case, the training algorithm used is the step by step method, i.e., the hidden 
layer units are obtained one at a time. Note that the candidate model is the 
same as the one used for the state MLP model. Since the training algorithm is 
quite similar to the one used for the cascade correlation method for data structures, 
specifically we do not include any parameter ciiXi, as a result, the training algorithm 
can be obtained by dropping certain terms associated with UiXi in the RCC training 
algorithm. The details o f the training algorithm is omitted here.

7.4.2 E xten ded  m ultilayer p ercep tron

It is possible to extend the multilayer perceptron to one which allows the preceding 
hidden layer neurons to influence the succeeding ones, i.e.,

y  =  Fp (C x  +  Du)  (7.53)
x  — Fn (H x  +  Bu)  (7.54)

The n x n matrix H  has a very special structure, viz., it is lower diagonal, with zero 
elements in the diagonal. Thus even though the form o f the architecture appears 
the same as a recurrent neural network, in actual fact, it is different.

The training algorithm o f this architecture can be determined by m inim ising the 
error criterion J . Note that the updating equations for matrices B, C  and D  are 
the same as those obtained in a MLP. As for the updating equation for matrix 77, 
we need to proceed as follows: consider an element h{j  in the matrix H. We can 
differentiate the error criterion with respect to this parameter as follows:

dJ
dhij

N

= - E iTw
d x

i=i dhtj
(7.55)

where 6(t) =  C TA(()e(e), and C =  C x  +  Du.

^T° W’ daij can obtained by formally differentiating x  with respect to as 
follows:
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( 7 - 5 6 )

where Qij is a n x n matrix with all elements 0, except an element of 1 in the ¿-th 
row and j - th column position. £ =  H x  +  Bu. (Eq. 7.56) can be solved as follows:

rhc
g j -  =  ( /  -  A( i ) i f ) " 1 (7.57)

The matrix inversion of I  — A (£)H  is particularly simple, as H  is lower triangular 
with 0 in the diagonal elements. Thus, I  — A(£)H  is a lower triangular matrix with 
all diagonal elements equal to 1. Thus, (Eq. 7.57) can be solved for the values 
of ^ 77. Once this is obtained, the value of can be obtained, and hence the 
elements of H  can be updated.

Note that the fact we can determine the unknown matrix H  in this simple manner 
is due to the fact that we only have feedforward links in the hidden layer neurons,
i.e., Xj depends on x i} i =  1 ,2 , . . . ,  j  - 1 .  If it is a full recurrent neural network, i.e., 
when H  has no special structure, then, while the solution is still possible, as there 
exist many algorithms for inverting I  — A(x)H ,  the nice insight into the operation 
of the architecture is lost.
Thus, it can be observed from this that the cascade correlation architecture occupies 
a place somewhere in between the fully recurrent neural network (with no delays in 
the interconnections among the hidden layer neurons), and the MLP. It is hence an 
interesting architecture to explore, even though we know that the MLP architecture 
by itself is already a universal approximator.
For tree architectures for structured data domain, each node of the extended model 
can be represented by the following model:

x  =  Fn (H x  +  B u  +  Aq_1x)  (7.58)

where H  and B  are the same as those indicated previously. A  is a n x nc matrix 
denoting the connections from the children nodes to the current node. In addition 
for the root node, we have

y  =  Fp (C x  +  Du) (7.59)

The training algorithm for this model is a combination of the previously described 
models.
If we let hij denote the ij-th  element of the matrix H, and if the error criterion is 
a least squared error criterion, then, we have

dJ
dhij

dy
dhij

(7.60)

and

dy
dhij = A(C) C

dx
dh13

(7.61)
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and

8x
dhij =  r n  ( n

dx
dhij

+  Q i j X  +  Aq 1
dx

dh^
(7.62)

where £ =  C x  -4- Du, £ =  H x  +  B u  +  Aq *x. Qij is an n x n matrix with all 
elements 0 except for a value of 1 at the i j -th position. Then, we have

| -  =  ( / - A  +  (7-63)

The inversion of the matrix I  — A (£)H  is particularly simple, as H  is a lower 
triangular matrix with diagonal elements being 0.

A similar set o f updating equation can be found for the other unknown weights. 
They will be omitted here.
It is noted that both, the extended cascade correlation model and the reduced MLP 
model can be used to model data structures. An extended state MLP model is of 
an architecture which is more similar to an RCC network architecture, whereas 
the reduced RCC model features an architecture which is similar to the one found 
in RMLP models. Note that while the two models have become more similar, the 
number of parameters is still different, i.e. a reduced RCC features less weights than 
an (extended) state RMLP network for all cases where the outdegree is greater or 
equal to 1.

With these two new models at hand, we are able to conduct quantitative evaluations. 
The application of the extended RMLP architectures to a benchmark problem, 
dataset-3, is addressed in Section 7.5 whereas applying the reduced RCC model to 
dataset-3 is examined in Section 7.6. Particularly interesting are the comparisons 
made between the those models respectively in Section 7.5.3, Section 7.5.4, and 
Section 7.6.1, Section 7.6.2.

7.5 Experimental results on extended R M L P

This section reports our experience applying extended RMLP models to a bench­
mark problem: dataset-3, the Extended Policemen Benchmark problem which is 
defined in Appendix A. The dataset is an artificial learning problem consisting of 
3750 graphs for the training set and 3750 graphs in the test set. The graphs belong 
to 12 different classes where each class is associated with a 12-dimensional target 
vector. A data label is associated with each node in the graph, where the dimension 
of this label is 2. As a consequence, all networks considered for these experiments 
commonly featured 2 input nodes in the input layer u, and the output layer y (or 
y R in the case of extended output RMLP architecture) is o f dimension 12. All 
networks were trained using adaptive learning rates where the initial learning rate 
77(0) was set to 0.04.

Section 7.5.1 addresses practical findings obtained from extended state MLP net­
works, whereas the extended output MLP architecture is investigated in Section 
7.5.2. A comparison of the two models is made in Section 7.5.3. A further com­
parison is made in Section 7.5.4 where the extended models are compared with the 
RMLP architectures. Experiments and comparisons with the reduced RCC model 
are addressed in Section 7.6.
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This section repeats the experiments made on state MLP networks (Section 6.3.1) 
on its extended counterpart. This will allow a comparison of the two models which 
will be made in Section 7.5.4.

The first set of experiments focuses on finding the number of state layer neurons 
required to produce a well performing network for dataset-3. Since the dimension 
of the input layer u and the dimension of the output layer y are controlled by the 
dataset, the only layer with which we can experiment with is the state layer x. A 
set of experiments was crafted so as to find the influence of the cardinality of state 
neurons on the network performance. Networks featuring a single state neuron were 
trained and the performance was recorded. Training was performed with the BPTS 
updating rule which was applied for 400 training iterations. The experiment was 
then repeated where the number of state neurons increased gradually up to 64. The 
result is summarized in Figure 7.5.

10 20 30 40 50 60
Number of state neurons

Figure 7.5: A diagram showing the recognition of the samples using an extended 
state MLP network trained using the BPTS updating rule. The number of state 
neurons are plotted against the network performance.

The results clearly indicate that an extended state MLP network requires at least 10 
state neurons to encode the graphs in dataset-3 efficiently. Increasing the number 
of state neurons does not appear to result in any significant performance improve­
ments. In addition, it is found that the generalization performance as obtained 
from the test set follows closely the performance achieved on the training set even 
if the number of state neurons is'large. This indicates that the training set is suffi­
ciently large to efficiently represent most instances of the learning problem. A good 
training set also helps to control the effect of overtraining which is also no apparent 
problem in this experiment.
Figure 7.5 gave results obtained when updating the network weights with the BPTS 
updating rule. It is an interesting question to ask: how other updating rules such as 
RPROP and BPTS with momentum influence the performance of an extended state 
MLP network. As a result, previous experiments were repeated with the application 
of various learning rules. The result is summarized in Figure 7.6.

It is observed that all updating rules require 10 state neurons in an extended state 
MLP network to produce good classification results on dataset-3. Moreover, the
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Figure 7.6: A diagram showing the recognition of the samples using an extended 
state MLP network featuring 10 state neurons. For each updating rule, the number 
of state neurons is plotted against the network performance. Three learning rules 
are compared: BPTS, BPTS with momentum term, and the RProp learning rule.

learning rules have in common that the network performance is not improved sig­
nificantly if the number of state neurons is increased over 10. Nevertheless, it is 
found that the incorporation of a momentum term into the BPTS learning process 
may help to improve the quality of a trained network. But it is RPROP which pro­
duces the best results. This indicates that RPROP is the most efficient mechanism 
for finding a minimum and fast convergence.

The efficiency of the learning algorithms is investigated by the following experiment: 
Extended state MLP networks featuring 10 neurons in layer x  were trained for up 
to 2000 iterations using three different learning algorithms: BPTS, BPTS with 
momentum, and RPROP. The network performance was measured at the end of 
every iteration. The result of this experiment is shown in Figure 7.7.

Number o f  mining iterations Number of mining iterations

Figure 7.7: A diagram showing the recognition of the samples using an extended 
state MLP network featuring 10 state neurons. The number o f training iterations axe 
plotted against the network performance. The left hand plot shows the performance 
obtained on the train set, while the right hand plot shows the results by applying 
the trained model on the test set.

The finding shown in Figure 7.7 confirms that the RPROP learning rule converges 
fastest and produces best performing networks. An interesting observation is ob­
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tained when considering the BPTS based updating rules between the iterations 330 
and 370. During this interval of iterations 330 and 370, the performance curve of 
BPTS is near horizontal whereas BPTS with momentum does not exhibit such a 
feature. This is a strong indication of the presence of a plateau which hampers the 
BPTS model from converging quickly. In contrast, the momentum term has the 
expected effect moving seamlessly over areas with small gradients.

The confusion matrices visualised in Table 7.1 reveal further interesting behaviour 
of the algorithms.
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Table 7.1: Confusion matrix as obtained from training an extended state MLP 
featuring 8 hidden nodes with BPTS (left) and RProp (right) for 400 iterations.

In Table 7.1, the network trained through BPTS (the confusion matrix visualised 
and shown on the left hand side) failed to classify patterns from |rd of all classes in 
the data set despite demonstrating an overall performance of over 91%. This is due 
to the fact, that the classes e, f , g, and i  are the ones which are represented by only 
few samples. In comparison, the same network trained using RProp (the confusion 
matrix shown in the right hand side) did not demonstrate such a poor behaviour. 
Yet, even the RProp trained network had considerable trouble classifying patterns 
from class g. As a result, it can be stated that an extended state MLP network 
requires a well balanced training set for which all classes are represented by a similar 
number of training samples. This problem of unbalanced number of training samples 
among the classes can be countered by presenting patterns belonging to classes for 
which only few samples exist more often.
The experiments given in this section have shown that the extended state MLP 
network is able to efficiently encode graph based information and that RPROP is 
the most efficient learning rule out of the three training rules attempted. A compar­
ison of this extended model with standard RMLP model is given in Section 7.5.4. 
Next, we will consider the application of the extended output RMLP architecture 
to dataset-3.

7.5.2 E xperim ental results on extended output M LP networks

The experiments in this section have been constructed to allow a direct and fair 
comparison of this extended model with the standard output MLP network con­
sidered in Chapter 6. Hence, the first set of experiments focuses on the ability of 
an extended output MLP network to encode graph based representations given by 
dataset-3. We recall that the layer x in the output MLP architecture is not used 
for recursion but merely acts as a hidden layer between the input layer u and the
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recursive layer x. Hence, for the output MLP case, it is layer y  that recursively 
passes the state of children nodes to parent nodes so that we call layer y  the ‘state’ 
layer consisting of state neurons and layer x  a ‘hidden’ layer. The extended RMLP 
model adds links to layer x  through additional links within this layer. There are no 
additional links in the state layer y.

From preliminary experiments we found that a good number of state neurons for 
the given learning task is 10 so we will restrict the following experiments to finding 
a reasonable number of hidden layer neurons. Thus Figure 7.8 gives the results of 
experiments which plot the number of hidden layer neurons in an extended out­
put MLP network against its classification performance. Networks trained for this 
experiment utilized the BPTS updating rule for 400 training iterations.

Figure 7.8: A diagram showing the recognition of the samples using an extended 
output MLP network trained using the BPTS updating rule. The number of hidden 
neurons is plotted against the network performance.

While it is not intended to compare this result with the results obtained from other 
architectures at this stage, we find that the performance is rather poor in particular 
when using less than 30 hidden layer neurons. In addition, the network performance 
appears to become unstable when using less than 16 hidden layer neurons. However, 
the generalization performance never drops more than 2% below the classification 
performance obtained from the training set. This is an expected result since the 
same problem was observed on the non-extended model in Chapter 6. In Chapter 
6 the problem was traced to an insufficient number of training iterations for the 
BPTS updating rule. Nevertheless, we will first compare the efficiency of various 
learning rules before investigating the requirements in terms of training iterations.

In Figure 7.9 we present results obtained from applying various learning rules to the 
extended output MLP networks featuring a number of hidden layer neurons from 
1 to 64. The number of training iterations used for these experiments remained at 
400.

It is observed that the RPROP learning rule produces networks that significantly 
outperform those networks that were trained by BPTS based learning rules by 10 — 
15%. In addition, RPROP trained networks produce good results already with just 
4 neurons in the hidden layer whereas BPTS trained networks have a performance 
peak with 32 hidden layer neurons. Incorporating a momentum term into the BPTS 
learning rule can bring an advantage if the number of hidden layer neurons is not too
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Figure 7.9: A diagram showing the recognition of the samples using an extended 
output MLP network featuring 10 state neurons. The performance of each updating 
rule as a function of the number of hidden layer neurons is plotted against the 
network performance.

large. This finding supports the suspicion that the number of training iterations 
is insufficient for slow updating mechanisms to converge. The next experiment 
measures the network performance after every iteration when training networks 
featuring 8 hidden layer neurons for up to 2000 iterations. The result is as shown 
by Figure 7.10.

Figure 7.10: A diagram showing the recognition of the samples using an extended 
output MLP network featuring 8 hidden layer neurons. The number of training 
iterations are plotted against the network performance. Three learning rules are 
investigated: BPTS, BPTS with momentum term, and RProp learning rule.

This set of experiments confirms that BPTS based updating mechanisms require 
substantially more than 400 training iterations for the given learning task. From 
the experiment it is found that both BPTS and BPTS with momentum term require 
about 900 training iterations to converge whereas RPROP has converged after just 
about 350 iterations. It is interesting to observe that the generalization performance 
obtained by applying any of the three updating mechanisms is nearly identical if 
training is performed for at least 900 iterations. This differs with the observation 
made on the training set where RPROP trained networks outperform other trained 
networks at any stage during a training session.



Table 7.2 shows the performance of extended output MLP networks for each class 
by visualising the confusion matrices.
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Table 7.2: Confusion matrix obtained by training an extended output MLP model 
featuring 8 hidden nodes with BPTS (left) for 900 iterations, and RProp (right) for 
400 iterations.

It is found, that despite achieving an overall performance level of around 90%, a 
network updated using the BPTS algorithm (left confusion matrix) has considerable 
problems classifying certain classes. We recall that extended state RMLP networks 
demonstrated great difficulties with classifying patterns from classes which are not 
represented well in the input data. As this becomes clear from observing Table 
7.2, this situation also applies to the extended output MLP case. This effect is 
visible to a lesser extend for networks updated through RProp (right confusion 
matrix). As indicated in the confusion matrix on the right o f Table 7.2, we also 
observed a relative poor classification performance for patterns belonging to class 
b. As mentioned in the description of dataset-3 in Appendix A, the classes a and 
b can only be distinguished by information provided with the data label attached 
to a leaf of the graphs. Hence, the essential information is located deep inside the 
graph structure. This property makes it difficult to learn and it is expected that 
more training iterations are required for the network to fully adapt. We were able 
to confirm this by training a network with RProp for 900 iterations. Then, also the 
patterns from class b were classified well with a classification rate o f 97.3%.

The experiments in this section have demonstrated two important properties of the 
proposed model:

• The extended output MLP networks are well able to encode graph based 
data similarly to the non- extended counterpart.

• The extended model requires more training iterations for convergence than 
the non-extended model when the updating rule depends on gradient infor­
mation. This is caused by the additional links between the neurons in the 
hidden layer which are updated only slowly because the BPTS algorithm 
suffers from a long term dependency problem for neurons located deeper in 
a network structure. RPROP is considerably less sensitive to this problem.

The performances of the extended state MLP and the extended output MLP models 
are compared in the following section. A further comparison between the extended 
models with their standard counterparts will be performed in Section 7.5.4.
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7.5.3 Comparing extended state MLP with extended output MLP 
networks

From an architectural point of view, the two architectures differ by the role of layer 
x  and layer y  and the presence of layer y R. In the case of a state MLP architecture, 
the layer x  is to store the activity of neurons as obtained when processing the 
children of a node from an input graph. The activation is then utilized as an 
additional input to the network when processing the parent node. Since the layer 
x  is applied recursively as we traverse through the graph, and since x is used as a 
device for storing intermediate states, we call the layer x  a state or a state recursive 
layer. Layer y  is simply called the output layer. This is in contrast to output MLP 
networks where recursion is exercised over layer y  whereas a new layer y R is the 
new output layer. As a result, in the case of output MLP networks we refer to y 
as the state recursive layer and to y R as the output layer. The layer x is hidden in 
between the input and output layer so that this layer is referred to as the hidden 
layer. As a result, a significant difference between the extended state MLP and the 
extended output MLP network is that the extension takes place in the recursive 
state layer if the network is of an state MLP architecture whereas it is the hidden 
layer that is extended when considering the output MLP case.

From a practical point of view, the difference between the two models is the number 
training iterations that are required for training the network on a given dataset. An 
extended output MLP network requires significantly more training iterations than 
an extended state MLP network; in particular, if the learning rule depends on the 
magnitude of the gradient e.g., in backpropagation based methods. Backpropaga­
tion has a known problem with deep network structures because the gradient gets 
smaller the further a weight is away from the output. By adding links between neu­
rons in layer x, we are actually increasing the depth of the neurons in such a way 
that the first hidden neuron is located deepest. Since the gradient could be small 
for these weights, it takes more training iterations to adjust them. Hence, training 
time is increased. In the case where there are 10 neurons in the state layer, and 8 
neurons in the hidden layer, we find that nearly double as many training iterations 
are required if the standard BPTS learning rule is applied. In contrast, RPROP 
does not take the magnitude of the gradient into account in determining the weight 
changes; it only considers its sign. As a result, RPROP is considerable less affected 
by the small gradients and does not suffer from the long term dependency problem 
that badly. It is for this reason that RPROP trained networks converge consider­
ably faster than backpropagation based learning rules. The difference between the 
two updating mechanisms is the greater the deeper a network structure is, or the 
more neurons are in layer x.
From a performance point of view we find that the difference between the extended 
state MLP network and the extended output MLP is negligible. No obvious per­
formance improvement was observed by using the extended output MLP over the 
extended state MLP architecture. The opposite seems to be true when considering 
the generalization performance. It is found that the generalization performance of 
the extended output MLP networks is not as good as for extended state MLP net­
works. The reason for this behaviour may be explained by the fact that an extended 
output MLP network with 8 hidden layer neurons and 10 state neurons features 85 
network weights less than an extended state MLP network with the same number 
of state neurons.
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7.5.4 C om parin g  ex ten d ed  R M L P  w ith  standard  R M L P  netw orks

There is an important difference between the two extended models. For the ex­
tended state MLP case, there are interconnecting links between neurons in the state 
layer whereas for the extended output MLP case, the links are between neurons in 
the hidden layer. By adding these links, we effectively are introducing additional 
layers of hidden neurons which are not fully connected, and hence, the extended 
state MLP architecture can be seen as an architecture located between the standard 
state MLP architecture and a standard output MLP architecture.

Since the introduction of links between neurons in x  effectively introduces different 
layers of neurons, it becomes clear that learning rules which rely on the magnitude of 
the gradient require substantially more training iterations than the network models 
without those extensions. Since layer x  renders state MLP networks to be universal 
approximators, it becomes evident that the incorporation o f additional hidden layers 
does not contribute to further improvements of the network performance. The 
opposite can be true as some training algorithms require more time to adjust the 
network weights. From this point o f view, a state MLP network architecture is 
sufficiently suited for the encoding of graph structured information. Using extended 
models or the output MLP model does not add significantly to the performance of 
the network. This finding is confirmed later in this thesis when the various models 
are applied to a real world learning problem, see Chapter 8.

While this appears to be a negative result on the extended output MLP architecture, 
this at least satisfies our curiosity, in that we can conclude, based on experiments 
carried in this chapter, the extended output MLP architecture is not beneficial to 
consider.

7.6 Experiments with Reduced R C C

We repeat the experiments conducted on RCC in Section 7.3 on the reduced RCC 
model. This procedure allows us to directly compare the behaviour of the two RCC 
models in Section 7.6.1. A comparison between the reduced RCC model and the 
MLP model is given in Section 7.6.2. As a consequence, we utilize the extended 
policemen benchmark, dataset-3 and utilize the RProp updating rule for training 
this type of architectures. As before, we use 15 pool candidate units. Figure 7.11 
shows the network performance as obtained after the i-th hidden neuron was added.

It is found that a reduced RCC network requires at least 9 hidden nodes to classify 
the patterns provided by the dataset-3 well. The addition o f more than 9 hidden 
neurons does not help to significantly improve the performance. Instead, it appears 
that the generalization performance weakens with larger number o f hidden neurons. 
But this effect is weak in that the degradation of the generalization accuracy is 
slight. Training was interrupted after the 25-th hidden neuron was added because 
training times exceeded reasonable levels (24 days clock time).

The classification performance is investigated further as shown in Table 7.12. In 
Table 7.12 the confusion matrices are shown. It is observed that all but class a are 
classified well. Nearly 20% of the patterns in class a are confused as class b. From the 
description of dataset-3 in Appendix A we know that the classes a and b are linearly 
separable, and that both classes are represented well by training samples. Hence, 
this is unlikely the cause o f the observed problem. The two classes are differentiated 
by information provided with the data label o f one of the leaf nodes. Hence, vital 
information leading to a successful classification o f these patterns is located deep 
inside the structure. Given the recursive behaviour of the RCC algorithm, it appears
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Figure 7.11: Training a reduced RCC on the benchmark problem: dataset-3. The 
number of hidden neurons is plotted against the network performance.

that the algorithm suffers from a long term dependency problem in that information 
provided by nodes deep inside a graph structure is inaccurately propagated forward 
to the root of the graph. Alternatively, this can be seen as that the error signal 
obtained at the root of a graph is inaccurately propagated back to deep nodes inside 
the structure.
Such issues of long term dependency can be overcome to some extent in the MLP 
type of architectures using the RProp learning mechanism. However, in the case 
of CC type of architectures, there does not appear to be any discussions on RProp 
type learning mechanisms. This can be a topic for future challenge in research in 
this area.
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Figure 7.12: Confusion matrix as obtained from a reduced RCC with 10 hidden 
neurons. The left figure refers to the training set, the right figure to the test set.

The second experiment considers the effect of having a reduced training set available. 
This experiment is interesting since it was found in the past that different network 
models have different demands on the number of training data. The result of such 
an experiment is given in Figure 7.13. The network considered for this experiment 
featured 10 hidden nodes. This was done so as to allow a direct comparison with 
other models later in this chapter.
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Figure 7.13: Network performance of a RCC featuring 10 hidden nodes plotted 
against the number of training patterns.

There are two interesting findings associated with Figure 7.13.

• It is demonstrated that the reduced RCC algorithm requires at least 50% 
of the data in the training set in order to generalize well. This is the same 
as observed in the RCC situation.

• The general network performance increases with a training set larger than 
1875 training patterns (50% of the training set). Moreover, it is observed 
that the classification performance on the training set increases when the 
number of graphs in the training set becomes smaller than 1875 patterns. 
Eventually, when the training set is very small, the classification level 
reaches 100%. This observation is easily explained. By reducing the size 
of the training set beyond a certain point, the complexity o f the learning 
problem is also reduced. However, the number of training patterns do not 
sufficiently represent the learning problem at hand so that the generaliza­
tion performance is poor.

7.6.1 C om paring redu ced  R C C  w ith  R C C

The sole difference between a RCC architecture and a reduced RCC architecture is 
the l /2n(n  — 1) connections between neurons in the hidden layer. It is interesting 
to compare the two models since it allows us to determine the influence of these 
connections on the behaviour and performance of the network.

In practical terms, the removal of the 1 /2n(n — 1) connections has only a small 
impact on the complexity of the training algorithm. Since the complexity for RCC 
is found to be:

0 (N n 2c2P)  (7.64)

where P  is the size of the pool of candidate units, N  is the number of nodes in the 
training set, n is the number of hidden neurons, and c is the maximum out-degree 
of the data in the training set. Hence, the influence of the l /2 n (n  -  1) additional
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connections in RCC to the complexity is negligible. This was confirmed by the 
observation that while conducting the experiments, training of the two network 
models took a similar amount of time.

The performance of the two models is considerable. An RCC (reduced RCC) fea­
turing 10 hidden neurons classifies 97.7% (96.1%) of the training data correctly, and 
96.5% (95.2%) of the test data are correctly classified. With this observation, both 
models have demonstrated to be successful in encoding graph structured informa­
tion and they are both able to generalize well over the domain. A reduced-RCC 
performs slightly weaker than an RCC model which features the connections be­
tween neurons in the hidden layer. This is an expected result since a reduced RCC 
network model features less parameters which can be used for a given learning task. 
However, the impact is negligible.

Both architectures have the same demand on the quality of the training set. The 
performance can be poor if an insufficient number of training patterns is supplied. 
This generates a condition on the training set which needs to cover most of the 
problem space in order that it can generalize well. It was shown, that both models 
require a relatively high number of training samples in order to generalize well.

Thus far, the connections between hidden layer neurons have not demonstrated 
any significant impact on the network performance. The difference between the two 
models becomes visible when considering more than the minimum number of 9 or 10 
hidden layer neurons. It appears that the adding of neurons beyond the lower limit 
helps to classify patterns which were more difficult to classify than others. Both 
models performed on a very similar level when the number of hidden neurons was 
10. However, when doubling the number of hidden neurons we find that RCC is able 
to classify all but 2 patterns correctly whereas a reduced RCC is still misclassifying 
110 patterns. Even the best observed performance of reduced RCC did not come 
closer to the performance of an RCC. Hence, it can be stated that the connections 
between hidden layer neurons help to classify difficult cases.
This is an interesting result, in that it ascertains the importance of the connections 
among the hidden layer neurons in the CC type of models.
In the following section, a comparison of the reduced RCC model is made with the 
state RMLP model.

7.6.2 Comparing reduced RCC with RMLP models

This section compares the reduced RCC model with the state MLP model. This 
is a valid comparison because the two architectures are very similar. The only 
difference is that RCC does not fully connect hidden layer neurons (matrix A) with 
the states from the children nodes. The matrix A in a RMLP architecture has cn2 
parameters whereas the same matrix in RCC features |cn(n + 1) parameters. Thus, 
the difference is an additional c n ( ^ )  parameters in an RMLP network.
When conducting experiments of these two architectures we found that training 
took considerable longer for the RCC model. We found that while the computa­
tional complexity of the standard Cascade Correlation model is lower compared to 
standard MLP networks, it is the opposite case for the recursive models. It has 
been found, that the state MLP tree model training algorithm has a computational 
complexity:

0(Nn2c) (7.65)
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where N  is the total number of nodes in all graphs from the training set, n is the 
number of state neurons, and c the out-degree. In comparison, the computational 
complexity for recursive CC is:

0 (N n 2c2P) (7.66)

where P  is the size of the pool of candidate units. This difference can be dramatic 
especially when the out-degree of the training patterns is large. In the case of 
the benchmark problem: dataset-3 which featured an out-degree of 6, and since 

• we utilized a pool of candidates of 15, training took about 540 times longer as 
compared to training a state MLP network. This is a clear disadvantage of the RCC 
algorithm. However, RCC has a greater potential o f parallelizing the algorithm so 
that the algorithm can run on multi-processor computer systems. For example, it 
is possible to simultaneously train candidate units on P  processing units.

In practice, both models, the reduced RCC and the state MLP model produced 
very good results on the given benchmark problem. A reduced RCC (state MLP) 
network featuring 10 hidden layer neurons classified 96.1% (96.7%) graphs from 
the training set correctly, and 95.2% (96.3%) test patterns are classified correctly. 
The following behaviour was observed very often: the two models performed on the 
training set on a near equal level, while the state MLP network often demonstrated a 
slightly better generalization performance. This may be attributed to the additional 
cn f22̂ )  parameters in an RMLP network.

More significant is the difference in the demand on the training data. It was demon­
strated that a (reduced) RCC network requires a good portion of the data provided 
by dataset-3 in order to perform well. This is in contrast to findings with a state 
MLP network which demonstrated a good performance with just 10% of data from 
dataset-3. Again, the RMLP model seems to have a better generalization abilities 
than the RCC model. We surmise that this is due to the training algorithms applied 
to the RCC model. In the RCC model, only the best candidate unit is chosen and 
added to the network. The weights to this unit are then frozen. Hence, during 
the early stages of the training process, hidden units that focus strongest on the 
data provided are added which can lead to overfitting. This effect can be reduced 
by presenting a sufficiently large set of training data. In comparison, there are no 
fixed weights in an RMLP network model. Hence, during training, there is a higher 
degree of interaction between the neurons in the network which renders the problem 
of overfitting less likely to occur.

On the other hand, RCC has shown its ability to classify patterns well even if 
some classes are represented by only a few samples. This is in contrast with the 
observations made on a state MLP network which clearly demonstrated problems 
with classes that were not represented well. In these cases, a state MLP network 
required considerably more training iterations in order to properly encode the data 
that are not available frequently. In practice, such a problem is easily overcome by 
simply repeating the presentation of patterns belonging to classes for which only 
few samples exist more often.

The greatest advantage of the RCC algorithm over the RMLP architectures is that 
it dynamically adds hidden layer neurons as needed. With RMLP type o f networks, 
the number of hidden layer neurons required for a given learning task can only be 
obtained through a trial and error process. This can be a time consuming task 
and requires the expertise of a specialist. The complexity o f the RCC algorithm 
has a serious impact on training times for training tasks particularly where graphs 
feature a large out-degree. It becomes quickly infeasible to employ this type of
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architecture if the out-degree is large. An advantage can be gained by combining the 
two algorithms: it is observed that the performance curve asymptotically approaches 
a maximum as hidden neurons are added to an RCC network architecture. It 
should be possible through a curve fitting process to predict the minimum number of 
hidden neurons required after the first few hidden neurons are added. This predicted 
number could then be used for the creation of an RMLP network. Such a system 
could work autonomous and feature training times that are located somewhere 
between those required for an RCC and a state RMLP network.

A summary and analysis of experimental findings made in this chapter is given by 
the following section.

7.6.3 Comparison Analysis

It has been shown in Section 6.2.2 and Section 7 respectively that state MLP tree 
architectures and recursive cascade correlation networks are of similar architecture. 
Also, experimental results have shown that both approaches produce comparable 
results. Nevertheless, these models differ in some important points which are sum­
marized in the following table:

_______________ RMLP________
• Is an universal approximator [43, 46].
• Network dimension is static.
• Lower computational complexity.
• Fewer training iterations required.

• Might get caught in local minimum.

• Good generalization performance.

________________ RCC___________
• Not an universal approximator [32].
• Detection of network dimension.
• Training a single unit for each step.
• Output layer is re-trained after each 
added hidden layer neuron.
• Better stability when using a pool of 
candidates.
• Overfitting can occur more easily.

The fundamental difference between state MLP architectures and recursive Cascade 
Correlation models is that in Cascade Correlation the number of hidden layer neu­
rons required for a given learning problem is determined automatically. In contrast, 
for state MLP networks the number of hidden nodes needs to be chosen before 
network training is conducted. This is often a difficult task especially if there is no 
information about the complexity of the learning task given. When choosing too 
few hidden layer neurons, the state MLP network will be unable to solve a given 
problem satisfactorily. Selecting too many hidden layer neurons will result in long 
training times and increases the risk that overfitting may occur. Thus, the abil­
ity of CC to determine the number of hidden layer neurons required for any given 
learning task is a significant advantage. Generally, RCC may find a very efficient 
solution without any prior knowledge on the problem. As a result, RCC is a useful 
instrument to make the first approach to a new problem and to have an idea about 
the number of hidden units required for the problem under analysis.
Furthermore, it has been shown in [43, 46] that recursive MLP networks are univer­
sal approximators and that Recursive CC is not a universal approximator [32]7. It 
must be noted that this limitation holds when representing certain cycles in some 
finite-state automata (where it must recognize arbitrarily long input sequences) 8.

7In [32] Recurrent Cascade Correlation were shown not to be universal approximators 
for certain types of sequences. This is similar to classic CC networks which are not universal 
approximators also shown in [32].

8^  this case the number of added hidden units grows linearly with the longest string
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For most of the practical tasks used in data structures processing, these limitations 
do not hold since there are only finite structures.
A further observation is, that recursive MLP networks do not always converge. 
This is especially the case when the number of hidden nodes is too small for a given 
learning problem. In comparison, RCC utilizes a pool of candidates. In doing so, 
the risk of falling into a local minima is reduced. Our experiments have shown that 
if the pool is chosen sufficiently large, RCC always converges to a solution, and is 
likely to converge with the smallest number of hidden layer neurons required for the 
given learning task.
While the computational complexity of standard Cascade Correlation is lower com­
pared to the standard MLP networks, it is the opposite case for recursive models. It 
is found that the RCC models have a computational complexity which depends on 
the size of the pool of candidate units, and the squared maximum out-degree (Eq. 
7.66) while the RMLP type of architectures has a computational complexity which 
depends on the maximum out-degree (Eq. 7.65). This difference can be significant 
especially when the out-degree of the training patterns is large and when the pool 
of candidate units is large.

Experimental results have also shown that RMLP networks are often better in 
generalizing the given training data. We concluded that this is a side effect o f the 
fact that for the same number of hidden layer units a RMLP network has cn (2Ij^ )  
more parameters than RCC.

7.7 Conclusions

When conducting these experiments, the finding was that RCC may be a useful 
tool for predicting the minimum number of hidden layer units required for a state 
RMLP network. RMLP models have demonstrated that by using a number slightly 
larger than the minimum number of hidden neurons the generalization performance 
is improved as well as the network becomes more stable in that it converges to low 
error levels. However, the problem is the computational complexity associated with 
RCC’s training algorithm. In cases where the data set features a large out-degree, 
and no device is available for a parallel execution of the RCC algorithm, training 
times can quickly exceed reasonable levels. This is in contrast with the classic CC 
which had been found to be o f a lower computational complexity than the MLP 
models. Similarly, CC network architectures feature more network parameters than 
MLP networks whereas the opposite is true if the models are extended to the domain 
of graphs. An RCC network features less parameters whenever the out-degree of 
the data is equal to 1 or greater.

Furthermore, the experiments in this chapter confirm the fact that RCC is not a 
universal approximator, but this does not have a significant negative effect on real 
world problems. It has been demonstrated that a less powerful model such as RCC 
is able to obtain efficient results in specific applications.

It is interesting to note that the cascade correlation algorithm allows to construc­
tively build a MLP from scratch” . In other words, one does not need to know 
the size of the hidden layer at all. One only needs to use the cascade correlation 
algorithm and it will automatically find an equivalent MLP architecture. This ob­
servation is an important one, in that so far, everyone takes it for granted that it 
is not possible to infer automatically a MLP structure. One either finds a cascade 
correlation architecture which is not exactly the same as a MLP architecture, or a

length of the training set examples.
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MLP architecture which one does not know how many hidden layer neuron to use. 
The observation made here makes this clear. One can use the cascade correlation 
training algorithm, and one can obtain the MLP architecture, without knowing the 
number of hidden layer neurons a priori.

By the very fact that it is possible to obtain a MLP architecture using a cascade 
correlation algorithm, it is observed that the reduced cascade correlation architec­
ture is a universal approximator. This again is an interesting observation. Whether 
the recursive cascade correlation architecture is a universal approximator or not has 
not been discussed in the literature. However, from the observations made here, it 
is readily recognised that the reduced cascade correlation neural network may be 
a universal approximator as they appear to have the same type of generalization 
capability as the recursive MLP architectures. Thus, by inference, the recursive 
cascade correlation neural network architecture may be a universal approximator 
even though we cannot prove it yet. This may be one reason why it has been suc­
cessful in practical applications. This, again, is in contrast with the non-recursive 
model where it was found that the cascade correlation model is not an universal 
approximator.

It is also interesting to note that it is not possible to use the cascade correlation 
algorithm to obtain the classic MLP architecture, at least not in its present form 
without modifications. Basically, in the classic MLP architecture, there is no direct 
feed through from the input to the output, i.e., matrix D  =  0. As observed previ­
ously, the availability of the error from the immediate preceding step is crucial in 
the training of the hidden layer neurons. Without this, we cannot formulate the 
correlation measure. Secondly it appears that the influence of the input directly on 
the output is crucial to the cascade correlation training algorithm.

Fortunately, there is some theoretical justification in this formulation, i.e., with a 
direct feed through from the input to the output. It was shown [77] that the MLP 
architecture which includes a direct feed through from the input to the output 
performs better than the one without this direct feed through. Hence, one can 
safely make use of the extended MLP architecture.
The extended MLP architecture is also an interesting one, in that it is half way 
between a fully recurrent neural network in the sense of Pineda [66], and the classic 
MLP. This architecture was not reported before, at least not in the form discussed 
here. This could open up some interesting questions.
This also raises an interesting question: What are the functions of these links as 
represented by the matrix A? FVom a universal approximator point of view, these 
links are superfluous, i.e., they are not required to ensure a universal approximator 
property. But, their presence may facilitate easier learning, as they allow a more 
nonlinear mapping between the input and output, without creating an additional 
layer, as common in practical application of MLP. In other words, traditionally, the 
procedures of using MLP are as follows: postulate a fixed number of hidden layer 
neurons. Train the MLP architecture accordingly. If the results are inadequate, 
then select another number of hidden layer neurons, and try again. If after trying 
a number of times using different values for the number of hidden layer neurons, 
and still not succeeding to find an adequate MLP architecture, then one would use 
a two layer MLP architecture in an attempt to find a better input-output mapping. 
The idea of using a lower triangular matrix A with zero diagonal elements has not 
been suggested before. Hence, this may be the next architecture which one may 
attempt without having to use a two hidden layer MLP architecture.
Despite of the introduction of extended architectures to the case of tree recursive
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models rendering RCC and RMLP architectures more similar, we did not discuss 
modifications which produce identical architectures. Future research may consider 
a modified extended state MLP architecture, where the matrix A  is modified so as 
not to fully connect all the hidden layer neurons with all hidden layer neurons from 
the children in the way it is found in RCC. In other words, all elements to the right 
of the diagonal of matrix A  are zero. This would produce a state RMLP which is 
identical to an RCC network architecture. It would be interesting to compare this 
model with RCC on the benchmark problem. This is presented as a challenge for 
future research in this area.
Both, RMLP and RCC are updated by gradient based mechanism. The problem 
with this approach is that the gradient becomes smaller the further we proceed into 
the network structure. It is well known that MLP network architectures featuring 
many hidden layers suffer from a long term dependency problem because many 
updating rules depend on the magnitude of the gradient.

In the case of graph recursive models, the problem appears due to the application of 
a graph recursive algorithm. Every node in the graph is encoded by the same MLP 
neural network so that recursive MLP networks of this type can be seen as MLP 
networks with as many hidden layers as the deepest node in a graph where each 
hidden layer shares the same parameters. This has been addressed by [33] where 
RMLP networks are called folding architectures demonstrating that recursive MLP 
networks can suffer from a long term dependency problem if graphs are deep in 
structure. The problem can be eased through the application of RProp updating. 
However, preliminary experiments indicate that even with RProp updating, that a 
graph depth of more than 12 leads to networks which do not converge or require 
an extraordinary large number of training iterations in a high precision computing 
environment.

It was demonstrated that (reduced) RCC performs at similar levels as (extended) 
state MLP models despite the fact that it features fewer parameters and has been 
considered as not being a universal approximator. That this is not always the case 
is found in the following section where various recursive neural network models 
are applied to a difficult real world classification task, viz., the logo recognition 
problem.



Chapter 8

Application to a real world 
problem

8.1 Introduction

Until now, the models introduced and described in this thesis have been applied 
to artificial learning problems only. This was done to allow an evaluation and 
comparison in a well controlled manner. This chapter applies the various proposed 
models in this thesis to a real world learning problem, viz. the logo recognition 
problem. One of the main aims of doing this is to demonstrate that the models 
behave in a similar fashion for the real world problems when compared with the 
artificial learning problems. In addition, it will be shown that the new models can 
also perform well when applied to a real world problem.
The logo recognition problem is a problem from the area of image recognition. The 
task is to recognize and classify company logos [28]. A dataset consisting of 39 
different classes of logos were available in the form of digital images 1. There are 
300 different samples available for each of the 39 classes, producing a total set of 
11700 images. A graph representation was extracted from each of the images by 
following the procedures described in Appendix B. The result is a training set 
consisting of 5850 graphs featuring a total of 55547 nodes, and a validation data set 
with 5850 graphs featuring 55654 nodes in total. The problem and the dataset are 
described in greater detail in Appendix B.
This chapter does not intent to give an exhaustive evaluation of the performance 
of the proposed models in this thesis. Instead, only final results obtained from a 
typical training session are presented. Typical results were obtained by removing 
the best and the worst configurations in the experiments.
The structure of this chapter is as follows: the application of the logo recognition 
problem to SOM based architectures is addressed in Section 8.2. The application 
of RMLP based architectures to this classification task is given in Section 8.3, and 
RCC based architectures are applied in Section 8.4. A summary of the findings and 
some conclusions are given in Section 8.5.

iThe logo dataset was provided by the Document Processing Group, Center for Au­
tomation Research, University of Maryland.
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8.2 Application of SO M -SD  method to the logo recognition 
problem

A selection of Self Organising Maps were trained on the Logo recognition problem. 
The size of this data set did not permit the execution of an exhausting set o f exper­
iments within a reasonable amount of time. As a consequence, experience gained 
from experiments on the benchmark problems was used to determine a suitable set 
of training parameters.

All maps addressed in this section feature 156 x 119 =  18564 neurons, which makes 
the number of neurons approximately 1/3 of the total number of nodes in the 
training set. The neurons were connected by a hexagonal neighbourhood and were 
trained for 350 iterations with an initial neighbourhood radius of 40, and an initial 
learning rate of 0.08. The best values for the (/¿i, p 2) pair as suggested by Equation
4.5 were p\ =  1531/12- However, from experimental findings made in Section 4.4.3 
and Section 5.4.1 it is known that an increase of value for /i2 by two magnitudes 
has beneficial effects on the network performance. Hence, for the experiments on 
this logo recognition task, we choose p\ =  15/i2.

First, the SOM-SD networks are trained in an unsupervised fashion. This is ad­
dressed in Section 8.2.1. Section 8.2.2 presents findings from SOM-SD networks 
trained in a supervised fashion.

8 .2.1 Unsupervised SOM-SD

This section gives the results obtained when training a SOM-SD network in an 
unsupervised fashion on the logo data set. The training parameters were as specified 
above. The result obtained is given in the confusion matrix presented in Table 8.1. 
It is found that the overall performance of the network reaches 88.44% correct 
classification on the training set and 77.3% on the test test. Note that training was 
performed without any class information. The statistics shown in Table 8.1 utilized 
class relationships of the input data after the completion of the training session and 
are used to provide a better insight into the quality of the results obtained. This 
class information is not used elsewhere in the training nor in the validation process.

From the confusion matrices in Table 8.1 it is found that most patterns are clas­
sified correctly and that the generalization performance for each individual class is 
within acceptable limits. The generalization performance is about 11% below the 
level achieved by the training data set. Common causes for a reduced generalization 
performance include: overtraining, a network chosen too small, a training set which 
does not resemble a sufficient coverage of instances o f the learning problem at hand. 
The answer to what might have influenced the generalization performance in this 
experiment will be given in Section 8.5 after observations were made on other ar­
chitectures. Nevertheless, it is demonstrated that a SOM-SD network when trained 
unsupervised with a preselected set of learning parameters produces reasonable re­
sults on this dataset.

Next, this result is compared to a SOM-SD network which is trained in a supervised 
manner on the same dataset using the same set o f parameters.

8 .2.2 Supervised SOM-SD
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This section gives results obtained when training the SOM-SD network in Section 
f  • “ a .sl P̂erv*se^ manner. Again, we use the same set o f initial parameters 
tor the training session. In Chapter 5 it was found that the supervised SOM-SD
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Table 8.1: Performance comparison between the training and the testing data set 
for the logo recognition problem. The confusion matrix is visualised as a gray coded 
matrix. Class labels are shown to the left and below the matrix, individual and the 
total performance rating is shown to the bottom right of a matrix. The left hand 
side matrix reflects results obtained from the training data set, while the right hand 
side matrix shows the results obtained from the testing data set.

is robust with respect to the choice of the rejection rate e but that small positive 
values can lead to marginally better results. As a result, the rejection rate for this 
experiments is chosen to be e =  0.1. The results of the training session after 350 
training iterations are shown in Table 8.2.
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96 .1%
89.1%
93.6%

89.8%
94.5%

9 5 .2%
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Table 8.2: Confusion matrix obtained from a supervised SOM-SD network on the 
logo recognition problem. The confusion matrix to the left reflects the result ob­
tained on the training data set, while the confusion matrix to the right is obtained 
from the testing data set.

It is found that the incorporation of a teacher signal to the learning process led to a 
significant improvement of the network performance. When comparing these results 
with the unsupervised trained SOM-SD network it is found that the performance 
on the training data set has improved by 6.1% to 94.5%, and improved by 5.8% to 
83.1% on the test set. Thus, the incorporation of a supervisor signal to the learning 
process has resulted in a significant performance improvement on the training data 
set. However, the generalization performance on the testing data set is still about 
10% behind the classification performance of the training data set; an observation
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which has also been made with the unsupervised trained SOM-SD. This can be seen 
as an indication that the training data set does not sufficiently cover the learning 
problem at hand.
Next, the logo recognition learning problem is applied to various recursive MLP 
models.

8.3 Application of the R M L P  architectures to the logo 
recognition problem

This section applies RMLP networks to the logo recognition problem. Results from 
four different RMLP architectures: the output MLP model, the state MLP model, 
the extended output MLP model, and the extended state MLP model architectures 
are addressed individually and their performances are compared with each other. 
Since all RMLP architectures addressed in this section are trained in a supervised 
manner, a comparison can be made with the findings from training a supervised 
SOM-SD network. In addition, the extended state MLP architecture is identical to 
the RCC architecture so that a comparison between these two models can be made. 
Results obtained from the RCC model are addressed later in this chapter.

The finding of appropriate learning parameters and network sizes is somewhat more 
difficult as compared to the SOM-SD architectures. The reason for this is that 
SOM-SD behave rather robust within a range of reasonable parameters so that an 
appropriate choice for the learning parameters is found easily. While the initial 
network weights and the initial learning rate for RMLP based networks contribute 
little to the final network performance due to the use of the RPROP updating rule 
and adaptive learning rates, the appropriate size o f the network has to be found 
through trial and error.

All networks addressed in this section have been trained for 1600 iterations using 
the RPROP weight updating rule and adaptive learning rates with r}(0) =  0.04. The 
input and output dimensions are controlled by the given data set. All networks fea­
ture 12 input nodes and 6 output neurons since the dataset features 12-dimensional 
data labels and 36 classes which are encoded by 6 binary values. The maximum 
out-degree of this dataset is 7. The number of hidden and state neurons have been 
varied until a good network performance was achieved but were kept as small as 
possible to keep training times minimal.

8.3.1 Standard RMLP architectures

Two architectures based on the standard RMLP architecture are applied to the logo 
recognition learning problem, and experimental findings are given. First, an inves­
tigation of the state MLP networks is considered. The findings are then compared 
with those obtained by the output MLP networks.

State MLP models

The difficulty with RMLP based networks is that an appropriate number of network 
parameters which is controlled through the number of state neurons in the network 
has to be found. Since there is no general rule that may lead to an appropriate 
choice of the number of state neurons for a given learning task, a trial and error 
approach has to be applied. For the logo recognition problem, we trained the state 
MLP networks featuring a number of state neurons in layer x  varying between 7 
to 60. It was found that choosing 22 state neurons produced networks with the

Application to a real world problem
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best performance/time ratio. Results obtained when training a state MLP model 
featuring 22 state neurons with the above mentioned training parameters are given 
by the confusion matrix in Table 8.3.
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90.3%

75.5%
83.3%
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Table 8.3: Confusion matrix obtained when training a state MLP network featuring 
22 state neurons for 1600 iterations using the RPROP learning rule. The matrix 
to the left gives the results obtained from the training set, while the matrix to the 
right is the results obtained when validating the network with the test set.

From Table 8.3 we find that the state MLP network classified 93.2% of the logos 
in the training set correctly and exhibited a generalization performance of about 
10% below that figure. Furthermore, Table 8.3 appears to illustrate a significant 
misclassification occurring to patterns belonging to class I which were misclassified 
as class 2 patterns in 33% of the cases. However, this is not a particular problem 
with this network architecture nor a problem with the dataset. Locally significant 
misclassifications were not always observed, and this seemed to occur sporadicly 
on random locations. Typically the occurrence of misclassified patterns were dis­
tributed equally.
An interesting comparison of these findings can be made with the performance of 
an output MLP network because those resemble a state MLP network with an 
additional hidden layer. This will be considered later in this chapter.

O utput M L P  architectures

The output MLP architecture features recursive state neurons in layer y as opposed 
to the state MLP case where layer y serves as the output layer. As a result, output 
MLP based architectures feature state neurons in layer y, and neurons in layer x 
are called hidden layer neurons. The difficulty with output MLP networks is that 
the finding of an appropriate number of network weights is even more difficult than 
that of the case of state MLP networks. This is because there is an additional 
layer of neurons whose dimensionality is flexible. In order to reduce the complexity 
of finding an optimal number for the dimension of x and y, we use the findings 
obtained from state MLP networks which stated that 22 state neurons is a good 
choice. Hence, we restricted our experiments to the finding of a good number of 
hidden layer neurons and found that the best performance/time ratio is obtained 
when using 20 hidden layer neurons. Other training parameters remained the same 
as stated earlier for the state MLP architecture case. The performance of this 
output MLP network is given in Table 8.4.
It is found that an output MLP network featuring 20 hidden layer neurons and
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Table 8.4: Confusion matrices obtained when training an output MLP network 
featuring 20 hidden layer neurons and 22 state neurons. The confusion matrix 
obtained from the training set is shown on the left, and that obtained from the test 
set is shown on the right.

22 state neurons significantly outperforms a state MLP network. A performance 
boost of 5%  over state MLP network performances is observed. This is a very 
interesting finding because an output MLP network of this size is featuring 3924 
network weights which is only 140 weights more than the state MLP network which 
features 22 neurons in the recursive state layer. Hence, this performance boost 
cannot be attributed to the increase on network parameters. It indeed demonstrates 
that sufficiently complex learning tasks will benefit from an additional hidden layer. 
However, the generalization performance is still about 10% worse than the training 
performance.

The inclusion of a hidden layer to the network architecture produces networks with 
an improved performance in particular if the given learning task is complex. Hence, 
it will be interesting to compare these findings with results obtained from extended 
RMLP models because the extension is effectively introducing hidden layer neurons 
of various depths.

8.3.2 E xtended R M L P  architectures

In standard RMLP architectures, there are no connections between neurons in layer 
x. However, from the analysis of a RCC architecture, we find that it may be 
beneficial to have those neurons partially connected. As a result o f this observation, 
RMLP architectures are extended by featuring interconnections between neurons 
in x so that every neuron X{ E x  has an additional incoming link from all its 
predecessors neurons x q , . . . , X i-\ . The effect of such an extension is that neurons 
in x are moved deeper into the structure of the network architecture, and hence, 
produces hidden layer neurons at various levels. Then, neuron x 0 is located deepest 
and has the distance n, where n  is the dimension of vector x, to the network output 
layer.

From the finding in the preceding section, we find that the introduction of a hidden 
layer to the network architecture can result in a significant boost in the network 
performance, it will be most interesting to investigate whether the extended models 
will also exhibit this phenomenon.
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Extended state M LP architectures
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In order to allow a fair comparison of an extended state MLP network with a 
standard RMLP network, we use a network featuring the same number of state 
neurons as used in the previous experiments, and trained it with the same set of 
initial parameters. Hence, the results shown in Table 8.5 refer to an extended state 
MLP network featuring 22 state neurons and this architecture was trained for 1600 
iterations using the RPROP learning rule.
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Table 8.5: Confusion matrices obtained from the training and testing of an extended 
state MLP architecture featuring 22 state layer neurons. The confusion matrix on 
the left is obtained from the training set. The confusion matrix on the right is 
obtained from the test set.

It is found that the incorporation of the additional 190 forward links between neu­
rons in the state layer has resulted in a slight improvement of the network perfor­
mance whereas the ability to generalize has not improved significantly. This result 
reflects two properties:

• The network can perform better through the introduction of hidden layer 
neurons.

• Neurons located deep in a network structure do little or not contribute to 
the network performance. This is mainly due to the gradient based learning 
method which has problems updating weights which are located far away 
from the output layer.

Hence, it can be expected that the inclusion of links between neurons in x  to an 
output MLP architecture will not help to improve its performance significantly.

E xtended O utput M LP architectures

The experiment with an output MLP network addressed earlier in this chapter has 
been repeated on the output MLP model where neurons in the hidden layer x are 
partially interconnected. The results of this experiment is given in Table 8.6
The confusion matrix gives a slight performance improvement over the training re­
sult obtained from the standard output MLP architecture. However, it also exhibits 
a slight decrease of the corresponding generalization performance. The difference of 
performance between the two models is very small. Furthermore, time constraints 
did not allow us to conduct a more comprehensive set of experiments to confirm a 
practical difference between the two models. However, it can be assumed that the



146

\
\

0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b e

: 8!
.0%

98 .8 %  
100.0 
100 
10 0 . 
97 .1 %  
10 0 .0% 
10 0 .0% 
98 .0 %  
99 .4 %  
97 .4 %

99 .4 %
97 .4 %
96 .4 %
99 .4 %
1 0 0 .0%
95 .8 %
100 .0%
10 0 .0%
96 .9 %
97 .4 %
100 .0%
98 .0 %
99 .3 %
97 .4 %
97 .3%
10 0 .0%
99 .2%
98 .5 %
97 .6 %
100 .0%
98 .4 %
98 .5 %
95 .0 %
100 .0%
98 .5 %
98 .3 %

Application to a real world problem

Table 8.6: The confusion matrices obtained from an extended output MLP network 
featuring 20 hidden layer neurons and 22 state neurons. The matrix to the left gives 
the result obtained from the training data set, while the matrix to the right gives 
the results obtained from the test set.

inclusion of additional links between neurons in x  does not help to influence the 
performance of an output MLP network architecture significantly.

The similarity of the extended state MLP network architecture with the MLP net­
work architecture motivates us to compare the findings of this section with experi­
ments conducted on RCC based models.

8.4 Application of R C C  models to the logo recognition 
problem

The most significant advantage of the Recursive Cascade Correlation model is that 
hidden layer neurons are added by a dynamic process as needed. Findings from 
Chapter 7 suggest that the RCC model might be a useful tool for predicting the 
minimum number of hidden layer neurons required for an equivalent RMLP. The dis­
advantage of the RCC model is that the computational complexity grows quadrat- 
ically with the out-degree and the number of hidden layer neurons. This section 
applies the RCC algorithm to the logo recognition problem, where the dataset fea­
tures an out-degree of 7. In addition, the expected number of hidden layer neurons 
required for this learning problem is 22 because state MLP networks demonstrated 
a good performance with 22 hidden layer neurons. Experiments shown in this sec­
tion are restricted to the observation of the impact of the training computational 
complexity, and the observation of network performances for networks featuring a 
similar number of hidden layer neurons or a similar number of network parameters.

Networks considered for the experiments commonly featured a 12-dimensional input 
layer, a 6 dimensional output layer, a pool for candidate units o f size 12, and an 
initial learning rate of 0.8.

8'41  addresses some experimental findings obtained from the application 
ot HOC to the logo recognition problem. The reduced RCC model that does not 
feature connections between hidden layer neurons is addressed in Section 8.4.2.
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8.4.1 Standard RC C  architectures
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An RCC network was trained with a set of parameters stated previously and the 
results obtained after 22 hidden layer neurons were added is displayed in the form 
of confusion matrices in Table 8.7.
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Table 8.7: The confusion matrices obtained from an RCC network featuring 22 
hidden layer neurons. The matrix to the left gives the results obtained from the 
training data set, the matrix to the right gives the results obtained from the test 
set.

It is observed that the overall performance of the RCC architecture on the training 
data set is 73.3% whereas the performance on the test set is 63.6%. Hence, the 
RCC has shown a performance which is considerably worse than the performance 
achieved by an RMLP network. This result is somewhat surprising. However, it 
might be attributed to the fact that an RCC network model features less parameters 
as compared to a state MLP network architecture. For networks featuring 22 hidden 
layer neurons, a state MLP architecture features a total of 3784 network weights 
whereas the RCC architecture has only 2398 weights. This is a significant difference 
of number of weights and might well be the cause for the poor performance of the 
RCC architecture. From the observation that a state MLP network architecture has 
mn -4- pn  +  cn2 weights whereas the RCC architecture has m n  +  np +  |cn(n +  1) +  
i n (n _  i)  weights, we can conclude that a RCC architecture with 28 hidden layer 
neurons will feature almost the same number of weights as a state MLP model which 
has 22 hidden layer neurons. Unfortunately, we were unable to produce an RCC 
model with 28 hidden layer neurons due to intensive training time requirements 
by the RCC algorithm. We had to interrupt the training session after 3 weeks of 
continuous computation after which 27 hidden layer neurons were added. At this 
stage, the adding of the 28-th hidden layer neuron would have taken nearly a further 
4 days. However, we did not have the option of training for more than 3 weeks. 
Figure 8.1 gives a performance curve obtained when plotting the number of hidden 
layer neurons against the overall network performance.
From this curve it is possible to predict that the RCC architecture with 28 hidden 
neurons would have performed at about 85% on the training set and at about 73% 
on the test set. This performance would be slightly worse than the performance 
achieved with a state MLP model featuring 22 hidden neurons. Note that the ex­
periment with the RCC model could only be executed once due to excessive training 
time requirements. It can be assumed that by choosing a larger size for the pool 
of candidate units, and different initial network parameters, that the performance
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Figure 8.1: Training an RCC model with up to 27 hidden layer neurons on the logo 
recognition problem.

of the RCC model matches the performance of a state MLP model as long as the 
total number of network parameters is similar.

8.4.2 Reduced RCC architectures

The experiment described in Section 8.4.1 has been repeated on the reduced RCC 
model. The results using the visualisation of confusion matrices are shown in Table
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Table 8.8: The confusion matrices obtained from a reduced RCC network featuring 
22 hidden layer neurons. The matrix to the left gives the results obtained from the 
training data set, while the matrix on the right gives the results obtained from the 
test set.

The results obtained from a reduced RCC model featuring 22 hidden layer neurons 
are shown in Table 8.8. It is found that the performance is significantly worse 
compared to a state MLP architecture and also worse than those obtained for a RCC 
architecture. As before, this result can be attributed to the fact that a reduced RCC 
model features considerably less parameters than a state MLP model. A reduced 
RCC network architecture would have to feature 30 hidden layer neurons in order 
to have a similar number of network parameters as an equivalent state MLP model. 
The training of this architecture is computationally intensive. Unfortunately, the 
training session had to be interrupted after 3 weeks of computation. At this stage
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the network had 27 hidden layer neurons. It was predicted that the addition of a 
further 3 hidden layer neurons would have required another 12 days of computation. 
Again, we were not given the option of exceeding 3 weeks training time. Figure 8.2 
gives the performances obtained after the adding of the n-th hidden layer neuron.

Figure 8.2: Training a reduced RCC model on the logo problem.

It is observed that the performance curve starts to level beyond 25 hidden layer 
neurons. This is particularly the case for the curve which is associated with the 
test set. Hence, it can be predicted that a reduced RCC model with 30 hidden 
layer neurons would probably not be able to match the performance of a state 
MLP model. In particular, the generalization performance can be expected to be 
well below the generalization performance achieved with a state MLP model with 
similar number of network weights. This supports earlier findings given in Chapter 
7 which states that the generalization performance of an RCC model may not be 
as good as for RMLP based models.

8.5 Conclusions

The findings of this chapter are multifold and are as follows:

• All models addressed in this chapter produced reasonable results on this real 
world learning problem. This demonstrates that the models are a reliable 
and effective method for the encoding graph structured information.
Training times vary considerably with the neural network model under con­
sideration. This can be attributed to the computational complexity of the 
algorithms. The complexity of the SOM-SD (supervised and unsupervised) 
algorithm grows linearly with the number of neurons, the out-degree, and 
the number of training samples. However, SOM-SDs typically feature con­
siderably more neurons than other neural network models so that training 
a SOM-SD model can take considerable time as well. The RMLP train­
ing algorithm grows in complexity quadratically with the number of hidden 
layer neurons and has a linear dependency on other factors. In contrast the 
RCC algorithm grows quadratically with respect to the number of hidden 
layer neurons and the out-degree. A consequence of the different complexi­
ties is reflected by the following table which gives training times typically 
required for the logo recognition learning problem. 2

2Training times axe approximate times relative to a Pentium-lGHz type CPU.
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Algorithm Complexity Time required
SOM-SD O {N nc) 7 days
RMLP 0 (N n 2c) 2 days
RCC 0 (N n 2c2P ) > 20 days

where N  is the total number of nodes in the training set, c is the out-degree, 
n is the number of (hidden) neurons, and P  is the size o f the candidate pool 
for the RCC model. These complexities hold when execution is performed 
sequentially. All neural network models have in common that they can be 
implemented on a massively parallel environment so that execution can be 
performed in parallel. A parallel execution o f these algorithms would ideally 
reduce the complexity to linearly dependent on the network parameters.

• The number of network parameters can differ significantly between the state 
MLP model and the RCC model particularly when the number of hidden 
layer neurons grows. It was found that the network performance depends 
more strongly on the total number of network parameters than on the 
number of neurons in the hidden layer. Hence, an RCC network requires 
more hidden layer neurons in order to produce a similar performance. Since 
an RMLP network architecture features m ni +  pn\ 4- n\ network weights, 
and an RCC model has m n2+pn2 +  |cn2(n2+ l)-l-| n 2(n2 —1) weights, it can 
be estimated how many more hidden layer neurons that an RCC model will 
require in order that it will have approximately the same number of weights 
as an equivalent state MLP model. Alternatively, it can be estimated how 
many hidden neurons an RMLP network requires given an RCC model 
which dynamically obtained the number of hidden layer neurons.

• The data set used for the experiments featured the same number o f training 
samples for each class. Hence, we did not observe problems as with the 
benchmark learning task where patterns from poorly represented classes 
were not classified correctly.

• All models showed that the generalization performance is about 10% below 
the performance achieved by the training data set. This is a good indica­
tion of a training data set which does not fully cover the learning problem 
at hand. In other words, the test set features many patterns which are 
not represented by patterns in the training data set. This shows that a 
well chosen and well sized training data set where it is practicable 3 is a 
requirement for obtaining a good network performance. In practice, there 
are a number of ways to artificially increase the cardinality o f the training 
data set and improve the coverage of the training set. For example, in some 
practical situations, the quality o f the given training data set can be en­
hanced by adding intentionally distorted training patterns to the training 
set.

Note that in most practical problems, the size as well as the features are given. They 
cannot be chosen at will by the user. If the user can choose the number of training patterns 
as well as where they are located, this is called “active learning” in the literature.



Chapter 9

Conclusions

9.1 Introduction

The extensions of many popular neural network models into the domain of graph 
structures have produced some more general forms of neural network models. Each 
of the models addressed in this thesis is capable of encoding graph structured in­
formation as well as other common data structures e.g., sequences and fixed size 
input vectors. The thesis has demonstrated that the proposed models are able to 
efficiently encode graph structured data, and hence, make it possible to adaptively 
process the data contained in such domain of applications.

However, limitations do still exist. For example, currently, none of the proposed 
models is able to accept more general cases of graphs e.g., cyclic graphs and undi­
rected graphs. While there are methods for handling certain types of cyclic graphs 
[9], it is a very difficult task to handle cycles in graphs in general. A new set of 
neural network models needs to be introduced for this extended set of tasks. A mo­
tivation for this kind of research is likely to come from the area of statistics where 
models based on Markov models were applied successfully to cyclic and undirected 
graphs.
The outcome of research performed in this thesis can certainly be rated as very 
successful. We now have tools at hand which can efficiently process graph structured 
information in either a supervised or an unsupervised fashion. This opens the door 
for the application of neural network models to areas where the application was not 
possible previously. This is particularly true for the areas of molecular chemistry 
and software engineering. But many other areas also will benefit from these new 
models because it simplifies the task of feature extraction from the raw data.

The capabilities and the efficiency of the new models have been investigated quan­
titatively through a relatively large set of experiments. The experiments were exe­
cuted within a general framework by the utilization of a benchmark problem, viz., 
the extended policemen benchmark. Consequently, this allowed us to compare the 
new models with each other and to conclude advantages and disadvantages for each 
model. For example, the supervised SOM-SD model has demonstrated some flex­
ibility since it is capable of handling incomplete and missing target information. 
SOM-SD is one of a number of known graph recursive methods which supports un­
supervised training. However, the drawback of SOM-SD models is that it performs 
a mapping from a high dimensional input space to a low dimensional display map so
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that the performance levels are typically below those achieved through RMLP and 
RCC based models. Both, RMLP and RCC models support an arbitrary number 
of hidden and state layer neurons and are more flexible to the choice o f the output 
dimension. However, RMLP and RCC based architectures can only be trained in a 
supervised fashion at present.

The structure of this chapter is as follows: Section 9.2, we will give a brief summary 
of the major findings of this thesis. Section 9.3, we will give a brief description 
of some of the problems and issues emerged from the investigations in this thesis. 
Section 9.4, we will give an indication of some o f the open questions associated with 
this research area. Both the issues indicated in Section 9.3 and Section 9.4 present 
challenges for future research.

9.2 A  b r ie f summary o f the m ajor findings o f  this thesis

This thesis discussed the properties, performance and behaviour of eight different 
recursive neural network models for processing structured information. By doing 
so, we found that each of the models featured advantages as well as disadvantages. 
These are summarized as follows:

Model Advantages Disadvantages
SOM-SD • The complexity o f the algo­

rithm is linear.
• Able to learn from unclassified 
data.
• Able to encode graphs, data se­
quences, and fixed sized vectors.
• Good generalization abilities.
• Able to process deep graph 
structures.

• Large number of neurons re­
quired typically.
• Unable to utilize class informa­
tion if it exists.
• Unable to encode certain cyclic 
graphs.
• Network size is static and needs 
to be predefined.
• Requires many training sam­
ples.
• Mapping to a discrete output 
space can affect the performance.

sSOM-SD • Same as for SOM-SD except 
that it is able to incorporate 
class information into the learn­
ing process. This enables sSOM- 
SD to outperform SOM-SD sig­
nificantly.
• Able to handle missing class in­
formation.
• Fewer training samples are re­
quired.
• Insensitive to initial learning 
parameters.
• Requires fewer training itera­
tions than SOM-SD.

• Same as for SOM-SD.

continued on next page
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state MLP • Is a universal approximator.
• Typically fastest in training (as 
the number of neurons is much 
smaller than for SOM)
• Able to encode graphs, data se­
quences, and fixed sized vectors.
• Requires relatively few training 
data to be trained successfully.

• The complexity of the algo­
rithm grows quadratically with 
the number of hidden layer neu­
rons.
• Can be trained only on classi­
fied data.
• Can suffer from a long-term de­
pendency problem on deep graph 
structures.
• Determines the number of state 
neurons by a trial and error pro­
cess.
• Has considerable problems en­
coding patterns which are poorly 
represented in the data set.

output MLP • Is a universal approximator.
• More efficient use of network 
parameters.
• Requires relatively few training 
data to be trained successfully.
• Able to encode graphs, data se­
quences, and fixed sized vectors.

• Same as for state MLP.

extended 
state MLP

• Same as for state MLP.
• Architecture is similar to an 
RCC.

• Same as for state MLP.

ext. output 
MLP

• Same as for output MLP. • Same as for output MLP.

RCC • Dynamically adds hidden layer 
neurons.
• Less likely to fall into local min­
ima due to use of a pool of can­
didate units.
• Able to encode graphs, data se­
quences, and fixed sized vectors.

• The complexity of the algo­
rithm grows quadratically with 
the number of hidden layer neu­
rons and the out-degree.
• Generalization performance is 
not as good as for RMLP net­
works.
• Requires more training samples 
than a RMLP.
• Not a universal approximator.
• Can suffer from a long-term de­
pendency problem on deep graph 
structures.

reduced
RCC

• Same as for RCC
• Architecture similar to state 
RMLP network.

• Same as for RCC.

All models have in common that they reduce to ’classic’ counterparts if the input 
graph is a single labelled node, and reduce to recurrent models if the maximum 
out-degree of the input graphs is 1. A SOM-SD provides an efficient mechanism 
to encode and cluster graph structured information in an unsupervised manner. 
RMLP models provide effective supervised mechanisms for the encoding of graphs, 
and RCC determines the size of the network through a dynamic process. Hence, 
this thesis has covered a wide range of models which provide unsupervised as well 
as supervised approaches, static and dynamic architectures.
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This thesis applied all of the above mentioned models to a benchmark problem, 
viz. the policemen benchmark problem which consists o f a number of data sets, 
and a real world learning problem, viz., logo recognition. It was found that the 
various models performed differently on the given data sets. Table 9.2 summarizes 
the performance rates obtained when conducting the experiments. Unless stated 
otherwise, the table gives the best performances achieved with those models as 
opposed to typical results reported in earlier chapters.

Algorithm
dataset-1

Learnir
dataset-2

Lg problem 
dataset-3 Logo“

train test train test train test train test
SOM-SD" 
sSOM-SD* * 
state MLPC 
output MLPd 
ext. state MLPC 
ext. out. MLPd 
RCCe
reduced RCC^

100%
100%
100%
100%
100%
100%
100%
100%

100%
100%
100%
100%
100%
100%

99.8%
99.6%

100%
100%

NT
NT
NT
NT
NT
NT

99.53%
99.86%

NT
NT
NT
NT
NT
NT

97.63%
99.72%
99.55%
99.68%

98.8%
93.39%
99.12%
99.52%

97.33%
99.53%
99.73%
99.49%
98.48%
92.75%
98.53%
98.96%

88.4%
94.5%
93.2%
97.6%
95.1%
98.3%
timel
time\

77.3%
83.1%
83.3%
87.5%
83.8%
86.9%
timel
timel

Table 9.2: Best results obtained for the benchmark datasets, dataset-1, dataset-2, 
dataset-3, and the Logo data set, when learned by the neural network models shown. 
NT means “Not tried” , and time\ means that training could not be completed within 
a reasonable time, otherwise classification rates are reported.

“ Typical results are displayed.
^Number of neurons is approx. | the number of nodes in the training set 
c10 state neurons for the benchmark problems, 22 for the logo recognition problem. 
d10 state, 8 hidden neurons (benchmark problem). 22 state, 20 hidden neurons (logos). 
e22 hidden neurons (benchmark), 28 hidden neurons (logo)
^22 hidden neurons (benchmark), 30 hidden neurons (logo)

A natural question which arose from such comparison of results is: in practice, what 
is a good model for the practical engineer who is faced with the issue o f having to 
solve a practical classification problem in the structured data domain. Here the 
answer can be multifold: it depends on what data is available to the practical 
engineer.

• If only unlabelled data is available, then a good model to use is the SOM- 
SD model with about | of the total number of nodes in the training data 
set.

• If we are given also some class labels, then we can use the supervised SOM- 
SD model, again with about | of the total number of nodes in the training 
data set.

• If we are given a set o f input output pairs, and that there are sufficient 
number of them, then we may contemplate the use o f recursive cascade 
correlation technique to determine the approximate number o f state neu­
rons required. Also from the RCC model, it gives us some information 
concerning the quality o f the data set (whether the given data set covers 
the entire space spanned, i.e., if the given data set is rich enough to allow 
us to find good generalization capability o f the trained model). This is con­
ditioned on the fact that fast computational resource is available, especially 
when the out-degree and/or the number of state neurons is large. If there is



Conclusions 155

not much computational resources available, then one resorts to using the 
RMLP type of models. In this case, the number of state neurons will need 
to be determined through a trial and error process. It would be prudent to 
commence with a state MLP model. If such a model does not give “good” 
results, then one might consider using an output MLP model. The judg­
ment of whether a failure to obtain good results using a state MLP model is 
due to the lack of richness of the state model, or the lack of richness in the 
underlying given data set is made from the experience of practical engineer 
in encountering this type of problems.

• At this stage, the extended MLP models, and the reduced CC models serve 
only theoretical purposes. They do not appear to perform well in compar­
ison with other models.

In most cases, the training parameter set which we have obtained in this thesis 
may serve as a guide in the initial setting of the training parameters. We do not 
have a theory that it will work in all cases. All we can say is that this set of 
training parameters might be a good place to start, in view of the lack of any other 
information on the data set at hand.

Thus, it is observed that handling structured data domain is quite similar to the 
situations when a practical engineer has to tackle when dealing with problems with 
fixed sized data, or for sequences in that the engineer needs to experiment with 
various approaches, armed by some of the experience which we report in this thesis 
on the proposed models given in this thesis as well other models proposed by others 
for tackling structured domains. One may lament: this was the situation with using 
multilayer perceptron around the early 1990’s. Surely we must have moved from 
that position by now 1. We agree with this sentiment. Indeed, we see this thesis as 
one which is very much in the tradition of experimental computer science in that 
we investigate the behaviour of proposed neural network models through extensive 
experiments. From such extensive experiments, we hope to obtain some insight 
into the complexity of the behaviour of the models by iteratively interpreting the 
results, and carrying out further experiments to test our insights, as typified in 
the approaches carried out in this thesis. Through such experimentation, we hope 
to build up sufficient insight into the behaviour of the models as to give us some 
confidence in using these models in practice. Hopefully when we have built up 
sufficient insight into the behaviour of the proposed models, we might be able to 
use some analytical means to analyse the behaviour of the models, and thus provide 
some theoretical insight into their behaviours. Such theoretical insight would give 
a practical engineer some confidence in deploying the models in practice, knowing 
their limitations, as well as their strengths.
Comparing the benchmark problem: logo recognition with the extended policeman 
benchmark problem, we find that the extended policeman benchmark problem is 
a more difficult learning task. This is because the benchmark problem given by 
dataset-3 features classes with overlapping properties, and classes that are repre­
sented by different numbers of samples. In particular, the experiments revealed that 
RMLP based models have considerable problems with the classification of patterns 
which are poorly represented in the training set. The dataset for logo classification 
did not feature such a property. The reason why the models did not perform and

1Yes. Indeed, we have moved a long way since those early days of multilayer percep- 
trons thanks to the research efforts in the past decade in clarifying the capabilities of 
multilayer perceptron models. However, we feel that the investigation into adaptive pro­
cessing of data structures at the present moment is exactly like multilayer perceptrons in 
the early 1990’s in that there is very little available theoretical results.
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generalize on the logo recognition task as good as on the benchmark problem is 
quite simply: the size and quality o f the training set. The training patterns did not 
sufficiently represent the learning problem at hand in the logo recognition problem. 
This property was also observed when reducing the size o f the benchmark problem. 
The experiments also revealed that some models such as SOM-SD and RCC require 
substantially more training patterns than others e.g., RMLP and sSOM-SD. These 
observations quite clearly justify the use of benchmark problems in evaluating the 
performance of new proposed algorithms. The size, quality, and property of the 
data set, and the difficulty o f the learning task defined by the extended policeman 
benchmark problem render it to be a valid tool for the evaluation o f statistical 
and recursive neural network models. The extended policeman benchmark problem 
includes most of the problems that are encountered in a real world environment.

9.3 Issues and problems which arose from the 
investigations of this thesis

This thesis presented and introduced a wide range of neural network models which 
are capable of encoding graph structured information. These models were then 
evaluated quantitatively on a range of learning tasks. Advantages and disadvantages 
of the models were found and described. However, the work carried out in this 
project was often not a straight forward approach. Some o f the issues and problems 
that arose from the investigations of this thesis are given as follows:

• Work in the area of recursive neural models is relatively new so that there 
was little literature available which could be used as a basis for this research. 
However, it was possible to generalize existing work and to use known 
material as a motivation for the introduction of new novel recursive models.

• Attempts were made to introduce an unsupervised mechanism for RMLP 
based models by using a modified energy function. However, these attempts 
were unsuccessful and are not reported in this thesis.

• Attempts were made to produce a supervised SOM-SD model which uses 
Kohonen’s original idea by attaching the target vector to the input vector
[59]. These attempts were also unsuccessful and are not described in this 
thesis. An alternative way of introducing supervision to the SOM-SD algo­
rithm was developed with considerably more success. This was reported in 
Chapter 5.

• Attempts were made to introduce a dynamic SOM-SD model which adds 
neurons as needed. However, this task could not be completed in time and 
is not described in this thesis.

• Most models proposed in this thesis were not tested on regression learning 
problems due to the lack of sufficiently large data sets which could be ap­
plied to all models 2. Hence, the application to regression learning problems 
is not described in this thesis.

• Some models such as RCC and reduced RCC had high computational de­
mand due to a quadratic computational complexity o f the learning algo­
rithm. A thorough practical evaluation of those models was extremely time

2We have evaluated the performance of the CC type of models on a molecular chemistry 
problem. However, this problem has few training samples, thus rendering it impractical 
to be used in the evaluation of the SOM-SD type models. As a result we decided not to 
report the results in this thesis.
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consuming and in some cases not possible with the computing resources 
available to us.

• A parallel implementation of the SOM-SD algorithm was attempted. How­
ever, the results are not reported in this thesis in view of its “singleton” 
status, as we have not considered the parallel implementation of other pro­
posed algorithms. We seriously contemplated the parallelisation of the cas­
cade correlation algorithm due to its inordinate long computational time, 
especially, the time required to obtain further additional neurons beyond a 
certain point. However, this was met with considerable difficulties.

• Many of the models described in this thesis have a large number of training 
parameters which could be tuned and their effects could be described. It 
was not possible to address the effect of all training parameters without 
exceeding reasonable space limits in this thesis as well as the time and 
computational resources it takes to fine tune these parameters. Hence, this 
thesis restricts itself to the evaluation of the more important parameters.

• An underlying theme in this thesis is: the experience and the results of 
extensive experimentation on some benchmark problems would give us a 
better chance of tackling real world problems. This is demonstrated in 
using the set of training parameters which we had obtained in the extended 
policeman benchmark problem and applied them to the logo recognition 
problem. It appears that the performance on the logo recognition problem 
is quite reasonable.
One may ask: how transferable is such knowledge to other un-tested real 
world problem. The answer is: the extensive experimentation in this the­
sis on various models on the extended policeman benchmark problem has 
heightened our awareness of the type of issues which need to be tackled in 
a practical real world problem. The direct transfer of the set of training 
parameters might be fortuitous in the case of the logo recognition problem. 
But the guidelines obtained, e.g., using about | of the total number of 
neurons in the training data set in the case of a SOM-SD model appears to 
be a good rule of thumb for most practical cases. As to the transferability 
of other training parameters to other real world problems this is yet to be 
tested. So far, the main challenge is to find a suitable practical real world 
problem which has sufficiently large amount of data which we can use to 
evaluate the proposed algorithms.

• In the logo recognition problem, with all the proposed models, we could 
have experimented on a number of training parameters so that its per­
formance can be considerably enhanced. However, due to the computing 
resources available to us, this is proving to be very time consuming. In 
addition, our main aim in working with the logo recognition problem is 
not to obtain the best possible performance, but instead, such application 
confirms for us that the proposed algorithms when applied on a real world 
problem give reasonable results.

This list illustrates that much work is still to be done in this area. Some of the open
problems which are interesting to study are summarized by the following section.

9.4 Open Problems

There are still a number of open problems in adaptive processing of data structures.
Some of these issues are discussed as follows:
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1. Minimum number of parameters [2, 72] — As indicated previously, the tree 
model which we have used includes more parameters than necessary. We 
have assumed that there are always c children at each node. Hence an 
interesting question to ask is: could we use a smaller number o f parameters.
This question is related to the problem of minimum encoding a given data 
structure. In other words, we are asking the question: is there an equivalent 
formulation of some form of information criterion for the tree structure. 
While it is intuitively clear that some such formulation could exist, as far 
as we are aware, there are no published results in this area.
Note that we have previously considered some ideas on régularisation and 
pruning. These ideas can be used to reduce the total number of parameters 
in the tree model (in the case of RMLP type models). It is useful to note 
that since all nodes use the same MLP model, it is unlikely that there 
are many parameters which can be trimmed. Nevertheless, an interesting 
question to ask: how would the generalization capability o f the models be 
affected if we prune some of the parameters, using for example, a brain 
damage type of algorithms.

2. Long term dependency [5]. Another interesting question is: could the tree 
model exhibit some kind of long term dependency problem. In MLP train­
ing, it is known that if there are too many hidden layers, then because of 
the fact that the backprop error is multiplied by the derivative o f the sig­
moidal function which is between 0 and 1, it is plausible that the product 
of the derivatives and the gradient for very deep layers could become very 
small, thus, the parameters are not updated.
In the case of tree models, it is not known whether the same phenomenon 
occurs or not. If we have a very deep tree, this could conceivably happen. 
However, because each node uses the same MLP model, it is envisaged that 
the long term dependency problem is not severe. One could imagine that 
even though the parameters are not updated in a particular branch due 
to long term dependency, however, they could still be updated due to the 
contributions from shorter branches. However, todate, we do not know of 
a formal theory which proves this formally.
From the work carried out in this thesis, it is observed that long term de­
pendency might occur in the extended models. This manifested itself in the 
training of these extended models. We have given some heuristic explana­
tion of the reasons for some of the observations on these extended models. 
However, it is not too clear how to analyse the situation formally. One way 
in which this can be performed is through the unfolding o f the extended 
MLP architecture, in a manner very similar to the “folding architecture” 
proposed in [75]. However, as far as we are aware, no one has performed 
such analysis yet.

3. Parameter dependency. In the models introduced here, we have assumed 
that the parameters stay constant. However, it is possible to formulate a 
tree model in which the parameters are allowed to vary. This type o f models 
would be useful for internet modelling purposes. In this case, if we have 
a large tree, there could be many parameters which need to be estimated, 
i.e., we may face an explosion of parameters.
On the other hand, it may be possible to adapt the idea o f “alternative time 
delay operators” as discussed in [4] which is a kind o f linear filter on the 
evolution of time history of the system. In this case, it might reduce the 
total number of parameters, while at the same time allowing the system to 
model some time variations.

Open Problems



Open Problems 159

4. Cyclic and undirected graphs. In this thesis, we have considered only a 
very simple tree model. However, it is possible to have a more complicated 
graph model, whereby there are cyclic paths in the graph. In this case, we 
need to solve a set o f algebraic-difference equations. The algebraic part can 
be solved by using some kind of numerical relaxation methods. However, 
todate there is no computational experience with this type of models.

5. Extraction of structures. As shown previously, we can use a different struc­
ture in the training of the data, than assuming that the true structure is 
known a priori. Hence, it is interesting to ask the question: is it possible to 
extract the structure from a trained network. By this, we wish to extract 
a structure with which the data can be “comfortably” classified [29].
A particular problem in this area is: given a set of input output training 
samples, can we extract the underlying structure which generate these sam­
ples. If we can do so, then this would allow us to have an automatic method 
for inferring structures from the data.

6. VC dimensions and leamability. Recently there have been much interest in 
the question of leamability, i.e., is the given set of patterns leamable. As­
sociated with this is the concept of Vapnik- Chervonenkis (VC) dimension 
[95]. Basically the idea is: if the VC dimension is finite, then the problem 
is leamable. On the other hand, if the VC dimension is infinite, then the 
problem would be hard to learn. Here, the idea of easy or hard to learn 
is related in the sense of probability. There are some preliminary work in 
this area [45], where it is shown that even for simple tree structures the VC 
dimension could be infinite.

The problems indicated in this section are challenging, in that as far as we are 
aware, there are no published results in these areas. Some of the problems might be 
very difficult to solve, e.g., the extraction of structures from a set of input output 
data, while some of the problems may be relatively easy to solve, e.g., the long 
term dependency problem, at least as it relates to the extended models. All these 
problems present themselves to be challenges for future research. Solving some of 
these problems will lead to further maturation of this area, and give confidence to 
the practical engineers in using these proposed models.
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Appendix A

Benchmark problems

A .l  Introduction

Despite the fact that graph based methods are gaining more and more popularity 
in different scientific areas, it has to be considered that the choice of an appropriate 
algorithm for a given application is still the most crucial task. A large database 
of graphs which makes the task of comparing the performance of different graph 
processing algorithms possible was not available until the simultaneous introduction 
of two large database of graphs. The database of graphs for isomorphism bench­
marking [26] provides 18,200 randomly generated graphs which are categorized into 
five different classes “Randomly Connected Graphs” , “Regular Meshes” , “Irregular 
Meshes” , “Bounded Valence Graphs” , and “Irregular Bounded Valence Graphs” . 
The size of the graphs ranges from few dozens to about 1000 nodes. The dataset 
is made available on a CD-ROM. The second database of graphs is called “The 
Policemen Benchmark” [42, 39, 40]. The policemen benchmark provides pairs of 
artificially generated images and associated graph structures. The datasets are of 
arbitrary size and are produced from attributed plex grammars. The benchmark 
problem is distributed over the internet so that it can be made widely available to 
the research community [38].
We decided to utilize the Policemen Benchmark Problem for the evaluation of the 
models described in this thesis for the following reasons: 1

(1) The graphs are not generated by a random distribution, and hence allows 
evaluations in a controlled manner.

(2) The size of the dataset is arbitrary and the width (out-degree) and depth 
of the graphs are also arbitrary, and hence allows the evaluation of models 
on particular types of graphs.

(3) Pairs of graphs with associated images allow us to more easily visualize 
experimental results. For example, it is easier for a reader to detect simi­
larities between two images than between two graphs.

(4) The dataset is produced by an attributed plex grammar which requires very 
little storage space (typically less than a few kilo-bytes).

(5) The Policemen Benchmark is receiving support from the community of 
Adaptive Processing of Graph Structures and is expected to develop into a 
standard dataset for benchmarking purposes. In comparison, the properties
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of the dataset for isomorphism benchmarking makes it more suitable to 
the community of Graph Matching Algorithms. The application o f the 
isomorphism in the area of Adaptive Processing of Graph Structures is 
limited due to its static properties and the fact that it is generated through 
random distributions.

The Policemen Benchmark is part of the contributions of this thesis and hence, will 
be explained in greater detail in the following sections. Section A. 1.1 to section 
A. 1.4 give an introduction to relevant grammars and to methods employed for 
the policemen benchmark. Section A .2 describes the procedures that lead to the 
generation of the benchmark problem and describes its properties. The datasets 
used in this thesis are described in section A.2.1. Finally, a resumed is drawn in 
section A.3

A . 1.1 S yn tactica l/S tru ctu ra l P attern  R ecog n ition

A basic idea underlying a syntactical/semantic pattern recognition approach is the 
explicit use of structure for pattern recognition [13]. Using a structure, it is possible 
to recursively build up a complex pattern starting from elementary components, 
often known as terminals (or primitives), and expressing the relationship among 
the various parts of a pattern using linkages among these components. There are 
normally two issues associated with syntactical pattern recognition, viz., pattern 
representation, and pattern recognition. In pattern representation, a “grammar” 
is introduced which gives means whereby a complex pattern can be built up from 
components. In pattern recognition, given a pattern, the question to ask: is this 
pattern described by the given grammar. This often involves “parsing” a given 
pattern. Patterns can be described in many different formats. In this paper, we 
will only consider patterns which can be described by “strings” , i.e., a concatenation 
of alphabets. The study of syntactical/semantic pattern recognition is under-pinned 
by the theory of formal grammars, and languages, which have been developed in 
the past few decades [34, 1].

Formal grammars operate on finite sets of symbols, known commonly as alphabets. 
An alphabet A is a finite set of symbols. A word x  over A is a sequence o f symbols

OC “  flj • • • ̂ T t

where a* € A, i =  1 ,2, . . .  ,n. It is possible to define an empty word, which is 
denoted by the symbol c as a sequence with no symbols. The length o f a word, 
denoted by |®| is equal to the number of symbols contained in the word. The set 
of all words over an alphabet is denoted by A*. A* can be finite or infinite. The 
set of words over an alphabet excluding the empty word is denoted by A + , i.e., 
A+ =  A -  {e}.  The concatenation of two words x  =  a \ 0 2  . . .  an, and y  =  &i 62 • • • bm 
is given by xy -  ax . . . anbi . . .b m.

D efin ition  1 A formal grammar is a four tuple

G =  { N ,T ,P ,S } , where
N  is a finite set of non terminal symbols
T  is a finite set of terminal symbols
P  is a set of productions 
s <e n u t  is the set of initial symbols.

Further, N O T  =  0. The vocabulary is given b y V  =  N U T . Each production p  E P  
is of the form a  —>■ j3, where a  and ¡3 are called the left hand and right hand side 
component list respectively, and a  € V + , and j3 e V * .
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The grammar allows the production of words from the terminals, and non terminals 
using production rules. The production rule a —y (3 means that one substitutes the 
left hand side occurrence of a  by the right hand side /?, and obtain a new word. 
This can be formally defined as follows:

D efin ition  2 Let G be a grammar, and a  —» ¡3 a production in P . Any word 
v =  xay with x ,y  £ V* can be derived into the word w =  xfiy. We write this as 
v —y w. If we have v =  Vo, V\,. . . ,  vn =  w, such that Vi -»  V i + i  =  0,1 , . . . , n — 1, 
then we write it as v A  w.

D efin ition  3 The language generated by a grammar G is given by

L{G) =  {x\x £ T*, S A x }

An element of æ £ L{G) is obtained from the set of initial symbols S , by applying the 
production rules recursively until a word is obtained which contains only symbols 
from the terminal set. Note that even though the set of initial symbols and terminal 
symbols may be finite, the set of words generated from a set of production rules 
can be infinite.

For example, in a particular grammar G — { {5 , A, B j, {a, b, c}, P, { 5 } }  with the 
following productions:

P  — { jS —y cAb, A  — aBa, B  —̂ clBcl, B  —y n&j- 

To form the word caacbaab, we can use the following:

S —y cAb —y caBab —y caaBaab -y caacbaab

Conceptually, there can be many different types of grammars, and associated with 
them, there are many different types of languages. One way in which the various 
languages can be classified is to use what is commonly known as the Chomsky’s 
hierarchy [1].

D efin ition  4 Formal languages are classified according to the Chomsky’s hierarchy 
into:

1. Regular languages, or type 3 language if and only if any production rule is 
of the form A  -> aB, or A -y  a where A ,B  £ N ;a  £ T .

2. Context free or type 2 language if and only if any production rule is of the 
form A -y  z, where A £ N ; z £ V + . 3 4

3. Context sensitive or type 1 language if and only if any production rule is of 
the form xAy  -> xzy, where x ,y  £ V + ; A £ N ; z £ V + .

4. Unrestricted, or type 0 language if there are no restrictions on the produc­
tion rules.

In addition, a language of type i cannot be generated by a language of type i +  1.

The grammar gives a representation of the underlying behaviour of the entity. It 
represents the entity by using sets of symbols, viz., the initial symbol set 5, and the 
terminal symbol set T. The set of non terminal symbols is N. The production rules
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operate on the initial symbol set S , and derive the set of acceptable words x .  By 
using different sets of production rules, ranging from no restraints, to well defined 
constraints, words can be obtained which have different properties.

Parsing is used for recognition. It tackles the problem of deciding if a given string 
belongs to a grammar. In other words, it asks the question: given a string, can we 
decide if such a string can be generated by a given grammar with a given set of 
initial symbols, terminal symbols, and non terminal symbols.

Definition 5 L et G  — { N , T, P, S }  be a context free gram m ar. A  derivation tree 
is a tree where:

1. Each node is labelled with a sym bol z  G V  such that

each leaf is labelled with a sym bol a £  T  
each n on -leaf is labelled with a sym bol A  G N  
the root is labelled with the initial sym bol S

2. I f  there exists a node with label A  E N  such that its su ccessor nodes  
are labelled with X i , X 2 , . . .  , x n G V ,  then there exists a production A  —>• 
x \ . .  . x n G P .

The derivation tree for the example in generating the word caacbaab  is given in 
Figure A .l.

s

Figure A .l: A derivation tree for generating the word caacbaab

Definition 6 L et G  =  { N , T, P, 5 }  be a context free gram m ar. A  word x  G L ( G )  
is called unambiguous if  there exists only one derivation tree o f  x  with respect to G .  
It is called ambiguous if  there exists m ore than one derivation tree.

For any grammar G  and any word x  G T * , there exists a derivation tree according 
to G , if and only if x  G L ( G ) .  So, the task of deciding if x  G L ( G )  is equivalent 
to the construction of a derivation tree. This is a parsing problem. There are in 
general two main types of parsing, viz., top down parsing and bottom up parsing. 
In top down parsing, the derivation tree is constructed from root towards the leaves 
while in bottom up parsing, the derivation tree is built from the bottom, i.e., the 
initial symbols towards the root by using the production rules.

The above mentioned grammars and languages are deterministic in nature, i.e., once 
the set of initial symbols, terminal symbols, and non terminal symbols are defined, 
and the set of production rules is given, the set of words can be derived. The 
representational power of these grammars can be shown. For example, it can be 
shown that type 0 languages, i.e., unrestricted grammars is Turing [92] equivalent.
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The set of regular languages can be shown to represent linear systems, while the 
set of context free languages can be used to represent bilinear systems.

On the other hand, often, it is more desirable to represent underlying entities which 
require a richer structure. There are a number of approaches, including the follow­
ing:

1. Probabilistic grammars. Instead of having a deterministic grammar, we 
wish to introduce probability concepts into the production rules.

2. Attributed grammars. This allows one to attach attributes to the descrip­
tion of the vocabulary. In a more general case, we could use plex grammars, 
which allows us to specify how different components can be fused together 
to form a more complex pattern.

These will be considered in the following subsections.

A . 1.2 G ram m ars w ith probability

We will only consider context free grammars for simplicity. Let the set of non 
terminals of a grammar G be: N  =  {A \,. . . ,  Am}. Let the set of productions be

A\ -> X u , . . . ,  A\ —> X\jTl\

Am  ̂ X m,l , • • • j Am  ̂X m,nm

D efin ition  7 A stochastic context free grammar is a four tuple G* =  {N , T, P*, 5 }  
where:

1. N  ,T ,  and S are respectively the set of nonterminal symbols, terminal sym­
bols, and initial symbols.

2. P* is a finite set of productions of the form pij : Ai —> Xij with Ai G N, 
Xij € V + , 0 < Pij <  l, E jL iP ij =  1, * =  1,2, . . .  ,ro

D efin ition  8 The characteristic grammar G =  {N ,T ,P ,S } of a stochastic gram­
mar G* is obtained by deleting the numbers p^ from each production in P * .

D efin ition  9 Let Gs =  {IV, T, P * ,S }  be a stochastic grammar. The language 
generated by Gs is defined by L(G S) =  {\x,p{x\Gs)\\x € T*,S x }.

Stochastic grammar can be obtained from the characteristic grammar if one asso­
ciates multiple possibilities with each production rule. These multiple possibilities 
are controlled by a probability. Hence the probability associated with the same left 
hand side must add up to 1.
Parsing of a probabilistic grammar can be obtained by using Bayes’ rule, and max­
imum likelihood decision [13].
A problem with probabilistic grammar is that one is required to prescribe the prob­
ability involved in the production rules. To obtain these probabilities would require 
substantial amount of data. As a result, it is not convenient to use these concepts 
if one has only limited amount of data.
On the other hand, not all complex objects can be generated by stochastic gram­
mars. In some cases, it is more convenient to build them up from primitives, using a
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more powerful means of joining the primitives together other than by using concate­
nation alone. This is one of the main impetus for introducing the idea of attributed 
grammar, or attributed plex grammar as in the following subsections.

A. 1.3 Attributed Grammars

In the representation of structural properties, often we require means to describe 
the pattern, e.g., lengths, orientations. These cannot be incorporated in the deter­
ministic grammar considered previously. One way in which this information can be 
incorporated is to use the concept of attributed grammars. The idea is to augment 
each grammar symbol Y  G V  by a vector of attribute values: m (Y ) =  (xi 
where an attribute a  is a function a  : Y  - »  D y  mapping a symbol Y  € V  into 
a domain D y  of numerical values. An attribute vector can be interpreted as a 
numerical feature vector.

For example, in the traffic policeman case, we can describe each of the terminals 
by a set of attributes. In this case, we could incorporate the colour, the size o f the 
terminals as a way to describe them. For example,

{colour 
xscale 
yscale

where xscale denotes the scale along the x-axis, while yscale denotes the scale along 
the y-axis. terminal denotes the terminal object, which can be “Hat” , “Face” etc.

A. 1.4 Plex grammars

Plex grammar is a general form of attributed grammar. It allows us to attach 
structures together to form a complex structure. This was introduced by Feder 
[25]. The basic idea is to introduce symbols with an arbitrary number of attachment 
points. Complex structures are formed by joining an attachment point o f one object 
with an attachment point of another object.

A symbol with n attaching points is called an n-attaching point entity or NAPE. 
Structures obtained by joining NAPEs are called plex structures. Formally, a NAPE 
is represented by an identifier and a list of its attaching points, L (n\, . . . ,  nm), where 
L is the identifier, and n i , . . . , n m are the attaching points. A plex structure is 
described by three components:

1. A list of NAPEs
2. A list of internal connections between NAPEs '
3. A list of attaching points where the structure can be joined with other 

NAPEs or plex structures.

NAPEs are called terminal if they represent basic primitives as defined through the 
grammar, NAPEs are called non-terminal if they are formed by joining other (ter­
minal or nonterminal) NAPEs. As an illustrative example: Two terminal NAPEs 
are shown in Figure A.2. In NAPE “ver” , there are three points identifies as, 1, 2, 
and 3 which can be used for connections to other NAPEs, or other plex structures. 
The NAPE hor , on the other hand, has only two points, 1 and 2 which can be 
used to connect to other NAPEs.

The number and location of connecting points in a terminal NAPE is arbitrary. It is 
open to the user to specify. Connecting points o f nonterminal NAPEs are specified
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a
•-

b

hor(a,b)
• c

ver(a,b,c)

Figure A.2: An example of NAPEs

through ’inheritance’ of connecting points given in its elements. These elements 
in turn can be either nonterminal or terminal NAPEs. Hence, the plex structure 
offers a very powerful way in which complex structures can be built up from simple 
structures.

A string grammar generating a set of plex structures is called a plex grammar. In 
such a grammar, terminals correspond to objects with user specified connecting 
points. Similarly, the set of nonterminal NAPEs is a set of symbols used to describe 
intermediate plex structures. Thus, the plex grammar can be defined in a very 
similar manner to the context free grammars. Plex grammars are formally defined 
through the six touple

G  =  (N ,  T ,  P,  S,  I ,  ¿0)

where

iV is a finite nonempty set of NAPEs called nonterminal objects.
T  is a finite nonempty set of NAPEs called the terminal objects.
P  is a finite set of productions;
S  £  N  U T  is a starting NAPE.
I  is a finite set of identifiers;
¿0 £  I  is a null identifier.

It is required that T  fl N  =  0. For convenience we also assume I D (T U N )  =  0 and, 
as before, V  =  N U T .  The symbols in I  are used to identify the attaching points of 
NAPEs. No two attaching points of the same NAPE have the same identifier. The 
null identifier i0 serves as a place marker and is not associated with any attaching 
point of any NAPE. Connections of NAPEs can only be made through specified 
attaching points where the null identifier is not permitted to serve as a connecting 
point.
The productions in P  are defined as follows:

NAPE(pi, • • •,pn) ->■ (NAPEi, • • •, NAPEm)(Ci, • • •, cm)(d i , • • •, dn)

where pi £  I  denotes to an external connection point identifiers associated with 
the nonterminal NAPE, the list (d i , —  , d n) defines the connecting points stated in 
(pi • ■ ’ , Pn) by listing fields of connecting points that are to be ‘inherited’ from the 
list of NAPES stated on right side, and (c i, • • •, cm) is a list of fields describing how 
the NAPES on the right hand side interconnect to form the nonterminal NAPE.
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Exam ple. Given the NAPEs “hor” and “ver” as shown in Figure A.2. These 
NAPEs can be used to create the letters H, F, and L using the following grammar.

G =  ({Letter, H elp}, {ver, hor}, P, {L etter }, {0, a, b, c}, 0)

where
Help(a, b, c) 
LetterQ  
Letter () 
L etter()

-> (ver, hor) (ba) (a0 ,06, cO) ' 
->• (ver,hor)(ca )()
-»  (Help, hor) (aa) ()
-> (Help, ver) (66) () ,

The rule Letter() ->■ (ver,hor)(ca)() is interpreted as follows: there are two termi­
nals, viz., ver and hor. The point c on terminal ver is joined with the point a of the 
terminal hor. Hence this produces the letter L. Since this is the end result o f what 
we wish to achieve, there are no further points required in order to connect with 
other NAPEs or plex structure, hence there are no specified external connecting 
points. The interactions described by this production is visualized in figure A .3.

b

a b

Figure A.3: The production L etter() — > (ver, hor)(ca ) ( )

In a similar manner, the rule Help(a, 6, c) -> (ver, hor)(ba)(a0, 06, cO) is interpreted 
as follows: Help is a non terminal symbol. It is formed from the two terminal 
NAPEs, ver and hor by joining point 6 on ver with point a on hor. There are 
three points which can be connected with the outside world. These are the points 
a0,06, cO. By convention, aO is interpreted as the point a on the NAPE ver. The 0 
denotes that NAPE hor is not involved in this external connecting point. 06 is the 
connecting point 6 on hor, while cO corresponds to the connecting point c on ver. 
It is noteworthy to mention, that the list in the Extended Connection Point List 
may be unordered. Thus, the production H elp(c,a,b) - »  (ver, hor) (ba) (cO, a0 ,06) 
is legal and will produce an identical output. This production is displayed in Figure 
A.4. 1

1 2 
2 •-----------•

è 3

Figure A.4: The production H elp(a ,b ,c) — > (ver, hor)(ba)(a0,0b,c0)

The rule Letter() —> (Help, hor) (aa) () can be interpreted as follows: it is formed 
by joining the point a on the non terminal Help  together with point a o f the 
NAPE hor. Thus, this forms the letter F. Note that point a o f the non terminal 
Help corresponds to the point a0 when we form the non terminal Help, i.e., it 
corresponds to the point a as specified in the output o f the formation of Help. The
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a

a
b

b

c

Figure A.5: The production L e tte r () — > (Help,  hor)(aa )()

a

c

b

a

b

4 c

Figure A.6: The production L e tte r () — > (Help,  ver)(bb)()

component interconnection that takes place in this rule is illustrated in figure A.5. 
The remaining production that forms the letter H is displayed in Figure A.6.

Thus, it is observed that the plex grammar is a very powerful means of building 
complex objects. However, the classic approach in plex grammars does not use 
static objects to restrict size or orientation. As a result, plex grammars are un­
able to produce structures with a particular shape, dimension, or orientation. This, 
however, is required in many applications including the policeman benchmark. To 
overcome this limitation, objects are defined to be strictly static in size and orien­
tation [42]. In this approach, the only way to change the size or angle of an object 
is through additional attributes.

A .2 Generation of the Traffic Policeman benchmark

In this section, we will give more details in how one may build up very complex 
objects from simple objects. In this aspect, we will produce a grammar to generate 
a (arbitrary) large set of images from a small set of terminal symbols. The images 
created shall feature policemen standing on a pedestal giving directions to traffic. 
This dataset shall be called the policem en dataset and will be used as the basis 
for the policem en benchmark. The basics utilized for the generation of policemen 
patterns will be used towards the end of this section so as to build up other images, 
such as images showing ships and houses.
Let us consider the following attributed plex grammar:

G  =  (N , T , P , S , I ,  to)

with I  =  { - , a , b , c , d , e , f , g , h , i , j , k , l , m , n , o , p , q , r , s , t , u }  being the set of iden­
tifiers for attaching points, the null identifier is chosen to be i0 =  - .  The set of 
terminal NAPEs shall consist of just two elements named tria n g le  and fare. De­
fault size, shape, and connecting points of the terminal NAPEs are as shown in
Figure A .7.
The starting NAPE S,  the list of nonterminal NAPEs N ,  and the set of plex pro­
ductions P  is obtained as we proceed with this example.
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Figure A.7: The two terminal NAPEs used for the policemen benchmark. Shown 
in the diagram are the shape, default size, and the attachment points of the atoms. 
The default size is given in brackets. For example, the horizontal extension o f fa re  
is 128, the vertical extension is 32

In a first step we use the terminal NAPEs to build up other basic geometric objects 
such as a square and a circle. A square can be built by using two triangles, one 
of which is rotated by 180 degrees, and connecting them via the connecting point 
f . The production of a square is as shown in Production (1) and is illustrated in 
Figure A.8.

s q u a r e (a ,b ,c ,d ,e , f ,g ,h , i )  - »  (t r ia n g le , triangle={R0TATE=180})
( f f ) ( a - , b - , c - , d - , e - , - b , - c , - d , f - )

(

e

d

squaretriangle

Figure A.8:

triangle={R0TATE=18O}

Production of a square from two triangles.

Note that the term ROTATE in Production (1) specifies an attribute for the second 
tr ia n g le . The result of this attribute is the rotation of an object by the number of 
degrees as indicated. The non-terminal NAPE square features 9 attachment points 
which are derived from both triangles. The size of the square is derived from its 
elements. Since neither of its two elements is modified in size by the attributes, the 
square inherits its size from default values assigned to the tr ia n g le s . Hence, the 
square is has the extension 128 by 128.

Another frequently needed geometric figure is the circle. The circle can be created 
by attaching appropriately rotated disk segments to either side of a square. Hence, 
a circle consists of four copies of the terminal fa re  and one non-terminal square’. 
These are combined as specified by Production (2).

c i r c l e ( a ,b , c , d , e , f , g , h , i , j , k , 1 ,m ,n ,o ,p , q , r , s , t ,u )  —> (square, 
fa re , farc={R0TATE=180}, farc={R0TATE=-90}, farc={R0TATE=90})
(f b--, b-b— , h— b-, d--b) (— e— , —  f — , — a— ,--- d,--- e,--- f, (2)

a , -d  , -e  , - f  , -a  , d - , -----e - , -----f  - , -----a - , f --------,
h------ , i ------- ,d ------- ,b ------- )

The production of the non-terminal c i r c l e  demonstrates the power of attributed 
plex grammars. This combination of simple terminal and non-terminal objects has
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Figure A.9: Production of a circle from a square and four circle segments.

resulted in a c i r c l e  featuring 21 attachment points.

Attributes can be assigned to terminal or non-terminal objects so as to alter the 
shape of the object such as illustrated by Production (3) which produces a non­
terminal called le g  from a non-terminal square.

leg(a,b) —> (square={XSCALE=0.2}) () (b,f) (3)
The attribute XSCALE scales an object horizontally by a factor as indicated. In 
case of Production (3), the non-terminal square is shrunk horizontally to just 20% 
of its original extension. Hence, the non-terminal leg  is a horizontally distorted 
version of a square. At the same time, leg  inherits just two attaching points from 
square. Similarly, the production shown in Production (4) distorts the size of a 
terminal symbol and reduces the number of attachment points in order to form a 
new non-terminal symbol named hat2. The attribute COLOR is used to alter the 
default color of fare.

hat2 (a) -> (farc={SCALE=l.1 11 .2 11.25, C0L0R=greenI re d Ib lu e })( ) (b) (4)

The COLOR attribute in Production (4) lists three alternative colors which are sepa­
rated by a ‘ |’ (a vertical line called slash). This notation indicates that the default 
value of fare is changed to either one of these colors. Hence, Production (4) cre­
ates a non-terminal hat2 which is either green, red, or blue in color. Similarly, 
the SCALE attribute specifies that the default size of fare is increased equally in 
horizontal and vertical directions by either 10%, 20%, or 25%. A parameter is cho­
sen at random since no probability is assigned to either one of the options. This 
example demonstrates that a non-terminal NAPE can have many attributes. If 
a production specifies a range of attributes such as SCALE=1.1 - 1.25, then the 
number of attributes a NAPE can have is infinite. Hence, it is possible to generate 
an arbitrarily large dataset of distinct images from a small set of terminal symbols 
using relatively simple attributed plex grammar.
Thus far, our attributed plex grammar has been extended by four non-terminal ob­
jects square, c ir c le ,  leg, and hat2. The application of the very same mechanism 
can be employed to produce the set of non-terminal objects shown in Figure A .10.

This set of non-terminal NAPEs gives body parts of a traffic policeman which can be 
used to build up a database of images featuring traffic policemen. The productions 
of the grammar is extended so as to connect the elements shown in Figure A. 10. 
The policeman as shown in A. 11 is formed by the grammar 1

xThe example assumes that the set of objects shown in Figure A. 10 has already been 
made available through some process (e.g. by another attributed plex grammar).
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Handl Hand2 Signl Sign2 Sign3 Sign4

a

b c 

Skirt

a

Shorts
Pants

a

Leg

Figure A. 10: A set of non-terminal symbols used to produce policemen images. 
Each non-terminal may vary in size, color, and other by attributes given in he 
grammar.

N  — ({P o lic e m a n , H ea d , M B o d y ,  L o w er , L e g s , R a r m , L a r m , sq u a re , 
{H a t3 , F a c e  1, B o d y  1, S k ir t , L e g , A r m l ,  H a n d l , S i g n l ,  c ir c le ] ,  

S  =  {P o lic e m a n } ,
I  {0, a, b, c, d, e, f ] ,
¿o =  0

where the list P  of productions in G  is given through:

Policeman (Head, MBody, Lower)(aaO, 06a)() (A .l)
Head(a) —> (Facel,Hat2)(aa)(60) (A .2)

MBody (a, b) (Larm, B odyl, Rarm) (6e0, Oca) (OaO, OdO) (A.3)
Lower(a) (Skirt, Legs)(21)(10) (A.4)
Legs (a, b) (Leg, Leg, pedestal) (60a, 066) (a00,0a0) (A.5)

Rarm(a ,b) (Arm l, Handl) (ca)(a0 ,60) (A.6)
Larm (a, 6) (Arml, Signl) (ca)(a0,60) (A.7)

caJ1J 3e explained by using the following diagrams. For example, the rule 
H e a d [l)  (F a ce  1, H a t2 )(a a )(60) is the linking of the terminals H a tS  and F oce l
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Figure A .11: A policeman generated by the productions A .l to A.7

together. This is illustrated in Figure A .12. In this case, there is one external 
connection point of the Head. It is labelled ’a’ on the left hand side of the rule. 
This point corresponds to point ’b ’ on the terminal F a ce  1, as shown on the right 
hand side of the rule. Point ’a’ from the terminal H atS  is joined with point ’b ’ of 
the terminal F a ce  1.

a

•
b : r  ) --------^

Facel Hat2 J
a

Head

Figure A .12: The production Head(a) —> (Facel Hat2)(aa)(b0)

As another example, we can form the main body of the policeman by joining the 
head, together with the body as shown in Figure A. 13. This is more complicated. 
There are 2 points of the non terminal M B o d y  which can be connected with other 
NAPEs. These correspond to points a and d of the terminal B o d y  1. Point ’a’ 
of the terminal H ea d , the result of the formation from a previous construction, is 
connected with point ’a’ of the terminal B o d y  1 to form the non terminal M B o d y .

Main

Figure A. 13: The production of
(Head, Body2)(aa)(0b, Oc, Od, Oe, Of)

Main(a, b, c, d, e) —>•
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A .2.1 The datasets

The evaluation and comparison of the methods described in this thesis is performed 
on three different sets of graphs which were extracted from the policeman benchmark 
problem. The three sets can be seen as a counterpart to the Monks problem [90] used 
to evaluate conventional adaptive methods, e.g., multilayer perceptrons, cascade 
correlations.
Dataset-1: The first set which we will refer to as D a ta set-1, or the Stop-and- 
Go problem, consists of a set of 1000 graphs belonging to two linearly separable 
classes. Instances from both classes were equally represented. The learning task is 
to discriminate between the two classes “stop” and “go” , each denoting whether the 
traffic policeman is signaling a “go” concept or a “stop” concept. To make it more 
interesting, we have varied the shape of the policeman, e.g., the policeman has an 
extraordinary long left arm, the policeman has extraordinary long pants, viz., has 
long legs etc. Approximately half of the examples indicating the concept o f “go” , 
and the rest indicating the concept of “stop” . These examples are generated by 
using the attributed plex grammar as indicated previously. A sample of these two 
instances is given in figure A .14, where the policeman to the left represents a “go” 
instance (lowered right arm), and the policeman to the right represents the instance 
“stop” (raised right arm).

bull564 bull571

Figure A. 14: A selection of artificially generated traffic policemen images and ex­
tracted graph structure. Data labels are not shown. Nodes are numbered so to 
indicate which element they represent.

For the training task, we assume that we do not know anything about the attributed 
plex grammar with which these examples are generated. Instead, we assume to have 
only the image of the policeman available. We only assume that the images given 
are policemen, with the rudimentary concepts that the policemen might have a 
hat, or no hat, have a body, two arms, hands, signs, legs, skirt, or pants, and the 
pedestal. We do not assume to know their shapes at all, nor their presence. Hence, 
the first task which we are required to do is to extract features from these images.

Since we assume that the image is a policeman composed of different parts, we 
decide to make use of this a priori knowledge in our feature extraction. Since the 
policeman must stand on a pedestal, this will be the root of the graph with which 
we will extract the features 2. We use a simple contour following technique to

2Note that it does not matter which node is used as the root. But in this case, we find 
it convenient to use the pedestal as the root, as we know that all policemen will stand on 
a pedestal.
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determine the shape of the legs of the policeman. Once we have determined the 
shape of his legs, we compute the center of mass of each of the legs. This results 
in two features, the x  and y  coordinates of the legs. We then continue to use the 
contour following technique and determine if the policeman is wearing a skirt or a 
pair of pants. Once again, we compute the center of mass of the located object. We 
continue this process until we finish with the policeman figure.

The learning task has been simplified further by restricting each policeman to con­
sist of at most 9 elements. This has been accomplished by giving each policeman 
long pants, replacing pants or skirt and the two legs. Since we have nine objects 
(pedestal, long pants, two arms, two hands or one hand and one sign, body, head, 
hat), there are altogether 18 features, being the x  and y  coordinates of the center of 
mass of these 9 objects. These 18 features will be used as the input features to our 
learning algorithm. Note that in extracting the features in this manner, we have 
“ignored” much of the inherent information which comes with the image, e.g., the 
shape of the components. We could have easily incorporated the knowledge about 
the shape of the components as features. However, we have decided not to do so as 
this additional information was not required in this simple experiment.
Figure A .15 and A .16 respectively show the projection of the 18 dimensional feature 
vectors of the two classes “stop” and “go” onto a two dimensional space. These two 
diagrams show that when we project the feature space from 18 dimensional space 
to 2 dimensional space, the two classes appear to be intertwined. In this projection, 
each data point represents the center of mass of each policeman element. Note that 
in these plots, the origin has been set to the lower left corner of the image rather 
than to the upper left corner conventionally used on digital images.

Figure A .15: A diagram showing the projection of the 18 dimensional feature space 
to two dimensional space for the class “go”

Dataset-2: A second dataset extends the stop-and-go problem and defines a more 
difficult learning task. Here, the dataset consists of patterns from three different 
domains. Graphs are extracted from the domains Policemen, Houses, and Ships. 
Samples are as illustrated in figure A. 14 (Policemen), figure A. 17 (Houses), and 
figure A. 18 (Ships). Four classes are defined where two of the classes are from 
dataset-1, the other two classes are defined depending on whether a graph belongs 
to the domain ships or to the domain houses. Some graphs belonging to one class 
may feature a structural representation that is identical to graphs from another



176 Benchmark problem s

0 50 100 150 200 250

Figure A.16: A diagram showing the projection of the 18 dimensional feature space 
to two dimensional space for the class “stop”

class e.g., the house numbered 648 in figure A. 17 and the ship numbered 1034 in 
figure A .18. This dataset consists of a total of 7000 graphs. The learning problem 
is referred to as the domain learning problem.

Dataset-3: The third dataset extends dataset-2 by defining 12 classes over the 
7000 graphs in dataset-2. The classes are defined so that some classes can only 
be distinguished through features in the data label, while other instances require 
structural information in order to be discriminated. Structural representations had 
been obtained by a scan line algorithm where images are canned from bottom to 
top, and from left to right. The first colored object found constitutes the root node. 
Objects directly connected from the offsprings. Applied recursively, all objects are 
considered and a graph representation is obtained. Each node in the graph receives 
a two dimensional label stating the { x ,  y }  coordinate of the center of gravity o f the 
corresponding object. Examples are illustrated in Figure A. 14, Figure A 17 and 
Figure A. 18. ’ ’

The result is a dataset that provides directed acyclic graphs with the following 
properties: &

Data set
Outdegr.

Max.
Depth 

Min Max
Num.
Min

nodes
Max

Num.
classes

Policemen 3 4 5 9 11 2
Houses 5 2 3 4 7 8
Ships 6 1 2 3 13 2

a Pattf nS p™duce deep narrow graphs, ships and houses have
a fiat and wide data structure. Some graph structures produced by the ships and
Figure A ei8 Th “  structur<? such 88 *ouSe648 in Figure A.17 and sh ip !034  in 
figure A.18. There is no graph structure derived from policemen images that is 
contained in the domain houses or ships. Thus, some patter“  b e X t i n g u i l d  
only through features encoded in the labels. For example, when considering police­
label whikTh^g ° f  i het ar”  18 not encoded in the g ^ h  structure, but in the data label, while the graph structure is not affected.

The maximum outdegree of all nodes in the data set is 6. As a result (with the
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house564 house648

Figure A .17: Artificially generated houses and associated graph structure. Data 
labels are not shown. Nodes are numbered to indicate which element is represented.

Figure A. 18: Artificially generated images of ships. Data labels are not shown.

dimension of the data label u  =  2) every input vector v  is of dimension 2+ 2x6. The 
training (test) set contained 3,750 (3,750) graphs with a total of 29,864 (29,887) 
nodes. For the purpose of testing the network performance, 12 classes are defined 
as shown in Figure A.2.1. The property of these classes is such that some classes 
can only be distinguished by considering information provided through data labels 
such as class ‘a’ and class ‘b ’ . Some classes require structural information in order 
to be distinguished such as the classes ‘h’ and ‘k’ .

A . 3 Conclusions

The attributed plex grammar provides a powerful mechanism for creating poten­
tially infinite sets of images and graphs of arbitrary size. Hence, large datasets of 
images and graphs can be generated by a relatively small set of attributed plex 
productions. In addition, the plex language has no restriction for what terminal 
symbols to use. For example, instead of using basic geometric objects, one could 
use more complex elements such as a face, eyes, arms, etc. of real people, e.g., 
obtained from photographs. Such objects can then be appropriately combined by 
a plex grammar and modified (in color, orientation, etc.) by associated attributes. 
Hence, it is a relatively simple task to create large sets of artificially generated 
images which are very similar to real world images.
Another advantage of this approach is that images and associated graph represen­
tations are generated by the same procedure. Hence, we are given the option to 
compare either images or graphs for evaluation purposes.
However, an attributed plex grammar also features some limitations. Firstly, the 
connecting points are static in number and location. If at some stage during a
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Class Description Symbol Sample
Train

js in set 
Test

’a’ Policemen with raised left arm X 645 670

V Policemen with lowered left arm o 605 580

’c ’ Ships featuring two masts □ 937 944

’d ’ Ships with three masts o 313 306

V Houses without windows + 28 21

T Houses with 1 window in (LL) corner X 59 59

’g ’ Houses with 1 window in (UR) corner A 58 64

’h’ Houses with 1 window in (UL) corner ■ 172 195

V Houses with 2 windows in (LL) and (UL) • 53 71T Houses with 2 windows in (UL)) and (UR) ▲ 170 173
’k’ Houses with 2 windows in (LL) and (UR) V 188 194
T Houses with all three windows ▼ 522 473

Total: 3750 3750

Table A .l: Definition of the 12 classes and their symbols as used later in Fig. 4.14 
to Fig. 4.21. (LL) means “lower left” , (UL) “upper left” , and (UR) “upper right” .

production, two objects are to be joined at a point for which no connecting point is 
defined, then it is not possible to introduce a new connecting point unless affected 
terminal symbols are re-defined and productions re-written. A second restriction is 
for alternative attributes or productions as follows:

coloredjsquare - »  (square=RED| GREEN) ()()

which states that the nonterminal colored-square is either a red or green square. 
The likelihood for colored-square to be red is the same as for being green. An 
attributed plex language does not provide an effective mechanism to control the 
likelihood of certain properties of a non-terminal object effectively. This can only 
be done through the incorporation of a probability into plex productions.

The policemen benchmark provides at its current stage already a very useful mecha­
nism for evaluating and comparing adaptive systems which are able to process graph 
structured information. Nevertheless, the limitations of the mechanism employed 
has stimulating further development in this area. Future versions of this utility 
are expected to incorporate features of a stochastic grammars as well as intelligent 
procedures for adding connecting points dynamically.
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A real world dataset

B .l Introduction

There are many reasons for using artificial learning problems. The most common 
reasons for using artificially generated data are the evaluation of new models in 
a well controlled manner, and the generalization of learning problems which may 
be too specific when using real world data. However, using artificial learning data 
involves the risk of focusing on problems which may not be typical in a real world 
scenario, or even worse, may not even occur in real world. As a result, real world 
learning problems are normally applied to verify the results obtained from using 
artificial data.
This section describes a dataset obtained from a real world problem. We continue 
to use a learning problem from the area of image recognition since it allows us 
to produce a better comparison with the artificial learning problem described in 
Appendix A. In addition, image recognition produces challenging problems which 
are in many cases ideal candidates for the application to adaptive processes for data 
structures. And of course, image recognition allows us to illustrate the problem 
using pictures which help the reader to understand the problem better than when 
using an abstract learning problem.
The problem described in this section addresses the problem of logo recognition. 
The learning task is described in the following section.

B.2 Logo recognition

Logo recognition is the central task for some applications in document processing. 
Thus, the recognition of a company logo printed on the envelope or the header of a 
document supports the effort to classify the document. For example, the task may 
be for a machine to automatically sort incoming mails so that mails sharing certain 
properties are put on the same stack (e.g. one stack to hold orders, another stack 
to receive application forms, etc.).
A data set of company logos has been made available by the Document Processing 
Group, Center for Automation Research, University of Maryland. The data set 
consists of digital gray-scaled images belonging to 39 different instances of logos. 
This set includes patterns with pure text logos, pure graphic logos, and mixed text 
and graphic logos. Samples of the 39 instances of logos are shown in Figure B.l.
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Figure B .l: The original data set of logos. 39 different instances o f logos define 
the 39 classes for the learning problem. The images are scaled to feature the same 
horizontal extension.

Since the original data set contains only one sample for each of the 39 logo classes 
distortions have been added to simulate the case where patterns are obtained from 
photocopying or facsimile transmission. Images were distorted by adding up to 50% 
of random impulsive noise and by rotation up to seven degrees. As a result images 
could vary in quality as shown by the example given in Figure B.2.

Figure B.2: A logo in original condition (left) and with noise added (right).

t m fr !1 ° f  299 ran<?°™,ly distorted versions are added to the original image so that
t e i S t ?  eht  Vt  39 Classes- Hence’ the c lp le te  s f  conlsts 
rest for training. ’ ^  ° f  Whldl are t0 be used for testinS Purposes, the
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A : Original logo

Figure B.3: Graph extraction from a logo using the contour tree algorithm. (A) 
the original logo without noise. (B) Contours detected after processing the original 
image. (C) a DOAG obtained from the original logo.

In [28] suggests a method for graph extraction from company logos. The method 
suggested by [28] is based on a contour-tree algorithm because company logos are 
made up of simple geometrical elements which are often nested. The algorithm 
consists of 4 components which are applied in the following sequence:

Step 1: A Gaussian low pass filter is applied to minimize the effect of distorted 
pixel values. This effectively removes impulsive noise for the greatest part 
but may also remove small (wanted) features of a logo. Hence, the filtered 
image can feature spurious elements that were introduced by severe impul­
sive nose, or may show missing or incomplete elements which were originally 
part of the logo.

Step 2: A contour following algorithm is applied which effectively detects elements 
of the logo. Figure B.3 shows the contours detected by following the tran­
sition among white and black pixels. When a transition is found, the corre­
sponding contour is obtained by following the transition counterclockwise 
until the starting point is met again. Thus, all contours are closed. In 
addition, the contour detection algorithm is insensitive to rotation of the 
original image.

Step 3: A graph representation is obtained by using the contour tree algorithm 
[15]. This algorithm associates a node with a contour. The root of the 
graph corresponds to the most external contour of the image, or the outer 
bounding box if such a contour does not exist. Offsprings of a node indicate 
that a given contour is located inside a contour represented by a parent 
node. An example of a graph produced by this algorithm is given in Figure 
B.3. There, the root node is created by the bounding box of the image. 
The root node is linked to as many sub-trees as the contours which reside 
inside. The complete graph is built by applying this algorithm recursively.

Step 4: In this step, features are extracted from each image contour. These fea­
tures produce a data label which is then attached to the node that represents 
this element. The feature-label is a numerical vector which describes some 
geometrical properties of the contour. There are 12 parameters computed 
for each contour:
(1) The area consumed by the contour, which is the number of pixels sur­

rounded by the contour. This value is normalized with respect to the 
maximum value among all contours.
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(2) The outer boundary of the contour in pixels normalized with respect 
to the largest boundary found in the picture.

(3) The number of pixels found inside the area enclosed by a contour that 
feature a black color value. The value is normalized with respect to 
the maximum number o f black pixels found in any o f the contours o f 
the picture.

(4) The minimum distance in pixels between the image barycenter and the 
contour. This value is normalized with respect to half o f the diagonal 
of the image bounding box.

(5) The angle between a horizontal line and the line drawn through the 
image barycenter and the contour barycenter. The angle is quantized 
in order to reduce the sensitivity to rotation in the image. Eight 
possible values are coded as real numbers in [0,1] with a uniform 
sampling.

(6 and 7) The maximum curvature angle for convex sides, and the maxi­
mum curvature angle for concave sides.

(8 and 9) The number of points for which the curvature angle exceeds a 
given threshold for convex (1st value) and concave regions (2nd value). 

(10) The smallest distance in pixels between the contour and other con­
tours.

(11 and 12) The smallest distance between the contour and the two con­
tours with the largest outer boundary.

These four steps produce a graph presentation for each logo, where each node 
represents a contour of the logo. Associated witch each node in the graph is a 
12-dimensional vector describing properties of the contour such as the area and 
perimeter of the contour, the distance between the center o f mass o f the whole im­
age and that of the contour, the maximum curvature for convex and concave vertex, 
the number of concave and convex vertices, etc. In addition, each tree structure 
is assigned a symbolic class label indicating the class membership o f the original 
logo. In order to increase the flexibility of this dataset, a unique six-dimensional 
binary vector is generated for each of the 39 classes and is associated with the cor­
responding graph. This allows the application to methods requiring numerical class 
labels.

The result o f this operation is a dataset featuring a total o f 11700 graphs, 5850 of 
which are chosen randomly to build the training data set, the remaining 5850 graphs 
build a set for validation purposes. The graphs in the training set features a total o f 
55547 sub-trees (nodes), the validation set collects 55654 sub-tree structures. The 
learning task is to correctly classify the given patterns.

A real world learning problem

B .3 Conclusions

The dataset provided with this logo recognition problem marks a difficult learning 
task since the patterns are distorted with up to 50% impulsive noise. The feature 
and graph extraction mechanism is insensitive to rotation so that the rotation of 
logos is not expected to have a significant impact on the quality o f the data.

Models that are to process this dataset have to demonstrate the ability to encode 
and generalize over a large number of noisy graph structures.
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Literature Review

C .l Introduction

In this appendix, we will give a brief literature review of relevant literature which 
influenced the development of this thesis. We have refrained from performing an 
extensive review of the literature in the body of the thesis because (1) there is not 
much prior literature in this area, as it is a relatively new area of research, and (2) 
we do not wish to break up the flow of the presentation of the work by referring to 
other work, which might not be appropriate. Hence in the body of the thesis, we 
referred to prior work only when we feel that it will enhance the presentation of the 
materials.

The structure of this appendix is as follows: in Section C.2, we give a description of 
the major ideas in processing of data structures prior to 1996. Then in Section C.3 
we will review some of the underlying currents of ideas in between 1996 and 1998. In 
Section C.4, we will review the major breakthrough in this area with the landmark 
publication of the work by Frasconi, Gori, and Sperduti in 1998. In Section C.5 we 
will review some of the interesting work built upon the paper by Frasconi, Gori and 
Sperduti.

C.2 Literature prior to 1996

Probably the first discussion of adaptive processing of data structure problems in 
the open literature was by Pollack [67]. He considered the problem of how to process 
a data structure using a multilayer perceptron. As is well known, in data structure 
representations, the input data might be of varying lengths. In MLP, however, the 
input data must be of equal lengths. Pollack overcome this problem by padding the 
input data vector with zeros where the data length is not of the maximum length.

This approach was quite successful in that it was shown that it is capable of process­
ing data structures. However, there are a number of issues related to the application 
of this idea:

• The resulting MLP architecture appeared to be quite complex. This may 
be related to the padding of zeros in the input vectors.

• The training of the MLP architecture took quite considerable time. Again 
this can be related to the fact that the architecture proposed by Pollack
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requires substantial number of hidden layer neurons in order to represent 
the given data set.

At about the same time, Sperduti was studying a special type of MLP architecture, 
viz., a recursive auto-associative memory [84]. An auto-associate memory is a spe­
cial type of MLP architecture in that it has equal number of inputs and outputs, 
and the number of hidden layer neurons is often smaller than the number of inputs 
or outputs. A recursive auto-associative memory is one which allows a feedback 
from the output to the input. Sperduti studied this architecture, and attempted to 
analyse and understand its behaviour. Sperduti extended this model slightly by al­
lowing the inclusion of a label, which he called a labelled recursive auto-associative 
memory (LRAAM) [81, 85]. This architecture is capable o f handling data struc­
tures. However, it is not too clear from Sperduti’s work what are the limitations o f 
this model L

These were the two major ideas that were proposed in that period.

C.3 L iterature between 1996 and 1998

A breakthrough in the consideration o f adaptive processing of data structures came 
in 1996 with the publication of a little known paper by Goller and Kuchler 2, In 
this paper, Goller and Kuchler proposed a way to unfold a data structure, e.g., 
a graph, into a cascading architecture. This unfolding o f the architecture is very 
similar to one of the main methods used in the derivation o f the training algorithm 
of a recurrent neural network. In a recurrent neural network, one way to derive 
a training algorithm is to unfold the recurrent connection so that it becomes a 
cascaded connection of MLPs. Once the recurrent neural network is unfolded into a 
cascaded MLP architecture, standard training algorithm derivations can be used to 
derive a training algorithm for the resulting architecture. This training algorithm 
is commonly called backprop through time [98, 4], The idea of unfolding the data 
structure is similar. By unfolding the graph structure, it is possible to use techniques 
in the derivation of training algorithms for MLPs to this case. This resulted in a 
training algorithm which Goller and Kuchler called backprop through structure 
(BPTS) [60].

In the meantime, Sperduti continued to work on the problem of adaptive processing 
of data structures, and derived a framework for supervised learning approach [86]. 
This approach uses a MLP model for each node o f the graph. The learning algorithm 
is similar to the one proposed by Goller and Kuchler.

C.4 Breakthrough in this research area

The breakthrough came in 1998 with the publication o f the paper by Frasconi, Gori 
and Sperduti [29]. In this paper, the authors described a general framework for the 
adaptive processing of data structures. The major contribution o f the paper were 
as follows:

• Introduction of a common framework for the consideration o f data struc­
tures.

Sperduti himself analysed the model later, and found some conditions under which 
the architecture is stable [79].

Even the authors themselves did not realise the power of their method until much 
later.
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• By analogy with time invariance in linear systems, the authors introduced 
the idea of structural invariance. Using this structural invariance, the au­
thors were able to deduce that the models in each node in the graph must 
be the same, thus reducing the total number of parameters required to de­
scribe the structure drastically. This idea while inherent in the work of 
Goller and Kiichler, and Sperduti and Starita, was first made explicit in 
this paper.

• The paper also discussed the issue of cyclic graphs and their associated 
processing problems.

This paper was significant in that it gave a framework with which we can view adap­
tive processing of data structures. This paper opened up a new sub field: adaptive 
processing of data structures of which this thesis is part of a continuing push to­
wards further understanding of the properties of these models and the application 
of such models to practice.

C.5 Literature appeared since 1998

Since the publication of the paper by Frasconi, Gori and Sperduti, there have been 
some activities in this new sub-field. The major contributions relevant to this thesis 
are as follows:

• Generalisation of the framework to more general models, in this case, the 
hidden Markov models [27, 30]. This is an interesting piece of work in that 
it was shown the basic model in the graph nodes can be considered to be a 
hidden Markov model.

• The capabilities of a graphical model. Here there were various work, e.g., 
if the neuron in the model is linear [6], if the neuron is binary [36].

• A relaxation of the constraint on the ordering of the children at any node 
in the graph [7]. This was achieved by using an appropriate weight sharing 
mechanism, that guarantees the independence of the network output with 
respect to the permutations of the arcs.

• A universal approximation theorem for such graph models [45].
• Some preliminary investigation of the Vapnik-Chervonenkis (VC) dimen­

sion of the graph models [44]. The VC dimension is related to the learn- 
ability of a model. If the VC dimension is infinite, it means that the model 
is difficult to learn. If the VC dimension is finite it implies that the model 
is learnable.

It should be noted that as far as we are aware, no one has considered the extension 
of unsupervised learning to this type of models. In particular, it appears that no 
one has considered the possibility of extending the self organising map concept to 
this type of models.



186 Literature Review



Bibliography

[1] A.V. Aho and J.D. Ullman. Foundations of Computer Science, pcss. csp, 
1992.

[2] H. Akaike. A new look at the statistical model identification. In IEEE Trans. 
Auto. Cont., volume 19, pages 716-723, 1974.

[3] E. Appiani, F. Cesarmi, A.M. Colla, M. Diligenti, M. Gori, and G. Soda. 
Automatic document classification and indexing in high-volume applications. 
In IJDAR, volume 4(2), pages 69-83, 2001.

[4] A. D. Back and A. C. Tsoi. FIR and HR synapses, a new neural network 
architecture for time series modelling. Neural Computation, 3(3):337-350, 
1991.

[5] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies 
with gradient descent is difficult. IEEE Transactions on Neural Networks, 
5(2):157-166, March 1994. Special Issue on Recurrent Neural Networks.

[6] M. Bianchini, M. Gori, and F. Scarselli. Computation capabilities of linear 
recursive networks. In Proceedings of KES 2000, pages 462-465, Brighton 
(UK), 2000.

[7] M. Bianchini, M. Gori, and F. Scarselli. Processing directed acyclic graphs 
with recursive neural networks. In IEEE Transactions on Neural Networks, 
volume 12, no. 6, pages 1464-1470, 2001.

[8] A.M. Bianucci, A. Micheli, A. Sperduti, and A. Starita. Quantitative 
structure-activity relationships of benzodiazepines by recursive cascade cor­
relation. In IEEE Processing of IJCNN798- IEEE World Congress on Com­
putational Intelligence, pages 117-122, Anchorage, Alaska, May 1998.

[9] A.M. Bianucci, A. Micheli, A. Sperduti, and A. Starita. Application of recur­
sive cascade-correlation networks for structures to chemistry. Applied Intelli­
gence Journal, Special Issue on ”Neural Networks and Structured Knowledge”, 
(Voi. 12, Knowledge Extraction and Applications):! 15-145, 2000.

[10] A.M. Bianucci, A. Micheli, A. Sperduti, and A. Starita. Analysis of the 
internal representations developed by neural networks for structures applied 
to quantitative structure-activity relationship studies of benzodiazepines. J. 
Chem. Inf. Comput. Sci., 41(1):202-218, 2001.

[11] C.M. Bishop, M. Svensen, and C Williams. Developments of the generative 
topographic mapping. Neurocomputing, 21(l):203-224, 1998.

[12] C.M. Bishop, M. Svensn, and C.K.I. Williams. GTM: The generative topo­
graphic mapping. In Neural Computation, pages 215-234, January 1998.

[13] H. Bunke. String grammars for syntactic pattern recognition. In H. Bunke 
and A. Sanfeliu, editors, Syntactic and Structural Pattern Recognition, Theory 
and Applications, pages pp29-55. Ed. World Scientific, Singapore, 1990.

187



188 Bibliography

[14] F. Burbello, S. B. Pollard, J. Porrill, and J. E. W . Mayhew. Retrieval of 
high-level data structures from stereo vision data. Lecture Notes in Computer 
Science, 549:312-??, 1991.

[15] H. Carr. Efficient generation of 3-d contour trees. Master’s thesis, University 
of British Columbia, 2000.

[16] F.H. Cheng, W.H. Hsu, and M.Y. Chen. Recognition of handwritten Chinese 
characters by modified hough transform techniques. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, PAM I-ll(4):429-439, 1989.

[17] D. Cherqaoui and J. Villemin. Use of a neural network to determine the boiling 
point of alkanes. In Journal of the Chemical Society Faraday Transactions, 
pages 97-102, 1994.

[18] P. Colantoni and B. Laget. Color image segmentation using region adjacency 
graphs. In Proceedings of the sixth conference on Image Processing and its 
Applications, volume 443 of IEE, pages 698-702, Dublin, July 1997.

[19] M. Diligenti, M. Gori, M. Maggini, and E. Martinelli. Adaptive graphical 
pattern recognition for the classification of company logos. In Pattern Recog­
nition, volume 34(10), pages 2049-2061, 2001.

[20] B. Ellingsen. Connectionist-based analogical mapping of objectoriented spec­
ifications: A representational scheme, 1997.

[21] J.L. Elman. Finding structure in time. Cognitive Science, 14(2): 179-211, 
1990.

[22] E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: Ordering, 
convergence properties and energy functions. Biological Cybernetics, 67:47­
55, 1992.

[23] S. E. Fahlman. The cascade-correlation learning architecture. In D. S. Touret- 
zky, editor, Advances in Neural Information Processing Systems 2, pages 524­
532, San Mateo, CA, 1990. Morgan Kaufmann Publishers.

[24] S.E. Fahlman. Faster-learning variations on back-propagation: An empirical 
study. In T.J. Sejnowski G.E. Hinton and D.S. Touretzky, editors, Connec­
tionist Models Summer School, San Mateo, CA, 1988. Morgan Kaufmann.

[25] T. Feder. Plex languages. Info. Sciences 3, pages 225-241, 1971.
[26] P. Foggia, C. Sansone, and M. Vento. A database of graphs for isomorphism 

and sub-graph isomorphism benchmarking. In J.M. Jolion, W .G. Kropatsch, 
and M. Vento, editors, Workshop on Graph-based Representations in Pattern 
Recognition, pages 176-187. IAPR, 2001.

[27] P. Frasconi, F. Costa, and G. Soda. A topological transformation for hid-
Ì a / ^ rf ™ m0dels- In Eur°Pean Symposium on Artificial Neural Networks 
LbANN, 1999.

[28] P. Frasconi, E. Francesconi, M. Gori, S. Marinai, J.Q. Sheng, G. Soda, and
'zsLZg°  recoSnition by recursive neural networks. In R. Kasturi 

and LNCb K^Tombre, editors, Second International Workshop on Graphics 
Recognition, GREC(97, pages 104-117. Springer-Verlag, 1997.

[29] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive 
9(5 )e768-785 1998 StrUCtUreS' IEEE Transactions on Neural Networks, Voi

[ ] . Frasconi, G. Soda, and A. Vullo. Hidden markov models for text cate­
gorization in multi-page documents. In Journal o f Intelligent Information 
bystems, (special issue on Automated Text Categorization, number 2 /3  in 18 
pages 195-217,2002. 1 ’



189

[31] J. Gasteiger and J. Zupan. Neural networks in chemistry. Angewandte 
Chemie, International Edition in English, 1993.

[32] C. L. Giles, D. Chen, G. Z. Sun, H. H. Chen, Y. C. Lee, and M. W. Goudreau. 
Constructive learning of recurrent neural networks: Limitations of recurrent 
casade correlation and a simple solution. IEEE Transactions on Neural Net­
works, 6(4):829-836, 1995.

[33] C. Goller and A. Kiichler. Learning task-dependent distributed representa­
tions by backpropagation through structure. In Proceedings of the IEEE In­
ternational Conference on Neural Networks (ICNN’96), pages 347-352, 1996.

[34] R.C. Gonzales and M.G. Thomason. Syntactic Pattern Recognition. Addison- 
Wesley, 1978.

[35] A.I. Gonzalez, M. Grana, A. D’Anjou, F.X. Albizuri, and M. Cottrell. A 
sensitivity analysis of the self organizing map as an adaptive one-pass non­
stationary clustering algorithm: the case of color quantization of image se­
quences. In Neural Processing Letters, volume 6, pages 77-89, 1997.

[36] M. Gori, A. Kiichler, and G. Soda. On the implementation of frontier-to-root 
tree automata in recursive neural networks. In IEEE Transactions on Neural 
Networks, volume 10(6), pages 1305-1314, November 1999.

[37] R. Gould. Graph Theory. The Benjamin/Cummings Publishing Company 
Inc., 1988.

[38] M. Hagenbuchner. The Traffic Policemen Benchmark Software Package. 
http: /  /  artificial-neural.net, 1999.

[39] M. Hagenbuchner, M. Gori, A.C. Tsoi, H. Bunke, and C. Irniger. Generation 
of image databases using attributed plex grammars. In J.M. Jolion, W.G. 
Kropatsch, and M. Vento, editors, Workshop on Graph-based Representations 
in Pattern Recognition, pages 200-209. IAPR, 2001.

[40] M. Hagenbuchner, M. Gori, A.C. Tsoi, H. Bunke, and C. Irniger. Using 
attributed plex grammars for the generation of image and graph databases. 
In Mario Vento, editor, Special issue PRL-Graph-based Representations, 2002.

[41] M. Hagenbuchner, A. Sperduti, and A.C. Tsoi. A self-organizing map for 
adaptive processing of structured data. IEEE Transactions on Neural Net­
works, Submitted in November 2001.

[42] M. Hagenbuchner and A.C. Tsoi. The traffic policeman benchmark. In Michel 
Verleysen, editor, European Symposium on Artificial Neural Networks, ISBN 
2-9600049-9-X, pages 63-68. D-Facto, April 1999.

[43] B. Hammer. On the approximation capability of recurrent neural networks. In 
Proc. of the International ICSC/IFAC Symposium on Neural Computation, 
pages 512-518,1998.

[44] B. Hammer. On the learnability of recursive data. Mathematics of Control 
Signals and Systems, 12:62-79, 1999.

[45] B. Hammer. Generalization ability of folding networks. IEEE Trans Data 
and Knowledge Engineering, 13(2):196-206, 2001.

[46] B. Hammer and V. Sperschneider. Neural networks can approximate map­
pings on structured objects. In Second International Conference on Compu­
tational Intelligence and Neuroscience, March 1997.

[47] C. Hansh and A. Leo. Exploring QSAR, chapter 3. ACS Professional Reference 
Book, ACS, Washington, D.C., 1995.

[48] M.H. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, 1995.

Bibliography



190 Bibliography

[49] S. Hay kin. Neural Networks, A Comprehensive Foundation. Macmillan Col­
lege Publishing Company, Inc., 866 Third Avenue, New York, New York 
10022, 1994.

[50] T. Heskes. Energy functions for self-organizing maps. In S. Oja, E. & Kaski, 
editor, Kohonen Maps, pages 303-316. Elsevier, Amsterdam, 1999.

[51] J. J. Hopfield and D. W. Tank. Computing with neural circuits: A model. 
Science, 233:625-633,1986.

[52] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks 
are universal approximators. Neural Networks, 2(5):359-366, 1989.

[53] R. Jain, K. Rangachar, and G.S. Brian. Computer Vision. mcGraw Hill, Inc., 
1995.

[54] T. Kohonen. Learning vector quantization for pattern recognition. Technical 
Report TKK-F-A601, Helsinki University of Technology, 1986.

[55] T. Kohonen. The ’neural’ phonetic typewriter. Computer, 21(3), 1988.
[56] T. Kohonen. Improved versions of Learning Vector Quantization. In Proc. 

I  J CNN-90, International Joint Conference on Neural Networks, San Diego, 
volume I, pages 545-550, Piscataway, NJ, 1990. IEEE Service Center.

[57] T. Kohonen. Self-Organisation and Associative Memory. Springer, 3rd edi­
tion, 1990.

[58] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78:1464-1480, 
1990.

[59] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Informa­
tion Sciences. Springer, Berlin, Heidelberg, 1995.

[60] A. Küchler and C. Goller. Learning task-dependent distributed structure 
representation by backpropagation through structure. In IEEE International 
Conference on Neural Networks, pages 347-352, 1996.

[61] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantization design. 
In IEEE Trans, on Communication, 1980. COM-28-84-95.

[62] McCabe. A complexity measure. IEEE Transactions on Software Engineering, 
2:308-320, 1976.

[63] W. Pitts W. S. McCulloch. A logical calculus of ideas immanent in nervous 
activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.

[64] M. L. Minsky. Neural-Analog Networks and the Brain-Model Problem. PhD 
thesis, Princeton University, 1954.

[65] G. Nagy and S. Seth. Hierarchical representation of optically scanned doc­
uments. Seventh international conference on pattern recognition, pages 347— 
349, 1984.

[66] F. J. Pineda. Generalization of back-propagation to recurrent neural networks. 
Physical Review Letters, 59(19):2229-2232, 1987.

[67] J. B. Pollack. Recursive distributed representations. In Artificial Intelligence, 
number 46 in 1, pages 77-105, 1990.

[68] R.E. Prather. An axiomatic theory of software complexity research. The 
Computer Journal, 27:340-346, 1984.

[69] T. Reenskaug, P. Wold, and O.A. Lehne. Working with Objects. The OOram 
Software Engineering Method. Manning Publications Co., 1996.

[70] M. Riedmiller. Untersuchungen zu konvergenz und generalisierungsverhalten 
überwachter lernverfahren mit dem snns. Proceedings of the SNNS, 1993.



Bibliography 191

[71] M. Riedmiller and Braun H. A direct adaptive method for faster backpropa­
gation learning: The RProp algorithm. In In Proceedings of the IEEE Inter­
national Conference on Neural Networks, pages 586-591, 1993.

[72] J. Rissanen. A universal prior for integers and estimation by minimum de­
scription length. In Ann. Statist., volume 11, pages 416-431, 1983.

[73] D. Rumelhart, G. Hinton, and J. McClelland. Learning internal representa­
tions by error propagation. In Parallel Distributed Processing: Explorations 
in the Microstructure of Cognition, volume 1 of Computational Models of 
Cognition and Perception, pages 318-362. MIT Press, Cambridge, MA, 1986.

[74] K. Saarinen. Color image segmentation by a watershed algorithm and region 
adjacency graph processing. In International Conference on Image Processing, 
pages 1021-1025, 1994.

[75] S. Schulz, A. Kiichler, and C. Goller. Some experiments on the applicability 
of folding architecture networks to guide theorem proving. In D.D. II, editor, 
Proceedings of the 10th FLAIRS Conference, Daytona Beach, pages 377-381. 
Florida AI Research Society, 1997.

[76] G. Schwarz. Estimate the dimension of a model. In The Anals of Statistics, 
volume 6, pages 461-464, 1978.

[77] H. T. Siegelmann and E. D. Sontag. On the computational power of neural 
nets. In Proceedings of the Fifth ACM Workshop on Computational Learning 
Theory, pages 440-449, New York, N.Y., 1992. ACM.

[78] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis and Machine 
Vision. Chapman and Hall Computing, 1993.

[79] A. Sperduti. On some stability properties of the LRAAM model. Technical 
Report TR-93-031, International Computer Science Institute, Berkeley, CA, 
June 1993.

[80] A. Sperduti. Encoding of Labeled Graphs by Labeling RAAM. In J. D. 
Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information 
Processing Systems 6, pages 1125-1132. San Mateo, CA: Morgan Kaufmann,
1994.

[81] A. Sperduti. Labeling RAAM. In Connection Science, number 4 in 6, pages 
429-459, 1994.

[82] A. Sperduti, D. Majidi, and A. Starita. Extended cascade-correlation for 
syntactic and structural pattern recognition. In R  Perner, P. Wang, and 
A. Rosenfeld, editors, Advances in Structural and Syntactical Pattern Recog­
nition, volume 1121 of Lecture notes in Computer Science, pages 90-99. 
Springer-Verlag, 1996.

[83] A. Sperduti and A. Starita. An example of neural code: Neural trees imple­
mented by LRAAMs. In N .C. Steele R. F. Albrecht, C. R. Reeves, editor, 
Proceedings of the International Conference on Artificial Neural Nets and Ge­
netic Algorithms, pages 33-39, Innsbruck, Austria, February 1993. Springer.

[84] A. Sperduti and A. Starita. A general learning framework for the RAAM 
family. In M. Marinaro and R. Tagliaferri, editors, 7th Italian Workshop on 
Neural Networks (WIRN), Vietri sul Mare, pages 136-141. World Scientific,
1995.

[85] A. Sperduti and A. Starita. A memory model based on LRAAM for associative 
access of structures. In Proceedings of IEEE International Conference on 
Neural Networks, volume 1, pages 543-548, June 2-6 1996.



192 Bibliography

[86] A. Sperduti and A. Starita. Supervised neural networks for the classification 
of structures. IEEE Transactions on Neural Networks, Vol. 8(No. 3):714-735, 
1997.

[87] S. N. Srihari, E. Cohen, J.J Hull, and L. Kuan. A system to locate and 
recognize zip codes in handwritten addresses. In International Journal of 
Research and Engineering - Postal Applications, pages 37-56, 1989.

[88] S.N. Srihari, Y.C. Shin, V. Ramanaprasad, and D.S. Lee. Name and address 
block reader system for tax form processing. In ICDAR95, pages 5-10, 1995.

[89] S.N. Srihari, Y.C. Shin, V. Ramanaprasad, and D.S. Lee. A system to read 
names and addresses on tax forms. PIEEE, 84(7):1038-1049, July 1996.

[90] S.B. Thrun and et al. The MONK’s problems, a performance comparison 
of different learning algorithms. Technical Report CMU-CS-91-197, Carnegie 
Mellon University, December 1991.

[91] A.C. Tsoi. Recurrent neural network architectures: An overview. In C.L. 
Giles and Marco Gori, editors, Adaptive Processing of Sequences and Data 
Structures, pages 1-26. Springer, Berlin, 1998.

[92] A. Turing. On computable numbers, with an application to the entschei­
dungsproblem. Proc. Lond. Math. Soc., pages 230-265, 1936-7. correction 
ibid. 43, pp 544-546 (1937). Reprinted with some annotations in The Unde­
cidable, ed. Martin Davis, Raven, New York (1965).

[93] M.M. Van Hulle. Faithful representations and topological maps: From 
distortion- to information-based self-organization. New York: John Wiley, 
2000.

[94] M.M. Van Hulle. Self-organizing maps: Theory, design, and application. 
Tokyo: Kaibundo, 2001.

[95] V.N. Vapnik. The nature of statistical learning theory. Springer Verlag, Hei­
delberg, DE, 1995.

[96] C.H. Wang and S. N. Srihari. Object recognition in structured and random 
environments: Locating address blocks on mail pieces. In Proc. o f AAAI-86, 
pages 1133-1137, Philadelphia, PA, 1986.

[97] Z. Wang, M. Hagenbuchner, A.C. Tsoi, S.Y. Cho, and Z. Chi. Image classifi­
cation with structured self-organiation map. In IJCNN, 2002.

[98] P. Werbos. Backpropagation through time: what it does and how to do it. 
In Proceedings in IEEE special issue on neural networks, volume 2, pages 
1550-1560,1992.

[99] R.J. Williams and J. Peng. An efficient gradient-based algorithm for on-line 
training of recurrent network trajectories. In Neural Computation, volume 
2(4), pages 490-501, 1990.

[100] R.J. Williams and D. Zipser. A learning algorithm for continually running
fully recurrent neural networks. In Neural Computation, volume 1(2), naees 
270-280, 1989. v '  6

[101] P.K. Wong and C. Chan. Off-line handwritten Chinese character recognition 
as a compound bayes decision problem. In Pattern Analysis and Machine 
Intelligence, volume 20 No. 9, September 1998.

[102] H. Yin and N.M. Allinson. On the distribution and convergence o f feature 
space in self-organizing maps. Neural Computation, 7:1178-1187, 1995.

[103] J. Zupan and M. Novic. Optimization of structure representation for qsar 
studies. Anal. Chim. Acta, 3:243-250, 1999.



Bibliography 193

[104] Michael J. Zyda. A decomposable algorithm for contour surface display gen­
eration. In ACM Transactions on Graphics, volume 7, Number 2, April 1988.



194 Bibliography



Betta Book Binding 
M & D Morrisey 42612998 

26 Fields Street 
Kanahooka NSW 2530


	Extensions and evaluations of adaptive processing of structured information using artifical neural networks
	Recommended Citation

	tmp.1450318985.pdf.NWKre

