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ABSTRACT

The neutron flux in the region of, and below a resonance is
considered. The results of Goldstein which give an asvmetric flux
shape in the region of a resonancegre adjusted to allow for neutron
absorption in the resonance, and gives reasonable agreement with the
computed results. A simple formula for the calculation of the absorpt-
ion in a resonance is developed, and it is found that it satisfactorily
expresses the dependence of absorption on the total scattering cross
section, and the energy of resonance, but gives a greater variation
with temperature than is so. The approximation is found to bhe suitable
for estimating the flux perturbation effects caused by neutron absorpt-
ion. Maximum flux depression occurs at about .2 of a moderator collision
range above the resonance lethargy. Flux perturbations from a resonance
cause slight variations in the absorption by a lower resonance, when the
separation lethargy is about one moderator lethargy interval. This
effect is estimated and compared with calculated values. A wvalue of
about 1 per cent increase in the reduction of absorption is found to

occur for predominan{ly absorbing resonances.



SUMMARY

The introductorv chapter is devoted to the historical develop-
ment of the resonance overlap problem, and the next chapter deals with
the theory of the slowing down of neutrons, the properties of the Breit

Vigner resonance profile, and theory of resonance absorption.

In the third chapter, the approximation for the flux in the
region of a narrow resonance at zero temperature, which was obtained by
Goldstein, is modified in order to allow for the decrease in the neutron
concentration because of absorption. The result gives the correct form
of the below resonance flux, which was the fault in the approximation

of Goldstein.

Perturbation in the flux because of resonance absorption is
discussed at length. An expression is obtained for the shape of a
resonance which would give no flux perturbation, and which gives a single
discontinuous reduction in the flux at the energy of resonance. The
resonance shape is found to be hyperbolic in form. A comparison is made
between the absorption rate for the 'no perturbation' resonance profile,

and for the Breit Wigner profile.

The predominant interest is in the interference of two resonances
when the separation of the resonances is about one moderator collision
interval. A parabolic approximation is obtained for the absorption rate

in a resonance, for zero temperature, and the anproximation is extended

(1)



so as to be applicable to any temperature. The approximation is used to
estimate the amount of flux perturbation caused by absorption in the
central region of a resonance, and this estimate is used to evaluate the
resulting change in the absorption by a second resonance at a lower
energy. The estimates take into account the amount of neutron absorption
in the upper resonance, and also the resulting flux perturbations. The
results are applicable only when the resonances are separated by about

one moderator collision interval.

To verify the analytical work, a programme EXPFAS was designed
to solve the slowing down equation through two resonances. Fach problem
requires a large amount of computer time, and the number of calculations
had to be restricted. The calculations show that the estimate of
absorption in the central resonance region gave a rough estimate of the
absorption in the whole resonance, but the approximation suffers from
an excessive temperature variation. The numerical calculations show
that the flux perturbations from a resonance are successfully predicted
by the method adopted, and the change in the absorption by the lower

resonance is also estimated satisfactorily.

An appendix is devoted to the development of a more general
form of the Placzek function. The method used is similar to that of

Teichmann, but allows for the presence of more than one nuclear species.

(i1)
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1.1 Introduction

)

When the possibility of a sustained nuclear reaction was first
suggested by Turner (1940), which was based on the experimental work of
Anderson, Fermi and Sziland (1939), it was considered that the unknown
amount of resonance absorption could well prevent such a sustained react-
ion. It was also thought that even though such a reaction could possibly
be initiated, the resulting temperature rise could cause the reaction to
cease because of increased resonance absorption. Thus it was imperative

that adequate information on the resonances of fertile material be obtained.

Earlier work bad laid the groundwork for investigations into the
effects of the resonances of fertile material, on the behaviour of possible
reactors. Breit and Wigner (1936) had obtained approximate analytical
expressions for the 'shape' of a resonance, by extending the work of
Voigt (1912) to nuclear structures. The amount of resonance absorption of
a fertile species is dependent upon the energy distribution of the neutrons
present, and Amaldi and Fermi (1936) and Bethe (1937) had considered the
problem of the energy distribution of neutrons when slowing down in a

hydrogen medium.

Considerable work, both theoretical and experimental, was
accomplished in the United States during the period 1939-45, most of
which was not.published except in later review articles. The first
exﬁerimental results on nuclear resonances were ohtained by the Princeton

University group by use of a cyclotron. One of the fundamental results



obtained during the period was that of Placzek (1946). In 1940 he was

able to obtain an analytical expression for the energy distribution of
neutrons slowing down from a mono-energetic source in a homogeneous medium
other than hydrogen. Though the derivation has been improved subsequently
by Teichmann (1960), little use has been made of Placzek's result: ,'VVAICA,
several authors have suggested, . ought to be taken into considerat-
ion. Placzek (1946b) extended his solution to include the slowing down of

neutrons in a weakly absorbing medium.

1.2 Farly Work on Resonance Absorption

It was realised in the early stages of development that a lattice
arrangement of fuel elements would significantly reduce the amount of
resonance absorption, but would also shield the fissile material. Much
work was done to determine the optimum spatial distribution of fuel elements,
during the years prior to the First Geneva Conference on the Peaceful Uses
of Atomic Fnergy (1955). The self-shielding effect of resonances had also
been investigated. The reports delivered during the Conference by workers
from the U.S.S.R. indicated that work similar to that of workers in the
United States, had been carried out by the Russians. Wigner (1955) was the
first to distinguish between the so-called narrow resonances and wide

coddi lese encgh encryy
resonances, the distinction being based primarily on whether a neutron/in
one collisior tTo 'jump' across the resonance. Independent work by
Ggurevich and Pomeranchouk (1955) was fundamentally similar to the work
of Wigner (1955). Early work done by the American, British and Russian
workers established that natural uranium was not a practical fuel unless

it were 'lumped', or else mixed with heavy water.
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In the years immediately following 1955, resonance effects in
heterogeneous media were extensively studied by several workers. Dresner
(1956) was the first to achieve reasonable results in the calculation of
resonance absorption, by evaluating the resonance integrals for homogeneous
media. Independent results, which were essentially similar, were published
by Nordheim (1958), Dresner (1958) and Chernicl and Vernon (1958), and
were obtained for resonance absorption in heterogeneous media. The cal-
culations were based on the infinite mass (IM) approximation for wide
resonances, and on the narrow resonance apnroximation of Wigner, when the
resonances were narrow. Allowance was made for the unresolved resonance

region by means of statistical estimation.

Further development was obtained by Spirney (1957) and Chernick
and Vernon (1958), who introduced iterative procedures based on both the
NR and IM approximations, and were able to improve the resonance absorption
estimates considerably. Rothenstein developed Spinnev's method still
further, and obtained results which involve a method of extensively correct-

ing simpler approximations.

Also subsequent to the First Geneva Conference, was the development
of the Monte Carlo method of studying neutron hehaviour during moderation.
The method is essentially one of tracinrg neutrons from birth till thev
reach thermal enerey, allowing for possible modes of collision. Tt is a
statistical method and requires time consuming computer codes to evaluate

the probabilities of neutron behaviour.

Another development after 1955 was the formulation of approximate

3



analytical expressions for the spatial diffusion (Transport Theory) in
homogeneous and heterogeneous media. From this were developed certain
equivalence theorems, relating neutron behaviour in heterogeneous media,
to the behaviour of neutrons in homogeneous media. Many of the results
were obtained from consideration of Thermodynamic Principles, and have

a wide range of applicability.

1.3 Recent Work on Resonance Absorption

A major development in the study of Resonance Absorption was
initiated by the work of Cohen and Goldstein (1962). They took
as a first approximation, an interpolation between the IM, and NR approx-
imations, which are extreme cases. An iterative procedure was then applied
to the slowing down equation to determine the constants of the interpolat-
ion. Though their work was restricted to Breit-Wigner single level, zero
temperature resonance profiles, the restriction was subsequently removed
by the work of McKay and Pollard (1963), and was further modified by
Pollard (1964). Goldstein and Brooks (1964) extended the interpolation
method to heterogeneous media. Goldstein (1964) and Keane and Dyos (1965)
have done similar independent work on the flux in the region of a resonance,

which is ultimately concerned with the amount of absorption in a resonance.

1.4 Resonance Overlap

Corngold and Schermer (1959) considered the resonance overlap effect
of two resonances. They found that the interference was greatest for a
resonance which was predominantly a scattering resonance, at the higher
energy, and least for an absorption resonance at the higher energy. No
account was taken in their work of any perturbation effects in the neutron

4



distribution.

In August 1963, Codd and Collins presented a paper on their
investigation of the resonance overlap effect of Uy3g and Puy3q, using
the method A of Nicholson (1960). They found that the resonance overlap
formula of Rowlands (unpublished) to which they refer, tOSBM?a reasonably
semi-quantitative estimate of such effects. They also reported on the
numerical evaluationy,by the computer code "Reslow’, of the slowing down
equation through a single U,3g resonance. The perturbation in the neutron
flux at energies below the energy of resonance, so ohtained was suggest-
ive of the Placzek function. Fwang (1963) also presented a paper relat-
ing to work done on the resonance overlap effect for energies greater

than 1 Kev.

The papers of Codd and Collins, and Hwang, which were presented
at a conference sponsored by the Argonne National Laboratory, gave impetus
to the study of resonance overlap, which was considered important because
it modified the previous estimates of the absorption by all the resonances

of a resonant species.

Keane (1965) analysed the formula of Powlands in order to correct
it in the region of greatest error, but at the same time, to maintain its
simplicity. Estimates of the overlap effect were obtained in terms of
Jacobian Elliptic Functions, by Keane when the temperature was taken as

zero. This work has been extended by 0'Halloran and ¥Yeane (1966).



Though work has been done on the problem of resonance overlap, no
consideration has been given to flux perturbation effects and to the
effect of the decrease in the neutron population (because of absorption).
This thesis is concerned primarily with the development of an
approximation for the absorption in the central region of a resonance
which is used to obtain an estimate of the perturbation in the neutron
flux below a resonance, and to estimate the effect of flux perturbation

on the absorption by a resonance of lower energy.

6



2. PBACKGROUND THEORY

2.1 Rasic Assumptions

A neutron does not possess an electric charge and is not subject
to the inverse square coulomb force. So, for even small velocities, a
neutron can approach a nucleus to within the range of influence of the
nuclear forces, and react with the nucleus. The reaction of a nucleus and
a neutron can result in the production of a new nuclear species, or merely
the scattering of the neutron accompanied by deegradation of the neutron

energy, or fission of the nucleus.

The producticon of a new nuclear species may involve the absorpt-
ion of the neutron into the structure of the former nucleus to form a

compound nucleus.

If scattering of the neutron occurs, and thte nucleus is left in
its ground state, the total kinetic energy of the rarticles is conserved

during the collision and the collision is elastic.

"hen the nucleus is left in an excited state, corresponding to

one of the quantum energy states of the nucleus, and the neutron is ,
in the [abo.*wl?wj and cenlre of mass (-n:mw
scattered, the kinetic energy of the particles is not conservedland the

scattering is inelastic. Tor inelastic scattering to occur, the colliding
particles must have a kinetic enerey in excess of the energv correspondine

to the first excited state of the nucleus, which is large. The inelastic

scattering of a neutron degrades the energy of the neutron in large amounts,

-

of the erder /0$e¢



Only elastic scattering and absorptionare to be considered, and
it is assumed that the scattering is isotropic in the centre of mass
frame of reference. The probability, p(E') that a neutron of energy, E,
before collision will have an energy in the range (U',E'+dF') after the

collision is given by Glasstone and FEdlund (1952) as

dr'
E ' 4 ' = T f g 41 ' R
p(E')dE (ioeyT for ofsP's

and p(E")AE' = 0 for E'<aE, E'>F
where a is the maximum fractional energy loss in such a collision and is

given by

A~1,2
o=(at)
where A is the mass number of the target nucleus.

2.1.1 Cross Section

The rate of a particular reaction between nuclei and monoenergetic

neutrons of velocity v, is given bv

No. of reactions _ o No. of Target Nuclei < Yo. of mneutrons

= X
cm3 sec C.‘.TII3 Cm3

where o is the proportionality constant and is termed the microscopic cross
section for the reaction being considered and has dimension of cm?. Cross
sections are usually given in barns instead of cm?, where

1 barn = 10~24 cm?,

An eguivalent expression for the cross section is given by

Fraction of target nuclei reacting per second
n v

where n is the number of neutrons of velocity v per em3,

8



2.1.2 Slowing Down FEquation

In an infinite homogeneous medium, under slowing down equilibrium,
the rate of removal of neutrons from an energy interval (E,E+dF) is equal

to the rate of neutron replacement. Thus

n JE/ai Z_ $(E")CE

I, ¢(E)dE = ;
¢ iZl E (1-e;)E

dE + S(E)AE , 2.1

where
(1) Zt ®(F)dE is the rate of removal of neutrons per unit volume,
from the energy interval (E,E+dE), Zt being the total of all macroscopic

cross sections of the n nuclear species present and is given by

n
Xt B .z (Zai+zsi) i
i=1

3

E/ai
(1) [ I, (F') dE' dr
E ) (l—ai)E'

is the rate per unit volume at

which neutrons enter the energy interval (F,F+dF) after having had the

. . .th .
last collision with a nucleus of the i~ nuclear species,

(iii) S(E)dE is the rate per unit volume at which neutrons are produced,

wilh an initial energy in the interval (E,I+dF),

(iv) Zsj and Zai are respectivelv, the macroscopic scattering and

. . .th . . )
absorption cross sections of the i nuclear species (which may be functions
of neutron energy), and

(v) ¢(®) is the neutron flux.

Fquation 2.1 is often more conveniently expressed in terms of
the lethargy, u, defined by

u = Qn(EO/E) ,

9



where FO is any specified energy usually taken to be 10 MeV. In terms of

the lethargy ecuation 2.1 becomes

Zqi¢(u') ~(u-u')
—_— e du'du+S(uw)du .

3]

Ju
i=1 ‘u-on 1/a; 1-og

2.1.3 Slowing Down Density, q(F)

The slowing down density is defined to he the number of neutrons
slowing down to below an energy F, per unit volume and time, and is shown

by Glasstone and Fdlund (1952) te be
n (Flo.
1 F-0gs+F'
) = 'Yy LA L .
a(F) Z] J L ;0" Cecry i an 2.3
E

By differentiating equation 2.3 and using eauation 2.1, we get

d a(F) - ?

T s
ar 121

Zai¢<F) - S(F) 2.4

or, in terms of lethargy

d alu) _ _

(u) + ¢ 2.
E Zai¢‘”’ (u) 5

ho~3

i=1

2.1.4 The Average Logarithmic Fnergy Decrement, £

The average logarithmic energv decrement (or average gair in

.. . th . .
lethargy per collision), for the i nuclear species, Ei, is expressed

by
+Q’ i 1
£ = " 8 l/al }L'_:u. e’(ll'"ll)a []
>4 l“(‘j,. > U
u 1

10



and so,
o,

i
£y = 1 - - 2n l/oci . - 2.6
i
An alternative expression for Ei is given by
E
Blay r-a F'
gi = - — dE' . 2.7
E (1-ui)E'2

2.2 Asymptotic Solution of Slowing Down FEquation

In a non-absorbing medium, equation 2.1 reduces to

n ru e—(u-u')
z J I .o — - du' + S(u) . 2.8
si 1-a,

u-24n 1/0Li i

o~

r .0 =
i=1 i=1

Application of the one-sided Laplace Convolution Theorem, gives
n n _
Lo 1 otyb= Tem/[{oz )+ 50
i=1 i=1

where

Ly}

v(p) = J e P¥ y(u)du
[e]

l—aip+l
1) = Ty D)

and

On the assumption that the scattering cross sections are constant,

equation 2.8 can be rearranged to give

n l1-a ptl

—— Y < i
T L {s} =5sm) + S(p)iz1 (T-oy) (p+D) oi 2.9

+1

l—a.p
i

2 Z‘%l
1- ) == -
i=1zs (l-ai)(p+l)

n
where r = Z X

11



The second term on the right hand side of equation 2.9 has a
simple pole at p=0, and is the pole with the largest real part, and gives

the dominant term for large u. The residue at p=0, is by L'Fopital's

Rule,
2ni 0 27i
) T F Lo
}og st Fs
i 7
=1 * s
_ n
where ToE= ) &Y . . 2.10
S 1.=1181

The inversion of equation 2.8 for large u is

u
T 6(u) = S(u) + J CIC) RN 2.11
S o g

If ug is the largest lethargy at which neutrons are produced, then when

u>ug, equation 2.11 can be expressed as

s o(w) =0 2.12
) £
where n = J S(u)du .
source

The full inversion of equation 2.9 is discussed in Appendix A.

2.3 Resonances

For the reactions of interest when a nucleus ahsorks a neutron,
a compound nucleus is formed, which may not he in its encrgy ground state,
depending on the energies and momenta of the colliding rarticles. If
the energy of the incident neutron is such that the compound nucleus

would have an excited energy near one of its quantum states, the reaction

12



rate, and hence the cross section of the nucleus is large. A resonance
occurs where the cross section is large corresponding to some quantum
state of the compound nucleus. The large value of the cross section does
not occur at a precise neutron energy, but is spread over a finite width
of neutron energies because of Heisenberg's Uncertainty Principle, and

also because of the spread of the thermal energies of the nuclei.

The compound nucleus will decay to a more stable form by the
emission of energy. Three possible modes of decay are considered:-
Channel 1: A neutron is ejected, the resulting nucleus being of the
same nuclear species as the original nucleus. If the incident neutron
energy was not large, the final nucleus would be in its ground state
(because the inelastic scattering threshold is high), and the overall
effect would be an elastic collision. This resonance scattering is
distinct from the normal collision or potential scattering, and the two
types are here denoted by the subscripts s, and p, respectively.

Channel 2: Some particle, other than a neutron is ejected, resulting in
the formation of a more stable nucleus, which may undergo further dis-
integration subsequently. The effect is to remove the neutron from the
neutron population.

Channel 3: The compound nucleus disintegrates by fission which produces

neutrons at source energies.

If Ai(i=l,2,3) is the disintegration constant for the ith dis-

integration channel, the partial width Pi is defined as
Ty =k)‘i

where h,is Planck's constant.



The standard symbols used are:-

The total width of the resonance is defined as
r=T 4+ T 47T
n Y f

and has the dimension of energy. The absorption width Fa, is

r = +
a FY Ff

since both channels 2 and 3 remove the neutron. The probability

that the compound nucleus will decay via the ith channel is

I.

-7% (i=1,2,3) .

Weinberg and Wigner (1958) and Dresner (1960) discuss the

preceding ideas in greater length.

2.4 Flux in the Region of a Narrow Resonance

Following Horner (1966) and combining equations 2.3, 2.7 and 2.8,

we get
E/ai ' ' ' '
r L .(E')¢(E') (E-a, E") L . Z (E)¢(E)(E-a,E")E
T - si i __pi_t 1 '
q(E) £ ZrE¢ iZlJE (l-ai)E' Zp (l—ai)E 2 }dE
n Egi E dE'
=1§11E {z_ (E")¢ENHE"- : Zt(E)¢(E)E}?IiE;7€*?
n o E/Gi X dE .
i ' 1 v _ _Ri ______L«_
—izl JE {Zsi(E )¢(E )E Zp Zt(E)¢(E)E}(1‘Gi)E'
2.13

14



Except for a factor E the first summation on the R.H.S. of equation

2.13 may be written as

E/a ' ' . B /a
=1 °F (l—ai)E i=1 p (1-a1) E E
n E/ai zsi(E')¢(E')dE'
=izl E (1-a)E’ - I 6(B)
=0

by virtue of equation 2.1, since S(F) may be taken to be zero in the

resonance region.

The integrands of the second summation of equation 2.13 differ
from the integrands of the first summation by a factor E'. Consequently
if the values of Zsi and Zai are appreciable over only small ranges of E',
that is, the resonance is narrow and remote from other resonances, or if
E' is large, the second set of integrals do not differ appreciably from
the first set, and the second summation of integrals must be close to
zero, and to small error can be put to zero. Hence

q(E) = € I Eé 2.14

which is the narrow resonance approximation.

2.5 Resonance Escape Probability

On dividing equation 2.5 by g(u) and integrating we get
S 2 -——*l—~ du'

qlu) =0 e 1370 2.15

where QO is the strength of the neutron source, Zaii is the absorption

. .th
cross section of the j resonance of the ith nuclear species and the

15



summation over j covers all resonances which have absorption in the

range 0 < u' < u.

If pij(u) denotes the probability that a neutron reaches
lethargy u, without absorption by the ijth resonance, and if p(u)

denotes the combined probabilities for all the resonances, then

- E ) Ju zaiizuz¢(U) du
P g(u
gigl = plu) =e THIT0
_Ju Zaij(u)¢(u) i
n o q(u)
= J I e
i=1 j
n
= 1 Top,, . 2.16
i=1 3§

For regions where the neutron lethargy is well below lethargies

of resonance, ¥ and £ ,, are small, and using equation 2.14 in the
aij sij
form
o(w)  _1
a(w) Tz,
we get u zaij du
Py; = exP {—JO E : ] 2.17
£z + (Z_,.+z_ )]
P 4o 3 aij sij
and
p(u)x —2 pé“) . 2.18
E[z + ) ) (T .. 4T . )]
i=1 j aij sii
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The values of 4(u) are, at extreme values of u, given by

0
¢(0) =
Z’Zp
oy = 0P
¢( ) ’g Zp ’

which are the correct asymptotic values.

2.6 Breit Wigner Line Shape Function

The profile of a resonance about the resonance energy Er is

assumed to be the Doppler Broadened line shape function of Breit Wigner:

W(X,e) = dy ’ 2.19

L e~£62(x—y)2
J_m I+y?

. _r A
where (i) g = 2¢/ErkT

(ii) T is the absolute temperature of the mixture
(iii) X = (E—Er)/ r/2
(iv) k is Boltzman's constant.

The resonance absorption and scattering profiles are given by:

r
= 3
o, T 9 v(x,0) 2.20
'n 2.21
o =T % v(x,8) , .

where % is the peak height of the resonance profile and is

2.608 x 10° ¢ r_

Oo = TR 2.22
r

g being the spin factor of the target nucleus.

2.6.1 SomeProperties of the Function ¥ (x,0)

The integral ®
rnresra fw(x,e)dx

- 17



can be evaluated by using 2.19, and by reversing the order of

integration. Thus

J V(x,8)dx = 7 .

If the auxiliary function

-£62(x-y)?
1+y 2

e 00
6(x,0) = [ IEe dy 2.23
A%

0

is defined, then as Y(x,6) is an even function of x, while ¢(x,8) is
an odd function of x, the Fourier Cosine, and Sine transforms give,

respectively

-s-s2/02

vs;c{w(x,e)} /n/2 e

2.24

ra—a? 2
yn/2 e °°° /® , 2.25

Folox, 0}

Inversion of the equations 2.24 and 2.25 give the alternative

expressions
P _e—s2/p2
v(x,0) = J e °7° /6 cos sx ds 2.26
o
® _a_a2/p2
and ¢(x,0) = J e 578 /6 gip sx ds . 2.27
0
When x = 0,
v(0,8) = eeZ/4 Jw e—(s+£62)2/62
b
0
2
= 3/ o e® % erte 072 2.28
and
$(0,6) =0 2.29

18



Corresponding to zero temperature, 6 = o, we have

Y(x,=)+i ¢(x,%)

m ]
-s isx
e e ds
o}

- 1+ix
1+x2
so that
1
v(x,») = T2 2.30
X
and d(x,») = TZ 2.31

2.6.2 Differential Equation for ¥(x,6)

If the equations 2.19 and 2.23 are integrated by parts we get,
2 3 ¥(x,0)

X lp(x,e) = ¢(X96) = —e—f 3% 2.32
and
x $(x,8) =1 - ¢(x,0) - s%_%k¢(x,e) 2.33

Differentiation of equation 2.32 yields

x 3 ¥(x,0) . = 3 ¢(x,8) - ¥(x,0)

% """P(X,G) 2.34

2 22
EE.QXZ

3 ¢(x,0)

x can be eliminated from equation 2.34 by

The quantity
use of equation 2.33, and from the resulting equation, the quantity
¢(x,6) can be eliminated by use of equation 2.32. The end result is

v o= 4 Lot - ezxw'-(2+62+ezx2)w%" 2.35

where the primes denote differentiation with respect to x.

A similar differential equation can be obtained for the function

¢(x,08) using a similar method.



By differentiating equation 2.35 the third derivative of ¥(x,0)
is expressed in terms of the lower derivatives, and is by virtue of
equation 2.35 expressible in terms of ¢ and y'. This argument can be
extended to the nth order derivative. Thus all derivatives of y(x,6)
at any point X, can be evaluated if w(xo,e) and w'(xo,e) are known.
The value of ¢y at x=0 is known by equation 2.28 and ¥'=0 at x=0 since
the function ¢ is an even function. By use of a Taylor's series, values

of ¥ and its x-derivatives can be calculated for all x.

The numerical procedure for calculating y adopted by Pollard
(1964) is to obtain values for ¥, ¥', ¢", ¥"" by using a truncated
Taylor expansion by stepping out from x=0 and evaluating the derivatives

(up to the third) at each point.

2.6.3 Asymptotic Series for Y (x,0)

Though a numerical technique was discussed in section 2.6.2 for
the evaluation of Y(x,6) for all x, the stabhility and accuracy of the
method depends on the choice of step length and the number of derivatives
used. For high accuracy for large x, the method becomes cumbersome, and use

is made of asymptotic series.

—c2/p2
By expanding the term e s°/8 in equations 2.26 and 2.27 we get

o0 [e ] n _
v(x,0) = ) J (- s%) o1 g2 78 cos sx ds
o !

n -
1 i%_SZn e S sin sx ds .

.

and ¢(x,0) =

2
e~ 8
o
—
] 8

—
|
S
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Hence we have

c [T 1™ 1 2n -s -1
P(x,0) - i¢(x,0) = ) J (- 570 s T e™8 oTISE ax
n=0 ‘o '

which is a Fourier transform giving

o0 n 2n
: .7 D71 a™
b(x,8) - 16(x,0) = 20 7n ol | 2n 14ix 2.36
= B dx
and
0 2n
v (DT 1™
b(x,0) = ] 2n n! _ 2n 14x? 2.37
o © dx

However, the asymptotic series for both ¥(x,8) and ¢(x,9)

are best obtained using equation 2.36, the general result being for

b (x,0)
0(x.0) ff (—;zln (ir!l)! {23 Dk 2 2k ) a8
o =0
and the first three terms of the series are
U(x,0) = “i'_’_lk'z‘ {1+ (3%2-1)+(15x%2 (x2-2)+3)V]} 2.39
where vV = ('"1‘.’"_*3;2")"2“ 6_22_ .
When x is sufficiently large, further truncation is possible to
give
0(x,0) = 7 2.40

2.7 Effective Resonance Integral

On the assumption that, in parts of the analysis for an isolated
resonance p(u) is close to unity, q(u) does not change appreciably over
the resonance; then to first order of approximation, using equation 2.14,
we have

$(E) = Q/&EZt
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for a single resonant species mixed with a moderator.

The absorption per unit volume would be
E E 5
QJO a___dv

(o]
j I, ¢(E)dE = T T+ v E
o p ‘a’'’s

After dividing both top and bottom of the right hand side by N, the
number of resonant nuclei per unit volume, an equivalent equation is

obtained in terms of the microscopic cross sections. For o, and o _,

-

their values from equations 2.20 and 2.21 are used to give

r

a
N JE o_ ¢(F)dE = Q.JEO T % "050 g
) O +o UG 3
5 @ £, op o, v(x,0) F
_of*a _vex,0) ar
E‘Jo I' B+y(x,0) FE
o}
where B = ER- and Up is the scattering cross section of the
o :

mixture per resonant atom. The absorption in the resonance is taken

to be
r )
g,_i. J _U(x,0) dx 2.41
g 28 ), BHU(x,0)

where the limits of x have bheen extended to * « because the limits 0,E

correspond to such large values of x, that extension of the limits to

; . 1. . . s
+ »© gjves negltgible contribution to the integral, and T in its explicit
1 1 . .
form is put equal to P since T varies little through the part of
Jr t

the resonance providing the major contribution to the integral.
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The quantity

' o 0
=.4.p Y(x,8)
I E_ JO B+ (x,0) X 2,42

is termed the Effective Resonance Integral. The function

_ ® ¥(x,0)
J(6,B) = JO B+ (x, 0) dx 2.43

has been tabulated by Dresner (1960) andothers.

2.7.1 Some Extreme Values for J(6,R)

(1) When T=0,

Vo) =

and substitution in equation 2.43 yields

” 1
J(~,B) J — e dx
o 8(*EE?)

m/2/{8(1+B)} . 2.44

(ii) When B is large, or when T is large we have
B >> y(x,0)

since v(x,6) <1

and for large T,

v(x,0) =0 2.45

R

hence J(6,B) J b(x,0) dx
0

B

R

m/28 . 2.46
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(iii) When g is small, over the central region of a resonance

the integrand becomes

b
]

and can be replaced by

1
l+x2
1
1+x2 + B

n
=

and when x becomes large in the wings of the resonance

hence the integral is approximately equal to

1
® Ta.7
I —-—-1—431— dx = n/2{B(1+B)}
o8B+ 1+x2

and as B is small

J(6,B) = w/2VB . 2.47
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3. _FLUX DISTURBANCE DUE TO A RESONANCE

3.1 Introduction

The Narrow Resonance (NR) approximation assumes that the flux in
the region of a resonance is given by the relation

z E) =1 F) = =
() = T o (1) = =

where ¢0 is the flux in the abhsence of any resonances. As the total cross
section, Zt(E), is symmetrical about E=Er , S0 also is F¢(F) for the NR
appr;ximation, but F¢(F) cannot be symmetrical because of neutron depletion
due to absorption. Further, any absorption and anv change in the ratio of
the scattering cross sections of the nuclear species present give rise to
perturbation effects. So, for a resonance, apart from the asymmetry in

E¢ (E) caused by the reduction in the neutron population, asymmetry is also

present because of perturbation effects.

Goldstein (1964) and Keane and Dvos (1965) independentlv obtained
expressions which give an asymmetric flux in the resonance region. TFor
the expressions obtained, the below resonance flux, considered as a functio
of u, returned to the above resonance value, indicating that the expression:
do not take neﬁtron absorption into account. Goldstein showed that a flux
shape which would approach the correct below-resonance value could bhe

obtained by considering the resonance as a negative source.

3.2 A Resonance as a S§-sink

If the width TI', of a resonance is reduced in such a way that the
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resonance absorption probability remains constant, the resonance becomes
a 8-sink of magnitude (1-p)Q, p being the resonance escape probability

which also remains constant during the limiting process.

The flux resulting from a S-source of magnitude S, located
at u. is given by

S
hX PZ(u_ur)

and so the flux in the region of a §-sink is

L6 = % {1 - Ta-p) P, (u-u)] 3.1

The general expression for the Placzek Function, Pn(u) is
derived in Appendix A and is expressed by equation A4. It is to be
noted that the subscript denotes the number of different nuclear species
which are considered in the slowing down of neutrons. In section 2.2,
an expression, equation 2.12, was derived for the asymptotic value of
Pn(u), namely

P) = .
In the region

0 <u<3in 1 ,

o1
where the subscript 1 refers to the moderating species, the function
Pn(u) fluctuates about its ultimate value. When u >> U, equation 3.1

reduces to

Zt¢(“)=%p, 3.2
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and also as 2aq 7 Zs” O when wuur,

k4

v =
t z:p’
giving
0
) = = 3.3
p¢ F P

which is the correct limitine form of the below resonance flux.

3.3 A Resonance as a Nepative Source

The infinite mass (I!}M) approximation assumes that a resonant
nucleus is of infinite mass, and so, the collision of a neutron and
a resonagntnucleus does not degrade the energv of the neutron and the
resonanl nuclei do not contribute to the slowine dovmn of neutrons.
Fquation 2.1 could be written using the IM approximation,

i -(u-u')

e 1
= S e + ¢ -
Z.‘ 0] Z. 1d>, 1 du (u) Zadp

-n 1
u /al
where the subscript 1 refers to the moderator. On rearranging the

Laplace transform of this equation

Lz, ot =50 + EO 54y - (n e} - FR {r o)

1-¥(p)

Inversion gives,

Lo = S(u) + J: Pl(u—u') S(u') du' - J: Py(u-u’) T ¢ du'
and for regions well below the source,
S(u) = 0, Pl(u—u') = %‘,
and so,
0 u
Zt¢ = Eﬁ- j Pl(u—u') Za¢ du' 3.4

o
Fquation 3.4 includes flux perturbations caused by the moderator,
and if Pl(u) is replaced by Pz(u) some of the flux perturbation effect

caused by the resecnant species will also be present. Thus
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u
z.6 = % - f P, (u-u')L ¢ du' 3.5
(o]

This equation is not exact. Consideration of the more general
(Q(i’ oation 14 )
form of the slowing down equatioqiwith the two integrals on the right
hand side, corresponding to the two nuclear species present, leads to

a transform which is not amenable to inversion to a suitable form.

When u >> u. Pz(u—u') can be replaced by its asymptotic
value:% , using equation 2.12, since Pz(u—u') will be near its asymptotic

value in the region where Za and ZS differ appreciably from zero. Hence

u
:g_.l !
Zt¢ TTT Za¢ du 3.6
o
which gives the correct form of the below resonance flux, namely
X =g
p? TE P

in agreement with equation 3.3.

3.4 Resonance Profile for no Flux Perturbations

Computer codes which calculate the absorption by a species over
the whole range of lethargy take into account only the coarse structure
of the flux and allow in essence for discontinuous reductions in the flux
at the energies of resonance. It is of interest to obtain an expression
for the profile of a resonance, so that the fine structure, as well as the
coarse structure, of the flux is to consist of a discontinuous reduction

at the energies of resonance with no resulting flux perturbations.WenmudofAS\

If (zp+zs)¢ is to change only at u=u_, by an amount (1—p)¢0,
where ¢o is the flux above a particular resonance and p is once again the

resonance escape probability, then
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(B g+ )6 = B ¢ (1-(1-p) H(u-u.)) 3.7

Assuming the presence of only one species of nuclei, and

combining equation 3.7 with the equation

u e~(u—u')
(za+zs+zp)¢ = J (zs+zp)¢ T du' + S (W)
u-n 1/o
we get
-(u-u)) -(u-u_-2n 1/a)
1-
Za¢ = i:ii,zp ¢o {(e r ~a) H(u—ur)+a (1-e r )H(u—ur—ln l/a)}

3.8

The right hand side of the ahove equation is a non-zero function
over the range (ur,uf+£n 1/a), and zero elsewhere, and eaquation 3.8 can

be modified to read

L (1-p) ~(u-u )
T =~ ¢ (e —a) H(u—ur) H(ur+2n 1/a-u) 3.9

—(u-ur)
Zp(e -0
= e e T(u-u_ ) F(u_+2n 1/o-u) . .10
Za T “(osu ) (u ur) "(ur ¢n 1/a-u) 3
(1-o)p ' n ( r )
ME:B- - ra e -a

Tt is to be noted that the absorption cross section is a function

of o and Zp, which are parameters relating to the moderating species.
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If we make the substitution

_ Z(E—Er)
x= T
then
: (- ¢ 1-0)
P 2Er
Za = T Hl H2 . 3.11
Q'_'_a_)ﬂ_.ﬂ (_}_}{_1"__*_ (1_a))
l-p r 2Er

where Hl’ H2 are the Heaviside functions of equation 3.10.

The function defined by equation 3.11 is a section of a rectangular

l - I

- (P___n
x (1_p - = 3.12
a n
-£ T
y = —2 -2 3.13
a Fn

The largest value of Za is when x = 0, and is

£

z, = ——-—Jlir- . 3.14
max p __n
1-p PY

In Fig. 1, a comparison is made between ca¢ given by equation
3.9 and da¢ for the Breit Wigner profile for zero temperature and resonance
parameters corresponding to the 6.7 ev resonance of Ujy;3g. The value of

l1-p is taken as

r
a

™
2E_E Y{B(1+R)}

1-p =

and the expression for ca¢ for the Breit Wigner profile is

r o0
a O p

o ¢ =— d .

a I' 0 40 +x%0 ‘o
o p P
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The parameters used for the two sets of curves were

T = .207 E.=6.7 ev
o = .64 T, = 25 x 10 Sev
T = 0% r = 1.6%10 ev

The curves indicate that, for a concentrated mixture, the profile
of equation 3.9, and the Breit Wigner profile have similar peak values, and
both give appreciable absorption over a wide range of energy. WHowever, for
a dilute mixture, the peak values of absorption are quite different. The
Breit Wigner profile gives appreciable absorption over only a small section
of its infinite range, while the 'no perturbation' profile gives appreciable

absorption over all of its finite range.

3.5 Flux Through a Resonance

Goldstein (1964) derived an expression for the flux in the region
of a resonance. The expression gives the same value for the flux below,
as above, the resonance and this obviously does not allow for the depletion
of the flux due to absorption. An alternative expression which allows for

flux depletion is derived in this section.

Briefly, Goldstein's method is an iterative procedure based on a

modified form of equation 2.1

-(u-u'"), ,
u (Zp2+ZS)¢ e du

(l-az)

b= Iy 0 ¥ J 3.15

Equation 3.15 is a NR approximation with respect to the moderator, and is

u-£2n l/a2

based on the result
~(u-u'")
u '
J §P1 © % du ;
u-¢n 1/a] 1““1 pl "o
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which is so, because over most of the range of integration, the flux

¢(u') = ¢

(o]

(being off resonance).

On the assumption of a Breit Wigner single level resonance
profile for zero temperature, Goldstein took the first iterant as the

NR approximation

2
. - ZP ¢ ) ¢, (1+x%)
1 Lt 812 +x?

3.16

o}
where, B2 =1+ 2, 3.17
1 o

p

The second iterant became

~(u-u')
u (r 4T )d T e -
p2 s"'o p du’
o =1 . ¢ + J = 3.18
t pl "o u-24n l/a2 a 0L?,)Zt
=75 ¢ {1+n[tan_1 X0 tan”? 29} 3.19
p ‘o B B
1 1
ZEr(1~a2)
where § = B s
and BR=o /o >
p o
2 _ 2
o Opl(Bl B<)
G%1+0p2)616

The term tan"1 ziﬁ-on the right hand side of equation 3.19 is

By

symmetric about

X = -2
2

The asymptotic value of the flux for large u is ¢0, whereas it
should be p¢o, where p is the resonance escape probahilitv. The Goldstein

result does not include the flux decrease due to neutron absorption.
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To modify the result of equation 3.19, allowing for the reduction
in neutron population, we first use the NR flux of equation 3.16 as a first

iterant in equation 3.6. The second iterant becomes

¢ T o
0 a 1
¢, = - {1 -—= J T T dx
2 Zt { ZBEEr % 31 +x }
where the usual approximation is made to the integral. Hence
r
a i -1
z = I l - 5—— [+ - tan X 3.20
t ¢2 P ¢o { ZBBIgEr (2 /Bl)}

Further iteration gives additional terms which have as coefficients

r
higher powers of —a . The rate of convergence of the iteration
2EBR1E, r
procedure is determined by the value of ~==Ft—— , which is smallest when
2ERB1E,

the mixture contains only a small amount of resonant material.

If, now, we use the approximation of equation 3.20 as a first

iterant for Goldstein's method, the second iterant hecomes

r =
-1 x+§ -1 x a
z =X ¢ {liian —— -~ tan — 1 - =
r u z -(u-u')
+ —=2 Zp¢o {J ‘Plz 1= tan 1 éa-du'
2&818Er u-2n l/oc1 1 1
— '
u (Z+I ) e (u-u’) 1.
+ J 7 (i—a ) tan E—-du'} 3.21
u-2n 1/a t 2 1

The integrals of the last equation can be approximated and
simplified by giving the term tam"1 é§-its value at the mid-point of the
“1

integration range. By this procedure the integrals of equation 3.21 reduce

to the same form as that of equation 3.18. Uence

-1 x+6 -1 x a
Lo =12 ¢ {1+n (tan > - tan — {1l - = }+
t po 81 31)( 45818Fr)}
r X
_a -1 71 -1 %2 -1 x+§ -1 x
= X t — - a2r9 -
28 BEF, p¢o{ an ) + ntan 5 (tan e tan Bl)} 3.22



A
x(1+ai)+‘

et ——

where X, =
i Zai

It is of interest to see whether the flux predicted bv equation
3.22 is in agreement with the correct flux values in regions well removed

from the resonance. When x > + o«

Fa T Fa T
e? T 0 T 0 (- m) " et 4E6R R,
= zp¢o
and when x »> - «© |
' =
Zt¢ - Zp¢ - ZP¢° {l ) ngggzg}
=~ p prbo

The expression for the flux will go to the correct asymptot{c

value on condition that the NR approximation can be used, i.e.

Fa L
——— =1 -~ p.
2631£Fr ‘
Fa m
The quantity ———=— could be replaced by 1-p in equation 3.22,
2BB1EE,

so that it no longer depends on the NR approximation. The modified form

of equation 3.22 would give the exact flux value below the resonance.

In section 7.2 (p.60) the predicted value of the flux obtained by
use of equation 3.22 is checked against the flux obtained bv numerical
solution of the slowing down equation. The agreement is to within 47
and equation 3.22 is considered to be a better approximation than

equation 3.19.
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4. APPROXIMATION FOR ABSORPTION IN CENTRAL RESONANCE REGION

4.1 Introduction

The shape of the Placzek function would suggest that evaluation
of equation 3.5 would give a flux depression near a lethargy greater by
n 1/al,than u_. In Chapter 3, this possibility was ignored by

taking

Evaluation of equation 3.5 is not possible because of the complexity
of the functions forming the integrand. Polynomial approximation for the
quantity Za¢ would allow evaluation of the integral, but for high order
polynomials, the result is quite complicated. In the interests of
comparative simplicity, and in order to use Simpson's integration rule,

a pair of parabolas symmetrically placed about E=Er is used for
approximation purposes. Since only the central region of a resonance

gives a large flux perturbation effect, an approximation is obtained for

the central region only.

4.2 Parabolic Approximation for Za¢ , at zero temperature

It is to be noted that the points x=0,1,2,3; y=1,.5,.2,.1

lie on both the curves

1
= l+x2
and 10y = (x-3)2+1 .



The slope of the parabola is zero at x=3, and the areas under the

curves for 0<x<3, are 1.23 and 1.2 units respectively.

The absorption reaction rate, for a resonance, using the

NR flux approximation, is

o

N Ta p
¢ = ¢
a r Er (1+%)+x2 ©

where 8 is again o /o .
p o

1f we put V1+1/8 z=x, then

ag
_ N Fa p 1
2= 7 Er (1+1/8) 1+z¢ %

which we may approximate as

5 N ', O’0 OP j)ﬂ {( _3)2+1} O<r<3
a¢ r Er oo+0p 10 ¢ » USRS,

— {(z+3)241}, 02r2-3.

4.1

4.2

4.3

4.3 Parabolic Approximation for Za¢, allowing for Temperature

In order to obtain a parabolic approximation for Za¢ for any

temperature, it is necessary to first reduce the function

y(x,0) .
0p+oo Y(x,0) (1)

by approximating to a standard form

we? @y

whence the results of the previous section can be apnlied.

to be of the form

E-E
r

~G/2
estimates of the quantities ¢, and G are needed.
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Applying the criterion that the two values of functions (i)

and (ii) are to coincide at E=Er, it follows that

b
e 4.5

+
op Oo wo

c=

where wo = ¢(0,0).

If, in addition, the function of ¢ corresponding to ¥(x,8) is to

have the same integral over the range x = *», as has Y(x,0); then

It

b

* c ” v(x,0)
J~;T:ggg;gy dx J dx

00 Op
and as Gdtr=rT4dx
+ 0 ¢ G
so, J_m itgizizy ?'dg = 7.
Hence

ccG ™
D .
;(l~GOC)F

and using result 4.5, gives

F/(§p+oo wo)

G = 4.6
/op v,
When T = O, wo = 1.
V(o +0 )
¢ = ——F L2
T /o’
b
Using equations 4.3, an approximation to Za¢ is
r c_ 0 ¢
-3 a op -2 -3)2+41 0g<x<3
Z;b " TFE od4o0_ U 10 {(C 3) }’ SES2
r p o
4,7
r o_ 0 ¢
X a o P 043241}, o03x3-3 .
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It is of interest to compare

c© g (o
J i%fy‘dx with J(8,8)
, e

for extreme values of the parameters.

We have
© g c © g c
ey dx = | oy = dr
1+z o 1+z r
v
= 0o lpo (OP+00 l’Jo) n/2 4.8
o, d)o+oP Yo v
c
When T (wo+0) or when B is large, [B=EBJ , the RHS of 4.8 reduces
o
to-f% , which agrees with the result for J(6,R) and which was evaluated

in section 2.7.1.

When op<<co, the result 4.8 simplifies to
F .
2/(8 v)
which is not the correct value. The reason for the disagreement is that
in the wings of the resonance, the asymptotic values of the two functions
do not agree; they are

By

° and 1
(B+y,) (B+Y_x) pH1+x2

In Fig.II, a comparison is made between the values for Za¢/K,

for the Breit Wigner profile,

= +
L9 Kw/(op cow) ,
and the approximation
o -i-2
r L0 Kwo/(op+oO v ) (429
_ a
where K Zp ¢O LT

for two different resonances.

It is to be noted that for small G/T the curves are in close

agreement, but the agreement is not close for large G/T.
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However, for a study of flux perturbations, the wings are not so
important since the major contribution comes from the region where Za¢
is largest. An estimate of the absorption is obtained by integration
over the central region of the curve for Ea¢, and the errors ohservable

in Fig.II tend to cancel.
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5. EFFECT OF FLUX PERTURBATIONS FROM ONE RESONANCE, ON THF. ABSORPTION
BY A SECOND RESONANCE

5.1 Introduction

The problem of resonance overlap, when the central portions of
the two resonances overlap to some extent has been considered by Corngohf
and Schermer (1959) and O'Halloran and Keane (1966). The present
discussion is restricted to resonances which have greater separation
than the separation which gives a negligible overlap effect when flux
perturbations from the higher resonance are not considered. The major
portion of any flux perturbation effect will be caused by the central
region of a resonance. Only flux perturbations which fall on the central
region of a resonance will produce any appreciable change in the
absorption by that resonance.

5.2 Reduction in Resonance Absorption by a §-Resonance because
of Flux Perturbations from another J{-Resonance

For a d-resonance, with resonance escape probability Pys where
the subscript 1 refers to the resonance of greater energy, the flux for

u>ur , is given by equation 3.1, namely
1

L.¢ = zp¢o{1 ~£(1-py) Pn<u—ur]>}

and the absorption in the second resonance will apparently be

A= zp¢o{l -£(1-p4) Pn(urz"“rl)}g(l'pz)

The reduction in absorption by the second resonance will apparently be
= (1=~ - 2 5.1
$A = (1-p,) (1-py) £° P (u)

where u, = u_ “ul and n is the number of nuclear species present
2 1

in the mixture.
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However, the absorption by a narrow resonance is approximately
T
NP o ¢, T(8,8)

and for zero temperature it is

r
N a qP ¢O

2/{(1+R)B}

o]
where B ='ER as before.
s}

If the practical width of a resonance is defined to be |xl—x2|,

where X;,X, are the roots of the equation

2
o]
° - 5
14x%2 P
then X15X, = +/(8-1).

The absorption within a practical width of a resonance is

/(8-1) I o
dx _ _a p -1 Y(R-1)
"a % % Jo BxZ+prl - JT(+ET Bt V(gD o

and for a resonance in which % >> op , the total absorption reduces to

mn o T
p a

2/ CB+1Y BT %o

while the absorption within a practical width is

m o I
R ‘a' }\T¢)
L/{(B+1)BY o

At best no more than half of the total absorption by a resonance occurs

within a practical width.
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In view of the above remarks, the estimate of equation 5.1 ought

to be modified to
= - — 2
SA e(1 pz)(l pl)g Pn(us) 5.2
where O<e<l

since the central region of a resonance gives the major flux perturbation

effect.

5.3 Reduction in the Resonance Absorption of a §-Resonance
because of flux perturbations from a Narrow Resonance

The flux from a narrow resonance was given by equation 3.5
(NR approximation), and the flux change due to flux perturbations is
given by

u
= - 11! 1
Sd JO P3(u u )Za¢ du 5.3

when the two resonances are of different species (two resonant species
and one moderating species). Since we are concerned with large
separations

u > 3 on 1/ui
where the subscript i refers to species other than the moderator, and
P3(u) is defined by equation A4, Appendix A. If we assume the
concentration of the resonan species is low, then P3(u) can be replaced
by Pl(u) in equation 5.3 to give

u
= - —u' ' 5.4
§¢ Io Pl(u u )Za¢ du'’ .

The flux change due to the central region of the resonance may

be expressed as u

2
- - 1 1 .E;
§¢ = J Pl(u u )Za¢ du' , 5
Y1
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where u;, u, are the chosen limits of the central region. If we consider

that the resonance is narrow, then

u, ~u_=u_-u
2

where uy and u, are now taken to correspond to the extremes of the

approximation given by equation 4.3. By using the relations

. 4E | = 58 . =3
=5 SE=én i fr=3

Su
to obtain the numerical integration interval du, and using the points

¢ = -3, -3/2, 0, 3/2, 3

13 a_o E;¢0 Yo

- (;L. 13 13 l;j NI o o
a 10 * 40 ° > 40 ° 10 E (o 40 V)
r o o o

(corresponding to equation 4.3) for Simpson's integration rule, we get

a 3G 3G

r Oogfp G N¢o wo
§¢(u) = F'(c +¢ o )E 40 {Pl(us— EETJ + 13P1(us— me) + ZOPl(uS)
p o o r r T

3G 3G
+ 13Pl(us+ _‘Er—) + Pl(us+ ZEr)} , 5.6

where u = u+uS

The result 5.6 changes the single discontinuous jump of the
Placzek function, Pl(u), at u = n l/al, to a set of smaller discontinuities.
Only analytical integration can remove the discontinuity from the flux
equation. It is unlikely that one of the values of Pl(u) in equation 5.6
should require, in a practical problem, evaluation at the point of

discontinuity, but if so the mean value would be used.

L6



If we average the values inside the bracket of equation 5.6,

6 o
86 (u) = - ==
r 5(0p+00 wo) Er

o)
Pl(us) 5.7

If there is a §-resonance at usu_ whose resonance escape probability
2
is Pys then the change in absorption is

l.ZNI;]l 9%1 % _
SA = ~ G,& P(u )¢ (1-p,) , 5.8
Fl Erl op+ool wol 1 1"s" o 2

where u_ = u_-u_ . The subscript 1 has been added to indicate the
2 1
resonance of higher energy. In view of the remarks of section 5.2,

equation 5.8 should be modified to read

1.2¢ Nzﬂ 001 qp
T Erl 0,01 P

SA = GE'gguS)¢o (1-p,) . 5.9

ol

5.4 Reduction in Absorption by a Narrow Resonance because of Flux
Perturbations from another Narrow Resonance

Flux perturbations which fall on the wings of the second
resonance will contribute little to the change in the absorption by the
second resonance, and only the effect of flux perturbations on the

absorption in the centre of the second resonance need be considered.

The change in absorption is given by

Uy
-8A = J (84)F du' , 5.10
Y

where 6¢ is given by equation 5.7, and represents the flux change caused
by the upper resonance. If once again we use the approximation of equation

4.3 to assist in evaluating equation 5.10, and use Simpson's Rule as
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before: -

1.2NI’1 0o1 0p ] 3G2 3G?
~6A = TJE o040 U ©1 ZB'(P(“S “ 3 )t 13P (ug, - )
r p o0, 'O r r
1 1 1 2 r a 2
3G 3G, Y, Oo? 9 %
+ 10P + 13P + - = -
(us) 3 (us 4Er ) + P(us + 2% ) F? [ (o0 +o Vo)
2 Tp 2 Ty P 9 9
If we average the values of P(u) we get
WAARY; 3, G
1.44 Fa Fa Cl Pz 9, O,
~8A = — —_—t 2 l__ 2 I ¢ P(u)
r. . E F (0 +o v (o +o v ) Tp ‘o s’
1 2 r, r, P 0y "0q P 0, "0,
where again u_ = u - u .
s r r
2 1
By substituting from equation 4.6 for the values Gl’ G,, then
r, I, o, o, Plu) S
1 2 1 "1 ' 1 )
-0A = 1.44 T
3 p¢o Er Er o wo wo ((0 +¢0 9 ) (o +¢O R )) ) o 12
1 T2 P %1 @ PO %9 P % 9

5.5 Two Resonances with 'No Flux Perturbation' Profiles

In section 3.4 a resonance profile was derived so that a resonance
with such a profile would not cause flux perturbations. The resonance
was assumed to be isolated. The overlap effect for two resonances with
'no perturbation' profiles becomes zero when the resonances are separated
by a lethargy greater than twice a moderator collision interval. For two
resonances with Breit Wigner profiles, the separation at which the overlap
effect can be neglected is a function of temperature, because of Doppler

broadening.

Two resonances with 'no perturbation' profiles would cause
perturbation effects when any overlap of the resonances occurs. Thus,
though the resonance profile for no flux perturbations can be tailored
to suit an isolated resonance, such a profile is not suitahle for

resonances which are close together.
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6. NUMERICAL SOLUTION OF SLOWING DOWN EQUATION - THE PPOGRAMME 'FXPFAS'

6.1 Introductory Remarks

EXPEAS was designed to calculate, for an infinite homogeneous
mixture, the flux in the region of, and the absorption by, two resonances
which are close together, by stepping through the resonance and solving
the slowing down equation at each step. The calculation starts at a
lethargy well below and ends at a lethargy well above, the lethargies of
resonance. It is to be noted that for practical use, the programme is

(Kroev)

best used for low energiesb since it was written to obtain flux perturbation

effects, and use at high energies would use considerable computer time.

To evaluate the effect of one resonance on the other, the resonance
absorption for each resonance is first calculated as if the other resonance
were not present, and the calculation is repeated with both resonances

present.

The equation solved is a specific form of equation 2.1 and is

u (o .40 )¢ e_(u—u')du' Y ) e_(u-u')du'
ee 1 [t N
t i=1.2 (1—ai) (1—a3)
’“ u-tn 1/(1:.L u-2n 1/0‘3

where (1) the subscript 3 refers to the moderator.

(2) opi(i=l,2) is the potential scattering cross section for the
species having the ith resonance, if the resonances are of different
species, but, Gpi is half the potential scattering cross section of the

resonant species if both resonances belong to the same species.

4Q



(3) Ouy is the resonance scattering cross section of the

.th
i~ resonance.

(4) The microscopic cross sections are given per nucleus of the

species which has the resonance of higher energy.

The resonances are taken as having the single level Breit Wigner

Doppler broadened profile, and interference between potential and resonance

scattering is ignored.

6.2 Numerical Procedure

The numerical procedure follows closely the method used by

Pollard (1964) in his programme PFAS.

6.2.1 Choice of Grid

Part of the input information determines the number N3, of steps
into which each interval of lethargy for the moderator, hll/aB, is
divided to give an approximate step length of the grid for the

calculation.

The step length, Su, is then adjusted so that,

where M is an even integer. By adjusting u, the resonance cross sections
can be calculated at intervals Su, by stepping out from the centre of each
resonance, and the calculated values correspond to points of the grid, for

both resonances.
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Because of the adjustment to Su, each interval of integration,
n l/ai, i=1,2,3, does not necessarily consist of an integral number of
subdivisions. Even numbers Ni(i=l,2,3), (N3 being redefined), are
defined so that

fn 1/oai 2n l/Oti

- < :‘r <
Su 2 % 1\i

Each range of integration may have a small section, less than
28u, which is not included in the numerical integration. Due allowance
is made, and each numerical integration is adjusted by an appropriate

amount.

The computation starts at a lethargy u. -2N36u which is very nearly
1
‘2 lethargy intervals of the moderator, below the lethargy corresponding

to Erl, and ends at a lethargy ur2+2N Su. The region of any large Placzek

3

perturbations is included in the calculation.

6.2.2 Generation of ¥(x,6)

Near the centre of a resonance, the differential equation for
y(x,0), equation 2.35, is solved numerically for values of x corresponding

to the grid values of lethargy.

For each resonance, the energies corresponding to the grid values

of lethargies

u,. * nfu , i=1,2
i

which, for suitable n, are all the points of the chosen grid, are given
as
eFW 0
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In general Ek = Ek—l e
and X = Fpep "B
where d = %&e—éu-l)

To minimise round-off errors, the code uses

_ _ 28u Su  su?  8ud
d=-"F{1-F+ -5}

Using the above equations, an iterative procedure for the generation
ofy(x,6) can be written as:-

6xk = - dEk-l

ka 8x, 3
— k’_ LEA ]
e = Vg Fox VY g Vi1 Ve Yk
éx 2

.d}' = lp' + (Sx w” k w”l

k k-1 k-1 T k-1

no 4 _ a2 LI 2 2402, 2
v te% -0 X V' 162 (2+62+6 X, 20y
e _ _n2 LI v 2 240024 2yt - b
A by . L62 (6+62+6 X ', e X, Uy

where primes denote differentiation with respect to x.

The solution starts at x = 0, where y(x,6) has the initial

conditions

'3 .
xj =0
wj = 0 erc~%
w'j =0



To evaluate ¥(0,6) we use the relations

2
%/n e¥  erfc vy

erc y =

> i
provided y < 1.5, where
I S
(1+py)

The constants p, and a; (i=1,5) are given by Hastings (1955).

When Xk has been increased so that

|%, | > 12/62
the function y(x,6) is obtained from its asymptotic series, equation

2.39, and when X reaches a value so that
2_ 2 2. -4
[(3xk 1) + (lek (xk 2)+2)Vk]Vk510 ,

the function Y(x,8) is obtained from a further truncation of its asymptotic
series, namely

v, = "‘2;7?
k l+xk )

It is to be noted that the iteration procedure has to be worked

both ways from the centre of the resonance as
-X X
S X %

and the symmetry of y(x,6) cannot be used.



6.2.3 Method of Integration

Equation 6.1 can be written, using Simpson's Rule

' Su 081 Sw Su
5.6 - ] i ) =] R 3y 6.2
t i=1,3 1-o 3 i=1,2 1-a i=1,3 11 3(l—a )
L+r§i (s ) o~ (K1) 8u : e"Ni‘su
where Y, = Sylo .40 .o, ———— + [0 .40 .)¢ £ }
L gapyy Xopi7siPK 1oy YN 1=,

and SK = 2 or 4, depending on whether K-I, is odd or eveq,and‘Lisaﬁfwlpdnt

Two separate values of Y for each i, are used in the calculation

i’

through the resonances, and are used alternately. If one value of Yi

is given as

-28u

~6u +...}

+2(opi+os.)

Y, ={4(c_.+0 )& o4y ©

i, pi si/ L ¢

the corresponding value for Yi for the next calculation of ¢ at the next

point of the grid will be

-8u -28u

Y. {4(0p +o )¢L—l e +2(cp.+osi)¢L e +...}

)
but for the one after, will be
-28u

-8
Y13={4,(opi+csi) ¢L—2 e u+2(opi+osi)e ¢L_l+4(0pi+crsi) ¢I e

-38u }

The pattern of numerical integration repeats itself every alternate
step on stepping through the resonances. Fach of the values Yil and Yiz

are adjusted by a product of e—(Su and suitable subtraction and addition of

terms after each evaluation of equation 6.2,

The terms F; are evaluated by extrapolation, using the last four

terms of the summation Yi’ Cubic extrapolation is used (since Simpson's
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Rule is cubic in accuracy) to obtain the values of the integrand at
. r . .
points E'and r above the last term of the Simpson summation, where
r =2n 1/a, - N, §u.
i i
Simpson's Rule is then applied to the section of the integeral which has
not been covered by the integral rule, to give
= 3 + 2 + + 2u
Ri (4w3 y g W, ¥ 2w1y mvo)r
where the wi are the coefficients of the cubic extrapolation based on

abscissae 0,1,2,3 and

6.2.4 Initial Values of Flux-Upper End Correction

The first value of ¢L calculated from equation 6.2 corresponds
to a lethargy of u - 2N36u, and the initial values of ¢K’ ¥>L
1

used to begin the stepping through procedure are obtained by evaluating

the resonance integrals and using equations 2.16, 2.17, 2.18.

For each resonance with Ea>>Er

a FY op
P T exp {Jm E28_ (1+B)+ex? 6, @x}

= n {— FY Op [E"— tan—_1 X // ')}
- P T E Me(e+D} 2 a’ 8+l

The initial values of flux are given by

9 P1 Po

b = ———
(o]
%%

the above resonance flux being normalised to unity for printed output

of EXPEAS.



6.2.5 Calculation of Resonance Absorption

The resonance absorption probability is calculated using Simpson's

Rule, and is progressively evaluated at every second evaluation of the

flux during the stepping through procedure.
evaluation is

The equation used for the
u

1 2
A =:= o ¢ du'
c a

u)

This is then corrected for the truncation of the lower wings of the
resonances assuming that

1
U)(XQG) - 1+X2
and using

4+ ¥ (u')
A =::£J *{EL('“;’)“ F(u')du'
€ 3 u, t u
where F(u) = Zt(u2)¢(u2)
and u, =

+ U
2= Y, 2N,

Su
The total absorption probability is then

A=A +A
e c

6.2.6 Calculation of p

The resonance escape probability is simply

p=1-A.

6.3 Output Information

At regular intervals during the steppine through procedure, the
quantities, energy, flux, absorption for both resonances, the value of

Zt¢/q, and the combined resonance escape probability is typed out.
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6.4 Accuracy of TXPEAS

FXPEAS was used to calculate the absorption for a single
resonance of a single absorbing species, with moderator present.
Results were compared with the results from PFAS (Pollard 1963) and

were in agreement to within .17.

57



£
e
.
<
V.
o Ka!
M 0]
[ ™~ ~ LYy @) < gl < o™ i Y < .
£ ™~ N} <5 ~i o @) B o o) ~ ~ 99) (@}
Q (o) o) G o8 el C Ly cC 0 o 0 <5 O 0
- . . . . . . . . . ° . ] N o
A . @) —~ o~
?,w «©
w.._ . 1! ]
=4
:n ~ ol
fs b <
o)
n L) Y
e e b e i e, - e e e+ e et e e et V
)]
Tg
m..m o
Z . .
ML @] — o
-1
S co
,J ] ] il S
S P [} |
J Fy <q
= o ) o o o 7e) v o %) ) .
&) ~ ~~ ¥e) ~i <O ) 2%} ¥l ~ o 1 - " o
| o Iop o) [ee} el @) Yol cO ve) N o o
Ul . . . . . . ° . . . . 0] Ka)
Af_ _ “ a
~1 i 43 cQ \O
SR _ o Ne) o
] . ] N N ol
=] | f > @) A
Q
| | Q i f I
i 5
| o L Yy o
i o =] [ [oN
) O o}
&) ! wn
Y
i a8
} —
|
i
M o N o o v oo N o o noo |
i o) o~ [ i 1 ! n.ﬁ. 7_~ Q_d i
| | _ w

e e | e e O T




R AR AT <A S & SN
o

& > - < N ) o8] o Ne o o0 G ol < O < I @) I O ~F - o
r~ 4 < o el o ) ™ O < ) N ~5 o G ) ™ r= ™ I % G PO
: : ~r <8 ra) N " W ~ N G ve! IoF N ™~ o 0] ~l

soM

e e e e e e e e e e e et e et = e e e A <+ e o = e e = 7~ e e e e e n s & e e A i L i e e e i e e st ) ol

<1,

T

) \C C ™~ ™~ C [ ol ~ 3
NG M N~ [ [ (29 (%] =1 2 Gh o (¥ 9] i~ 18] [ ™~
N

A

a
417
%
.57¢

. . . . . . . . @

MDA
~
Al
i

.
CC
3
L.
»

T

-
T

— A
RO RN

.
v
~

s
,:
~
v/
O
G

(@] (&) (& (@] O (@] (@} O » - (] (o0} o < (@) nu !
(@] (@ (e < (@] (@ [ . o : J 2 ~ Z by
«) ) <) (32) (o) (@)% (o) < [$2 N N ~3 3 O \O \O \&j X9 (Gl

(]

~
]
e
UV UUUR VISR ERURPREE S SRS LA AU S e AU S e —— -
NS (&
-~ L
o H

(] (] [ (@] (@
- [ ()

i [N [ [Q¥]
v =i —t ~ ]

1 1 ] =1
nl.

L0
RO
9]
0
L04

uy i < 5 ~




7. NUMERICAL RFESULTS AND CONCLUSIONS

7.1 Introduction
The programme FXPFAS was used to calculate several resonance

overlap problems, and the output was compared with several results

obtained in previous sections.

7.2 Flux through a Resonance - Mumerical Data

Table I shows a comparison of the flux through a resonance
(obtained as part of the output from the programme) with the flux as
predicted by equation 3.22. The predicted value compares well with the
calculated value for positive x, but there is not a close comparison
for negative x. This is not unexpected since the value of the resonance
egcape probability used in the evaluation is only approximate. The
predicted flux could be used as a second approximation for the flux
through a resonance in order to improve the N.R. estimate of the

absorption in the resonance.

7.3 Approximation to Resonance Absorption

The absorption probability for various resonances has been
evaluated and the results are tabulated in Table II. In the column
headed 'A', the evaluation is obtained bv use of the expression on the
R.H.S. of equation 5.7 (where Pl(u) is replaced by its asymptotic value),
namely

1-A = p = T S 7.1

the above resonance flux being eaquated to unity. Under 'B', the
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evaluation was obtained by use of the expression,
r 3

Ci~ra % u)o G )

2T (o0 + T
( P % lpo)Fr £

1-A = p = exp - 7.2

where the R.H.S. of equation 5.7 has again been used, but in the
exponential form of equation 2.17. The factor 1.2 anpearing in
equation 7.1 has been replaced in equation 7.2, by the factor n/2,
to give agreement with the N.R. approximation for zero temperature.
In the column headed 'C', are the evaluations obtained from the
FEXPEAS code. The figures indicate that the exponential form,

(equation 7.2) is a more suitahle approximation.

In figs. iii, iv, v, the absorption probabilitv is plotted as a
function of Er, T, and op, respectively. The curves indicate that the
functional dependence of the absorption probability on Rr and o is

|12

satisfactory for the approximation 7.2.

The temperature relationship is not good though the curves exhibit
similar behaviour. Tt may be possible to improve the estimate of
p(equation 7.2) by modifying the expression for G to give htetter temp-

erature dependence.

7.4 Calculation of Flux Perturbation due to Absorption

The bracketed term

+20P, (u )+13L1(u + -3~G——]+P (u + 36

G
)+]3P (u . 4E.

1 3 3G
2o 121y, 2% _ T GE )
of equation 5.6 was used to estimate the flux perturbation effect,
expressed as a percentage, for two different temperatures. The function

Pl(u) was first expressed as a percentage of its asymptotic value, and
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in order to remove the discontinuity in the above evaluation, the
discontinuity in the Placzek function was first removed by averaging the
Placzek function in the region of its discontinuity. The averace was

taken over the lethargy interval Su, where
{1+

3/{1 wO/B} _ 36

LF 4E_ °
r o r

du =

In Table III, the Placzek function, the averaged Placzek function,
(\53 Qg §-6)
and the estimate(oz the flux perturbation, tocether with the flux
perturbation as obtained from an EXPEAS output are listed. All figures
are expressed as a percentage, and for the EXPEAS output, the flux

decrease, 1-¢, was expressed as a percentage of l—¢o, where ¢O was the

value of the flux when

It is to be noted that the perturbation is due to the removal of
neutrons, which also gives the overall flux decrease. The perturhation
is thus expressed as a percentage of the flux decrease, rather than of
the flux. A value of the perturbation above 1007 indicates a flux
depression. The above estimate is hased on the parabolic apnroximation

and is reasonably satisfactory.

7.5 Interference between Two Resonances

The interference effects for a pair of resonances at various

separations were calculated, and the results are granhically represented

in fig. VI.



The data used was:

n

o
p

r
Y

resonance located at Er = 7e.v. The percentage reduction in absorption

1212.6 b, and for both resonances

-Odey, Fn = -0ley, Pf = 0. g =1, with the upper

for both the upper and lower resonances, is plotted as a function of

separation at two different temperatures.

The reduction in absorption for the upper resonance follows
the pattern obtained by Corngold and Schermer (1959) and 0'Falloran
(1966), but does not reach zero as obtained by them. This is not
unexpected since for large separations the mutual shielding is negligible,
but the upper resonance has a reduced absorption due to neutron absorption

by the upper wing of the lower resonance.

For the lower resonance the reduction in absorption is caused
by the same factors which effect the upper resonance. The mutual
shielding effect is dominant when the separation is small, but with
larger separations the percentage reduction in absorption by the lower
resonance is near the absorption probability (exnressed as a percentage)
of the upper resonance. There is a peak in the reduction of ahsorption
by the lower resonance when

EI‘
1.1

where a_ refers to the moderator. The peak corresponds to the flux
m

depression which was discussed in the previous section.



7.6 Estimation of Flux Perturbation effect from one Resonance on
the Absorption by a Lower Resonance

Any estimate of the effect of the neutron population decrease
(caused by absorption jn the upper resonance), for large separations
depends on the accuracy of the estimate of the resonance escape
probability for the upper resonance. For large separations the flux
change caused by the upper resonance can be considered satisfactorily
as being discontinuous at the upper resonance, the magnitude of the
discontinuity being equal to the resonance absorption probability of

the upper resonance.

In order to estimate the percentage change in the decrease in

absorption by the second resonance, the factor

3G 3G 3G 3G

1 2 T2 2 . 2
40 {R(us— 7E, )+13R(us~ iE, )+20R(us)+13R(uS+ i, )+R(us+ 2Er )}

2 2 2 2

was again used to average the effect over the central region of the lower
resonance, where the subscript, 2, refers to the lower resonance, and
where R(u) is taken to be the flux perturbation effect previously cal-
culated in section 7.3. The flux effect on the lower resonance was
expressed as a percentage of the decrease in absorption for reasons

given in the previous section.

For the output of FXPFAS, two separate results are obtained,
namely the flux perturbation effect on the absorption in the central
region of the lower resonance, and the effect on the absorption in the
lower resonance. The absorption in the central region of the lower

resonance was taken to be the absorption over the range
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where the subscript, 2, refers to the lower resonance. For both
calculations the perturbation effect was expressed hy
A -
11~ Ao .
X“_?i:;;_GIQTYY x 1007%
L1 "1 r,
where (i) ALl is the absorption in the lower resonance, over the
appropriate range of u, when the upper resonance is not present,
(ii) AI? is the absorption in the lower resonance, over the appropriate
range of u, when the upper resonance is present, and (iii) pl(u ) is
r
2
the resonance escape probability for the upper resonance at the centre

of the lower resonance.

In Table 1V, the estimated, and the calculated (from FXPEAS
output) perturbation effects are tabulated for various resonances. As
to be expected, the estimated effect agrees fairly well with the result

when the central region only, is considered in the FXPFAS output.

The figures relating to the central region of a resonance show
greater variation than those relating to the whole resonance, because
flux perturbations have little effect on the absorption in the wings of
a resonance. Comparison between the values for the central region, and
the estimated values suggests that a lower value of G, defined by equation
4.6, would give a better comparison. Correlation between the curves of

Fig. ITA (p.40) would be improved by a lower value of G.
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In Table V are listed the perturbation effects on the lower
4.5 e.v. resonance, caused by the upper 7.0 e.v. resonance under a
variety of circumstances, and also the flux depression, expressed as
a percentage, caused by the 7.0 e.v. resonance is listed. The chosen

resonances give a separation of very nearly one moderator collision range.

The change in concentration of the mixture is shown to have a
marked effect on the flux depression caused by the upper resonance.
An increase in concentration broadens the curve for Za¢, and has the
effect of decreasing the flux depression, but broadening the region of
the depression. The reduction in the perturhation effect on the lower

resonance reflects the change in the flux depression.

The value of the flux depression from a predominantly scattering
upper resonance is considerably different from the flux depression from
a predominapltly absorbing resonance, and the change in the flux depress-
ion is feflected in the different values for the perturbation effect
on the lower resonance. If the resonance is assumed to be a d-resonance,

then investigation of the slowing down equation vields

~(u-u_)
r T oy n e T
Zp¢=8(u)—(l—p) 7 = (1-p) 7 H(u-u) + & P, (W+A-p)g 5 Hu-u))
Y Y Y 2
ur+2n l/a2 Pn (1—p)e_(u_u,) | ; B
H(u _+&n 1/a,-u) + T oo, P(u-u')du -(1—p)*lr‘P2(u—ur)E ,
u Y -
r

where the subscript, 2, refers to the absorbing species, and the above

. 1
resonance flux is E*-from a Sd-source.

p
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The last two terms give the resonance perturbation effects and tend to
cancel out (being of opposite sign). Tor a predominantly scattering
resonance the neutrons tend to 'bunch' near the resonant energy, and
this 'bunching' causes a flux peak, one moderator collision range bhelow
the resonance energy, whereas a predominantly absorbing resonance causes

a flux depression at this energy.

The last entry in Table V is the result of an FEXPEAS calculat-

ion in which Th23? has a 4.5 ev resonance, and U has a resonance

238
at 7.0 ev. The figures indicate that the percentage change in the

reduction in absorption is not significantly different from when both

resonances belong to Th232.

7.7 The Doppler Coefficient

The change in absorption for the temperature of 300° to 900°
is dgnoted by
AA = A(900°) - A(300°)

s o
for any resonance, where A(T) is the absorption probabhility at T .

In Table VI, estimates of AA are listed for both the lower
resonances and the upper 7 ev resonance at various values of separation.

The values are obtained from the output of FEXPEAS.

The negative values of AA obtained for the lower resonances are
caused primarily by the increase in the absorption of the upper resonance
with increase of temperature. The figures in the second column suggest

that flux perturbations have little effect on the value of AA.

75



It is of interest to note that for the upper resonance at a
separation of 2 ev, the value of AA is about 107 lower than the values
for 1.5 ev and 2.5 ev. This is due to variation in the screening effect

of the Noppler broadened lower resonance.

7.5 Results and Conclusions

In Chapter 3, the expression obtained by Goldstein (1964) for
the flux in the region of a resonance was modified. Goldstein's
expression gave an incorrect value for the below resonance flux. The
modified expression corrects this defect. Comparison of the flux
obtained by using the modified expression, and the flux ohtained from

an EXPFAS output shows close agreement.

A parabolic approximation was developed in Chapter 4 in order
to estimate the absorption in the central region of a resonance at zero
temperature. The parabolic approximation was then generalised so that
it would be applicable to resonances at any temperature. Tt was shown
that the approximations give simple formulae for the absorption in a
resonance, but the formulae give excessive temperature variation. The
formulae seem adequate in terms of the other parameters. The method of
approximating was not entirely satisfactory. Ry further research it may

be possible to improve the method so as to give a more satisfactory

approximation.

The paraholic approximation was used to estimate the amount of

flux perturbation caused by neutron absorption in a resonance. There
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1s a flux decrease below a resonance due to removal of neutrons. Tt was
found that there is a further variation in the flux due to perturbation
effects. A flux decrease occurs in the region of one moderator collision
range helow the resonance. For a predominantly absorbhing resonance, the
maximum total decrease was about 110% of the decrease due to neutron
absorption. The maximum decrease occurs about .9 of a moderator collision
range below the resonance. The calculated flux decrease, and the
predicted flux decrease, were found to agree, as regards the maximum
amount of decrease, and also as regards the value of the lethargy at

which the maximum decrease occurs.

The parabolic approximation for a second resonance was used to
assess the effect flux perturbations from a first resonance have on
the absorption by the second resonance. The FXPFAS calculations showed
that flux perturbations cause about 2-47 reduction in ahsorption in the
central region of the second resonance, while the amount of ahsorption in
the wings of the second resonance is not greatly affected by flux
perturbations. The reduction in absorption by the lower resonance was
found to be about 1-27%. The estimated value of the reduction was found
to be about 2-47. There was reasonable agreement hetween the predicted

amount of reduction in absorption, and the calculated (FEXPFAS) amount.

The change in absorption with temperature, for both resonances,
was found to be not significantly affected by flux perturbations. Tn the

calculation of DNoppler coefficients, the effect of flux perturbations could

he ignored.
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APPENDIX A

THE PLACZEK FUNCTION

The method followed is similar to that used by Teichmam (1960).
The general slowing down equation, when no absorption is present,
is

-(u—u')du,

+ S(u) A.l
u-4n l/ozi 1 %4

n Ju Zpi¢ e

n
where r = Z Lo, .

If we assume that the neutron source, S(u) is a unit &-source

at u=0, the Laplace transform of equation A.1l is

.C{z ¢} = Z HOVACIIES! A2
=]

(]_a )p+l

ey GFD)

where Ki(p)

By taking the X as constant, equation A.2 may be rearranged thus:-

pi

L {z 8} 1 A.3
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Z ~pPr _ _P_
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where Ct = Ej(i-t)'

If r; s fhe power associcifecd with tHe pafama»fers of te T species,

the coefficient of

noz i ip+l(1"“) ry
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n
o ((121 ri)+s)! ( | (2' f") +S
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and corresponds to the Binomial expansion of
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n .eri—l n
o (u-izlr. n llai)l— a 'zlrl
H(u- ) r, on l/ai)[ - + (u- ) r, 'n l/ai)l-
i=1 (( Z r.)—l)! i=1
i=1 T

and(-1)! is taken to be infinite.

We define

P (=1} ... ] s,
r1=0 r =0
n

When n=1, equation A.4 reduces to

Tmu e r r-1
Pl(u)=I%_ 1 ) (-1 iu-r 2n 1/0)
* r=1 (1-o)" (n-1)!

u~-r 4n l/a]

[1+ r(l-a)

o

e e .

el H(u-r %n 1/0)

which is the Placzek Function; the subscript 1, on the R.H.S. has

been omitted.

Inversion of equation A.3 is, therefore,

ZS¢ = §(u) + Pn(u)
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