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ABSTRACT 

The neutron flux in the region of, and beJow a resonance is 

considered. The results of Goldstein which give an asymétrie flux 

shape in the region of a resonanceqre adjusted to allow for neutron 

absorption in the resonance, and gives reasonable agreement with the 

computed results. A simple form.ula for the calculation of the absorpt-

ion in a resonance is developed, and it is found that it satisfactorily 

expresses the dependence of absorption On the total scattering cross 

section, and the energy of resonance, but gives a greater variation 

with temperature than is so. The approximation is found to be suitable 

for estimating the flux perturbation effects caused by neutron absorpt-

ion. Maximum flux depression occurs at about .9 of a moderator collision 

range above the resonance lethargy. Flux perturbations from a resonance 

cause slight variations in the absorption by a lower resonance, when the 

separation lethargy is about one moderator lethargy interval. This 

effect is estimated and compared with calculated values. A value of 

about 1 per cent increase in the reduction of absorption is found to 

occur for predominantly absorbing resonances. 



SUMMARY 

The introductory chapter is devoted to the historical develop-

ment of the resonance overlap problem, and the next chapter deals with 

the theory of the slowing down of neutrons, the properties of the Breit 

Wigner resonance profile, and theory of resonance absorption. 

In the third chapter, the approximation for the flux in the 

region of a narrow resonance at zero temperature, which was obtained by 

Goldstein, is modified in order to allow for the decrease in the neutron 

concentration because of absorption. The result gives the correct form, 

of the below resonance flux, which was the fault in the approximation 

of Goldstein. 

Perturbation in the flux because of resonance absorption is 

discussed at length. An expression is obtained for the shape of a 

resonance x̂ hich would give no flux perturbation, and which gives a single 

discontinuous reduction in the flux at the energy of resonance. The 

resonance shape is found to be hyperbolic in form. A comparison is made 

between the absorption rate for the n̂o perturbation' resonance profile, 

and for the Breit Wigner profile. 

The predominant interest is in the interference of two resonances 

when the separation of the resonances is about one moderator collision 

interval. A parabolic approximation is obtained for the absorption rate 

in a resonance, for zero temperature, and the approximation is extended 



so as to be applicable to any temperature. The approximation is used to 

estimate the amount of flux perturbation caused by absorption in the 

central region of a resonance, and this estimate is used to evaluate the 

resulting change in the absorption by a second resonance at a lower 

energy. The estimates take into account the amount of neutron absorption 

in the upper resonance, and also the resulting flux perturbations. The 

results are applicable only when the resonances are separated by about 

one moderator collision interval. 

To verify the analytical x\Tork, a programm.e EXPFAS was designed 

to solve the slowing down equation through two resonances. Each problem 

requires a large amount of computer time, and the number of calculations 

had to be restricted. The calculations show that the estimate of 

absorption in the central resonance region gave a rough estimate of the 

absorption in the whole resonance, but the approximation suffers from 

an excessive temperature variation. The numerical calculations show 

that the flux perturbations from a resonance are successfully predicted 

by the method adopted, and the change in the absorption by the lox\rer 

resonance is also estimated satisfactorily. 

An appendix is devoted to the development of a more general 

form of the Placzek function. The method used is similar to that of 

Teichmann, but allows for the presence of more than one nuclear species. 
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1. HISTORICAL PREVIEW 

1.1 Introduction 

WOLL-ONGONG 

U N I V E R S I T Y 

C O L L E G E 

• >. 

A 

lAjlien the possibility of a sustained nuclear reaction was first 

suggested by Turner (1940), which was based on the experimental work of 

Anderson, Fermi and Sziland (1939), it was considered that the unknovm 

amount of resonance absorption could well prevent such a sustained react-

ion. It was also thought that even though such a reaction could possibly 

be initiated, the resulting temperature rise could cause the reaction to 

cease because of increased resonance absorption. Thus it was imperative 

that adequate information on the resonances of fertile material be obtained 

Earlier work had laid the groundwork for investigations into the 

effects of the resonances of fertile material, on the behaviour of possible 

reactors. Breit and Wigner (1936) had obtained approxim^ate analytical 

expressions for the * shape' of a resonance, by extending the work of 

Voigt (1912) to nuclear structures. The amount of resonance absorption of 

a fertile species is dependent upon the energy distribution of the neutrons 

present, and Maldi and Fermi (1936) and Bethe (1937) had considered the 

problem of the energy distribution of neutrons when slowing do\̂ m in a 

hydrogen medium. 

Considerable work, both theoretical and experimental, was 

accomplished in the United States during the period 1939~45, most of 

which was not published except in later review articles. The first 

experimental results on nuclear resonances were obtained by the Princetoh 

University group by use of a cyclotron. One of the fundamental results 



obtained during the period was that of Placzek (1946). In 1940 he was 

able to obtain an analytical expression for the energy distribution of 

neutrons slowing doim from a mono-energetic source in a homogeneous medium 

other than hydrogen. Though the derivation has been improved subsequently 

by Teichmann (1960), little use has been made of Placzek*s result , , 

several authors have suggested^ ought to be taken into considerat-

ion. Placzek (1946b) extended his solution to include the sloxA)̂ing down of 

neutrons in a weakly absorbing medium. 

1.2 Early Work on Resonance Absorption 

It was realised in the early stages of development that a lattice 

arrangement of fuel elements would significantly reduce the amount of 

resonance absorption, but would also shield the fissile material. Much 

work was done to determine the optimum spatial distribution of fuel elements, 

during the years prior to the First Geneva Conference on the Peaceful Uses 

of Atomic Energy (1955). The self-shielding effect of resonances had also 

been investigated. The reports delivered during the Conference by workers 

from the U.S.S.R. indicated that work similar to that of workers in the 

United States, had been carried out by the Russians. Wigner (1955) was the 

first to distinguish between the so-called narrow resonances and wide 
CoJd Ic^ ^nef jy 

resonances, the distinction being based primarily on whether a neutron/̂ in 
one collisior to *jump* across the resonance. Independent work by 

Gfufeilch and Pomeranchouk (1955) was fundamentally similar to the work 

of Wigner (1955). Early work done by the American, British and Russian 

workers established that natural uranium was not a practical fuel unless 

it were * lumped*, or else mixed with heavy water. 



In the years immediately following 1955, resonance effects in 

heterogeneous media were extensively studied by several x̂ jorkers. Dresner 

(1956) was the first to achieve reasonable results in the calculation of 

resonance absorption, by evaluating the resonance integrals for homogeneous 

media. Independent results, which were essentially similar, were published 

by Nordheim (1958), Dresner (1958) and Chernick and Vernon (1958), and 

were obtained for resonance absorption in heterogeneous media. The cal-

culations were based on the infinite mass (IN) approximation for wide 

resonances, and on the narrow resonance approximation of Wigner, when the 

resonances were narrow. Allowance was made for the unresolved resonance 

region by means of statistical estimation. 

Further developm.ent was obtained b̂'- Spinne}^ (1957) and Chernick 

and Vernon (1958), who introduced iterative procedures based on both the 

NR and IN approximations, and were able to improve the resonance absorption 

estimates considerably. Rothenstein developed SpinneyVs method still 

further, and obtained results vjhich involve a method of extensively correct-

ing simpler approximations. 

Also subsequent to the First Geneva Conference, was the development 

of the Monte Carlo method of studying neutron behaviour during moderation. 

The method is essentially one of tracing neutrons from birth till they 

reach thermal energy, allowi.ng for possible modes of collision. It is a 

statistical method and requires time consuming computer codes to evaluate 

the probabilities of neutron behaviour. 

Another development after 1955 was the formulation of approximate 



analytical expressions for the spatial diffusion (Transport Theory) in 

homogeneous and heterogeneous media. From this were developed certain 

equivalence theorems, relating neutron behaviour in heterogeneous media, 

to the behaviour of neutrons in homogeneous media. Many of the results 

were obtained from consideration of Thermodynamic Principles, and have 

a wide range of applicability. 

1.3 Recent Work on Resonance Absorption 

A major development in the study of Resonance Absorption was 

initiated by the ^ork of Cohen and Goldstein (1962). They took 

as a first approximation, an interpolation between the IM, and NR approx-

imations, which are extreme cases. An iterative procedure was then applied 

to the slowing down equation to determine the constants of the interpolat-

ion. Though their work was restricted to Breit-Wigner single level, zero 

temperâture resonance profiles, the restriction was subsequently removed 

by the work of McKay and Pollard (1963), and was further modified by 

Pollard (1964). Goldstein and Brooks (1964) extended the interpolation 

method to heterogeneous media. Goldstein (1964) and Keane and Dyos (1965) 

have done similar independent work on the flux in the region of a resonance, 

which is ultimately concerned with the amount of absorption in a resonance. 

1.4 Res onance 0yerlap 

Corngold and Schermer (1959) considered the resonance overlap effect 

of two resonances. They found that the interference was greatest for a 

resonance which was predominontly a scattering resonance, at the higher 

energy, and least for an absorption resonance at the higher energy. No 

account was taken in their work of any perturbation effects in the neutron 



distribution. 

In August 1963, Codd and Collins presented a paper on their 

investigation of the resonance overlap effect of U238 and Pu2^9, usinf!; 

the method A of Nicholson (1960) . They found that the resonance overlap 

formula of Rowlands (unpublished) to which they refer, tojivea reasonably 

semi-quantitative estimate of such effects. They also reported on the 

numerical evaluation^by the computer code "Reslow'% of the slowing dox-m 

equation through a single U238 resonance. The perturbation in the neutron 

flux at energies below the energy of resonance, so obtained was suggest-

ive of the Placzek function. Kx̂ âng (1963) also presented a paper relat-

ing to work done on the resonance overlap effect for energies greater 

than 1 Kev. 

The papers of Codd and Collins, and Hwang, which were presented 

at a conference sponsored by the Argonne National Laboratory, gave impetus 

to the study of resonance overlap, which was considered important because 

it modified the previous estimates of the absorption by all the resonances 

of a resofiOnt species. 

Keane (1965) analysed the formula of Rowlands in order to correct 

it in the region of greatest error, but at the same time, to maintain its 

simplicity. Estimates of the overlap effect were obtained in terms of 

Jacobian Elliptic Functions, by Keane V7hen the temperature was taken as 

zero. This work has been extended by O^Halloran and Keane (1966). 



Though work has been done on the problem of resonance overlap, no 

consideration has been given to flux perturbation effects and to the 

effect of the decrease in the neutron population (because of absorption) 

This thesis is concerned primarily with the development of an 

approximation for the absorption in the central region of a resonance 

which is used to obtain an estimate of the perturbation in the neutron 

flux below a resonance, and to estimate the effect of flux perturbation 

on the absorption by a resonance of lower energy. 



2. BACKGROUND THEORY 

2.1 Basic Assumptions 

A neutron does not possess an electric charge and is not subject 

to the inverse square coulomb force. So, for even small velocities, a 

neutron can approach a nucleus to within the range of influence of the 

nuclear forces, and react with the nucleus. The reaction of a nucleus and 

a neutron can result in the production of a new nuclear species, or merely 

the scattering of the neutron accompanied hy degradation of the neutron 

energy, or fission of the nucleus. 

The production of a new nuclear species may involve the absorpt-

ion of the neutron into the structure of the former nucleus to form a 

compound nucleus. 

If scattering of the neutron occurs, and the nucleus is left in 

its ground state, the total kinetic energy of the particles is conserved 

during the collision and the collision is elastic. 

TThen the nucleus is left in an excited state, corresDonding to 

one of the quantum energy states of the nucleus, and the neutron is , 

scattered, the kinetic energy of the nartlcles is not conserved^and the 

scattering is inelastic. For inelastic scattering to occur, the colliding 

particles must have a kinetic enerŝ y in excess of the energy corresponding 

to the first excited state of the nucleus, which is large. The inelastic 

scattering of a neutron degrades the energy of the neutron in large amounts^ 
cf 'tke order lo^e^ 



Only elastic scattering and absorptionara to be considered, and 

it is assumed that the scattering is isotropic in the centre of mass 

frame of reference. The probability, p(E') that a neutron of energy, E, 

before collision will have an energy in the range (E',E'+dE') after the 

collision is given by Glasstone and Edlund (1952) as 

HF' 

p(E^)dE^ = T T ^ S T for aE^E^^E 

and p(E')dE' = 0 for E'<aE, E'>E 

where a is the maximum fractional energy loss in such a collision and is 

given by 
= imi ' 

i<rhere A is the mass number of the target nucleus. 

2.1.1 Cross Section 

The rate of a particular reaction hetx\7een nuclei and monoenergetic 

neutrons of velocity v , is given by 

No. of reactions No. of Target Nuclei No. of neutrons 
_ — — = a X X 5 ^ 

cm-̂  sec cm'̂  cm^ 

where a is the proportionality constant and is termed the microscopic cross 

section for the reaction being considered and has dimension of cm^. Cross 

sections are usually given in barns instead of cm^, where 
-24 o 

1 barn = 10 cm^. 
An equivalent expression for the cross section is given by 

^ Z^g^^jjPIL^, target nuclei reacting per second 
n V 

where n is the number of neutrons of velocity v per cm.^. 



2.1.2 Slox^jing Down Equation 

In an infinite homogeneous mediuin, under slowing doxm equilibrium, 

the rate of removal of neutrons from an energy interval (E,E-fdE) is equal 

to the rate of neutron replacement. Thus 

n rE/ct,. E .(j)(E')dE' J- cn 
E (j)(E)dE = I 
^ i=l 

dE + S(E)dE , 2.1 
(l~a.)E' 

where 

(i) (f)(E)dE is the rate of removal of neutrons per unit volume, 

from the energy interval (E,E+dE), being the total of all macroscopic 

cross sections of the n nuclear species present and is given by 

n 

t . a i si 
i==l 

E/ai 
E . (t)(E') dE' dE . ^ 
SI '7' \- i is the rate per unit volume at 

E (l-a.)E 
(ii) 

which neutrons enter the energy interval (E,F+dE) after having had the 

last collision with a nucleus of the i^^ nuclear species. 

(iii) S(E)dE is the rate per unit volume at which neutrons are produced, 

vsr/̂ A an initial energy in the interval (E,E+dE), 

(iv) E . and E . are respectively, the macroscopic scattering and 
si ai 

th 

absorption cross sections of the i nuclear species(which may be functions 

of neutron energy), and 

(v) (|)(E) is the neutron flux. 

Equation 2.1 is often more conveniently expressed in terms of 

the lethargy, u, defined by 

u = £n(E /E) , 
o 



where F^ is any specified energy usually taken to be 10 MeV. In terms of 

the lethargy equation 2.1 becones 

n 
Ê (i)(u)du = I 

u 

i=l •'u-£n 1/aj " 'i 
e"'" "" du'du+Sfu)du . 2.2 1-a. 

2.3.3 Slowing Down Density, q(E) 

The slowing down density/ is defined to be the nurrber of neutrons 

slowing doim to below an energy E, per unit voluirie and tirae, and is shown 

by Glasstone and Edlund (1952) to be 

n 
a(E) = I 

i=l 

E/a. E-a- T7 » 

E 
2.3 

By differentiating equation 2.3 and using eauation 2.1, vre get 

I i^.H^)-s(r) 
i=l 

2.4 

or, in terms of lethargy 

d__ a(u) 
du 

n 
y z .(i)(u) + s(u) ^ ai i=l 

2.5 

2.1.4 The Average Logarithmic Energy Decrement, C 

The average logarithmic energy decrement (or avera^te gain in 

lethargy per collision), for the i^^ nuclear species, , is expressed 

by 

= 
•'u 

u -u -Tu -u), , 
1 



and so. 
a. 

^ _ 2. - iix) 1/a. . 1 1-a. 1 2.6 

An alternative expression for ^^ is given by 

dE' . 
E 

2.7 

2.2 Asyroptotic Solution of Slowin,̂  Equation 

In a non-absorbing medium, equation 2.1 reduces to 

n n 
I = I 

U -(u-u^) 
I .(j) . -J . si^ 1-a. du' + S(u) . 2.8 

Application of the one-sided Laplace Convolution Theorem, gives 

1=1 1=1 

where 

X{yM = y(p) = 

, P+i 1-a. ̂  

e ^^ y(u)du 
^ 0 

and 

On the assumption that the scattering cross sections are constant, 

equation 2.8 can be rearranged to give 
n 1-a P+1 

= s(p) -f s(p) -(i^^c^iiy 'si 

n I . 1-a. p+i 

£ i (1-a )(p+l) J. J., o JL 

n 
where z = y E . . s SI 



The second term on the right hand side of equation 2.9 has a 

simple pole at p=0, and is the pole with the largest real part, and gives 

the dominant term for large u. The residue at p=0, is by T/Hopital's 

Rule, 

2Tri ^ liri 
n E . 7 E ' 

1=1 s 

_ n 
where Z C = J ^ . . 2.10 s si 1=1 

The inversion of equation 2.8 for large u is 

s 
o 5 

E (|>(u) = S(u) + o 2.11 

If u^ is the largest lethargy at which neutrons are produced, then when 

u>u^, equation 2.11 can be expressed as 

E 6(u) = 0 , 2.12 
f 

where 0 = S(u)du . 
source 

The full inversion of equation 2.9 is discussed in Appendix A. 

2.3 Resonances 

"P'or the reactions of interest when a nucleus absorbs a neutron, 

a compound nucleus is formed, which may not be in its energy ĉ round state, 

depending on the energies and momenta of the colliding particles. Tf 

the energy of the incident neutron is such that the com.pound nucleus 

would have an excited energy near one of its quantum states, the reaction 



rate, and hence the cross section of the nucleus is large. A resonance 

occurs where the cross section is large corresponding to some quantum 

state of the compound nucleus. The large value of the cross section does 

not occur at a precise neutron energy, but is spread over a finite width 

of neutron energies because of HeisenbergVs Uncertainty Principle, and 

also because of the spread of the thermal energies of the nuclei. 

The compound nucleus will decay to a more stable form by the 

emission of energy. Three possible modes of decay are considered 

Channel 1: A neutron is ejected, the resulting nucleus being of the 

same nuclear species as the original nucleus. If the incident neutron 

energy vjas not large, the final nucleus would be in its ground state 

(because the inelastic scattering threshold is high), and the overall 

effect would be an elastic collision. This resonance scattering is 

distinct from the normal collision or potential scattering, and the two 

types are here denoted by the subscripts s, and p , respectively. 

Channel 2: Some particle, other than a neutron is ejected, resulting in 

the formation of a more stable nucleus, which may undergo further dis-

integration subsequently. The effect is to remove the neutron from the 

neutron population. 

Channel 3: The compound nucleus disintegrates by fission which produces 

neutrons at source energies. 

If X^(i=l,2,3) is the disintegration constant for the i^^ dis-

integration channel, the partial width r^ is defined as 

r. 

where K is Planck's constant. 



The standard symbols used are:-

^n = ^ = % = ''a = ^f = ''3 • 

The total width of the resonance is defined as 

r = r + r + r^ n Y f 
and has the dimension of energy. The absorption width T , is a 

r = r + r^ 

a Y f 

since both channels 2 and 3 remove the neutron. The probability 

that the compound nucleus will decay via the i^^ channel is r. 
f- (i=l,2,3) . 

Weinberg and Wigner (1958) and Dresner (1960) discuss the 

preceding ideas in greater length. 

2.4 Flux in the Region of a Narrow Resonance 

Following Horner (1966) and combining equations 2.3, 2.7 and 2.8, 

we get 
n 

q(E) - C = I 
^ i=l 

n 

E/ai 

E 
E/a-r 

(E' ) (i)(E» ) (E-a.E» ) (E) (E-a.E' )E 
1 pi t 1 si 

(l-a.)E» 

- I 
i=l 

_ _t ^̂  
Z (l-a.)E'^ 
P 1 

E djŜ  

dE' 

n a, 
- 1 ' 
i=l 

P i 
E/ai ^ 

E^.(E')(i)(E')E' - Z^(E)(i)(E)E 
P 

dE» 
(l-a^)E^ 

2.13 



Except for a factor E the first summation on the R.H.S. of equation 

2.13 may be written as 

n E .(E')KE')dE' n I . Z.E^ Y SI Y pi t 
^ . (l-a,)E» E (1-a.) i=l 

dE' 

E ^ 

n r^^^i E .(E')(i)(E')dE» 
= I 
i=l 

- i:. KE) 
E ' 

= 0 

by virtue of equation 2.1, since S(E) may be taken to be zero in the 

resonance region. 

The integrands of the second summation of equation 2.13 differ 

from the integrands of the first summation by a factor E*. Consequently 

if the values of and are appreciable over only vsmall ranges of F/, 

that is, the resonance is narrow and remote from other resonances, or if 

E* is large, the second set of integrals do not differ appreciably from 

the first set, and the second summation of integrals must be close to 

zero, and to small error can be put to zero. Hence 

q(E) J 2.14 

which is the narrow resonance approximation. 

2.5 Resonance Escape Probability 

On dividing equation 2.5 by q(u) and integrating we get 
-i I i=i j J o " 

du' 
q(u) = Q e ^ ^ J " 2.15 

where 0 is the strength of the neutron source, I .. Is the absorption ci ̂  j 
cross section of the resonance of the i^^ nuclear species and the 



summation over j covers all resonances which have absorption in the 

range 0 ^ u' ^ u. 

If p..(u) denotes the probability that a neutron reaches 

th 

lethargy u, without absorption by the ij resonance, and if p(u) 

denotes the combined probabilities for all the resonances, then 

n 

a i m 
0 

- I I 
u E . . (u) (|)(u) 

q(u) 
du 

n 
n n e 

j 

u l^, . (u)4)(u) 
du 

n 
n n p . . . 

1=1 j ^ ^ 

2 .16 

For regions where the neutron lethargy is well below lethargies 

of resonance, T. and T. .. are small, and using equation 2.14 in the 
aij sij 

form 

<t)(u) ^ ^ J L . 
q(u) C 

we get 

P̂ l̂ exp 

ru Z . . du 

0 -;r 
n 

^ i=l j ^^^ 

2.17 

and 

0 P(u) 
n 
I la, .+5: ..)] 

P i=l j ^ ^ 

2.18 



The values of (|i(u) are, at extreme values of u, given by 

i)i(o) = ^ f -
^ P 

^ P 

which are the correct asymptotic values. 

2.6 Breit Wigner Line Shape Function 

The profile of a resonance about the resonance energy E^ is 

assumed to be the Doppler Broadened line shape function of Breit Wigner 

2 /¡T -co 
^ ^ dy , 2.19 

where (i) 9 = ^ ^ 2/ E kT r 

(ii) T is the absolute temperature of the mixture 

(iii) X = (E-E^)/ r/2 

(iv) k is Boltzman's constant. 

The resonance absorption and scattering profiles are given by: 

a = a ii;(x,e) 2.20 a 1 o 
r„ 

a = -f a^ ^(x,e) , 2.21 s 1 o 

where o^ is the peak height of the resonance profile and is 
2.608 X 10^ g r 

a = 2.22 o r E r 

g being the spin factor of the target nucleus. 

2.6.1 SomsProperties of the Function il̂ (x,e) 

The integral ,, ^̂  , 



can be evaluated by using 2.19, and by reversing the order of 

Integration. Thus 
MOO 

\i;(x,0)dx = TT . 

If the auxiliary function 

(|)(x,9) = y e ^ , ^̂  5 dy 
2/̂ 7 J-00 

2.23 

Is defined, then as ^(x,0) Is an even function of x, while (})(x,9) Is 

an odd function of x, the Fourier Cosine, and Sine transforms give. 

respectively 
-s-s2/e2 

= A/2 e 

2 / 2 
= A/2 e""®"̂  , 

2.24 

2.25 

Inversion of the equations 2.24 and 2.25 give the alternative 

expressions 
r -s-s2/e2 e cos sx ds 2.26 

and 

When X = 0, 

(()(x,e) = e sm SX ds 

= e 02/4 

2.27 

l/u 0 erfc 0/2 

and 

4.(0,0) = 0 

2.28 

2.29 



Corresponding to zero temperature, 6 = <», we have 

i|;(x,~)+l (i)(x,«') = 
-s isx , e e ds 

so that 

and 

tCx,») = ^ 

X 

l-fix 
l+x^ 

2.30 

2.31 

and 

2.6.2 Differential Equation for ^(x,e) 

If the equations 2.19 and 2.23 are integrated by parts we get, 

X i i ; ( x , e ) = Mx ,e ) - 2.32 

X Mx ,e ) = 1 - ^(x,e) 2.33 

Differentiation of equation 2.32 yields 

9 /V = ^ - 2 ^ i|;(x , e ) 2.34 

The quantity can be eliminated from equation 2.34 by 
o X 

use of equation 2.33, and from the resulting equation, the quantity 

(i)(x,e) can be eliminated by use of equation 2.32. The end result is 

= ^ ¿e"̂  - e ^ x ^ ' - d + e ^ + e ^ x ^ ) ^ 2 . 3 5 

where the primes denote differentiation with respect to x. 

A similar differential equation can be obtained for the function 

(()(x,e) using a similar method. 



By differentiating equation 2.35 the third derivative of i|;(x,e) 

is expressed in terms of the lower derivatives, and is by virtue of 

equation 2.35 expressible in terms of and ip\ This argument can be 

extended to the n^^ order derivative. Thus all derivatives of ip(x,e) 

at any point x^, can be evaluated if and are known. 

The value of \IJ at x=0 is known by equation 2.28 and ii;'=0 at x=0 since 

the function ifj is an even function. By use of a Taylor's series, values 

of and its x-derivatives can be calculated for all x. 

The numerical procedure for calculating i}j adopted by Pollard 

(1964) is to obtain values for if;, ip'\ by using a truncated 

Taylor expansion by stepping out from x=0 and evaluating the derivatives 

(up to the third) at each point. 

2.6.3 Asymptotic Series for i}j(x,Q) 

Though a numerical technique was discussed in section 2.6.2 for 

the evaluation of i^(x,e) for all x, the stability and accuracy of the 

method depends on the choice of step length and the number of derivatives 

used.For high accuracy for large x, the method becomes cumbersome, and use 

is made of as5nnptotic series. 

- s 2/e2 
By expanding the term e in equations 2.26 and 2.27 we get 

- I 
n=0 

and (i)(x,e) = I 
n=0 

, 1 2n -s 
v"" —T s e cos sx ds 

w n! 0 

. 1 2n "S , 
(- —r s e sin sx ds . D n! 



Hence we have 

i|;(x,e) - i(f)(x,e) - I 
n=0 

' I " 1 2n -s -isx (--¿y) ^ys e e dx 

x̂ hich is a Fourier transform giving 

n=0 e dx 
and 

n=0 6' 
2.36 

o e dx 
2.37 

However, the asymptotic series for both ii;(x,e) and c|)(x,9) 

are best obtained using equation 2.36, the general result being for 

2.38 
o e )i:=o 

k 2n+l ^ 2k 

and the first three terms of the series are 

^ {1+[(3X^-1)+(15X2(X2-2)+3)V]} 1+x 2.39 

Tr _ 1 2 V - '(i+x̂ -̂p- F • where 

T^en X is sufficiently large, further truncation is possible to 

give 

2.40 

Ef fecjtiv̂ ^̂  

On the assumption that^in parts of the analysis for an isolated 

resonance.p(u) is close to unity, q(u) does not change appreciably over 

the resonance; then to first order of approximation, using equation 2.14, 

\<!e have 

(|)(E) = 0/IEE^ 



for a single resonant species mixed with a moderator. 

The absorption per unit volume would be 
E E 

r o 
E (i)(E)dE = a i j 

O L dE 
E +E E 0 p a s 

After dividing both top and bottom of the right hand side by N, the 

number of resonant nuclei per unit volume, an equivalent equation is 

obtained in terms of the microscopic cross sections. For a and a , 
a s 

their values from equations 2.20 and 2.21 are used to give 
r 0 ["̂ o 

0 
N 

E 
a (|)(E)dE = 

a 
r % dF 
a +a vKx,e) E P o 

0 
? J 

^ ip(x,e) ^ 
r 3+iij(x,9) E 

where = —^ and a is the scattering cross section of the p 

mixture per resonant atom. The absorption in the resonance is taken 

to be 
0 ^a 

2E r ~ 
dx 2.41 

where the limits of x have been extended to ± because the limits 0,E 

correspond to such large values of x, that extension of the limits to 

+ 00 
1 . gives negligible contribution to the integral, and ~ in its explicit 

form is put equal to , since varies little through the part of 

the resonance providing the major contribution to the integral. 



The quantity 

I = 
r a 

p 
E dx 

is termed the Effective Resonance Integral. The function 

J(e,B) = dx 

has been tabulated by Dresner (1960) anjothers. 

2.7.1 Some Extreme Values for J(6,3) 

(i) When T=0, 

1+x' 

and substitution in equation 2.43 yields 
I 

1 J(~,6) = 
0 

dx 

= tt/2/{B(1+6)} . 

2.42 

2.43 

2.44 

(ii) When 3 is large, or when T is large we have 

3 » i|̂ (x,e) 

since iî (x,e) $ 1 

and for large T, 

ip(x,e) ^ 0 2.45 

hence J(e,3) = 3 

= Tr/23 . 2.46 



(iii) When B is small, over the central region of a resonance 

the integrand becomes 

1 

and can be replaced by 

1 

and when x becomes large in the wings of the resonance 

hence the integral is approximately equal to 

1 
Y 

dx = tt/2{B(1+6)} 
0 6 + ^ 

1+x^ 

and as 3 is small 

J(e,6) 7r/2/6 . 2.47 



3. FLITX DISTURBANCE DUE TO A RESONANCE 

3̂ .1 Introduction 

The Narrow Resonance (NR) approximation assumes that the flux in 

the region of a resonance is given by the relation 

Z éCE) = = t p o 

where is the flux in the absence of any resonances. As the total cross 

section, E^(E), is symmetrical about E=E , so also is F(f)(E) for the NR 

approximation, but E(i)(E) cannot be symmetrical because of neutron depletion 

due to absorption. Further, any absorption and any change in the ratio of 

the scattering cross sections of the nuclear species present give rise to 

perturbation effects. So, for a resonance, apart from the asymmetry in 

E(|)(E) caused by the reduction in the neutron population, asymmetry is also 

present because of perturbation effects. 

Goldstein (196A) and Keane and Dyos (1965) independently obtained 

expressions which give an asymmetric flux in the resonance region. For 

the expressions obtained, the below resonance flux, considered as a functioi 

of u, returned to the above resonance value, indicating that the expression; 

do not take neutron absorption into account. Goldstein showed that a flux 

shape which would approach the correct below-resonance value could be 

obtained by considering the resonance as a negative source. 

3.2 A Resonance as a 6-sink 

If the width F, of a resonance is reduced in such a way that the 



resonance absorption probability remains constant, the resonance becomes 

a 6-sink of magnitude (l-p)Q, P being the resonance escape probability 

which also remains constant during the limiting process. 

The flux resulting from a 6-source of magnitude S, located 

at u^ is given by 

^ Po(u-u ) I r 
P 

and so the flux in the region of a 6-sink is 

= I {l - CCl-p) P2(u-up} 3.1 

The general expression for the Placzek Function, P^(^) is 

derived in Appendix A and is expressed by equation A4. It is to be 

noted that the subscript denotes the number of different nuclear species 

which are considered in the slowing down of neutrons. In section 2,2, 

an expression, equation 2.12, was derived for the asymptotic value of 

P^(u), namely 

In the region 

1 0 < u < 3 iln 
«1 

where the subscript 1 refers to the moderating species, the function 

P (u) fluctuates about its ultimate value. î Jhen u >> u , equation 3.1 n r 

reduces to 

3.2 



and also , > 

giving 
^t = S ' 

E ^ 3.3 

which is the correct limiting form of the below resonance flux 

¿.¿A Resonance as a Negative Source 

The infinite m.ass (IM) approximation assumes that a reSCnant 

nucleus is of infinite mass, and so, the collision of a neutron and 

a nesoi^ontnucleus does not degrade the energy of the neutron and the 

resOncint nuclei do not contribute to the slowing dovm of neutrons. 

Equation 2.1 could be written using the IM approximation. 
u 

E (j) = 
Pi 

-(u-u') 
E 6 

u-Jln 1/a. 
du' + F(u) - Ed) a 

where the subscript 1 refers to the moderator. On rearranging the 

Laplace transform of this equation 

X 
Inversion gives, 

E (f)} = S(p) + 
Pi l-K(p) E (t) a • 

= S(u) + 
u 
P^(u-u') S(u') du' -

u 
P, (u~u') E (j) du' 1 a 

and for regions well below the source. 

S(u) = 0, P^(u-u') = I , 

and so. 
ru 

P, (u-u') E (}) du' 1 a 3.^ 

Equation 3.4 includes flux perturbations caused by the moderator, 

and if is replaced by some of the flux perturbation effect 

caused by the re^cnQnt species will also be present. Thus 



u 
du' 3.5 

0 

This equation is not exact. Consideration of the more general 
Ce^,jation ^ i) 

form of the slowing down equationj^with the two integrals on the right 

hand side, corresponding to the two nuclear species present, leads to 

a transform which is not amenable to inversion to a suitable form. 

When u >> u^ , P2(u-u*) can be replaced by its asymptotic 

value = , using equation 2.12, since P^Cu-u*) will be near its asymptotic 

value in the region where E and E differ appreciably from zero. Hence 
a s 

M 

Z <\> du' 3.6 
a 0 

which gives the correct form of the below resonance flux, namely 

V ' f " 
in agreement with equation 3.3. 

3.4 Resonance Profile for no Flux Perturbations 

Computer codes which calculate the absorption by a species over 

the whole range of lethargy take into account only the coarse structure 

of the flux and allow in essence for discontinuous reductions in the flux 

at the energies of resonance. It is of interest to obtain an expression 

for the profile of a resonance, so that the fine structure, as well as the 

coarse structure, of the flux is to consist of a discontinuous reduction 

at the energies of resonance with no resulting flux perturbations .We/W ^'S-

If is to change only at u=u^, by an amount (l-p)(i)^, 

where is the flux above a particular resonance and p is once again the 

resonance escape probability, then 



(i: )cj) = E (p (i-d-p) H(u-u )) s p ^ p o r 3.7 

Avssuraing the presence of only one species of nuclei, and 

combining equation 3.7 T«7ith the equation 

-(u-u^) 
(E +E +S )(i) = a s p 

u 

u-~£n 1/a 
(E +E )(i) s p^^ 1-a " du' -h S(u) 

we get 

Z (}) = I (j) i 
-(u-u^) -(u-u -Jin 1/a) 
i -a] H(u-u )+a (l-e }H(u-u^~i,n 1/a) 

3.8 

The right hand side of the above equation is a non-zero function 

over the range 1/a), and zero elsewhere, and eauation 3.8 can 

be modified to read 

Z (p = 
^^(1-p) -(u-u ) ^ r̂  ^ H(u-u ) il(u +£n 1/a-u) 

a' 1-a o^ ^ r r 3.9 

In view of the remarks of section 2.3, it is assumed that 
r 

E = E s r a a 

and combining equations 3.7 and 3.9 gives 

E R 
L 
1-D 

-(u-u^) 
e -a 

^a V r ~(u-u ) (l-a)p n r r 
a 

•a) 

ll(u-u^) H(û +iln 1/a-u) . 3.10 

It is to be noted that the absorption cross section is a function 

of a and E , which are parameters relatin^^ to the moderating species. P 
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If we make the substitution 

X = 

then 

= Í; H- H. . 3.11 a \ i „ 1 2 

i-p r ^ «^J •p 
a L 

where H^, H^ are the Heaviside functions of equation 3.10. 

The function defined by equation 3.11 is a section of a rectangular 

hyperbola, whose asymptotes are 

r (1-a) 2E r 
X = - 3 12 

^ a n 

-E r 
E = — . 3.13 a 1 n 

The largest value of is when x = 0, and is 

E 
E = ^-ÍT- . 3.14 a r max p _ _n 

1"P r 
Y 

In Fig. 1, a comparison is made between a (i> given by equation a 

3.9 and cr (P for the Breit Wigner profile for zero temperature and resonance 
a 

parameters corresponding to the 6.7 ev resonance of U2 38« The value of 

1-p is taken as 
r 

1 _ a TT 
^ ^ J /{3(l+6)} 

and the expression for o J) for the Breit Wigner profile is a 
r 0 0 . a 0 p 

^a^ - T a +a Ix^o ^ ' o p p 



The parameters used for the two sets of curves were 

? = .207 E = 6.7 ev r 
a = .64 r^ = 

T = o \ r = l.^x/o'^^ev n 

The curves indicate that, for a concentrated mixture, the profile 

of equation 3.9, and the Breit Signer profile have similar peak values, and 

both give appreciable absorption over a wide range of energy. However, for 

a dilute mixture, the peak values of absorption are quite different. The 

Breit Wigner profile gives appreciable absorption over only a small section 

of its infinite range, while the 'no perturbation' profile gives appreciable 

absorption over all of its finite range. 

3.5 Flux Through a Resonance 

Goldstein (1964) derived an expression for the flux in the region 

of a resonance. The expression gives the same value for the flux below, 

as above, the resonance and this obviously does not allow for the depletion 

of the flux due to absorption. An alternative expression which allows for 

flux depletion is derived in this section. 

Briefly, Goldstein's method is an iterative procedure based on a 

modified form of equation 2.1 

E (j) = E . (j) + 
u a )ci) e "'^du' 

Equation 3.15 is a NR approximation x̂ 7ith respect to the moderator, and is 

based on the result 
E , e-^"-"'^ du-

^ — = ^ 1 ^ u-Jln 1/aj pi ° 



which is so, because over most of the range of integration, the flux 

(being off resonance). 

On the assumption of a Breit Uigner single level resonance 

profile for zero temperature, Goldstein took the first iterant as the 

NR approximation 

where, 

E (}) (f) (1-hx̂ ) 
A - P o o 

- zt" ̂  

^i' = ^ ^ ^ 
o 

3.16 

3.17 

where 

The second iterant became 

Z (j) = I , (j) + t^ pi ^o 
u 

u-£n 1/a, 

-(u-u') 

^ . fi . r -1 ^ -1 X = E (fc • 1+n tan T — - tan — p o ^ P^ 

6 = 

3.18 

3-19 

and 6 = a /a > P o 
(6,2 - 62) 

1 _L_ X 

The term tan' ~ — on the right hand side of equation 3.19 is 

symmetric about 
^ = - 2 

The asymptotic value of the flux for large u is (f) , whereas it o 
should be P^^f where p is the resonance escape probability. The Goldstein 

result does not include the flux decrease due to neutron absorption. 



To modify the result of equation 3.19, allowing for the reduction 

in neutron population, we first use the NK flux of equation 3.16 as a first 

iterant in equation 3.6. The second iterant becomes 
z (p r 

X _ J 2. Ji 
X 

dx 

where the usual approximation is made to the integral. Hence 
r 

E = E (j) {l - - - tan ^ x / p j 3.20 

Further iteration gives additional terms which have as coefficients 
r 

higher powers of . 

procedure is determined by the value of 

The rate of convergence of the iteration 
r 

, which is smallest when 

the mixture contains only a small amount of resonant material. 

If, now, we use the approximation of equation 3.20 as a first 

iterant for Goldstein*s method, the second iterant becomes 
-1 x+5 -1 X •;r~ - tan ^ 

r TT 

+ -rr- E d) P o 
E -(u-u') pi e 

4^62 B V 

-1 X 

u-£n 1/a. E^(l-a^) tan du^ 

+ 
u (E + E ) e s pz 

-(u-u') 

u--£n 1/a. E^Cl-a^) 
^ -1 X , , tan du 3.21 

The integrals of the last equation can be approximated and 
-1 X 

simplified bv giving the term tan — its value at the mid-point of the 

integration range. By this procedure the integrals of equation 3.21 reduce 

to the same form as that of equation 3.18. Hence 
E^ci) = ^ - tan •1 X 

3. B. 1 
r TT a + 

r X, 
V - ^ + ntan-^ ^ (tan"^ ft^™ - tan"^ ^ 26 K̂̂ 'r 3 6. 3.22 



where 
1 

It is of interest to see whether the flux predicted by equation 

3.22 is in agreement with the correct flux values in regions well removed 

from the resonance. When x ^ + 

= E (j) = E c|) il 
t^ p^ p^o ^ 

r 7T 
a 

ACBBiE 

r TT 

I ' r P o 

= E (|) 
P o 

and when x - . 

Ed) = Ed) = Ed) 
t p p o 

p o 

r 7T 
a 

The expression for the flux will go to the correct asymptotic 

value on condition that the NR approximation can be used, i.e. 

1 - p. 
r IT 
a 

The quantity could be replaced by 1-p in equation 3.22, 

so that it no longer depends on the NF approximation. The modified form 

of equation 3.22 would give the exact flux value beloxAj the resonance. 

In section 7.2 (p.60) the predicted value of the flux obtained by 

use of equation 3.22 is checked against the flux obtained by numerical 

solution of the slowing dovm equation. The agreement is to within 

and equation 3.22 is considered to be a better approximation than 

equation 3.19. 



4. APPROXIMATION FOR ABSORPTION IN CENTRAL RESONANCE REGION 

4.1 Introduction 

The shape of the Placzek function would suggest that evaluation 

of equation 3.5 would give a flux depression near a lethargy greater by 

in l/a^,than u^. In Chapter 3, this possibility was ignored by 

taking 

J i du' = E , <!, . 

u-)ln 1/a^ ^""l P^ 

Evaluation of equation 3.5 is not possible because of the complexity 

of the functions forming the integrand. Polynomial approximation for the 

quantity Z ({) would allow evaluation of the integral, but for high order 
a 

polynomials, the result is quite complicated. In the interests of 

comparative simplicity, and in order to use Simpson*s integration rule, 

a pair of parabolas symmetrically placed about E=E^ is used for 

approximation purposes. Since only the central region of a resonance 

gives a large flux perturbation effect, an approximation is obtained for 

the central region only. 

4.2 Parabolic Approximation for E (}> , at zero temperature 

a 

It is to be noted that the points x=0,l,2,3; y=l,.5,.2,.l 

lie on both the curves 
= — L 

^ l+x^' 

and lOy = (x-3)2+l . 



The slope of the parabola is zero at x=3, and the areas under the 

curves for are 1.23 and 1.2 units respectively. 

The absorption reaction rate, for a resonance, using the 

NR flux approximation, is 

V A - ^̂  ̂ a ^P . , T r V T ^^ a l b /I ,l\ , 2 o r 

where B is again a /a . P o 

If we put v̂ T+iTb C=x, then 

which we may approximate as 

4.3 
a^ r E 0+0 10 r o p 

r o p 

4.3 Parabolic Approximation for E (p, allowing for Temperature a 

In order to obtain a parabolic approximation for E cj) for any a 
temperature, it is necessary to first reduce the function 

o +0 ip(x,e) p o 
by approximating to a standard form 

i W 

whence the results of the previous section can be applied. If we take C 

to be of the form 
E-E 

estimates of the quantities c, and G are needed. 
37 



Applying the criterion that the two values of functions (i) 

and (ii) are to coincide at E=E^, it follows that 

c = 
a +a il; 
p o o 

4.5 

where = i|;(0,e). 

If, in addition, the function of ^ corresponding to ii^(x,e) is to 

have the same integral over the range x = as has i/j(x,e); then 

and as 

so 

1-a 
- o o o 

^ dx = a 
- c o p 

G d c = r dx 

-H» a c 
P , 

T = 
- 0 0 o 

Hence 
a c G IT p 

7 a ^ c ) r 

and using result 4.5, gives 

r/(a +a \p ) 
C = P, S ^ 

/a ip 
p o 

4.6 

VJhen T = 0, ip = 1. 
' o 

r/(a +a ) 
^ P o 

using equations 4.3, an approximation to Ẑ cf) i s 

.T r a a (f) 
y (t) = O p O 
a^ "" r E a +a ip 10 r p o o 

TVT r ci a _ a o p 
r E o +ip o 10 

r D "̂ o o 

{(C+3)2+l}, 0:>x^-3 

4.7 
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It is of interest to compare 
00 a c 
^ ^ dx with J(6,6) 

- 0 

for extreme values of the parameters, 

We have 
. 0 0 Q C ¡.CO Q Q 

0 , o G , T = -- dc 
0 

r 
0 

a \{j /[o +o ijj } n ^ n Vri r\ ^ r\y o 0 0 0 /o / o - ^ —̂ r: 4.8 
a 4> +0 vo ih 
0 0 p P 0 

a 
I'Jhen T-x» (ij; ->0) or when 3 is large, (6=—] , the BBS of 4.8 reduces 

0 TT to — , which agrees with the result for J(6,3) and which x̂7as evaluated ¿0 

in section 2.7.1. 

VThen a <<a , the result 4.8 sim.plifies to P 0 
TT 

2 / ( M r y 

which is not the correct value. The reason for the disagreement is that 

in the wings of the resonance, the asymptotic values of the two functions 

do not agree; they are 
^^o 1 

W^TCi+f^) W i ^ ' o o 

In Fig.II, a comparison is made between the values for 

for the Breit Wigner profile, 

E c|) = Kip/(o+oJj) , a P ^ 
and the approximation 

where K = E d) a , p ^o o r ' 
for two different resonances. 

It is to be noted that for small G/r the curves are in close 

agreement, but the agreement is not close for large G/T. 
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However, for a study of flux perturbations, the wings are not so 

important since the major contribution comes from the region where E (¡> a 
is largest. An estimate of the absorption is obtained by integration 

over the central region of the curve for T̂̂ÎÎ errors observable 

in Fig.IT tend to cancel. 



5, EFFECT OF FLUX PERTURBATIONS FROM ONE RESONANCE, ON THE ABSORPTION 
BY A SECOND RESONANCE 

5.1 Introduction 

The problem of resonance overlap, when the central portions of 

the two resonances overlap to some extent has been considered by CorngoW 

and Schermer (1959) and O'Halloran and Keane (1966). The present 

discussion is restricted to resonances which have greater separation 

than the separation which gives a negligible overlap effect when flux 

perturbations from the higher resonance are not considered. The major 

portion of any flux perturbation effect will be caused by the central 

region of a resonance. Only flux perturbations which fall on the central 

region of a resonance will produce any appreciable change in the 

absorption by that resonance. 

5.2 Reduction in Resonance Absorption by a ¿-Resonance because 
of Flux Perturbations from another ¿-Resonance 

For a ¿-resonance, with resonance escape probability p^, where 

the subscript 1 refers to the resonance of greater energy, the flux for 

u>u , is given by equation 3.1, namely 

E d, = Z 6 {l - C d - p J P (u-u ) 
t p o i n r^ 

and the absorption in the second resonance will apparently be 

A = E <i) {l - a i - p - ) P (u -u )}ai-p«) . 

The reduction in absorption by the second resonance will apparently be 

¿A = (l-p^Xl-p^) P 

where u = u -u , and n is the number of nuclear species present 

in the mixture. 



However, the absorption by a narrow resonance is approximately 

a p o 

and for zero temperature it is 

NttF a (b a p o 
2/{(l+6)6} 

a 
where 3 = as before a o 

If the practical width of a resonance is defined to be ' 

where x^jx^ are the roots of the equation 

a % 
then ^ 

The absorption within a practical width of a resonance is 

NF a (j) 
a P o J 

»̂ (B-1) , r a 1 //Q IN dx a p ^ -1 /(P-1) 
3x2+3+1 ^ 7{(IV3)3} 

and for a resonance in which a » o , the total absorption reduces to o P 

IT a r 
Y/{(3+1)3} 

while the absorption within a practical width is 

TT a r a 

At best no more than half of the total absorption by a resonance occurs 

within a practical width. 
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In view of the above remarks, the estimate of equation 5.1 ought 

to be modified to 

6A = ed-ppCl-p^K^ P^(u^) 5.2 

where 0<e<l 

since the central region of a resonance gives the major flux perturbation 

effect. 

5̂ .3 Reduction in the Resonance Absorption of a 6-Resonance 
because of flux perturbations from a Narrow Resonance 

The flux from a narrow resonance was given by equation 3.5 

(NR approximation), and the flux change due to flux perturbations is 

given by 
•u 

5(i) « - P̂ (u-u')Ê (j) du' 5.3 
0 

when the two resonances are of different species (two resonant species 

and one moderating species). Since we are concerned with large 

separations 
u > 3 in 1/a. s 1 

where the subscript i refers to species other than the moderator, and 

P«(u) is defined by equation A4, Appendix A. If we assume the 

concentration of the resOfiOnC species is low, then 'P3(u) can be replaced 

by Pĵ (u) in equation 5.3 to give 
P, (u-u')E (f) du' . 5.4 1 a'̂  

'U 
5(|) = -

^ 0 

The flux change due to the central region of the resonance may 

be expressed as 

6(j) = - P, (u-u')E du' , 5.5 1 a^ 



where u^, u^ are the chosen limits of the central region. If we consider 

that the resonance is narrow, then 

u« - u - u - U-
2 r r 1 

where û ^ and u^ are now taken to correspond to the extremes of the 

approximation given by equation 4.3. By using the relations 

. dE „„ , G 3 
Su - — ; 6E = ¿^y ; = Y 

r 

to obtain the numerical integration interval 6u, and using the points 

C = -3, -3/2, 0, 3/2, 3 

-, no 1 o 1 Nr a a ({) li; 
y A _ (A- i l 1 1 1 -L.1 a o p ^o o 
a'̂  '̂ lO ' 40 ' ' 40 ' lÔ * E (a +a ) 

r p o o 

(corresponding to equation 4.3) for S i m p s o n i n t e g r a t i o n rule, we get 

r a a G N4) _ 

= riTVa-Ti-V t-) ̂  "^fv t") ̂  
^ p ^o o r r r 

r r 

where u = u+u 
s 

The result 5.6 changes the single discontinuous jump of the 

Placzek function, P^(u), at u = £n 1/a^, to a set of smaller discontinuities 

Only analytical integration can remove the discontinuity from the flux 

equation. It is unlikely that one of the values of P^^Cu) in equation 5.6 

should require, in a practical problem, evaluation at the point of 

discontinuity, but if so the mean value would be used. 



If we average the values inside the bracket of equation 5.6, 

the result is 
r . a a i i ; N G ( | ) 

6(̂ (u) = ~ ̂  V "" ) 5.7 r 5 (o -i-a Jp ) E I s ^ p o o^ r 

If there is a 6-resonance at u=u , whose resonance escape probability 

is P2, then the change in absorption is 

1.2Nr a a __ 

1 r̂ ^ p ol "̂ ol 

where u = u ~u . The subscript 1 has been added to indicate the s r2 r^ 
resonance of higher energy. In view of the remarks of section 5.2, 

equation 5.8 should be modified to read 

1.2e NF a a _ 

1 r^ P ol ol 

5.4 Reduction in Absorption by a Narrow Resonance because of Flux 
Perturbations from another Narrow Resonance 

Flux perturbations which fall on the wings of the second 

resonance will contribute little to the change in the absorption by the 

second resonance, and only the effect of flux perturbations on the 

absorption in the centre of the second resonance need be considered. 

The change in absorption is given by 
û 

-ÔA = 
2 

(6(f>)E du' , 5.10 a ' û  

where 6(j> is given by equation 5.7, and represents the flux change caused 

by the upper resonance. If once again we use the approximation of equation 

4.3 to assist in evaluating equation 5.10, and use Simpson's Rule as 



5.12 

before:-

= r ^ i r - a^-a ^ S ^ C ^ K - r ) ^ -

+ 10P(u ) 4- 13PÎU + y ~ ] + Pfu + zr^U — ^ s' ^ s s 2E r^ K (a +a ip ) 

2 ^2 2 ^ ^ 2 
If we average the values of P(u) we get 

1.44 N T r G, G^ a a a^ a^ 1 2 o^ o^ 

1 2 r^ r^ p o^ p o^ ^o^' ^ 

where again u = u - u s r r 

By substituting from equation 4.6 for the values G-, G^, then 
r r a a P(u ) 

-SA = 1 . 4 4 I (i)̂  ~ — ~ [ )(a +Ï ' 

5.5 Two Resonances with 'No Flux Perturbation' Profiles 

In section 3.4 a resonance profile x̂ as derived so that a resonance 

with such a profile would not cause flux perturbations. The resonance 

was assumed to be isolated. The overlap effect for two resonances with 

'no perturbation' profiles becomes zero xrThen the resonances are separated 

by a lethargy greater than twice a moderator collision interval. For two 

resonances with Breit Wigner profiles, the separation at x\7hich the overlap 

effect can be neglected is a function of tem.perature, because of Doppler 

broadening. 

Two resonances x^ith 'no perturbation' profiles would cause 

perturbation effects x̂ 7hen any overlap of the resonances occurs. Thus, 

though the resonance profile for no flux perturbations can be tailored 

to suit an isolated resonance, such a profile is not suitable for 

resonances which are close together. 



6. NUMERICAL SOLUTION OF SLOWING DOVJN EQUATION - THE PPOGRAMME ^EXPEAS^ 

6.1 Introductory Remarks 

EXPEAS was designed to calculate, for an infinite homogeneous 

mixture, the flux in the region of, and the absorption by, two resonances 

which are close together, by stepping through the resonance and solving 

the slowing down equation at each step. The calculation starts at a 

lethargy x<rell below and ends at a lethargy well above, the lethargies of 

resonance. It is to be noted that for practical use, the programme is 
(Xioex/) 

best used for low energies^, since it was written to obtain flux perturbation 

effects, and use at high energies would use considerable computer time. 

To evaluate the effect of one resonance on the other, the resonance 

absorption for each resonance is first calculated as if the other resonance 

were not present, and the calculation is repeated with both resonances 

present. 

The equation solved is a specific form of equation 2.1 and is 
u / , V. -(u-u')j , u , -(u~u*) 

= I 
(a ,+0 .)(j) e du* SI pi 

(l-a,) 
0 -(t> e du' 

^ 6.1 (1-a^) 
u-5n 1/a^ u~^n 1/a^ 

where (1) the subscript 3 refers to the moderator. 

(2) a .(i=l,2) is the potential scattering cross section for the pi 
th 

species having the i resonance, if the resonances are of different 

species, but, a^^ is half the potential scattering cross section of the 

resonant species if both resonances belong to the same species. 

AO 



(3) a is the resonance scattering cross section of the & jL 
.th 1 resonance. 

(4) The microscopic cross sections are given per nucleus of the 

species which has the resonance of higher energy. 

The resonances are taken as having the single level Breit Wigner 

Doppler broadened profile, and interference between potential and resonance 

scattering is ignored. 

6.2 Numerical Procedure 

The numerical procedure follows closely the method used by 

Pollard (1964) in his programme PFAS. 

6.2.1 Choice of Grid 

Part of the input information determines the number N^, of steps 

into which each interval of lethargy for the moderator, to is 

divided to give an approximate step length of the grid for the 

calculation. 

The step length, 6u, is then adjusted so that, 
u -u r r 

W = 
6u 

where M is an even integer. By adjusting u, the resonance cross sections 

can be calculated at intervals 6u, by stepping out from, the centre of each 

resonance, and the calculated values correspond to points of the grid, for 

both resonances. 



Because of the adjustment to 6u, each interval of integration, 

¿n l/otj,» i=l,2,3, does not necessarily consist of an integral number of 

subdivisions. Even numbers N^(i=l,2,3), (N^ being redefined), are 

defined so that 

hi 1/a. in 1/a. 
^ 2 ^ N. $ ^ ÔU ^ i ^ ÔU * 

Each range of integration may have a small section, less than 

26u, which is not included in the numerical integration. Due allowance 

is made, and each numerical integration is adjusted by an appropriate 

amount. 

The computation starts at a lethargy which is very nearly 

2 lethargy intervals of the moderator, below the lethargy corresponding 

to Er^, and ends at a lethargy The region of any large Placzek 

perturbations is included in the calculation. 

6.2.2 Generation of i|i(x,e) 

Near the centre of a resonance, the differential equation for 

equation 2.35, is solved numerically for values of x corresponding 

to the grid values of lethargy. 

For each resonance, the energies corresponding to the grid values 

of lethargies 

u^ ± nôu , i=l,2 

which, for suitable n, are all the points of the chosen grid, are given 

as 

E± = E i=1.2 n r * i 



5 u In general E^ = e 

and X, = X- - -dE, _ 

k k-1 k-1 

where d = —(e""^"-!) 

To minimise round-off errors, the code uses 
26u r, 6u . d 

Using the above equations, an iterative procedure for the generation 

ofi|;(x,e) can be written as:-

= -

\ = \ - l + I 
6x,2 6X 3 

\ = + '̂̂ k -̂ 'k-i + — -̂ "k-i - T " -̂ 'k-i 
6x 2 

= -e^x^ - IVy. - ie2(6+02+e2x^2)t^'j^ - ^^ 

where primes denote differentiation with respect to x. 

The solution starts at x = 0, where i|)(x,e) has the initial 

conditions 

E. = E 
3 r 
X. = 0 

Q 
= 0 ere -
= ° 



To evaluate T|̂ (0,e) we use the relations 
1 / y^ ere y = ¿/tt ê  erfc y 

5 V 1 
= ̂  a. n 

1 ^ 
provided y $ 1.5, where 

= 1 
(1+py) 

The constants p, and a^ (i=l,5) are given by Hastings (1955). 

When x^ has been increased so that 

x^l 12/6^ 

the function i(;(x,e) is obtained from its as3nnptotic series, equation 

2.39, and when x^ reaches a value so that 

the function i|;(x,0) is obtained from a further truncation of its as3miptotic 

series, namely 

It is to be noted that the iteration procedure has to be worked 

both ways from the centre of the resonance as 

and the symmetry of \IJ(X,B) cannot be used. 



6.2.3 Method of Integration 

Equation 6.1 can be x̂ zritten, using SimpsonRule 

i=l,3 ^ ^i i=l,2 ^ ^i ^ i=l,3 ^^^ 

L+N. -(K-L)6U 
x.here Y = I {Sy[a +a + (a +a ] 6 } ^ F-L+1 JV pi SI K J- oî  pi SI 1 

and Sŷ  = 2 or 4, depending on whether K~L is odd or eveUjOnd Li^a^fid pdnt 

Two separate values of Y^, for each i, are used in the calculation 

through the resonances, and are used alternately. If one value of Y^ 

is given as 

Y. ={Aia .+a .]<l>, .+0 Jcf,^, 

i^ ^ pi SI-* L ^ pi si^ L+1 ^ 

the corresponding value for Y^ for the next calculation of (p at the next point of the grid will be 

Y. ={4ia .+a , (a .+a ^ ^ pi sî  L-1 ^ pi sî  L 

but for the one after, will be 

Y. {̂JLia .+a , .+a -+4(a .+a i^ pi pi sî  ^ pi si^^. 

The pattern of numerical integration repeats itself every alternate 

step on stepping through the resonances. Each of the values Y^^ and Y^^ 

are adjusted by a product of e and suitable subtraction and addition of 

terms after each evaluation of equation 6.2. 

The terms P̂^ are evaluated by extrapolation, using the last four 

terms of the summation Y^. Cubic extrapolation is used (since Simpson*s 



Rule is cubic in accuracy) to obtain the values of the integrand at 

points Y and r above the last term of the Simpson summation, where 

r = iin 1/a^ - N^ 6u. 

Simpson's Rule is then applied to the section of the integral which has 

not been covered by the integral rule, to give 

\ = y^ + ^ y^ + 2w^y + 2w^)r 

where the w^ are the coefficients of the cubic extrapolation based on 

abscissae 0,1,2,3 and 
r 

y = 26u • 

6.2.4 Initial Values of Flux-Upper End Correction 

The first value of (j)̂  calculated from equation 6.2 corresponds 

to a lethargy of u^ - 2N^6u, and the initial values of K>L 

used to begin the stepping through procedure are obtained by evaluating 

the resonance integrals and using equations 2.16, 2.17, 2.18. 

For each resonance with E >>E a r 
^a r a 

P = exp :T ̂ ^ îx 

Y P rf̂  ^ /„L 1 = ̂̂ ^ |̂ /r3(6+T)T " ''a/ B+i> 

The initial values of flux are given by 

the above resonance flux being normalised to unity for printed output 

of EXPEAS. 



6.2,5 Calculation of Resonance Absorption 

The resonance absorption probability is calculated using Simpson's 

Rule, and is progressively evaluated at every second evaluation of the 

flux during the stepping through procedure. The equation used for the 

evaluation is 

A = i c r 
1 2 

a (i) du' . a 

This is then corrected for the truncation of the lower wings of the 

resonances assuming that 

Mx,6) = 

and using 

A = i 
e ? J 

-H» T. (u') 

U^ t 

where F(u) = (u^) (j) (u^) 

and u„ = u + 2N_ 6u 2 r^ 3 

The total absorption probability is then 
A = A + A 

6.2.6 Calculatiojp_ of̂  2. 

The resonance escape probability is simply 

p = 1 - A . 

At regular intervals during the stepping, through procedure, the 

quantities, energy, flux, absorption for both resonances, the value of 

Ê <()/q, and the combined resonance escape probability is typed out. 



6.4 Accuracy of EXPEAS 

EXPEAS was used to calculate the absorption for a single 

resonance of a single absorbing species, x̂ 7ith moderator present. 

Results were compared with the results from PEAS (Pollard 1963) and 

were in aereement to within .1%. 

S7 
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CJ 
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580 

,638 

,432 

,466 

,502 

,538 
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7. NUMERICAL RESUI.TS AND CONCLUSIONS 

7.1 Introduction 

The prograirane EXPEAS was used to calculate several resonance 

overlap problems, and the output was compared with several results 

obtained in previous sections. 

Z ^ j - - Numerical Data 

Table I shows a comparison of the flux through a resonance 

(obtained as part of the output from the programme) with the flux as 

predicted by equation 3.2 2. The predicted value compares well x ^ i t h the 

calculated value for positive x , but there is not a close comparison 

for negative x . This is not unexpected since the value of the resonance 

escape probability used in the evaluation is only approximate. The 

predicted flux could be used as a second approximation for the flux 

through a resonance in order to improve the N.K. estimate of the 

absorption in the resonance. 

7.3 Approximation to Resonance Absorption 

The absorption probability for various resonances has been 

evaluated and the results are tabulated in Table II. In the column 

headed , the evaluation is obtained by use of the expression on the 

R.H.S. of equation 5.7 (where Pj^(u) is replaced by its asymptotic value), 

namely 
1.2 T o ip G 

l^A = p - ) - , 7.1 
p o o r ^ 

the above resonance flux being equated to unity. Under the 



( ¿r vcxiI om 7'Z) 

frb^orp'hon 

o 

cJ 

á 

•r Ce.^) 

rpTf en 

¡r-ó 

-4 

ö ] , ^ ì r a G i 

4t. 



fíc^ S T Vûriâtion 

^ - S 

JT For/^'oÎci 

1 » . b 

/Jéso^/^f/on ./j 

CT - a i> 

U'ûSorp'fîon 

Prokûoilify 

Ci . 

•2 

ü c a qao 

Ter/) erûfor^ ® k. 

s o ^ »Vo 

TcS'/^-if> etú'/'ore ^^ 



TT Mcrlc^tfon of v^idJ-. a f/trci'hor^ 

S i-ö 

'À fôrr^i^ÎQ 
S ^'ockÌÌO!^ 7" 

fjLiorp^y'/^n 

i co 

'^Ci'tiQ^ O-f:- fitùm'j. of NoderCifoi-/i^-fomS crÇ korke r 

r-» 

Pr^iiSih/ f t'N il 

•4; 

iCÖ ¿co 

/^cr^is o f : - ^ f ^U^erxI'or/^'-^oK^^ c f Nitori er. 



evaluation was obtained by use of the expression, 
7T r a ij; G iA ~ r a o o ^ l-A = p = exp - T̂TiTTr-;- , - 7.2 •2r(a +a ip )E P p o o r ̂  

where the R.H.S. of equation 5.7 has again been used, but in the 

exponential form of equation 2.17. The factor 1.2 appearing in 

equation 7.1 has been replaced in equation 7.2, by the factor tt/2, 

to give agreement with the N.R. approximation for zero temperature. 

In the column headed 'C, are the evaluations obtained from the 

EXPEAS code. The figures indicate that the exponential form, 

(equation 7.2) is a more suitable approximation. 

In figs, iii, iv, v, the absorption probability is plotted as a 

function of E^, T, and a^, respectively. The curves indicate that the 

functional dependence of the absorption probability on E^ and â  is 

satisfactory for the approximation 7.2. 

The temperature relationship is not good though the curves exhibit 

similar behaviour. It may be possible to improve the estimate of 

p(equation 7.2) by modifying the expression for G to give better temp-

erature dependence. 

7.4 Calculation of Flux Perturbation due to Absorption 

The bracketed term 

r r r r 
of equation 5.6 was used to estimate the flux perturbation effect. 

expressed as a percentage, for two different temperatures. The function 

P^(u) was first expressed as a percentage of its asymptotic value, and 
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:ABLE III FLUX PERTURBATION 

Fraction of £n i/o: above U^ •pi • 
.4 .7 .3 1,0 1.1 

Placzek 
Function 

^.veraged 
Placzek 

j Estimate 

j Calculated j value (^Ype^) 

.738 1.000 1.083 1.172 rl.2688 ^ 
^ .9025 . 

7SS 1.000 1.083 1.172 1.077 .927 ) 

790 1.002 1.085 1.125 1.060 .967 ^ T=300^K 

Averaged 
Placzek 

Estimate 
% f- é 

830 1.000 1.065 1.110 1.050 .972 ) 

Calculated 
vahe Cf^Per^) 

788 1.000 1.083 1.172 1.075 .927 ) ) 

803 1.001 1.060 1.101 1.035 .985 ( T=900°K 
) 

820 .994 1.045 1.105 1.055 .960 ̂  

P.esonance Data 

E, - 7.0, r = .04 ev, F, = 0.01 ev, F, = 0 r Y n 

a D 1 
1200 b, a 12.6, A^ = 9 

•S = 232. 



in order to remove the discontinuity in the above evaluation, the 

discontinuity in the Placzek function was first removed by averap:ing the 

Placzek function in the region of its discontinuity. The average was 

taken over the lethargy interval 5u, where 
3/{l+i|; /B} _ 

6u = "" ^̂ ^ 4F lb AE ' r ^o r 

In Table III, the Placzek function, the averaged Placzek function, 
iioS-G) 

and the estimate^ot the flux perturbation, together with the flux 

perturbation as obtained from an EXPEAS output are listed. All figures 

are expressed as a percentage, and for the EXPEAS output, the flux 

decrease, l-è, was expressed as a percentage of where was the 

value of the flux when 

v . , 
p 

It is to be noted that the perturbation is due to the removal of 

neutrons, which also gives the overall flux decrease. The perturbation 

is thus expressed as a percentage of the flux decrease, rather than of 

the flux. A value of the perturbation above 100% indicates a flux 

depression. The above estimate is based on the parabolic aporoximation 

and is reasonably satisfactory. 

7^5 „Inte^fereiic^ between ̂ .̂JO Resonances 

The interference effects for a pair of resonances at various 

separations were calculated, and the results are graphically represented 

in fig. VI. 



The data used was; 

Gp = 1212.B b , and for both resonances 

r^ = -OAev/, r^ - -Oley^ r^ = g = l, with the upper 

resonance located at E^ = 7e.v. The percentage reduction in absorption 

for both the upper and lower resonances, is plotted as a function of 

separation at two different temperatures. 

The reduction in absorption for the upper resonance follows 

the pattern obtained by Corngold and Scherr^er (1959) and O'Halloran 

(1966), but does not reach zero as obtained by them. This is not 

unexpected since for large separations the mutual shielding is negligible, 

but the upper resonance has a reduced absorption due to neutron absorption 

by the upper wing of the lower resonance. 

For the lower resonance the reduction in absorption is caused 

by the same factors which effect the upper resonance. The mutual 

shielding effect is dominant when the separation is small, but with 

larger separations the percentage reduction in absorption by the lower 

resonance is near the absorption probability^ (expressed as a percentage) 

of the upper resonance. There is a peak in the reduction of absorption 

by the lower resonance when 

F 

^ = -i- . F < E 
E a ' r« r-
r^ m 2 1 

x^here a refers to the moderator. The peak corresponds to the flux 
m 

depression which was discussed in the previous section. 



j^'A-lgtiro^tior^ effect froin. one Resonance on 
the Absorption W a LoTAre r Re s onan ce 

Any estimate of the effect of the neutron population decrease 

(caused by absorption in the upper resonance), for large separations 

depends on the accuracy of the estimate of the resonance escape 

probability for the upper resonance. For large separations the flux 

change caused by the upper resonance can be considered satisfactorily 

as being discontinuous at the upper resonance, the m.agnitude of the 

discontinuity being equal to the resonance absorption probability of 

the upper resonance. 

In order to estimate the percentage change in the decrease in 

absorption by the second resonance, the factor 

3G 3G 3G 3G 

was again used to average the effect over the central region of the lower 

resonance, where the subscript, 2, refers to the lox-jer resonance, and 

where R(u) is taken to be the flux perturbation effect previously cal-

culated in section 7.3. The flux effect on the lower resonance was 

expressed as a percentage of the decrease in absorption for reasons 

given in the previous section. 

For the output of EXPEAS, two separate results are obtained, 

namely the flux perturbation effect on the absorption in the central 

region of the lower resonance, and the effect on the absorption in the 

lower resonance. The absorption in the central region of the lox^er 

resonance was taken to be the absorption over the range 

AO 
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U ± r« ~ 2E 2 

where the subscript, 2, refers to the lower resonance. For both 

calculations the perturbation effect was expressed by 

^ U -

where (i) A^^ is the absorption in the lower resonance, over the 

appropriate range of u, when the upper resonance is not present, 

(ii) is the absorption in the lower resonance, over the appropriate 

range of u, when the upper resonance is present, and (iii) p, (u ) is 
1 r^ 

the resonance escape probability for the upper resonance at the centre 

of the lower resonance. 

In Table IV, the estimated, and the calculated (from EXPEAS 

output) perturbation effects are tabulated for various resonances. As 

to be expected, the estimated effect agrees fairly well with the result 

when the central region only, is considered in the EXPEAS output. 

The figures relating to the central region of a resonance show 

greater variation than those relating to the whole resonance, because 

flux perturbations have little effect on the absorption in the wings of 

a resonance. Comparison between the values for the central region, and 

the estimated values suggests that a lower value of G, defined by equation 

4.6, would give a better comparison. Correlation between the curves of 

Fig. IIA (p.AO) x̂ ould be improved by a loxsrer value of G. 
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In Table V are listed the perturbation effects on the lower 

4.5 e.v. resonance, caused by the upper 7.0 e.v. resonance under a 

variety of circumstances, and also the flux depression, expressed as 

a percentage, caused by the 7.0 e.v. resonance is listed. The chosen 

resonances give a separation of very nearly one moderator collision range. 

The change in concentration of the mixture is shox^m to have a 

marked effect on the flux depression caused by the upper resonance. 

An increase in concentration broadens the curve for E d), and has the 
a 

effect of decreasing the flux depression, but broadening the region of 

the depression. The reduction in the perturbation effect on the lower 

resonance reflects the change in the flux depression. 

The value of the flux depression from a predominanÎly scattering 

upper resonance is considerably different from the flux depression from, 

a predominantly absorbing resonance, and the change in the flux depress-

ion is reflected in the different values for the perturbation effect 

on the lower resonance. If the resonance is assumed to be a ô-resonance, 

then investigation of the slowing down equation yields 

r 
X <l.=S(u)-(l-p) - (1-p) - - H ( u - u p + Ç P2(u)+(l-p)— H(u-u^) 

P Y Y Y 2 

H(u +5.11 l/a„-u) + 
r 2 

u_+iln l/a.^ J, _(u-u') 

^ Urfile p . ) du ' _ (l-p)f-P (u-u ) Ç , 

u 
r 

where the subscript, 2, refers to the absorbing species, and the above 

r resonance flux is from a 6-source. 
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The last two terms give the resonance perturbation effects and tend to 

cancel out (being of opposite sign). For a predominantly scattering 

resonance the neutrons tend to 'bunch' near the resonant energy, and 

this 'bunching' causes a flux peak, one moderator collision range below 

the resonance energy, whereas a predominantly absorbing resonance causes 

a flux depression at this energy. 

The last entry in Table V is the result of an EXPEAS calculat-

ion in which Th2^2 ^^^ ^ ^^ resonance, and U^^g has a resonance 

at 7.0 ev. The figures indicate that the percentage change in the 

reduction in absorption is not significantly different from when both 

resonances belong to 

7.7 The Doppler Coefficient 

The change in absorption for the temperature of 300^ to 900*^ 

is denoted by 

AA = A(900°) ~ A(300^) 

for any resonance, where A(T) is the absorption probability at 

In Table VI, estimates of AA are listed for both the lower 

resonances and the upper 7 ev resonance at various values of separation. 

The values are obtained from the output of EXPEAS. 

The negative values of AA obtained for the lox^er resonances are 

caused primarily by the increase in the absorption of the upper resonance 

with increase of temperature. The figures in the second column suggest 

that flux perturbations have little effect on the value of AA. 



It is of interest to note that for the upper resonance at a 

separation of 2 ev, the value of AA is about 10% lower than the values 

for 1.5 ev and 2.5 ev. This is due to variation in the screening effect 

of the Doppler broadened lower resonance. 

7 .5 Resu 11s anj^ Conclusions 

In Chapter 3, the expression obtained by Goldstein (1964) for 

the flux in the region of a resonance was modified. Goldstein Vs 

expression gave an incorrect value for the below resonance flux. The 

modified expression corrects this defect. Comparison of the flux 

obtained by using the modified expression, and the flux obtained from 

an EXPEAS output shows close agreement. 

A parabolic approximation was developed in Chapter 4 in order 

to estimate the absorption in the central region of a resonance at zero 

temperature. The parabolic approximation was then generalised so that 

it would be applicable to resonances at any temperature. It was shown 

that the approximations give simple formulae for the absorption in a 

resonance, but the formulae give excessive temperature variation. The 

formulae seem adequate in terms of the other parameters. The method of 

approximating was not entirely satisfactory. By further research it may 

be possible to improve the method so as to give a more satisfactory 

approximation. 

The parabolic approximation was used to estimate the amount of 

flux perturbation caused by neutron absorption in a resonance. There 



IS a flux decrease below a resonance due to removal of neutrons. It was 

found that there is a further variation in the flux due to perturbation 

effects. A flux decrease occurs in the region of one moderator collision 

range below the resonance. For a predominantly absorbing resonance, the 

maximum total decrease was about 110% of the decrease due to neutron 

absorption. The maximum decrease occurs about .P of a moderator collision 

range below the resonance. The calculated flux decrease, and the 

predicted flux decrease, were found to agree, as regards the maximum 

amount of decrease, and also as regards the value of the lethargy at 

which the maximum decrease occurs. 

The parabolic approximation for a second resonance was used to 

assess the effect flux perturbations from a first resonance have on 

the absorption by the second resonance. The FXPF.AS calculations showed 

that flux perturbations cause about 2-A% reduction in absorption in the 

central region of the second resonance, while the amount of absorption in 

the wings of the second resonance is not greatly affected by flux 

perturbations. The reduction in absorption by the lox̂ 7er resonance was 

found to be about 1-2%. The estimated value of the reduction was found 

to be about 2-4%. There was reasonable agreement between the predicted 

amount of reduction in absorption, and the calculated (FXPFAS) amount. 

The change in absorption with temperature, for both resonances, 

was found to be not significantly affected by flux perturbations. Tn the 

calculation of Doppler coefficients, the effect of flux perturbations could 

be ignored. 
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APPENDIX A 

THE PLACZEK FUNCTION 

The method followed is similar to that used by Teichmam(I960) 

The general slowing down equation, when no absorption is present, 

is 

ll fu. ¿i . cu t 
4 = y - E i - ^ 

p 

n i-u E .<f> e 'du 
Z j = I + s(u) A.l 

u-£n 1/a. i i=l 1 
n 

where I ^ I T. 
P pi 

If we assume that the neutron source, S(u) is a unit 6-source 

at u=0, the Laplace transform of equation A.l is 
n 

K.(p)/{Ep,({)} + 1 A.2 

p+1 (l-a^) 
where K. (p) = -r-, i^^^ (l-a.)(p+l) 

By taking the as constant, equation A.2 may be rearranged thus:-

J {IpO ^ ^ A.3 

1 = 1 p 

<» n E . 
= M . I / " V P ) r=l 1= 1 p 



The term 
n I , n 

1=1 "p ^ i=l 

1 ^ • J- 1 pi 
•ii P+1 ^1-a. 1-a. E 

(1-a)(p+1) 

n (l-a)E .a. 
{ 1 - I ^ 

p+i 

where 
n E . I 
y -21. . 

iild-a.) 1-a 

Hence 

n (-l)(l-a)E ^ 
- - -

2: (l-a.) 
P 1 

where ^C = t t!(r-t)! • 

If fj the power a6scCiafeci w.>A M e para^f^tem Hm:. 
"the coefficient of 

n 

is given by 

I 
s=0 n 

[ n (r,!)]s![(l-a)(p+l)] i=l ^ 
1=1 

and corresponds to the Binomial expansion of 
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= a e ^ ^ ^ 1/ot^ ^ ^ ^ i n v e r s i o n o f t h e g e n e r a l 
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y r . + l 
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i = l 

n 
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. 1 1 1 
1 = 1 
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n 

y r . y r . £ n 1 / a . 
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n 

[u- I r^ to ^ J r . 
n 1 n 1=1 

h[u~ I r. £n 1/a.) [ + (u- I r. £n 1/a J 
((Ir.)-l]! 
i=l 

and(-l)! is taken to be infinite. 

define 
00 00 

= I ••• I S . A.4 
r =0 r =0 1 n 

When n=l, equation A.4 reduces to 

g ^ 
P, (u)=ri- e^-« " + y I r D l f a tojTal^ fl + 
1 r=l (l-a)'^(n-l)! 

a 
e^'^ Ii(u-r £n 1/a) A.5 

which is the Placzek Function; the subscript 1, on the R.H.S. has 

been omitted. 

Inversion of equation A.3 is, therefore, 

= 6(u) + P^(u) . 
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