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ABSTRACT

Over the last couple of years, the shift towards component based software 

engineering (CBSE) methods has become a cost effective way to get an application 

to implementation stage much earlier.

Adoption of Component Based Development methods acknowledges the use of 

third party components wherever possible to reduce the cost of software 

development, shorten the development phase and provide a richer set of processing 

options for the end user. The use of these tools is particularly relevant in Web based 

applications, where commercial off the shelf (COTS) products are so prevalent.

However, there are a number of risks associated with the use of component based 

development methods. This thesis investigates these risks within the context of a 

software engineering project and attempts to provide a means to minimise and or at 

least manage the risk potential when using component based development methods

iii



CBSE An implementation case study

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Leone Dunn, for her support, guidance and 

encouragment during the period of development of the thesis. I would also like to 

thank Professor John Norrish and Professor John Fulcher for their time in carrying 

out reviews, and providing advice which help to make this work a reality. I would 

also like to thank Dr. Dunn and Professor Norrish for the opportunity to complete 

the project via the scholarship financed by the Strategic Partnerships with Industry — 

Research and Training (SPIRT) Scheme. They were also kind enough to extend the 

scholarship period by three months to allow me to complete the software 

implementation process.

On a personal note, I would like to dedicate this work to Jimmy, Estelle, Dale and 

Sarah... I love you.

iv



CBSE An implementation case study

Table Of Contents

1 INTRODUCTION............................................................................................................... 1

1.1 Background............................................................................................................. 1
1.2 Motivation for research........................................................................................2
1.3 Pipeline Project Background................................................................................3

1.3.1 Framework Background....................................................................................... 5
1.4 Research Issues.....................................................................................................5
1.5 Summary....................................................................................................................6

2 LITERATURE REVIEW.....................................................................................................7

2.1 Introduction...........................................................................................................7
2.2 Research.................................................................................................................8

2.2.1 Application Objectives.......................................................................................... 8
2.2.2 Research Objectives...............................................   10
2.2.3 Component Based Development....................................................................... 11
2.2.4 CBSE Risk Factors............................................................................................. 11
2.2.5 Collateral Risks....................................................................................................14
2.2.6 RMI (Remote Method Invocation)....................................................................... 16
2.2.7 Enterprise Java Beans (EJB)...............................................................................18
2.2.8 XML - (Extensible Markup Language)................................................................. 19
2.2.9 Servlets..............................................................................................................22

2.3 Summary.......................................................   24

3 ARCHITECTURAL METHOD.........................................................................................26

3.1 Background...........................................................................................................26
3.2 Terminology..........................................................................................................27
3.3 Prototype.............................................................................................................28

3.3.1 Server Side Class Model.................................................................................... 30
3.3.2 Client Side Class Model.....................................................................................32
3.3.3 Review Of The Prototype Architecture............................................................... 33

3.4 Component Influenced Framework....................................................................35
3.4.1 Architectural Benefits.........................................................................................35
3.4.2 Risk Issues......................................................................................................... 36
3.4.3 Framework Interface.......................................................................................... 37
3.4.4 Data Issues........................................................................................................ 37
3.4.5 Extraction Interface...................................................................  38
3.4.6 Schema Model....................................................................................................40
3.4.7 Document Object Model.....................................................................................44
3.4.8 Servlet Model......................................................................................................46
3.4.9 Server Side Class Model....................................................................................47
3.4.10 Client Side Class Model................................................................................. 32

3.5 Summary.................................................................................................................54
4 POST IMPLEMENTATION REVIEW..............................................................................56

4.1 Introduction......................................................................................................... 56
4.2 Walkthrough........................................................................................................ 57

4.2.1 Runtime Environment.........................................................................................58
4.2.2 Data Extraction Request.................................................................................... 58
4.2.3 Data Insertion.....................................................................................................00

4.3 Issues for Discussion........................................................................................... 61
4.3.1 Component Based Development.......................................................................01
4.3.2 Domain Analysis................................................................................................. 53
4.3.3 Benefits of Component Based Software Engineering........................................ 64
4.3.4 Object Orient Software Engineering................................................................... 64
4.3.5 Reuse.... ,............................................................................................................ 55
4.3.6 Risk Management............................................................................................... 57
4.3.7 XML Usage......................................................................................................... 77
4.3.8 Operational Issues..............................................................................................73



CBSE An implementation case study

4.4 Review o f  Design Issues..........................................................................................75
4.5 Conclusions............................................. .'............................................................. 77
4.6 Future Work............................................................................................................ 79

APPENDIX A............................................................................................................................ 84

A.1 Source Code ............................................................................................................. 84

APPENDIX B ........................................................................................................................... 149

B. 1 Database Scri pts 149

APPENDIX C 154

C.1 User Manual.....................................
C.2 System Requirements.......................
C.3 System Administration.....................
C.4 Component Software Installation
C.5 Using The Framework......................
C.6 Entering Extraction Parameters ..
O .l Data Insertion..................................
C.8 Security.,...........................................
C.9 Viewing Lo gs .....................................
C. 10 System Information..........................

154
I

156
157 
163
165
166 
167
167
168

APPENDIX D 172

TECHNOLOGY AND STANDARDS......................................................................................172

D.1 Introduction........................................................................................................... 172
D.2 Remote Procedure Call........................................................................................172
D.3 Sockets................................................................................................................... 175
D.4 Distributed Objects...............................................................................................178

D .4.1 CORBA (Common Object Request Broker Architecture).................................. 178
D.4.2 RMI (Remote Method Invocation).......................................................................180
D.4.3 EJB (Enterprise Java Beans).............................................................................182
D.4.4 XML - (Extensible Markup Language)................................................................183
D.4.5 ebXML - (Electronic Business Extensible Markup Language)..........................186

D.5 XML TECHNOLOGY.................................................................................................... 189
D. 5.1 Introduction..........................................................................................................189
D. 5.2 Conceptual Overview......................................................................................... 190
D. 5.3 The Document Object Model (DOM)..................................................................196
D.5.4 Simple API for XML (SAX)............................................     198
D. 5.5 Pipeline Project Rationale..................................................................................199

D.6 XML Schema........ ....................................................................................................200
D. 6.1 Structure............................................................................................................. 202
D.6.2 Data.....................................................................................................................208

D.7 Pipeline Project Issues.........................................................................................209
D. 7.1 Design Criteria....................................................................................................289



Component Based Development

List O f Figures

Figure 1.1 Architecural View................................................................. ......................4

Figure 2.1 Risk Summary...........................................................................................14

Figure 2.2 XML Benefits Summary........................................................................... 22

Figure 3.1 The prototypes ‘socket based’ architecture model.............................29

Figure 3.2 Server Class Diagram.............................................................................. 30

Figure 3.3 Client Class Diagram............................................................................... 32

Figure 3.4 Data Selection Screen..............................................................................37

Figure 3.5 Specific File Selection.............................................................................38

Figure 3.6 Data Selection Interface...........................................................................39

Figure 3.7 Granular Data Selection...........................................................................40

Figure 3.8 Document Object Model..........................................................................41

Figure 3.9 Data-Centric XM L.....................................................................................41

Figure 3.10 Associated Schema................................................................................43

Figure 3.11 XMLManager Component..................................................................... 44

Figure 3.12 Architecture Diagram.............................................................................46

Figure 3.13 Extraction Class Diagram..................................................................... 47

Figure 3.14 Data Extraction Process....................................................................... 49

Figure 3.15 Client Class Diagram.............................................................................52

Figure 4.1 Architecture Diagram............................................................................. 57

Figure 4.2 Data Extraction Request 1...................................................................... 58

Figure 4.3 Data Extraction Request 2 ...................................................................... 50

Figure 4.4 Fountain Lifecycle Development Model...............................................66

Figure 4.5 Domain Analysis......................................................................................69

Figure C.1 Architecture Diagram..............................................................................156

in



Component Based Development

Figure C.2 Web Server Configuration.....................................................................157

Figure C.3 Servlet Configuration..............................................................................158

Figure C.4 Permissions.............................................................................................160

Figure C.5 ODBC Setup.............................................................................................161

Figure C.6 SQL Server Configuration..................................................................... 161

Figure C.7 SQL Server Configuration..................................................................... 162

Figure C.8 Parameter interface................................................................................ 163

Figure C.9 File Selection............................................................................................165

Figure C.10 Schema...................................................................................................166

Figure C.11 VBScript example................................................................................. 166

Figure C.12 Error Log................................................................................................168

Figure C.13 Logging...................................................................................................169

Figure C.14 ODBC DSN............................................................................................. 170

Figure D.1 Remote Procedure Call..........................................................................173

Figure D.2 Socket Architecture................................................................................175

Figure D.3 Binary Tree (DOM)..................................................................................192

Figure D.4 Style Sheet.............................................................................................. 195

Figure D.5 Binary Tree.............................................................................................. 196

Figure D.6 Hierarchy................................................................................................. 197

Figure D.7 Hierarchy................................................................................................. 198

Figure D.8 Schema.................................................................................................... 202

iv



CBSE An implementation case study 1

1 INTRODUCTION

1.1 Background

Until 1994, distributed computer processing facilities had only been implemented by 

large, enterprise level organisations. Since that time, the distributed computing 

model generally, and the client-server model specifically, has been rapidly accepted 

and adopted by governments and businesses at all levels. Pressure from the business 

community has seen investment in architecture and technology related to the World 

Wide Web (Web) expand to the point where the impact is being compared to the 

steam engine’s effect on the industrial revolution [DRUCKER99]. Even though 

“dot-com” organisations and businesses in general were handed a serious reality 

check in the late 1990’s, investment in research and development (R & D) of client

server architectures has continued unabated, and steadily matured over the last 8 —

10 year period. Much of that research effort has focused on “middleware”, which 

can be defined as the management and co-ordination of data being passed between 

the distributed computing facilities (hosts) involved in the client-server session. 

Research by third party vendors into middleware and the convergence of older 

transactional management technologies such as IBM’s CICS and TUXEDO has 

added significant weight to the use of third party middleware components within 

the software development process. Maturity and hence developer acceptance of 

third party components has led to a software engineering variant which has been 

labelled component based software engineering (CBSE). CBSE promotes the use of 

components to provide autonomous service objects that can be integrated into 

larger, more complex components, leading to complete applications. A component 

is typically independent of platform or language, and may be a single object or 

multiple objects operating in synergy to form a complete application.

The growing use of components is fueled by the Object Oriented Analysis and 

Design (OOAD) principle of re-using code components, and this is having an effect 

on the way systems are developed. Currendy, CBSE methods are predominandy 

targeted at Web based transactional applications using a mixture of prebuilt 

components such as Web Servers, third party Browsers etc. and specifically written 

custom code. The shift towards CBSE and “componentware” [VOAS98] has been 

promoted as a cost effective way to get an application to implementation stage much
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earlier. It has been suggested that CBSE reduces the complexity, code size and 

maintenance overhead of the completed application, and demonstrates that splitting 

the components into one or more interface layers reduces the impact of change and 

later maintenance costs [BOURRETOO].

1.2 Motivation for research

The focus of the research described in this thesis is the investigation and evaluation 

of CBSE methods to determine the effectiveness, or otherwise, of using such 

methods in the development of software applications. There is no doubt that Web 

based technologies have materialised at a rapid pace, and coupled with this is a 

comparable rise in third party vendor offerings which has necessitated a change in 

the way software engineers approach application development. Object Oriented 

software engineering design methodologies definitely promote the use of 

components and code re-use practices, however, current application development 

literature does describe some failed CBSE projects, making the adoption strategy 

less clear. Most research advocates the use of components, but advises caution, and 

suggests that risk management practices be incorporated into the development 

lifecycle [GANESAN01].

Motivation for the research has been initiated by the Welding Technology Institute 

of Australia (WTIA), whose requirements include a Web based data services 

framework to manage the data being generated by a national “Pipeline project”. The 

term ‘framework’ will be given a more formal definition later, for now we can refer 

to it as a collection of modules which faciliate data transfer within the pipeline 

project domain. The project is being developed by the WTIA and the Australian 

Pipeline Industry Association (APIA), and is a collaborative effort between industry 

and academic research facilities. The strategic objective is to provide Australia-wide 

natural gas facilities using a mix of engineering and computer technologies. The 

operational objective is to minimise field site installation and maintenance costs. The 

Framework is one of a number of processing units making up the Pipeline project, 

which when completed and fully integrated will deliver the following field site '

functionality:

i)P ost w eld quality monitoring, the goal is to provide software which allows data 

produced by the field site welding process to be remotely administered and 

monitored for production quality.
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ii) Video surveillance, of field site operations in real time.

iii) W ireless data entry of bar coded and Personal Data Assistant (PDA) data relating to

plant and pipe inventory.

iv) G lobal Positioning System (GPS) co-ordinate recording o f  weldposition. This is extremely

important for later maintenance when pipe sections may need to be ‘exhumed’.

v) Web based data services Framework to provide:

• Distributed data management, ie. backup, archival storage, deployment of data 

to and from field site welding stations.

• Administration of distributed post-weld quality data.

• A browser interface for query and analysis of process control data.

Development of the Framework (figure 1.1) is the focus of this research, and 

provides an opportunity to observe both benefits, as well as potential risks when 

using CBSE methods.

1.3 Pipeline Project Background

The WTIA is developing commercial applications which support current and 

planned natural gas pipeline projects within Australia and South East Asia. 

Engineering research has developed an automated welding system, coupled with a 

real time data acquisition module which improves on the currently used manual 

welding procedures, by allowing potential defects to be identified during the welding 

process. The post-weld quality monitoring process augments the use of non 

destructive testing (NDT) methods by providing more specific information on the 

location of a fault. Current commercial projects use a post-weld x-ray method for 

fault determination, which is cosdy and time consuming. The mission critical 

requirement for the post-weld quality monitoring process is to ensure that pipe 

lengths are joined (welded) with 2ero tolerance for defect. The data acquisition 

equipment generates a log of data points as the weld is conducted, with tolerance 

levels set prior to the commencement of the weld. An alarm is triggered if data 

points fall outside the preset tolerance levels, indicating that an analysis of the weld 

statistics are required to determine the reason for the fault. The welding process uses 

Gas Metal Arc Welding (GMAW), coupled with a monitoring system which:

• Monitors the control of weld bead geometry



CBSE An implementation case study 4

• Monitors the control of metal transfer

• Assesses welding arc stability

• Monitors the potential for undercut

• Facilitates trending analysis on aggregated weld data.

Data gathered at each remote weld site is used to facilitate quality control of the 

welding operation. Work on pattern recognition systems [OGUNBIYI95, 

FERNANDES99] has demonstrated how the potential defects may be identified, data 

point trends may indicate changes in weld quality. The primary concern of the 

engineering personnel at each field site will be the quality of a specific weld, and 

ensuring that the production quota is met. However, ‘early warning’ of creep defects 

in calibration of equipment can also determined from aggregated trending data 

gathered at each site. Each remote field site will use a PC host to store welding, 

operational and logistical data supplied directly from the welder via a National 

Instruments Data Acquisition card, as well as via the other forms of input 

mentioned earlier. Each field site is connected (via wireless Internet connection) to 

an administration host which oversees the welding process and has access to the 

post-weld data. Remote data management services are dependent on access to the 

Internet, and it should be noted that there may be times when no service is available, 

so data must be stored locally until a service becomes available.

F igure 1.1 A rchitectural v iew  of the Framework
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1.3.1 Framework Background

A framework can be defined as a domain specific collection of reusable components 

[CAPRETZ01]. The emphasis here is on ‘domain’, as a framework should be most 

useful or most relevant to a specific domain or sphere of reference, with 

components being used and re-used within that domain. Components making up a 

framework can be sourced from third parties, or developed in house, the origin of 

the component is irrelevant. The main issue is whether the components within the 

application domain are generic enough to facilitate re-use. We cover the specifics of 

following CBSE principles and methods in the Literature Review, but in order to 

determine if  there are indeed practical advantages in using CBSE methods we will 

develop the Framework using a combination of common off the shelf (COTS) 

components and specifically developed code. The development method will include 

the construction of a protoype to allow a much more detailed, bottom up analysis 

of the functional requirements, facilitating the identification of potential 

components for re-use.

1.4 Research Issues

In terms of CBSE principles, the Framework will be component based by definition 

[SOOOl], because the majority of the processing is expected to be achieved using 

Web, or more generally, Internet technology components. While the detailed design 

has not yet been completed, major components of the Framework will definitely be 

sourced from COTS components. The Human Computer Interface (HCI) will be 

browser based, with the extraction process launched via a Web Server passing the 

request to a third party Servlet engine. The physical data extraction process will also 

be achieved using Open Data Base Connectivty (ODBC) components.

There are a number of well documented risks [BRERETONOO, WANG01, 

KOTONYAOl] and associated quality of service (QoS) [DSONLINEOl] issues 

associated with using a component based approach. The thesis attempts to use the 

construction of the Framework to highlight potential risks and identify areas of 

vulnerability when using CBSE methods. Another major research priority is to 

investigate the success, and risks associated with integrating a new technology such 

as XML across a broad component spectrum. Once the risks can be quantified, it is 

hoped that suitable analysis and design techniques can be presented which minimise
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risk and facilitate successful implementation of software developed using CBSE 

methodologies and related Object Oriented design principles.

1.5 Summary

The aim of this chapter has been to provide a context for the research, and develop 

the readers understanding of the requirements of the data transport Framework and 

underlying Pipeline project.

Chapter 2 presents the literature review, which documents risks associated with 

CBSE, as well as a number of strategic business concerns, such as security, system 

efficiency and the use of components sourced from third party vendors. The 

chapter examines the emergence of Web technologies in considerable technical 

detail, documenting the investigation and research issues carried out as a prelude to 

the architectural design of the Framework software. The chapter includes 

documentation relating to the investigation and review process, and can be 

considered part of the analysis of the problem domain in relation to the Framework 

requirements. It is assumed the audience has an appropriate technical understanding 

of related client/server technologies and middleware concepts. However, in order to 

provide a background for the discussion on XML, Appendix D contains a detailed 

explanation of the XML language, schema concepts and associated technology uses.

Chapter 3 provides a discussion on the Framework architecture and focuses on the 

design and build issues. The chapter also contains a synopsis of the benefits to the 

CBSE method when a prototype is used in the development cycle.

Chapter 4 documents the results of the implementation, and discusses both usage 

and research issues which relate the Framework and hence the Pipeline project.

In additon to a detailed explanation of related XML technology, appendices are also 

provided which contain a User and Installation Manual for the Framework, a list of 

definitions, source code relating to the application, and results of related research.
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2 LITERATURE REVIEW

2.1 Introduction

The activities of speaking and writing are elevated above those of making and doing 

[SAYER92]. This statement is very poignant, and has far reaching implications for 

the current developer, none more so than attempting to document the thought 

processes which led to a particular design or architectural innovation. As developers, 

we see a problem and attempt to come up with a practical, physical solution, 

becoming totally focused on the ‘making and doing’. We do not naturally keep 

account of the inspirational flashes which come out of researching the alternatives 

of how we might solve the problem, only documenting the solution itself. We are 

trained to document for the user, or the other members of the development team 

who need to understand and interface with the components which we are creating. 

We strive to build systems that are useful and work [BOOCH98], but once the 

system is working, the design issues which were so important in the construction 

phase, become suddenly irrelevant. Once the system is implemented and stable, 

change becomes a maintenance issue, and often, the maintenance team are different 

personnel from the development team. In fact, twelve months after implementation, 

it is often hard to find a data model which exactly represents the current production 

database. These attitudes are a reflection of the stable state of software engineering 

technologies and methodologies prior to the World Wide Web. But post Web, this 

type of attitude can no longer be supported. Software project teams are constantly 

dealing with change in all stages of the project, and from all areas, change 

management is no longer only triggered by requirements creep. These days a project 

is faced with creep from many areas; technology, architecture, globalisation, and 

most importandy, ‘data creep’ (the need to make data more available, to more users, 

by more interfaces). Fortunately, change management is now recognised as a factor 

to be managed, like time and cost, and new ideas are being put forward to help 

project teams incorporate change into the design model. One of these ideas is 

component based software engineering (CBSE), which recognises that software 

applications will always be in a state of evolutionary change. Having recognised this, 

there is a growing trend to develop software as a set of autonomous but co

operating service oriented components which can be used as building blocks in the 

construction of software applications. The most obvious reason for the adoption of
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this layered approach is the rapid rate of technology change, allowing us to ‘plug in’ 

new technology modules as they become available. Computer and communication 

technology advances affect the lifespan of all software applications, but none more 

so than Web and Interent based software applications [WHYTE01]. Adoption of 

Object Oriented modeling tools, coupled with a desire to reduce software costs by 

re-using software and integrating cheaper third party components into the 

application means that developers are spending more time speaking and writing 

about the components they are developing. While the Internet has caused an 

upheaval in the IT industry, it has also provided the industry with enormous benefits 

by making information and ‘knowledge’ much more available to the user 

[WILLIAMSOO]. This increasing access to information, coupled with business 

related profitabilily issues, is driving an upward spiral in the number and scope of 

Internet based distributed applications. This upward spiral is in turn fostering a great 

deal of research into technologies and methods used to build distributed 

applications, particularly eCommerce applications. The application developed for the 

Pipeline project uses a number of technologies and development methods which 

reflect the changing attitudes to software development. *

2.2 Research

2.2.1 Application Objectives ,

Motivation for the research came from a desire to develop a Framework for the 

Pipeline project which was easy to use, scalable and took advantage of off the shelf 

components (COTS) wherever possible. In fact, as the research progressed, it 

became clear that one of the possible future goals could be to replace all custom 

code components with off the shelf components. Initially, the intention was to 

manage the entire transport process under program control, however, analysis 

highlighted the following potential problems with this approach:

• If the data model changed, the extraction/insertion modules on each host 

would need to be modified to reflect the new table layout.

• If the tables did not exist on the receiving host, a create script would need to 

be sourced and executed prior to data being transported to the remote host.

• The send and receive modules required manual starting, so if the machine 

was unreachable or required rebooting, there was potential for the session to
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require some administration for reconnection. This is a genuine concern and 

has enormous implications, since the data gathering Hosts are installed on 

vehicles in the field, in what can only be considered primitive conditions. It 

is expected that these Hosts will have access to the Internet via wireless 

technology, with availability subject to atmospheric and climatic conditions, 

as well as geographical location.

• Security was not a genuine concern, given the application, however, data 

corruption during the transport process was a potential risk 

[GREENSTEIN01]. Data integrity is considered a mandatory requirement, 

and standard client/server ‘socket’ architecture provides no real means of 

ensuring the data would be received in exactly the same form as it was sent. 

Refer to appendix D.2 for a detailed explanation of the Socket abstraction.

• One of the project objectives was to provide an extraction method which 

ported the data to a distributed Host in Comma Separated Variable format. 

This facility allows the data to be used for other analytical purposes or in 

third party applications such as Excel, Lotus Approach etc.

The benefit of using a classic client/server based ‘socket’ connection scenario is 

reasonable data throughput, but the overhead and tedious necessity of connecting 

the client to the server under program control is a negative from an operational 

perspective, so finding a suitable ‘middleware’ to automate this process is an 

imperative. Fortunately, use of third party Web Server technology is now widely 

accepted within the IT industry as a means of managing the client/server session, so 

it seemed a natural extension to focus on the use of this architecture as a transport 

medium. A number of component based middleware technologies [CAMPBELL99, 

ORFALI96] were investigated to determine the benefits and feasibility of use for the 

Framework. The main objectives were ease of use for operation, maintenance, 

deployment, and of course an efficient transport process. There are a number of 

middleware technologies which have potential uses within the Framework 

application domain. Of course, COM/ActiveX was a mandatory selection for 

querying the database, since Microsoft was the Operating System specified by the 

stakeholders, but the Framework data transport process required that a number of 

other middleware options be investigated, these were:

• Java (Peer/Peer) using Remote Method Invocation
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• Java (Client/Server) using Enterprise Java Beans

• Java (Client/Server) using Servlets

• Common Object Request Broker (CORBA)

The key requirements for use of these technologies are openness, ease of 

configuration and interoperability. This can include mixing and integrating 

components which can be sourced from various areas, and using connection specific 

code to integrate components purchased trom third party vendors (L U ii j ,  wno 

may specialise in the field and have developed a 'best of breed' technology to 

manage a specific processing area.

2.2.2 Research Objectives

From a research perspective, the objectives are as follows:

• Determine the effectiveness of using component based software engineering 

(CBSE) methods in the development of software applications. In addition, to 

gauge the impact of CBSE on post implementation maintenance to determine 

whether these methods make change easier and less costly, or otherwise.

• Use the construction of the transport Framework as a case study to highlight 

potential risks and identify areas of vulnerability when using CBSE methods. The 

major software development risks associated with CBSE have been identified and 

presented in the following pages. It is hoped that the outcome of the research 

will determine if previously published doubts about overall benefits and 

associated risks are still valid, given the maturity of Web based technology, or 

whether the issues are losing relevance in the face of that maturity.

• Investigate both the benefits as well the risks associated with integrating a new 

middleware technology such as XML across the range of COTS Web 

components! Again, it is hoped the research can determine if new risks are 

emerging, which are a consequence of newer technology or resulting from 

complacency over the acceptance of the more ‘mature’ methods of 

development

• Review the Object Oriented principles used in the development to determine if 

this added value to CBSE method, particularly in the areas of interface, re-use of 

code and ease of assembly and integration of the components. The project
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makes also heavy use of a prototype to facilitate ‘bottom up’ analysis and identify 

re-use candidates.

The following sections describe the concept of component based software 

engineering, associated risks and related technology issues.

2.2.3 Component Based Development

One of the most significant recent developments in software engineering is 

Component Based Software Engineering, which promotes the use and re-use of self 

contained service objects. Using this development paradigm, applications are 

‘assembled’ by gluing together components that may be supplied from existing 

source libraries or in binary form from third party vendors. This type of 

development has been strongly influenced by Sun's JavaBeans and by Microsoft's 

Component Object Model (COM) and ActiveX technologies. Any software which is 

developed, acquired, or deployed where the primary design goal is reuse, is 

considered to be ‘component based’, and can be:

• Commercial off the shelf (COTS)

• Public domain

• Freeware/Shareware

• An in-house developed service-based component

• A mixture of both COTS and in house eg. Enterprise Java Bean's

The basis of Component Based Software Engineering (CBSE) is that components 

provide services that can be integrated into larger, more complex components, 

leading to complete applications. A component is typically independent of platform 

or language, and may be a single object or multiple objects operating in synergy to 

form a complete application. The growing use of components is further fueled by 

Object Oriented Design principles and is changing the way systems are developed.

2.2.4 CBSE Risk Factors

While there are considerable benefits associated with the use of component based 

development, there are also a number of significant risks that have been well 

documented [GANESAN01]:

• The blackbox nature of the software when using COTS components
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• Lack of software quality information

• Hidden Costs associated with post implementation maintenance

• Lack of a suitable 'bottom up' design information

• Lack of accompanying documentation/information regarding the software

• Potential for a longer and more cosdy development lifecycle

The blackbox nature of COTS software, ie. usage is restricted to the Application 

Program Interface (API). In order to maximise the benefits, developers would like to 

be able to review the design criteria of the component [KOTONYAOl]. This is 

particularly relevant for components being integrated into a distributed or Web 

based application with associated issues such as security, scalability, performance etc. 

[BRERETONOO].

Lack of software quality information and the longer term issues for third party 

components relating to product direction [KOTONYAOl]. Clearly the objective for 

a vendor is to develop a solution which has profit potential, and this objective may 

cause future support and functional issues for a project making current use of the 

vendors technology.

Hidden Costs of post implementation maintenance [WANG01]. The two issues 

mentioned above may mean that when application requirements change due to user 

or market forces, the developer may not have the necessary component design 

information to determine the effect of the change on the component. Having to 

guess the effect of the change, or build a test bed to determine the effects may 

increase the cost of maintenance and so reduce the overall benefits of using pre

built components.

Lack of a suitable bottom up design strategy [CAPRETZ01]. This is a significant 

issue for the current, results-centric project team when a component based design 

method is being used and the project is large and or complex. Use of a ‘bottom up 

strategy could add significant time to the design phase, thus increasing the cost of 

development and delaying the implementation date. Ideally, during each design and
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build iteration, as more components are identified along the design path, re

evaluation of the complete set of existing components would be necessary. 

Candidate components can be identified more quickly if a strategy is in place which 

models at an atomic, cohesive level. The designer is then able to map new functional 

requirements against the repository of granular pre-existing components.

Lack of documentation/information regarding the software. This may relate to 

configuration, operation, API specifications for ‘wrapper’ development, or error 

handling etc. Lack of current or accurate documentation is a problem in any 

software engineering project, but is particularly relevant in a CBSE environment, 

where third party components are being employed.

Risk of allowing a longer development period to reduce or nullify the expected cost 

savings from using off the shelf and re-usable components. Even when the project 

stakeholders proactively accept the potential benefits of using component based 

methods, there is still a concern over the time taken to produce tangible results. 

Analysis and Design can (and should) take up to 60% of the overall project 

timeframe, more when COTS software is being integrated with custom code. When 

component based software engineering methods are being used, domain analysis 

alone may take up to 25% of the project [CAPRETZ01]. Domain analysis is a study 

of the entire problem domain, which includes both functional and non functional 

issues and requirements and may be completed a number of times during the 

project. Domain analysis specifically is used to review the build phases and identify 

code components which may be candidates for re-use.

Risks associated with CBSE

The blackbox nature of the software when using COTS components

Lack of software quality information

Hidden Costs associated with post implementation maintenance

Lack of a suitable ‘bottom up’ design information

Lack of accompanying documentation/information regarding the software

3 0 0 0 9  0 3 3 0 0 3 6 8  7
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Potential for a longer and more cosdy development lifecycle

Figure 2.1 Risk Summary

2.2.5 Collateral Risks

There are also a number of less obvious risks which can be equally costly to a 

software engineering project, unless action is taken to minimise or at least manage 

the risk. When components are derived from a number of sources, there is often a 

difference in the vision shared by each component stakeholder. The independent, 

third party component vendor may have an entirely different development and 

functional improvement focus from the user base. The developer must never lose 

site of the fact that components are third party derived, and software maintenance 

strategies may need to be completely redeveloped to accommodate potential future 

problems [BRERETONOO]. This is especially true in distributed applications where 

maintenance becomes much more difficult and complex, because component source 

code is either partially or completely invisible. There is also the issue of ‘frozen 

functionality’ [VOAS98] in which the vendor has disappeared by the time 

maintenance becomes an issue. Incompatible upgrades (added features or bug fixes 

that, while independently reliable, are incompatible with the host system) are also an 

issue. Potentially, third party components may also contain viruses, trojan horses etc. 

and must be thoroughly tested prior to release.

A more emotional issue for the developer comes in the form of loss of creative 

scope. Developers of the future will be concerned with the integration of software 

components, potentially only writing code to provide Black box’ wrappers for the 

COTS components. IBM and Gartner are two organisations who foresee a move to 

pattern based development, where a finite set of appropriate approaches (Patterns) 

for representation, storage, and retrieval of reusable components is emerging 

[FLURRY01]. This trend is now even extending into the early project areas of 

requirements gathering and analysis. While this issue cannot be considered a risk in 

the tangible sense, when the design scope is constrained to fit into a predetermined 

pattern, the design may become too ‘generalised’. The designer is then pressured 

into ‘fitting’ the requirement solution into the design or architecture pattern.

Mismatch can also occur when components fail to meet the architectural constraints. 

For example, components which operate under Windows NT may fail when used 

under Windows 2000. Functional deficiencies arise when components do not satisfy
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all the functional requirements. Quality and maintenance issues must be addressed 

when developers integrate several disparate, third party components into a common 

application. Component adaptation may involve the use of special purpose wrappers 

to achieve interoperability, increasing subsequent maintenance costs for integrated 

systems [KOTONYAOl] because of a lack of interoperability standards provided by 

the component vendor. Developers must readapt or re-glue components as they 

evolve, or potentially restrict the component types used for a particular integrated

system. Developers must address how the integrated system inherits properties 

associated with product parts, and when integrating a combination of high quality 

and low/medium quality components, with the resultant system being assessed to 

the lowest common denominator.

,AA~ T  t - k a  4 * 4

As well as being a component integrator, the ‘new age’ developer must be skilled in 

risk analysis and be able to determine current and future component cost/benefits, 

for example, use of components may increase the cost of later maintenance. 

Implementing distributed components can become a human resource issue, 

significantly increasing the time taken for distributed deployment, maintenance tasks 

for testing, evaluation and acceptance. Integrators must develop suitable component 

testing practices, forcing potential vendors to declare and provide documentation on 

issues like dependencies and constraints. Operational and interoperability issues 

covering platform, architecture, Web Server, Application Server, Middleware etc. 

cannot be genuinely proven until the components are deployed in an environment in 

which they will run. Responsibility ultimately rests with the developer/integrator, 

who must play a significant role in risk assessment, and assessing the benefits versus 

drawbacks of using certificated components. As with any off the shelf package or 

component, there will be a trade off between implied quality through certification 

and the need to get the product to market.

These are genuine issues which must be addressed when developing applications 

using a component based methodology. Some of the claims relating to development 

risk were made when Internet technology and middleware tools were less mature. 

Component based development is now more wide spread and has become an 

accepted means of reducing the application code base. However, doubts over the 

net gain in productivity and benefit are still being raised in literature relating to 

CBSE. In order to determine and select an appropriate architecture for the 

Framework, a review of current technologies must first carried out.
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2.2.6 RMI (Remote Method Invocation)

Java technology was a prime candidate for use in the Framework, and Remote 

Method Invocation (RMI) specifically, presented with a lot of advantages. It is Java 

Centric, so well accepted and used within Software Engineering applications. The 

prototype, which is documented in the following architecture chapter was 

constructed using Java, so potentially some of the code could be retained, and the 

RMI implementation of JDK 1.2 had most of the Common Object Request Broker 

Architecture (CORBA) recommendations in place, particularly RMI over Internet 

Inter Orb Protocol (IIOP is a super set of TCP) which would:

• Allow the file or sql selection to be processed on the target host as a 

Transaction (ie. fully committed or fully rolled back).

• Provide support for persistent Object references, so once the host is located, 

services can be requested on an ad-hoc basis without the need to continually 

broker the request.

• Provide support for remote Object activation which overcomes the manual 

restarting of the Objects when the machine is re-started.

Internet Inter Orb Protocol (IIOP) sits on top of TCP/IP and value adds the 

CORBA message exchanges prior to passing the information to and from the 

application. In this way, details of service location, and transactional boundaries are 

abstracted from the user application [ORFALI98]. RMI clients do not interact 

directly with distributed Objects, but interface via a published interface, as do 

CORBA clients. Arguments are marshalled via the Java Serialisation service 

(java.io.ObjectOutputStream/java.io.ObjectlnputStream) and passed to the distributed 

Object via the relevant stream. The distributed Object is bound to the Java Naming 

Service and is then accessible via the abstracted proxy stub on the client. For 

example, a class GetWeld, on the local host, can call a local function getWeldQ. This 

method is called via the proxy getWeld(), which uses the Naming.lookup service to 

locate a remote instance of getWeld(), execute the function, then return the results 

to the local proxy.

NOTE: Notation in the code examples which follow use standard Java syntax.

public interface GetWeld extends Remote 

{
String getWeld() throws RemoteException;

>
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On the remote Host, a set of RemoteObject classes is sub classed to create the 

required objects

public class GetWeldimpi extends UnicastRemoteObject implements GetWeld 

{

public GetWeldlmpIO throws RemoteException { super(); } 

public String getWeldO { return "GMAW301” ; )

>
In the main method of the distributed Object, the object is instantiated, then bound 

to the RMI Naming Service registry, as per:

GetWeldimpi MyObj = new GetWeldimpi ();

Naming.rebindfV/hostrport/name", MyObj);

In addition to abstracting the underlying ‘socket’ layer, RMI also manages the 

security aspects of the application, automatically registering the distributed Objects 

with the security service running on the distributed Host. The range of options is 

extensive and allows the developer to set these options in a persisted (physically 

stored) security file which is accessed and implemented by the Java Virtual Machine 

running on the distributed Host. There are a number of genuine benefits over raw 

‘sockets’, the first was the remote activation feature which would allow the module 

to be called by the client when necessary, and the other was the ease with which the 

RMI client could persist (store) the data once it was received. In order to make use 

of the activation feature, the java.rmi.activation package is included in remote 

Object. In the previous example; the class declaration would be modified to

public class GetWeldimpi extends Activatable implements GetWeld

instead of

public class GetWeldimpi extends UnicastRemoteObject implements GetWeld 

Activatable and UnicastRemoteObject are both sub classes of RemoteObject, and 

the Activatable implementation informs the RMI registry running on the distributed 

Host to load the GetWeldimpi if  not already instantiated. With regard to the 

persistence facility, the receiving client would then only need to instantiate a class 

which extended the abstract class of RandomAccessFile in order to persist the rows 

to an ASCII file, eg. public class ANSIFileStream extends RandomAccessFile.

In analysing the usefulness of RMI as a transport solution, despite the range of 

options and flexibility associated with RMI, it remains a language specific 

middleware. Unless designed and implemented using a component based model, or 

at least a layered approach, there is a real possibility that the potential for later
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integration with non java centric components[CAMPBELL99] will not be possible. 

In addition, at the end of the day, it was still an abstracted ‘socket’ model, and 

required a considerable amount of custom code to manage the client/server session

2.2.7 Enterprise Java Beans (EJB)

The distributed nature of EJB is facilitated by the further abstraction of Java’s 

Remote Method Invocation (RMI) methodology. Enterprise Java Beans also 

provides an abstraction for Component Transaction Monitors (CTM). Component 

Transaction Monitors represent the convergence of two technologies; traditional 

transaction processing monitors such as IBMS’s CICS and TUXEDO; and 

distributed object services such as CORBA (Common Object Request Broker 

Architecture) and Java RMI [HAEFELOO]. The CTM is implemented as an 

Application Server (resident on the same host as the data source), and is responsible 

for monitoring the state and behaviour of the client/server session under it’s 

control. The major benefit of using this technology is that complex issues such as 

data security, concurrency, persistence and transactional integrity are all abstracted 

by the CTM. This frees the developer to focus on the business issues rather than 

becoming bogged down in the technical detail of transaction management. 

Enterprise Java Bean technology is extremely relevant to distributed processing, and 

the Framework. A considerable amount of time was spent setting up a test 

environment to investigate the internals of the technology and evaluate it’s

usefulness. The issues of transaction management and data concurrency 

management need to be addressed from the Framework perspective when data is 

being inserted back into the requesting clients database.

After a considerable amount of research effort and time was spent in testing and 

evaluating the technology, it was decided that the benefits did not justify the cost in 

terms of outlay, product support or specialised knowledge for later maintenance. 

Research of other technologies identified far more efficient and cost effective 

solutions for managing the processing requirements. For instance, while it is 

necessary that the loading of an extracted file back into the clients local database 

needs to be completed as a transaction, that process is managed by the Object Data 

Base Connection driver (ODBC) natively, and ODBC is a free technology 

component. For this reason alone, the cost of a third party CTM Application Server 

was not justifiable, in addition, the expected data volumes produced by the field 

welding sites were too high to be efficiently managed by a CTM. In summary, the
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CTM overheads and administration requirements inherent with EJB technology 

were not justifiable, given the licensing cost of the EJB application servers and 

complexity of implementation, configuration and management of the environment.

2.2.8 XML - (Extensible Markup Language)

With the acceptance and adoption of new Web based technologies, the Browser is 

only one of the diverse Human Computer Interface (HCI) alternatives being 

presented for access to a data repository. Telephone, Wireless Application Protocol 

(WAP), Personal Data Assistant (PDA) and Smart White goods are all areas which 

provide a user interface and need an underlying set of standards to structure and 

format data content for the interface. XML development was initiated by the XML 

Working Group, under the auspices of the World Wide Web Consortium (W3C) in 

1996, as a solution for supplying data to these interfaces in a standard manner. 

Development of the language was also prompted by pressure from developers who 

had two valid issues with using Hyper Text Markup Language (HTML) as the data 

interface. Development of a robust data interface is limited by HTML and it’s lack 

of structure and adherence to standards. Also, developers refused to accept 

Standardised General Markup Language (SGML), which was initially proposed by 

the W3C as a replacement for HTML, because of its complexity and verbose 

specification.

It is well documented that HTML is limited to a fixed set of markup tags, while 

XML allows developers to create their own tags, or use tags created by others, ie. 

XML facilitates reusability and extensibility. As with SGML, XML can be formatted 

and validated by a Document Type Definition (D ID), which allows the user to 

declare what constitutes markup with the XML page and also what the markup 

means within the page. Once the XML parser has validated the document, a 

document tree is created, based on the hierarchical structure declared in the DTD. 

This document tree may then be made available to the user, or accessed by 

processing applications.

There is no doubt that the process of transporting data over the Internet has 

become a trivial task in the mind of the Internet user. The irony is that the delivery 

of that task will become proportionally more difficult as data traffic increases and 

bandwidth usage becomes a more critical issue. XML provides a means to maximise 

the efficiency of transporting data over the Internet by allowing developers to
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develop specific ‘tag* naming conventions which minimise the size of the file being 

transported. Based on research into the use of XML, and market penetration, two 

clear content patterns are emerging for XML; data-centric and document-centric 

[BERTINOOl]. To manage XML data-centric documents, a data base management 

system (DBMS) must support both data extraction and data formatting services. 

Data transfer software is either built into the system or available as third party 

middleware which supports the extraction process. Provision of these services by 

DBMS vendors acknowledges that XML is now folly accepted as an external data 

containment and data transport solution. Most commercial DBMS’s have by now 

been extended to accommodate the packaging of query results into XML format, 

including Oracle, IBM (DB2) and Microsoft SQL Server 2000 [BERTINOOl]. For 

example, both Sun and Microsoft (ASP.NET) are developing "Rowset’ Application 

Program Interfaces (API), with implementations that can serialise and persist (store 

in a physical form) the data, metadata and properties of an SQL query result set to 

XML. That way, the result set can be disconnected, transported across the network, 

and manipulated by a remote application [WILLIAMSOO], In addition, middleware 

technologies are also beginning to make much more use of XML [SOOOl], and 

independent middleware vendors are actively researching the use of XML as a 

strategy to allow their products to communicate [CAMPBELL99].

There is potential for a considerable amount of Framework data to be shipped 

during a session, so XML presents with a number of potential benefits to the 

application. As analysis progresses and the full implications of the potential uses for 

XML becomes apparent, the design criteria is shifting from incorporating and 

integrating some off the shelf components with the custom code, to fully realising 

the goal of replacing all custom code with COTS components [CAPRETZ01]. The 

most significant issue is that XML provides a connectionless alternative to the 

typical ‘socket’ based solution. Once data is extracted from the database and 

repackaged into XML format, third party component based web utilities can be used 

to transport the data from host to host, via the Internet. For this reason alone it was 

decided to construct the Framework architecture using XML as an integral 

component, however, as analysis progresses, many other prospective benefits are 

becoming apparent via the use of XML. As well as providing a container to store 

and forward the extracted Pipeline data, it’s use allows the Framework to optionally 

map the extracted data base data into other formats, such as comma separated 

variable (CSV), facilitating use by third party statistical processing applications such



CBSE An implementation case study 21

as Excel™. This is achieved by using a schema, which provides an explanation of the 

layout or format of the data residing within a database table, and is available to 

describe the contents of an XML file to other software applications wishing to make 

use of the XML data.

Within the context of the Framework, the schema also provides another level of 

usefulness to XML, mainly because of the shortcomings of the document type 

definition (DTD), outlined below. While this is not a criticism of the DTD which is 

a legacy of SGMLfWILLIAMSOO], and is used to great benefit when the content of 

the document is to be used as a document. However, when the content of the 

document is data, and a receiving application has the responsibility of processing 

that data, moreover, posting it into a relational database, the DTD can be found 

wanting in a number of areas:

• DTD is not declared in XML syntax, meaning the creator must learn a new 

language, which is complex, verbose and tedious to write.

• There is no easy or extensible way of programmatically modifying the DTD 

once the document has been created. The schema (which itself is an XML 

document), can be manipulated using a Document Object Model (DOM).

Use of the schema means that each extraction request can be mapped to a single 

database table, making usage, administration and data management a simple matter 

for both statistical analysts and field engineers [SOOOl]. The XML document is 

quite human readable in its natural form, and we can assume the engineers are 

extremely familiar with the internal table layout. Each field site produces 

considerable amounts of data relating to the pipe weld process, use of the schema 

also facilitates an extremely ‘thin’ tag wrapping, which considerably reduces the size 

of the extracted XML file. Once this data is captured, it will be inspected and 

analysed, either locally or at a central repository, collated and then moved to a long 

term repository. The schema allows the data to be efficiently packaged (as XML) 

and transported over the Internet via Browser download.

Benefit

Safe container to store and forward extracted Pipeline data 

Facilitates mapping the extracted Pipeline data into other formats 

XML document is quite human readable in its natural form
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Facilitates an extremely ‘thin’ tag wrapping, reducing container file size

Facilitates the mapping of container data back into a database repository

Support is built into many third party Web products eg. Internet Explorer

Figure 2.2 XML Benefits Summary

2.2.9 Servlets

Another technology which was investigated as a possible candidate in the CBSE 

environment was Servlets, which are Java code modules that use a request/response 

paradigm to extend the facilities provided by a Web Server. The Servlet application 

program interface (API) can best be described as Common Gateway Interface (CGI) 

replacement technology, which allows arguments embedded in HTML to be 

captured under program control and passed to a co-operating Java program. It 

should be understood that Servlet technology is non proprietary and open in the 

same sense as Java. The Servlet engine which deals with the incoming HTML traffic 

is specific to the underlying Operating System and Web Server environment. So 

whilst the implementation and initialisation properties are Vendor specific, usage of 

the technology assumes nothing about how a servlet is loaded, the server 

environment in which the servlet runs, or the protocol used to transmit data to and 

from the user. This allows servlets to be embedded in many different web servers, 

and makes them an effective substitute for CGI scripts [JAVADOCOl].

USES O F THE SERVLET A PI

• Dynamic Data Processing via HTTP

• Concurrent processing, by handling multiple requests concurrendy and 

instantiating a thread for each request.

• Forwarding requests to other servers and servlets, facilitating load balancing, 

mirroring and archival processing scenarios.

• Being a community of active agents. A servlet writer could define active 

agents that share work among each other. Each agent would be a servlet, 

and the agents could pass data among themselves [JAVADOCOl].
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2.2.9.1 Servlet Architecture Overview

The Servlet API is provided free of charge from Sun, and uses the ‘specific’ 

HttpServlet interface to support a range of management methods that facilitate 

communication with a client application. When a servlet accepts a call from a client, 

it receives two objects, a ServletRequest and a ServletResponse.

SERVLETREQUEST: The users request arguments (if any), are encapsulated in the 

HTTP communication from the client (typically a Browser) to the server. This 

allows the servlet access to parameter information passed in (as arguments) by the 

client. If the method type is POST or PUT, the ServletRequest object also provides 

the servlet with access to the data via an input stream (ServletlnputStream) 

[JAVADOCOl].

SERVLETRESPONSE: The servers response to the client are encapsulated in the 

programmatically generated HTML, from the servlet back to the client. In addition, 

the servlet provides an output stream (ServletOutputStream), and a Writer Object 

through which the servlet can send the reply datajJAVADOCOl].

2.2.9.2 Servlet Lifecycle

Servers load and run servlets, which then accept requests from clients and return 

data to them. When a server loads a servlet, it runs an initialisation method. Even 

though most servlets are run in multi-threaded servers, there are no concurrency 

issues during servlet initialisation. This is because the server calls the init method 

once, when it loads the servlet, and will not call it again unless it is reloading the 

servlet. The server can not reload a servlet until after it has removed the servlet by 

calling the destroy method. Initialisation is allowed to complete before client 

requests are handled (that is, before the service method is called) or the servlet is 

destroyed.

After the server loads and initialises the servlet, the servlet is able to handle client 

requests, and processes them in its SERVICE method. Each client s request has its 

call to the service method run in its own servlet thread. The threaded servlet model 

can run multiple service methods at a time.

Servlets run until they are removed from the service, for example, at the request of a 

system administrator. These design ‘features’, make development and testing 

extremely challenging, because the developer has no genuine way of ensuring that 

the latest compiled version of the Servlet has explicidy been taken up by the Servlet
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engine. When the Web Server ISAPI server removes a servlet, it runs the servlet's 

destroy method. The method is run once; the server will not run it again until after it 

reloads and reinitialises the servlet. When the destroy method runs, however, other 

threads might be running service requests. [JAVADOCOl].

2.2.9.3 Writing the Servlet

Servlets implement the javax.servlet.Servlet interface, and effectively allow the 

developer to receive the arguments passed in via HTML as a set of calls to the 

servletRequest Object. The API supports two thread models, catering for more 

specific uses of the technology, by allowing the developer to nominate the type of 

model to be used as a compile time option. If the servlet is being used as an HTML 

receiver, then the multi-threaded model would be appropriate. However, if  the 

Servlet is shielded from direct access by using a specific port number, the developer 

can nominate a single threaded model. For example:

public class myServlet extends HttpServlet

implements SingleThreadModel { /* typical code * /}

2.3 Summary

This chapter has detailed the technology investigation and research carried out in 

preparation for finalising the architectural design of the transport Framework 

software. The analysis and investigation process had a number of objectives:

• To select an appropriate technology for development of the Framework.

• To select appropriate third party components which modeled the mix of 

COTS and custom developed code within a much larger project. This 

provides a basis for comparison and review of the risk/benefits associated 

with implementing applications using CBSE methods on a much larger 

commercial scale.

• Identify functional areas within the Framework requirements with the 

objective of developing code modules engineered for re-use. In order to 

maximise the value of the analysis and provide Bottom up’ design input to 

the Framework architecture, a functional prototype will be developed. The 

prototype will help to determine the scope of the data extraction and re

insertion requirements, and identify areas for re-use within the application 

domain. Review and iterative analysis of the Framework domain to identify
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components that are candidates for re-use will also model the development 

method used in much larger CBSE projects.

The architectural design chapter (following) documents the design criteria of the 

project and looks in detail at the functional issues which needed to be addressed in 

the final design. In order to provide the reader with a context for the discussion of 

component based development issues, application design is addressed at class level, 

with the functionality of each class being discussed in some detail. The following 

chapter focuses on the areas of:

1. Extraction of the data and creation of the XML document (Server Side)

2. Creation of, and access to, the in-memory Document Object Model

3. Retrieval and insertion of the data into the target database

An understanding of XML and related XML Schema technology is required as a 

prerequisite for the method chapter which follows. To this end, Appendix D 

provides background and issues relating to the technologies investigated, particularly 

XML and it’s value as an external data container.
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3 ARCHITECTURAL METHOD

‘M e th o d ’ s u g g e s t s  a c a r e fu l ly  c o n s id e r e d  w a y  o f  a p p r o a ch in g  th e  w o r ld  s o  

th a t w e  m a y  u n d e r s ta n d  i t  b e tte r . To m a k e ju d g e m e n t s  a b o u t m e th o d  i t  h e lp s  

c o n s id e r a b ly  i f  w e  h a v e  s o m e  id e a  o f  th e  n a tu r e  o f  th e  r e la t io n sh ip  b e tw e e n  

o u r s e lv e s  a n d  th a t w h ich  w e  s e e k  to  u n d ers ta n d .

A n d rew  S a y er  1992

3.1 Background

This chapter describes the architecture of the Framework, documents the issues 

surrounding the design and construction of the application. The chapter also 

provides a detailed description of the Framework internals which relate to the use 

of the XML Schema and associated in-memory document object model which 

drives the Framework. In order to provide the reader with enough information to 

clearly evaluate the ease, or difficulty of integrating components into the design, it 

was felt that the various component models should be documented to the class level. 

This is particularly relevant when covering the sections relating to the polymorphic 

use of the XML Schema for data extraction, writing the data to file format 

(persistence) and re-insertion back into another database.

The most basic functional requirement of the Framework was to implement a 

generic, user driven interface for moving data from one database to another. As long 

as both sending and receiving hosts have access to the Internet, then data can be 

exchanged between hosts. It must also be remembered that in addition to achieving 

the functional objectives of the Framework, research is focused on the perceived 

risks/benefits of using CBSE methods. As stated in the introduction, one of the 

objectives of the research is to use the construction of the transport Framework as 

a case study to determine if  previously published doubts about overall benefits and 

associated risks of using CBSE methods are still valid, given the maturity of Web 

based technology.

The Re-use of code is one of the major initiatives of the CBSE philosophy, and an 

integral part of the Object Oriented development lifecycle. In order to identify 

potential processing areas where re-use of code can be achieved, design must be
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completed from the bottom up, that is, the functional processing requirements must 

be broken down to a granular or atomic level. Once each of the processing steps 

can be identified in isolation, other processing steps within the application domain 

with similar needs can be grouped together. To facilitate a bottom up analysis and 

better understand the issues relating to database extraction and re-insertion 

requirements, and identify areas for re-use, a prototype was developed. Construction 

of the prototype also provides useful information in analysing the problems 

associated with incorporating COTS components into a pre-existing application. 

Proponents state that following the CBSE methodology allows the designer to 

maximise system extensibility and minimise later redesign costs as a result of change 

[CAPRETZOO]. However, other research highlights the risks associated with post 

implementation maintenance, and functional enhancement of an existing 

application by including COTS components JVOAS98, BRERETONOO]. There is 

general agreement that use of CBSE methods allow the application under 

development to be completed more quickly. CBSE literature suggests that iterative 

reviews of the problem domain during the construction phases improves the 

likelihood of success (when using CBSE methods). To be able to highlight, then 

validate or dispute the risk issues in any tangible way, it is important to provide a 

development scenario that models the risk potential faced within a commercial 

software engineering project, and this is our goal.

3.2 Terminology

There are a number of terms used in the following chapter which may have 

different interpretations for different readers. This section is included to reduce 

confusion by providing a definition and explanation of those terms.

Class

A class is a representation of an entity which contains both data and a means to 

manipulate that data. The term ‘class’ is used within the design scope, and while data 

variables can be declared within the class, actual values cannot be assigned until 

memory is allocated to that class.

Object

An object is also is a representation of an entity which contains both data and a 

means to manipulate that data. The term ‘object’ is used within the runtime scope,
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and since memory has been allocated to the ‘class’, we refer to the runtime instance 

of the class as an ‘object’.

Instantiated

When a class has memory allocated to it, we refer to this process as ‘instantiation’. 

Once memory has been allocated, we then refer to the class as an ‘object’, or an 

‘instance’.

Thread

A thread is an associated child (thread of execution) of a parent process. The parent 

process, once instantiated, has memory allocated, and an address space which can be 

shared by any subordinate threads which have been spawned. Because threads share 

the parent processes address space, context switching between threads is much more 

efficient, thus maximising the degree of concurrent execution.

Wrapper

This is a specific code module which is written to allow two dis-associated code 

modules to communicate. A wrapper facilitates a connection between two disparate 

components, and is particularly useful when COTS components need to be 

incorporated into an application, and communicate with other COTS components 

or custom code modules within that application.

3.3 Prototype

Overview

Functionally, the prototype managed the connection between the server and the 

requesting client host, and was constructed to transport the contents of a single 

database ‘table’ from the Server host and deposit the contents into a database 

resident on the requesting Client host (Figure 3.1). The architectural design of the 

prototype is classic client/server, with the Server process listening for incoming 

client requests, then initiating a thread to manage the interchange between the two 

databases. The prototype was premised solely on the transmission of data from one 

remote database, to another, using a dedicated Socket model to transmit the data. To 

this end, an Application Program Interface (API) is provided at each end of the 

socket, with an ‘extractor’ interface receiving configuration and SQL parameters
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from the client. Once the SQL request is processed, the resulting data is shipped 

back to the client, an ‘inserter’ process accepts the socket stream and generates a 

series of SQL ‘insert’ statements, posting the data into the remote database. The 

process itself is efficient from a transport perspective, given that any method of 

distributed transport would require a marshalling process to ‘flatten’ the data into a 

text stream for transmission over the network [CAMPBELL99].

Priorities at this stage of the analysis were issues relating to data transport, and how 

to efficiently move data from one place to another. At this stage, a user interface 

which allowed the client to select data from the database for transport had not been 

built. The prototypes functional responsibility was to transport data which already 

existed in a Relational Data Base, via the Internet, to a remote Relational Data Base. 

Both server and client components within the prototype share a number of 

common classes, providing small re-use, polymorphic benefits, because the same 

components could be used for both extraction and insertion. This allows common 

‘container’ properties of objects on both server and client to store in memory 

representations of the database data being processed. For example the 

DBConnection class (Figure 3.2 and 3.3) has a role on both the client and server, the 

‘runSQLSelect’ method allows both input and output movement of data. These 

shared classes are included in both the server and client dialogue to show the 

differing functionality exercised.

HOST A

SERVER

EXTRACTOR

Request for Data

Send Byte Stream

HOSTB

CLIENT REQUEST

> .  INSERTOR

Figure 3.1 The prototypes ‘socket based’ architecture model
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3.3.1 Server Side Class M odel

At Server startup time, a Userid, Password and Open Data Base Connection 

(ODBC) Data Source Name (DSN) are passed in as runtime parameters. The Server 

process must be initiated manually using valid database login arguments, which 

allows the process to act as a gatekeeper for access to the Data Source Name 

nominated in the input argument. Figure 3.2 shows a class diagram of the 

processing and demonstrates the collaboration between objects.
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Figure 3.2 Server Class D iagram
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Once instantiated, the Server process listens for requests from potential clients 

which pass in the name of the table to be transmitted to the client site. Each client 

request is serviced separately by a ‘clientHandler’ thread, generated by the Server on 

receipt of the client request. At application startup time, a synchronised 

exceptionLog is generated by the Server process, and the address is passed into each 

thread, which then instantiates a number of other objects to manage the data

extraction process
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MESSENGER

This class provides a means of writing to, and reading from the synchronous 

datastreams associated with the socket. The class resides on both client and server, 

using keyword flags to:

• Signal to the other side what sort of data follows

• Send and receive the data

• Signal completion or error to the other side

For example, server sends a ‘S_SEND’ flag to the client indicating that data is about 

to be transmitted. Client uses ‘C_QUIT’ to inform the server that it wishes to 

terminate the session

DBCONNECTION

This class acts as a jdbc-odbc bridge for the table management process. Requests 

from the client, for data are received in the form of SQL statements. Once 

instantiated, the object executes those requests and stores the results as a Java 

RESULT SET. The result set is marshalled into a row of ‘string’ data and passed 

back via the messenger object to the client for processing.

TABLEEXTRACTOR

The class acts as a container for the table management process as per the following 

code snippet. tableExtractor class is instantiated to manage the packaging of the 

resultSet as a whole entity, allowing it to be returned from the called process.

ResultSet rs = null;

rs = m_DBConnection.runSQLSelect(script);

m_TabIeExtractor = new TableExtractor (m_uLog, m_Messenger);

m_TableExtractor.sendResultSet(rs);

TABLECONTAINER

The class tableContainer is instantiated, then encapsulated within tableExtractor and 

is used as a type-safe container for the data contained in a single row of a table. At 

instantiation time, tableContainer data is consigned to the server as an array of 

strings. The first element (0), contains the number of elements in the array (this 

number matches the number of columns in the row. The object is resident on both 

the server and client side. When instantiated on the client side the series of get() 

methods are used to manipulate and repackage the data into the variable’s correct
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data type. When instantiated on the server side, the series of setQ methods are used 

to package the data into ‘string’ data for transport onto the socket datastream.

3.3.2 C l ie n t  S id e  C la ss M o d e l

At client startup time it is assumed the user has decided to fetch some data from a 

remote host. The following session parameters may be passed in as part of the 

initialisation process:

Server address

Server port number

Clients (local) ODBC DSN name

Table name

Local database userid

Local database password

The client process instigates a socket connection (Figure 3.3) with the remote 

(server) site, and the nominated table name is sent to the server as a request 

argument.

F igure 3.3 Client Class D iagram

MESSENGER

As per the Server model, this object provides the means of writing to and reading 

from the datastreams associated with the socket.
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TABLEINSERTOR

This class manages the insertion of the data into the database. Once instantiated, 

the object uses a polymorphic instance of tableContainer to prepare each received 

row for insertion into the local database. The object first determines if  the table 

already exists, if not, tablelnsertor sends a message to the Server 

(clientHandler.SendTablePropertiesO) requesting the create script for the table. This 

script is resident on the server and can be shipped as an execution string when 

requested.

TABLECONTAINER

On the client side, the instance of tableContainer accepts each array of strings from 

the messenger object and prepares an SQL string which allows the data row to be 

inserted into the database. tableContainer is used by tablelnsertor to house specific 

data, relevant to the table being processed. Functionally, the object continually calls 

the messenger object to get the next line and process it, until there is no more data.

DBCONNECTION

In this instantiation, the object is acting to insert the data into the client side 

database, and will be passed compliant SQL INSERT scripts for execution by 

tablelnsertor.

3.3.3 Review Of The Prototype Architecture

The Client/Server communication process can best be described as one of managed 

‘waiting’. The socket architecture incorporates a blocking mechanism which 

effectively manages each process (requestor and server), sending it’s data through 

the socket datastream, then monitoring the socket until data is received from the 

remote communication host. The cost of blocking is that the sending process sits 

idle much of the time, but by using newer technology components such as the 

Servlet engine feeding Java code modules, the Framework is able to offset the 

inefficiency by the use of threads which allow multiple concurrent transmissions. 

From a re-use perspective, there are a number of existing code modules in the 

prototype which carry out useful work. The extraction and insertion modules will be 

retained and remodeled as re-use components in the Framework design because 

they are already efficient service objects. The extraction and insertion process 

requirements were clearly identified in the initial analysis, so the code already written
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to manage this process can remain, however, an iterative code re-use review 

(Domain Analysis) is undertaken to determine if  there was more potential for re

use. When investigating the use of third party components, priority is given to those 

areas which can support the end to end transmission process. Initiating the process 

via a Servlet launch satisfied this desire, as did the use of XML for the external data 

container. The container classes documented earlier are then be able to be 

connected to the COTS components by writing ‘wrapper’ code to facilitate the 

connection.

The architectural design which resulted from the analysis and post prototype review 

left a number of issues still unresolved. Priority issues were the user interface for 

data selection as well as the method of transferring the data to the client host after 

the extraction had completed.

Creating a  new table on the client

A method of creating the table entity within the target database was desirable for 

those situations where data being moved to the target did not already exist. This is 

not an issue for the Pipeline project, because the database Schema is static among all 

host nodes in the system. However, to make the system as generic as possible, a 

method of creating the table as part of the insertion process would be a 

requirement.

User selection of data

This is noted as an issue for a number of reasons, not the least of which is the 

practical necessity of providing the Web user with a method of nominating the data 

to be extracted and transport to the desired site. In addition, the prototype only 

allowed the user to select an entire table for transport. The pipeline application 

generates large amounts of data for a single weld session. The requirement exists to 

allow the user to generate adhoc SQL queries for parts of a weld session, ie. A root 

pass only, or data lying between certain time periods of the weld session.

Export Facilities

In order to facilitate data analysis of the weld sessions, analysts use a number of 

statistical process control applications. The socket version provided no conversion 

or reformatting facilities, this was seen as a desired deliverable for the Framework.
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3.4 Component Influenced Framework

The following sections provide a treatment of design issues which influenced and 

led to the final Framework architecture. Issues include the user interface, data 

management via the use of the Document Object Model (DOM), as well as the 

various component models making up the architecture.

3.4.1 Architectural Benefits

One of the underlying design initiatives of the Object Oriented method, and more 

specifically CBSE, is to provide an integrated, but layered approach to the 

components [BOURRETOO]. This layered approach may be implemented across 

large and complex service components such as a Servlet Application Server, or 

down to individual interfaces operating between two code modules. The benefit 

derived from this layered approach is to reduce the impact of change, because one 

‘consumed’ component may be replaced by another with little or no impact on the 

co-operating components. Consumed in this case means no longer functional, the 

requirements have changed and a new component is required. As long as the new 

component includes the same interface specification, components may be upgraded 

or replaced with minimal impact on the service requestor of the component 

[CHEESMAN01]. The benefit of threads, mentioned earlier, is very important to a 

Web based application. We can assume that any service published via a Web server 

should, wherever possible, allow the underlying application to make good use of 

concurrent co-operating processes or threads. The adoption of threads of execution 

by the larger application components such as Web Servers and Application Servers 

mean that the developer no longer has this responsibility. Use of a Servlet engine 

allows the application to spawn a separate thread for each user request, extract the 

data and wrap it in an XML envelope.

At the client end, the browser based interface allows the user to both nominate 

selected data and initiate extraction processing on the remote host. The scope of 

functionality relating to the human interface requirements was expanded by 

associating an XML Schema with the physical data [ABITEBOULOO]. These 

increased scope benefits include porting the XML into a predefined Style Sheet, or 

using the Schema to access to the Data Object Model for alternative output formats. 

Also, the Schema model provides processing information on how the data is 

formatted and can be presented for both extraction and insertion processes.
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Incorporating an XML Schema into the design gready improved the potential for re

use of components within the Framework application [CAPRETZ01].

3.4.2 Risk Issues

There is of course some downside associated with any process which converts data 

from a packed binary form to string data for external containment [BOURRETOO]. 

The use of XML as a container does mean that the size of the document can 

become quite large [BOUMPHREY98], however, this is offset by the wider range of 

usage options which XML provides. The World Wide Web Consortium is expected 

to release a data type standard for XML which will mean that data can be retained in 

a binary format while still being externally contained [WILLIAMSOO], however, the 

current standard only supports a string (character) data format. Efficiency problems 

are compounded further when using component technology such as ODBC/JDBC 

to access the database, as data is made available by the ODBC interface (API) in 

string format only.

Functionally, the extraction process is achieved using SQL to query the database, 

with the data returned as a resultset (refer to 3.3.1). This was achieved in the 

prototype using the well supported java.jdbc.DriverManager object, ie. data must be 

converted to a series of strings for external XML storage. There is potential for 

more detailed analysis and research within the extraction/insertion process domain, 

but this would mean moving outside the scope of using CBSE methods to the 

development of a very specific database interface. All extraction/insertion methods 

investigated use ODBC components to interface to the database, and the 

Framework architecture utilises a design model which is similar to a number of 

generic data extraction/insertion models jJOOOl], all of which facilitate:

• Creating of XML documents using data extracted from a

databasefBOURRETOO, STONE02].

• Loading of data from XML documents into relational 

databases [BERTINOOl].

The major distinction with the Framework is the use of an XML Schema to map the 

extracted data into either comma separated variable (CSV), which facilitates porting 

to other applications, or XML format.
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3.4.3 Framework Interface

The browser model was selected for the Framework client because it allows the user 

to see and select the desired data (Figure 3.4 and Figure 3.5) in a mature and well 

understood user interface. Once the data has been selected, the interface can be used 

to provide input to the SQL arguments for data selection.
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Figure 3.4 Data Selection Screen

3.4.4 Data Issues

An American National Standards Institute (ANSI) compliant Relational Data Base 

Management System (RDBMS) was a prerequisite for the application, and since the 

Operating System and related application infrastructure would be based on 

Microsoft Technology, it was decided that the base level RDBMS would be 

Microsoft SQL Server. This provided a lot more flexibility with regard to data 

manipulation, access to Stored Procedures, Triggers and if  necessary, Cursors. The 

original prototype used Microsoft ACCESS as the source and target database, which 

necessitated having to wrap the data elements in specific delimiters before insertion 

into the target database. As a prelude to moving to a more robust Relational Data 

Base Management System (RDBMS), some of the data tables from the MS Access 

database were exported to SQL Server (Version 6.5) RDBMS (with no trouble). 

However, when the ODBC DSN was modified to point to a SQL Server DBMS, the 

escape codes for quotes surrounding numeric data types were not acceptable to SQL 

Server. SQL Server was also more stringent about validation of dates which was to 

be expected.
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While these are typical third party connection issues, using a product that is ANSI 

compliant reduces the need to modify the insertion script to suit the database 

Vendor. There are a number of intangible benefits which also accrue from using a 

more industrial strength RDBMS, including:

• SQL Server comes with an administration module which caters for distributed 

management, which allows a remote user to create and implement database 

storage facilities, administer user access and remove aged data.

• Provide remote access to data logs

• The latest version of SQL Server facilitates the output of data in XML form, 

which means the Framework can be further enhanced to accommodate the use 

of components to replace the extraction process, if this proves to be an ongoing 

feature.

Overall, the concept of integrating Test of breed’ components should be promoted 

when those components are sourced from a third party Vendor. For this reason 

alone, it was decided to upgrade the database to a more robust product such as SQL 

Server. Both MS Access and SQL Server are both Microsoft products and are fully 

compliant with ODBC, so the choice to migrate was straight forward.

Figure 3.5 Specific File Selection 

3.4.5 Ex tra c tio n  In te rfa c e

The Framework provides a common interface to accept the selection criteria for an 

extraction. A parameter object runParms, allows an extensible list of arguments to be
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passed in, and made available to the SQL WHERE clause as shown in figure 3.6. 

Typically, access to the data is provided by a Web Server, with ASP/HTML used for 

the interface. Using the browser, the user may first view, then select the data as per 

figure 3.5. Data is presented to the user in the standard HTML table format using a 

generic method of extracting the selection criteria which allows the table name, 

key/index information to be passed into the SQL WHERE clause of the select 

statement, to be used by the Data Extraction module. In order to manage this

process, a runParm s parameter class was developed to allow tlie desired table and 

associated keys to be passed in and managed in a standard manner.

_______ 1,_____ A. »rl fnV\1 n

<input type=submit name-'Button" vai u e=" Extract“></td>
<input type=hidden name-Table" value =,,Weld_Description,,>
<input type=hidden name="KeyName 1" value = "welderjd1̂
<input type=hidden name-'KeyValue 1" value = <%=WelderNumber%>> 
<input type=hidden name-'Key Name 2" value = "weldjd">
<input type=hidden name-'KeyValue 2" value = <%=WeldNumber%>>

Figure 3.6 Data Selection script (HTML)

The parameter names are case sensitive and values may be supplied as constants, 

variables, or, supplied dynamically by accessing the Host Database for required 

values. This means data can be passed to the Application Server as HTML or as 

arguments in the Servlet URL. This is an extremely important point and is covered 

in more detail in the Servlet Design Section, but the importance relates to the 

matching of <NameJ and Wahie* pairs which are ultimately used to generate the SQL 

extraction request. The numeric increment attached to the matching name and value 

is required because the Servlet Model does not receive the arguments in any 

particular order, so a method is required to maintain the consistency between the 

name and value pairs.

This feature allows the Framework to extract and transport any nominated data 

without the need to extend the coding functionality, the name and value pairs are 

used to increase the granularity of the SQL WHERE clause (refer to the 

Implementation and Usage chapter), as per the example in figure 3.7.
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F igure 3.7 G ranular D ata Selection

Configuration information also needs to be passed into the Framework and loaded 

into the runParms object. The runParms interface requirements are fully 

documented in the User Manual located in appendix C.5.

3.4.6 S c h e m a  M o d e l

The Frameworks’ main goal is to provide an efficient means of processing large 

volumes of data being transported from one host to another. Once the user selects 

data to be extracted from the database, a number of processing options are 

available. A ll are facilitated by the Document Object Model (DOM) which facilitates 

the processing and formatting of data for the extraction, persistence, or insertion 

processing carried out by the Framework.

'Extraction - The DOM provides data definition information to the extraction 

process, indicating how many data columns are in the selected table rows, and how 

those data items need to be processed in order to convert the data to string format.

Persistence -  The DOM provides formatting information to the physical data output 

process, ie. When writing the data to file in either XML or CSV format.

Insertion  — The DOM provides data definition information to the insertion process 

running on the client host, indicating how to build a row of table data for insertion. 

For example, string data types need to be bracketed with quotes in order to 

successfully be inserted into the database.
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Figure 3.8 Document Object Model

It is the Schema which makes this information available to the in-memory DOM, 

and this is achieved by a component called the xmlManager (refer to the class 

diagram in figure 3.11). When the xmlManager class is instantiated, it is passed the 

name of the relevant database table Schema to load (refer to figure 3.9). The name 

of the Schema is usually provided as a Uniform Resource Locator URL, and is 

typically encapsulated within the XML document as per figure 3.10. In that example, 

the Schema abstract.xsd in the figure is located at name space http://l92.168.1.254/xm l.

The Schema URL is also stored within the extraction database, when xmlManager is 

instantiated it will be passed a URL, the calling component in this case will retrieve 

the Schema URL from the database. Once the xmlManager object locates the 

Schema, then loads the Document Object Model (DOM) from information 

provided, the DOM is then used to create a mapping for data to be extracted, 

persisted or inserted back into the remote users database. The relevant Framework 

service has access to the in memory tree and places service requests on xmlManager 

via relevant public methods. An application specific Schema has been developed for 

the Framework, and in the Framework Schema, there are two elements, one 

describing the table data definition language, and one describing the table data.

-  <abstract>
<schem a>h t tp : / /1 9 2 .1 6 8 .1 .2 5 4 /x m l /a b s t r a c t .x s d < /s c h e m a >

-  <row>
<C1>2</C1>
<C 2> 1< /C 2>
< C 3 > 1 0 1 < /C 3 >
<C4> 1 8 9 9 -1 2 -3 0  1 4 :1 3 :3 2 .0 0 0 < /C 4 >
<C 5> 1< /C 5>
<C 6> 1< /C 6>
< C 7> 0< /C 7>
< C 8> 0< /C 8>
< C 9> 0< /C 9>
< C 10 >0 < /C 1 0>
< C 11 >0 < /C 1 1>
< C 12>0< /C 12>
< C 13>n u ll< /C 13>

< /row >
< /a b s trac t>

Figure 3.9 Data-Centric XML

http://l92.168.1.254/xml
http://192.168.1.254/xml/abstract.xsd%3c/schema
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The Schema represented in figure 3.10 shows an example table abstract and indicates 

the Schema has two main elements, the first tabie_ddl, and the second refers to the 

table being transported, in this example table abstract. Once the Schema is located 

and successfully loaded, the Framework then produces a DOM tree as per figure 3.8. 

The xmlManager object instantiates the DOM and encapsulates the Element objects 

table_ddl and abstract, and subordinate child attributes for each of the elements.

E l e m e n t  <ta b le_d d l ’

This element has three child attributes which provide administration information 

available to the source or target application which is producing or processing the 

XML document.

S cr ip t : This attribute provides a data definition script to the target application if the 

table (in this case abstract) does not exist in the target database. When the session is 

established, the script attribute is used by the Framework to create a table in the 

database. The script is executed if  the table does not already exist in the target 

database. It is assumed the tables are built on the target database as a means of 

analysing the data produced on the source machine, rather than securing the data, as 

such, there is no key or relational constraints included in the script, it is provided 

only as a means to provide a repository for the received data.

S ch em a : This attribute is used by the Source Application to ‘bury’ the contents of 

the attribute into the XML document which is being produced. Typically, the URL 

value relates to the Source Host, but could be a Framework wide URL which 

manages the terms of reference of the Framework.

C ou n t: This attribute provides a validation check for the application. The numeric 

value of the count attribute must match the number of attributes which are identified 

by the abstract element. If not, a Parser error occurs during the extraction/insertion 

and processing stops. The Schema is prepared as a user function (refer to User 

Manual), so the count attribute is used by the Framework to match against the 

number of columns which are nominated in the extraction query. The example 

shown in figure 3.9 indicates a count value of 13, which must match the number of 

attributes listed under the abstract element. Moreover, when the Framework Source 

Host extracts the data from the database and begins to assemble the XML output 

structure, the column count in the query result set must be 13.
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«schema xmlns-"http://www.w3.org/2000/10/XMLSchema">

< element name-"table_ddl7>

< attribute name “"script" value="create table abstract (welderjd int not null, weldjd integer 
not null, batch int not null, weld time datetime not null, part_no int, weld_no int, volt_f 
smallint, curr_f smallint,wfr_fsmallint, heat_f smallint, dep_fint, tirne_f int, checksum int); 
create unique index absidx on abstract (welderjd, weldjd, batch, weldtime);7>

< attribute name “ "schema" value="httpt//192 168.1,254/xml/abstract.xsd 7>

«attribute name-"count“ value=“137>

«element name=uabstract7>

«attribute name ="welderjd" title“ ”Weider Id" code=“C1" type="lnteger7>

< attribute name “ '"weldjd" title=“Weld Id" code="C2“ type=7nteger7>

«attribute name-"batch" title“"Batch“ code- "C3 "ty p e-"l nte g e r7>

«attribute name ='"weld_time" titIe="Weld Date" code="C4"type="Datetime7>

«attribute name=”part_no" title-"TS Set” code=“C5" type="lnteger7>

< attribute name =’"weld_no" title-"weld_no"code="C6" type=”Integer"/>

«attribute name-‘VoltJ" tille-'Vult" code-“C7“ type“ "Smaliint7>

<attribute name -"currf“ title="Curr" code=”C8" type-”SmaIlint7>

«attribute name“"wfr_f* title“ "WFR" code=‘‘C9" type=“Smallint7>

«attribute name =”heatj" title="Heat" code="C10“ type-"Smallint7>

« attribute name “”dep_f title-“Dep" code=“C11" type="lhteger7>

«attribute name-"time J"  titie-Time” code-"C12" type=“lnteger'7>

«attribute name ““checksum" title=“CHECk" code="C13" type=‘1nteger7> 

fi/schema> __________________________ ,

Figure 3.10 A ssociated Schema

Element ‘Abstract’

This element describes the underlying table which is to have the data queried and 

extracted. There is an attribute for each of the columns in the table being nominated 

with the following properties:

N a m e: Which must match the column identifier within the table. The Framework 

target application uses the name attribute to prepare the ‘INSERT’ statement for the 

Insertion process.

T itle : The Framework target application uses the title attribute to prepare hard copy 

reports of the content being inserted into the database as a Column Pleading.

C o d e : To facilitate efficient transportation of the data, a meaningful tag name for 

the column is replaced by a code. The Framework target application uses this 

attribute within the XML document to match the against the Schema, then used the 

corresponding name value to build the INSERT statement.

T y p e : W hich must match the column identifier within the table. The Framework 

target application uses this attribute to prepare the ‘INSERT statement for the 

Insertion process.

http://www.w3.org/2000/10/XMLSchema
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3.4.7 D o cu m en t  O bject  M o del

The xmlManager component class is an integral part of the Framework architecture and 

manages the instantiation of the document object model (DOM) specific to the database 

table being targeted by the user. Once instantiated, the xmlManager object encapsulates 

two subordinate objects, elementProperties and elementAttributes, which map explicidy to 

the elements and attributes located in the associated Schema. In effect, the Schema is a 

static representation of the in-memory DOM.

Figure 3.11 XM LM anager Component

E lem en tP roperties

The design follows the standard of beginning the name of public methods with 

‘get’, and each of the service request methods which return data from the DOM, 

receive that data as an array string. The Schema is loaded by instantiating two Java 

ElementProperties objects, one for the table_ddl and one for the table_properties 

(abstract in the example), access to these classes is provided by attaching the Element 

Object to a Vector (array), then nominating the element from which data is to be 

provided; as per the example

public int getColum nC ount()

{
Elem entProperties l_elem ent;

II the num ber of colum ns is stored in the 1st elem ent vector 

l_elem ent = (E lem entProperties)v_elem ents.elem entAt(0); 

return l_elem ent.getColum nCount();
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}
which indicates that the number of columns getColumnCount() is stored in the 1st 

element vector, and as such, the developer may refer to this explicitly as

l_element = (ElementProperties)v_elements.elementAt(0);

Using this method is much more efficient than using a standard binary tree method, 

because the developer knows exactly where the required data is, and does not have 

to ‘walk’ the tree, comparing values to the those required. The data is object based, 

and can be immediately accessed, by the public ‘get’ methods, as per:

public String Q getColumnNames ()

After xmlManager instantiates the elementProperties classes, each object is called 

upon to load the matching attributes (loadAttributes), for each of the elements. This 

is achieved by instantiating as many instances of child elementAttribute classes that 

are referenced in the Schema, and associated with each Element. As shown in figure 

3.10, there are 13 attributes associated with the abstract element, these attributes, each 

have Name, Code, Title, Type and Value properties. Public access to the data is then 

made available by calling the appropriate ‘get’ method in the elementProperties 

object. Note, that direct access to the elementAttribute object is via public method 

calls to the elementProperties object. xmlManager also validates the XML document 

against the Schema by matching the boundary of the array against the count value 

stored when the Schema is loaded. The public methods are:

G etC od e: Returns an array of each attribute code nominated as children of

the element. (C l ... C l 3 in the figure 3.10 abstract example).

G etC o lu m n C ou n t: Returns the published count of the number of attributes

listed in the Schema under the table name element (13 in the figure 3.10 abstract 

example).

G etC o lu m n N a m es: Returns an array of each attribute name nominated as

children of the abstract element.

G etN am e: Returns the published name of the element, (‘abstract’ in the

figure 3.10 abstract example). This name also matches the table name of the data 

being extracted from the database

G etS ch em aU K L : Returns the published URL of the Schema. The URL is

placed into the XML document being produced by the extraction process. The URL 

is then accessed by the target application to build the DOM for processing the 

content of the document.
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E l e m e n tAt t r ib u t e s

While the methods for returning data are public, only the elementProperties object 

directly accesses the elementAttributes objects. The design instantiates each of the 

named attributes in the Schema, and provides access to the data via the parent 

ElementProperties object.

3.4.8 Se r v le t  M o d el

Using the Servlet model allows the designer to utilise the Internet transport facilities 

and abstract the entire end to end data transmission. The session is controlled by IIS 

(Microsoft’s Internet Information Service) technology running on the Servlet host, 

managing the interaction between the Web Server and the Application Server (IIS 

Internet Service API, ISAPI). The extraction process is initiated as a Java thread of 

execution, the Schema is located by using the table name (which is passed in as an 

argument) to access a table containing the associated Schema URL. The user has the 

choice of extracting the data in either XML or CSV format. Moreover, if the user 

elects XML, this data can then be dropped into a directory on the Target Host 

which is being monitored by the "background’ insertion service.

Figure 3.12 Architecture D iagram

Once extraction has been completed, the client is presented with a screen (figure 

3.14) which contains a link to the XML file generated by the server side host. On 

clicking the link, the user may download the file to the local machine in the desired 

format. The system monitors a directory being monitored on the users platform,
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and when the downloaded XML file is ‘dropped’ into the directory being monitored, 

a daemon process opens the file and attempts to process the contents, by inserting 

the data into the users local database. This is facilitated by having the daemon start 

up at system initialisation time, with runtime parameters indicating the location of 

the database.

3.4.9 Se r v e r  Sid e  Class M o del

This model consists of a number of classes which are instantiated by the Servlet 

object (servletExtractor).

ErtreriRiquMtHandJw

Request I in m e len  X

'QunyHnndtyrj
M. S QL Factory

DBCuuecttoK
Penút-Fete > XML Dita AFj rtptrmLog

Con»ct»n

Manage Schema ►

The TeblePersistmce class is implemented (polymotphically) 
as an XML variant, or a CSV variant, or an Insertion Variant. 
The database is queried, and the result set passed into the 
appropriate variant for persistance

Output File in Nominated Format 
CSV, or XML

RtuaParms ▼

Log Reference ▼

Insert-Extract Date ▼

I Element Attrfeute

ExceptxmLog

Element Tree ►

XMLManager
EementProperties 

------Excep&nLog • -  -
: - '

Attribute Tree

Implemented as a Collection (Vector) 
o f Elements, Each o f which is 
associated with a Collection (Vector) 
o f Attributes

Figure 3.13 Extraction Class D iagram

RUNPARMS
As outlined earlier, the runParms class provides a container for the argument pairs to 

be stored and retrieved by the various processing classes which use the arguments. 

The class provides methods for:

• Adding parameters and related values

• Retrieving the value of a nominated parameter name

• Retrieving a list (Listiterator) of the parameters

• Retrieving a list (Listiterator) of the Values
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Once instantiated, the object is requested to retrieve the value of a nominated 

parameter name

Eg. s_table = m_nmParms.getPafametetValue(”tableM); the ITinParms object

iterates through the current list of parameters looking for the keyword ‘table’. If 

found, the object returns the matching value, in this case, the name of the table 

being extracted. To maintain a generic interface, all arguments are stored as Strings, 

and the requesting object is responsible for casting the result to the appropriate data 

type.

EXCEPTIONLOG

On both the client and the server side, the log is created at initialisation of the 

processes. On the server side, a reference to the log is then passed to each Thread 

of execution. The exception Log class has a setLogO method which accepts a 

Boolean value. When set to False, the log is only incremented in the case of a 

Terminal error. When set to True, the log acts as a Debugging tool, outputting code 

variables set by the developer or system maintenance personnel, eg:

m_uLog.LogMessage(kTHIS," Could not determine the Host file location, mandatory data - ends");

Depending on the developers needs, the exception can be used as a debugging tool, 

or true exception handler, which can either terminate processing, or pass the 

exception back up the chain to be handled by a higher level calling module.

At runtime, the object is public and ‘synchronized’, and is called by passing the 

exception and an accompanying message eg:

LogException(String excpt, String msg);

SERVLETEXTRACTOR

This class is a standard Servlet class which receives the HttpServletRequest and 

HttpServletResponse from the Servlet engine, instantiated and managed by the 

Application Server Host. The Application Server instantiates a servletExtractor 

object thread each time a request is received by the Web Server. User data passed in 

from the Servlet engines, httpServletRequest are encapsulated within a runParm 

object (refer to figure 3.5), the data is extracted from the associated database and 

persisted in either CSV or XML format for transport to the users nominated site.
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Operationally, servletExtractor instantiates a manager Thread (extractRequestHandler) 

to deal with the users request. The Thread communicates with the parent 

(servletExtractor) and passes status information back to the users Browser (refer to 

figure 3.14). This is achieved using a Vector which is instantiated by the Parent 

(servletExtractor) and passed into the spawned Thread by reference. The parent then 

monitors the Vector until the response is prepared. The response is supplied once 

the parameters needed to service the request have been successfully loaded, and a

unique file name has been allocated. This allows tiie user to be intormed it the 

httpServletRequest parameters cannot be loaded in the correct name/value pair 

sequence.

a  11 e i f

EXTRACTREQUESTHANDLER
This class is instantiated to determine the type of request (using the runParms 

object). Once the type is determined, the object then calls the appropriate 

processing modules. Options are either CSV or XML, and in both cases the 

extraction request is persisted to the local hosts file system. A reference to runParms 

is passed in to allow the type of request to be determined, ie. CSV or XML, and an 

appropriate persistence object is spawned and processed. The data file generated is 

deposited into an externally accessible directory, which is subordinate to the Web 

Server directory ie. http://host/ServletData. A URL is presented to the user which 

points to persisted data on the host Web Site eg.

Note: Until extraction processing. „ ......
. .  •- - - _______________

Figure 3.14 Data Extraction Process

A warning is presented to the user indicating that the file may not be immediately 

ready for extraction, this message is posted to ensure that if the file is large, the user 

cannot access the file until extraction is complete. The method used to safeguard the 

data is to pre-pend a temp_ on the filename, which is renamed to the correct 

filename on completion of the extraction. Processing first determines a unique file 

name for the data file, the user is then notified of the File Name, and processing 

continues to persist the data (Refer to the servletExtractor class documentation for a 

reference to the notification method).

http://host/ServletData
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TABLEPERSISTANCE

This class is an abstract class, implemented as either persistanceXML or 

persistanceCSV. The generalised (parent) object contains methods which perform 

the following processing requirements:

o Determine the unique file name for the specified file type

o Locate and make available the URL of the nominated extraction table from the 

Framework database

o Locate and make available the XML Schema associated with the SQL request 

made by the user

o Locate and make available the destination namespace of the file generated as a 

result of the extraction process

o Execute the SQL request and make available the resultSet data stream to the 

requesting object

o Launch the extraction process

These methods are then called, as needed by the specialised child object. 

XMLMANAGER

The component class is instantiated on both client and server, and plays a different 

role when used by each requestor. In both cases, the object has to carry out an 

administrative load of the Schema (XSD) to create an in memory DOM (3.3.4), then 

provide an information service to client requestors. When instantiated on the server 

side, xmlManager is encapsulated within the tablePersistance variant, and the objects 

main task is to build faceplates[MOHR02] to map the resultSet stream to the 

physical file format selected by the user. Once instantiated, the object locates the 

Schema namespace from the <schema_control> table within the host database, then 

loads the Schema (XSD) file using a URL openConnection method for example:

m_xsd = new URL(getSchemaSource()); 
m_xsdConn = m_xsd.openConnection();

The Schema is used to build a set of in memory collections containing the 

properties of the table selected by the user. From a service perspective, the object 

provides a public interface to requestors of information who are building the 

respective physical file formats.
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PERSISTANCECSV

In object oriented terms, this class is implemented from the abstract tablePersistance 

class, and works in co-operation with the xmlManager object to generate the physical 

data file in CSV format. A t constructor time, the object creates a file, uniquely 

named with the csv extension. The next task is to generate a row with the column 

headings, derived from the Schema. Once this is completed, the object then streams 

in the resultSet data, and generates the output row by inserting a ‘comma’ in 

between each column value, then output the row the persistStream object.

PERSISTANCEXML

This class is also implemented from the abstract tablePersistance class, and works in 

co-operation with the xmlManager object to generate the physical data file in XML 

format. A t construction time, the object creates a file, uniquely named with the 

XML extension. The object outputs the mandatory XML standard tags, then wraps 

the output from the resultSet data in the appropriate data tags and outputs the row 

via the persistStream object.

PERSISTSTREAM

The class is inherited from the ansiFileStream (refer to Source Code), and simply 

persists the data passed to it. The ansiFileStream class is itself inherited from the 

standard java randomAccessFile class which provides an interface for streaming data 

to a physical file format.

QUERYHANDLER

The class is used to prepare request parameters for execution by DBConnection. The 

components needed to format the SQL request are located from the runParms 

object, and passed in at construction time. The object is necessary because the 

number of statements making up the SQL VH ERE clause is arbitrary. The user 

may pass in numerous key value pairs, which need to be built into the appropriate 

WHERE clause. This object co-operates with the runParms object to manipulate the 

key value pairs and prepare the correct SQL string for the DBConnection object to

process.
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3.4.10 C l ie n t  Sid e  Class M o d e l

This model consists of a number of classes which are instantiated at system startup, 

and run as a stand alone deamon process, continually polling a nominated directory 

on the client host. The directory name is maintained in an application control table, 

set up in the system inialisation process.

Once the Insertion process has commenced, the target host generates an entry into 

the target database providing information on the status of the insertion process in 

relation to the data being inserted into the target database. The entry contains 

information such as time/date, file name, source host ip address, table name and the 

number of records in the transmission. Once the Insertion process has completed, 

the status is set to completed. If a failure occurs, the data is rolled back, and the log 

is updated to reflect the rollback status.

7ABLEARCHTVECLIENT
This process continually monitors a nominated file directory until a file is deposited 

into the directory with an XML file extension. Once the processor sees a valid file, it 

attempts to process the data using the local (host) Web Server to facilitate a URL 

connection to read the XML file. Based on information received from within the 

XML file, ie. the name of the XSD Schema, and the name of the table to be 

actioned, the Schema Source Data is fetched as a stream via a URLConnection.

^GetDMnfb

Input XML and XSD Files are 
accessed via a URL Connection

EaceptionLog 
HetuentAttribute 
Attributo Vector

p tnd fiondt̂XSDNan
I B IiL j -v c T V v r .

Implemented as a  Collection (Vector) o f  Elements, 
Each o f  which is associated w ith  a  Collection (Vectoj 
o f  Attributes
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Figure 3.15 Client Class Diagram

The process instantiates an exception log at startup to log events over the coming 

session. The TableArchiveClient object is responsible for initiating the 

InsertRequestHandler, which validates and ensures the resources necessary to insert 

the data into the RDBMS are available.

INSERTREQUESTHANDLER

This class, whose main task is to gather the parameters for the processing task, then 

act as a wrapper for the datalnsertor object. This class simply sets up the appropriate 

environment required by the datalnsertor object.

XMLMANAGER

When instantiated on the Client side, the xmlManager object still needs to locate the 

Schema associated with the table nominated by the requesting user. The method of 

locating the Schema is different on the client, the object must first open the XML 

document, then locate the schema within the document before using the extracted 

URL. In this case, the object co-operates the xmlReader object to facilitate the 

extraction of the Schema data from the XML file. Once the DOM is created, the 

data is read in from the file, and mapped to the database using the datalnsertor 

object

XMLREADER

The class is used as a helper for xmlManager, and carries out the physical preparation 

of opening the data file and passing the stream to xmlManager. Overall, the class has 

the following responsibilities:

o Locate and make available the XML Schema associated with the SQL request 

made by the user

o Locate and make available contents of the XML data components 

DATALNSERTOR

This class is a variant of the tablePersistance class but in this instantiation is used to 

manage the insertion of data into the requestor’s database. The commonality with 

the tablePersistance class lies in the usage of xmlManager and DBConnection classes. 

At runtime, the objects co-operate to retrieve and read the XML Schema from the
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local host, and manage the insertion of data into the database. Once the target XML 

file is opened, the Schema tag

<‘< s c h e m a > http ://192 .168 .1 .254 /xm l/w elddesc.xsd< /schem a>”

provides the URL of the Schema XSD file which is used to unpack the XML data. 

Once the XML stream is accessed:

• The object determines the existence of the table in the target database

• Executes a build table routine (if necessary)

• Builds an INSERT statement using the attribute names provided by the 

Schema

• For each XML row, marries the matching data into the INSERT statement,

ie. VALUES (......).

Each completed row is passed to the DBConnection object for insertion into the 

database. Any errors which may occur, are dealt with by the object. The most typical 

error is a ‘duplicate key’, meaning the data has previously been inserted and is 

ignored by this insertion process. Another less likely scenario is that the table format 

has changed, but the Schema has not been updated to reflect the new layout of the 

table. In this situation, the transport and insertion process is terminated. A run log 

has been incorporated into the requestor’s database, which is used to store details 

about the success/failure of transport sessions. At the beginning of the transport 

session. A container object is assigned to store status event messages from the 

session, on completion or termination of the insertion process, the container uses 

the DBConnection to insert logging information about the session into the database. 

The user requesting the transport can access this log via SQL query within the 

dqm_log table, location of the session details is provided by way of entering the 

physical name of the XML file being transported.

3.5 Summary

The aim of this chapter has been to describe the architectural components of the 

Framework, and, while the concepts themselves are not complex, describing the 

mechanics of how those components interoperate was a challenge. The desired 

outcome of the chapter was to develop the reader’s understanding of the 

architecture by documenting the mechanics of extracting/inserting data from/to a 

database when using a Schema driven document object model.

http://192.168.1.254/xml/welddesc.xsd%3c/schema%3e%e2%80%9d
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The following chapter also reviews the Framework from a post construction

perspective but focuses on issues such as:

• Determine the effectiveness of using component based software engineering 

methods in the development of software applications.

• Gauge the adaptability of CBSE on post implementation maintenance to 

determine whether these methods make change easier and less costly, or 

otherwise.

• Use the construction of the transport Framework as a case study to highlight 

potential risks and identify areas of vulnerability when using CBSE methods.

• Investigate both the benefits as well the risks associated with integrating a new 

middleware technology such as XML across the range of COTS Web 

components.

• Review the Object Oriented principles used in the development to determine if 

this added value to CBSE method, particularly in the areas of interface, re-use 

of code and ease of assembly and integration of the components.

• Whether construction of the prototype actually improved the Domain Analysis, 

and facilitated the exposure of candidates for re-use.

• Whether adoption of the XML Schema model provides genuine extensibility to 

the Framework.

These issues are central to the thesis and hopefully allow us to determine both the

merits and risks software engineers face when developing software using CBSE

methods.
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4 POST IMPLEMENTATION REVIEW

4.1 Introduction

Research indicates that there is general consensus regarding the benefits of 

integrating pre-built components into a software application in order to reduce 

development time. There is also agreement regarding the use of COTS components 

to solve a well identified processing requirement. Microsoft and IBM, just to name 

two organisations, would not invest hard earned profits in these areas if there was 

no market for their products. The real problem, and this is the focus of this thesis, is 

in attempting to highlight the more subtle issues which result from the adoption of 

CBSE methods. Implementation and usage of the Framework allows many of the 

research issues (refer to the summary at the completion of chapter 3) associated 

with the design, construction and usage to be addressed. In this chapter we review 

the Framework from a post construction perspective to try to highlight some of 

these issues, especially software quality and risk potential when change or 

maintenance is required to the original system. Specifically, software quality and risk 

are addressed from a number or perspectives:

• Integration of Common Off the Shelf Software (COTS) components 

[GANESAN01] with custom code

• The use of a formal review of the problem domain at the completion of each 

build iteration, to maximise the potential for re-use of custom code 

[CAPRETZ01].

• Clearly defined interfaces to facilitate the later replacement of custom code with 

third party COTS components.

• Using XML as a data container to further facilitate the level of COTS 

integration.

• Use of the Schema to deliver the Document Object Model (DOM).

In order to provide a context for discussion, this section begins with a walkthrough 

of the extraction and insertion processes. Focus then moves to research issues using 

the Framework as a basis for discussion of those issues. The final section in this 

chapter identifies areas of future work which may lead to improvements in the 

efficiency of the Framework.
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4.2 Walkthrough

As can be seen from the Framework architecture diagram in figure 4.1, a typical 

extraction scenario is for a remote Internet user on host B to:

o Place an extraction request on the Server host A

o Have the request serviced, ie. remove the data from the repository and 

convert it to XML

o Transport the XML file over the Internet to host B

o Re-insert the data into the user’s local database, or another repository on 

host B

Figure 4.1 Architecture Diagram

The walkthrough first describes the user’s runtime environment and data selection 

process which culminates in a data extraction request. Processing the extraction 

request is then discussed in some detail, and includes an explanation of how the 

extraction arguments and configuration data are passed into the extraction process. 

The XML file produced as a result of the extraction is then transported to the user’s 

host for insertion into the user’s local database. Data transmission time over the 

Internet is a product of bandwidth and latency. Outside the confines of the local 

area network, transmission time can be considered a relatively inconsistent variable, 

so we do not include the issues of bandwidth or latency within the walkthrough 

scenario. Transmission of the XML or CSV file over the Internet is initiated from
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within the user’s browser by selecting the link generated by the extraction process, as 

shown in figure 4.3. The re-insertion process is then presented with an explanation 

of the mechanics of that process.

4.2.1 R u n t im e  E n v ir o n m e n t

The Framework provides a common interface for inputting the desired selection 

criteria for an extraction (figure 4.2). The browser method is used for the 

walkthrough, and has the task of passing in the nominated data for the extraction 

request. Functionally, the browser allows the user to view the data prior to 

extraction. Request parameters are passed into the Framework via HTML and all 

user access with the system is via the Web Browser. Data can be requested locally 

(subnet) or externally (Internet) using the data site’s Web Service to initiate and 

manage the extraction process. If the remote user is intending to populate their local 

database with the results of the extraction, then the extraction format needs to be 

XML. In addition, all target machines need to have the Java Runtime (JVM) installed 

to facilitate the insertion of data into the local database (refer to the User Manual in 

appendix D for setup details). However, if  the user intends to port the extracted 

data into a third party application such as Microsoft Excel or Harvard Graphics for 

statistical analysis, then no additional software is required. If this is the case, the user 

selects CSV format for the extraction request.
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Figure 4.2 Data Extraction Request

4.2.2 Data  Ex t r a c t io n  R e q u e st

Once the extraction request has been received by the Servlet engine, a processing 

thread is initiated by the Servlet engine to deal with the request. The request
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arguments are typically presented as an HTML request and have the following 

format:

http://192.168.1■254/servlet/servletExtractor?Format=XML&Button=Extract+Data&Table=Weld Descripti 

on&KevName+1=weider id&KevValue+1=2

The request can be broken down into the following sub components:

URL http://192.168.1.254/servlet/servietExtractor

Format XML

Table Weld_Description

KeyName+1 w elderjd

KeyValue+1 2

All requests to the Framework must be in this format, the complete list of allowable 

parameters is provided in the User Manual.

URL: Names the host and the extractor module launched (as a thread) by the 

Servlet engine.

F o rm a t :  There are two formats currendy supported by the Framework, CSV 

(Comma Separated Variables), and XML (Extensible Markup Language). The request 

must specify the output format to the extraction module.

T ab le : This parameter refers to the table being queried for data extraction

K ey N a m e  1: This parameter, (note the numerically appended increment allowing 

set of matching pairs that are appended to the WHERE clause in the SQL 

statement

The system caters for a variable number of parameters to be passed in, making the 

extraction request as broad or granular as necessary. Once the request is received, 

the user is presented with a response screen which indicates that processing has 

commenced. Extraction, conversion and creation of the CSV or XML data can take 

some time, depending on the volume of data being extracted, and in both cases the 

extraction request is persisted (physical file created) to the local host’s file system.

http://192.168.1%e2%96%a0254/servlet/servletExtractor?Format=XML&Button=Extract+Data&Table=Weld_Descripti
http://192.168.1.254/servlet/servietExtractor
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Figure 4.3 Data Extraction Request

A URL is presented to the user which links to the physical data file, and a warning, 

indicating that the file may not be immediately ready for extraction. This message is 

posted to ensure that if the file is large, the user cannot access the file until 

extraction is complete. Once complete, the user may download the file to their local 

machine. The download request is initiated by clicking the link, which causes the 

browser to fetch the file from the extraction server and request a file deposit 

location on the local host. Once the user has indicated a directory location for the 

file, transmission commences.

4.2.3 Data  In se r t io n

The Framework enables data to be inserted into the local user’s database by 

providing a monitor component which polls a nominated directory looking for 

incoming XML files. The user may either deposit the file into the directory oeing 

monitored for automatic insertion into the local database, or, if the file format 

selected is CSV, may nominate an alternative directory for the download. When the 

monitor sees a candidate file appear in the target directory, an insertion process is 

initiated. The insertion monitor component is configured into the Windows 

autostart process, and commences when the user’s machine is powered on. The user 

must know the name and location of the directory to drop the XML file into, but 

this is typically set up as a directory with a shortcut set on the user s desktop. The 

monitor continually polls a nominated file directory until a file is deposited into the 

directory with an XML file extension. When the insertion monitor process sees a 

valid file, it attempts to process the data using the local (host) Web Server to 

facilitate a stream connection to the XML file. Schema information within the XML 

file allows the process to build the in-memory Document Object Model for the 

associated table. The insertion monitor component of the Framework acquires the 

necessary configuration information from the user s local database. Information 

such as the physical polling directory, whether logging is set on or off, and if logging 

is set on, where the log data is to be deposited. Once the Insertion process has
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commenced, an entry is logged which provides information on the status of the 

insertion process, time/date, table name, number of records in the transmission etc. 

Most importantly, a TRANSACTION is commenced to allow Commit or Rollback 

on the entire insertion process. On completion, the status is set to COMPLETED, 

or, if  a failure occurs, the data is rolled back, and the log is updated to reflect the 

rollback status.

A  ' l  T n r .T T T -.r .  T \ - r r  I TOO T T
l+.d r u n  i^ iS ^ u aa iO T S i

This section reviews the research objectives and provides a context for discussion, 

by using the Framework architecture, relative to CBSE. The section also compares 

benefits accrued from using CBSE methods alongside the associated risks.

The stated research objectives are:

• Determine the effectiveness of using component based software engineering 

(CBSE) methods in the development of software applications, as well as post 

implementation maintenance.

• Highlight potential risks and identify areas of vulnerability when using CBSE 

methods.

• Investigate both the benefits as well the risks associated with integrating a new 

middleware technology such as XML across the range of COTS Web 

components.

• Review the Object Oriented principles used in the development to determine if 

this added value to CBSE method.

4.3.1 Component Based Development

A prerequisite to the adoption of CBSE is an understanding of what constitutes a 

component. Once the component is understood, a set of usage or deployment 

procedures can be developed to ensure that the benefits of that usage or 

deployment is maximised. Szyperski defines a software component as a functional 

module with contractually specified interfaces and explicit context dependencies, 

which can be deployed independently and is subject to composition by third parties.

The concept of contractually specified interfaces is mandatory for all Off The Shelf 

components. The interface facilitates the request and response communication 

between two components and must be explicitly and rigidly enforced. The contract
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is binding between the requestor and the service component, with input parameters, 

processing constraints and any resulting data completely specified within the 

contract [VOAS98]. The Framework makes use of both Common Off The Shelf 

Software (COTS) and custom code. Figure 4.1 presents an architectural view of the 

Framework, which uses COTS components such as the Web Server, Servlet Engine, 

and ODBC Drivers. These components are operating in consultation with custom 

code components to complete the data extraction, physical persistence of the data 

files, and the re insertion of data back into the remote data base.

Explicit context dependencies help to specify the runtime environment of the 

component, this can only be determined by carrying out a thorough domain analysis. 

Whether the component is a COTS component or derived from a re-use repository, 

the context or scope within which the component will be used must be completely 

analysed and understood by the developer prior to deployment.

Included in the domain analysis should be some attempt to determine the possible 

future requirements or functional enhancements. Software engineers cannot predict 

the future but users often have a wish list of functional objectives. If the designer 

can gain some understanding of these future directions, stakeholders can be made 

aware of any disparity between the component’s current, versus future functional 

dependencies. Presented as a business case, the stakeholders can then decide whether 

the short term benefits derived from use of the component is outweighed by future 

requirements which cannot be accommodated by the component in its current 

functional state. The issue here is that stakeholders are often sold on the cost benefits 

of using a COTS component, without being given an opportunity to amortise those 

costs over the entire life of the application.

The Framework components were derived from a mix of in-house and third party 

sources. Development made use of a functional prototype to maximise the 

information gathered for input to the design. This provided valuable data on the 

required interfaces and operational context dependencies needed to construct an 

integrated and interacting set of components. It can be suggested that the 

implementation was successful or at the very least effective, because the use of a 

prototype allowed the runtime context dependencies and interfaces to be more easily

determined.
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4.3.2 Domain Analysis

Capretz promotes an initial domain analysis be carried out when a component based 

development model is being used. Domain analysis yields a catalogue of potential 

reuse candidates, allows the developer to identify processing boundaries, 

interoperability constraints and areas where COTS components may be used. Our 

research confirms Capretz’s opinion that the use of a prototype or functional model 

is a priority if useful domain analysis is to be achieved. Design improvements to the 

Framework derived from the socket based prototype cannot be overstated, 

providing a clearly defined scope of operation and highlighting technical and 

operational issues surrounding the transportation of data from one host to another. 

When an existing application is in place, the outcome of Object Oriented Analysis 

generally and Domain Analysis specifically is greatly improved. The application 

presents both top down and bottom up views for analysis [ABU-GHAZALEH99]. 

This is relevant because processing operations, data interaction and relationship 

issues can be observed from a number of levels. The outcome of this duality is that 

candidates for reuse can be identified at both the granular level of code modules, 

but also at a much higher level of operation. This higher level scoping is particularly 

important when extending the component based model to include COTS 

components and identifying larger more functional custom components.

The successful implementation of the Framework, and ease of integration of 

specifically written code with third party components confirms that the adoption 

and integration of third party technology components into the design has made the 

Framework more robust, more abstract and therefore, more extensible, for example:

• Using an http request (via a Servlet) to launch the necessary Extractor wrappers 

to manage the stream (managed by a java.net.URLConnection), means the 

process does not have to be manually initiated.

• Querying the database and preparing resultsets (using a java.jdbc.DriverManager 

class), simplifies the design and strengthens the robustness of the application.

• The externally managed Schema model provides processing information for 

both extraction and insertion processes on how the data is formatted and

• Using XML means that the scope of the application is automatically broadened 

to include any third party process which accepts XML.
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4.3.3 Benefits of Component Based Software Engineering 

Implementation and Scalability

Intangible benefits are also accrued by using off the shelf components. Setting up 

and deploying additional field sites is now a very straightforward task for Pipeline 

support personnel. Standard PC system configuration will include most of the third 

party components, installation of the operating system (OS) will include the Web 

Server, SQL Server, and the Servlet engine. The browser-based system provides easy 

access to relevant data. I in normal use is coupled with a ‘drill down’ viewer, which 

allows the user to query and locate data using a visual location method, prior to 

downloading the data from the desired field location. Once the site is setup, 

scalability becomes an issue for the Web Server, and is abstracted from the 

application domain.

The benefit to the administrator is the ability to install and run the applications with 

minimal disruption to existing users. This is achieved because field site setup 

information is either provided using scripts, or manually entered via the SQL Server 

Enterprise Manager either locally or remotely.

4.3.4 Object Orient Software Engineering

Based on our experience with the Framework development, we stress that 

component based development methods must be embraced by all stakeholders and 

implemented in all phases of the development lifecycle. To this end there are a 

number of CBSE development methodologies which are be being promoted 

[GANESAN01]. All utilise an underlying Object Oriented methodology, specifically 

Jacobson’s Object Oriented Software Engineering (OOSE) QACOBSON97] method 

which intrinsically adds value to the process of analysis. Using the OOSE method, 

processing modules are categorised into three areas of responsibility, Interface, 

Control or Entity. These categories follow the three tiered architecture model in 

which Interface modules, or boundary objects provide an interface with a requesting 

object (Actor), such as facilitating the capture of information, or output of results. 

An entity object has a direct interface and mapping to the data layer. Control objects 

are then deemed to be ‘what ever is left over’, and are developed as necessary. 

Control objects can be simple wrappers to glue the other two layers together, or, can 

include complex processing instructions to validate, constrain, or transform data, to 

add value to the overall application process.
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We found that this broad brush categorisation is extremely useful in the domain 

analysis phase of the CBSE method, and allows the developer to clearly separate the 

processing requirements, as it highlights areas where components can be interfaced 

for service and co-operation. Seminal work by Mehta et. al. [MEHTAOO] is putting a 

special type of component forward, categorised as a Connector which addresses the 

issue of interfacing domain and generic non domain components using a 

connection specific object.

Our observations highlight the importance of an iterative approach to the analysis 

and design phases in any software engineering application, especially when 

component based methods are being employed. As Capretz points out, when the 

architecture is ‘component-centric’, designers need to ask “where are components 

that I can directly, or indirectly use or reuse, to solve this problem” [CAPRETZ01]. 

As components or potential components are identified, re-evaluation and 

subsequent analysis iterations are required, ie. domain analysis. Our experience 

confirms the recommendations made by Capretz, who maintains that a Re-Use 

Library should be actively referenced throughout the entire analysis, design and 

implementation phases of the project. The advantage is the conceptual continuity 

across all phases of the software development lifecycle. Continual re-evaluation does 

have the effect of increasing the length of the analysis and design phases, as stated 

previously. This issue needs to be addressed with the stakeholders prior to 

commencement of the project.

4.3.5 Reuse

The issue of re-use is now fundamental to all Object Oriented methodologies. 

Organisations like Microsoft (COM) and PowerSoft (PowerBuilder) have been 

promoting the use of foundation classes and a common architecture for more than 

a decade. When this methodology is adopted, re-use is promoted via inheritance, 

with specific process classes being inherited and interfaced from more generic 

foundation classes. More recently, a number of component based development 

methods are also being promoted which focus on the iterative review process to 

identify components for re-use much earlier in the development cycle. KobrA 

[ATKINSONOl] and Catalysis [DSOUSA98] are both methods which use a UML 

notation method to identify components, but include a component identification 

(domain analysis) from the beginning of the analysis cycle. Both lean heavily to the 

Unified model, but mandate the identification of components much earlier, as
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Atkinson says “the Rational Unified Process explicidy delegates components to the 

final implementation stages of development”. We can confirm the benefits to the 

implemented Framework when re-nse is factored into the total amount of code 

written for the Framework. The benefits are derived from use of the prototype, 

which allowed the insertion requirement to be modeled at a much more detailed 

level. Because the extraction process code had already been written for the 

prototype, it was much easier to design the objects necessary for the Framework 

extraction and insertion process. The implemented Framework uses the same core 

objects for both extraction and insertion. These objects are simply assembled 

differentiy when bundled for insertion or extraction.

Henderson-Sellers’ fountain lifecycle model is another object-oriented approach to 

software development, using a highly iterative and re-use focused approach. The 

Fountain Software Development Lifecycle Model promotes reuse within the domain 

analysis/design phases. The model gets it's name from the analogy of a fountain, in 

which water rises up the middle and falls back, either to the re use ‘pool’ below or is 

re-entrained at an intermediate level. In addition, the model fully promotes the 

concept that analysis, through design to implementation is overlain with iterative 

cycles across two or more lifecycle phases.

Development of an object-oriented system is much more likely to lead us to focus 

on subsystems, which are made up of collections of classes which work closely
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together. Adherence to the OOSE method facilitates the early identification of 

candidate classes or components.

4.3.6 Risk Management

We acknowledge there are significant risks associated with CBSE practices, however, 

there are a number of ways to minimise this risk, and at least manage the negative 

potential of components, should it be necessary. We review the risks associated with 

CBSE development methods which are listed below:

• The blackbox nature of the software when using COTS components

• Lack of software quality information

• Hidden Costs associated with post implementation maintenance

• Lack of a suitable 'bottom up' design information

• Lack of accompanying documentation/information regarding the software

• Potential for a longer and more costly development lifecycle

We acknowledge that the Framework architecture only makes use of standard 

COTS components, such as the Web Server, Servlet Engine and ODBC drivers. The 

Frameworks’ use of in-house developed components being integrated with COTS 

components can be used as a basis for comparison against current CBSE literature.

With regard to COTS components being integrated into the application when they 

are derived from code libraries or have been sourced from specialised third party 

software houses:

• There may be problems associated with the functional use of black box 

software, ie. No source, or more importandy, no design criteris is available.

• The documentation may not fully, or explicidy explain all usage issues, or 

provide enough detail regarding the handling of conditions or events associated 

with the component.

• Post implementation modifications being made to custom software which is 

being integrated with other components may also be unsuccessful because of a 

lack of extensibility built into the components.

Brereton makes the point that when special purpose code is developed to facilitate 

integration or at least achieve interoperability with COTS components, an increase
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in subsequent maintenance costs is likely because developers may have to modify or 

readapt wrappers or re-glue components as they evolve [BRERETONOO].

However, when the components being integrated into the application are more 

autonomous and have been developed with a clearly defined application program 

interface (API), there is much less likelihood of such issues as incompatibility, 

unreliability, lack of scalability or extensibility.

The completed Framework allows the issue of hidden design criteria and functional 

unknowns, (blackbox) associated with nature of COTS software to be addressed. 

For example, ownership of the Servlet engine has changed a number of times, and 

it may be argued that the next vendor may not provide backward compatibility. 

However, there are a number of Servlet engines available on the market, all have 

been developed to accept input from a standard HTML page. As long as the 

interface between the components is well documented, with clearly defined usage 

rules, the worst that can happen is that the brand of Servlet engine may change. At 

the large and complex end of the COTS spectrum, the issue of hidden functionality 

of using black box components is being addressed from both top down, and bottom 

up. Large service and software development organisations such as IBM, Microsoft, 

SAP etc. provide excellent online documentation and support across the entire 

software development lifecycle. At the other end of the COTS cost spectrum, 

freeware technology such as Tomcat etc. also provide excellent online 

documentation, There are also specific component ‘markets’ which are well 

specified, with a finite number of vendors, for example, any design which promoted 

the in-house development of an application specific Web Server over the integration 

of a third party off the shelf Web Server, supporting numerous middleware 

gateways would likely be rejected.
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Figure 4.5 Domain Analysis

When integrating off the shelf components into an application, analysis models may 

need to include a weighting factor to signify the importance of access to the 

internals of third party components based on granularity, functionality and 

complexity (refer to figure 4.5). The diagram graphically indicates the position of 

COTS components relative to other components (service objects) and ‘hand crafted’ 

classes. While the COTS component offers a complete (complex) solution to a 

specific problem, there is a trade off. The designer does not have access to the 

granular detailed information needed to assess the component from a bottom up 

perspective for later re-use or maintenance. If the risk of not being able to 

determine the internal design criteria outweighs the advantage of using the product, 

based on the weighting, then alternative sources for the component may need to be 

found.

An example of weighting and determining design priorities based on that weighting 

is that there is no application level security in place within the Framework, given that 

there is no direct (external) access to the Source or Target Database. When a 

Domain Analysis phase has been incorporated into the development lifecycle model, 

the designer is able to use the analysis results to determine that custom built 

authentication and access are not a requirement. The Framework extraction module 

has write access to the directory containing the extracted files, but user access is read 

only to facilitate the data transport to the user’s desktop, or to another database 

under program control. As long as analysis and requirements gathering has clearly 

identified the nature and scope of the application security needs, the correct 

weighting can be applied. In the context of the Framework, the main security issue
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relates to the modification of incoming XML data (for malicious purposes) by a 

third party “man-in-the-middle” [GREENSTEIN01], who modifies the contents of 

the XML file. However, the designer has enough information to determine the 

priority and scope of the security requirements and can then determine whether off 

the shelf components, re-use repository or custom code is necessary to fulfill the 

requirement.

The potential for Hidden Costs relating to post implementation modifications 

[WANG01] cannot really be placed in context when using the Framework as a basis 

for argument. The software system designer or architect must fully investigate the 

source pool of components, and be diligent in researching the configuration, 

deployment, tuning, scalability etc. issues which may result in future changes. Even 

in a design in which current processing requirements are met, failure to fully 

investigate and comprehend context dependencies can mean that maintenance may 

be more complicated and difficult because complete access to the source code of 

the component is not always possible. The development cycle for the Framework 

used a series (3) of reviews, which took place after each build iteration. We confirm 

there is a significant case for the use of domain analysis techniques, and iterative 

reviews of objects and components with a view to re-use throughout all phases of 

the development project. Especially when the project is large and/or complex; as 

more components are identified along the design, re-evaluation of the complete set 

of existing components becomes necessary. Code re-use is one of the main 

principles of CBSE methods, and continuous review of the problem domain 

promotes the identification of re-use candidates, which has enormous benefit 

potential. Costs can be reduced both in the current development project, as well as 

later maintenance costs when change is required, or components can be used in 

other development projects. With regard to COTS components, lack of 

documentation and information available to potential users of the software 

components can be problematic. This issue is similar to the software components 

being assembled and deployed as a black-box. If the vendor does not provide the 

necessary quality of service, and this includes documentation, then other Vendors in 

the market must be approached. Another alternative may be developing the 

component in house. As long as the stakeholders are involved early enough, risk is 

minimised, or at least managed. The time spent in reviewing, or investigating 

alternative Vendor solutions, may well be a longer development period, however, 

these days, all systems must be developed with change being an accepted and
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acknowledged part of future requirements. Development projects have less scope to 

project or quantify potential risk, when using COTS components (and this is a risk 

in itself).

COTS components are primarily factored into a cost/benefit analysis as an 

immediate, or short term benefit. This is because the cost of developing an in-house 

solution is much more expensive than acquiring an off the shelf solution, the short 

term benefit is a cost saving. Longer term benefits can only be generalised, ie. 

perceived benefits are based on organisational strategies which project future 

requirements, and how the COTS components would operate within those future 

requirements. Typically there is no source code available with a COTS component, 

so re-use of code at a later time is not generally an option, the major risk is that the 

organisational requirements will change, placing a requirement to meet that change 

on the software application which has adopted or integrated COTS components 

into the solution. In today’s technology environment, software has to be extremely 

adaptive, and loosely coupled, there is considerable risk that COTS functionality 

may not be extended to cover the agile requirements of the 21st century 

organisation. One analogy is calling the purchase of a car, a risk because the 

purchaser will have to buy new tyres as part of future maintenance. This may be 

considered a hidden cost, so the purchaser must weigh up the value of buying better 

quality tyres now, or replacing a cheaper brand sooner. The Framework only makes 

use of the Web Server, and the Servlet engine as COTS components, these are not 

components which demonstrate any short term propensity to be overcome by 

functional change which cannot be accommodated by the current operational scope.

With regard to in-house developed components, such as the DOM, query handler 

physical persistance components etc. code re-use is probable, extending the 

functionality of existing code is also probable. This greatly reduces the cost of 

future maintenance, and lessens the risk of introducing errors when integrating 

completely new components into the production environment.

4.3.7 XML Usage

Use of XML as a transport container, coupled with an XML Schema has benefited 

the Framework application in many ways. For example, the Schema allows for an 

extremely ‘thin’ tag wrapping, which reduces the application footprint overhead 

associated with the StoneBroom utility [STONEBROOMQ2], and provides a
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common mapping for both the extraction and insertion processes. The XML 

document is quite human readable in its natural form, making the format useful for 

field site users who can easily recognise the weld specifics by viewing the file using 

Internet Explorer. This ease of access for the human user also demonstrates the 

intangible benefits associated with use of an exchange medium like XML. Microsoft 

is fully committed to the standard and has included an XML Parser within Internet 

Explorer (Version 6.0+), and this commitment is further evidence of the willingness 

of third party software and technology vendors to facilitate component based 

software engineering. Within the Pipeline system domain, field sites produce 

considerable amounts of data relating to the pipe weld process, site logistics and 

geographical location. Once this data is captured, it needs to be analysed, either 

locally or at a central repository, collated and then moved to a long term repository. 

The Schema allows the data to be efficiendy packaged (as XML) and transported 

over the Internet via Browser download.

Bourret identifies a number of potentially negative issues associated with XML 

which are well documented. In the case of the Framework, the only genuinely 

negative issue is the amount of data being extracted by the Framework means the 

resultant XML file is also large in terms of data content. As outlined earlier, there 

are a number of issues which make the Schema method a good fit for the project 

under discussion. Most importantly is the volume of data being generated from a 

weld, which causes an overhead when the data is extracted from the database, 

shipped over the Web, then unpacked at the target end. Each of these steps takes 

time and increases the total wait time for an interactive user. It is important to note 

that use of an XML Schema provides a lot of scope for the developer to model the 

Schema so as to maximise the efficiency of the syntax to best suit the application 

under development. Appendix D provides more information on specific Schemas 

put forward for use by interested industry groups. This concept can be extended to 

allow an application specific Schema (rather than industry specific), and this is the 

case with the Framework Schema. There is no need to have the Schema registered if 

it is being used within a single domain, ie. as long as both sender and receiver have 

access to the Schema DOM. The Framework Schema has the following design 

criteria:

• There is no necessity to provide for human access to the XML, although the 

Schema is ‘well formed’.
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• The Schema must provide information to allow the extracted data to be 

persisted in Comma Separated Variable format (CSV).

• Because of the data volume, the Schema must facilitate the most efficient 

form of document storage.

• The Pipeline Project is supported by the Framework, which means that 

Schemas’ will be developed for additional tables being transported by the 

Framework. In order to facilitate this process, the Schema model must 

provide a simple format which can be followed by non technical users who 

wish to use the Framework facility. The entire basis for the Framework is 

extensibility for the non technical user, therefore the Schema must be simple 

enough for a non technical (computer wise) user to generate, and deploy.

• The Schema can be used to build the XML document as well as read and 

‘unpack’ the XML document.

4.3.8 Operational Issues

Operationally, the Framework has been rigorously tested and successfully deals with 

extremely large amounts of data. Use of the intrinsic download feature of the Web 

browser enables data to be transported from one host to another in an efficient and 

secure manner. Extensibility has also been demonstrated with other components of 

the Framework making use of the Framework to transport data within the system 

boundary.

Considerable load and volume testing of the Framework has been completed on the 

assumption that the typical user will be transporting high volumes of data over the 

Internet. In addition, one of the main objectives of testing is to determine the worst 

possible extraction time based on the ambient load, which will provide a guide to 

the most appropriate minimum configuration for the field data Server. In order to 

determine the configuration details, a number of differendy rated Servers have had 

extraction and insertion requests placed on them, alongside a range of concurrent 

requests.

There are a number of interesting issues which relate to the overall efficiency of the 

extraction and insertion processes. Insertion of data into a Framework associated 

data base is four (4) times quicker than the extraction process, yet both processing
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modules contain basically the same code. Analysis and testing of the modules 

suggests that the main issue which contributes to this disparity is the persistence or 

physical writing of the extracted output to a flat ASCII file format. There is also 

some overhead associated with ODBC, ie. general efficiency is affected because of 

the conversion of the all data types to string data for transport.

In extraction mode, the Framework uses an abstract Java base class 

‘RandomAccessFile’ to perform the physical output of the data into XML or CSV 

format. Insertion of data back into the database does not use this class, and instead 

reads the XML file using a ‘BufferedReader’ class, so the data is passed in as a 

stream, and is clearly more efficient than the IO mapping carried out by the 

RandomAccessFile object. The CBSE design method acknowledges change and 

accommodates for change by allowing new components or improved components 

to be integrated into the application. This is clearly an issue for design review, as the 

physical I/O of the XML file should not present an efficiency botdeneck. Focusing 

on the extraction process in isolation; clearly, the processing speed of the machine 

carrying out the extraction also becomes an issue. On a Pentiumlll 500 MHZ 

machine, the system processes data in the order of 1.1 megabytes of data per 

minute, which equates to approximately 3500 rows of welding data. Running the 

same extraction process on a PentiumlV 900MHZ, processing speed is improved by 

roughly 3 times. While the data extraction speeds must be considered slow on a 

Pentium III machine, the typical field machines will be Gigahertz rated, which will 

provide extraction speeds of the order of 3.5 megabytes (11,000 rows) per minute. 

The Framework will easily accommodate the integration of a replacement 

persistence module, as the persistStream object can be replaced by a more specific 

component to maximise the speed of physical 1/O.

Kotonya cites the lack of software quality information and the longer term issues of 

product direction and development priorities. Moreover, the importance of 

distributed licensing may not be given the necessary priority when off the shelf 

components are integrated into an application. Licensing and related documentation 

of the third party components making up the Framework, or any application is an 

issue. The implications of ignoring or not giving the appropriate priority to 

investigation of the availability or lack of availability of documentation, licensing 

restrictions, support, education or training cannot be over stated. Developers are
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used to taking responsibility for quality standards, specifications and operational 

documentation associated with components they develop themselves. The issue 

does point to the professionalism and experience level of the project stakeholders, 

but may be overlooked, say when the project team is incorporating COTS 

components for the first time. These issues confirm the importance of using a 

CBSE methodology when initiating a project which makes use of components and 

in particular off the shelf components.

4.4 Review of Design Issues

The Framework provides a number of extremely useful benefits, not just for the 

Pipeline project, but any application which must move data from one host to 

another in an efficient manner:

• The thin application footprint on both source and destination machine mean 

that memory usage and processing overheads have been kept to a minimum. 

This is possible because of the use of third party, component based 

technology running on each host machine, in effect simply exercising 

applications which are already resident in memory.

• Java’s strengths in component development have provided enormous code 

saving benefits. Extensibility, facilitated by abstraction and the use of 

interfaces allows the Servlet model to pass data to custom written multi

threaded code modules, which again maximises the machine efficiency. The 

benefit to the user is that multiple extraction requests can be processed 

concurrently. The Java Servlet model manages the threads, which means the 

only programming requirement is to synchronke the appropriate code 

modules, but no thread specific code needs to be developed.

• The Framework presents as a mix of distributed components which provide 

a means of selecting, then extracting data for local use. The application 

demonstrates the concept of Web Services [EVJEN02], in which users may 

access remote services using loosely coupled distributed modules to reduce 

the duplication of functionality at the local site.

A separate, but nonetheless interesting design issue did not arise until the system was 

tested in a live environment Problems associated with Internet latency caused the
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process to be split into two separate components. Initially, the design method used 

to satisfy the insertion of the data into the user’s local database used the extraction 

thread to contact a Servlet running on the client host. The XML file was passed to 

the client host as a ‘background’ insertion process which eliminated the necessity of 

the user manually downloading the XML file. This method worked well under 

laboratory conditions, where a Subnet serviced the machines in the System. 

However, when tested in a genuine Internet environment containing multiple

switches, Proxy Servers and bandwidth latency, the Servlet model was not ablCLVJJL\~ IXJ

deal with that latency in a controlled manner. In many cases, the two hosts involved 

in the URLConnection process would time out, and the connection would be reset 

by the peer service. Also, if the file being transmitted was of a size greater than .5 

of a megabyte, there is a considerable time delay between initiating the request, and 

completing it.

In summary, we found that risks associated with CBSE can be successfully managed 

as long as the analysis and design methodologies accommodate and accept the 

principles of Component Based Software Engineering. Acceptance of these 

principles mean that a rigorous Domain Analysis is carried out in order to:

• Identify potential areas where Off the Shelf Components (COTS) may be used 

within the application domain.

• Identify potential areas where generic service objects can be acquired from third 

parties, or custom built ,

• Identify potential areas where custom objects can be made more extensible by 

increasing or making changes to the existing design

Iterative review of the component pool must take place on a regular basis 

throughout the entire development cycle. Performing these tasks accurately and with 

enough granularity means that the amount of time required to carry out the analysis 

and design will be extended and must be commensurate with the complexity of the 

application, and the stakeholders desire to make use of CBSE methods.

Post implementation reviews of the Framework have demonstrated that change and 

enhancement can be accommodated with minimal disruption to existing code if a 

layered approach is adopted in the design.
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We also promote the use of functional prototypes as a mandatory part of domain 

analysis, when the scope of the application under development is large, complex, or 

the stakeholders wish to investigate the use of new or untried technology.

Another issue which re-inforced benefits of CBSE and provided further 

confirmation that in order for Component Based Development (CBD) methods to 

deliver successful applications, Object Oriented analysis and design development 

principles must underpin the software engineering model adopted for the project, at 

all levels.

4.5 Conclusions

We conclude the thesis by reviewing the research objectives, and elaborate on the 

outcome of those objectives.

The Framework design, construction and implementation has been reviewed and 

accepted by the WTIA. Using CBSE methods in the development of the 

Framework to support data transport over the Internet has produced a robust and 

extensible data management application which provides a rich set of presentation 

choices for the end user. It is clear that the adoption of CBSE methods must be 

embraced by all stakeholders and implemented in all phases of the development 

lifecycle in order to be successful. The developer must fully recognise the potential 

for risk, and incorporate strategies into the project to minimise the risk and 

maximise the benefits of the use of components.

One of the primary research objectives was to review the Object Oriented principles 

used in the development to determine if this added value to CBSE method in terms 

of assembly and integration of the components. We found that constructing the 

Framework as a series of integrated components which communicate via clearly 

defined interfaces allowed those components to be uncoupled, and run as separate 

processes. Bourret makes the point that adopting CBSE design principles allows 

components to be split into one or more interface layers which reduces the impact 

of change.

Another objective of the research was to gauge the impact of CBSE on post 

implementation maintenance to determine whether the adoption of CBSE methods 

make change easier and less costly, or otherwise. This relates directly to the issues 

cited by Wang regarding the potential hidden cost of post implementation changes
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and maintenance. The impact of post implementation change can be demonstrated 

by how easily the Framework can be remodeled to accommodate the problem of the 

Servlet model being unable to keep the user informed of the progress of the 

transmission. We observe a minimal cost, when the application modules have been 

designed as components, communicating via clearly defined interfaces. The solution 

to the problem was to have the user manually download the file from the Source 

Server. Since the XML or CSV file already exists on the source host, a link to the file 

is jji.cSciiLcu. wlLLiin ihe target user s browser, when the user selects the link, a 

download request is presented. Instead of the insertion component receiving the file 

from the remote source host, the user has to manually download the file, so the 

insertion component receives the file from the localhost. It is interesting to note that 

the target host sees the referenced Schema (XSD) file located on the Source Host, 

and processes this file using the URLConnection Interface, to great effect. This is 

because of the relatively minute si2e of the Schema XSD, associated connection 

problems only occur when the XML file is larger than half a megabyte.

In terms of potential risks, there are far more positive benefits for the developer who 

chooses to incorporate third party components and technologies into the application 

design, and takes the time to continually review those components which have been 

already identified across the entire range of granularity, functionality and complexity. 

The use of Test of breed’ components is now well recognised in the commercial and 

business environments, and a study of the domain should always be incorporated 

into the early design phase to ensure that a component wheel need not be re

invented.

With regard to the risks associated with integrating a new middleware technology 

such as XML across the range of COTS Web components, the COTS components 

selected for the Framework were too specific to provide enough scope to make a 

determination. The Web Server component has been developed to accept and 

accommodate XML, so a risk comparison was not demonstrable. We observe that 

XML is a language which is being widely accepted, and the speed with which 

associated technologies such as Web Services are being developed confirms that little 

risk is being identified.

We were also unable to explicitly determine if the adoption of Object Oriented 

development methods benefited the use of CBSE. OO promotes the re-use of code, 

which is a tenant of CBSE. What is clear from the Framework development is that
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explicitly identified Interfaces facilitate the loose coupling of component and object 

interaction. We observe that when change is required at the component level, clearly 

defined interface boundaries, and a layered approach to design make the integration 

of components, whether in-house or third party, a much less complex task. More 

importantly, less modification to existing code is required to integrate new 

components, or modify the logic of existing components, when an OO development 

method is used.

4.6 Future Work

One of the more subtle objectives of the research was to maximise the use of off 

the shelf components in the processing functionality of the Framework. Microsoft 

have now deployed SQL Server 2000, which has built in support for XML, ie. SQL 

requests can be serviced with the output produced in XML format. There is also the 

issue of improving the efficiency of there persistence module, responsible for 

physical outputting of the XML data.

Reviewing the design, and carrying out a post implementation domain analysis to 

determine the functional ‘fit’ of replacement components, would provide more 

useful information relating to component based software engineering practices. The 

closer we move to the use of 100% off the shelf solutions, the more generic the 

application under review becomes, and ultimately this is the only tangible issue of 

using component based software engineering methodologies.

Connectivity between components has traditionally been dealt with using wrappers 

to facilitate data interchange. Current work places the component interactions and 

points of data interchange between connectors on a par with component 

functionality.

New ‘reflective’ middleware technology is also putting pressure on component 

integrators to provide methods of passing configuration, event management, data 

stream, broker information etc. The concept of a connector component, whose role 

is to manage the interface in a pro-active manner has a very high research focus at 

present. The Framework provides a useable test bed and research base for future 

investigation and comparison of the design criteria and resulting Interfaces used 

between components in the Framework, and the properties of interface specific 

‘Connectors’ [MEHTA00].
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APPENDIX A

A.1 Source Code

*̂******** ************************************************************************************************ ******************
* '
* class ANSIFileStream - Class provides a random access file stream to an ASCII/ANSI code set file.
* - Caters for conversion between UNICODE characters and ASCII/ANSI characters.
* - Extends the functionality of class java.io.RandomAccessFile
* - Provides Filtering for 'usable' characters, which include :
* Alphabetic characters, numeric characters,
* Punctuation marks, operator characters and special symbols
* ANSI Codes 120 to D70 - which may make up words
*

*

* - provides functionality to read/write and search for words from the given file
* A word is defined to be composed of the above listed characters.
* Any other character will be ignored and treated as a word separator
* - this includes all whitespace characters
*

*

* Written by Adrian Collins
*

* RELEASE - October 2000
★

*/
import java.io.*;

public class ANSIFileStream extends RandomAccessFile
{

static final byte kFIRST_VALID_CHAR = (byte) ’!'; 
static final byte kl_AST_VALID_CHAR = (byte)'}'; 

protected String m_sFileName = null; 
protected String m_sReName = null;

private File m_File = null;

public void Delete() throws lOException
{

m_File.delete();
}

j i t *

* Constructor - Creates a random access stream to a file.
* The Stream is a read/write stream to the associated file,
* Does not truncate the file.
*

* Arguements - fname - filename of the desired file
*

* Throws - lOException
*

* Returns - n/a
7

public ANSIFileStream(String fname) throws lOException
{
super(fname,,'rwH);

m_File = new File(fname); 
m sFileName = fname;

}
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/**
★
*

Method - Tests whether the opened file is a vlid open file

★
★

Arguements - none

k

k

Throws - lOException

k Returns - true if file is valid, false otherwise
7

public boolean isValidO throws lOException
{

boolean valid = getFD().valid(); 
return valid;

}
j k k

k method passes in the actual name the file will be named to when the user
k

*
will be given control of the file

k

k

Arguments - fname - filename of desired file

k

k

Throws - lOException

k Returns - n/a
7

public void passlnFileName(String as_rename)
{
m_sReName = as_rename;
}

j k k

* Method - On completion of the data load, rename the file to allow
* the User to select it for download
*
* Arguments - none
*

* Throws - none
•k .

* ' Returns - bool
7

protected boolean renameFile{)
{

File nfile = new File(m_sReName);

if ((m_File.exists()) && (m_File.renameTo(nfile)))
{

return true;
}

else
{

return false;
}

}
/**

k

k
Method - Appends a given line of text to end of file

k

k

Arguements - line - The line of text to be appended

k

k

Throws - lOException

k Returns - void
7

public void AppendLine(String line) throws lOException 

{
seek(length());
writeBytes(line);
writeByteOn');

}
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Method - Writes a line of text

Arguements - line - The line of text to be written

Throws - lOException

Returns - void

public void WriteLine(String line) throws lOException
{

writeBytes(line);
writeByteOn');

}

Method - Writes a word without endline charachter

Arguements - word - The string of text to be written

Throws - lOException

Returns - void

public void WriteWord(String word) throws lOException
{

writeBytes(word);
}

Method - Reads Line of text from the file

Arguements - none

Throws - lOException

Returns - line - the actual read line from file, null if at EOF

public String ReadLineO throws lOException
{

String line = null;

}

try
{

line = readLine();
}
catch(EOFException eof)
{

return line;
}
return line;

Method - Searches the file for a specific word, and repositions the file
pointer at the end of the found word, if the word was not found 
the file pointer is placed at EOF.
The word must not contain any whitespace characters

Arguements - word - the word to search for

Throws - lOException

Returns - true if the requested string was found, otherwise false

public boolean SearchWord(String word) throws lOException

String nextWord = null; 
seek(O);

try
{

for(;;)

nextWord = ReadWord(); 
if(nextWord .equals(word))
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Jicie

★

*

*

7

/**
★
★
*
it

7

{
return true;

}
if(getFilePointer()==length()-1) 

return false;

}
}
catch(EOFException eof)
{

}
return false;

}

Method - Reads and returns the nth word from the file,
count starts from the beggining of file.

Arguments - n - the nth word

Throws - lOException

Returns - nextWord - the actual nth word, null if eof file was reached

public String ReadWord(int n) throws lOException
{

String nextWord = null;

try
{

seek(O);
forfint i=0;i<n;i++)

nextWord = ReadWord();
}
return nextWord;

}
catch(EOFException eof)
{

return null;
}

}

Method Reads the next whitespace separated word from file
A word is defined to consist of ANSI characters 120 to D70 
any other character will be treated as word separator.

Arguments

Throws

Returns

- none

- lOException

- word - the next word, null if eof file was reached

public String ReadWordQ throws lOException
{

String word = null; 
byte ch;
long len = length(); 
long pos = getFilePointerQ;

try

// skipping all non-word characters 
pos = SkipNonWord();

// checking to see if at EOF 
if(pos ==len)
{ ,

return word;
}

// re-positioning cursor 
seek(pos); 
ch = readByteO; 
pos++;
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if(pos ==len)
{

return word;
}

// checking to see if the charachter is valid
// Word Charachter - any alpha-numetic charachter including
// Symbols, and punctuation marks

if(ch>=kFIRST_VALI D_CHAR && ch<=kLAST_VALID_CHAR)
{

word = String.valueOf((char)ch);
}
else

pos = len;

while(pos != len)
{

ch = readByte(); 
pos++;

// preceeding characters can be numbers or underscores
if(ch>=kFIRST_VALID_CHAR && ch<=kl_AST_VALID_CHAR)
{

word += String.valueOf((char)ch);
}
else

break;
}

}
catch(EOFException eof)
{

return word;
}
return word;

}

* Method - Skips n lines of input from file
*
* Arguements - n - the number of lines to be skipped
*
* Throws - lOException
*
* Returns - void
*/

public void SkipLines(int n) throws lOException
{

try

for(int i=0;i<n;i++)
{

ReadLine();
}

catch(EOFException eof)
0

}
public void CloseO throws lOException
{

close();
}

r*
*

★
Method - Skips all non-word characters until the first

Valid word character is encountered
★
* Arguements - none

★ Throws - lOException
*
*
*/

Returns - pos - The new offset within the file
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private long SkipNonWord() throws lOException
{

byte ch;
long len = length(); 
long pos = getFilePointer();

try
{

for(; pos<=len ;pos++)
{

ch = readByte();

// breaking as soon as we encounter the 
// first non - word character

if(ch>=kFlRST_VALID_CHAR && ch<=kLAST_VALID_CHAR)
{

return pos;
}

}

}
catch(EOFException eof)
{

return pos;
}
return pos;

}
public static String GetUniqueSuffix{)
{

String strdate = null;

java.util.Calendar rn = java.util.Calendar.getlnstance(); 
java.util.TimeZone tz = java.util.TimeZone.getTimeZone("GMT"); 
rn.setTimeZone(tz);
java.util.Date currentDate = m.getTime(); 
long t = currentDate.getTime();
//Uncomment this line if default locale set to GMT 
//long t = currentDate.getTime()+(9*60*60*1000);

java.sql.Date sqldt = new java.sql.Date(t); 
java.sql.Time sqltm = new java.sql.Time(t);

String sqld = sqldt.toString();
java.util.StringTok©nizer st = new java.util.StringTokenizer(sqId, - ) ,
String y = st.nextToken();
String m = st.nextToken();

. String d = st.nextToken();

String sqlt = sqltm.toStringO; .
ja v a .util.StringTokenizer st2 = new java.util.StringTokemzer(sqlt, . ),
String hr = st2.nextToken();

String mn = st2.nextToken();
String sc = st2.nextToken();

strdate = "OLD_" + d + m + hr + mn + sc;

return strdate;
}

>
//EOF ANSIFileStream
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^***************************************************************************************************************************

* class Datalnsertor - Class used as a type-safe container for the data
* contained in a single object. When used on the client side the
* series of get methods are used to unpackage the data and
* when sed on the server side the series of put methods are used
* to package the data for transport onto the stream
*

* Written by Adrian Collins*
* RELEASE - Sept 25th 2001
*

7
import java.util.*; 
import java.io.*; 
import ExceptionLog; 
import XMLManager; 
import DBConnection; 
import RunParms;

public class Datalnsertor
{

private ExceptionLog m_uLog = null; 
private String m_FileName, m_URL = null; 
private XMLManager m_schema = null; 
private RunParms m_runParms; 
private DBConnection m_DBConnection = null; 
private String [] m_values = null; 
private String m_firstPartOfQuery = null; 
private String mJastPartOfQuery = null; 
private int gi_cols; 
private int gi_rowCount;
private final static String kTHIS = "Datalnsertor";

Constructor - Constructs an empty row

* Throws - IHegalArguementException if String does not represent
* valid attribute
*

* Returns - n/a
7 .
public Datalnsertor(ExceptionLog a_uLog, RunParms a_runParms) throws IHegalArgumentException

{
m_uLog = a_uLog; 
m_runParms = a_runParms; 
gi_cols = 0; 
gi_rowCount = 0; 
buildDBConnection(); 
try 
{

// this class provides the uri of the schema to the XML Manager class 
m_uLog.LogMessage(kTHIS, "Posting the schema to XMLManager"); 
m_schema = new XMLManager (m_uLog, m_runParms); 
m_DBConnection.setOffAutoCommit();

}
catch (Exception e)

m_uLog.LogException(kTHIS,"Datalnsertor issues..."); 
return;

}
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j * *

* initialise for a new column to be prepared and sent

* Returns - n/a
7

public void lnitialise()
{

try
{

// open the xml file and get hold of the xsd url 
// we need this to build the schema tree 
loglnsertCommence(m_schema.getlogCommence()); 
m_schema.buildXMLReader(); 
m_schema.getSchema();

}
catch (Exception e)
{

m_uLog.LogException(e.toString(),"Data Base Meta Data could not be located..."); 
System.exit(1);

}

}
r  .
* clean up

* Returns - n/a
7

public void CleanupQ
{

try
{

m_schema.Cleanup();
m_DBConnection.setCommit();
m_DBConnection.Close();

}
catch (Exception e)
{

m_uLog.LogException(e.toString(),"Data Base connection closed..."); 
return;

}

}
I * *

* Build a database cpnnection

* Returns - n/a l
7

public void buildDBConnectionQ
{

String s_dsnName = null;
String s_userlD = null;
String s_passWord = null; 
try

s_dsnName = m_runParms.getParameterValue("dsn"); 
s_userlD = m_runParms.getParameterValue("userid"); 
s_passWord = m_runParms.getParameterValue("password");

m_DBConnection = new DBConnection(s_dsnName, s_userlD, s_passWord);

}
catch (Exception e)

{ m.uLog.LogExceptionie.toStringO/'Data Base connection could not be successfully completed..."); 
System.exit(l);

}
}
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jkk

* output the data in nominated format

★
* Returns - n/a
*/
public void streamlnputO

{
BufferedReader m jn  = null; 
m jn  = m_schema.getXMLStream();
// data in the schema (xsd) tells us 
// how many columns in a row of this table 
gi_cols = m_schema.getColumnCount();

if (gi_cols == 0)
{

m_uLog.LogException(kTHIS," nothing in the xml file"); 
System.exit(l);

}
m_values = new String [gi_cols];
String IsJJne = null; 
preplnsert(); 

try 
{

while (true)
{

IsJJne = mJn.readLine(); 
if (getColumnValues(lsJJne))
{

// **** this is where we increment the row count ****//
}
else
{

m_uLog.LogMessage(kTHIS, "Completed reading XML file"); 
return;

}
}

}
catch (Exception e)

{
m_uLog.LogException(e.toString()," could not read xml file");

}
}

j * *

*  output the data in nominated format
*

*  Returns - n/a
*/

public void preplnsert()

String IsJableName = m_schema.getSchemaName();
String Q ls_columnNames = m_schema.getColumnNames(); 

mJirstPartOfQuery = "INSERT INTO" + IsJableName +"(";

// adding the variable names to the insert statement 
for(int i=0;i<gi_cols;i++)

* mJirstPartOfQuery +=ls_columnNames[i]; 

if (• < (gi_cols -1  )){m_firstPartOfQuery

> .// queryl +=") VALUES("'+weldid+ , ;
mJirstPartOfQuery +=") VALUESf;

}!**
*  output the data in nominated format*
*
*

* Returns - n/a
*/

public boolean getColumnValues(String a jin e )
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{
String Q ls_columnCodes = m_schema.getColumnCodes(); 

int li_startPointer = 0; 
int li_endPointer = 0;

// loop thorugh each row and strip out the xml codes, leaving 
// an array of column values in ls_values

// return if not a data row, ie. <row>... </row> 
li_startPointer = a_line.indexOf("<row>"); 
li_endPointer = aJine.indexOf("</row>"); 
if ((li_startPointer == 0) && (li_endPointer > 0))
{

for (int i = 0; i<gi_cols;i++)
{

ii_startPointer = aJine.indexOf("<" + !s_columnCodes[i]+ 
li_startPointer = li_startPointer + ls_columnCodes[i].length() + 2;

li_endPointer = a_line.indexOf("<r + ls_columnCodes[i] +

try
{

m_values[i] = a_line.substring(li_startPointer, li_endPointer);
}
catch(Exception e)
{

m_uLog.LogException(e.toString(),"xsd column count does not match actual, abort"); 
System.exit(l);

}
}
Dolnsert(); 
return true;

}
return false;

}y**
* output the data in nominated format

* Returns - n/a
*/
public void DolnsertO

{
// we have the query statement ready to go, except for the values 
// themselves; which by now will be available in the m_values array

// first get the data types of each column
String □ ls_columnTypes = m_schema.getDataTypes();
String ls_value = null; 
mJastPartOfQuery = m_firstPartOfQuery; 
for(int i=0;i<gi_cols;i++)

{
ls_value = m_values[i];

if ((ls_value.equals("nuH"))||(ls_value.equals("")))
{

mJastPartOfQuery += "null";
}
else

* if  ((ls_columnTypes[i].equals("lnteger"))||(ls_columnTypes[i].equals("Float")))

mJastPartOfQuery += m_values[i];
}
else

{ mJastPartOfQuery += ","+m_values[¡]+",";
}

}

if (j < (gi_cols - 1)){mJastPartOfQuery +=",";}
}
mJastPartOfQuery +=");"; 
try
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{
m_DBConnection.runSQLUpdate(m_lastPartOfQuery);

}
catch(Exception e)
{

m_uLog.LogMessage(kTHIS, "Could not insert data, String =" + mJastPartOfQuery); 
m_uLog.LogException(kTHIS, e.toString());
// most probably a duplicate key 
return;

}
}I**

* Ensure the table exists, otherwise create it

* Returns - n/a
7
public void BuildTable(String a_query)

{
// create table 
try 
{

m_DBConnection.runSQLSelect(m_schema.getlogCommence());
}
catch(Exception e)
{

m_uLog.LogMessage(kTHIS, "Could not create table from script");
m_uLog.LogException(kTHIS, e.toStringO);
return;

}
}

I**
* output the data in nominated format*

* Returns - n/a
7
public void loglnsertCommence(String a_query)

{
// log the Insert
try
{

m_DBConnection.runSQLUpdate(a_query);
}
catch(Exception e)

m_uLog.LogMessage(kTHIS, "Could not insert log record "); 
m_uLog.LogException(kTHIS, e.toStringO);
// most probably a duplicate key 
return;

>
}

j **
* output the data in nominated format*

* Returns - n/a
7
public void loglnsertCompleteO

{
// log the Insert completion
String ls_query = m_schema.getlogComplete(gi_rowCount);
try

m_DBConnection.runSQLUpdate(ls_query);

}
catch(Exception e)

* m_uLog.LogMessage(kTHIS, "Could not insert log record "); 
m_ul_og.LogException(kTHIS, e.toStringO);
// most probably a duplicate key 
return;

>
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//EOF Datalnsertor
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j i t *

* Title: DBConnection
* Description: The class acts as a retriever container for the table management process

* Copyright: Copyright (c) ajc<p>
* Company: <p>
* ©author ajc
* ©version 1.0

* Written by and Adrian Collins
*

* RELEASE - Sept 21st 2001 
V

import java.io.*; 
import java.sql.Date; 
import java.sql.*; 
import ExceptionLog;

public class DBConnection
{

private final static String kDBDSN = "dqm_ss7";
private final static String kLOGFILE = "dqm_server_DB.log";
private final static String kUID = "sa";
private final static String kPWD = null;
static final String kTHIS = "DBConnection";
public Connection m_dbsConn = null;
public ExceptionLog m_uLog = null;

// closes the database connection 
public void Close()
{

try
{

m_uLog.LogMessage(kTHIS," Closing connection to database"); 
m_dbsConn.close();

}
catch(Exception x)
0

}j**
* Method - Creates a new connection★
* Throws - Exception is thrown up the chain if the connection object
* fails to connect - this will be a fatal error
*

* Returns - n/a
7

public DBConnection(String a_DB, String a_uid, String a_pwd) throws Exception
{

boolean isRegistered = false;
String DB = a_DB;

String url = "jdbc:odbc:" + DB;
String pwd = a_pwd;
String uid = a_uid;

try
{

m_uLog = new ExceptionLog(kLOGFILE);
// set loggin on 
m_uLog.setLog(true);

}
catch (Exception e)
{

m_uLog.LogException(e.toString(),"Logging Process could not be started..."); 
System.exit(1 );

}

// Load the jdbc-odbc bridge driver
Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

// Attempt to connect to a driver.
m_uLog.LogException("DebugM, "Attempting to connect to database " + url); 
m_uLog.LogMessage(kTHIS," Attempting to connect to database " + url);
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}
m_dbsConn = DriverManager.getConnection (uri, uid, pwd);

y**

* Method - Retrieves the desired SQL select statement and
* returns a Result Set*
★
* Arguements - some sql string*
* Throws - Exception to notify caller functions that it failed (handled above - non-fatal error)

* Returns - Result Set
*/

public ResultSet runSQLSe!ect(String a_SQLHhrows Exception
{ , '

ResultSet rs = null;
String queryl = a_SQL; 

try
{

Statement stmtl = m_dbsConn.createStatement (); 
rs = stmtl .executeQuery (queryl); 
return rs;

}
catch (SQLExceptlon ex)

{
// A SQLException was generated.

String line = "\n*** CreateStatement SQLException caught ***\n";

while (ex != null)
{

m_uLog.LogMessage(kTHIS," tSQLState: = " + ex.getSQLState ()); 
m_uLog.LogMessage(kTHIS," tMessage: " + ex.getMessage ()); 
line = line + "\n\t\tMessage: " + ex.getMessage (); 
m_u Log. LogMessage(kTH IS," tVendor: " + ex.getErrorCode ()); 
ex = ex.getNextException ();

}
m_uLog.LogException(ex.toStrlng(),line); 
throw new SQLException ();

}
}y**

* Method - Retrieves the desired SQL select statement and
* returns a Result Set

* Arguements - some sql string*
* Throws - Exception to notify caller functions that it failed (handled above - non-fatal error)★
* Returns - Result Set
7

public void runSQLUpdate(String a_SQL)throws Exception
{

String queryl = a_SQL; 
int retcode = 0; 

try

Statement stmtl = m_dbsConn.createStatement (); 
retcode = stmtl .executeUpdate(query1 );

}
catch (SQLException ex)

{
// A SQLException was generated.
String line = "\n*** CreateStatement SQLException caught ***\n";

while (ex != null)

{ line +=”\n\t\tSQLState: " + ex.getSQLState ();
line +="\n\t\tMessage: " + ex.getMessage (); 
line +="\n\t\tVendor: " + ex.getErrorCode (); 
ex = ex.getNextException ();

}
m_uLog.LogException(ex.toString(),llne);
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j * *
*

*

7

>

throw new SQLExceptionQ;

Method - Set Auto commit mode to false
Returns - n/a

public void setOffAutoCommitQthrows SQLException
{

try
{

m_dbsConn.setAutoCommit (false);
}
catch (SQLException ex)

f

/ / A SQLException was generated.

String line = "\n*** Set Auto Commit SQLException caught ***\n";

while (ex != null)
{

line +="\n\t\tSQLState:" + ex.getSQLState (); 
line +="\n\t\tMessage: M + ex.getMessage (); 
line +="\n\t\tVendor: " + ex.getErrorCode (); 
ex = ex.getNextException ();

}
m_uLog.LogException(ex.toString(),line); 
throw new SQLException();

}
}
public void setCommitOthrows SQLException
{

try
{

m_dbsConn.commit();
}
catch (SQLException ex)

{
// A SQLException was generated.

String line = "\n*** Commit SQLException caught ***\n"; 

while (ex != null)

* line +="\n\t\tSQLState:" + ex.getSQLState ();
line +="\n\t\tMessage: " + ex.getMessage (); 
line +="\n\t\tVendor: " + ex.getErrorCode (); 
ex = ex.getNextException ();

m_uLog.LogException(ex.toString(),line); 
throw new SQLException();

}
}

}
//EOF DBConnectiony************************
★
* class ElementAttribute - Class used as a type-safe container for a table attribute.
* Written by Adrian Collins
*
* RELEASE - Sept 25th 2001*
7

class ElementAttribute
{

public String 
public String 
public String 
public String 
public String 
public String

m_Type = "n/a"; 
mJJne = "n/a"; 
m_Name = "n/a"; 
m_Title = "n/a"; 
m_Code ="n/a"; 
m Value = "n/a";

static final String kTHIS = "ElementAttribute
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j-k -k

* Method Stores the xsd data for review by a service requestor*
* Throws - Exception is thrown up the chain if the connection object
* fails to connect - this will be a fatal error*
* Returns - n/a

public Elem entAttributeO
{

*/
}

public void
{

}

public void
{

setN am e(String a_Nam e) 

m _Nam e — a_Nams;

setTitle(String a_Title) 

m_Title = a_Title;
}

public void
{

setC ode(String a_Code) 

m_Code = a_Code;
}

public
{

}
public

{

}

public
{

}

public
{

}

public
{

}

public
{

}
public

{

}

void setValue(S tring a_Value) 

m_Value = a_Value;

void setType(String a_Type) 

m_Type = a_Type;

String getNam e()

return m_Name;

String getTitle()

return m_Title;

String getCodeQ

return m_Code;

String getValue()

return m_Value;

String getTypeQ

return m_Type;

}
//E O F  ElementAttribute
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j -k it

* Title: ElementProperties
* Description: Container class for the xsd data
* @author ajc
* ©version 1.0

* Written by Adrian Collins

* RELEASE-15/05/01 
7
import java.io.*; 
import java.util.*; 
import ElementAttribute; 
import java.util.Vector;

public class ElementProperties
{

private String gs_elementName = "n/a"; 
static final String kTHIS = "ElementProperties 
private Vector v_attributes = null; 
private ElementAttribute m_attribute = null;

r*
* Method Stores the xsd data for review by a service requestor*
* Throws - Exception is thrown up the chain if the connection object
* fails to connect - this will be a fatal error

* Returns - n/a
7

public ElementProperties(String a_name) throws Exception
{

gs_elementName = a_name; 
v_attributes = new Vector();

}
* Returns - the name of the element/schema 
7

public String getName()
{

return gs_elementName;
}

/* *
★
it

Method - get name of the url

* - stored in the attribute named "schema'

*
★

Throws - DataFormatException

it

7
Returns - the schema url

public String getSchemaURL() 
{

String ls_value = null;

for(int i=0;i<v_attributes.size();i++)

 ̂ m_attribute = (ElementAttribute) v_attributes.elementAt(i); 
if (m_attribute.getName().equals("schema"))

ls_value = m_attribute.getValue(); 
try

if (!(ls_value==null))
{

return ls_value;
}
else

}
}

throw new Exception();
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catch(Exception e)
{

System.out.println(kTHIS +" Could not access schema URL, mandatory data - ends"); 
System.exit(l);

}
}

}
return null;

}

Method
/**
*
*

- get script

*
★

- stored in the attribute named "script’

*
★

Throws - DataFormatException

*
7

Returns - the schema url

public String getScript()
{

String ls_value = null;

for(int i=0;i<v_attributes.size();i++)
{

m_attribute = (ElementAttribute) v_attributes.elementAt(i); 
if (m_attribute.getName().equals("script,'))
{

ls_value = m_attribute.getValue();
try
{

if (!(ls_value==null))
{

return ls_value;
}
else
{

throw new Exception();
}

}
catch(Exception e)

System.out.println(kTHIS +" Could not access script, tough");
}

}
}
return null;

}
/**
* Method - get name of the localhost url*
* - stored in the attribute named "local"
* - this one is used when the remote host url cannot be contacted
* Throws - DataFormatException
*

* Returns - the schema url
7

public String getLocalSchemaURL()
{

String ls_value = null;

for(int i=0;i<v_attributes.size();i++)

* m_attribute = (ElementAttribute) v_attributes.elementAt(i); 
if (m_attribute.getName().equals("local"))

ls_value = m_attribute.getValue(); 
try

if (!(ls_value==null))
{

return ls_value;
}
else
{

throw new ExceptionQ;
}
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}
catch (Exception e)
{

System.out.println(kTHIS + " Could not access schema URL, mandatory data - ends"); 
System.exit(1);

}
}

}
return null;

}

* Method - get number of column in the expected schema
★

* - stored in the attribute named "count"

* Throws - DataFormatException*
* Returns - number of columns in the schema
V

public int getColumnCountO
{

String ls_value = null;

for(int i=0;i<v_attributes.size();i++)
{

m_attribute = (ElementAttribute) v_attributes.elementAt(i); 
if (m_attribute.getName().equals("count"))
{

ls_value = m_attribute.getValue(); 
try 
{

if (!(ls_value==null))
{

int i_colCount = lnteger.parselnt(ls_value.trim()); 
return i_colCount;

}
else
{

throw new Exception();
}

}
catch(Exception e)

System.out.println(kTHIS +" Could not access schema URL, mandatory data - ends"); 
System.exit(l);

}
}

}
return -1;
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j * *

* Method - Searches the string for a specific word, and
* The word must not contain any whitespace characters

* Arguements - word - the word to search for*
*  Throws - lOException★
* Returns - the last position of the word in the string, OR 0 if not found.
*/

public void loadAttribute(String ls_Line)
{

String a, b;
try
{

SiringTokenizer st = new StringTokenizer(!3_Line, 
a = st.nextToken(); 
a = st.nextToken();
// we know that the string 'attribute name' is buried in this string 
// we want tokens with the following tags:
// attribute name 
// title 
// code 
//type  
/ /  value
a.toLowerCase(); 
if (a.equalsfattribute nam e"))
{

m_attribute = new ElementAttribute(); 
m_attribute.setName(st.nextToken()); 
while (st.hasMoreTokens())
{

b = st.nextToken(); 
b.toLowerCase();

if (b.equals(”title")||b.equals(" title"))
{

m_attribute.setTitle(st.nextToken());
}
if (b.equals("code")||b.equals(" code"))
{

m_attribute.setCode(st.nextToken());
}
if (b.equals("type")||b.equals(" type"))
{

m_attribute.setType(st.nextToken());
}
if (b.equals("value")||b.equals(" value"))
{

m_attribute.setValue(st.nextToken());
}

} '
// add the elements to the vector; 
v_attributes.addElement(m_attribute);

// after all attributes have been loaded, resize the vector accordingly 
v_attributes.trimT oSize();

}
catch(Exception e)

System.out.println(kTHIS + " Could not access schema URL, mandatory data - ends"); 
return;

>
}



CBSE An implementation case study 104

*
★

Method - return the set of xml codes in the element

★
*
★

Throws - lOException

k

*1

Returns - an array of strings

public String  
{

0 getCodeQ

String Q ls_codes = new String[v_attributes.size()]; 
for(int i=0;i<v_attributes.size();i++)
{

m_attribute = (ElementAttribute) v_attributes.elementAt(i); 
ls_codes[i] = m_attribute.getCode(); 

i
return ls_codes;

}
r
*
k

Method - return the set of column names

k

k

k

Throws - lOException

★

*/
Returns - an array of strings

public String Q getColumnNamesQ

String □ ls_names = new String[v_attributes.size()]; 
for(int i=0;i<v_attributes.size();i++)

m_attribute = (ElementAttribute) v_attributes.elementAt(i); 
ls_names[i] = m_attribute.getName();

}
return ls_names;

}
j k *  

* 
k

Method - return the set of column data types

k

k

k

Throws - lOException

k

* /

Returns - an array of strings

public String 0 getColumnTypesQ

String Q ls_types = new String[v_attributes.size()]; 
for(int i=0;i<v_attributes.size();i++)

* m_attribute = (ElementAttribute) v_attributes.elementAt(i); 
ls_types[i] = m_attribute.getType();

}
return ls_types;

>
}
//EOF ElementProperties
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*

* ExceptionLog - Class provides an exception logging mechanism.
* Logs Run-Time errors as exceptions in a given log file.
* Does not truncate the log file.*
*/

import java.io.*; 
import java.util.*; 
importjava.net.*; 
import java.sql.*;

import ANSIFileStream;

public class ExceptionLog
{
// Strings that identify pre-defined exceptions 

ANSIFileStream outLog;
private final static String klOException = new IOException().toString();
private final static String kEOFException = new EOFException().toString();
private final static String klnterruptedlOException = new lnterruptedlOException().toString();
private final static String kSocketException = new SocketException().toString();
private final static String kBindException = new BindException().toString();
private final static String kConnectException = new ConnectException().toString();
private final static String kNoRouteToHostException = new NoRouteToHostException().toString();
private final static String kUnknownHostException = new UnknownHostException().toString();
private final static String kRuntimeException = new RuntimeException().toString();
private final static String klllegalThreadStateException = new IHegalThreadStateException().toString();
private final static String kNumberFormatException = new NumberFormatException().toString();
private final static String klndexOutOfBoundsException = new lndexOutOfBoundsException().toString();
private final static String kNegativeArraySizeException = new NegativeArraySizeException().toString();
private final static String kNoSuchElementException = new NoSuchElementException().toString();
private final static String kNullPointerException = new NullPointerException().toString();
private final static String kSQLException = new SQLException().toString();
private final static String kSQLWaming = new SQLWaming().toString();
private final static String klllegalArgumentException = new IHegalArgumentException().toString();

private String m_sFname = null; 
private boolean m_softLog = true;

j k k

Hr

*

Constructor - Creates a File Stream to log file

★
*

Arguements - fname - the name of the logfile

*
★ Throws - none

Hr Returns - n/a
*/

public ExceptionLog(String fname)
{

try
{

m_sFname = fname;
}
catch(Exception e)
{}
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/* *

* Method - Creates an exception of the appropriate type (except)
* and a given detail message (msg)
* Logs an Exception e to a Log File
* Logged Exceptions are written as Strings in the format:*
* DATE Exception_Type - location, action taken

*

7

Arguements - excpt - is the String that identifies the type of exception,
msg - is the detailed message for the exception

Throws - none

Returns - void

public synchronized void LogException(String excpt, String msg)
{
try

{
if (outLog == null)
{

ANSIFileStream outLog = new ANSIFileStream(m_sFname);
}

Exception e;
if( excpt.equals(klOException))
{

e = new lOException(msg);
}
else if( excpt.equals(kEOFException))
{

e = new EOFException(msg);
}
else if( excpt.equals(klnterruptedlOException))
{

e = new InterruptedlOException(msg);
}
else if( excpt.equals(kSocketException))
{

e = new SocketException(msg);
}
else if( excpt.equals(kBindException))
{

e = new Bind Exception (msg);
}
else if( excpt.equals(kConnectException))
{

e = new ConnectException(msg);

else if( excptequals(kNoRouteToHostException))

e = new NoRouteToHostException(msg);

else if( excpt.equals(kUnknownHostException))

 ̂ e = new Unknown HostException (msg);

else if( excpt.equals(kRuntimeException))

 ̂ e = new RuntimeException(msg);

else if( excpt.equals(klllegalThreadStateException))

 ̂ e = new HlegalThreadStateException(msg);

else if( excpt.equals(kNumberFormatException))

e = new NumberFormatException(msg);

else if( excpt.equals(klndexOutOfBoundsException))
{

e = new IndexOutOfBoundsException(msg);
}
else if( excpt.equals(kNegativeArraySizeException))
{

e = new NegativeArraySizeException(msg);
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}

}
else if( excpt.equals(kNoSuchElementException))
{

e = new NoSuchElementException(msg);
}
else if( excpt.equals(kNullPointerException))
{

e = new NullPointerException(msg);
}
else if( excpt.equals(kSQLException))
{

e = new S.QLException(msg);
}
else if( excpt.equals(kSQLWamlng))
{

8 — rto w  C H I  W o r n in n / m c n ^ '“  I I W V V  W \ X f c - » » U l i m i y y M . w y ; ,

}
else if( excpt.equals(klllegalArgumentException))
{

e = new IHegalArgumentException (msg);
}
else if( excpt.equals("Debug"))
{

String line = GetCurrentDate() + "\tDebug
System.out.println(line);
outLog.AppendLine(line);
return;

}
else
{

}
e = new Exception(msg);

+ msg;

String line = GetCurrentDate() + '̂ Exception + e.toString();
System.out.println(line);
outLog.AppendLine(line);
outLog.Close();

}
catch (Exception e)
0

public synchronized void setLog (boolean a_togg!e)
{

m_softLog = a_toggle;

public synchronized boolean getLogStatus ()
{

return m_softLog;
}
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j i t *

* Method - Creates an exception of the appropriate type (except)
* and a given detail message (msg)
* Logs an Exception e to a Log File
* Logged Exceptions are written as Strings in the format:
*

*  DATE Exception_Type - location, action taken*
* Arguements - excpt - is the String that identifies the type of exception,
* msg - is the detailed message for the exception
*

* Throws - none

*/

y**
*
*
★
★
*
*

Returns - void

pubiic synchronized
{

v u iv i  i _u y  m c o o a y ^ y O  w n i y  r i u v c a a ,  w w m y

try
{

if (getLogStatus())
{

if (outLog == null)

* ANSIFileStream outLog = new ANSIFileStream(m_sFname);
String line = "\t" + GetCurrentDate() + Message from " + Process + 

outLog.AppendLine(line);

<■

}
}

}
catch(Exception e)
0

Method - Creates an exception of the appropriate type (except)
and a given detail message (msg)
Logs an Exception e to a Log File
Logged Exceptions are written as Strings in the format:

DATE Exception_Type - location, action taken

Arguements - excpt - is the String that identifies the type of exception,
msg - is the detailed message for the exception

Throws - none

Returns - void

public synchronized void LogMessage(String Process, int number)

{
try
{

if (getLogStatusO)
{

if (outLog == null)

 ̂ ANSIFileStream outLog = new ANSIFileStream(m_sFname); n
String line = "\t" + GetCurrentDateO + H; Message from H + Process + <■ 

outLog.AppendLine(line);

}
catch(Exception e)
0

}

> " + msg;

—> " + number
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I**
* Method - Creates a current date string in the format of:*
* dd/mm/yyyy, hh:mm:ss*
* Arguements - none
•k

* Throws - none*
* Returns - String representing the current date
*/

public synchronized static String GetCurrentDate()
{

String strdate = null;

java.uiil.Calendar rn = java.util.Ca!endar.get!nstance(); 
java.util.TimeZone tz = java.util.TimeZone.getTimeZone("GMT"); 
rn.setTimeZone(tz);
java.util.Date currentDate = rn.getTime(); 
long t = currentDate.getTime();
//Uncomment this line if default locale set to GMT 
//long t = currentDate.getTime()+(9*60*60*1000);

java.sql.Date sqldt = new java.sql.Date(t); 
java.sql.Time sqltm = new java.sql.Time(t);

String sqld = sqldt.toString();
java.util.StringTokenizer st = new java.util.StringTokenizerisqld,"-"); 
String y = st.nextToken();
String m = st.nextToken();
String d = st.nextToken();

strdate = d + V  + m + T  + y + "," + sqltm.toString();

return strdate;

j -k k

*
* Method - Closes log

*
*
*

Arguements - none

★
*

Throws - none

*/
public synchronized void Close() 
{

try
{

outLog.Close();
}
catch(Exception e)0
}

}
//EOF Exception Log
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*̂**************************************************************************************************************************

* class ExtractRequestHandler - Handles an Archiving Client request*
* Written by Adrian Collins★
* RELEASE - Sept 24th 2001
7

import javax.servlet.http.*; 
import java.util.*;

public class ExtractRequestHandler extends RequestHandler
{

private final static String kTHIS
M A / C D A n n

jJ M V d lC  l l l i c i i  d i c u i u  o u i i i i j  rv v v  i _ u n u u

"ExtractRequestHandler";
— /u e i vi^iL/Cibu/ I

im plements Runnable

r* .
* Method - Constructs a ExtractRequestHandler Object
* - Performs Validation Checks on connection request
*
* Arguements - aSock - the socket that will be used for communication with client
* - el - logfile Stream
*
* Throws - Exception - signalling that connection was refused
*
* Returns - n/a
7

J**

public ExtractRequestHandler(ExceptionLog a_uLog, RunParms runParms, Vector a_Vm essage) 

 ̂super (a_uLog, runParms, a_Vmessage);

Method - ExtractRequestHandler sheck files thread

* Arguements - none
★
* Throws - none*
* Returns - none
7

public void run()
{

getFileName(); 
respondT oServlet(); 
persistance();
// wait at least as long as the client waits for the file name 
CleanExit();

}

}
//EOF extractrequestHandler
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class InsertRequestHandler - The running scenario for this module is as follows: 

collect the data
build a Vector of keys matching selection criteria 
Enumerate the Vector and build a class which contains 
the data for each enum. (row) 
send the data

*/
import java.util.*; 
import jSVB.iO.*! 
import java.net*; 
import java.sql.*; 
import Datalnsertor; 
import RunParms; 
import ExceptionLog;

public class InsertRequestHandler
{

public ExceptionLog m_uLog = null;
public boolean m_bRunning = true;
public String xmlJDirectory = null; // path to data files
public String xsd_Directory = null; / /  path to data files
public String s_File = null; / /  data files
private Datalnsertor m jn serto r = null;
private RunParms m_runParms;
private String m_FileURL = null;
private String s_dsnName = null;
private String s_userlD = null;
private String s_passWord = null;
private final static String kTHIS = "InsertRequestHandler"; 
private final static String kLOGFILE = "dqm_server.log";

j-k-k

* Method - Constructs a InsertRequestHandler Object
* - Performs Validation Checks on connection request
*
* Throws - Exception - signalling that connection was refused
*
* Returns - n/a
*/

public InsertRequestHandlerO
{
try

{
m_uLog = new ExceptionLog(kLOGFILE);
//  set loggin on
m_uLog.setLog(true);

}
catch(Exception e)

* m_uLog.LogException(e.toString(),"Handler Unable to connect to DataBase"); 
Clean ExitQ;

}
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Method InsertRequestHandler sheck files thread

Arguements - none

Throws - none

Returns - none
7

public void runlnsertO
{

System.out.printlnfCommencing Insertion Process"); 
m_runParms = new RunParms(); 
m_runParms.addParm("xmllocation"); 
m_rünParms.addValue(xm!_Directory);
m_runParms 
m_runParms 
m_runParms, 
m_runParms, 
m_runParms. 
m_runParms. 
m_runParms, 
m_runParms. 
m_runParms. 
m runParms.

addParmfxsdlocation");
addValue(xsd_Directory);
addParm("filename");
addValue(s_File);
addParmfdsn");
addValue(s_dsnName);
addParm("userid");
add Value(s_userl D);
addParmfpassword");
addValue(s_passWord);

try
{

mjnsertor = new Datalnsertor (m_uLog, m_runParms);
m_lnsertor.lnltialise();
mJnsertor.streamlnput();
m J  nsertor. log I nsertComplete();
m_lnsertor.Cleanup();

CleanExit();
}
catch(Exception e)

m_uLog.LogMessage(kTHIS,"Insertion Process could not be completed..."); 
m_uLog.LogException(kTHIS,"Insertion Process could not be completed..."); 
System.exit(l);

}

}!**
* Method - Pass in the runParm
* Throws - Exception
*

* Returns - n/a
V  . .
public void passlnRunParm(String axml_Directory, String as_filename, String axsd_Directory,
String as_dsnName, String as_userlD, String as_passWord)
{

try
{

xml_Directory = axml_Directory; 
xsd_Directory = axsd_Directory; 
s_File = as_filename; 
s_dsnName = as_dsnName; 
s_userlD = as_userlD; 
s_passWord = as_passWord;

}
catch (Exception e)

{ m_uLog.LogException(e.toString()rHandler Unable to get runParms");
CleanExitO;

}
}

j **
* Method - Tidies up and kills this thread
* - Sends a S_QUIT to appropriate Client
* - Closes and releases all open objects

112

Arguements - none
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*

* Throw s
★

- Exception

* Returns - none
*/

private void CleanExit{)
{

try
{

m_uLog.LogException(kTHIS,"Shut down via clean exit"); 
m_bRunning = false; 

m_ul_og.Close();

}
catch (Exception e)
{
m_uLog.LogException(e.toString(),"Handler Unable to shut down via clean exit");
}

}
}
//E O F InsertRequestHandler
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^ A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* class PersistStream - Class extends functionality of ANSIFileStream to persist data base data to a
* file format*

* Written by Adrian Collins★
* R ELEASE - 7/5/01*
*1
import java.io.*; 
import ANSIFileStream; 
import ExceptionLog;

public ciass PersistStream extends ANSiFiieSiream
{

private ExceptionLog m_uLog = null; 
static final byte kBACK_SLASH = (byte) V; 

static final byte kCOLON = (byte) 
static final byte kFLOATING_POINT = (byte) 
static final byte kNEGATIVE = (byte) 
static final byte kUNDERSCORE = (byte) 

private final static String kTHIS = "PersistStream";

/**
* Constructor - Simply calls the ANSIFileStream  constructor★
* Arguments - fname - filename of desired file

* Throws - lOException .*
* Returns - n/a
*/

public PersistStream(String fname) throws lOException
{

super(fname);
}
public void passinLog(ExceptionLog a_uLog)
{
m jjLog = a_uLog;
} •

j* H

* Method - Writes the given data to file in line format

*
★

Arguments - fname - filename of desired file

★

*
Throws - lOException

*
7

Returns - n/a

public void WriteXMLData(String val) throws lOException 

{
WriteUne(val);

}

*

/ * *

Method - Writes the given data to file in line format

*

*

Arguments - fname - filename of desired file

★

Throws - lOException

* Returns - n/a

public void WriteCSVData(String val) throws lOException

WriteLine(val);
}

//EOF PersistStream
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*
* class Q ueryHandler - Class used prepare request parameters for execution by DBConnection.
* Prepared for use with the runParam container passed in at construction*
* It is assum ed the usage will be mostly generic, so extend as required★
* Typical entries
* Table - Table to be extracted
* K eyN am e - Multipit keys m ay be passed in if required, if a
* keyN am e is nominated, a corresponding KeyValue must be provided
* KeyValue*
* W ritten by Adrian Collins
★

* Or-i r-AOC o - — r^r\/\A
r ^ C L C M O C  -  o t j p t  .¿ O il I ¿ . V U  I

*

7
Import java.util.*; 
import ExceptionLog; 
import RunParms;

class QueryHandler
{

public ExceptionLog m_uLog = null;
private String m_TableName = null, m_Query = null;
private String Q m_Arg_Names = null, m_Arg_Values = null;
private int m_Keys = 0;
private RunParms m_runParms;
static final String kTHIS = "QueryHandler";
Listlterator m_Parameters = null, m_Values = null;

j -k *

* Method Stores the parameter data in a convenient container
★

* Returns - n/a
7

public QueryHandler(ExceptionLog a_uLog, RunParms runParms) throws 
lilegalArgumentException 

{
m_uLog = a_uLog; 
m_runParms = runParms; 
setTableName(); 
buildQueryO; 
if (sizeKeys() == 0)
{

return;
}
loadKeys();
buildWhereClauseQ;

}
/* Method - provide a public means of comparing the schema, with the
* table requested
*

* Throws - Exception
*•
* Returns - String containing the name of the table to be queried
7 '

public String getTabieName()
{

return m_TableName;
}



CBSE An implementation case study 116

/* Method - provide public access to the requested query
★

*

* Returns - String containing the name of the table to be queried
* and any requestd where clause 
*/

public String getTableQueryO
{

return m_Query;
}

/* Method - build sql query from run parameters entered by request

* Throws - Exception

Returns C trin n  r»Anfoininn fh û  enl ru ton/ f/v H w u iiit^  u w m a i in i i^  u I d v { i  jr t v  tvfrt Hi* a v o r i  ifoH

private void buiidQuery()
{

m_Query = "Select * from " + m_TableName;

}
I* Method - build sql query from run parameters entered by request

*

*
* Throws - Exception
★
* Returns - String containing the sql query to be executed
*/

private void buiidWhereClauseO
{

m_Query = "Select * from " + m_TableName; 
m_Query = m_Query + " W HERE

if (m_Keys > 0)

m_Query = m_Query + m_Arg_Names[0] + " = " + m_Arg_Values[0]; 
for (int i = 1 ; i < m_Keys; i++)

 ̂ m_Query = m_Query + "  A N D " + m_Arg_Names[i] + "  = " + m_Arg_Values[i];

}
m_uLog.LogMessage(kTHIS," Where Clause =" + m_Query);

/**  ̂ Method - provide a public means of comparing the schema, with the
* table requeste

* Throws ' - Exception
*
* Returns - String containing the name of the table to be queried

*/
private void setTableName()
{

try

 ̂ m_TableName = m_runParms.getParameterValue("table");

if (m_TableName == null)
{

throw new Exception();
}

}
catch(Exception e)

{ m uLog.LogMessagefkTHIS," Could not determine the table name of the query");
m uLog.LogException(e.toString()," Could not determine the table name of the query ),
return;

}
/**  ̂ Method - build a set of strings which are then used to append to the where clause
* Rem em ber that we have no way of matching the parameter names with the respective parameter name
* For example if the sql query we are building requires two arguments in the where clause
* say "select * from xxxx where ’parameter_name_1 ' = 'parameter_value_1 ' AND
* y ’parameter_name_2' = 'parameter_value_2'
* The servlet engine passes the arguments into the request buffer in random order
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* so I use a simple method of constraining the interface to accept only pairs named as follows
* KeyName 1 or KeyName_1 must match KeyValue 1 or KeyValue_1 etc
* KeyName 2 or KeyName_2 must match KeyValue 2 or KeyValue_2 etc
*

* The number of the keyphrase is then used to position the matching pairs in an array★
* Throws - Exception
*

* Returns - n/a
*1

private void loadKeysQ
{

String parm = null, value= null;
String token = null, tokenPre = null, tokenPost = null; 
int i = 0;
m  A m  K l o m p c  — n au /  C tr in r iT m  ITov/c l'i l l  r \ i  h  M a i i i G o  “  i i v i »  v u i i i H i m  i w j w j t

m_Arg_Values = new String[m_Keys]; 
m_Parameters = m_runParms.getParms(); 
m_Values = m_runParms.getValues(); 
try 
{

while (m_Parameters.hasNext())
{

parm = (String) m_Parameters.next();
StringTokenizer st = new StringTokenizer(parm," _"); 
value = (String) m_Values.next();
// we assume by now that the validation in the container has ensured 
// that the correct number of pairs are presented, so we will 
// increment j_count after keyname 
if (parm.startsWithfkeyname"))
{

tokenPre = st.nextToken();
m_uLog.LogMessage(kTHIS," tokenPre =: ” + tokenPre); 
i = lnteger.parselnt(st.nextToken().trim());
//reduce the element count to enable the array to load 
// from element zero

m_Arg_Names[i] = value;

if (parm.startsWith(”keyvalue"))
{

tokenPre = st.nextToken(); 
i = lnteger.parselnt(st.nextToken().trim());
i~;
m_Arg_Values[i] = value;

}

}
}
catch (Exception e)

{ m uLog LogMessage(kTHIS," Could not determine key value pairs"); 
m_uLog.LogException(kTHIS,M Could not determine key value pairs"); 
System.exit(l);

}
}
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/* Method - count the number of keyname parameters
★

* Throws - Exception★
* Returns - n/a
*/

private int sizeKeysQ
{

String parm = null;
m_Parameters = m_runParms.getParms(); 
while (m_Parameters.hasNext())
{

parm = (String) m_Parameters.next(); 
if (parm.startsWith("keyname"))
{

m_Keys++;
}

}
return m_Keys;

}

}
//EOF QueryHandler
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* class RunParms - Class used as a type-safe container for parameters. Prepared by
* servlet for use by each request handler thread
* we are looking for the following input Parameters:
* Table - Table to be extracted
* KeyName - Multipit keys may be passed in if required, if a
* keyNam e is nominated, a corresponding KeyValue must be provided
* KeyValue
* Format - Current values supported XML or CSV*
* For those applications which do not wish to use the pairing constraint, the logic is as follows.
* A counter is maintained to increment when the parameter name is "keyname" and decrement when the
* parameter name is "keyvalue”. When the parameter name is neither "keyname" nor "keyvalue"
* the count should be zero. So to turn off, simply force zero into the counter prior to throw
* the exception*
* Written by Adrian Collins
•k

* RELEASE - Sept 25th 2001
*

*/
import java.util.*;

class RunParms
{

private String m_Param = null, m_Value = null;
private int m_Param_Count = 0, m_Value_Count = 0, m_Key_Count = 0;
public List m_Param_List = null, m_Value_List = null;
static final String kTHIS = "RunParms ";

y**
Method Stores the parameter data in a convenient container

*/
Returns - n/a

public RunParmsO

m_Param_List = new ArrayList(); 
m_Value_List = new ArrayList();

}
public void addParm(String a_Parm)
{

m_Param = a_Parm; 
try

if (m_Param_Count == m_Value_Count)

* m_Param_List.add(m_Param); 
m_Param_Count++;

}
else
{

throw new Exception();

// code to constrain the matching of parameter pairs 
// to KeyName and KeyValue 
if (m_Param.startsWith("keynameH))
{

m_Key_Count++;
}
else
if (m_Param.startsWith("keyvalue"))
{

m_Key_Count~;
}

 ̂ catch(Exception e)

System.out.println(kTHIS +" Could not add Parameter, mandatory data - ends"); 
System.exit(l);

}
public void addValue(String a_Value)

* m Value = a_Value;
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try
{

m_Value_Count++;
if (m_Param_Count == m_Value_Count)
{

m_Value_List.add(m_Value);
}
else
{

throw new Exception();
}

}
catch(Exception e)
{
System.out.println(kTHIS +" Could not add Parameter, mandatory data - ends"); 

Sysiem.exit(l);
}

}
public String getParameterValue(String a_Param)
{

// returns null if no match is found 
String parm, value = null;
Listlterator m_Parameters, m_Values = null; 
m_Parameters = getParms(); 
m_Values = getValues(); 
while (m_Parameters.hasNext())
{

parm = (String) m_Parameters.next(); 
value = (String) m_Values.next(); 
if (parm.equals(a_Param))
{

return value; ‘
}

}
return value;

}
public Listlterator getVa!ues()
{

return m_Value_List.listlterator();
}
public Listlterator getParms()
{

return m_Param_List.listlterator();
}

j * *

* Method returns a status on the configuration of the container
* The count of key name and key value pairs must be the same
* the underlying list containers don't guarantee addition in any order
* so the count toggles between -1 and 1 when pairs are received, at end
* the counter must be zero f
•k

* Returns - n/a
*/

public void getConfiguration()
{

try
{

if (m_Key_Count == 0)
{

return;
}
else
{

throw new Exception();
}

catch(Exception e)

System.out.println(kTHIS +" Could not add Parameter, mandatory data - ends");
System.exit(1);

}
}

}
//EOF RunParms
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* servletExtractor Servlet constructed to broker the users request for data, and the
* method of presentation

* Written by Adrian Collins*
* RELEASE - 24th Sept 2001★
*/

import java.io.*; 
import java.util.*; 
import javax.servlet.*; 
import javax.servlet.http.*; 
import ExiractRequestHandler; 
import ExceptionLog; 
import RunParms;

public class servletExtractor extends HttpServlet
{

PrintWriter out;
private HttpServletResponse m_response;
private ExceptionLog m_uLog = null;
RunParms runParms = null;
private Vector m_Vmessage = null;
private ExtractRequestHandler extractRequest = null;
private Thread requestThread = null;
private String m_File = null;
private int m_timerCount = 0;
final static int kWAIT = 3;
final static int kSLEEP = 5000;
final static char kQUOTE =
final static String kTHIS = "ServletExtractor";
private final static String kLOGFILE = "dqm_server.log";

public void service (HttpServletRequest request, HttpServletResponse response) throws 
ServletException, lOException 

{
m_response = response;
try
{

m_uLog = new ExceptionLog(kLOGFILE); 
m_Vmessage = new Vector();
// set loggin on 
m_uLog.setLog(true);

}
catch (Exception e)

m_uLog.LogException(e.toString(),"Server Process could not be started...");
System.exit(l);

}
processRequest(request, response);

}
public synchronized void processRequest(HttpServletRequest request, HttpServletResponse 

response)throws ServletException, lOException 
{

Enumeration inputParms; 
runParms = new RunParms(m_uLog);
Listlterator m_Parameters, m_Values = null;
String inParam, curParam, inValue, curValue, outSolution;
int i_keyCount = 0;
out = m_response.getWriter();
String title = "Data Extraction Request";

// set content type and other response header fields first 
m_response.setContentType("text/html");

// then write the data of the response
out.println("<HTML><HEAD><TITLE>");
out.println(title);
out println("</TITLE></HEAD><body BACKGROUND-' + kQUOTE + "/images/backgmd.gif + kQUOTE + 
- text=" + kQUOTE + "#043E07" + kQUOTE + " link=" + kQUOTE + "#990000" + kQUOTE + " vlink=" +
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kQUOTE + "#666666” + kQUOTE + " alink=” + kQUOTE + "#CC9900" + kQUOTE + "xfont face=" + 
kQUOTE + "trebuchet ms, arial, helvetica" + kQUOTE + 
out.println("<H1>" + title + "</H1>");

// we are looking for the following input Parameters:
// Table - Table to be extracted
// KeyName - Multipit keys may be passed in if required, if a 
// keyName is nominated, a corresponding KeyValue must be provided
// KeyValue
// Format - Current values supported XML or CSV

inputParms = request.getParameterNames();
// create a parameter pair for this host
runParms.addParm("host");
runParms.addVaiue(request.getServerName{));

while (inputParms.hasMoreElements())
{

// load up the runParams container with all the gear 
// then pass it into the thread.
// Used by the persistance class to determine the output type 
// Used by the database connection to prepare the sql request

inParam = (String) inputParms.nextElement(); 
curParam = inParam.toLowerCase(); 
inValue = request.getParameter(inParam); 
if (! (inValue == null)) // belt and braces 
{

curValue = inValue.toLowerCase();
runParms.addParm(curParam);
runParms.addValue(curValue);

}

}
runParms.getConfiguration();
try
{

curValue = runParms.getParameterValue("button"); 
if (curValue.equalsfextract data"))

// creating and starting a ExtractRequestHandler thread
extractRequest = new ExtractRequestHandler(m_uLog, runParms, m_Vmessage); 
requestThread = new Thread(extractRequest); 
requestThread.start(); 
outSolution = pollThread();

if (outSolution != null)

out.println("<a href=http:/r + request.getServerName() + "/ServletDataf + outSolution + ">Your Request ("
+ outSolution +") is being Processed </a>"); .
out.println("<p><center> <h4>Note: Until extraction processing has completed, selection will result in an
error (HTTP 404 - File not found) </h4></center></p>");
}
else

 ̂ out.println("<H3> Could not create extract file at this time </H3>");
}

}
else
{ .

throw new Exception();
}

catch(Exception e)

* m_uLog.LogMessage(kTHIS," Could not determine the type of persistance, mandatory data - ends"); 
System.exit(1);

out.println("</BODY></HTML>");
out.closeQ;

public synchronized String pollThread()

{
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boolean b_ok = true;
String l_host = null; 
int i = 0;

// Check the vector a couple of times to see if a message has been posted 
try 
{

m_timerCount = 0; 
while (b_ok)
{

if (m_Vmessage.isEmpty())
{

if (!(waitForThread()))
{

throw new Exception();
}

}
else
{

l_host = m_Vmessage.toString(); 
i = l_host.length();
// take out the stupid parenthases left by the toString 
String temp = l_host.substring(1,(i-1)); 
l_host = temp; 
break;

}
}

}
catch(Exception e)

 ̂ m_uLog.LogMessage(kTHIS,"<H3> Could not contact Host </H3>"); 
l_host = null; 
return I_host;

>
return l_host;

public synchronized boolean waitForThread()
{

m_timerCount++;
m_uLog.LogMessage(kTHIS," waitForThread " + m_timerCount); 
if (m_timerCount > kWAIT){return false;} 
try 
{

Thread .sleep(kSLEEP);
}
catch (Exception e)
{

return false;
}
return true;

}

}
//EOF servletExtractor
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* class TableAchiveClient - Listens on a given input directory, detects weld data which has been
* deposited into the input directory for insertion into the database*
* Written by Adrian Collins*
*  RELEASE - Saturday Jan 8th 2002

import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;
import DBConnection;
import InsertRequestHandler;

pubiic class TableArchiveClient
{

final static String kTHIS = "TableArchiveClient"; 
private long m_nSleeptime = 0;
public InsertRequestHandler m_RequestHandler; // File Trasporting class 
public String s_HostName = null; // Host name

public String s_dsnName = null; // ODBC DSN name 
public String s_userlD = null; // User ID 
public String s_passWord = null; // Password 

public String xml_Directory = null; // path to data files
public String xsd_Directory = null; / / path to data files
public String s_File = null; // data files

public TableArchiveClient(String argvO)
{

sJHostName = argv[0].trim();
s_dsnName = argv[1].trim(); 

m_nSleeptime = lnteger.parselnt(argv[2].trim()); 
s_userlD = "sa"; 
s_passWord = null;

}
private void Sleep(long sec)

System.out.println(kTHIS +" Sleeping"); 
try{Thread.sleep(sec*1000);} 
catch(Exception x)0

}
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* Method - checks cpmmand line arguments are OK*
* Arguements - argvQ - [DataBase DSN name] [uid] [passwd]*
* Throws - none★
* Returns - none
*1

public static void main(String argvQ)
{
try
{

if(argv.length < 3)
{

y d i u i i i . g Xii\  i /,

}

try
{

TableArchiveClient cl = newTableArchiveCllent(argv); 
cl.runClient();

}
catch (Exception e)
{

System.out.println("Logging Process could not be started..."): 
System.exit(l);

}
}
catch(Exception e)
{

System.out.printlnfCouldn't interpret first argument as host name"); 
System. exit(O);

}

}y**
* Method - Retrieves the appropriate schema URL for the desired extraction table
* returns the URL as a string
* We need to get two pieces of information
* the host details and the schema file name

*

*  Arguements - a table name*
* Throws - Exception to notify caller functions that it failed (handled above - non-fatal error)
*
* Returns - String
*/

public void runClient()
{

String ls_oldname = null;
String ls_newname = null;
String ls_fileLocation = null; 
try

m_RequestHandler = new lnsertRequestHandler(); 
getDirlnfoO;

}
catch (Exception e)

 ̂ System.out.println("lnsertion Process could not be started...");
System.exit(l);

}



CBSE An implementation case study 126

for(;;)
{

try
{

File listeningPost = new File(xml_Directory); // listening directory 
String fileListQ = listeningPost.list(); // a listing of the directory

// bib and braces 
if (listeningPost.exists())
{

for (int i=0; i < fileList.length; i++)
{

ls_oldname = fileList[i].toLowerCase();
// First test that the application can have the file, ie. The copy in 
// has indeed finished with the creation process 
ls_newname = aquireFile(xml_Directory, ls_oldname); 
if(ls_newname! =null)
{

System.out.println(kTHIS + " Processing M+ ls_oldname);
m_RequestHandler.passlnRunParm(xml_Directory, ls_newname, xsd_Directory,
s_dsnName, s_userlD, s_passWord);
m_RequestHandler.runlnsert();

}
}

}
}
catch(Exception e)
{

System.out.println(kTHIS +" Insertor encountered an error while preparing files");
}
Sleep(m_nSleeptime);

j i t *

* Method - Listens to the input directory, and detects whether all
*
*

the files for a specific batch have arrived

*
*

Arguments - none

it

it
Throws - none

* Returns - fprefix - the input filename prefix if all the required files are here
★
*/

null - if all the required files are not here

private String aquireFile(String as_fileLocation, String as_name) 
{

String ls_suffix = "old";

// leave out the old files 
if (as_name.endsWith(ls_suffix))

{
return null;

}
File oldfile = new File(as_fileLocation+as_name);

File nfile = new File(as_fileLocation+as_name+ls_suffix);

if ((oldfile.existsO) && (oldfile.renameTo(nfile)))
{

return as_name+ls_suffix;
}

else
{

return null;
}

}
j i e l e

*  Method - Listens to the input directory, and detects whether all
* the files for a specific batch have arrived

Arguments - none
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Throws - none

Returns - fprefix - the input filename prefix if all the required files are here
null - if all the required files are not here

private void getDirlnfoQ
{

String query = null;
ResultSet m_rs = null;
try
{

DBConnection m_DBConnection = new DBConnection(s_dsnName, s_userlD, s_passWord); 
query = "SELECT host_drop_directory FROM weld_host WHERE host_name = " + ...+ s_HostName

m_rs = m_DBConnection.runSQLSelect(query);
// assume only a singleton exists

if (m_rs.next())
{

xml_Directory = m_rs.getString("host_drop_directory");
}

m_rs = null;
query = "SELECT host_schema_location FROM weld_host WHERE host_name = 

" + "" + s_HostName + ;

m_rs = m_DBConnection.runSQLSelect(query);
// assume only a singleton exists 
if (m_rs.next())
{

xsd_Directory = m_rs.getString("host_schema_location");
}
m_DBConnection.Close();

}
catch(Exception e)
{

System.out.println(kTHIS + " Host Details could not be located...");
System.exit(1);

}

}

}
//EOF TabieAchiveClient
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*

* class TablePersistance - Class used as a type-safe container for the data
* contained in a single object. The data is
* consigned to the server as an array of strings
* Note, the first element (0) contains the number of elements
* also
* Note that this class is abstract and is implemented as either
* PersistanceXML or persistanceCSV*
* Written by Adrian Collins*
* RELEASE - Sept 25th 2001

*/
import java.utii.*; 
import PersistStream; 
import ExceptionLog; 
import java.util.StringTokenizer; 
import java.sql.*; 
import XMLManager; 
import DBConnection; 
import RunParms; 
import QueryHandler;

public abstract class TablePersistance
{

protected PersistStream m_Stream;
protected ExceptionLog m_uLog = null;
protected String m_FileName, m_URL = null;
protected XMLManager m_schema = null;
protected DBConnection m_DBConnection = null;
protected ResultSet m_rs = null;
private QueryHandler m_QueryHandler;
private RunParms m_runParms;
private final static String kDBDSN = "dqm_ss7";
private final static String kUID = "sa";
private final static String kPWD = null;
private final static String kTHIS = ’TablePersistance";
String filePos = null; // This field is used by all variants and is fetched as part of super

y**

*

■k

Constructor - Constructs an empty row

Throws - IllegalArguementException if String does not represent
valid attribute

* Returns - n/a

public TablePersistance(ExceptionLog a_uLog, RunParms a_runParms) throws HlegalArgumentException

{
m_uLog = a_uLog; 
m_runParms = a_runParms; 
try 
{

y**
*
★
*

// eventually, this class will have to provide the 
// uri of the schema to the XML Manager class
m uLog.LogMessage(kTHIS, "Posting the schema to XMLManager 
m_DBConnection = new DBConnection(m_uLog, kDBDSN, kUID, kPWD), 
getPersistLoc();
m_QueryHandler = new QueryHandler(m_uLog, a_runParms), 
rrTschema = new XMLManager (m_uLog, a_runParms);

catch(Exception e)

* m_uLog.LogException(kTHIS,"TablePersistance issues..."); 

return;

}
}
Method - Creates a unique filename prefix in the form of:

ddmmyyhhmmss, this prefix will be used when 
creating the persisted file, with the appropriate 
suffix.



CBSE An implementation case study 129

Arguments - none★
* Throws - Exceeption

Returns - uf - the unique filename prefix

protected String CreateUniqueFileName() throws Exception 

String uf=null;

java.util.Calendar rn = java.util.Calendar.getlnstance(); 
java.util.TimeZone tz = java.util.TimeZone.getTimeZone(”GMT"); 
m.setTimeZone(tz);
j cav'd. Uu i. Date currentDate — rn.geiTirnsO; 
long t = currentDate.getTime();

//Uncomment this line if default locale set to GMT 
//long t = currentDate.getTime()+(9*60*60*1000);

java.sql.Date sqldt = new java.sql.Date(t); 
java.sql.Time sqltm = new java.sql.Time(t);

String sqld = sqldt.toString();
java.util.StringTokenizer st = new java.util.StringTokenizer(sqld,"-");
String yer = st.nextToken();
String mnt = st.nextToken();
String day = st.nextToken();

String sqlt = sqltm.toString();
java.util.StringTokenizer st2 = new java.util.StringTokenlzer(sqlt,":");

String hrs = st2.nextToken();
String min = st2.nextToken();
String sec = st2.nextToken();

uf = day + mnt + yer + hrs + min + sec;

return uf;
}

jirk

* Method - Retrieves the appropriate schema URL for the desired extraction table
* returns the URL as a string
* We need to get two pieces of information
* the host details and the schema file name

* Arguements - a table name
★
* Throws - Exception to notify caller functions that it failed (handled above - non-fatal error)
*

*  Returns - String
*/

private String getURL(String a_SQL)
{

String query = "http://", queryl = null;

queryl = "SELECT schema_url FROM schema_control WHERE schema_tablename= " + ...+ a_SQL +
try
{

m_rs = m_DBConnectlon.runSQLSelect(query1 );
// assume only a singleton exists 
if (m_rs.next())

query = query + m_runParms.getParameterValue("host") + m_rs.getString("schema_uri");
}

catch (Exception e)

m_uLog.LogMessage(kTHIS,"URL could not be located..."); 
m_uLog.LogException(kTHIS,"URL could not be located..."); 
System.exit(l);

}
return query;
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>/* *

*  Method - Retrieves the physical file location for the extracted
* data to be persisted for this host

* Arguements - a table name*
* Throws - Exception to notify caller functions that it failed (handled above - non-fatal error)★
* Returns - String
7

private void getPersistLoc()
{

String query = null;

query = "SELECT host_file_location FROM weld_host WHERE host_address= " + +
m_runParms.getParameterValue("host")+
try
{

m_rs = m_DBConnection.runSQLSelect(query);
// assume only a singleton exists 
if (m_rs.next())
{

filePos = m_rs.getString("host_file_location");
}

}
catch(Exception e)
{

m_uLog.LogMessage(kTHIS,nURL could not be located..."); 
m_uLog.LogException(kTHIS,"URL could not be located...");
System.exit(l);

}
}

j **

*  execute the supplied procedure

* Returns result set
7

public void execProc()
{

try
{

String script = null;
script = m_QueryHandler.getTableQuery(); 
m_rs = m_DBConnection.runSQLSelect(script); 
m_uLog.LogMessage(kTHIS, "Executing sql script");

}
catch (Exception e)

* m_uLog.LogException(e.toString(),"DB procedure could not be processed...");
}

}
j ie -k

* initialise for a new column to be prepared and sent

7
Returns - n/a

public void InitialiseO

String s_URL = null; 
try

s_URL = m_QueryHandler.getTableName(); 
mJJRL = getURL(sJJRL); 
m_schema.getSchema(m_URL);

catch (Exception e)

 ̂ m uLog.LogException(e.toString(),"Data Base Meta Data could not be located...");
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System.exit(1);
}

}
jkk
* pass back the filename★
*
*
* Returns - file name as a string
*/

public String getFileName()
{

return m_FileName;
}
public void CleanupQ
{

try
{

m_DBConnection.Close();
m_Stream.Close();
// rename the file after completion of the extraction 
// the user may now download the file 
if ( ! (m_Stream.renameFile()))
{

throw new Exception();
}
m_rs.close();

}
catch (Exception e)
{

m_uLog.LogException(e.toString(),"Data Base connection could not be satisfactorily closed..."); 
return;

}

}I**
* output the data in nominated format*
*

*
*  Returns - n/a
7

public void streamOutPut()
{

}
}
//EOF TablePersistance
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*

*  class TablePersistanceCSV - Class accepts the resultset from an extractor class and
* generates a csv file, this file name is then converted to a url, which is fed back to the user
* to allow them to determine the next action.*
* Written by Adrian Collins
★  e

* RELEASE - Sept 25th 2001★
*/
public final class PersistanceCSV extends TablePersistance
{

private final static String kTHIS = "PersistanceCSV";

j i t *

*  Constructor - Constructs an empty row★
*
* Throws - HlegalArguementException if String does not represent
* valid attribute
*
* Returns - n/a
7

public PersistanceCSV(ExceptionLog a_uLog, RunParms runParms) throws 
IliegalArgumentException 

{
super(a_uLog, runParms);

try
{

String ls_physical = null;
String ls_Rename = null; 
m_FileName = Createl)niqueFileName(); 
m_FileName = m_FileName + ".csv"; 
ls_physical = filePos + "tmp_" + m_FileName; 
ls_Rename = filePos + m_FileName; 
m_Stream = new PersistStream(ls_physical); 
m_Stream.passlnLog(a_uLog); 
m_Stream.passlnFileName(ls_Rename);
// filePos is resolved in super and tmp_ is used to
// stop the user from starting the download until file creation
// has been completed. On completion, the tmp_ is removed

}
catch(Exception e)

* m_uLog.LogException('Terminal Error","Unique Filename could not be created..."); 
System.exit(l);

}

}

/** _
* output the data in csv format within the nominated file

V
Returns - n/a

public void streamOutPutQ
{ „

String resultContents = null;
try

// output the header first
String ls_colNames Q = m_schema.getColumnNames(); 
int colCount = m_schema.getColumnCount(); 
resultContents = ls_colNames[0]; 
for (int i = 1; i < colCount; i++)

* resultContents +="," + ls_colNames[i];

m^Stream.WriteCSVData(resultContents); 
while (m_rs.next())
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{
resultContents = null;
// get the first, then loop through each of the others 
resultContents = m_rs.getStrlng(1); 
for (Int I = 2; i < colCount; i++)
{

resultContents += ","  + m_rs.getString(i);
}
m_Stream.WriteCSVData(resultContents);

}
// rename the file after completion of the extraction 
// the user may now download the file

if ( ! (m_Stream.renameFile()))
{

throw new ExceptionQ;
}

}
catch (Exception e)
{

m_uLog.LogException(e.toString(),"Data could not be persisted..."); 
return;

}

}

}
//EOF persistanceCSV
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* class TablePersistanceXML - Class accepts the resultset from an extractor class and
* generates a csv file, this file name is then converted to a url, which is fed back to the user
* to allow them to determine the next action.*
* Written by Adrian Collins

* RELEASE - Sept 25th 2001
*

*/
public final class PersistanceXML extends TablePersistance
{

private final static String kTHIS = "PersistanceXML";

j-k*

*  Constructor - Constructs an empty row

* Throws - HlegalArguementException if String does not represent
* valid attribute*
* Returns - n/a
7

public PersistanceXML(ExceptionLog a_uLog, RunParms runParms) throws 
IliegalArgumentException 

{
super(a_uLog, runParms);

try
{

String ls_physical = null;
String ls_Rename = null; 
m_FileName = CreateUniqueFileName(); 
m_FileName = m_FileName + ".xml"; 
ls_physical = filePos + "tmp_" + m_FileName; 
ls_Rename = filePos + m_FileName;
// filePos is resolved in super and tmp_ is used to
// stop the user from starting the download until file creation
// has been completed. On completion, the tmp_ is removed
m_Stream = new PersistStream(ls_physical);
m_Stream.passlnLog(a_uLog);
m_Stream.passlnFileName(ls_Rename);

}
catch(Exception e)

 ̂ m_uLog.LogException("Terminal Error","Unique Filename could not be created..."); 
System.exit(l);

}

}

r
*  output the data in csv format within the nominated file

7
Returns - n/a

public void streamOutPut()

String resultContents = null;
String ls_column_codes Q = null; 
try

// output the schema name first
resultContents = "<"; „
resultContents = resultContents + m_schema.getSchemaName() + > ; 
m_Stream.WriteXMLData(resuitContents);
// output the schema URL next 
resultContents = "<schema>";
resultContents = resultContents + m_schema.getSchemaURL() + "</schema>"; 
m_Stream.WriteXMLData(resultContents);
¡nt colCount = m_schema.getColumnCount();
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// get the coulumn codes array 
ls_column_codes = new String[colCount]; 
ls_column_codes = m_schema.getColumnCodes();

while (m_rs.next())
{

resultContents = "<row>"; 
int i = 0;

// loop through each row of the resultset and match with the 

corresponding xml column code ie.

<Cl>xx</Cl><C2>yy</C2>...

for (i = 0; i < colCount; i++)
{

resultContents = resultContents + "<" + ls_column_codes [I] + ">" + m_rs.getStrlng(i+1) + "</" + 
ls_column_codes [i] +

}
resultContents = resultContents + "</row>"; 
m_Stream.WriteXMLData(resultContents);

}
// output the top level end-schema tag 
resultContents =
resultContents = resultContents + m_schema.getSchemaName() + 
m_Stream.WriteXMLData(resultContents);

}
catch (Exception e)
{

m_uLog.LogException(e.toString(),"Data could not be persisted...");
System.exit(l);

}

}

}
//EOF persistanceXML
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*

*  class XMLManager - This class reads the xsd file and builds a set of collections
* which host the properties of the table. Column names, data type, Length of char and varcjar size etc.
* The class is instanciated at both client and server, and plays a different role when used by each requestor.
* on construct, the class builds a series of collections which describe the physical attributes of the data (a table)
* Collections include, Column names, data types of column, a result set which carries the data requested by the 
user

* Loading the Schema: Three components of the schema are mandatory:
* a) The Nam espace, W 3C  conformity
* b) Elem ent entity describing the table ddl, which enables remote data bases to create a table to
* to house the data
* c) Elem ent entity describing the table attributes, supported attributes are:
* nam e Attnbute Name;
* title Used for Human Interface;
* code Used to delimiter tags for the columns in xml format;
* type data type for converter classes*
* Loading the XM L file: The input data file is first opened in this class to
* provide information to the class which is needed internally, ie. the
* url of the xsd file. The stream is constructed within this class then
* passed by reference to the parent instance ie. Class UnloadXML*
* Written by Adrian Collins

* RELEASE - Sept 25th 2001
*

*/
import java.io.*; 
import java.util.*; 
import java.sql.*; 
importjava.net.*; 
import XMLReader; 
import RunParms; 
import ElementProperties; 
import ExceptionLog;

public class XMLManager
{

private ElementProperties m_element = null; 
private ExceptionLog m_uLog = null; 
private Vector v_elements = null; 

private String m_nameSpace = null; 
private String m_fileLocation = null; 
private RunParms mjrunParms; 
private XMLReader m_xmlReader = null; 
static final byte kFIRST_VALID_CHAR = (byte)'!'; 
static final byte kl_AST_VALID_CHAR = (byte) Ti 
static final String kTOKEN = "<"; 
static final String kSCHEMA = "schema"; 
static final String kELEMENT = "element name"; 
static final String kATTRIBUTE = "attribute name"; 
static final String kEND = "</schema>"; 
static final String kTHIS = "XMLManager";

Constructor

* Throws - HlegalArguementException if String does not represent
* valid attribute
*
* Returns - n/a
*/ ■ 
public XMLManager(ExceptionLog a_uLog, RunParms a_runParms) throws IHegalArgumentException

m_uLog = a_uLog; 
m_runParms = a_runParms; 
v_elements = new Vector();

}/**
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* Build an xml reader class to open the xml file and get the
* url for the schema. This method is required by the client
* when processing the transported data*
★

★
* Returns - n/a
*/ •

public synchronized void buildXMLReader ()
{

try
{

m_xmlReader = new XMLReader(m_uLog);
}
catch(Exception e)

{
m_uLog.LogException(e.toString()," Could not build XML reader"); 

System.exit(l);
}

}
j-k-k

* Get the schema, and build a tree of the schema

*
* Returns - n/a
*/

public synchronized void getSchema ()
{

URL m_xsd = null;
URLConnection m_xsdConn = null;
BufferedReader xsdjn = null; 

try
{

m_xsd = new URL(getSchemaSource()); 
m_xsdConn = m_xsd.openConnection();
xsdjn  = new BufferedReader(new InputStreamReader(m_xsdConn.getlnputStream()));
m_uLog.LogMessage(kTHIS," Loading Schema");
loadSchema(xsdJn);
xsdJn.close();
m_uLog.LogMessage(kTHIS," Closing buffered reader");

}
catch(Exception e)

 ̂ m_uLog.LogException(e.toString()," Could not load URL to open Buffered Reader");
System.exlt(l);

}
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Get the schema, and build a tree of the schema

Returns - n/a

private synchronized void loadSchema(BufferedReader xsd_in)
{

String ls_Line = null;
try
{

if (xsdJn.readyO)
{

is_Line = xsdJn.readLineQ;
// find schema name space first, protocol demands it will be in the first row 
if (SearchWord(kSCHEMA, ls_Line))
{

loadNameSpace(ls_l_ine);
}
if (locateElements(xsdJn))
{

m_uLog.LogMessage(kTHIS," Finished load of elements with No Errors");
}
else

m_uLog.LogMessage(kTHIS," Finished load of elements with some issues");
}

}
// dump the contents of the schema to the log 
// do this if logging has been set to 'true'

/* if (m_uLog.getLogStatus())
{

getElementNamesO;
getColumnCodes();
getColumnNamesO;

}
*/

}
catch(Exception e)

* m_uLog.LogException(e.toString()," loadSchema, could not execute"); 
System.exit(l);

}
}
private synchronized void loadNameSpace(String ajine)

* m_uLog.LogMessage(kTHIS + " loadNameSpace", "Begin");

}
/**
* Method - Searches the string for a specific word, and
* . The word must not contain any whitespace characters
*
* Arguements - word - the word to search for
*

* Throws - lOException★
* Returns - the last position of the word in the string, OR 0 if not found.

private synchronized boolean locateElements(BufferedReader xsd_in)

m_\iLog.LogMessage(kTHIS +" locateElements", "Begin");
String ls_Line = null; 
boolean b_Running -  true; 

try

* while (b_Running)
{

IsJ-ine = xsdJn.readLineO;

// find the element name' tags and then load the appropriate attributes
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I  I  The line is used to search for attributes, so if we don't find an 
// attribute, it may be a new element, otherwise it may be an error 
// or end of file, so we again check for schema/>

if (SearchWord(kELEMENT, IsJJne))
{

loadElement(ls_Line, xsdjn);
}
if (xsd_in.ready())
{

IsJJne = xsdJn.readLine();

if (SearchWord(kEND, IsJjne))
{

b_Running = faise;
}

}
}

}
catch (Exception e)
{

m_uLog.LogMessage(kTHIS," locateElements, ended with issues"); 
return false;

}
return true;

}
Method - Searches the string for "element name" key word

Arguements - word - the word to search for 

Throws - lOException

Returns - the last position of the word in the string, OR 0 if not found.

private synchronized void loadElement(String IsJLine, Buffered Reader xsd jn )
{

m_uLog.LogMessage(kTHIS + " loadElement", "Begin");

try
{

StringTokenizer st = new StringTokenizer(ls_Line,T<="); 
while (st.hasMoreTokens())
{

String a = st.nextToken();
// we know that the string 'element name' is buried in this string 

// so if the token = name, the next token is the one we want 
if (a.equals("element name"))
{

String b = st.nextToken(); 
m_element = new ElementProperties(b); 
xsdjn.mark(3072);
IsJJne = xsdJn.readLine();
while (SearchWord(kATTRIBUTE, IsJjne))

{ .
m_element.loadAttribute(ls_Line);
IsJJne = xsdjn.readLineO;

}
xsdjn.reset();
// add the elements to the vector; 
v_elements.addElement(m_element);

}
}
v_elements.trimToSize();

 ̂ catch (Exception e)

m_uLog.LogMessage(kTHIS," loadElements, could not execute; kill thread"); 
System.exit(l);

}
}

Method - Searches the string for a specific word, and
The word must not contain any whitespace characters



CBSE An implementation case study 140

Arguements - word - the word to search for 

Throws - lOException

Returns - the last position of the word in the string, OR 0 if not found.

private synchronized boolean SearchWord(String as_word, String ls_Line)
{

int HJJnePointer = 0; 
int IMJneLength = 0; 
int lijength, li_offset = 0;

String word = as_word; 
lijength = word.length();
¡^offset = word.!ength();
IMJneLength = ls_Line.length();
String nextWord = null; 

boolean b_Running = true; 
try 
{

while (b_Running)
{

if (H_LineLength == (li_LinePointer + lijength))
{

b_Running = false; 
return false;

}
nextWord = ls_Line.substring(li_LinePointer, li_offset); 

if (nextWord.equals(word))
{

b_Running = false; 
return true;

}
H_LinePointer++;

li_offset++;
}

}
catch(Exceptjon e)

m_uLog.LogMessage(kTHISSearchWord, could not execute"); 
return false;

>
return true;

}
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Get the table element names

Returns - string Array

public synchronized void getElementNames ()
{

ElementProperties l_element;

m_uLog.LogMessage(kTHIS + " Number of Elements = ", v_elements.size()); 
for(int ¡=0;i<v_elements.size();i++)
{

l_element = (ElementProperties )v_elements.elementAt(i);
m_ui_og.uoyiviessage(kTHIS + " Element Name — " + Inieger.toSinny(i) + " contains!
l_element.getName());

}

Get the name of the schems

Returns - string

public synchronized String getSchemaName ()
{

ElementProperties l_element;
// the name of the schema is stored in the 2nd element vector

l_element = (ElementProperties )v_elements.elementAt(1); 
return l_element.getName();

Get the URL of the schema

Returns - string

public synchronized String getSchemaURL ()
{

ElementProperties l_element;
// the name of the schema URL is stored in the 1st element vector

l_element = (ElementProperties)v_elements.elementAt(0); 
return l_element.getSchemaURL();

Get the schema name from the xml file

Returns - string

public synchronized BufferedReader getXMLStream ()
{

BufferedReader m jn  = null; 
try

m jn  = m_xmlReader.getStream(); 

catch(Exception e)

* m_uLog.LogMessage(kTHIS," Could not locate xml Input Stream, mandatory data - ends"); 
System.exit(l);

} .
return m jn;

Get the schema name from the xml file

}

}

}

}
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* Returns - string
*/

public synchronized String getSchemaSource ()
{

try
{

m_fileLocation = m_runParms.getParameterValue("xmllocation"); 
m_fileLocation += m_runParms.getParameterValue("filename"); 
if ( m_filel_ocation == null)
{

throw new Exception();
}
m_xmlReader.getxmlFromFile(m_fileLocation); 
m_fileLocation = m_xmlReader.gebcsdURL();

>
catch(Exception e)
{

m_uLog.LogMessage(kTHIS," Could not determine the Host to contact, mandatory data - ends"); 
System.exit(l);

}
return m_fileLocation;

}y**
* Get the column count*
★
*
* Returns - int
V

public synchronized int getColumnCountO
{

ElementProperties l_element;
// the number of columns is stored in the 1st element vector

l_element = (ElementProperties)v_elements.elementAt(0); 
return l_element.getColumnCount();

}
j-k ie

* Get the table column names*
*
*
* Returns - string Array
*/

public synchronized String Q getColumnNames ()

 ̂ // assume the columns we need are in the second vector element 
ElementProperties l_element;
l_element = (ElementProperties) v_elements.elementAt(1); 

return l_element.getColumnNames();
}
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r
* Get the table data types

* Returns - string Array
7

public synchronized String Q getDataTypes 0
{

ElementProperties l_element;
// assume the types we need are in the second vector element

l_element = (ElementProperties)v_elements.elementAt(1); 
return l_element.getColumnTypes();

}
jirk

*  Get the table script*

* Returns - string Array
7

public synchronized String getScript ()
{

ElementProperties l_element;
// assume the codes we need are in the first vector element

l_element = (ElementProperties)v_elements.elementAt(0); 
return l_element.getScript();

}
jkk

*  Get the table column codes*
*
★

* Returns - string Array
7

public synchronized String Q getColumnCodes ()
{

ElementProperties l_element;
// assume the codes we need are in the second vector element

l_element = (ElementProperties)v_elements.elementAt(1); 
return l_element.getCode();

} -
j i t *

*  clean up*

* Returns - n/a
7  _

public synchronized void CleanupO
{

m_xmlReader.CleanUp();
}I**

*  output a row to the log to indicate commencement
*

★
* Returns - n/a
7

public synchronized String getlogCommenceO

Calendar rightNow = Calendar.getlnstance(); 
java.util.Date thisDate = rightNow.getTime();
String ls_now = thisDate.toString();

String filePath = m_runParms.getParameterValue("xmllocation");
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String fileName = m_runParms.getParameterValue("filename");

String query = "INSERT INTO dqmjog (fileName, filePath, fileCreated, fileStatus) values (" +
+ + filePath + + ,,,H + ls_now + + ...+ "Commenced" +
return query;

}

output a row to the log to indicate commencement

Returns - n/a

public synchronized String getioyCompiete(int al_rows)
{

// ai_row count for the log
String filePath = m_runParms.getParameterValue("xmllocation");
String fileName = m_runParms.getParameterValue("filename");

String query = "Update dqm jog set fileStatus =" + + "Complete" + + ", tableName =" +
getSchemaName() + +  ", fileRowCount = " + ai_rows + " where fileName = "
+ + fileName + +" and filePath =" + + filePath + .
return query;

}

+ fileName

+

}
//EOF XMLManager



CBSE An implementation case study 145

*
*  class XMLReader - The input data file is first opened in this class to
* provide information to the XMLManager class which is needed internally, ie. the
* url of the xsd file. The stream is constructed within this class then
* passed by reference to the caller.*
* Written by Adrian Collins★
* RELEASE - Sept 25th 2001*
*/
import java.io.*; 
importjava.net.*; 
import ExceptionLog;

public class XMLReader
{

private ExceptionLog m_uLog = null; 
private String m_nameSpace = null; 
private String m_XSDName = null; 
private BufferedReader xm ljn  = null; 
private URLConnection m_xmlConn = null; 
static final String kTOKEN = "<"; 
static final String kSLASH = 7"; 
static final String kSCHEMA = "<schema>"; 
static final String kEND = "</schema>"; 
static final String kTHIS = "XMLReader";

Jirk

* Constructor

* Throws - HlegalArguementException if String does not represent
* valid attribute
*
* Returns - n/a
7

public XMLReader(ExceptionLog a_uLog) throws UlegalArgumentException

{
m_uLog = a_uLog;

}
public String getxsdURL()

{ .
return m_nameSpace;

>
public String getxsdNameQ

{
return m_XSDName;

public BufferedReader getStream()
{

return xm ljn;
}
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Get the xml file and read the uri of the xsd file

Returns - n/a

public void getxml (String a_URL)
{

URL m_xml = null; 
try

{

m_uLog.LogMessage(kTHIS," URL = " + aJJRL ); 
m_xm! = new URL(a_URL);

m_xmlConn = m_xml.openConnection();
xm ljn  = new BufferedReader(new lnputStreamReader(m_xmlConn.getlnputStream()));

m_uLog.LogMessage(kTHIS," Loading Schema");

locateSchema(xml_in);

}
catch(Exception e)

{
m_uLog.LogException(e.toString()," Could not load URL to open Buffered Reader"); 

System.exit(l);
}

}I**
*  Get the xml file and read the url of the xsd file

Returns - n/a

public void getxmlFromFiie (String a_File)
{

File m_xmlFile = new File(a_File); // listening directory 
try

{
URL m_xml = m_xmlFile.toURL(); 

m_xmlConn = m_xml.openConnection();
xm ljn  = new BufferedReader(new lnputStreamReader(m_xmlConn.getlnputStream()));

m_uLog.LogMessage(kTHIS," Loading Schema");

locateSchema(xmlJn);

}
catch(Exception e)

^m_uLog.LogException(e.toString()," Could not load URL to open Buffered Reader"); 
System.exit(1);

}
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j-k ic

* Get the schema, and build a tree of the schema

*/
Returns - n/a

private void IocateSchema(BufferedReader x m ljn )
{

String ls_Line = null; 
try 
{

if (xml_in.ready())
{ _____  .

is june — xiiiiJn.readLinei);
ls_Line = xmlJn.readLine();
// find schema name space first, protocol demands it will be in the second row 
if (SearchWord(kSCHEMA, ls_Line))
{

loadXSDName(lsJJne);
}
else

m_uLog.LogMessage(kTHIS," Finished load of elements with some issues");
}

}
}
catch(Exception e)

m_u Log. Log Message (kTH IS," locateSchema, could not execute");
m_uLog.LogException(e.toString()," locateSchema, could not execute"); 

System.exit(l);
}

}
private void loadXSDName(String a_line)

m_uLog.LogMessage(kTHIS + " loadSchema XSD Nam e", "Begin"); 
//<schema>http://192.168.1.254/xml/welddes.xsd</schema>
String word = null; 
int li_startPointer = 0; 
int li_endPointer = 0;

li_startPointer = a_line.indexOf(kSCHEMA); 
li_startPointer = li_startPointer + kSCHEMA.Iength(); 
li_endPointer = a_line.indexOf(kEND);

m_nameSpace = a_line.substring(li_startPointer, li_endPointer);

// now get the name of the xsd file, in case the url name cannot 
// be located, we can try (as a last resort) to read it from 
//  the localhost 
int li_end = 0;
int lijength = m_nameSpace.length(); 
for (int i = lijength; i > 0; i~)
{

li_end = i-1;
if (m_nameSpace.substring(li_end,i).equals(kSLASH))

m_XSDName = m_nameSpace.substring(i, lijength); 
break;

}
}

}

http://192.168.1.254/xml/welddes.xsd%3c/schema


CBSE An implementation case study 148

Method - Searches the string for a specific word, and
The word must not contain any whitespace characters 

Arguements - word - the word to search for 
Throws - lOException

Returns - the last position of the word in the string, OR 0 if not found.

private boolean SearchWord(String as_word, String ls_Line)

int IMJnePointer = 0; 
int Ii_LineLength = 0; 
int lijength, li_offset = 0;

String word = as_word;
li isnG th =  'A'QrH lonnthA*

li_offset = word.length(); 
li_LineLength = ls_Line.length();
String nextWord = null; 

boolean b_Running = true; 
try 
{

while (b_Running)
{

if (HJJneLength == (li_LinePointer + lijength))
{

b_Running = false; 
return false;

}
nextWord = ls_Line.substring(li_LinePointer, li_offset); 

if (nextWord.equals(word))
{

b_Running = false; 
return true;

}
li_LinePointer++;

li_offset++;
}

}
catch (Exception e)
{

m_uLog.LogMessage(kTHIS," SearchWord, could not execute"); 
return false;

}
return true;

}
j i r k

*  Method
*

- Tidies up

* Arguements
*

- none

* Throws
★

- Exception

* Returns - none
7

public void CleanllpO
{

try
{

xmlJn.closeO;
}

catch(Exception e)
{ .

m_uLog.LogException(e.toString()," Could not close url connection");
}

}
}
//EOF XMLReader
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APPENDIX B

B.l Database Scripts
/****** object: Table [dbo].[Weld_Host] ******/
CREATE TABLE [dbo].[weld_host] (

[host_address] [varchar] (50) NOT NULL ,

[host_name] [varchar] (50) NULL ,

[host_url] [varchar] (50) NULL ,

[host_insertion_only] [char] (1) NULL ,

[host_odbc_dsn] [varchar] (50) NULL ,

[host_schema_location] [varchar] (50) NULL ,

[host_file_location] [varchar] (50) NULL 

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[Weld_Description] ******/
CREATE TABLE [dbo].[Weld_Description] (

[WelderJd] [int] NULL ,

[WeldJD] [int] NOT NULL ,

[Batch] [int] NULL,

[Weid_Date] [datetime] NULL,

[Travel_Speed_Set_Point] [int] NULL,

[Travel_Speed_Tolerance] [int] NULL,

[Voltage_Set_Point] [float] NULL,

[Voltage_Tolerance] [int] NULL,

[Current_Set_Point] [int] NULL,

[Current_To!erance] [int] NULL,

[Wire_Feed_Rate_Set_Point] [float] NULL, 

[Wire_Feed_Rate_Toierance] [float] NULL,

[Heat_lnput_Set_Point] [float] NULL,

[Heat_Input_Tolerance] [float] NULL,

[Deposition_Set_Point] [float] NULL,

[Deposition_Tolerance] [float] NULL,

[Time_Set_Point] [int] NULL,

[Time_Tolerance] [int] NULL,

[TOTAL_VOLT_F] [int] NULL ,

[TOTAL_CURR_F] [int] NULL ,

[TOTAL_WFR_F] [int] NULL ,

[TOTAL_HEAT_F] [int] NULL,

[TOTAL_DEP_F] [int] NULL,

[TOTAL_TIME_F] [int] NULL ,

[Client_Detail_File] [nvarchar] (50) NULL , 

[Client_Detail_File_Requested] [smallint] NULL, 

[Client_Detail_File_Here] [smallint] NULL,

[checksum] [int] NULL
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) ON [PRIMARY]

GO
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/****** Object Table [dbo].[Abstract] ****** I
CREATE TABLE [dbo],[Abstract] (

[W elderjd] [int] NULL,

[WeldJD] [int] N U LL,

[Batch] [int] N ULL,

[Weld_Time] [datetime] N ULL,

[Part_No] [int] N U LL,

[Weld_No] [int] N U LL,

[VOLTJF] [smaiiint] NULL,

[CURR_F] [smaiiint] NULL,

[WFR_F] [smaiiint] NULL,

[HEAT_F] [smaiiint] NULL ,

[DEP_F] [int] NULL ,

[TIME_F] [int] NULL ,

[checksum] [int] NULL 

) ON [PRIMARY]

GO
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/****** o b j ect; T a b le  [dbo]. [Detail] ******/

CREATE TABLE [dbo].[Detail] (

[W elderjd ] [int] N U LL,

[W eldJD] [int] N U LL ,

[Batch] [int] N U LL,

[Weld_Time] [datetime] N U LL,

[Part_No] [int] N U LL,

[Weld_No] [int] N U LL ,

[Section] [int] N U LL ,

[VOLT] [float] NULL ,

[STD_V] [float] N U LL,

[Weld_CURRENT] [float] NULL,

[STD_CURR] [float] N U LL,

[WFR] [float] N U LL,

[STD_WFR] [float] N U LL,

[HEAT] [float] N U LL,

[DEP] [float] N U LL,

[WTIME] [int] N U LL,

[VOLT_F] [int] N U LL,

[CURR_F] [int] N U LL ,

[WFR_F] [int] N U LL ,

[HEAT_F] [int] N U LL,

[DEP_F] [int] N U LL ,

[TIIVIE_F] [int] NULL ,

[Weld_end] [int] N U LL,

[checksum] [int] NULL 

) ON [PRIMARY]

GO
/****** object: Table [dbo].[server_status] ******/

CREATE TABLE [dbo].[server_status] (

[stop_flag] [int] NULL 

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[table_properties] ******/

CREATE TABLE [dbo].[table_properties] (

[tabie_name] [varchar] (25) NOT NULL ,

[create_string] [varchar] (1000) NULL 

) ON [PRIMARY]

GO
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/****** ob ject: Table [dbo].[welder_info] ******/ 

CREATE TABLE [dbo].[welder_info] (

[w e ld e rjd ] [int] NOT NULL ,

[welder_name] [varchar] (100) NULL ,

[default_time_period] [int] N U L L ,

[location] [varchar] (100) NULL ,

[default_selection_no] [int] N U L L ,

[archive_status] [int] N U L L ,

[transporter_status] [int] NULL 

) ON [PRIMARY]

GO
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APPENDIX C

C.l User Manual

The DDM Framework Application has been developed to enable the transfer of 

data from a secure Source Host to a Target Host. Data may be extracted from a 

nominated database using a Web Browser to locate and select the required data 

(assuming you have access rights to that data). The extracted data can be then be 

transported to the requesting users .desktop, or to a nominated Relational Database. 

There are two currently supported formats, XML and CSV, XML is also used to 

package the data for transport, when a user requests insertion into a distributed 

(remote) database.

When the user wishes to extract the data and have it delivered to the desktop, the 

only requirement is knowing how to request the data, however, when the user wishes 

to have the data inserted into a nominated database (not necessarily that users host 

machine), the Data Insertion components of the framework need to be 

implemented on the target host machine.

C.2 System Requirements

The system was developed using Servlet Technology (refer to Chapter 2). Servlets 

are modules that run inside request/response-oriented servers, such as Web Servers, 

and extend them by allowing a user to call Java Objects, by referencing them in a 

URL (Uniform Resource Locator refer to definition section). Once the URL is 

accepted, the request is then passed through to the Servlet Engine by the Web 

Server. In order to use the framework, both Server (Source Host) and Client (Target 

Host) sides need the following technology components in place.

Web Server

Which accomodates either a Servlet in-process web server plug-in, or an out-of

process web Application Server.
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Application Server

The Servlet in-process web server plug-in provides best performance and is the 

easiest to install and configure, but if a failure does occur, the Web Server 

apphcation can also become corrupted, necessitating a system restart. The out-of

process application server provides the best architectural flexibility and safety 

because of Servlet process isolation, allowing the Application Server to be stopped 

and started independendy of the Web Server.

Servlet Engine

A servlet is a small Java program that runs within a Web server. Servlets receive and 

respond to requests from Web clients, usually via an HTTP request. If the system is 

running Microsoft IIS or the Netscape Enterprise Server, you can typically use an 

in-process Servlet engine, however, the Apache Web Server does not support an in

process Servlet engine.

For development of the framework, the 'ServletExec' Application Server was used,

(Servlet Engine) 

Unify which is 

currendy available 

from

http: / / shop.unify.com/download

and can be purchased for $600 US per server. Unify offer developers an unlimited 

trial version for free, which is constrained to three (3) concurrent client requests. 

The framework uses this trial version (currendy version 3.0 is implemented); it 

works extremely well, is easy to install and provides a number of tools for 

development and debugging. The Engine automatically initialises and creates a Java 

VM instance when the web server starts, this means that ServletExec is always 

running and available when the web server is running.

Relational Database (Rdbms)

Any ansii standard database which can be supported by an ODBC connection. The 

currently implemented framework application is based around an SQL Server 6.5 

database Engine. Early versions were implemented over a Microsoft Access 

Database, however, the code needed to be modified to include 'braces' around the 

string fields when executing dynamic SQL strings.
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ODBC

The Microsoft® Open Database Connectivity (ODBC) interface is a C 

programming language interface that makes it possible for applications to access 

data from a variety of database management systems (DBMSs). The ODBC 

interface permits maximum interoperability by allowing an application to access data 

in diverse DBMSs through a single interface. Furthermore, that application will be 

independent of any DBMS from which it accesses data. Proprietory data base 

Vendors publish software drivers, which provide an interface between an application 

and a specific DBMS. In order to use the framework, an ODBC Data Source Name 

(DSN) which points to the underlying RDBMS.

C.3 System Administration

There are a number of setup tasks which need to be completed prior to successfully 

using the system.

Figure C.l Architecture Diagram 

Web Server Availability

The system assumes that the data is accessible using a Web Browser. Request 

parameters are passed into the framework via HTML and all User access with the 

system is via the Web Browser. Data can be transported to machines on a subnet, te. 

with no external access to the Internet as long as a Web Server is available at the 

source machine. The target machine may only receive the extracted data in CSV 

(Comma Separated Variable) format without itself, needing to support a Web Server. 

However, if  the User wishes to use the framework to first extract data, then post 

that data into an RDBMS, then a number of additional steps need to be completed
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prior to activating the system. Most importantly, a Web Server must be implemented 

on the target machine to initiate the Servlet engine which interacts with the target 

database.

C.4 Component Software Installation

The installation process documented below assumes the system will be fully utilised 

to extract data from a nominated Source Relational Database and insert data into a 

nominated Target Relational Database. In order to accommodate this processing 

facility, the following components need to be implemented on ALL hosts which will 

share the data.

Unify  Installation

The complete installation documentation is included in the ServletExec download 

from http://shop.unify.com/download. ServletExec (from Unify eWave) is a Servlet 

Engine that implements the Java™ Servlet API 2.2 and JavaServer Pages (JSP) 1.1 

standards defined by Sun Microsystems, Inc. as component technologies of the Java 

2 Platform, Enterprise Edition (J2EE™). Refer to

http://www.uuify.rom/products/index.htm. The main issue is to install the Servlet 

Engine, then update the Web Server Properties tab for ISAPI Filters to reference

■ ■ ...............  ■
; DiotforySetxri/ | ' HTTP Headers I CustomEirors | Server Extension* 
Web Site 1 Operators I Performance ISAPI Rieti I H¿¿¿ DVectwy |; Documents1 1  m

• FUeu retailed here are active fot this Web tie on̂ . Filters are execiled r> the I 
orde, isted below: - '

«■■nini

IC: M netpub\scnpts\S ervletE x e c j SAPI. dll

Figure C.2
the DLL plugin for the engine.

erver Configuration

Once the Web Server has been stopped, then restarted, the Status flag (refer to 

figure 5.2) in the ISAPI (Internet Service Application Program Interface) Filter tab 

should now show as green, indicating that the plug in has been successful. The

http://shop.unify.com/download
http://www.uuify.rom/products/index.htm
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Unify configuration process which allows the administrator to setup ServletExec is 

accessible from the administration user interface at the following URL

h ttp ://l2 7 .Q .o .i/serv le t/ad m in  assuming you are installing the ServletExec on the local 

machine (Replace the local host address if  the engine is being installed on a remote 

host). If the software has been installed successfully, the screen shown in figure 5.2 

will be presented. Note the ‘classpath’ entry on the menu frame which should be set 

to installD irec tory\U n ify \S erv Ie tE xecJS A P I\serv lets , this can be changed to suit the directory 

where the administrator wishes to deploy the framework classes. The Data 

Extraction process is initiated by a java class named servletExtractor, which (for 

example) may be physically located at d:\Program Files\Unify\ServletExec_ISAPI\servlets. To 

test the installation, send the following request from the client browser with the 

following URL http://127 .0 .0 .1/servlet/D ateS ervle t If all is well, the Web Server should 

return a screen with the following content:

W ed Oct 10 13:00:09 GM T+11:00 2001

If not follow the ‘trouble shooting’ and help documentation in the 

S ervietE xec_30_U ser_G uide.pdf included in the download package. The install is very 

straightforward and generally, should provide no problem.

S e r v l e t e x e c  3 . 0  

I S 'A P I

A d m in

Register Servlet Exec
h e lp

re g is t e r
i L i c e n s e  K e y : 1 ....._.... ......: __ _________  -VTi

v ie w  lo g s ; — N o t R e g is te re d

V ir t u a l  M a c h in e  

se tt in g s  

c la s s p a th  

o p tio n s

*  M o t  R e g is t e r e d ,  S e r v l e t E x e c  s u p p o r t s  a  m a x im u m  o f  3  c o n c u r r e n t  r e q u e s t s

|Registe^ r|

Figure C.3 Servlet Configuration

Additional documentation ServletExec 3.0 Installation Guide is located at:

http: / /support.unify.com/documents/servletexec/SE3 IG.pdf

In order to view the Installation Guide or the User Guide, you 11 need Acrobat 

Reader which is available (as a free download) at:

http: / /www.adobe.com/products / acrobat/readstep.html

If you have still have problems installing ServletExec then check the ServletExec 

technical support FAQ:

Vittp: / / snpport.unify.com/supportai/ServletExecFAQ.htm

as well as free installation support, available via email to support@unify.com

http://l27.Q.o.i/servlet/admin
http://127.0.0.1/servlet/DateServlet
http://www.adobe.com/products
mailto:support@unify.com
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Note, that you must indicate the version of JDK/JRE and the web server (and 

version) being usedjava installation.

Database setup

The current version of the framework is installed using Microsoft® SQL Server 

Version 6.5. As mentioned earlier, any ansii standard database which provides an 

ODBC driver is an acceptable repository for data storage. SQL Server was chosen 

because of it’s availabiility, cost and the fact that Stored Procedures and Triggers are 

supported. While there is no current use of Stored Procedures, the framework will 

operate with result set’s returned by Stored Procedure. (Refer to 

Method/prototype/client side model/DBConnection). Once SQL Server has been 

installed, the database needs to be created with the following properties:

Name DQM

Table Size 50 Megabbytes

Log Size 10 Megabytes

System Tables

There are a number of system tables which need to be generated, these tables 

provide dynamic data to the framework, and facilitate the creation of XML data, 

and the dynamic generation of Schema files (XSD).

The system and data tables can be created using the scripts provided in 

Appendix/Database Scripts.

SCHEMA_ CONTROL: The framework uses a schema to prepare the XML data (as 

well as decipher the packaged data). When the framework executes the Client SQL 

string, the schema_control table is accessed to provide the name of the schema file 

(xsd) to use when building the XML data. Refer to figure 5.4, the name of the table 

is used as a key to match the correct xsd file, and the location. The detail provided 

by the request is also included as referencing schema URL in the XML document.

schema_tablename schema_url

weld_description /xml/welddesc.xsd

Abstract /xml/abstract.xsd

Detail /xml/detail.xsd
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W ELD_HOST: The framework uses data from the weld_host table as runtime 

parameters to allow the application to be deployed using the specific site 

administration rules. Each host must have an IP address which equates to the 

request.getServerName() (available from the Servlet request), this ip address is used to:

• Identify the local ODBC DSN name associated with the framework

• Nominate the location of the XML document generated by the 

framework.

host_address host_odbc_dsn host_file_location

192.168.1.254 dqm _target d:/dqm /deveiopm ent/Serv!etData/

Note this folder must be made publicly (refer to figure 5.6) available as a URL, and 

be available as a subordinate directory under the Hosts published Web directory. In 

the example setup shown in figure 5.5, remote hosts will be told to locate the XML 

document at http://192.168.1.254/ServletData/

O D BC  SETUP

Refer to figure 5.5 above, which identifies the odbc dsn which is used by the 

framework to access the underlying database. Once the database has been installed, 

the next step is to build the DSN. Bring up the ODBC Data Source Administrator 

panel (figure 5.7), from the panel, select <System DSN>, then <ADD> a new 

DSN. Select the appropriate database driver (in the example case it is SQL Server).

Figure C.4 Permissions

http://192.168.1.254/ServletData/
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Provide a name and description for the service (note this name must then me 

inserted in the weld_host table in the host_odbc_dsn column, using the appropriate 

host_address as the key.

Figure C.5 ODBC Setup

From the create DSN screen wizard, select the server which matches the IP Address 

entered into host_address, then provide related security information. As a prototype, 

the framework uses the standard “sa” User account and null password. If you wish 

to use a more rigorous level of security, the kUlD and kPWD constants must be 

modified in the DBConnection module (then recompiled), and the related accounts 

setup in the underlying database. While this is not a complicated procedure, it is 

considered outside the scope of the User manual, and is fully documented in the 

Method/Security_and_Data_Access section. In any event, once the security details 

are entered (refer to 5.8) ensure that the client configuration option is set to TCP/IP 

(figure 5.9).

F igure C.6 SQL Server Configuration
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Figure C.7 SQL Server Configuration

All other setup parameters are self explanatory, however, do carry out a test to 

ensure the ODBC service can reach the target database.

Web Server Configuration

This section relates to the setup of the Web Server and reiterates that the directories 

underneath the Home directory must be flagged as public (figure 5.6). There are two 

directories which must be created in order for the framework to operate. First, the 

schema directory, which is user defined. In the example shown in figure 5.4, the 

schema directory is nominated as /xml/ which means that a remote host would be 

presented with the http://192.168.1.254/xml/abstract.xsd URL when requesting 

the schema URL from the XML document being processed.

Secondly, the framework needs a public directory to maintain the XML documents 

being produced as a result of extraction requests. These requests generate an XML 

document which is placed in the directory identified as host_file_location in figure 5.5. 

the entry is d:/dqm/deveiopment/ServletData/, so, the Web Server Home directory is 

d:/dqm/deve!opment, which means that ServietData is publicly accessible when provided 

as a URL, and framework accessible from within the extraction application.

Client Configuration

If the Client Host will be used to INSERT data extracted from a Remote Host into 

a locally maintained RDBMS, then the client machine will need to be setup as per 

the Software Installation guidelines. Obviously, if  the client host is only receiving 

data and is not itself an extraction host, then the database entriy for weld_host 

(which identifies the name of the ODBC DSN) is the only requirement. Security is 

also an issue if the site is not using the standard system security for Database access. 

As mentioned earlier, if a more rigorous level of security is required, the klilD and 

kPWD constants must be modified in the DBConnection module (then recompiled),

http://192.168.1.254/xml/abstract.xsd
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and the related accounts setup in the underlying database (fully documented in the 

Method/Security_and_Data_Access section).

C.5 Using The Framework

The framework has two setup components which must be implemented and 

understood, prior to use. The first component (Database Setup), has been covered 

in the Software Installation section, and facilitates access to the data in the database, 

and configuring the Web Server to facilitate access to the XML data, once it has 

been extracted from the database, but is still resident on the server host. The next 

section covers the request parameters and the variuos methods of placing a request 

to the extraction component of the framework.

Data Extraction Request

An extraction request is typically received by way of an HTML page being posted to 

the Servlet Engine. For example, the following URL contains a request:

http://192.168.1.254/servlet/servletExtractor?Format=XML&Button=Extract+Data&Table=Weld Descripti 

on&KevName+1 =welder id&KevVaiue+1 =2

This request can be broken down into the following sub components:

URL http://192.168.1.254/servlet/servletExtractor

Format XML

Button Extract+Data

Table Weld_Description

KeyName+1 w e ld e rjd

KeyValue+1 2

Figure C.8 Parameter Interface

All requests to the framework must be in this format, the complete list of allowable 

parameters is provided.

U RL: The mandatory string which names the Servlet directory and the name of the 

extractor module (located in the Servlet directory), which is launched (as a thread) 

by the servlet engine.

http://192.168.1.254/servlet/servletExtractor?Format=XML&Button=Extract+Data&Table=Weld_Descripti
http://192.168.1.254/servlet/servletExtractor
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F o rm a t: There are two formats currently supported by the framework, CSV (Comma 

Separated Variables), and XML (Extensible Markup Language). The request must 

specify the output format to the extraction module.

B u t t o n :  This parameter tells the extraction module where to deposit the extraction 

request. Valid values are transport or extract data, any other value w ill cause processing 

to halt.

T a b le : This parameter refers to the table being queried for data extraction

K ey N a m e  1: This parameter, (note the numericaly appended increment), must 

match the KEYVALUE appended numeric. The concept is to build a set of 

matching pairs, that are then used to append to the WHERE clause in the SQL 

statement used to extract the data from the underlying database. The Java based 

Servlet technology has no way of matching the parameter names with the respective 

parameter value. For example if  the sql query we are building requires two 

arguments in the WHERE clause say

SELECT * from xxxx WHERE

parm_name_1 = parm_value_1 AND 

parm_name_2 = parm_value_2

The servlet engine passes the arguments into the request buffer in random order, so 

the numeric sequence number is a simple method o f constraining the interface to 

accept only pairs named as follows:

KeyName 1 or KeyName_1 must match KeyValue 1 or KeyVaiue_1 

KeyName 2 or KeyName_2 must match KeyValue 2 or KeyValue_2

K eyV a lu e 1: This parameter contains the actual value inserted into the SQL string 

used to extract the data from the underlying database.

U ser Interface

Currently, functionality is provided for the user to first view the data, prior to 

making an extraction choice of transport to the Users desktop in either CSV or 

XM L format, or transport to a relational database o f the user choice.
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Welding Cell Statistical Abstract
- , ■  ̂ - ■ 

Details of welding cell: Welding Unit 2

. ■ ... . ■.You May Extract the data by selecting the desired cute

Click here to view specific weld details

;dg batch time
'p a rtn o  |l weld

curr_f;
jO heat_f;/^ < j jp:

•ft -‘ ' / ' . - ' / "  t  -&<3ryi  r  • ¿r-r J  ̂*' &H&i i.i£. ' • ■

F igure C.9 F ile Selection

The user can execute ad hoc sql queries which can then be delivered in csv or xml. 

The HTML interface is presented as a list page with the data shown in table format, 

the user may then nominate to extract the data and manually download it to the local 

site.

C.6 Entering Extraction Parameters

Extraction parameters must be entered via HTML, which are then passed into the 

framework for execution. The HTML document presents the parameters as input 

identifiers via form tags (refer to figure 5.13), which depicts a segment of the mark 

up used to produce the HTML document in figure 5.11. Note the standard mark up 

is depicted in a red colour, VBscript in a tangarine colour, parameters in a blue colour 

and the parameter values in a green colour. Note also the VBscript method of 

presenting database selections to the user. The parameters are flagged as input 

within the form, and may be hidden. The action identifier must name 

servlet/servletExtractor as the URL component submitted when the User selects the 

button. The parameters are then appended to the end of the URL string and passed 

into the framework engine.
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<form name=show_weld action="servlet/servletExtractor" method=GET>
<table>
<tr>
<td align=Ieft>YouMay:</td>
</tr><tr> <td align=left>Extract the data by selecting the desired output format, then submitting your 
request:</td>
ctdxselec t riame=”Format" size=1 align=center >

<option>CSV
<option>XML
</select>

<input type= submit name=“Button" va I ue= "Extract Data"x/td> </tr><%
SQLquery —■ "select * from weld_host “ 
set myset =■ d b Co n n ect. e x e cute (SQL qu ery)%>

<tr><td align=left>Or, transpo rt the file tò thè desired host: <Transport>:</td> 
ctdxselect name—"Destination" Size=1 align=center><%

%>
do while not mysét.eof

-5% <option>< %= myset("host address") % >

myset. move next 
loop%>

</select>
< input type= submit name="Button ” va I u e= "T ra nsp o r t">< /td >
<input type=hidden name=*Table" value = ,Weld;_Description">
< inptit type=hidden name="fileiocation'' value = “http://i92.168.1.254/ServIetData/“> 
cinput type=hidden hame=“KeyName 1“ value « "welder^d">

<input type=hidden name="KeyValue 1” value = <%=WelderNumber%>>
</tr>

</table>
</form>

Figure C.10 Schema

In addition, note the method of identifying the KeyValue 1 parameter, is to use a 

vbscnpt variable declared in the markup (extract shown in figure 5.14). Using this 

method, the developer is then able to dynamically execute the extraction request.

<!-Extract the welder number from the passed in QueryString value "WelderJD” ->
< %

WelderNumber = Request.QueryString("Weider_ID")
SQLqueiy = "select* from W elderjnfo where WelderJD = " & WelderNumber

dbConnect.open dbSTR ....
set ROBOTNAME = dbConnecf.execute(SQLquery)

Welder = ROBOTNAM ECW elde^Nam e“) 
numToShow = ROBOTNAME (“ D efa ult_S e I e dig n_N o

%> _____________ _________

Figure C .ll VBScript example

C.7 Data Insertion

As per the Extraction components of the framework, any host being setup to 

receive XML for posting into a relational database must be configured in the same 

manner as documented under paragraph 3, ie. data is received via a Web Server, 

with a Srevlet engine capturing the dynamic requests from the data source host.

Install the Servlet engine, the database and then create an ODBC connection as 

documented under paragraph 3.

http://i92.168.1.254/ServIetData/%e2%80%9c
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Ther is no specific setup of the Web Server required, only that the Servlet engine is 

correcdy configured to interact with the Web Server, run the example servlet to 

confirm the installation of the servlet engine. And also complete the working 

example when implementing the ODBC connection, to ensure that you have been 

successful.

The IP address of the Client Host must also be inserted into any Extraction hosts in 

the framework operational scope. This means an entry into the weld_host table (on 

any data extraction host), remember, the framework uses data from the weld_host 

table to provide a ‘drop down’ listbox of available target hosts. This mode of 

administration is used to provide more control of the framework operational scope. 

As an example, if the tartget host is 192.168.1.10, then this information needs to be 

added into the weld_host table on the extraction host (refer to figure 5.15)

host_address host_nam e host_url host_odbc_dsn

192.168.1.254 SERVER htto://192.168.1.254 Dqm_ss7

192.168.1.10 CLIENT httD://192.168.1.10 Dqm_ss7

The current version of the framework uses dqm_ss7 as the mandatory name of all 

ODBC DSN connections.

C.8 Security

There is no application level security in place, as there is no direct (external) access 

to the Source or Target Database. While it is true that extracted data is placed into a 

public access area, the only user option is to read the data by transporting it to the 

users desktop, or transfer the data to another database under program control. The 

security issue which relates to the modification of data (for malicious purposes), can 

only be achieved at the insertion end, by altering the contents of the XML data 

being transported to the target site.

C.9 Viewing Logs

The framework system log file contains two types of entries. All genuine exceptions 

(caught by the system and explicidy logged) are appended to the dqm log file, as well 

as debugging messages which are appended to the log file by the system 

maintenance personel. The message log is a debugging tool whichcan be switched
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on or off by setting a compile time flag in each of the framework processing 

components, servletExtractor and servletlnsertor. In each module, the Service 

method contains an entry which allows the developer to set logging on with a 

m_uLog.setLog(true); statement. The ExceptionLog constructor automatically calls the 

setLog method and sets message logging to false. So unless the developer calls 

setLog with a boolean true, logging will remain off.

The log file w ill be automatically generated as dqm_server.log in the WINNT\system32 

directory.

1 2 / 10/ 2 0 0 1 ,
12/ 10/ 2001,
12/ 10/ 2001,
12/ 10/ 2001,
12/10/2 0 0 1 ,
12/ 10/ 2001,
12/ 10/ 2001,
12/ 10/ 2001,
12/ 10/ 2001,
12/ 10/ 2001,
12/ 10/ 2 0 0 1 ,
12/ 10/ 2001,
14/10/2001,
14/10/2001,
14/10/2001,
14/10/2001,
14/10/2001,
14/10/2001,
14/10/2001,
14/10/2001,

22:41:18 
22:41:18 22:41:18 
22:41:18 
22:41:18 
22:41:18 
22:41:18 
22:41:18 
22:41:18 
22:41:18 
22:41:18 
22:41:18 
23:27:55 23:27:55 
23:27:56 
23:27:56 
23:27:56 
23:27:56 
23:27:56 
23:27:56

Message 
Message Message 
.Message: 
;Message 
Message 
Message 
Message 
Message Message 
Message Message 
Message 
Message 
Message Message 
Message 
Message 
Message 
Message

Value: 192.168.1.254 §begin getParmValue, using:- filelocation |
Parm: host |
Parm: table I
Parm: button \
Parm: keyvalue 1 |
Parm: dest ination \
Parm: format §
Parm:'keyname 1 \Parm: filelocation' IValue: http://192.168_l.254/servletdata/ |from TransportSequestHandler <-— -> .URL - http://192.168.1.254/servlet/servletInsertor?Destina| 

from Datalnsertor <— — > Posting the schema to XMIManager

from RunParms 
from RunParms 
from RunParms 
from RunParms 
from RunParms 
from RunParms 
from RunParms 
from RunParms from RunParms 
from RunParms 
from RunParms

from DBConnection <— -
from RunParms <-- >
from.RunParms <-- >
from RunParms <— — -> 
from XMLReader <— — -> from servletlnsertor < 
from XMIManager <— — >

-> Attempting to connect to database jdbc:odbc:dqm_ss7 
begin getParmValue. using: filelocation 
Parm: filelocation .Value: http://192.168.1.2 54/xml/26092001104512.xml URL = http://192.163.1.254/xml/26092001104512.xml
-- > Contact lost vith Thread, mandatory process- ends
URL = null.

Figure C.12 Error Log

Figure 5.18 provides an example of the message content which is available when the 

messaging is enabled.

There is also a Servet log (specific to the Unify Servlet Engine only) which provides 

an indication of when the engine is started and stopped, and can be useful in the 

tracking of a problem at a remote site. Note the logs are central to each host, so if 

the host is supporting both the frameworks servletExtractor and the servletlnsertor 

components, the log will contain entries from both components, separated by the 

time stamp.

C.10 System Information

The online help system, which is essentially this document converted to the HTML 

format is provided to cover as many uses as possible. Any developer using the 

framework, should ensure that this documentation is provided to administrators and

users alike

http://192.168.1.254/servlet/servletInsertor?Destina%7c
http://192.168.1.2
http://192.163.1.254/xml/26092001104512.xml
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Error Handling

There are many reasons for the framework failing to successfully extract data or, 

insert that extracted data into a remote relational database. There are a number of 

‘co operating’ pieces of technology which need to be functioning, in order for the 

framework to operate as expected. As a means of both debugging and resolving 

runtime problems, the Framework system log contains two types of entries. A ll 

genuine exceptions (caught by the system and explicitly logged) are appended to the 

dqm log file, as well as this, the system supports the use of the message log as a 

debugging tool which can be switched on or off. By setting a compile time flag in 

each o f the Framework processing components, servletExtractor and 

servletlnsertor, the application will log specific events as the process runs. This is 

particularly helpful for the extraction process which is run under the administration 

o f the Web Server, and as such is not able to be directly debugged. In each module, 

the Service method contains an entry which allows the developer to set logging on 

with a m_ul_og.setLog(true); statement. The ExceptionLog constructor automatically 

calls the setLog method and sets message logging to false. So unless the developer 

calls setLog with a Boolean true, logging will remain off. The log file will be 

automatically generated as dqm_server.log in the WINNT\system32 directory. Figure 6.4 

provides an example of the message content which is available when the messaging 

is enabled. There is also a Servlet log (specific to the Unify Servlet Engine only) 

which provides an indication o f when the engine is started and stopped, and can be 

useful in the tracking of a problem at a remote site.

12 / 10/ 2001,12/ 10/2001,
12/10/2001.
12/ 10/ 2001,12/10/2001,12/10/2001,12/ 10/2001,
12/ 10/ 2001,
12/ 10/ 2001,
12/10/2001,12/ 10/ 2001,

12/ 10/ 2001,14/10/2001,14/10/2001,14/10/2001,14/10/2001,14/10/2001,14/10/2001,14/10/2001.14/10/2001,

22:41:18;22:41:18;22:41:18;22:41:18;22:41:18;22:41:18;22:41:18;22:41:18;22:41:18;22:41:18;22:41:18;22:41:18;23:27:55;23:27:55;23:27:56;23:27:56;23:27:56;23:27:56;23:27:56;23:27:56;

MessageMessageMessageMessageMessageMessageMessageMessageMessageMessageMessageMessageMessageMessageMessageMessageMessageMessageMessage:Message

fro* RunParas <— -> Value: 192.168.1.254fro» RunParas <-— ■> begin getParaValue, using: filelocation
from RunParas <— — >. Par»! hostfroa RunParas <-- > Para: tablefroa RunParas <— > Para; button froa RunParas <— —  > Para: keyvalue l froa RunParas <•— — > Para, destination froa RunParas <— — > Para: foraat froa RunParas <— > Para: keynaae 1froa RunParas <— -> Para; filelocation , . . . . . . .froa RunParas <-- > Value: àttp://192il68.1.254/servletdata/
froa TransportRequestHandler < DRI> http://192.168.1.254/serylet/servletInsertor?Destina^
froa Datalnsertor <—  froa DBConnection <—froa RunParas <-- >froa RunParas <— -> froa RunParas <-— > froa IMLReader <— > froa servletlnsertor < froa IMIManager <-— •>

> Posting the scheaa to XMlManager -> Atteapting to connect to database jdbc:odbc:dqa_ss7 
begin getParaValue. using: filelocation Para: filelocation . .
Value- http://192.168.1.254/xal/26092001104512.ail ORI * http://192.168,1.254/xal/26092001104512.xal 
— > Contact lost with Thread, aandatory process- ends 
URL 1 null

Figure C.13 Logging

http://192.168.1.254/serylet/servletInsertor?Destina%5e
http://192.168.1.254/xal/26092001104512.ail
http://192.168,1.254/xal/26092001104512.xal
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JAVA VM
The java victual machine must be operating on any host utilising the framework. In 

order to determine that the VM is operating, initiate the Web Browser and enter the 

following URL http://l27.0.0.l/servlet/DateServlet, this should result in a response from 

the Server Host with a display of date and time.

ODB C DSN
Refer to section 2.3 of this chapter for details on setting up ODBC and potential 

problems. The configuration wizard provides a utility to verify the ODBC

Figure C.14 ODBC DSN

connection for a Data Source Name (DSN) created for an RDBMS. 

RELATIONAL DATA BASE MANAGEMENT SYSTEM
The framework has only one direct interface with the underlying database, which is 

via the weld_host table. Refer to the database setup section for configuration 

information on this table and the setting up of the framework options. Also refer to 

the appendix for a build script and information on the physical nature of the table. 

It should also be understood, that all access to the weld_host table is via the ODBC 

connection DSN.

WEB SERVER
In order to determine that the local host Web Server is operating, perform the same 

validation check previous Java VM instructions. Initiate the Web Browser and enter 

the following URL http://l27.0.0.1/servlet/DateServlet, this should result in a response 

from the Server Host with a display of date and time.

http://l27.0.0.l/servlet/DateServlet
http://l27.0.0.1/servlet/DateServlet
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SERVLET ENGINE

In order to determine that the local Host Servlet Engine is operating, perform the 

same validation check previous Java VM instructions. Initiate the Web Browser and 

enter the following URL http://127.0.0.1 /servlet/DateServlet, this should result in a 

response from the Server Host with a display of date and time.

OPERATIONAL DEFICIENCIES

There are only two issues which need to be monitored by users of the application, 

one is the Application Server which manages the Servlet engine, and the other is 

processing large files.

APPLICA TION  SERVER

Refer to the section of the appendix relating to the licencing of the Servlet Engine, 

there are many available, the one used for the pipleine application has changed 

ownership hands twice during development. The current license allows for 3 

concurrent servlet request to be handled concurrently, which is adequate for 

developemtn and testing, but the Administrator must be aware that if  the 

operational environment requires more concurrent requests to be serviced, a full 

license may need to be applied for, or a different Servlet model sourced.

http://127.0.0.1
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a p p e n d i x  d

TECHNOLOGY AND STANDARDS

D.l Introduction
With the acceptance of the Internet as a means of increasing market penetration to a 

global level, even small to medium organisations are now looking to communicate 

with both their trading partners and customers via the Internet. Inter organisational 

access must also incorporate a simple set of standards. Developers are now 

accepting international standards as a mandatory basis for development, particularly 

Web development. This acceptance is passed on to Stakeholders in the form of 

Development Environment requirements. Design, implementation and operating 

Standards are mandatory for any technology centric Web Application which is being 

put in place. The reason is that all current technology is developed using layered 

architecture methodologies. The acceptance of standards as an integral part of the 

construction of these layers has been a long and cosdy process for the Enterprise.

This appendic covers the various technologies and related standards which have 

been investigated as part of the application design. Also included is a brief history 

of the development of Distributed Objects and relevant technology issues.

D.2 Remote Procedure Call
The Remote Procedure Call (RPC) protocol was put forward by Sun in 1988 

(rfcl050) and is based on earlier work at XEROX by Birrell and Nelson in 1984.

The RPC model is similar to the local procedure call model in that the caller sends 

data as arguments (by value), or makes the address of arguments available (by 

reference) to a locally scoped function or procedure. The process then transfers 

control to the procedure, and eventually gains back control. At that point, the results 

of the procedure are extracted and the caller continues execution.

The remote procedure call is similar, in that one thread of control logically winds 

through two processes -- one is the caller's process, the other is a server s process. 

That is, the caller process sends a call message to the server process and waits 

(blocks) for a reply message. The call message contains the procedure's parameters, 

and the reply message contains the procedure's results. Once the reply message is 

received, the results of the procedure are extracted, and caller's execution is 

resumed.
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On the server side, a process is dormant awaiting the arrival of a call message. When 

one arrives, the server process extracts the procedure's parameters, computes the 

results, sends a reply message, and then awaits the next call message. The protocol 

makes no restrictions on the concurrency model implemented, and others are 

certainly possible. For example, an implementation may choose to have RPC calls 

be asynchronous (and not block while waiting for a response), or have the server 

create a task (fork) to process an incoming request, so that the server can be free to 

receive other requests. The design goal of the RPC was to abstract the actual 

connection and allow the client function to make a standard function call and wait 

for control to return to the calling function. In order to achieve the abstraction, the 

client module is compiled with additional code (stub). The stub is responsible for 

marshalling (converting the argument/s into text) the clients data for the call into a 

machine independent format for the transport to the server side (refer to D.l). SUN 

has produced a standard for machine independent representation of this data called 

External Data Representation (XDR).

client process server process.

server functions
logicalreturn ordinary

return

marshaled
request

marshaledreturnmarshaledreturnmarshaled
request

network servicesnetwork services

! 'client program

rpe ipe
call return

client stub

Figure D .l Remote Procedure Call

The Server side also has a stub which is responsible for receiving the message text 

from the client process, unmarshalling the arguments and making a standard 

function call to the desired module. WTen data is to be returned to the client, the 

server side stub is also responsible for marshalling the data to be returned. It is 

interesting to note that the concept of abstraction stubs and the marshalling of data
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into a machine independent format is the still followed by the CORBA model. Also 

of note is the development of semantics which provide developers with a 

methodology for dealing with failure between the client and the server, ie. a number 

of possible scenarios are possible:

• The network was slow and the client did not wait long enough for a reply 

from the server.

• The initial message was lost

• The server received the message, performed the request, then crashed.

• The server performed the service, but the acknowledgement was lost.

In TCP oriented connections, the TCP client acknowledges each receipt packet, the 

server then retransmits packets for which it did not receive an acknowledgement, in 

addition, the TCP client manages the order of packets and presents these to the 

client application in the correct order [ROBBINS96]. The physical data transport 

issues which are managed through TCP are abstracted from the RPC protocol 

allowing the developer to concentrate on the application issues of managing the 

content of the data transmitted between the client and the server. SUN has also 

provided developers with software to further reduce the possibility of error, by 

taking responsibility for generating the stub and skeleton software ‘jackets’ for each 

end of the RPC. The de facto standard for TCP/IP implementations is the one from 

the Computer Systems Research Group at the University of California, Berkeley 

(BSD). This source code has been available since 1983 and is the starting point for 

many other implementations [STEVENS94]. However, BSD also put forward an 

API which abstracted the messaging service for client/server applications, and 

allowed the developer a lot more flexibility than the RPC model. This abstraction is 

termed Berkeley Sockets, developed by BSD and released with UNIX 4.1c circa 

1983).

D.3 Sockets
While RPC’s explicitly hide the connection details from the developer and present 

the remote application as a Black box’, the Socket implementation allows the 

communication process to be driven much more as a functional component of the 

application program. The developer has many more design choices and options for 

managing the TCP service within the program scope. Most importantly is the 

concurrent multitasking options available via the socket implementation. When
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coupled with the ‘THREAD’ (circa 1990) implementation, the concept of 

concurrency becomes even more important to the distributed application developer. 

Originally, the socket implementation was provided to allow Interprocess 

Communication (IPC), but designers very quickly saw the benefit in sitting the 

socket API over TCP/IP which allowed Interprocess Communication. When the 

designer incorporates the socket API model into the program module, as opposed 

to the RPC model, the mechanism of Interprocess Communication can be 

compared to playing one dimensional tic-tac-toe versus multi dimensional tic-tac- 

toe. These days, we should consider that the Socket API implicitly enforces the use 

of threads, ‘enforces’ may be too strong a word to describe the embodiment of 

threads within the socket model, but we don’t want to bark when we have a dog. 

The thread is an abstract data type representing the flow of control within a process. 

A thread has it’s own execution stack, program counter, register set and state. It 

shares with peer threads, it’s code section, data section and operating system 

resources such as open files and other task related components. The major benefit 

of the thread is that the operating system does not have to swap the thread out in 

it’s entirety at context switching time, since the other peer threads share these 

resources. A context switch takes on average 10,000 nanoseconds, or, in human 

terms, if  a process cycle takes 1 second, then a context switch takes 180 minutes 

[ROBBINS96]. It would be unprofessional of the developer not to take advantage 

of these opportunities to increase the throughput of an application under 

development.

Figure D.2 Socket Architecture
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The socket has become the ubiquitous, base level component in the Distributed 

Model. Telnet, SMTP, FTP , HTTP and most other protocols; all have the socket 

model built into their architecture. The implementation which we confine ourselves 

to in this discussion relates to a TCP connection, which uses a STREAM buffer to 

provide communication between the Client and the Server. Once the Server has 

bound the process to the desired listening port via the bindQ system call, the process 

then issues an acceptQ system call to await a connection request from the client, via 

the connectQ system call (refer to figure D.2). Once a connection has taken place, 

the communication process is facilitated by readQ and writeQ calls to the buffered 

stream. It should also be noted that support for STREAM devices use the standard 

SIGIO blocking signal on readQ and writeQ to maintain asynchronous control 

between the client and the server process. I/O to the buffer can be made 

synchronous, but for the Framework application under discussion, the initial 

SOCKET implementation used the asynchronous mode, this was preferable for the 

type of data transport processing of the project, once handshaking had occurred, the 

sending process could send it's data, a row at a time, then signal end once all data 

had been transmitted.

The receiving process could then read each row, convert the ASCII data into an 

INSERT statement, then post the data through the ODBC connection to the 

database. The implementation used a COMM class which received the socket as an 

argument, then instanciated a buffered reader and a buffered writer. The Comm 

class was instanciated on both client and server and allowed the physical reading and 

writing to be encapsulated within the Comm class as per:

public Comm(Socket s) throws lOException 

{

fin = new BufferedReader(new InputStreamReader (s.getlnputStreamQ)); 

fOut = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));

}

ISSUES
The process itself was efficient from a transport perspective, given that any method 

of distributed transport would require a marshalling process to ‘flatten’ the data into 

a text stream for transmission over the network. There were a number of other 

issues which required considerable enhancement of the basic prototype:
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• If the data model changed, the insertion modules on each host would need 

to be modified to reflect the new table layout.

• If the tables did not exist on the receiving host, a create script would need to 

be sourced and executed prior to data being transported to the remote host.

9 The send and receive modules required manual starting, so if the machine 

was unreachable or required rebooting, there was potential for the socket 

communication approach to require some administration for reconnection. 

This is a genuine concern and has enormous implications, since the data 

gathering Hosts are installed on trucks, in what can only be considered 

primitive conditions. It is expected that these Hosts will have access to the 

Internet via wireless technology, with availability subject to atmospheric 

conditions, climatic conditions and geographical location.

• Security was not a genuine concern, given the application, however, 

malicious interference or corruption during the transport process was. Data 

integrity is considered a mandatory requirement, and the standard socket 

API provided no real means of ensuring the data was received in exactly the 

same form as it was sent.

• One of the project objectives was to provide an extraction method which 

ported the data to a distributed Host in Comma Separated Variable format. 

This facility allows the data to be used for other analytical purposes or in 

third party applications such as Excel, Lotus Approach etc.

D.4 Distributed Objects
The task of transporting the data from one host to another necessitated a review of 

the requirements of the application to determine the importance of the issues raised 

above. The trade off with the socket scenario was the reasonable throughput, which 

may be compromised if  an alternative technology was used to transport the data.

Any method which would be adopted would need to focus on throughput and data 

integrity. The use of Distributed Object technology is now fully accepted within the 

IT industry as a means of sharing data. This is mainly because of the acceptance and 

availability of the Internet as a transport medium, allowing distributed objects to 

become much more of a norm over the last 3-4 years. Prior to this, organisations 

maintained private switched networks and intranets to manage the distributed 

components running within their Enterprise Applications. By 1995 (in Australia), it
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was quite a common business option to provide an Internet gateway for 

organisations running secured intranet(s). Email was the main application using the 

service, but it did not take the IT departments of these organisations long to realise 

that other data communication applications could be vented through the Internet, 

using public switching networks, rather than costly point to point dial-up, or leased 

private networks. With regard to the Internet, standards which formalised 

distributed objects were quite mature, a number of standards bodies were already in 

place, such as the United Nations Economic Commission for Europe (UN/ECE) 

and the World Wide Web Consortium (W3C). These standards bodies were able to 

quickly interface with the major research and development vendors, putting 

standards in place which are even more relevant today. As technology has 

progressed with regard to Distributed Objects (now identified as Web Objects), 

other standards have become necessary, not so much to enforce conformity, but to 

provide a framework to facilitate the location of services and resources available on 

the Internet. Enter the Object Modeling Group (OMG), the international standards 

group responsible for the promotion of CORBA standards, interprocess API’s, 

bindings and usage documentation, and other major players providing standards and 

API’s for Web Objects are the W3C and SUN (JavaSoft)

D.4.1 CORBA (Common Object Request Broker Architecture)
“CORBA was designed to allow intelligent components to discover each other and

interoperate” [ORFALI98]. The Common Object Request Broker Architecture is 

the synergy of over 800 organisations, representing the entire spectrum of the 

computer industry. “The notable exception is Microsoft, which has it’s own 

competing object broker called the Distributed Component Object Model 

(DCOM)” [OREALI98]. There are two issues which need to be understood by the 

user in order to make use of CORBA components, IDL and Binding services.

IDL
CORBA separates the Objects definition from it’s implementation by using an 

Interface Definition Language to declare the data types of the attributes being 

passed between the Web Objects. Once the interface attributes have been declared, 

the developer selects a precompiler suitable for the implementation language being 

used. For example, in the Framework project, the development language is JAVA, 

so we would use a commercially available id l2 ja va  compiler. The compiler generates 

RPC like stub and skeleton class objects in the applicable language, which we can
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then incorporate into our design. The use of IDL abstracts the communication 

process and allows us to call the remote object using a locally declared method.

Binding

CORBA also abstracts the physical communication between the client and the 

server by using a technology termed an “Object Request Broker”. The ORB 

provides a repository of registered services to requesting clients and allows those 

clients to request a session for service. The technology uses a specific Internet Inter

ORB protocol (IIOP) for communication between one ORB and another. When the 

server component is instanciated it is registered with it’s local ORB as a service 

provider, and when the client is instanciated, it places a request for service with a 

local ORB. The ORB is a commercially available piece of technology and runs as a 

daemon on the application network, both client and server components use named 

library includes to declare the ORB facilities at compile time. Once instanciated, the 

components locate, then bind the requestor (client) with the service provider 

(server) to facilitate interprocess communication.

Later Implementations

CORBA is provided as a set of commercially available components, with the 

developer purchasing the desired IDL compiler to suit the implementation language. 

However, since the release of JAVA 1.2, SUN has incorporated the CORBA 

standard into the RMI API, which negates the need for third party components if 

the application is written in JAVA [ASBURY99]. Since the Framework application 

is written in JAVA, this allowed me to focus on the merits of RMI as a component 

inclusion in the distributed framework modules for the application.

D.4.2 RMI (Remote Method Invocation)
As a candidate for use in the final version of the Transport Framework of the

Framework Application, Remote Method Invocation (RMI) presented with a lot of 

advantages, it is Java Centric, so a lot of the code which had already been written for 

the Socket prototype could be retained. The RMI implementation of JDK 1.2 had 

most of the CORBA recommendations in place, particularly RMI over IIOP which 

would:

• Allow the file or sql selection to be processed on the target host as a 

Transaction (ie. fully committed or fully rolled back).
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• Provide support for persistent Object references, so once the host is located, 

services can be requested on an ad-hoc basis without the need to continually 

broker the request.

• Provide support for remote Object activation which overcomes the manual 

restarting of the Objects when the machine is re-started.

Internet Inter Orb Protocol (IIOP) sits on top of TCP/IP and value adds the 

CORBA message exchanges prior to passing the information to and from the 

application. In this way, details of service location, and transactional boundaries are 

abstracted from the user application [ORFALI96].

RMI clients do not interact directly with distributed Objects, but interface via a 

published interface, as do CORBA clients. Arguments are marshaled via the Java 

Serialisation service (java.io.ObjectOutputStream/java.io.Ob jectlnputStream) and passed 

to the distributed Object via the relevant stream. The distributed Object is bound to 

the Java Naming Service and is then accessible via the abstracted proxy stub on the 

client. For example, a class GetTime, on the local host, can call a local function 

getTimeQ. This method is called via the proxy getTimeQ, which uses the 

Naming.lookup service to locate a remote instance of getTimeQ, execute the 

function, then return the results to the local proxy.

public interface GetTime extends Remote 

{

String getTime() throws RemoteException;

}

On the remote Host, a set of RemoteObject classes is sub classed to create the 

required objects

public class GetTimelmpI extends UnicastRemoteObject implements GetTime 

{

public GetTimelmpIO throws RemoteException { super(); } 

public String getTime() { return "12:00:00"; }

>

In the main method of the distributed Object, the object is instanciated, then bound 

to the RMI Naming Service registry, as per:

GetTimelmpI MyObj = new GetTimelmpI ();
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Naming.rebind("//host:port/name", MyObj);

In addition to abstracting the Socket layer, RMI also manages the security aspects of 

the application automatically registering the distributed Objects with the security 

service running on the distributed Host. The range of options is extensive and 

allows the developer to set these options in a persisted security file which is accessed 

and implemented by the Java Virtual Machine running on the distributed Host.

In analysing the usefulness of RMI; it was still an abstract Socket model, however, 

there are a couple of genuine benefits over raw sockets. First was the remote 

activation feature which would allow the module to be called by the client when 

necessary, and the other was the ease with which the RMI client could persist the 

data once it was received.

In order to make use of the activation feature, the java.rmi.activation package is 

included in remote Object. In the above example; the class declaration is modified 

to

public class GetTimelmpI extends Activatable implements GetTime

instead of

public class GetTimelmpI extends UnicastRemoteObject implements GetTime

Activatable and UnicastRemoteObject are both sub classes of RemoteObject, and 

the Activatable implementation informs the rmiregistry running on the distributed 

Host to load the GetTimelmpI if  not already instanciated.

With regard to the persistence facility, the receiving client would only need to 

instantiate a class which extended the abstract class of RandomAccessFile in order 

to persist the rows to an ASCII file, eg. public class ANSIFileStream extends 

RandomAccessFile.

D.4.3 EJB (Enterprise Java Beans)
Enterprise JavaBeans is the latest technology abstraction in the Java family, and 

provides an abstraction for component transaction monitors (CTMs). Component 

transaction monitors represent convergence of two technologies; transaction 

processing monitors, such as CICS, TUXEDO and ENCINA, and distributed 

Object services such as CORBA, DCOM and native Java RMI [HAEFELOO]. EJB is 

not a technology in it’s own right, it’s more an aggregation or consolidation of other 

architectures. The distributed nature of EJB is facilitated by the abstraction of Java’s
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Remote Method Invocation (RMI) methodology and below that it’s standard socket 

architecture. Enterprise JavaBeans require a Middleware component to manage the 

relationship of data on a distributed Server process and a User on a remote Client 

Host. The relationship is managed via an Application Server specifically engineered 

for transactional processing use by such technologies as Servlets, Dynamic Server 

Pages, and Enterprise JavaBeans. The Application Server is a third party proprietary 

product which is typically licensed to the Host machine/s where the Application 

Server is implemented. The App Server is responsible for service brokering, 

transaction management, security, persistence and concurrency, thus allowing the 

designer to concentrate on the Business requirements and the design issues which 

are unique to the application. The model assumes the App Server requirements are 

common and can be accommodated in a generic manner. In addition, the App 

Server can be implemented in a scalable manner to accommodate very large 

numbers of users and associated transactions with an acceptable response time for 

the transaction process.

The third party Application Server software provides transaction management and 

persistance facilities for the distributed application. Transaction management has 

successfully been administered in distributed applications since IBM released CICS 

in 1968. The concept is based on providing remote access to data which may 

involve a number of separate data tables or database entities. The transaction is 

either committed or rolled back in it’s entirety, depending on whether all 

components of the transaction complete successfully. The technology has been re

engineered to accommodate Object Oriented entities in a three tier architecture. 

Clients request access to data by activating a session with the middleware 

component transaction manager (CTM), responsible for the transaction. The 

component manager, acts as a broker for the client, by accessing the physical 

database, and retrieving the data for the client. The data is essentially moved from 

the database and stored in memory as an ‘entity bean’, with issues such as ' 

concurrency, access authorisation, security and integrity, managed by the CTM. The 

client may update the entity bean by calling public access methods available in the 

bean, via the CTM. When the CTM recognises that the entity bean is no longer 

required in memory, it is deactivated and returned to physical data storage within the 

database (persisted).
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While EJB technology is extremely relevant to the process of distributed processing, 

it was not specifically relevant to the Framework application. The reasons were as 

follows:

• Transaction management and concurrency issues were not germain to the 

project

• Given the point above, the cost of a third party CTM Application Server was 

not justifiable.

• The data volumes were too high to be efficiently managed by a CTM.

• The system overheads and administration requirements inherent with the 

CTM were not justifiable, given the application requirements.

• Moving away from the monkey see monkey do approach to installation, 

there is absolutely no documentation safety net.

D.4.4 XML - (Extensible Markup Language)

Background

The word "Markup’ has it’s origins in the Printing trade, and relates to the use of 

special characters, placed around the text, indicating the text should be treated in a 

manner designated by the special characters. Originally SGML (Standard 

Generalized Markup Language, ISO 8879:1986(E)) was developed as a Standard in 

the Printing and Publishing industries. The standard is very complex and was 

developed over a 15 year period, however, the important positive benefit is that 

SGML focuses on structure and allows users to develop their own tag conventions 

for entities and attributes.

In 1991, Tim Berners Lee developed HTML as a variant of SGML, it’s purpose was 

to specifically deal with the movement of document content over the World Wide 

Web by the academic community. HTML was not as complex or unfriendly as 

SGML and was more focused on formatting the contents of the document rather 

than the structure. HTML did come at the right time though for a world just 

beginning to accept the Internet as an integral part of life. The scripting method was 

easy to learn and very forgiving in the hands of a novice, this allowed "ordinary’ 

people to climb the technology mountain and pass information around the web, 

even host a web site of their own. Technology had come to the people, which was 

great news for both the business and consumer sectors. Organisations also jumped
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on the HTML bandwagon and began to use the Web as a marketing tool, with 

instant acceptance, notwithstanding the issue of payment over the web. During the 

first few years of Internet infancy, developers bent and twisted the HTML page to 

impossible shapes in order to bolt on facilities for dealing with images, dynamic 

content, personalisation etc. At the same time, organisational Web Sites “grew to 

include 10,000 pages or more, organised loosely in hierarchical schemes concocted 

by developers who knew litde about hypertext and less about organisation” 

[STLAURENT98]. Time exposed a number of other weaknesses of HTML, which 

is where XML comes in. If HTML encounters markup which is not in the standard, 

it simply treats the markup as text. This allowed Browser vendors to develop 

proprietary enhancements to the Standard which, while annoying for the User of a 

competitors browser, did not cause the Browser to fail, just display the non Standard 

markup in the browser window. The implications of this were serious though, as 

developers needed to be able to develop markup as necessary for the industry or 

application which was specific to the task at hand. This led to the acceptance of 

formatting templates such as Style Sheets and cascading those style sheets to 

multiple pages in the Site, which at least gave the Site a standard to base their 

documents on.

With the acceptance of new technology, developers realise that the Browser is only 

‘one’ of the many, diverse interfaces which are being presented to the information 

‘hip’ customer. Telephone, WAP, PDA, Smart White goods are all areas which 

provide a User interface and need an underlying set of standards to structure and 

format the content for the User. Enter XM L....

It is also noteworthy that the Object Modeling Group (OMG) who are responsible 

for CORBA have put forward a set of XML Interfaces with Standards for CORBA, 

EJB and CICS as well as ebXML

XML was developed by the XML Working Group under the auspices of the World 

Wide Web Consortium (W3C) in 1996. Development of XML was led by Jon 

Bosak of Sun Microsystems and work began as a direct response to pressure from 

developers who had two valid issues with HTML. Firsdy, they were limited by 

HTML and it’s lack of structure and adherence to standards and secondly, 

developers refused to accept SGML as a replacement because of it’s complexity and 

verbose specification.
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HTML is limited to a fixed set of markup tags which the developer can use, while 

XML allows users to create their own tags, or use tags created by others, ie. XML 

facilitates reusability and extensibility. As with SGML, XML can be formatted and 

validated by a Document Type Definition, which allows the user to declare what 

constitutes markup with the XML page and also what the markup means within the 

page. Once the XML parser has done it’s work and used the DTD to validate the 

document, a document tree is created, based on the hierarchical structure declared in 

the DTD. This document tree may then be made available to the user, or accessed 

by processing applications. There are a number of issues with the Document Type 

Definition which causes me to look more closely at using a Schema (refer to 

Chapter 3) to develop the framework.

There is no doubt that the process of transporting data over the internet has become 

a trivial task in the mind of the Internet User, the irony is that the delivery of that 

task will become proportionally more difficult. As data traffic increases, bandwidth 

usage will become more of a critical issue. One of the benefits of using layered 

architecture in the Object Oriented realms, is that sooner or later, an interface (API) 

will become available to abstract the tedious and complex. Sun are developing a 

Web Browser Class which is a Rowset implementation that can serialise the data, 

metadata and properties of a JDBC result set to XML, according to Williams 

[WILLIAMSOO], “That way, the result set can be disconnected, transported across 

the network, and manipulated by a remote application”. While there is potential for 

a considerable amount of data (in the pipeline project) to be shipped during a 

session, this API appears to map direcdy to the system requirements.

D.4.5 ebXML - (Electronic Business Extensible Markup Language) 

Background

The ebXML initiative is joindy managed by the United Nations (UN/CEFACT) and 

OASIS. Any organisation may take part and the initiative enjoys broad industry 

support with over 175 member companies, and in excess of 2,000 participants 

drawn from over 30 countries.

The ebXML architecture provides a method of:

• Defining business processes with associated messages and content.

• Registration and discovery of business process sequences with related message 

exchanges.
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• Defining company profiles.

• Defining trading partner agreements.

• Providing uniform message transport layer.

The development of ebXML is evolutionary, based on proven technologies and 

accepted standards (HTTP, TCP/IP, XML etc.), facilitating an open and vendor- 

neutral solution to eBusiness. As mentioned earlier, until recently, organisations 

typically exchanged information with each other electronically, based on Electronic 

Data Interchange (EDI) standards. This required an organsational investment in 

technical expertise, and necessitated a tighdy coupled, Framework architecture. As a 

result, the use of EDI has been limited to large enterprises only, ebXML aims to 

remove these limitations by providing a simple, user friendly set of standards which 

allow any organisation to develop trading links with other organisations via the 

Internet and the ebXML facilities. Opening the way for low cost electronic business 

which is both flexible and easy to use. ebXML seeks to standardise the different 

types of EDI and electronic trading infrastructures that already exist. OASIS is 

currently developing of a set of technologies built on open standards which cater for 

messaging, transport routing and packaging (TRP), trading partner agreements 

(TPA), repositories and registries (REP/REG). The standards will incorporate 

architecture, business processes and other core components which will be presented 

as a ‘tool box’ framework and specifications are expected to be published in May 

2001 .

According to Robert S. Sutor, vice chair of ebXML (2000) and member of the 

OASIS Board of Directors, "commercially integrated ebXML-compliant solutions 

will reduce the costs of deployment and ensure the flexibility required for e

commerce success in the global market”.

Operational requirements

Organisations must be able to discover each other and the products and services 

they have to offer. Determine which shared business processes, and associated 

document exchanges to use for obtaining products or services from each other. 

Determine the contact points and forms of communication for the exchange of 

information. Finally, agree on the contractual terms relating to the selected processes 

and associated information. Once these ‘Inter Business Rules’ have been established, 

the organisations can exchange information and services in an ‘ongoing’ automated
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fashion. ebXML provides an infrastructure that ensures data communication 

interoperability via a standard message transport mechanism with a well defined 

interface, packaging rules, and a predictable delivery model. The standards also 

provides a service interface that handles incoming and outgoing messages at either 

end of the transport. This is achieved by a semantic framework based on XML with 

a well definde meta model providing the organisation with re-useable business logic 

and a method of defining message structures and definitions as they relate to the 

activities defined in the framework. The framework gives organisations a way to find 

each other, agree to establish business relationships, and conduct business, through 

a shared repository where businesses can register and discover each other's business 

services via partner profile information. Once contact has been made, the 

framework provides a process for defining and agreeing to a formal set of 

procedures for communication and business.

Architecture

The technical architecture is composed of five main area of emphasis:

1. Business Process and Information Model

The model defines how business processes are described and enables an 

organization to express its business processes so that they are understandable by 

other organizations. The Information model defines reusable components that can 

be applied in a standard way within a business context that is meaningful to their 

business while also maintaining interoperability with other business applications.

2. Company Profiles

A repository is provided (see Registry and Repository) to allows organisations to 

maintain their own details and query the repository for organisations they may wish 

to contact for eBusiness.

3. Messaging Service

The messaging service specification defines the services, protocols and 

methodologies required to exchange data. Standard protocols such as SMTP, HTTP, 

and FTP are supported, as well as application specific technologies which facilitate 

encryption, digital signature, secure protocols and authentication.

4. registry & Repository

The Repository provides facilities for storing and registration of data such as 

company profiles, trading partner requirement specifications and the registration
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interchange requirements. The repository also supports the maintenance of the data, 

and gives the registered organisations access to templates, business process 

definitions and core software components.

5. Collaberative Partner Agreements

The repository stores critical information, necessary for communications between 

applications and business processes and also records specific technical parameters 

for conducting eBusiness.

Usage Scenario

There are many different scenarios in which ebXML technology may be 

implemented, activities may be performed in slightly different sequences and with 

different scope and focus, however, the following example typifies the steps carried 

out.

An Australian importer (computer hardware) who is looking in Asia, to locate, then 

do business with a Chinese exporter may carry out the following activities:

• The Importer would looks through the repository for an Information Model 

which matches his business, ie. Importing computer equipment and register 

his organisation in the repository. Access to the repository provides the 

importer with the ability to create and maintain appropriate electronic 

documentation templates for the importation of computer equipment and 

elctronic advertising Profiles of the organisation and supported business 

processes for exporters in other countries who may be searching for an 

Australian importer of computer equipment. Access to the repository also 

give the importer a query facility to locate exporters in Asia who match the 

importers selection criteria, and create his own companies profile for

• Once the importer has nominated the appropriate business service interface 

(importation of computer equipment) they may then locate other 

organisations with whom they wish to enter into Collaborative Agreement. 

Once an agreement has been reached between the importer and another 

business partner, a formal Collaborative Parmer Profile is registered within 

the repository.

From a technical perspective, this gives both organisations access to Parsers and the 

appropriate Document Type Definitions related to Computer Hardware. It should 

also be understood that both organisations would implement suitable application
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software which meets the specifications of the Messaging Service which facilitates 

the capture and processing of ebXML traffic. The result is that both importer and 

exporter send and receive ebXML messages containing internal business documents, 

customs documents, travel manifests etc, over a secure and reliable ebXML 

Messaging Service. ebXML is also backward compatible and is designed to work 

with existing legacy EDI solutions, as well as being used to develop applications 

based on emerging technologies using XML.

D.5 XML TECH N O LO GY

D.5.1 Introduction

Use of XML as an alternative to the socket method proved not to be the only 

benefit for the Framework as:

• It is very likely that the data model will be continually modified as other modules 

making up the Framework are enhanced, and new modules incorporated. When 

database table details are changed, XML is easily modified to reflect the changes.

• Internet outages are a regular occurrence in a field based application, XML acts 

an external storage container for data waiting to be transported to other sites.

• Use of the DOM facilitates the conversion from XML into other data formats.

This section details XML technology, the use of the various methods for building a 

document object model (DOM), and provides a context for the use of the 

technology in the Framework application.

D.5.2 Conceptual Overview

In 1996, XML development commenced as a response to pressure from developers 

who had issues with FITML. The major problems centred around the lack of 

structure, adherence to standards and lack of extensibility. It has been widely 

documented that both HTML and XML are derived from the same source, ie.

SGML (Standardised General Markup Language ISO 8879). The obvious difference 

between the two markup applications is that HTML is focused on the presentation 

of the content within the browser, while XML uses a meta language, allowing the 

developer to prioritise and provide application specific structure to the content.

XML content is not limited to browsers, as is the case with HTML, the document 

may be accessed by processing applications and used in any manner appropriate to 

the application.
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There are two separate processing steps which are required when accessing an XML 

document. If the structure of the XML document is invalid when the results are 

passed to another process, the invalid data will NOT be processed, and may cause 

the processing application to become unstable or worse, affect the Web Server 

process. Firsdy, parsing is required to ensure that the document is ‘well formed’, this 

is a basic validation condition which means that tag statements must open and close 

in logical order (refer to figure D.3). Data content is then made available via a 

predefined access template called the document object model (DOM), which 

facilitates hierarchical access to the data. The DOM concept means the creator of 

the document can define TAG statements which are meaningful to the application, 

and not limited to a fixed set of tags, such as this HTML example:

<H3 ALIGN=Center> Heading Line </H3> indicating that the tag is a level 3 Heading and should be centrally 

aligned. When using XML, developers may choose tags which relate to the content in a more meaningful way.

<weld_header>

<welder_id>

<title>Welder ld</title><type>lnteger</type><value>2</value>

</welder_id>

<weld_id>

<title>Weld ld</title><type>lnteger</type><value>2</value>

</weld_id>

<batch>

<title>Batch</title><type>integer</type><value>911 </value>

</batch>

</weld header>

The above example describes a database table, <weld_header> with each column 

m a ltin g  up the table described as subordinate attributes <welder_id>, ie. the TAGS 

contain information about the accompanying content, which gives the developer 

much more flexibility and extensibility in the way the content is marked up. In 

practical terms, developers can adopt a set of tags which reflect the application, thus 

making the raw XML more meaningful to the Human reader. The content is not 

clogged with presentation syntax, increasing throughput, and providing additional 

flexibility. As well as describing the content tags, additional structure, content 

constraints and validation can be achieved via a document definition which may 

either be encapsulated within the XML document, or externally referenced by the
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XML document. The Document Definition (DTD) associated with the XML 

document also provides many other benefits to the developer:

• Documents may be generated programmatically, both from scratch or from 

existing documents.

• Document content can be modified programmatically

• Document content can be read and filtered programmatically

• Documents provide a storage and shipping container for the data content

The Method

In order to be considered ‘well formed,, the document must contain a root element 

which is closed in a valid manner, in the above example, this is the <weld_header>; the 

document must contain at least one element, this may be the <batch> element, or the 

<weler_id>; in addition, if  there are other elements contained within the document, 

they must be nested with no overlap between elements. An example of an invalid 

document would be:

<weld_header>

<welder_id>

<title>Welder ld</title><type>Integer</type><value>2</vaiue>

<weld_id>

<title>Weld ld</title><type>lnteger</type><value>2</value>

</welder_id>

</weld_id>

<batch>

<title>Batch</title><type>lnteger</type><value>911 </value>

</batch>

</weld_header>

which would present the following error message from the Parser:

End tag ’w elderjd ' does not match the start tag 'weld_id'. Line 6,

Position 4

</welder_id>

. — A

The reason for insisting on a well formed document is that the XML document may 

be passed to a co-operating application, and with no human intervention, the
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receiving application cannot successfully process the document unless it is at least 

well formed.

Document Parsing

If the XML document is not successfully validated, the parser does not build a 

document tree and the receiving application is not passed the contents of the XML 

document. When a Document Type Definition (DTD) is declared, and is associated 

with the XML document, the Parser also confirms that the document follows the 

structure laid out by the DTD. However, it should be understood that the XML 

document only needs to be ‘well formed’ in order for the Parser to build a treD. 

Figure D.3 shows the result of a parsing operation, which builds a binary tree of the 

contents of the XML document.

R O O T

A T T R IB U T E  A T T R IB U T E  A T T R IB U T E  A T T R IB U T E  A T T R IB U T E  A T T R IB U T E

Figure D.3 B inary Tree (DOM)

In the above example (figure D.3), the root of the document would equate to the 

table name tag <w eid_header> , elements would equate to table columns <w elder_id>, and 

attributes would equate to the descriptive attributes which relate to the table 

columns <type>ln teger</type>.

When present, the DTD contains markup declarations that provide a grammatical 

syntax for the document parser, which may be encapsulated within the users 

browser or applied to the XML document as part of a receiving application. If 

present, the DTD can be placed inside the XML document or can be externally 

referenced from within the document. If the DTD is internal, it must appear before 

the first element in the document.

Presentation  in  H uman Readable Form

Neither the XML document or the DTD contain any instruction for presenting the 

data in human readable form, ie. displayed within a browser. However, the XML
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model specifies a number of alternatives for presentation. The developer may use 

Style Sheets written in Cascading Style Sheet (CSS) syntax or another XML 

application language, Extensible Stylesheet Language (XSL) or, use the Style Sheet 

to convert the XML into HTML.

Presentation to a  Receiving Application

When XML data is to be presented to a client Application, the developer has a 

number of options for processing the data, which must conform to the XML 

specification by being at least ‘well formed’, ie. syntactically correct:

• The document may either be validated by a third party parser

• The developer may choose to build an application specific parser with rules and 

constraints which are more appropriate to the underlying application 

requirements.

• The developer may create his own parser and related DOM (using an application 

programming interface), and read in the raw XML to generate an application 

specific in memory treD. This can be useful if there is something specific the 

developer wishes to do, such as, reduce the amount of memory required to build 

the DOM tree or provide application specific methods for reading the DOM.

A number of third party parsers are freely available, including Microsoft (MsXML) 

and IBM (Xerces) who are both extremely committed to XML technology. Parsers 

can be implemented as external services (which are passed the document to be 

parsed), or can be encapsulated, as with major (Internet Explorer 5.0 and Netscape 

6.0) browsers and at a minimum allow the developer to validate a document.

Parser Output

From a developer's perspective, the parser forms a bridge between the document 

and the processing application. The parser is responsible for handling XML syntax 

and, if  desired, checking the contents of the document against constraints 

established in a document type definition (DTD) or Schema (refer to D.5), leaving 

the application free to deal with the content and not be concerned with validity 

issues. There are two basic kinds of XML parsers defined in the XML specification. 

Nonvalidating parsers, which simply check document syntax and report all 

violations of well-formedness. The other type is a Validating parser which performs
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the same function as a nonvalidating parser, but also compares the structure of the 

document to rules declared in the DTD.

The scope and nature of the application determines whether to use a validating or 

nonvalidating modD. Building ‘in house’, end to end type components whose scope 

is lies within the same application probably means that a Nonvalidating Parser will 

be adequatD. From another perspective, if  a Schema is employed to build XML at 

one end, and unpack the data at the other end, then the validity of the XML is a 

moot point anyway. Alternatively, if  the application is exchanging information with 

external, component based applications (developed to standard by another 

organisation), the document will be based on an agreement of both format and 

content to complete the data exchangD. In this case, a DTD or Schema, coupled 

with a validating parser provides a layered approach which externalises the 

validation and structure checking from the application code, allowing both sides to 

use the same validation components.

The markup declaration can contain ELEMENT type declarations, an 

ATTRIBUTE-LIST declarations, and ENTITY declarations

Element Type Declarations

Documents consist of components, typically, sentences, paragraphs and chapters, 

XML categorises these components as elements, which can also consist of other 

elements or character data [BOUMPHREY98]. As outlined earlier, the output from 

an XML document may be directed to a human reader or may be scheduled for 

processing by another computer process. Elements make up the branches in the tree 

structure generated by the parser, so validation of the element is critical, and may be 

considered valid if:

• The DTD contains a matching declaration for the named element

• The DTD contains matching declarations for the named elements attributes (if 

any)

• The declared data type of the element matches that in the DTD 

Attribute-List Declarations

An element can have attributes associated with it, attributes may be sub components 

of the element or further describe the element in some manner.
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Each attribute has 3 components which fully describe the attribute: a name whose 

declaration follows the same naming conventions as the entity; a data type indicating 

the content which will be passed in; and an indication of the behaviour of the 

attributD. Each attribute must be declared in the DTD attribute list (ATTLIST) in 

order to be validated by the parser. There are a number of attribute data types which 

indicate to the parser, how to validate the data being passed in. If the document is 

valid and passes the constraints imposed by the parser, the contents are stored in 

memory in an ‘object’ tree structure identified as the Document Object Model 

(DOM).

D.5.3 The Document Object Model (DOM)
There are a number of Document Object Model (DOM) application program

interface’s (API) which support accessing the contents of (valid) HTML and (well- 

formed) XML documents[WWW3C00-1]. In addition to using the DOM as a means 

of accessing the contents, the W3C has now produced level 3 of the specification, 

allowing developers to create documents, add, modify, or delete elements within the 

content area of a document. The DOM is language independent and the developer 

simply selects a binding which is appropriate for the development languagD. 

Bindings are defined for most Web Application languages eg. CORBA, Java, 

ECMAScript and COM/DCOM, ACTIVEX (Microsoft). The DOM is a 

programming API for documents, and is based on an object structure that closely 

resembles the structure of the document it models. For example, the HTML 

document in figure D.4 can be logically represented using the

<TABLE>
<TBODY>

<TR>
<TD>Heat

Deposition</TD>
<TD>Abstract</TD>

</TR>
<TR>

<TD>Weld Pool 
Temp</TD>

<TD>Dctail</TD>
</TR>

</TBODY>
</TABLE>

Heat Deposition } Abstract 

Weld Pool Temp| Detail

Figure D.4 Style Sheet

tree structure shown in figure D.5. The Document Object Model provides a set of 

interfaces which are accessible after the document has been successfully parsed.
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Figure D.5 B inary Tree

The DOM and Parser may be packaged within the same application eg. Microsoft 

MsXML or may be separate components eg. Docuverse DOM SDK which is a Java 

API. However the DOM is delivered, the model is presented via ‘Node’ objects 

which can be traversed by the client application. The model is accessed using a suite 

of interfaces which, when implemented, allow the application to enter at the 

conceptual ‘root or document’ level and traverse through each of the node levels (in 

figure D.4, the document level is the <TABLE> tag). Interfaces are implemented to 

reach the ‘element nodes’ (TBODY, TR and TD) as well allowing traversal at a 

logical level. To facilitate this, an interface (Nodelist) is provided which manages a 

list of Element Nodes and allows the developer to loop through the Nodelist, 

gaining access to the Elements. Attribute data (subordinate to the Element Node, 

and exampled as ‘Heat Deposition’, Weld Pool Temp’ etc.) may be referenced using 

the NamedNodeMap interface which provides access to the various Entity data such 

as Text, Comments etc.

Figure D.6 lists the various Java Implementation Interfaces which may be used to 

traverse the in-memory tree, made available by the DOM.
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Interface Hierarchy
0 interface org.w3c. dom.D O M L nplem entation  
° interface org.w3c.dom N am edlN odeM àp  
° interface org.w3c.dom. N o  de

° interface org w3c.dom .Attr  
° interface org. w3c. dom. C haracterD ata  

° interface org.w3c. dom. Com m ent 
° interface org.w3c.dom .T ext

° interface org.w3c. dom. C D A T A Sectìon  
° interface org.w3c. d o m D ocum ent 
° interface org.w3c dom.DocumentFrafmiRTit 
° interface org.w 3c.dom P ocu m en tT yp e  
0 interface org.w3c. d om E lem en t 
° interface org. w3C. dom. Entity  
° interface org. w3c. d o m E n titvR eferen ce  
° interface org.w3c.dom.N otation  
° interface org.w3c. dom P rocessin g ln stru ction  

0 interface org.w3c.dom.N o d eL ist

Figure D.6 Hierarchy

It should be noted that the memory requirements necessary to support the DOM 

are considerable, especially if  the number of elements is large, and can be 5-10 times 

the size of the document itself [BOUMPHREY98]. If the XML document contains a 

large amount of data as well, the overhead can cause significant performance issues 

on the client Host.

If this is an issue for the application, another model which can be used to access the 

contents of the document is the Simple API for XML model (SAX), which delivers 

the contents of the document to the processing application in linear sequencD. The 

obvious drawback is that the SAX model does not allow the contents to be accessed 

randomly, if  the processing application needs to randomly locate nodes, to modify 

or update the document to add value, the DOM is really the only solution.

D.5.4 Simple API for XML (SAX)
It should be understood that the downside of using the SAX API, is that the

Elements and Attributes which make up the document are not randomly accessible, 

as per the DOM. In the SAX API, the document is passed through as a Stream, with 

predetermined events (corresponding to the reading of Elements and Attributes) 

being triggered when a nominated Entity is read. Typically, the application is 

programmed to react to these events in a serial manner, the benefit of this model is 

that:
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• If the document is large, and the application is filtering data which is 

triggered from the stream TAGS, this acts as an index and can be very 

beneficial in terms of efficiency. Of course, this facility is equally (if not 

more so) efficient using the DOM, but the overhead of loading the DOM 

far outweighs any benefit.

* ^ ie stream can be persisted then re-opened and read as many times as 

necessary to complete the document processing requirements. This benefit 

may be considered intangible, but the facility now exists to use XML as an 

indexing or lookup tool, eg. A Web application is passed a postcode, which 

becomes an argument to a SAX query on postcodD.xml. The resultant read 

returns a Suburb to the Web application.

As with the DOM, there are a number of freely available implementations of the 

SAX API, all are C++ or Java implementations, except the Microsoft offering which 

supports VB and COM.

Figure D.7 lists the Java Implementation Interfaces which use the XMLReader 

stream to facilitate triggering specific ContentHander methods. The ContentHandler 

interface receives notification (callback) of document events (Element start and end) 

as the content passes through the XMLReader. The order of events matches the 

order of information in the document itself. An element's content (data, processing 

instructions, sub elements etc.) appear in order between matching startElement 

endElement event pairs.

Interface Hierarchy
° interface org:xml. sax.A ttrib u teh ist  
° interface org.xml. sax.Attributes 
0 interface org.xml. sax.C ontentH andler  
0 interface org.xml. sax.D ocum entH andler  
0 interface org.xml. s a x D T D H an d ler  
0 interface org.xml s a x E n tityR eso lv er  
° interface org.xml. sax ErrorH andler 
0 interface org.xml. sax. L ocator  
0 interface org.xml. sax P arser  
0 interface org.xml. sax.X M L R ea d er

° interface org.xml. sax.X M L F ilter

Figure D.7 Hierarchy

Obviously, the code is not cohesive and the developer must test for the tag name/s 

which the application is interested in, eg;
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public void startElement(String URI, String Name, String qName, Attributes atts) throws SAXException 

{ If (namD.equals(“welder_icT) DoSomething(); >

but the API is indeed simple and can be very efficient in terms of processing data 

from a large source where filtering is required or processing can be stopped after a 

certain event has been handled.

D.5.5 Pipeline Project Rationale

Of the two (DOM vs. SAX), neither model is absolutely suitable for the Framework. 

The DOM has advantages; because of the variation in output format, the application 

would need to be able to access different nodes in different circumstances, so 

random access would be a plus. On the other side, because of the volume of data 

and the fact that the application knows exacdy what format the XML document is 

in, would be suited to the use of the SAX interfacD.

After analysis of the various models, the best outcome for the project was the use of 

a Schema as a way of getting the best of both worlds, the Schema can:

• Be used to build the XML document as well as interpret the data at the target 

host.

• Be used to build other data file formats, and in the case of the framework, the 

CSV formatted data uses the schems to create the file layout.

• Be designed to build a memory efficient DOM, while still using the stream 

attributes of the SAX model

The case for using XML is strengthened to an irresistible level when the application 

can take advantage of self managed data resource components [SOOOl] which 

provide utilities for browser driven upload and download. Using these components, 

pipeline specific XML documents can be generated, and posted to another site via 

the plain old Web Server; Data stored within the XML document container can be 

retrieved from a remote site by simply providing a link to the document on the 

remote sitD. The Web Server at the remote site gathers up the file and requests 

whether the User would like to view the file, or save it to the local system. The ease 

with which third party components have been melded with the specifically written 

code, and integrated into the overall Framework application has reduced the amount 

of overall code developed to a minimum. Other than wrappers, which were 

developed to interact with the API’s, the major development area for the framework 

is the interface to the Schema. The Schema is is used to build a DOM for program
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modules to load or unload XML based data, or convert the data into comma 

separated variable (CSV) format.

D.6 XML Schema
As mentioned earlier, use of the Schema facilitates programmatic control to:

• Build the XML document

• Build files in other formats eg. CSV and this is the example presented , which can 

be input into a spread sheet

• Read the XML document 

ANALOGY

The World Wide Web can be viewed as a rail network, with Hosts (Stations) 

facilitating TCP/IP sessions (Locomotives) pulling freight containers filled with 

both raw materials and semi-constructed components (XML data). Some containers 

are further compartmentalised, and contain discrete components or building blocks 

which need to be combined with other building blocks before a data component can 

be constructed. Organisations who have access to the ‘rail stations’ may now 

generate XML ‘goods’ containers programmatically, and forward those ‘containers’ 

to designated ‘stations’, which are received by ‘assembly’ applications for re

construction into data components. XML ‘containers’ are always shipped with 

assembly instructions, which means the applications which re-construct the contents 

into data components can be generic, and do not have to be specifically designed to 

deal with the contents of the ‘container’.

Continuing with the analogy, the Schema provides a set of assembly instructions for 

any plant along the way who needs to prepare a data component (document or data 

transaction). In addition to this, the Schema can be used by applications as assembly 

instructions on how to GENERATE the XML document, prior to shipment. This is 

the other side of the process, ie. where the original document, raw data, or 

component resides.

There has been a lot of discussion on the use of the Schema, and a number of 

organisations in similar industries have banded together to develop a Schema which 

is suitable and applicable to their industry. This provides a higher level of generic 

abstraction, and means that each of the participants can prepare and ship XML 

containers to anyone who wishes to access that XML document. There is a high
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degree of relevance for the use of a Schema when the data being shipped is data 

which is usually resident in a Relational Data BasD. As mentioned earlier, the issues 

of constraints, referential integrity, default values and cardinality which are 

important properties for data storage repositories. To be of any genuine use, the 

Schema must conform to a structural standard, ie. have a published method for the 

declaration of elements, and provide a method of data definition. In Object 

Oriented terms, this is a description of an Object, the purpose of a Schema is to 

define and describe a class of XML documents by using constructs to constrain and 

document the meaning, usage and relationships of their constituent parts: data types, 

elements and their content, attributes and their values, entities and their contents 

and notations. Schema constructs may also provide for the specification of implicit 

information such as default values. Schemas document their own meaning, usage, 

and function [WWW3C00-2]. We can also think of the XML document as an external 

data ‘jacket’, which describes the relational structure of the internal Data Repository.

D.6.1 Structure

The structure of the Schema supports the Element/Attribute component Model 

which provides the most flexibility for database support. There are 13 kinds of 

component in all, falling into three groups; primary components, secondary 

components and helper components. The XML Schema model relates implicitly to 

the database Schema model, so there are declarations for the definition of 

constraints on the content which can be applied when processing the data, or using 

the raw data in a value added process, such as a conversion to HTML.

PRIMARY COMPONENTS

In the components listed below, note the distinction between definition and 

declaration. Definitions are used to indicate a coming declaration, such as, element 

and attribute declarations.

<schema xmlns=”http://www.w3.org/2000/10/XMLSchema”>

<element name=“PipeWeidData” typ e -’PipeWeldDetails’' />

<complexType nam e-’ PipeWeidDetails”>

<sequence>

<element name=“Welder” type=”WelderDetails” />

<element nam e-’Asset” type="string” />

</sequence>

</complexType>

http://www.w3.org/2000/10/XMLSchema%e2%80%9d
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<complexType name=”WelderDetails”>

«attribute name=”firstName” type=”string” use="required"/>

«attribute name=”IastName” type=”string” use="required'7>

«attribute name=”emailAddress” type=”string” use=”required7>

</complexType>

</schema>

Figure D.8 Schema

Note that the use of ‘Sequence* within the <PipeWeldDetails> element indicates 

that the inclusive element information items (Welder and Asset) must match to the 

XML document in sequential order). The components are named as follows:

Simple type definition: Defined as a set of constraints on strings and information 

about the values they encodD. Typically, the simple type applies to elements that 

have no attribute values or no element children. Refer to the line in figure D.8,

«element n am e-’Asset” type="string"/>

which defines an element named ‘Asset*, declared to be of type ‘String’. We could 

mark the document up as follows:

<simpleType>

«element name=”Asset” type=,,string" />

</simpleType>

While this would be irrelevant, and possibly a cosdy bandwidth overhead, it is 

indeed a valid syntax for the component, and demonstrates the implicit/explicit 

nature of that syntax.

Complex type definition: This is the most common type definition and is defined 

as a set of attribute declarations and a content type, applicable to the attributes of an 

element information item, or child elements. Notice the ‘PipeWeldData’ and 

‘Welder* elements in figure D.8, these elements define complex elements 

‘PipeWeldDetails’ and ‘WelderDetails*, who have child attribute declarations

«complexType name=”WeldDetails”>

«attribute name=”firstName” type=”string” use=”required7>

«attribute name=”iastName” type=”string” use="required7>

«attribute name=”emailAddress” type=”string” use=”required'7>

</complexType>
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Element declaration: Mentioned above as a simple type definition, the element 

declaration <element n am e-’Asset” type=*'string"/>is a simple type element declaration 

because it has no child attribute or sub element declarations.

Attribute declaration: The attributes further describe the contents of the parent 

element, eg . «attribute name=”firstName” type=”string” use="required,7>.

Secondary Components

Attribute group definition: An attribute group definition is an association between 

a name and a set of attribute declarations, enabling a data structure concept for the 

re-use of an attribute set (or group), in complex type definitions. For example, say 

we declare the following Address element:

< attributeGroup name=”Location”>

«attribute name=”Street Number” type=”string” use="required’7>

«attribute name=”Street Name” type=”string” use="required,7>

«attribute name=”Nearest Cross Street Name” type=”string” use=”required7>

«attribute name=”City” type=”string” use="required7>

«attribute name=”PostCode” ty p e -’integer” use="required’7>

«attribute name=”State” type=”string” use=”required'7>

«attribute name=”GPS” type=”string” use="required'7>

</ attributeGroup >

We could then reference this attribute group element in subsequent references as 

simply ‘Location’. In addition, multiple occurrences can be used to facilitate 

instances of location, refer to the use of ‘currentLocation’ and ‘basedA ¿Location’.

«complexType name=”Welder”>

«attribute name=”Welder Name” type=”string” use="required'7>

«attribute name=”emai!Address” type=”string” use="required’7>

< attributeGroup ref = “Location” name=”basedAtLocation” />

< attributeGroup ref = “Location” name=”currentLocation” />

</complexType>

Identity-Constraint definition: In addition to providing a naming convention for 

Elements and Attributes, the Schema model provides a method of declaring 

constraints to an engine which is posting the XML to a databasD. Definition 

components provide for uniqueness and reference constraints with respect to the 

contents of multiple elements and attributes. Consider the following XML extract



CBSE An implementation case study 204

for a pipe bundle where multiple length items <Lineltem> appear in the document. 

Each pipe code represents a specific length of pipD.

<BundleData>

<Bundle

orderDate=”12/1/2000">

«Llneltem lengthlDREF=”p1” quantity=”17”, diameter=”18”/>

<Lineltem lengthIDREF=”p2” quantity=”22”, diameter=”18”/>

</Bundle>

<Shipping

shipDate="12/4/2000" shipMethod="ROAD">

<Lineltem lengthlDREF ="p1" quantity="10" backorder="7" />

<Lineltem partlDREF="p2" quantity=’'22" backorder="0’7>

</Shipping>

</BundleData>

An Identity-constraint definition plays one of three roles, Unique, Key and Keyref.

U n iq u e: The Schema may identify an attribute as unique using the following syntax,

<unique name “lengthld”>

«selector xpath = “/BundleData/Bundle/Lineltem” />

«field xpath ="lengthlDREF’7>

<unique>

which asserts uniqueness, with respect to the content identified by the selector 

«selector xpath = “/BundleData/Bundle/Lineltem” />, the data resulting from evaluation of the

lengthlDREF expression will be deemed unique by the parser. Similarly for the key 

and keyref definitions.

K ey . asserts uniqueness (as for unique) for all selected content that meets the 

evaluated criteria.

«key name="lengthNumber">

«selector xpath = “/BundleData/Bundle/Lineltem” />

«field xpath=”@lengthlDREF'7>

</key>

This tells the Schema validator to verify that every length ID number (in the bundle) 

has a lengthlDREF, and that lengthlDREF must be uniquD.
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K ey r e f :  asserts a correspondence, with respect to the content identified by the 

selector, <selector xpath=,7BundleData/Shipping/Lineitem,7> of lengthIDRef, with those of the 

referenced key, lengthNumber.

<keyref name="lengthlDRef" refer="lengthNumber">

<selector xpath='7BundieData/Shipping/Lineltem'7>

<field xpath="lengthlDRef7>

</keyref>

1 nis tells the Schema validator that the pipe length number of the Line item being 

shipped, must refer to one of the line item elements in the collection defined by the 

lengthNumber key.

Model Group definition: The component has the same usability as the attribute 

group, but applies to lists of element information items consisting of declarations, 

wildcards or other model groups.

<group name="WelderGroup">

<sequence>

<element ref=“Welder,7>

<element ref=”Asset”/>

</sequence>

</group>

This grouping allows the Schema validator to refer to the complex types of Welder 

and Asset as a group, multiple times within the document. The applicable 

declarations, wildcards or other model groups are collectively referred to as ‘a list of 

particles’, and the model group provides for selective inclusion of the particles in the 

group by using the syntax sequence (the element information items match the 

particles in sequential order), all (the element information items match the particles, 

in any order), or choice (the element information items match one of the particles). 

For example, we could modify the above example to allow the Schema validator to 

select either Welder or Asset when the parser hits a reference to WelderGroup

<group name="WelderGroup">

<choice>

<element ref=“Welder”/>

<element ref=”Asset”/>

</choice>

</group>
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Notation declaration: The notation element allows an association between the 

named element and another file (URI). The element item must declare a pair of 

properties, SYSTEM and PUBLIC, which provide additional information on the 

correspondence between the notation element and the filD. For example, a digitised 

scan file may accompany the associated weld data, and can be alternatively stored, 

but referenced in the XML document, with the physical location details provided as 

a URI.

<nctaiiors name="jpeg" pub!ics"image/jpeg" system="vievver.exe">

declares a name “JPEG” which corresponds to a data type meeting the ISO 8879 

specification public -’image/jpeg", and associates a named file which can be found at 

the following URI system=Mviewer.exe". The most typical use for the notation element 

is to provide extension information (eg. mime) to an elements which may required 

additional processing. It is also common practice for data to be stored in binary 

format within a database as a Binary Large Object (BLOB), the notation element 

facilitates value added enablers to spawn a process to deal with an element being 

referred to in the notation.

H e l p e r  C o m p o n e n t s

Annotations: Annotation of the Schema and Schema components, with material for 

either or both human and computer consumption. The facility is provided for by 

allowing application information and human information at the beginning of 

Schema elements, and anywhere at the top level of the Schema. The XML 

representation for an annotation Schema component is an <annotation> element 

information item.

<annotation>

<documentation>

Some indication of delivery expectation should be provided on shipped bundled 

documents, and details when items could not be included in the bundle (backordered)

</documentation>

<appinfo>

attachm ent "Backordered lengths will be supplied from alternative sources within 12 hours” 

</attachment>

</appinfo>

</annotation>
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The content must be well-formed XML, and unlike standard comments, is passed 

through the parser and becomes available to underlying processing application, 

however, has no effect on the Schema validation.

Model Groups: The model group definition (described earlier) may refer to a model 

group identified below. The model group facilitates filtering of a named group in 

potentially multiple areas of the Schema. As outlined earlier, the model group is ‘a 

list of particles’, and the model group provides for selective inclusion of the particles 

in the nominated group by using the syntax sequence, aii or cnoicD.

Particles: A particle is part of the grammatical term making up element content, 

and consists of either an element declaration, a wildcard or a model group, together 

with occurrence constraints. Particles contribute to the validation of complex type 

definitions by providing granular syntax content. Typically, particles provide a syntax 

to define cardinality of the element content <element ref=,,lineltems" minOccurs=”1" 

max0ccurs="12"/>

Wildcards: A wildcard is a special kind of particle which matches element and 

attribute information items dependent on their namespace name, independently of 

their local names. Wildcards allow the author of XML documents to reference other 

‘external’ inclusions (using the namespace concept), and extend the document. The 

use of process contents such as strict, skip and lax, allow the author to include or 

exclude certain external content by using the wildcards to filter the inclusion.

<any namespace="http://www.w3.org/1999/XSL/Transform" processContents="lax"/>

Attribute Uses: An attribute use is a utility component which controls the 

occurrence and defaulting behaviour of attribute declarations.

attribute name=”Welder Name” type=”string” use="required’7>

The XML Schema language defines mechanisms which allow for:

• The constraining of document structure (namespaces, elements, attributes) 

and content (data types, entities, notations)

• Enabling inheritance for element, attribute, and data type definitions

• URI reference to standard semantic understanding of a construct

• Embedded documentation

• Application-specific constraints and descriptions

• Addressing the evolution of Schemata

http://www.w3.org/1999/XSL/Transform
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• Enabling the integration of structural Schemas with primitive data types.

D .6.2 D a t a  

D a t a t y p e s

The specification provides a syntax for the description of the following data types:

• integer - nonPositivelnteger - negativelnteger - nonNegativelnteger - 

unsignedlnt - int (small int) — positivelnteger

• short — unsignedShort

• long — unsignedLong

• byte - unsignedByte

• normalisedString - token - language - NMTOKEN - NMTOKENS -  Name

• NCName - ID - IDREF - IDREFS - ENTITY - ENTITIES

Fa c e t s

In addition, the specification provides the following constraining facets for the 

document creator to dictate validation constraints, such as Patterns, Enumeration, 

Whitespace etc.

Pattern: <pattern value=’[0-9]{5}(-[0-9K4})?7i>

Enumeration: which constrains allowed values fall within a specified set of values 

enumeration value='7’>

<annotation> <documentation>Sunday</documentation> </annotation>

</enumeration>

WhiteSpace: <whiteSpace value=’coIlapse7> Constrains the value space of types derived 

from string to a value that must be one of preserve, replace or collapsD. When 

preserve is nominated, the value is not changed, when replace, all occurrences of 

tab, line feed and carriage return are replaced with a spacD. Finally, collapse, after 

the processing implied by replace, contiguous sequences of spaces are collapsed to a 

single space, and leading and trailing spaces are removed.

The specification provides more many facets which test equality, ordered sequence, 

bounded sequence, cardinality and numeric equality. The list of these is outside the 

scope of this discussion, however, the issue is that the W3C is providing both a 

means of deploying data outside a database, as well as a set of tools for validating
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and constraining that external data representation. Third party vendors like IBM and 

Microsoft have not only adopted XML but are embedding the technology into their 

core products. SUN are now using XML to deploy Java source code to Clients via 

the Web for remote instanciation. This concept in itself has enormous implications 

for distributed software application development and maintenance tasks.

D.7 Pipeline Project Issues

D.7.1 Design Criteria

There are a number of issues which make the Schema method a good fit for the 

Framework under discussion. Most importandy is the volume of data being 

generated from a weld, which causes an overhead when the data is extracted from 

the database, shipped over the Web, then unpacked at the target end. Each of these 

steps take time and increase the total wait time for an interactive user. It is important 

to note that the Schema methodology provides a lot of scope for the developer to 

model the Schema so as to maximise the efficiency of the syntax to best suit the 

application under development. The side effect of this flexibility is that there is no 

DTD to allow the parser to build an in memory tree, the developer must provide a 

parser which first reads the Schema and then processes the XML document. As 

mentioned earlier, there are a number of Schemas which have been put forward for 

use by interested industry groups, with corresponding Schema parsers to allow the 

applications using the particular Schema access to the Schema DOM (Document 

Object Model). This concept may be taken further by the developer, who may build 

a Schema which is application specific (rather than industry specific), and this is the 

case with the Framework Schema. There is no need to have the Schema registered if 

the Schema is being used in house, as long as both sender and receiver have access 

to the Schema DOM. The Framework Schema has the following design criteria:

• There is no necessity to provide for human access to the XML, although the 

Schema is ‘well formed’.

• The Schema must provide information to allow the extracted data to be 

persisted in Comma Separated Variable format (CSV).

• Because of the data volume, the Schema must facilitate the most efficient 

form of document storage.
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• The Pipeline project is supported by a data transport Framework, which 

means that Schemas will be developed for additional tables being 

transported by the framework. In order to facilitate this process, the Schema 

must provide a simple format which can be followed by non technical users 

who wish to use the framework facility. The entire basis for the framework is 

extensibility for the non technical User, therefore the Schema must be 

simple enough for a non technical (computer wise) User to generate, and 

deploy.

• The Schema can be used to build the XML document as well as Read the 

XML document.
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