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The method of supporting excavated roof in coal mines by 

conventional roof bolting systems is challenged due to its shortcomings of the time

consuming installation and the increased number of accidents attributable to the 

work under unsupported roofs. Though a few alternatives have been considered, 

the ultimate and most efficient bolting method has often been conceived as the one 

called a self-drilling roof bolt, or a Rapid Face Bolting System. The on-going 

Rapid Face Bolting project undertaken by the University of Wollongong includes a 

special drilling bit design, and the principal design considerations for this tubular 

roof bit are high efficiency and low cost. Through review of the physical 

properties of different cutting materials, considering the special needs of the project 

and establishing a series of special criteria for a tubular roof bit design, two kinds 

of tubular roof bolts are proposed to suit hard and soft rock formations, 

respectively.

Most of the currently used drag-bits for bolthole drilling are different 

versions of the drag-bit recommended by Fish et al. in 19^6, and their 

configurations, especially the cutting tips, substantially have remained unchanged 

since they first were proposed. The cutting tip has an obtuse angle in its front face, 

which introduces an sharp point on its cutting edge. The result of the finite element 

analysis shows that the top point possesses a much greater stress concentration than 

any other parts of the tip, and is in a very adverse condition when load is imposed 

on the bit. The stress at the top point of the tip exceeds the critical stress even under
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the load applied in normal drilling conditions, and this part of the tip is likely to fail. 

With the increase of the loads, modelling severe drilling conditions, the area with 

the stress reaching the critical stress is expanded, which implies that the failure 

region would be extended.

An extensive series of experiments, which model the process of 

underground bolthole drilling, has been conducted in the laboratory. The operating 

parameters and the specific energy have been generated as the outcome of the test 

with the aid of a Keithley Data Acquisition System connected to the drilling 

operation unit. The experimental results are in general agreement with the outcome 

of the finite element analysis. The results show that the performance of a bit is 

determined by the condition of the cutting tips of the bit, which is reflected in the 

values of the specific energy generally. By linear regression analysis on the size 

distribution of the cuttings, a simple empirical method to predict the drag-bit 

performance is also proposed.

s
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1.1  General Remarks

During the last few decades, the use of rockbolts for reinforcing and 

stabilizing mine roofs has been increasing steadily. Today rockbolting has become 

a primary support system and is recognized to be so in the mining industry, 

especially, in coal mines. Nearly all of the underground coal mines are mined 

under bolted roofs in the United States (Peng, 1986) and other major coal- 

producing western countries. During this period, the use of rockbolts has resulted 

in a great reduction in the number of fatal and non-fatal accidents in coal mines 

(Smelser et al., 1982). Moreover, productivity has been increased, cost decreased, 

and ventilation improved under the bolted mine roof which provides an 

unobstructed opening with minimum maintenance. Rockbolting stands out as the 

most effective and the most economical technique among the various methods of 

rock reinforcements (Hoek, 1982 and Bieniawski, 1987). *

Despite its widespread usage and continuous development, there still 

remains disadvantages in the currently used rockbolting systems, especially in the 

installation procedures of the rockbolts, which need to be overcome to improve 

safety and productivity.
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. In currently used rockbolting systems, the installation procedures 

require that a drill rod be withdrawn after the completion of a bolthole, and then a 

rockbolt be inserted into the hole. These operations expose the operator to the 

unsupported roof for a fairly long period, as well as prolong the dead time during 

bolt installation. It is believed that if the installation procedures are properly 

modified, both safety and productivity of rockbolting systems can be greatly 

improved.

However, what are called self-drilling rockbolts have always been 

conceived as the ultimate and most efficient bolting method, in which the bolt drills 

its own hole and remains in the rock once the hole is drilled. Consequently, the 

operation of extracting the drill rod and inserting the bolt is eliminated from the 

process of installation of self-drilling rockbolts.

Robertson et al. (1986) envisage that the successful development of 

self-drilling bolts would have to include low cost drill bits for one hole only, and 

the bolt itself as well as the method and the equipment for installation would need to 

be low in cost.

. The University of Wollongong started developing a Rapid Face

Bolting System in 1986 so as to improve the excavation rate of continuous miners 

and the safety of working conditions. The so-called Rapid Face Bolting System 

virtually is a self-drilling bolting system using a 'single-pass' bolt for rockbolt 

installation in underground coal mines.
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1.2  Objectives of Study

The main theme of this thesis is to design a special kind of tube bit, 

and to evaluate the widely used roof drag-bit.

The tube bit designed for the Rapid Face Bolting System is a one- 

hole-only bit used to drill a bolthole to accommodate a 'single-pass' bolt, and is not 

retrievable after the completion of the hole. Different from that of the coring bit 

employed in geological site investigations, the principal design considerations for 

the tubular roof bit are high efficiency and low cost.

Aimed at the low cost consideration, the material choice of the 

cutting tips for the special tubular roof bits is based on reviewing the drilling 

requirement for the bit and the physical properties of different cutting materials, 

especially the hardness of the materials. A series of special criteria for a tubular 

roof bit design has been established to guide the design of the bits used in this 

particular circumstance. Eventually, two kinds of single-pass tubular roof bits are 

proposed to suit hard and soft rock formations respectively.

Most of the currently used drag-bits for the bolthol^ drilling are 

different versions of the drag-bit recommended by Fish et al. in 1956, and their 

configurations, especially the cutting tips, substantially remain unchanged since 

they were proposed. Some bits are subject to severe damage on their cutting tips 

even immediately after starting drilling in certain circumstance due to the aggressive 

sharp front point of the cutting tips. It seems that there may be alternative shapes of 

the cutting tips which may be able to provide better performance than the existing
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cutting tips under certain operating conditions . To verify this point of view, it is 

necessary to evaluate the currently used drag-bit. It is also required to catalogue the 

drag-bits with different specifications for different usages according to their 

performance (Cutifani, 1983). For instance, the drag-bits used for conventional 

bolthole drilling may require a constant penetration rate with a reasonably long life, 

whereas the drag bits employed for single-pass bolthole drilling may require a 

penetration rate as high as possible without much concern for the bit life. Different 

configurations of cutting tips can be suggested to suit different drilling 

environments, and efficiently to fulfil all types of drilling targets.

To describe the drag-bit wear feature, a three dimensional (3D) 

finite element method is applied to analyse the stress condition at the cutting tip of a 

drag-bit. By introducing a 3D finite element analysis package, STRAND5, the full 

tip of a drag-bit is modelled, and three load patterns, representing three kinds of 

drilling conditions, are applied. It is revealed through the computations that a 

severe stress concentration exists along the front cutting edge with a peak value at 

the top point. Even under the load applied under normal drilling conditions, the top 

point of the tip is likely to fail. The failure region extends from that point with the 

increase of the load applied on the tip.

An extensive series of experiments, which model the process of 

underground bolthole drilling, has been conducted at the laboratory. The operating 

parameters and the specific energy have been generated as the outcome of the test 

with the aid of a Keithley Data Acquisition System connected to the drilling 

operation unit. In addition, by linear regression analysis on the size distribution of
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the cuttings, a simple empirical method to predict the drag-bit performance is 

proposed.
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2 .1  Strata Control and Rockbolting

Effective strata control means attaining stability of underground 

openings in rock masses, and therefore leads to successful mining engineering. 

For example, unless the excavations are stable, access to a mine cannot be gained, 

and mining production will be impossible. In this context, the importance of strata 

control becomes obvious when one considers the importance of mining in mineral 

and energy development. The interaction of mining with other branches of mineral 

engineering is depicted in Fig. 2.1 (Bieniawske, 1987).
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Fig. 2.1 The Scope of Mineral Engineering

Strata control is a fundamental aspect of mining engineering, being 

concerned with controlling the movement of the underground openings such as are 

found in mineral, tunnel, or petroleum operations. Without effective strata control, 

mineral and fuel production is impossible within the bounds of economic reality.

Strata control is the science that studies the behaviour of rock mass 

in transition from one state of equilibrium to another. It provides a basis for the 

design of support systems to prevent or control the collapse or failure of a roof, 

floor, and ribs both safely and economically. In essence, strata control means 

maintaining rock mass stability. This control is an engineering field of specialty 

which is important because the design of underground excavations is, to a large 

extent, the design of underground support systems, that is, rock reinforcement.
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These systems may range from no support, in the case of temporary mining 

excavations, in good rock to heavy support, needed for large permanent 

underground excavations, in less competent rock strata. Note that in coal mining, 

strata control is often termed 'ground control' and involves the selection of roof 

support, pillar sizing, and prevention of floor heave. In hard rock (metal) mining, 

strata control is concerned with rockburst control, drift stability and stope support.

The design of strata control systems in mines is a basic requirement 

for the mining engineer; it is the first step toward effective roof control (Gale and 

Fabjanczyk, 1986).

While there are many methods of external roof supports with steel, 

timber, or concrete, the external roof support is aimed at controlling the immediate 

zone around an opening, and does little to improve overall ground stability. For 

example, steel sets or shotcrete support systems, which do not form part of the 

rock mass, restrict movements of the rock mass and support it externally. On the 

other hand, internal roof support systems, using rockbolts, actually form part of the 

rock mass, and reinforce and mobilize the inherent strength of the rock mass.

Among the various methods of rock reinforcement, rock bolting 

stands out as the most effective technique. Rockbolts can be promptly installed 

after blasting and mucking, that is very important from a rock mechanics point of 

view. In addition, rockbolts can easily be combined with other support systems 

such as wire mesh, shotcrete or concrete lining, that are frequently required by 

local rock mass conditions. In the last four decades, internal roof reinforcement by 

rockbolting has improved to such a degree that it has become an almost universal
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control method against ground movement, and for the prevention of rockfalls in 

mine excavations.

2 .2  Roof Support by Rockbolting

The history of rockbolting dates from the end of 19th century. 

However, roof-bolts were not used extensively until forty to fifty years later. Since 

then, the use of rockbolts in mining as well as in underground excavations for civil 

engineering applications has become world-wide, and hundreds of millions of bolts 

are installed annually (Stillbory, 1986). In 1951, BHP Co. Ltd. began introducing 

rockbolts into its mines in NSW, Australia (Hii, 1985).

The United States are credited with pioneering the use of rockbolts 

in underground excavations as early as 1930. Although the first use of rockbolts is 

lost in antiquity, it was not until 1943 that their systematic use on a planned basis 

was described by Weigel in the Engineering and Mining Journal. He described a 

system introduced by the St. Joseph Lead Company in 1936 in Missouri (Panek 

1973). Rockbolting first became popular in 1947 in the United States where it was 

promoted by the US Bureau of Mines in an attempt to reduce the number of 

accidents caused by roof falls. In less than two years, it had come into general use 

in the US mining industry. In 1949, the method was in use at over 200 mines and 

by 1952 annual consumption had reached 25 million bolts. In recent years, the 

range of application of rockbolts has widened due to advances in rock mechanics 

and the increasing use of rock reinforcement in underground excavations as an
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alternative to more traditional forms of support. Also, the development of new 

rockbolt concepts has led to the use of roof-bolts in non-traditional applications.

Growth of rockbolting was rapid. In 1968, the US bureau of Mines 

reported that 912 coal mines used 55 million rockbolts annually and 60% of 

underground coal production was mined under bolted roofs. By 1984, over 90% 

of American underground coal production was mined under bolted roofs 

(Bieniawski, 1987). The consumption of rockbolts in USA was increased to over 

100 million per year in 1985 from 75 million in 1982 (Scott, 1983; Singh et al., 

1984; Peng, 1986) with an incremental ratio of over 10% per annum. According to 

Daws (1987), there are similar tendencies towards the use of roof-bolts in 

Australia, South Africa, Canada and other major coal-producing countries.

Roof-bolting is not suitable for all strata conditions, but where it can 

be applied, a cheap and effective support is provided. Moreover, as the bolted mine 

roof can provide an unobstructed opening with minimum maintenance, productivity 

has been increased, and ventilation improved. Rockbolting has thus been accepted 

as the most effective but also a relatively cheap method of support.

Rockbolting also has the advantage that it reduces storage and 

handling requirements, decreases the size of the openings that must be excavated to 

achieve a given clearance, provides greater freedom of movement for trackless 

vehicles without risk of dislodging supports, and offers negligible maintenance of 

installed supports.
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Rockbolts are the most commonly used system for rock mass 

stabilization, particularly in the coal mining industry. In summary, the main 

reasons for the widespread use of rockbolt reinforcement systems are as follows:

1) prompt installation, improving safety

2) versatile, being able to be used in any excavation geometry,

3) usually simple to install,

4) low resistance to air flow, improving ventilation,

5) no posts, girders and the other obstructions, free passage 

way,

6) less influenced by the shock waves of explosives,

7) relatively inexpensive, and

8) installation can be fully mechanized.

2 .2 .1  Rockbolting theory and mechanisms

Rock reinforcement must utilize the structural properties of the rock

mass to improve the stability of underground excavations. The principal objective

in the design of underground support is to help the rock mass support itself. This

concept applies to all rock reinforcement systems. '
\

The behaviour of an opening and the performance of the support 

system depend upon the load-deformation characteristics of the rock and of the 

support, as well as on the manner and timing of the support installation. The 

interaction between the support and the rock mass is qualitatively illustrated by the 

the ground reaction curve (refer to Fig. 2.2), which was developed in detail by
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Deere et al. (1970) but was discussed by R. Fenner in Austria as early as 1938. 

Most recently, the concept was studied by Brown et al. (1983).

AC • properly designed support: 
equilibrium at C

00 * radial deformation for 
stable unlined tunnel

AeE - support yields before 
stabilizing opening

AF - support too flexible

GH - support too delayed

RA D IAL D E F O R M A T IO N , u

Fig. 2.2 Concept of Ground Reaction Curve for Rock Tunnels

Bieniawski (1987) explained the ground reaction curve in details as 

follows: .

When a tunnel is excavated, the rock moves inwards. The ground 

reaction curve displays the load that must be applied to the roof or the walls of the 

tunnel to prevent further movement. If the support were perfectly incompressible, 

the load of the support would be represented by the ling AA\ Support, however, 

deforms and, with the walls of the tunnel also deforming, an equilibrium is attained
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at point C at a radial displacement of the walls equal to OB and a support 

deformation equal to AB, at which stage the support load is BC.

However, the equilibrium at point C is only reached if the support 

is properly designed and placed timely. Line AeE in Fig. 2.2 depicts support which 

yields before stabilizing the opening, line AF represents support which is too 

flexible, while line GH is support too delayed in installation, hence ineffective. 

Accordingly, it is important to note that support should be installed as soon as 

possible so that the early rock-deformation could stress the support at the same time 

as the rock mass is generating the arching movement and shear stress in an attempt 

to be self-supporting. Furthermore, the less competent the rock, the earlier the 

support should be installed. Thus, active rock reinforcement will be more effective 

and will require less capacity than passive support but installation must take place as 

soon as possible after each face advance. Active rock reinforcement will require 

less support because the ability of the rock to support itself is being utilized while 

with passive support the full weight of the rock is being supported.

Although the concept of the ground reaction curve has been studied

extensively by Deere et al. (1970), Rabcewicz (1964), Pacher (1977), and by

Brown et al.(1983), the ground reaction curve cannot as yet be theoretically defined
s

for rock masses, though some attempts have been made (Detourney & Vardoulakis 

1985). Furthermore, even if the theory could be used to predict the curve, Deere 

believes that the large local variations in construction procedures would inhibit the 

usefulness of the curve for the practical design of supports, not to mention that the 

load-deformation characteristics of some supports are also not clearly understood. 

The only possibility of of obtaining quantitative data on the required support
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resistance and ground deformation behaviour lies in measurements in-situ. From 

measurements of the radial displacement of excavation surfaces and of the 

displacement inside the rock mass as a function of time during mining, the 

stabilization process as well as the loading of the support can be established 

(Bieniawski 1984).

The mechanics of rock reinforcement by rockbolting includes the 

concept of rock-support interaction as the main principle. The design of rock 

reinforcement systems with rockbolts depends on the geotechnical properties of the 

discontinuities and of the intact rock, the size and shape of the excavations, the 

magnitudes of redistributed stresses and the degree of deformation acceptable in the 

completed excavation. The mechanisms of rock reinforcement by tensioned 

rockbolts and by untensioned rockbolts are different.

L____ Mechanisms of the Tensioned Point-anchored Rockbolt

The main function of the tensioned rockbolt is to bind together a 

discontinuous rock mass, such as a sedimentary rock which is made up of a series 

of bedding planes, or a rock containing natural joints and fractures, or the outer 

layer of blasted rock around an opening excavated with explosives.

It is established that there are tension zones in a roof, especially at 

the 'entries' of underground mines. The roofs in these entries act like beams 

supported on both sides with layers separated from each other. The designer of the 

roadway supports must take the weight of such separated beds (immediate roof) 

into consideration (Biron etc., 1983).
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Suppose there are two separated roof layers, one of which can split 

on the other under bending stress, with thicknesses of hi and h2, and widths of b 

as shown in Fig. 2.3 (Biron et al., 1980). If the span of the opening is 1 and the 

uniform load per unit length is q, there will be a maximum bending stress a  in the 

extreme fibre in the middle of the span (refer to Fig. 2.3a) as follows:

I2
o = 0.75-----™------  2.1

2 2bhj + bh2

where h 1 the thickness of the lower roof layer,

h 2 the thickness of the upper roof layer.

s
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Fig. 2.3 Principle of Tensioned Point-anchored Rockbolt
s

If these two layers were tied together by means of bolts so as to 

prevent interfacial slip (refer to Fig. 2.3b), the bending stress a' in the extreme 

fibre in the middle of the span would be:

qr
b(h1+ h 2):

O’ =0.75 2.2
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It can be seen that the value of o' is much less than a. If

hj = I12 = ho, the ratio of two cases is as follows:

o  _ 0.75(ql2/2bh5 

a' 0.75[ql2/b(2h£)2]

Therefore, by binding the two layers, the bending stress can be 

reduced to half in this case. Moreover, the tensile stress in the roof can be carried 

by the ’steel* rods which are resistant to tensile stresses. The binding of the layers 

can be effected as soon as the roadway is opened,without much bed separation.

The other mechanisms by which tensioned rockbolt reinforce the 

mine roof include the suspension effect (Obert et al, 1967; Panek 1961, 1962 & 

1964), arching action (Cox, 1974) and the keying effect (Karabin et al., 1976).

2.____ Mechanisms of the Untensioned Grouted Rockbolt

The untensioned grouted resin bolts reinforce the mine roof in a
s

different manner from that for the tensioned mechanical anchored bolts. Because 

they are not tensioned during installation, they usually offer a passive support in 

that they first take up the load when the roof strata begin to deform.

Asa fully grouted resin bolt provides complete bonding between the 

steel bolt, resin and the hole wall for the full length of the bolt, the frictional or
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shear resistance is the major mechanism for preventing strata separation. Because 

the bore hole is completely filled with resin and contains a steel bar, the lateral 

movement of the roof strata or strata slippage is minimized. The major mechanisms 

by which fully grouted resin bolts reinforce the mine roof are frictional resistance 

(Karabin etc, 1976) and strata rigidity (Peng etc, 1985) produced by the full-length 

bonding between bolt, resin and the hole wall.

In summary, despite a large amount of research carried out to 

investigate the theories of rockbolting and the widespread usage of rockbolts, the 

real mechanisms by which the rockbolts reinforce the immediate roof of an 

underground mine entry are still relatively unknown. The mechanisms by which 

rockbolts reinforce the mine roof can be classified into six types: the suspension 

effect, the beam-building effect, the frictional resistance effect, the strata rigidity 

effect, the arching action, and the keying effect. The common practice of 

rockbolting is largely based on some empirical rules (Peng, 1986).

2 .2 .2  Overview of typical rockbolting systems

A large number of different rockbolts are now used world-wide. 

Many rockbolt types show only minor differences in their design and are basically 

varieties of the same concept. In general, there are two major types of roof bolts 

commonly used in underground mines. One is the tensioned point anchored bolt 

and the other is the nontensioned full-length anchored bolt. The point-anchored 

bolt, ususally known as a mechanical bolt, is a tensioned bolt anchored at its 

extreme end with a mechanical device. The bearing plate inserted between the bolt
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head and the roofline at the mouth of the borehole serves as the other anchor point. 

In the full-length-anchored bolt, the annulus between the holt and the hole wall is 

grouted with resin or cement throughout the full length of the hole while no tension 

is applied during installation. In addition to these two major types of bolts, the 

other types of rockbolts used are principally the friction anchored bolts.

It is estimated that the most popular type is the mechanical anchored 

bolt which is used in about 60% followed by the grouted bolt used for 30% of 

installations. The remaining 10% includes other methods of rockbolting, mainly 

the friction stabilizer (Bieniawski, 1987). Following is an overview of typical 

rockbolt systems, in which only the most widely used rockbolt type from each 

group will be highlighted as the group representative.

1. Mechanical Point-anchored Bolts

Although there are various types of mechanical bolts, all of them 

generally consist of three common elements (refer to Fig. 2.4, Lang et al., 1979):

1) a solid steel bar or shank,

2) an anchoring device at the top end of the bar, and

3) a tensioning device at the lower end of the bar. -
s
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Fig. 2.4 Typical Mechanical Rockbolts.

A, slot-wedge bolt B, expansion shell bolt

. . VThe mechanical-anchored bolt operates basically in this manner, so 

that a wedge attached to the bolt shank is driven into a conical expansion shell or a 

slot at the top end of the bolt. This action forces it to expand against and into the 

wall of the borehole.

The procedure of installing the expansion-shell point-anchored bolt

is generalized by Peng (1986) as follows:
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1) drill the hole to the desired length,

2) insert the bolt with the washer (if any), bearing plate, and 

expansion shell facility assembled in that order,

3) rotate the bolt by the hydraulic-driven motor,

4) pull down the plug to anchor the bolt, and

5) tighten the nut to build up tension in the bolt.

The advantages of the mechanical point-anchored bolt are:

1) relatively inexpensive,

2) immediate support action after installation,

3) able to serve as permanent reinforcement by post-grouting,

4) high bolt loads available in hard rock, and

5) versatile for rock reinforcement, assuming hard rock

conditions.

2. Grouted Bolts

A schematic view of grouted bolts is given in Fig. 2.5 (Biron,

1983), where grout is put into part or the full length of the hole. A tap is used to

stop the grout from running down. Fine plastic tubing is placed to drain the air
*

while inserting the deformed steel rod. After the grout sets, it has high adherence 

and keeps the bolt in place. Cement or resin are used as grouting agents. Rebar or 

threaded bar are usually used as the bolt bodies. The rebar used with resin creates a 

system commonly used for tensioned rockbolts, while rebar or threaded bar with 

cement grout is usually used for untensioned bolts.
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Fig. 2.5 Schematic View of Grouted Bolts

A standard procedure of installing rebar and resin cartridges is 

described as follows by Karabin etc. (1976):

1) drill the hole to the desired length,

2) insert the proper number of resin cartridges into the hole, 

and insert a plug to hold the cartridges in the hole,

3) push the rebar through the resin cartridges to the bottom of

the hole, -

4) rotate the rebar for manufacturer's recommended mixing 

time,

5) apply full machine thrust to the rebar head, hold for 20 to 30 

sec, and release, and

6) complete the fully grouted resin bolt installation.

The advantage of grouted bolts can be summarized as follows:
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1) under normal conditions anchorage is virtually guaranteed 

and independent of the strata type,

2) if properly installed, the system will turn to be a competent 

and durable reinforcement system,

3) the bolts do not need to be tensioned, which saves on both 

time and labour,

4) if fully grouted, the bolt can absorb blast vibrations without 

reductions of the bolt load with time, and

5) high corrosion resistance is obtained in permanent 

installations.

3. Friction Anchored Bolts

Friction anchored bolts represent the most recent development in 

rock reinforcement techniques. Two friction anchored rockbolt types are available, 

the split set and the swellex. The frictional resistance to sliding of the rock on the 

steel (for the swellex combined with mechanical interlock) is generated by a radial 

force against the borehole wall over the length of the bolt.

The split set consists of a long steel tube with a slot cut through its
s

whole length as shown on Fig. 2.6 (Scott, 1977). When the tube is forced into a 

hole with a smaller diameter, it closes inside the hole and creates a frictional (shear) 

stress between the rock and tube wall and a radial stress against the rock, which in 

turn reinforces the surrounding roof rock. Therefore, the anchoring mechanism of 

the split set bolt arises from frictional forces. The load generated approaches the 

ultimate load bearing capacity of the bolt.
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Fig. 2.6 Schematic View of Split Set Bolt

The advantages of the split set bolt are (1) simple installation, (2) 

immediate support action after installation, (3) no hardware other than a jackleg or 

jumbo boom needed for installation, and (4) easy application of wire mesh.

The swellex bolt system consists of a bolt, an installation rod with 

chuck, and a high pressure water pump (Atlas Copco, 1982). The bolt is made of a 

steel tube with a diameter smaller than that of the hole. When setting a swellex bolt
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(refer to Fig. 2.7, Stillborg, 1986), water is pumped at high pressure into the tube 

through a connection at the lower sleeve. This causes the tube to swell in the hole 

and to fill it completely. The anchoring of the swellex bolt is provided by frictional 

forces to a load which approaches the ultimate load bearing capacity of the bolt. 

Mechanical interlock between the bolt and the rock prevents the bolt from sliding.

Fig. 2.7 Schematic View of Swellex Bolt .
s

The major advantages of the swellex bolt system are (1) rapid and 

simple installation, (2) no rotation, high torque or feed force required, (3) versatile 

usage in terms of ground conditions and good resistance against vibrations, and (4) 

full contact and holding force in water-bearing ground where grout agents may be 

washed out.
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4,____ Comparison of Mechanical Bolts and Grouted Bolts

The mechanical point-anchored bolt and the grouted bolt are two 

major types of rockbolts commonly used in underground mines. Their mechnisms, 

consitution, installation and advantages have been anlysed in previous parts of this 

section. Table 2.1 compares the other characteristics, which have not mentioned 

before, of the mechanical bolt and grouted bolt so as to draw a full picture of these 

two bolting systems.

Table 2.1 Comparison of Mechanical and Grouted Bolts

Item Mechanical Bolts Grouted Bolts

Anchor agent slot/wedge or expansion device grout

Anchorage friction of top part of bolt and bonding of full length

surrounding rocks of bolt and surroun-

ding rocks by grout

Initial anchorage pre-tensioned, & immediate nontensioned, passive

support after installation support

Strata applicable moderately hard to hard rocks independent of strata

Durability not serving as permanent used as permanent

reinforcement reinforcement

Rigidity low rigid behaviour high rigid behaviour

Stress concentration very high at the area of rocks no stress concen-

induced where anchor is set tration induced

Bolting expense comparatively low comparatively high

Reliability losing bearing capacity or creeping resisting both vertical/
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with time as result of blast vibration, lateral movements, & 

or when rock spalls off around bore- very reliable 

hole collar due to high rock stresses 

induced around anchor

2 .3  Rapid Face Bolting System

The engineer who must design a rock reinforcement system today is 

faced with an increasing demand to optimize his design with respect to both safety 

and economic considerations. Among the various methods of rock reinforcement, 

rockbolting stands out as the most effective and economic technique.

By analysing the installation procedures of currently and commonly 

used rockbolting systems, it is found that there is always an operation manually to 

pull out drill rods from, and to insert a rockbolt into, the drill hole. This operation 

lengthens the installation period, which means that less productivity is achieved. 

Moreover, the operation exposes a miner under an unsupported roof condition for a 

certain period, which implies that the miner is subject to unsafe working conditions.

With the increasing use of rockbolting for support in conjunction 

with production operations there has been a distinct increase in attributable 

accidents. It seems that the accident frequency is increasing in proportion to 

rockbolting activities. According to Findlay (1984), Hoerndlein (1985), and Carr 

(1985), the statistics for 1982-1983 revealed that roof-bolting was responsible for 

25% of all the lost-time accidents incurred during coal face activities. Whereas in
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the year 1983-1984 26% of the serious body injury accidents reported involved 

some aspect of installing roof-bolts or handling or testing roof-bolting machines. 

Currently used rockbolting systems, therefore, are not perfect methods for 

achieving rock reinforcement. Some shortcomings exist in these rockbolting 

systems, especially in the installation procedures of rockbolts, and these need to be 

overcome urgently to improve safety and productivity.

2 .3 .1  Birth of Rapid Face Bolting System

For the purpose of reducing accidents from rockbolting, the US 

Bureau of Mines has developed some technology which can lead to reduced 

accidents from roof falls in the operations of rockbolting in underground mining. 

As a result of the research, remote manual roof bolters (Hill et al., 1983), a 

fibreglass epoxy-resin pumpable roof-bolting system (Soloman et al., 1983) and 

automated bolter modules have been developed. But the projects have not been 

successful commercially. Safety for miners has instead been solved by the use of 

hydraulic temporary roof supports, and the bolt installation procedure still remains 

unimproved.

s
However, the ultimate and most efficient bolting method has often 

been conceived as a method called the self-drilling roof bolt, where the bolt drills its 

own hole and remains in the rock once the hole is drilled. Consequently the 

procedure of withdrawing the drill rod and inserting a bolt is eliminated (Stillborg, 

1986). This procedure not only reduces the dead time during bolt installation, but
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also reduces the exposure of the operators to the unsupported roof, thus improving

safety (Peng, 1986).

In 1979, Engineers International developed three kinds of self

drilling bolts, i.e. the spring actuated bolt, the resin anchor bolt, and the slot-and-

wedge bolt (Fig. 2.8), which were operated successfully in the laboratory

(Engineers International, 1979).
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Fig. 2.8 Developed Concepts in Self-drilling Rockbolts

It is apparent that the structure of the bolt itself is rather complicated, 

and would add to the cost of bolt. So the advantage of time-saving for installing the
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bolts may not be able to compensate for the cost added for manufacturing the bolts. 

Up till now, there has not been any further development of the system reported.

To improve the excavation rate of continuous miners and the safety 

of working conditions, the Joint Coal Board (NSW) and six other coal mining 

companies approached the University of Wollongong, with a view to developing 

what is called a Rapid Face Bolting System. In the following review and also 

Chapters 3, 5 and 6, the references have been made to the Reports for Rapid Face 

Bolting Project Nos. 1, 2, 3, and 4 (Standish, 1987, 1988 and 1989, see 

References A1 to A5) and Consultant Report for Sandvik (Upfold, and Standish 

1989, see Reference A6).

2 .3 .2  General concept of the Rapid Face Bolting System

The Rapid Face Bolting system is a self-drilling bolting system 

using a 'single-pass' bolt for roof bolt installation in the coal field. The basic idea 

of the system is to develop a special drill bit/rockbolt kit which will be employed as 

a drill bit/rod set during the bolt hole drilling operation, and as a rockbolt be set 

after completion of the hole. With this system, the bolt installation procedure can 

still adopt that employed for the traditional rockbolting systems, but exclude the 

operation of the traditional rockbolting system, withdrawing the drill rod/bit from, 

and inserting a rockbolt into, the bolt hole. Subsequently, the procedure of 

rockbolt installation is simplified, and the time for miners to be exposed under the 

unsupported roof is greatly reduced, furnishing better productivity and higher 

safety.

It was envisaged that the use of the Rapid Face Bolt would involve a 

number of steps similar to those employed by more traditional systems. These 

steps would include:
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1) preparation of bolt/steel for drilling, including mounting 

bolt/steel in the drill chuck,

2) drilling of the hole to the required depth,

3) chemical grouting of bolt/steel into ground, spin to mix and 

hold to set,

4) torqueing of the nut on to the holding plate to tension bolt, 

and

5) move on to next bolt position.

By comparison of the procedure with that described for the 

traditional bolting systems in the Section of the overview of typical rockbolting 

systems, the steps for the Rapid Face Bolting allow for a reduction in the time 

required to install each of the roof bolts, with the removal of the ’double handling' 

step of replacing the drill steel with the roof bolt. In addition, by applying the 

special drill bit/bolt kit to an automated bolting system, the withdrawal of the 

operation of swaping a drill rod for a bolt will enhance the performance of the 

system.

The Rapid Face Bolt will be installed by existing techniques used for 

installation of grouted rockbolts. Either the chemical 'sausages' or pumpable 

resin/hardener will be used as the grouting agents.

2 .3 .3  Key factor for Rapid Face Bolting project

The key to the success of the Rapid Face Bolting project is to 

develop a special drill bit/bolt kit (i.e. a 'single-pass' bolt), which is able to drill its 

own hole and to be fixed in the hole at the completion of drilling.
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During a drilling operation, the drill rod/bolt is acting as a drill 

column carrying significant torsional and axial loads. The material used for the 

special 'single-pass' bolt, therefore, has to possess greater ultimate tensile and 

shear strengths than the materials purely employed as rockbolts. The cross-section 

of the drill rod/bolt, also, must provide a high stiffness to avoid excessive 

deformation during the drilling operation. For this reason, a number of cross

sections of drill rod/bolt have been proposed:

1) a round bar with slot or grove on side, or a hole at the 

centre, for the passage of water/grout in the drilling/bolt 

system, or

2) tube or pipe.

The selection or design of a drill bit used in the Rapid Face Bolting 

system has to be determined according to the drill rod/bolt chosen. In general, if a 

round bar is chosen as the drill rod/bolt in the Rapid Face Bolt system, the 

traditional rockbolt drag bit is most likely to be used. The reason for this is that 

traditional rockbolt drag bit can be well adapted to the drill rod/bolt system. Also, 

that the bit is commercially available, and is not too expensive, even when being 

used as a single-pass bit, and it allows a wide range of choices.

If a tube or a pipe is selected as the drill rod/bolt, a special tubular bit 

has to be designed for the Rapid Face Bolting system, as there is no tubular bit
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commercially available which can offer such a low price that is economically 

acceptable as a 'single-pass' bit for the self-drilling rockbolting system.

The design of the 'single-pass' tubular roof bit is centred on a low 

cost, and must meet the following criteria:

1) is able to complete a bolt hole, i.e. with a bit life of 

approximate 2-3 m,

2) uses the the tube or the pipe as selected as the bit body,

3) chooses as cheap material as possible for the cutting tips of 

the bit, and

4) simplifies the configuration of the bit to its ultimate degree.

s
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3.1 General Remarks

A tube bit, more often called a coring bit, has long been used for 

geological site investigations. It is a ring-like bit; its front face, professionally 

named the kerf in drilling engineering, is armed with cutting tools or special cutting 

material, a typical example of which is shown on Fig. 3.1.

Fig. 3.1 Typical Coring Bit (Source: Craelius, 1986)
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Core drilling mechanics, similar to that of any other rotary drilling, 

perform two actions: rotation of the drill rod and exertion of axial force on the bit so 

as to feed and advance it into the rock. Core drilling requires that the bit will rotate 

and cut out a cylindrical core of the rock through which it passes, instead of cutting 

off all rock in front of the bit, as in the case of full face rotary drilling or non-core 

drilling.

The major use of core drilling has always been geological site 

investigations, for example: sampling ore bodies, testing geological structures and 

rock defects, etc. For these purposes, the requirement for core drilling to reach a 

depth of over a thousand metres is not considered uncommon. Consequently, a 

reliable and long-life bit is desirable, especially in deep-hole drilling, and the cutting 

material for a core bit has to be of high strength and wear resistance.

For many years, diamond has been widely used as the principal

cutting material for a coring bit because of its extreme hardness. There are three

quite different types of diamond coring bits which have been used since the middle

of the 19th century. The first diamond coring bit, introduced as early as 1862, was

a surface bit set by hand with processed natural diamond. The second type of
*

coring bit, consisting of finer diamond impregnated in a sintered metallic matrix, 

appeared around 1940 (Industrial Diamond Review, 1984). The introduction of 

polycrystalline diamond cutters for rock drilling has formed a third type of coring 

bit and was introduced in the early 1980's (Clark, 1987).
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The tube bit for the rapid face bolting system, on the other hand and 

as stated before, is a one-hole pass bit, which is used to drill a hole for the 

installation of a 'single pass' bolt, and is not retrievable after the completion of the 

hole. Therefore, the basic consideration of a single-pass roof tube-bit design is low 

cost. In other words, the design of the configuration of the bit has to be simple, 

and the cutting material has to be cheap, in order to reach a minimum cost and to 

enable the rapid bolting system to compete with other conventional roof bolting 

systems. This design concept is contrary to that of the coring bit for geological site 

investigations, in which case the bit life is the primary consideration.

A comparison of the design targets and technical requirements is 

made between the coring bit for geological site investigations and the tube bit for a 

rapid face bolting system in Table 3.1.

Table 3.1 A Comparison Between Two Tube-Bits

Item Compared Tubular Roof Bit Geological Coring Bit

Bit life one bolt hole (1.5 m or so) the longer, the better*

Rock drilled sedimentary rocks mainly any possible kind of rock

Coring required not at all high quantity and quality

Direction of hole upward downward

Cutting material sufficient to complete a hole high hardness and wearability

Bit configuration as simple as possible as required

Bit cost to a minimum level not of great importance

* The length a coring bit can drill depends on many factors,

mainly including the material of the cutting tips, the rock drilled, and so on.
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Obviously, the aims and technical requirements of the two types of 

bits are widely different. Therefore, the design principles for a geological coring bit 

are definitely not applicable to the single-pass tubular roof bit. The design 

considerations for the latter should be reassessed and special effort should be 

centred on the cutting material choice and the bit configuration.

3 .2  Material Choice for a Tubular Roof Bit

The cutting material used for a coring bit in the field of geological 

investigations has passed through mainly five principal stages: carbon tool steel 

hardened by quenching in water followed with a tempering treatment, hand-set 

natural diamond, tungsten carbide, fine diamond sintered in a metallic matrix, and 

polycrystalline diamond. The development is towards a material which has 

mechanical properties of high hardness, resistance to abrasive wear, toughness and 

strength, thermal stability, long service life and is suitable for a variety of rock type 

conditions.

On the other hand, the ideal cheap material for the one-hole tubular
*

roof tube bit would be of a certain level of hardness and toughness to cut sandstone, 

but the wearing resistance would not necessarily be very large, for the bit 

performance is only needed to be efficient up to a depth of about two meters. 

Obviously, the current development of rock cutting materials for geological 

investigations is too sophisticated for the cutting tools of a tubular roof bit. Even 

the well developed, comparatively cheap materials, such as tungsten carbide inserts,
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seem to be luxury materials for the purpose because of their cost. Therefore, as the 

cutting materials used in a conventional coring bit possibly are not economical for 

the tubular roof bits, the material selection may be subdivided into several categories 

of metal drilling materials. But, first the hardness of cutting tool materials and its 

measurement test should be examined, as it is considered as an effective quality 

control test, and is useful as a first indication of the properties of tool materials 

(Boyer, 1987).

3 .2 .1  Hardness of cutting materials and its measurement

Hardness at room temperature is much the most commonly 

measured property of tool materials. It is an effective quality control test and useful 

as a first indication of the properties of tool material (Trent, 1984 and ASM, 1975). 

The concept of hardness as it relates to the tool industry can be thought of as 

resistance to permanent deformation. The scope of hardness properties includes 

such varied attributes as resistance to abrasives, resistance to plastic deformation, 

high yield point, high strength, absence of elastic damping , brittleness, and lack of 

ductility. Hardness is easily measured and offers some insight to the suitability of a 

cutting material for a given application.

The hardness test is, by far, the most valuable and most widely used 

mechanical test for evaluating the properties of cutting materials. The hardness of a 

material usually is considered as resistance to permanent indentation. In general, an 

indenter is pressed into the surface of the metal to be tested under a specific load for
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a definite time interval, and a measurement is made of the size or depth of the 

indentation.

The reason to test hardness of a material is that there exists a relation 

between hardness and other properties of a material. Therefore, the results of 

different properties of a material may closely parallel each other. The hardness test 

is preferred, because it is a simple, easy and relatively staight-forward 

nondestructive test. Hardness is not a fundamental property of a material. 

Hardness values are arbitrary, and there are no absolute standards of hardness. 

Hardness has no quantitative value, except in terms of a given load applied in a 

specified manner for a specified duration and a specified penetrator shape (Boyer, 

1987).

The hardness test is generally divided into two categories: 

macrohardness and microhardness. Macrohardness refers to testing with applied 

loads on the indenter of more than 1 kg and covers, for example, the testing of 

tools, dies, and sheet and sheet material in heavier gages. On the other hand, 

microhardness designates testing with applied loads of 1 kg and less on very thin 

material, and only covers extremely small parts.

*
The macrohardness test includes three basic testing methods, i.e. 

Brinell Testing, Rockwell Hardness Testing and Vickers Hardness Testing. The 

macrohardness is evaluated by the amount of permanent deformation or plastic flow 

of the material. This amount of flow may be determined by measuring the depth of 

the indentation, or by measuring the area. As the test material becomes softer, the
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depth of penetration becomes greater. Likewise, the projected area increases as the 

test material becomes softer.

1. Rockwell Hardness Test

The Rockwell hardness test is one of the most common methods of 

hardness testing, by which the hardness is determined by the depth of the 

indentation in the test material resulting from application a given force on a specific 

indenter. The reasons that the Rockwell hardness testing is the most widely used 

method for determining hardness are:

1) it is simple to perform and does not require highly skilled 

operators,

2) by using different loads and indenters, Rockwell hardness 

testing can be used to determine the hardness of most metals 

and alloys, ranging from the softest bearing materials to the 

hardest steels,

3) a reading can be taken in a matter of seconds with

conventional manual operation and in even less time with 

automated setups, and '

4) optical measurements are not required (all readings are 

direct).

Although a number of different indenters are used for Rockwell 

hardness testing, the most commonly one used for testing hard materials, such as



Chapter Three Tubular Roof Bit Design 3 - 8

hardened steels and cemented carbides, is a diamond ground to a 120° cone with a 

spherical apex that has a 0.2 mm radius as shown in Fig. 3.2 (ASM, 1985).

In c r e m e n t  »n d e p t*  c « f  »0 i 
c re m e n t ,n  lo a d  «s lr\* t.ne.

m e a s u r e m e n t  t h j :  fo rm s 

th e bas*s of P o e t w e ll 
h a r d n e s s  le s te r

r e a d in g s  .

Fig 3.2 Indenter of Rockwell Hardness Testing

While there are many Rockwell hardness scales due to the 

combination of loads applied in the test, and sizes and materials of indenters, the 

most widely used scales for hard material tests are the Rockwell hardness C (HRC) 

and the Rockwell hardness A (HRA). Table 3.2 shows HRC and HRA scale 

designations and their typical applications.
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Table 3.2 Designations and Applications of Rockwell 

Hardness A & C Scales

Scale Desig
nation

Indenter
Type

Applied 
Load (kg) Application

C Braie 150 steel, hard cast irons, titanium, deep case-

diamond hardened steel & metal harder than HRB 100

A cone 60 cemented carbides, thin steel & shallow case-

indenter hardened steel

2,____ Brinell Testing

In the Brinell test, hardness is evaluated by the area of the 

impression created by forcing a specific indenter, a 10 mm diameter hardened steel 

or tungsten carbide ball, into the test material under a specific force for a given 

length of time. However, in highly automated Brinell testing systems, hardness is 

evaluated by the depth of the impression, which makes it similar to the Rockwell 

test in basic principle.

. The practical limits of hardness measurement by the l^rinell method

are determined by the fact that highly hardened steel or other extremely hard 

materials cannot be tested by a hardened steel ball, because the ball itself can flatten 

and become permanently deformed under the applied load. A value of 450 HB 

(equals approximately 46 HRC) of Brinell hardness is considered as the top range 

of the Brinell test in practice, although the use of a tungsten carbide ball extends the
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range to about 600. Therefore Brinell testing is not suitable for the materials with a 

high hardness, such as high speed steel and cemented carbide materials.

3. Vickers Hardness Testing

The principle of the Vickers hardness test is the same as that of the 

Brinell test. An indenter, made of diamond with the form of a square-based 

pyramid with an angle of 136° between faces (refer to Fig. 3.3), is pressed into the 

material to be tested, the load is removed, the diagonals of the resulting indentation 

are measured, and the hardness number is calculated by dividing the load by the 

surface area of indentation. The loads applied vary from 1 to 120 kg with the 

standard values of 5, 10, 20, 30, 50, 100 and 120 kg. For most hardness testing, 

50 kg is the maximum value, because loads of more than 50 kg are likely to fracture

the diamond indenter, particularly when used on hard materials.
O pera t ing  

pos i t i on

Fig. 3.3 Diamond Pyramid Indenter Used for Vickers Testing and 

Resulting Indentation in the Workpiece
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The Vickers hardness number (HV) in a uniform material is 

practically independent of the test load, as the impressions under varying loads are 

geometrically similar (Angus, 1976).

As the Brinell test is rarely employed for hardnesses above 450 HB, 

the Vickers test can be regarded as a direct extension of the Brinell scale for 

hardnesses above 400 HB, and is practically coincident with it for hardnesses 

below 350.

The Vickers test is suitable for a wide range of hardness testing and 

is especially useful in the situation where the direct comparison of a great variety of 

hardnesses for various materials to a consistent scale is demanded.

4. Hardness Conversion

From a practical stand-point, it is important to be able to convert the 

results of one type of hardness test into those of a different test. Because a 

hardness test does not measure a well-defined property of a material, and because 

all tests in common use are not based on the same types of measurements, it is not 

surprising that universal hardness-conversion relationships have not been 

developed.

Hardness conversions are empirical relationships. Table 3.3 can be 

used for conversion among Rockwell scales C and A, and Vickers Diamond 

Pyramid hardness, and are found in Metals Handbook, Mechanical Testing (ASM,
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1985), and is applicable to all alloy steels, tool steels and cemented carbide 

materials.

Table 3.3 Approximate Comparison of Hardness Scales

Vickers (HV) 940 900 860 820 780 740 700 660

Rock. C (HRC) 68.0 67.0 65.9 64.7 63.3 61.8 60.1 58.3

Rock. A (HRA) 85.6 85.0 84.4 83.8 83.0 82.2 81.3 80.3

620 580 560 540 520 500 480 460 440 420 400

56.3 54.1 53.0 51.7 50.5 49.1 47.7 46.1 44.5 42.7 40.8

79.2 78.0 77.4 76.7 76.1 75.3 74.5 73.6 72.8 71.8 70.8

3 .2 .2  High speed steels (HSS)

Metal drilling materials most widely used for production machining

are high speed steels, while carbide drills of several designs are used for drilling

certain ceramic and plastic materials and for metallic materials of high hardness.

However, the number of holes drilled with carbide drills is still a small percentage
s

of the total (Kennedy et al., 1975). The other main groups of cutting tool materials 

are carbon (and lower alloy) steel, cast cobalt-based alloys, ceramics, and diamond 

(Trent, 1984).

In the 1970's the greatest percentage of HSS used for the 

manufacture of drills was composed of those grades exhibiting the highest strength
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and toughness, notably M l, M2, M10 and T1 (Kennedy, 1975) . These four 

standard types of high speed steel are used in the majority of high-speed drills 

because they furnish the necessary combination of strength, toughness and hot 

hardness (Eagle & Globe, 1981).

The hot hardness or red hardness is the ability of a material to retain 

hardness and strength at high and elevated temperature (Fritzlen, 1975). Generally 

speaking, the hardness of a cutting material will reduce with the increase of cutting 

temperature, but the reduced rate of hardness with temperature varies from material 

to material. The lower the reduced rate of hardness with the elevated temperature, 

the better hot hardness will a material be considered to have. In terms of rock 

drilling, the hot hardness of a cutting material is also a very important property of 

the material, for the temperature generated between the cutting edge and the rock 

face by the drilling action during the drilling process can easily reach several 

hundred degrees (°C) if the cutting tools are not promptly cooled. With such high 

temperatures, the hardness of a cutting material can be sharply weakened 

immediately, that will result in the failure of the cutting tools.

Fig. 3.4 shows the hardness of carbon steel and HSS versus 

temperature (Trent, 1984). The fact of the linear decrease of hardness in a carbon 

steel with the increase of temperature implies that the carbon steel does not possess 

a good hot hardness. On the other hand, the hardness of a HSS is a relatively 

stable and varies in a limited range before the temperature reaches up to 400°C. 

Afterwards, the hardness falls sharply with further rise of temperature. Those 

phenomena suggest that the HSS furnishes a high hot hardness and would be a 

suitable cutting material for temperatures less than 400°C.
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Fig. 3.4 Hardness of Carbon Steel & HSS vs. Temperature

*

The chemical compositions of HSS are principally carbon (C), 

tungsten (W)/molybdenum (Mo), cobalt (Co), chromium (Cr), vanadium (V) and 

iron (Fe). The detailed chemical compositions of the above-mentioned HSS Tl, 

Ml, M2 and M10 are listed on Table 3.4 (Trent, 1984 & ASM, 1975).



Chapter Three Tubular Roof Bit Design 3-15

Table 3.4 Detail Compositions of T l, M l, M2 & M10

Designation Chemical Composition (%)

C Cr Mo w V

Tl 0.75 4.0 non 18.0 1.0

Ml 0.8 4.0 8.5 1.5 1.0

M2 0.85 4.0 5.0 6.5 2.0

M10 0.85 4.0 8.0 2.0

Tungsten HSS, Group Tl, contains the principal alloy elements of 

tungsten, chromium, vanadium, cobalt and carbon. The steel is characterized by 

high hot hardness and wear resistance. High alloy and high carbon contents 

produce a large number of hard wear-resistant carbides. The presence of many 

wear-resistant carbides in a hard heat-resistant matrix makes the steel suitable for 

cutting tool application.

Molybdenum high speed steels, Group M, are similar in properties 

to the tungsten high speed steels, but with two advantages: slightly greater 

toughness at the same hardness, and lower initial cost with the equivalent 

performance, being almost 30% less than similar grades of the Cjroup T steel. 

However, the Group M steels are somewhat more sensitive than Group T steels to 

hardening conditions, particularly to temperature and atmosphere. They will 

decarbonize and overheat easily under adverse treatment conditions. This condition 

is especially true of the high molybdenum grades. It is estimated that approximately 

85% of all high speed tool steels produced in the USA in the 1970's are in this 

group. Their typical uses are for cutting tools of all kinds (ASM, 1975).
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Tungsten high speed steels are all deep hardening when quenched 

from their recommended hardening temperatures. The maximum hardness of 

Group T steels varies with the alloy content and especially the carbon content. A 

Rockwell hardness measure of C 64.5 is obtained on all steels of this group.

Molybdenum high speed steels possess the hardenability similar to 

that of the tungsten steels because of the similarity between the two groups. When 

properly hardened, all Group M steels will test to at least one-half to one point 

Rockwell C harder than comparable Group T steels. This increase is the another 

advantage of M steels over T steels.

Table 3.5 lists the typical values of mechanical properties of HSS 

Tl, Ml, M2 and M10.

Table 3.5 Mechanical Properties of HSS T l, M l, M2 &M10

Code of 

HSS

Transv. Rupture Fract. Toughness
2/

Stress (GPa) (MNm'3)

Impact

Strength (mN)

Hardness

(HV)

Rockwell

(C)

Tl 4.6 18 15 83* 65.1

Ml 4.8 18 24 835 65.1

M2 4.8 17 25 850 65.6

MIO 4.0 15 13 880 66.4
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A further trend has been noted toward greater use of vanadium in 

high speed steels because of the better wear-resistance and longer tool life imparted 

by the hard vanadium carbides.

3 .2 .3  Tungsten carbide alloy (WC alloy)

The first successful application of tungsten carbide as a cutting 

material was made in Germany in 1920's (Shaw, 1989).

Tungsten carbide is one of a group of compounds, carbides, 

nitrides, borides and silicides of transition elements of groups IV, V and VI of the 

Periodic Table (Goldschmidt, 1967). Of these, the carbides are important as cutting 

tool materials, and the dominant role has been played by the mono-carbide of 

tungsten, WC. The rigid and strongly bonded hexagonal structure of tungsten 

carbide undergoes no major structural changes up to its melting point, which is over 

2500°C, and its properties are therefore stable and unaltered by heat treatment, 

unlike steels which can be softened by annealing and hardened by rapid cooling 

(Schwarzkopf, 1960).

%
Tungsten carbide has a diamond indentation hardness of over 2000 

HV at room temperature, which is much higher than that of steel. The hot hardness 

of tungsten carbide is not very great, and drops rapidly with increasing temperatures 

as shown on Fig. 3.5 (Trent, 1984). Even then it still remains much harder than 

steel under almost all conditions. The very high hardness, and the stability of the
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properties when subjected to a wide range of thermal treatments, are favourable to 

the use of tungsten carbide as a cutting material.

Fig. 3.5 Comparison of Hardness of HSS & WC Alloy

The performance of carbide cutting tools is very dependent upon the 

composition and grain size in addition to the general quality of the product. The 

WC alloy used for cutting normally contains at least 80% carbide by volume and 

4% to 15% cobalt by weight, with the carbide grains varying in size between 0.5 

pm to 10 pm across. Table 3.6 gives the properties of a range of WC-Co alloys in 

relation to their composition and grain size, and Fig. 3.6 shows graphically the 

influence of cobalt content on some of the mechanical properties. Both hardness 

and compressive strength are highest with alloys of low cobalt content and decrease 

continuously as the cobalt content is raised. For any composition, the hardness is



higher the finer the grain size, and over the whole range of compositions used for 

cutting the tungsten carbide is march harder than the hardest steel.
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Table 3.6 Influence of Composition and Grain Size of WC Alloy 

on Some of its Mechanical Properties

Co Mean WC Hardness Trans. Comp. Young's Density

Rupture Strength Modulus

% pm HV MPa MPa GPa g/cm3

3 0.7 2020 1000

1.4 1820

6 0.7 1800 1700 4550

1.4 1575 2300 4250 630 14.95

9 1.4 1420 2400 4000 588 14.75

4.0 1210 2770 4000

15 0.7 1400 2770 538

1.4 1160 2600 3500 1400

Fig.3.7 (Trent, 1968) shows a comparison between the compressive 

strengths of HSS and WC Alloy at a higher temperature range and lower stress 

level. Both hardness and compressive strength of tungsten carbide decrease as the 

temperature is raised (refer to Figs. 3.5 and 3.7). The comparison of compressive 

strength at elevated temperatures with that of high speed steel (rei. to Fig. 3.7) 

shows that a WC alloy with 6% Co withstands a stress of 750 MPa at 1000°C, 

while the corresponding temperature for HSS is 750°C. With tungsten carbide the 

temperature, at which this stress can be supported, drops if the cobalt content is 

raised or the carbide grain size is increased (Aschan, 1975).
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Fig. 3.7 Compressive Strengths of HSS and WC Alloy at a 

Higher Temperature Range and Lower Stress Level

The ASM Committee on Sintered Carbides (1975) suggests that the 

high hardness and wear resistance of tungsten carbide make it well suited for rock 

drilling and mining applications. Various types of specialized rock bits for drilling 

in extremely hard and abrasive rock formations utilize carbide inserts instead of 

other conventional cutting materials. Carbide insert bits are almostVnandatory for 

drilling rocks harder than limestone, and their use has all but made the steel bit for 

drilling hard rock obsolete, both on a basis of performance and economics.

Table 3.7 (ASM, 1975) lists mechanical properties of five tungsten 

carbides potentially used for rock cutting tools. The cobalt contents of these 

carbides are between 6.5 and 15%.
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Table 3.7 Mechanical Properties of WC for Rock Drilling

WC Grade Rockwell A Trans.Rupture Comp.Strength Y's Modulus Density 

Number Hardness (MPa) (MPa) (GPa) (g/cm3)

1 90.5 2068 4440 565.4 14.6 :

89.2 2827 4433 558.5 14.6

3 89.1 2827 14.5

4 89.0 2827 4158 572.3 14.5

5 86.3 2482 3482 551.6 14.1

3 .2 .4  Summary

According to the mechanical properties of HSS and its competitive 

prices, it seems that some types of high-speed steels, e.g. M l, M2, M10 and Tl, 

could be used as the cutting material for the low-cost single-pass tubular bit, and are 

well worthy of investigation as cutting materials for the self-drilling bolting bit.

Tungsten carbide is a little more costly, but it can drill the hard rock 

formations which cannot be handed by the tools made from steels. Consequently, 

tungsten carbide may have to be used as the cutting material for the roof tubular bit 

in some extreme cases.
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3 .3  Criteria for a Tubular Roof Bit Design

The shape and material of a cutting tool are two important points 

which largely affect the cutting efficiency, but they are not the only points. The 

other factors, including the body structure of a tube bit and the arrangement of the 

cutting tools on the bit face, may significantly affect the bit performance too. A bit 

with sharp tools of high strength material may perform poorly if the bit body is not 

properly designed or the cutting tools are improperly arranged, while a bit with 

comparatively blunt cutting tools may furnish a higher efficiency and longer bit life 

if it is of a good design.

Basically, the design of the body-structure of a tube bit includes the 

thickness of the bit face, the number, area and shape of waterways, water slot and 

the arrangement of the cutting tools on the bit face. Also included are the cutting 

tool exposures, the rake angle and the number of cutting tools. All these factors, 

which affect the drilling efficiency, will be individually detailed.

3.3.1 Cutting tool exposures

All cutting tools project from the bit body. These projections of the 

cutting tools are generally called the cutting exposure. According to the positions of 

projection, the cutting exposures are divided into three types, i.e. the inner, outer or 

the bottom exposure. Fig. 3.8 is a diagram showing these exposures. The purpose 

of designing exposures is to let the tools fluently cut into the rock, to allow the 

drilling water to flow freely, and to lessen the wearing of the bit body.
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H bottom exposure 

ho initial cutting depth 

hi height desired to allow the 

cuttings and drilling fluid to 

pass freely the tool end

Fig. 3.8 Exposures of Cutting Tip

JL____ Inner and Outer Exposures

Inner exposure and outer exposure are rulers which set the diameters

of a drilling hole and core size, i.e. the annulus between the core and the bit inner

wall, as well as the annulus between the bit outer wall and the hole wall.
*

If these exposures are too big, the cutting tools are less supported 

and weakened. Moreover, the annulus of the cutting area is extended, and this will 

lead to an increment of cutting resistance, and hence to an increase of power 

consumed. On the other hand, if the inner and outer exposures are very small, the 

resistance to the flush flow will be great, and as a result, core jam will occur.
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The decision about the value of an inner and outer exposures mainly 

depends on the drilled strata. Usually, a small value of the exposure is selected in a 

hard rock formation, as a small volume of flush flow is demanded because of the 

stable hole wall, the low drilling speed, and the small amount of drilling debris 

produced. A comparatively large value of exposure is desirable in the condition of a 

soft rock formation, because of the high penetration rate and the large quantity of 

cuttings created during the drilling process.

According to exploratory core drilling experience, the arrangement 

of inner and outer exposures is about 2 -3 mm in soft formations and approximately 

1-1.5 mm in medium hard rocks. (Centre Laboratory, 1979)

2,____ Bottom Exposure

The purpose of having a bottom exposure on a drilling bit is to let 

tools easily cut into the rock and allow the drilling fluid and rock cuttings to be 

flushed out. Consequently, the value of the bottom exposure should not be smaller 

than the summation of the values of the cutting depth ho and the gap required for the 

clearance of drilling fluid and debris hi, i.e.:

H = ho + hi.

Hwhere

ho

bottom exposure.

initial cutting depth of a tool
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hi height desired to allow the cutting debris and drilling 

fluid to flow pass the tool end.

In medium hard rocks, the cutting depth and the flow outlet height 

are small. Therefore, the bottom exposure H should be also small, but it cannot be 

too small, otherwise the bit will have a very short life because of the easily worn- 

out bottom exposure. Normally, a value of 2-3 mm for a bottom exposure is 

suitable in medium hard rocks.

A large value of bottom exposure is required to drill soft rocks, as 

the cutting depth is high and more rock cuttings are produced. But this exposure 

does not mean that the greater the value, the better the performance the bit will 

show. Considering the fact that the bending moment of a cutting tool increases with 

the bottom exposure, a value of bottom exposure of around 3-5 mm in soft 

formations will enable efficient drilling and prevent breaking of tools.

3 .3 .2  Rake angle and other cutting tool angles

Fig. 3.9 is a diagram showing the angles of a cutting tool on a bit 

body and their relations.
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P Rake angle 

y Tool angle 

a  Rear angle 

5 Cutting angle 

Px Thrust force 

Py Rotary force

Fig. 3.9 Angles of Cutting Tool

Rake angle p is the angle between the front face of a cutting tip on a 

drill bit and the vertical line. The rake angle is provided to give a cutting tool a 

wedge like action and to affect the direction of the flow of cuttings.

Different rake angles of the cutting tools on a bit body will result in a 

different cutting angle towards the cut rock, hence lead to a different effect on rock 

cutting.

The value of the tool angle y determines if it is easy or not for a tool
*

to cut into rock, and also determines the wearability and the bending strength of a 

cutting tool. Obviously, the smaller the tool angle, the easier it will be for a tool to 

cut into rock, to wear out and to chip off, and vice-versa. In actual drilling, the 

wear-out and chip-off of a cutting tool turns out to be a basic consideration, so a 

small tool angle is adopted in soft rocks while a large tool angle is used in hard 

rocks.
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The value of the rear angle a affects the contact and wear between 

the rear of a tool and the rock surface. A certain degree of rear angle must be 

introduced to guarantee no contact and less wear between a tool rear and the rock 

surface. It is unnecessary to have a great rear angle, for the increased rear angle 

will reduce tool angle. Sometimes, an angle called the cutting angle and denoted by 

8, which equals a plus y, is adopted to describe a tool specification. The cutting 

angle 8 is correlated with the rake angle p, i.e.:

8 = 90° - p.

When 8 = 90 , p = 0 called neutral rake
o

8 < 90 , p > 0 called positive rake
o

8 > 90 , P < 0 called negative rake

The cutting angle is decided again according to the rock drilled. 

Generally, the harder the rock, the greater the cutting angle.

In hard rocks, the principal problem to be solved for cutting tools is 

the wearrate due to chipping of the cutting tips. It is found that both positive rake 

and neutral rake bits are liable to lose their cutting edge rapidly. To provide the 

greatest possible support to the cutting tips , a negative rake angle is preferred , 

although this reduces the effective cutting force for a given magnitude of thrust 

(Fish etc., 1956). But the rake angle cannot be too small, or else the rock cutting 

speed and the removal of cuttings will become a problem. Usually, a rake angle of 

not smaller than -10° is required.
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In soft rock conditions, the wearing of cutting tools by the rock is 

not so severe and the strength of the rock is not so high as in that of hard rock, 

therefore a positive rake is used to achieve a high penetration rate. Normally, a 

value of 3-5 is a suitable rake angle for a drill bit used in soft rock conditions.

In summary, the rake angle of a cutting tool should suit the nature of 

the rock to be cut: a positive rake angle is very often adopted in soft or lowly 

abrasive rocks, but positive angles are not usually used in hard or highly abrasive 

rocks.

3 .3 .3 Waterways on a bit body

Water-ways of a tubular roof bit are the access on a bit body for 

drilling fluid to be ejected up to the top of a drill hole from the inside of the drill tube 

and flow down to the ground in order to cool the cutting tool and to remove chips. 

Whether a design of a waterway is suitable will directly affect the tool cooling and 

rock cutting removal, and hence will affect the drilling efficiency and the tool wear. 

The waterway cannot be ignored in tubular bit design.

1. Number and Area of Waterways

In a hard metal alloy tube bit, each cutting tool normally has its 

associated waterway, so that each tool will have a fair chance to be cooled. 

Therefore, the number of waterways is equal to the number of cutting tools. To
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guarantee the prompt removal of cuttings and the swift cooling of tools, a waterway 

is usually arranged close to the cutting tool. The area of a waterway very much 

depends on the rock formation to be drilled. In soft rock, a high drilling speed and 

a great amount of cuttings are expected, and the waterway should be large. In hard 

rock, on the other hand a small waterway is all that is needed.

In order to reduce the loss of water head, the waterway should not 

be too small, or else the small cross section of water access will create a high 

resistance to the flush flow. But the area of waterway cannot be too large either, for 

the large cross-sectional area of the waterway will reduce the flow speed, hence 

affecting the cutting carrying capacity and the tool cooling. In a compromise, the 

ideal total area of the waterways should be slightly greater than the annular area 

between the inner wall of the bit and core, or the annular area between the hole wall 

and the outer wall of the bit.

2. Waterway Shapes

A basic rule for waterway design is to meet the drilling requirement 

and to consider the manufacturing process not to weaken the strength of a bit body. 

Its design should give the flush flow a smooth easy outlet with a simple shape. 

Waterway shapes are mainly designed as rectangles, triangles, half circles or even 

isosceles trapezoids as shown on Fig. 3.10. Usually, the shapes of half circle and 

trapezoid are preferred.
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Fig. 3.10 Shapes of Commonly Used Waterways

3 .4  Proposed Tubular Roof Bit

As has been analysed, different rock formations require different 

cutting material and bit configurations. Basically, two kinds of single-pass tubular 

roof bits are designed to suit the hard and soft rock formations respectively. The 

determination of the hard and soft rocks may have to be by a trial-and-error method 

first, and later on modified by the experience collected from use.
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3 .4 .1  Tubular roof bit for hard rock formations

For hard rock, the cutting materials with a high hardness and wear 

resistance is desirable, therefore tungsten material should be used.

In hard rock drilling, a smaller amount of flushing water is needed 

due to the fewer rock cuttings produced than for soft rock drilling. The waterway 

may be eliminated in order to simplify the configuration of the single-pass tubular 

roof bit, so as to minimize the cost. Instead, the bottom exposure is designed to 

oudet the flushing fluid, thereby demanding a large bottom exposure to fulfil the 

function. But on the other hand, comparatively large thrust and shear forces are 

desirable in hard rock drilling. The increased thrust causes the instability of, and 

increases the compressive force on, the cutting tips, and the extra shear creates a 

high bending moment on the cutting tips. All of these factors are prone to lead to 

fracture of the cutting tips; hence a small bottom exposure is favourable for 

improving the stability of, and reducing the chance of fracture. In a compromise, a 

bigger bottom exposure than H (refer to formula 3) is suggested with a value of 

2.5-4 mm.

A small diameter and a thin kerf of drill bit is required in hard rock 

drilling to minimize the volume of rock to be cut. In a particular rock condition, a 

certain strength of rock bolt is needed, which means that the diameter and wall 

thickness of a tubular bolt cannot be changed. The only way to minimize the 

removal of rock by cutting is to reduce the outer and inner exposures of the cutting 

tips to their smallest possible values. Meanwhile, the elimination of waterways in 

the bit design requires the compensation for the loss of water access, therefore 

large inner and outer exposures are needed. As a result of compromise, the 

inner and
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outer exposures are given a value of 2 mm, which is slightly greater than the 

suggested value in the previous section on "Bit Design Criteria".

The rake angle determines the drill speed of a bit and the wearability 

of a cutting tool, and therefore the life of a bit. But the life of the single-pass 

tubular roof bit is not a very important factor in the design consideration, so a 

neutral rake angle instead of a negative rake angle is chosen to simplify the design 

and to obtain a reasonably high penetration rate. Fig. 3.11 is the configuration of 

the proposed tubular roof bit for hard rock formation.



D outside diameter of tube 

t thickness of tubular bolt 

T width of cutting tip 

H bottom exposure of cutting tools 

b outer or inner exposure

5 cutting angle, 90°

Plan

Fig. 3.11 Tubular Roof Bit Designed for Hard Rock Formations
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3 .4 .2  Tubular roof bit for soft rock formations

Soft rock formation generally is of less strength and abrasiveness 

than hard rock. Therefore, the demands of the hardness and wear resistance of 

cutting materials for a bit used in soft rock conditions are not so high as in the case 

of a bit for hard rock drilling. The mechanical properties of HSS materials can meet 

the demands in this case.

The main consideration for design of a soft rock drill bit is to achieve 

a high drilling speed. So a sharp cutting tool and positive rake is introduced in the 

design. Correspondingly, larger exposures of the cutting tool are adopted to allow 

the larger flushing flows needed to cool the cutting tools and to remove rock 

cuttings. The inner and outer exposures are suggested with a value of 3 mm, 

whereas a value of 4 mm is given to the bottom exposure. A positive rake with a 

value of 4° is introduced for the bit used in a soft rock condition to gain a high 

penetration rate. Waterways are needed on the bit body for a large volume of 

flushing flow to pass through. An easily manufactured shape, a rectangle, for the 

waterways is used in this instance. Fig. 3.12 is the diagram of the proposed tubular 

roof bit to be used for the condition of soft rock formations.



Waterway

Elevation Side elevation of unfolded tube

D outside diameter of tube 

t thickness of tubular bolt 

T width of cutting tip 

H bottom exposure of cutting tools 

b outer or inner exposure 

p rake angle of cutting tool, 4°

Fig. 3.12 Tubular Roof Bit Designed for Soft Rock Formations
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3 .4 .3  Other factors considered

There are a few other factors affecting the tubular roof bit design 

which have been considered, but have not been extensively reasoned in the above 

section due to their lesser importance or flexibility. They are discussed briefly as 

follows:

1. Configuration of cutting tips

Generally speaking, the symmetrical configuration of the cutting tip 

shown on Fig. 3.13 is adopted for the tubular roof bit. The reason for this is that 

the configuration is well accepted and extensively used in drag bits, as well as in 

exploration coring bit designs, and is readily and commercially available.

Fig. 3.13 Symmetric Configuration of Cutting Tip



Chapter Three Tubular Roof Bit Design 3-38

Angles (p, y and 0 are the key parameters of the cutting tip. These 

values determine whether it is easy or not for the tip to cut into, and to be worn out 

by, the rock to be drilled.

According to geological coring bit and drag bit design experience 

(Centre Laboratory, 1979; Fish etc, 1956 and Seco-Titan, 1988), Table 3.8 lists the 

approximate ranges of these geometrical angles of the cutting tip.

Table 3.8 Range of Geometrical Angles of a Cutting Tip

Designation cp y 0

Value Range O  120-140 60-75 70-90

As stated before, the principal problem to be solved for bits used in 

hard rock drilling is the wear rate of the cutting tips due to their chipping off, 

whereas the main consideration for a soft rock drill bit is to achieve a high drilling 

speed. It is obvious that the smaller these angles, the sharper the tip will be; and the 

larger the angles, the lower the wear rate of the tip will be. Therefore, the values of 

the geometrical angles of a cutting tip are given accordingly: the harder the rock to 

be drilled, the greater the values of the angles adopted.

The other alternative for the configuration of a cutting tip is an off

set shape as shown on Fig. 3.14. The proper positioning of the top points of the 

tips on a bit body will improve the efficiency of the bit. This situation can be 

achieved by a bit with off-set tips, as it is able to cut more than one slot on the
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bottom of the hole, instead of only one slot as in the case of the bit with a symmetric 

configuration of cutting tips. But the complicated procedure of the bit manufacture 

makes the adoption of the off-set tips in the single-pass tubular roof bit 

uneconomic.

Fig. 3.14 Off-set Configuration of Cutting Tip

2. ___Rear angle, a

The rear angle, a , is illustrated in Fig. 3.9. Its value depends on 

both the configuration of the cutting tips (tool angle, y) and the rake angle, (3, and is 

determined by the formula:

a  = 90° - (p + y) .
*

As (3 varies from 0° to 4°, and y varies from 60° to 75° in the case of 

the tubular roof bit, a  probably falls in the range of 10° - 25°.

3. ___Backing up of a cutting tip



The purpose of backing up a cutting tip is to reinforce the cutting tip 

and to improve its bending strength. The methods to support the tip can be by 

welding or by ribbed reinforcement, as shown in Fig. 3.15.
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Welding or ribbed backing up

Fig. 3.15 Backing up of Cutting Tip

But the backing up of the cutting tip will greatly complicate the 

procedure of the manufacture of the bit, that is not economical for the design of the 

single-pass tubular roof bit. Moreover, the bit life is not of great importance to the 

tubular roof bit, and the bit without the backing up of cutting tips is still able to 

furnish the 'single pass’ hole. Therefore, the backing up structure has not been 

adopted in the tubular bit design. ^

4. Number of cutting tips

The penetration rate V of a drill bit is determined by the following

formula (Gao, 1979):
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V = h0 m n

where: h0 cutting depth of a tip

m number of cutting tips

n rotary speed of drill rig

From this relationship, it is apparent that the more cutting tips the 

higher the penetration rate, provided that the cutting depth of a tip and rotary speed 

of the drill rig are maintained constant. On the other hand, however, the more tips 

that are set on a bit, the more the costly bit. This trend contravenes the basic design 

concept of the single-pass tubular roof bit, which requires a bit with a simple 

configuration and a low cost. As a compromise, three cutting tips are suggested to 

be set on a tubular roof bit to furnish the design target and also to provide the bit 

with a reasonable penetration rate. In some extremely hard formations, either more 

cutting tips or harder cutting material may have to used to overcome the short life of 

the tips.

5. Water slots

, Water slots are the slot along the axis of a drill bit on the inner or

outer wall of the bit body as shown in Fig 3.16. They have similar functions to 

waterways. In order to simplify the design of, and to minimise the cost of a tubular 

roof bit, water slots have not been adopted, as the inner and outer exposures of 

cutting tips have already provided sufficient access for the drilling flow.
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Water slot

Fig. 3.16 Water Slot on a Bit Body

*
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4 .1  General Remarks

Bolthole drilling is one of the most important procedures in rock 

reinforcement by the rockbolting method. Without making a suitable bolthole, a 

rockbolt cannot be properly installed in a rock-mass, therefore it will not be able 

effectively to support the rock-mass. For example, expansion-shell bolts are 

adversely affected by oversize boltholes, which causes the contact area between the 

shells and the hole wall to be reduced, thus decreasing the anchorage capacity. In 

addition, the efficiency of bolthole drilling will largely affect the economy of a 

rockbolting system, as a high penetration rate for drilling a bolthole not only saves 

the time spent on the individual hole drilling, but also reduces the period of the 

whole rock reinforcement project. The latter means that a quick and safe working 

condition is furnished for the following mining processes, and is of great 

importance in terms of economy. *

Generally speaking, most methods employed for rock comminution 

in the rock drilling field are catalogued into mechanical areas, like rotary, 

percussive, down-the-hole, rotary-percussive drilling and so on. The common 

factors in all these methods are: to exert some mechanical forces on the rock to be 

drilled through some sort of cutting tool, and to spall the rock off from its original
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mass. In other words, rock drilling substantially is a process of breaking rock into 

small chips by some mechanical means. Consequently, the improvement and 

consummation of rock drilling methods and their efficiency, to a large extent, 

depends on an understanding of the mechanical properties of rocks, especially 

those properties related with rock comminution by mechanical means.

In this chapter, the general rock classification and rock mechanical 

properties related to rotary drilling are outlined, and rock drillability will be 

discussed.

4 .2  Rock Classification and Its Mechanical Properties

(Beavis, 1985)

Rock materials may be classified in a number of ways, depending 

on the purpose for which the classification is required. In a geological 

classification, the main considerations are the mineral composition of the rock, the 

physical and chemical interaction between the mineral grains, and the processes 

which have affected the rock during and after its formation. In an engineering 

classification of rock material, emphasis is placed on those aspects which influence 

engineering behaviour. Geological classifications, although only having a very 

limited application in engineering geology, cannot be ignored, as often an 

engineering meaning is attached to a rock name; the classifications do highlight 

some features of a rock which can be important to the engineer.
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4 .2 .1  Geological classification of rocks

Geological classifications include the processes involved in rock 

formation, the mineral composition, texture and fabric. Fundamentally, the main 

geological classes are genetic, so that rocks are classified according to their origin 

and method of formation, and are placed in one of three categories:

1 . Igneous Rocks which are formed by the solidification of 

molten silicates injected upwards towards the Earth's surface and sometimes 

poured out at the surface. The molten silicate magma may, or may not, reach the 

surface, but in any event the igneous rock body may be exposed later after the 

removal of overlying rock by processes of erosion and denudation.

2 . Sedimentary Rocks are derived from the weathering and 

denudation of older rocks. Water, wind, ice and other agents result in the 

breakdown of rock materials at the Earth's surface. The products of rock 

disintegration may be left in place or may be transported, later to be laid down 

elsewhere as sedimentary deposits. Under increasing loads resulting from 

continued deposition, earlier deposited sediments become dewatered, compacted 

and consolidated into sedimentary rocks. Such rocks occur in beds^which have a 

definite order of superposition. Older beds, laid down during earlier episodes, will 

always underlie younger beds laid down during later episodes of deposition unless 

there has been some structural upheaval causing beds to be folded, contorted and 

overturned. Within sedimentary rocks are contained fossil debris representing the 

remains of earlier forms of animal and plant life. Such fossil or palaeontological
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data are of great value in determining the relative ages of different sedimentary 

deposits.

3 . Metamorphic Rocks are formed from pre-existing 

igneous and sedimentary rocks by the action of great heat and pressure or by 

chemical alteration, all resulting from major processes acting within the crust of the 

Earth. These metamorphic rocks exhibit all the indications of such drastic 

mechanisms. Metamorphic rocks of an earlier metamorphic epoch may be altered 

(metamorphosed) further by a later episode.

4 .2 .2  Mechanical classification of rocks

Because the geological classifications of rock have such limited 

applications in engineering, many attempts have been made to develop a 

mechanical, or engineering, classification. No such classification, which would 

meet all requirements, has yet been formulated.

Tables 4.1 & 4.2 are the engineering classification of intact rock

(Deere etc, 1966), which has received a wide acceptance in the field of rock
*

engineering.



Chapter Four Rock Mechanics and Drillability 4-5

Table 4.1 Engineering Classification of Intact Rock on the Basis 

of Uniaxial Compressive Strength

Uniaxial Compressive Strength
Class Description psi MN/m2 Rock Material

A Very high > 32,000 -  220 Quartzite; diabase; dense
strength basalts

B High strength

Majority of igneous rocks; 
strong metamorphic rocks;

16,000-32,000 ~  110 to ~  220 weakly cemented sandstones;
hard shales; majority of 
limestones; dolomites

Many shales; porous sand-
C Medium strength 8,000-16,000 -  55 to -  110 stones and limestones; 

schistose varieties of
metamorphic rocks

Porous low-density rocks;
D Low strength 4,000-8,000 -  28 to -  55 friable sandstone; tuff; 

clay shales; weathered and
E Very low < 4,000 < 28 chemically altered rocks

strength of any lithology

Table 4.2 Engineering Classification of Intact Rock on the Basis

of Uniaxial Modulus Ratio

Modulus ratio,
Class Description

H High > 500

M Average (medium) 200-500

L Low < 200
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The classification system pertains to intact rock and to rock in-situ. 

Intact rock classification presupposes rock testing. The classification is based on 

two important engineering properties of rock, namely: the uniaxial compressive 

strength and the tangent modulus of elasticity. Table 4.1 shows the engineering 

classification of intact rock on the basis of uniaxial compressive strength, and the 

rock strength classes follow a geometric progression.

Table 4.2 shows the engineering classification of intact rock on the 

basis of modulus ratio Mr:

M r = Et50 / Cult

where E 15 0 tangent modulus at 50% ultimate compressive

strength of the rock, and

Guit uniaxial ultimate compressive strength.

Based on this classification, rocks are classified both by strength and 

modulus ratio as AM, BL, BH and CM, for example.

Beavis (1985) suggests that the classification of rock material for 

engineering purposes requires a statement on the following criteria, apart from what 

has been established by Deere’s classification:

1. Petrography

Petrography basically includes the composition, texture and fabric of 

a rock, and the degree of weathering.
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2. Homogeneity

Such an assessment is largely qualitative and subjective. In 

homogeneous material, the mineral constituents are so distributed that a small 

sample cut from any part of the material will have the same constituents in the same 

proportions, and will have the same properties as the material as a whole, although 

it may not be isotropic.

3. Isotropy

Anisotropy is a measure of the directional properties of the rock. 

Statistically, the rock will be isotropic if all mineral grains have random orientation 

of both dimensional and crystallographic parameters. Isotropy also requires that a 

plane of equal dimensions intersecting the rock in any direction exposes an equal 

number of grains. It is necessary, if there is any anisotropy, to specify its nature 

and orientation.

4 .2 .3  Rock mechanical properties

Generally, the mechanical properties of a material characterize its 

reaction to the effect of the force field of its environment. Particularly, the 

mechanical properties of rocks depend upon:



1) the nature of the rock substance,

2) the stratigraphy of the rock in situ,

3) rock defects, and

4) testing methodology.

According to Yang (1979), the most important mechanical properties 

that are closely correlated with rock drilling are hardness, strength, elasticity, 

plasticity and abrasiveness.

1. Rock hardness

Hardness of rock is the resistance to abrasion. Every rock has a 

range of hardness that ultimately depends on the strength of the chemical bonds.

To rate hardness of rocks, the empirical Mohs' hardness scale is 

used (refer to Table 4.3, after Jumikis, 1983). This method was originally used for 

assessing minerals, and was adopted to grade rock hardness later. Rocks of a 

higher Mohs’ number scratch those of a lower number. This scale, being arbitrary, 

does not provide an absolute measure of hardness. The interval between any two 

successive minerals on the scale are similar, with the exception of the corundum- 

diamond interval. This method is recommended to be used to assess homogeneous 

rock. Rocks like sandstone with relatively weak cementation could give a false 

hardness value. They contain hard grains of quartz, and when scratched these 

particles could be torn from the matrix, thus giving a false measure of hardness. 

This method has the advantage of simplicity and cheapness, and may be earned out
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on site.
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Table 4.3 Mohs' Scale of Hardness of Minerals

N u m b e r
o f

relative  
hardness  
scale or  
ratin g  

H

M in e ra l
C h e m ic a l

co m p o sitio n
R e m a rks

1 2 3 4

1 T a lc M g ,S i4O 10( O H ) , Softest; can be scratched by fingernail.

2 G y p s u m C a S 0 4 2 H tO C a n  be scratched by fingernail.

3 C a lc itc C a C O , A  co pper penny or a brass p in  can  
scratch calcite.

4 F lu o rite C a F , F lu o rsp a r. M a y  be scratched easily by a 
steel point.

5 A p a tite C a 5F ( P O |) 3 A n y  o f the ca lciu m  phosphate m inerals. 
C a n  be scratched by a k n ife . A  w indow  
glass m ay be rated as H =  5 .5  on the 
hardness scale.

6 O rth o cla se
(feldspars)

K A l S i , O s C a n  be scratched by a k n ife  blade of a 
g o o d -q u a lity  steel; a hardened steel file 
m a y  be rated as H  =  6.5

7 Q u a rtz S iO , S cratch es steel, glass, and all o f the 
m in erals whose H  <  7.

8 T o p a z A I , S i 0 4( F ,  O H ) , G re a t  hardness. A  valu ab le  jew elry stone.

9 C o ru n d u m A 1 , 0 , H a rd e r  than any other natural m ineral 
except d iam o n d . A n  im portant in d ustria l 
a b ra sive  and refractory. H a s  m any gem  
varieties, am ong them ruby and sapphire.

10 D ia m o n d C T h e  hardest substance k n o w n ; not all 
d ia m o n d s are o f the sam e hardness, 
how ever.

The other types of tests which have been used to measure the 

hardness of rocks include indentation tests, such as the Knoop (Wjnchell, 1946) 

and Vickers (Das, 1974) tests which determine the microhardness of individual 

rock minerals, and dynamic or rebound tests, such as the Shore scleroscope and 

the Schmidt impact hammer tests. The dynamic or rebound tests employ a moving 

indenter to strike the test rock specimen, and any plastic or yielding material 

behaviour produced by the impact will reduce the elastic energy available to
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rebound the indenter. The height of rebound is taken as a measure of the hardness 

of the material (Int. Soc. of Rock Mechanics, 1978).

i ____ Strength of Rock Material

In a mechanical sense, the strength of rock material is defined as the 

ability to resist stress without large scale failure. Small scale failure with the 

development of microfractures occurs under stresses well below the strength of the 

rock as a whole. As in rock, large scale failure only occurs beyond the elastic 

stress limit, which is the most commonly used parameter, especially for brittle 

rocks.

Among the various strength types of rock material, uniaxial or

unconfined compressive strength is the most commonly used parameter in

evaluating drillability. The uniaxial strength is defined as the failure of the rock

specimen subjected to a compressive stress in one direction. Depending upon the

constraint offered by the load-bearing platens of the compression testing machine,

as well as upon the quality of the parallel end surfaces (smooth or rough), rock core

specimens tested for their unconfined compression strength fail either in tension or

in shear. Fig. 4.1 shows some of the modes of failure, and the stress-strain
*

diagrams, of rock in unconfined compression (Jumikis, 1983).
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Fig. 4.1 Some Modes of Failure, & Stress-Strain, of Rock

in Unconfined Compression

3. Elasticity

Under normal temperatures and pressures, rocks usually tend to 

exhibit a brittle kind of rupture of failure mechanism. The term ’fracture’ is used 

here in the sense of brittle fracture or failure; this implies a complete loss of 

cohesion across a surface.

For most rocks, the stress-strain diagrams take an approximately 

linear course, like that of a perfectly elastic solid where stress is proportional to 

strain and where there is no yield point, ending abruptly in failure at point F on the
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diagram, as in Fig. 4.2. If the relationship a  = E e for such a material holds 

strictly, the material is referred to as linear-elastic. Generally, rocks under ordinary 

compression loads deform very little before they break.

cr

0

Fig. 4.2 Stress-strain Diagram of Most Rocks

Fig. 4.2 illustrates a stress-strain diagram for a perfectly elastic

material. Because of its nature, the diagram shows three kinds of modulus of 

elasticity, namely:

O Ei the initial tangent modulus at zero load,

2) E, the tangent modulus at a particular point T on the 

stress-strain diagram for a specified stress (also 

shown is the 50% tangent at point P), ¿hd

3) E s the secant modulus for a particular point T.

For rock,'normally the initial tangent modulus Ej is referred to

because it is the most accurately obtained under test conditions.
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Because of many factors involved in rock strength, in rock 

engineering practice, when designing in rock and performing stability analyses of 

rocks, certain idealizations and assumptions as to the nature of rock as a 

construction material are usually made. The following are some of the most 

important and most frequently made idealizations (Jumikis, 1983):

1) The rock is assumed to be a continuous, homogeneous, 

isotropic, linear-elastic material.

2) This material obeys Hooke's law of proportionality between 

stress and strain; that is, the strains are linear functions of 

stresses.

3) The deformations (strains) of the loaded rock material are so 

small that they may be neglected in setting up equilibrium 

conditions.

These assumptions are supported to a sufficient degree for most 

practical applications by measurements of the observed strains within the elastic 

range in metals and rocks, with some exceptions of porous solids and other 

materials.

In certain rock mechanics analyses, one thus usually adheres to the 

fundamental theory of elasticity, to the basic elasticity constants such as Young's 

Modulus of elasticity E, and Poisson's ratio \i = 1/m, where m = 1/p, is the

Poisson's number.



Chapter Four Rock Mechanics and Drillability 4-14

4. Plasticity

Plasticity of a solid material is its property to be continuously and 

permanently deformed, that is, a property to change shape in any direction without 

rupture under a stress equal to or exceeding the yield value of the material. The 

plastic deformation of a material is the permanent deformation after complete 

unloading of the material, assuming the unloading to be elastic. In the plastic state, 

permanent deformation of a material may occur without fracture. The term 

’fracture’ implies the appearance of distinct surfaces of separation in the material.

The conditions prevailing in the deeper strata of rock, such as long 

duration of small differences in principal stresses, elevated temperatures, and high 

average pressure, all contribute to plastic deformations of rocks.

The plastic state of matter is of considerable interest to many 

branches of science and of engineering, among them rock mechanics and soil 

mechanics. The changes in minerals and rocks brought about by plastic 

deformation are in many respects analogous to certain phenomena observed in the 

changes in the structure of metals.

5. Abrasiveness

Rock abrasiveness is the abrasive effect of the rock on other 

materials (e.g. the cutting tools of a drill bit) as a result of contact with the rock. 

The abrasiveness of a rock, to a certain degree, depends on the composition and 

structure of the rock, especially the quartz content and the size of the rock-forming 

minerals.
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Fig. 4.3 is a the result of an experiment (Yang, 1979), showing the 

volume worn out of a cutting tool under certain conditions by rocks containing 

various percentages of quartz. It is apparently from this experiment that the 

abrasiveness of a rock to a cutting tool is in proportion with the quartz content of 

the rock.

Fig. 4.3 W earing Quantity of a Cutting Tool by Rocks with

Different Q uartz Contents

The size of the rock-forming minerals is macroscopic^lly displayed 

by the roughness of a rock surface. Generally speaking, the larger the minerals in a 

rock, the rougher the rock appears, thus the higher the abrasiveness of the rocks.

The rock abrasiveness tests can be grouped in three categories:
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1) Abrasive Wear Impact Tests, including Los Angeles 

abrasion test (ASTM, 1977), sand blast test (ASTM, 1977) 

and Burbank test (Burbank, 1955).

2) Abrasive Wear with Pressure Test, including the Dorry test 

(Obert etc, 1946) and bit wear test (Selmer-Olsen etc, 1970; 

White, 1969; & Goodrich, 1961), and

3) Attrition Tests (Int. Soc. of Rock Mechanics, 1978).

4 .3  Rock Drillability

Drilling is a considerable item of the total rockbolting costs. An 

engineering geologist is often asked to indicate parameters which may serve to 

assess the resistance of rocks to a bolt-hole drilling machine. Nevertheless, 

drillability may be adopted for the purpose.

Rock drillability in a broad sense can refer to the ease with which 

rock can be drilled, it is a comprehensive index measuring the ability of a rock to 

resist being comminuted by cutting tools during the drilling process.

*
A rock drillability index is expressed in different ways in different 

fields rather than in a unique way. For instance, penetration rate (meters drilled per 

unit time) is used in core drilling for geological exploration, the drillability is 

expressed with the index of time between penetration speed and footage drilled in 

oil field work, and in impact drilling the drillability is explained as an index of the 

amount of work consumed per unit of rock crushed.
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4 .3 .1  Factors affecting drillability

There are many factors which may affect the drillability of a rock. 

First of all, the rock physical properties are the factors which dominantly influence 

the rock drillability, followed by the factors like: the comminution method, the 

structure and quality of the cutting tools, drilling parameters, and so on.

1. Rock Mechanical Properties

According to McGregor (1967), the rock properties which influence 

drillability include hardness, toughness, abrasiveness, and grain size.

The hardness of a rock depends not only upon the hardnesses of the 

individual minerals concerned, which can be assessed in terms of Moh's scale, but 

also upon the bond strength that exists between the mineral grains. For instance, 

rock like sandstone with relatively weak cemetation could gives a false hardness 

value when hard grains of quartz contained in are scratched in a test. The harder the 

rock the stronger the bit which is required for drilling since higher pressures need to 

be exerted. Indeed, Furby (1964) suggested that rock drillability could be 

correlated with the results obtained by testing with a Schmidt hammer.

Toughness is related to hardness and has been defined by Deere and 

Miller (1966) as the ability of a material to absorb energy during plastic deformation
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and represents the work required to bring about fracture. It can be assessed by an 

impact test.

With respect to drilling, abrasiveness may be regarded as the ability 

of a rock to wear away drill bits. This property is also closely related to hardness 

and in addition, is influenced by particle shape and texture. Bit wear is a more 

significant problem in rotary drilling than percussive drilling. The size of the 

fragments produced during drilling operations influence abrasiveness. For 

example, large fragments may cause scratching but comparatively little wear 

whereas the production of dust in tougher but less abrasive rock causes polishing. 

This may lead to the development of high skin hardness on tungsten carbide bits 

which in turn may cause them to spall. Even diamonds lose their cutting ability 

upon polishing. Generally coarse grained rocks can be drilled more quickly than 

can fine grained varieties or those in which the grain size is variable.

2. Rock Mass Properties

Rock mass properties which may affect the drillability include the

bedding or schistosity planes and discontinuities existing in the rock mass to be

drilled. '
s

The ease of drilling in rocks in which there are many discontinuities 

is influenced by their orientation in relation to the drillhole. Drilling over an open 

discontinuity means that part of the energy controlling drill penetration is lost. 

Where a drillhole crosses discontinuities at a low angle then this may cause the bit 

to stick. It may also lead to excessive wear and to the hole going off line. Drilling
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across the dip is generally less difficult than drilling with it. If the ground is badly 

broken then the drillhole may require casing. Where discontinuities are filled with 

clay this may penetrate the flush holes in the bit, causing it to bind or deviate from 

alignment. As a consequence the rate of drilling is generally quicker if the hole runs 

at a high angle to the discontinuities.

3, Other Factors

The rock comminution method affects the efficiency of cutting to a 

great extent. The so-called comminution method actually means the way by which 

a cutting tool acts on a rock to be cut, e.g. the nature of load or force, energy 

consumed and the structure of the cutting tools. The same rock indicates different 

drillability when different methods of drilling using diverse rock-breaking tools are 

employed, and also when different designs of equipment of the same category are 

used. This comparative study based on the drillability factor of the respective rock 

helps in a comparative assessment of different methods and equipment as applied to 

the particular rock. Drilling parameters which influence the drilling productivity 

include the thrust imposed on a drill bit, rotary torque and rotary rate, impact load 

and impact frequency.

s
It is apparent, from the above analysis, that rock drillability is 

correlated with many factors, and it is also difficult and complicated to find out the 

quantitative interrelation between these factors and drillability. Therefore, rock 

drillability is usually only determined by experiment under certain comminution 

methods and drilling parameters.
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4 .3 .2  Classification of rock drillability

There are many methods to determine and classify rock drillability, 

but the most common acceptable means is according to the rock penetration rate. 

The pure penetration rate is used as the index of drillability which is obtained by 

drilling with certain equipment and tools, and according to a fixed technical 

specification. By this method, the index has to be revised from time to time, at least 

once in a few years, as the absolute and correlative indexes between rocks are 

changed with the updating of drilling techniques and equipment. For every 

revision, a large quantity of work has be to put into testing and statistics.

The classification depending on pure penetration rate has a few 

disadvantages in practice:

1) It is impossible to determine the drillability index of certain 

rocks in the field by a scientific means to guide drilling 

production, but depends upon experience which may vary 

largely from person to person.

2) The existing classification table is out of date and can no

longer be used as a guide, while a great effort has to be made
%

in order to produce a new revision.

3) The drillability is severely affected by the technical 

specification, like bit type and drilling parameters. The ratio 

relation of drillability index between rocks will change with 

the change of technical specification, so an index of one rock 

cannot be determined by the index of the other known rock.
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Due to the above disadvantages, some attempt to work out the effect 

and the relation of rock physical properties to drillability has been made worldwide. 

Some new type of classification of rock drillability reflecting the inner link between 

rock physical properties and its drillability has been established. The following list 

indicates some of the outcomes of the research catalogued in respect to drilling 

methods.

L____ Rotary Drilling Method

Tsoutrelis (1969) carried out a drillability study with a rotary hard

metal bit. He concluded that the penetration rate correlated significantly with the

compressive strength of the rock, and that the method could be used to predict

accurately the compressive strength of an unknown rock to be drilled. Paone et. al.

conducted drillability studies with both surface-set diamond bits (1963) and

impregnated diamond bits (1966) in both the laboratory and the field. Fig. 4.4

(Howarth, 1986) shows a comparison of their work. The penetration rates seem to

correlate quite well with compressive strengths. Other drillability studies (Duklet

etc, 1981 & Warren, 1981) with rotary drilling methods all show a similar tendency

that the uniaxial compressive strength is a useful rock strength parameter for
s

prediction of the penetration rates. The other mechanical properties of a rock that 

may affect the drillability are Shore hardness, Young's modulus, shear modulus, 

abrasiveness and quartz content.
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Fig. 4.4 Penetration Rate of Diamond Drill Bits vs.

Uniaxial Compressive Strength of Intact Rock

Fowell (1970) commented that uniaxial compressive strength is the 

most commonly used parameter of drillability, though it is not a reliable one, as it 

fails to take into account the abrasive properties of the rock and bears no 

relationship to the cutting process employed by cutting tools. Much care is required 

in the preparation of the samples and the method of applying the compressive load 

is also important. Many samples have to be tested to obtain a reliable estimate of 

the compressive strength (Yamaguchi, 1970).
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2. Percussion Drilling Method

The typical drillability study for the percussion drilling method was 

conducted by Selmer-Olsen et al. (1970). The authors introduced the drilling rate 

index (DRI), established by correlating drilling results and laboratory-measured 

properties of rock samples. The drilling rate in cm/min (hammer drill, simple edge 

and carbide tips) is about 65% of the DRI value.

The DRI is estimated on the basis of two parameters (Selmer-Olsen 

et al., 1970): the rate of laboratory drilling (Sievers' test) and the result of the 

Swedish test of brittleness, which is essentially a shatter test. The DRI, expressing 

the rock properties that are important in drilling, namely hardness, strength, 

brittleness and abrasivety, is a relative drillability value given to various rocks. The 

higher the DRI value, the greater is the drillability of the rock. Table 4.4 is the 

typical values of DRI in various rock types.

Table 4.4 DRI Value in Some Typical Rock Types

Rock type tanconite quartzite slate marble

DRI value 25 - 45 30 - 50 50 - 70 70 - 90

Later, the field drillability tests conducted by Blindheim (1979) also 

showed a close correlation between drilling rate and the empirical drilling rate 

index, DRI (refer to Fig. 4.5).
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Fig. 4.5 Measured Penetration Rate vs. DRI

One disadvantage of the method is that it requires equipment that is 

unique to the test procedures.

A drop-test studied by Hartman (1959) showed that a wedge was 

the most effective shape of indenter for percussion drilling when assessed in terms 

of specific energy consumption. A drilling-rate model was proposed that 

incorporated the volume of the bit crater produced in the drop test as the parameter 

expressing the behaviour of the rock under the action of a drill bit, which is 

expressed by following formula:

PR = VBW
A
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where PR penetration rate

V volume of crater produced by single blow in drop

test

B frequency of blows

W number of bit wings

A cross-sectional area of drill-hole

There are a few other drillability classifications based on the physical 

properties of rock, for instance, the pendular-ball rock hardness (Yang, 1979), 

abrasive hardness and shear strength of rock (Yang, 1979) and rock dynamic 

strength and abrasiveness (Gao, 1979).

In summary, although no single physical property of a rock is

completely satisfactory as a predictor of penetration rate, all the physical properties

have been found to be highly correlated with each other and some single property

demonstrates promising potential in predicting the drillability of a rock. It is almost

certain that site investigation data will improve drillability prediction, but until new,

low-cost methods are available, cost-benefit consideration will continue to favour

elementary prediction methods. '
%

Diamond rotary drilling performance can be predicted through a 

knowledge of the ultimate compressive strength of the rock, whereas percussion 

drilling penetration rates can be usefully predicted by means of an empirical indenter 

drop test, which closely resembles the physical action of a percussion drill.
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5 .1  General Remarks

Material cutting and drilling can be traced back to about 4,000 BC 

when Egyptians drilled holes in stone to make tombs by rotating a bow device or 

simply by rotating a tool by hand, although the first report of scientific studies of 

cutting did not appear until 1851 by Cocquilhat (Black, 1961). Since then, a series 

of research projects regarding metal cutting processes have been reported, and the 

theory of metal cutting has been gradually developed. The review by Finnie (1956) 

gives an excellent account of metal-cutting analysis during the preceding 100 years.

It is only over the past 40 years or so that a serious attempt has been 

made to understand how rock breaks under the action of mechanical devices, 

though engineers have been inventing and using machines to dig rock for more than 

100 years. For a long time drilling tools were, and in some cases still are, being 

developed without a proper appreciation of the rock breaking processes on which 

their actions depend (Roxborough, 1986). Mechanical rock fragmentation has been
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the subject of important scientific investigations, but the mechanism of rock reaction 

to the drilling processes involved has not been fully understood because of the 

influence on the processes by rock properties, the type of rock attack and other 

factors (Schmidt et al., 1988).

Bit wear in rock drilling is a major factor in determining the cost of 

drilling and may determine the drilling method for a given rock. Wear decreases 

penetration rates and increases drilling forces, which in return may cause major 

fracture of cutting tips. The type and degree of the wear depends on the strength 

and abrasiveness of the rock and on the properties of the carbide tips. In the four 

decades of the use of tungsten carbide alloys for cutting rocks, there has been 

considerable research on the wear of tungsten carbide tips, but very few effects 

have been made on the quantitative analysis of the stresses on the cutting edge, 

which may be the main cause of the wear of a cutting tip.

In this chapter, the rock cutting process is analysed. The 

mechanisms of rock cutting by a drag-bit and the wear of the bit tips are reviewed. 

Also, a three dimensional finite element program, STRAND5, is introduced to 

analyse the stress distribution on, and the possible failure region of, a cutting tip of 

a drag-bit. '
■ 4.

5.2 Rock Cutting Process

A drag-bit is used to make boltholes in soft and medium-hard rocks, 

such as coal, shale, marls, some sandstones, lignite, salt, gypsum potash, and
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weaker sediments in general. The evolution of bit design for such applications has 

largely followed empirical lines, and has resulted in a range of forms. After 

reviewing the characteristics of available drag-bits, Fish et al. (1956) recommended 

the bit illustrated in Fig. 5.1 for use in carboniferous sediments. Most of the 

currently used drag-bits for the bolthole drilling are different versions of the one 

recommended by Fish et al.

Fig. 5.1 Features of Drag-Bit Proposed by Fish et al. (1956)

The bit presents a continuous cutting edge or edges to the rock on a 

helical path, and the process is similar to that found by dragging a material on a 

straight path past the chisel edge of a cutting tool. The cutting tips are comprised of 

tungsten carbide inserts, mounted on the bit body.
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The process of rock drilling with a drag-bit is a process whereby the 

hard metal tips are subject to load, ie. thrust and torque, and comminute the rock 

while being worn by the rock being drilled.

Rock cutting with a drag-bit can be seen as two stages, tools cutting 

into rock under thrust, and ploughing of the rock under rotary torque, which is 

explained in detail in the following paragraphs.

5 .2 .1  Process for a tip to cut into rock

The prerequisite for a cutting tip to cut into rock is that the 

compressive force per unit area imposed on the rock by the tip should be greater 

than or at least equal to the ultimate compressive stress of the rock (Gao, 1979), 

that is:

P y / S > a  (5.1)

where Py thrust imposed on a cutting tip

S the contact area between a cutting tip and rock drilled 

a  ultimate compressive stress of rock. -

If this prerequisite cannot be met, the cutting tips of a bit then will 

not be able to cut the rock, but will be worn out on the rock surface. It is essential 

that sufficient tip thrust should be guaranteed, so that effective cutting can be 

created.
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into rock.

Fig. 5.2 shows the load distribution when the cutting tip of a bit cuts

Fig. 5.2 Load Distribution on a Tip when Cutting into Rock

A wedged cutting tip with a tool angle y under a thrust of Py cuts 

rock to a depth of ho- Because of the back wedged plane of the tool, the edge point 

of the tool is not vertically cutting into the rock, but along an assumed line O'O, 

which forms a angle of to with the vertical, into the rock. Therefore, the normal 

compression N2 and friction resistance N2tan<i), where tan<}) is equal to the 

frictional coefficient f between the tool and the rock, will occur on the front plane of 

the tool. A normal compression Ni and friction resistance Nitan<$> will occur on 

the clearance plane of the tool.

The balance of all acting forces is as following:
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Z Fx = 0

N 2 = N icosy- Nitan<|(siny = NiCos(y+i())/cos(|) (5 .2 )

E Fy = 0

Py = NjtaiKj) + Nisiny + Nitan^cosy

= N 2tan(j) + Nisin(y+(j))/cos(t) (5.3)

Substituting (5.2) into (5.3), then:

Py = Nicos(y+<j))taii<i>/cos<|> + Nisin(Y+<J>)/cos<|>

= Nisin(y+2<|>)/cos2<|> (5 . 4 )

Again, according to the prerequisite of rock cutting (5.1), then

approximately:

Ni = a nboOA = asinyboho/cosp = h0boatany (5.5)

where bo the width of the cutting tool.

Gn normal compressive stress on plane OA.

a  normal compressive stress on horizontal plane AB,

which is equal to the rock compressive ultimate stress.
*

Substituting (5.5) into (5.4), then:

Py = hoboGtanysin(Y+2<j))/cos2(|) (5.6)

So the cutting depth ho should be:
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h0 =
2.

COS <j>

b 0a t a n y  sin(y+2<j>) (5 .7)

As stated before, <|> is the frictional angle between the tool and the 

rock, and is a constant for a certain situation.

From equation (5.7), it can be concluded that the cutting depth of a 

cutting tip, Hq, is in a direct proportion to the thrust, Py, imposed on the tool and in 

an inverse proportion to the width of the tool, bo, the angle of the cutting tool, y, 

and the rock compressive ultimate stress, a.

5 .2 .2  The process of rotary cutting

The tool loaded by the rotary cutting force Px will shear out the rock 

after cutting into the rock a depth of ho.

In the case of rotary cutting, assuming the number of the tips on a 

bit is m (in case of drag-bit, the m usually equals to 2) the following conditions 

must be met so as efficiently to cut rock:
*

the vertical thrust:

F = m Py (5 .8 )

the horizontal rotary torque:

M = Px m Rm = Px m (R-r)/2 (5 .9 )
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where

Then the penetration rate (m/min) of the drag-bit will be:

Vm = h0 m n (5 .10)

m number of cutting tips on the bit 

n rotary rate of the bit (rpm)

P x rotary cutting force on a single cutting tip 

Py vertical thrust on a single cutting tip 

Rm average radius of a cutting tip 

R outside radius of the cutting tip 

r  inside radius of the cutting tip.

5 .3  Mechanisms of Rock Cutting by a Drag-Bit

Fish et al. (1956) and Goodrich (1956), who carried out the 

extensive study on the mechanisms of rock cutting by drag-bits, suggest that the 

cutting action of a rotary drag-bit in rock is not at all a perfect continuous process, 

but is, to a certain extent, a discontinuous one with three terms (refer to Fig. 5.3):

1) Beginning the cycle immediately after the formation of a

large fragment, elastic strain builds up due to angular

deflection of the bit and torsional strain in thè drilling rod 
• s

(Fig. 5.3a).

2) Strain energy is released, with consequent impact of the 

cutting edge against the clean rock surface, and comminution 

of rock fragments (Fig. 5.3b).

3) Build-up of stress at the bit-rock contact, with further 

crushing and displacement of rock debris, until the cutting
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edge is effectively bearing on a step of unbroken rock which 

subsequently fails and thereby creates a large fragment or 

chip (Fig. 5.3c). This action completes the cycle.

Fig. 5.3 Drag Bit Cutting Sequence

• ^
The experiment carried out on a hard sandstone (Darley dale

Sandstone) by Fairhurt (1964) confirmed the above assumption. The work shows 

the rapid oscillations of the thrust and torsional forces on a drag bit corresponding 

with the discontinuous stages of chip formation as shown by Fig. 5.4. The thrust 

force goes through two or three oscillations as minor chips are formed and then it 

builds up to a higher peak just before the formation of a major chip, immediately
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after which the thrust falls, almost to zero force. The torsional force goes through 

similar oscillations, but at a lesser magnitude.

O)
o
o

u_

Thrust Dartey Dole Sandstone

Dislance cut

Fig. 5.4 Drag-Bit Force-Displacement Curves

This assumption is also verified by a phenomenon called the waving 

shape of cutting slots (Fig. 5.5) in rock cutting observed by Gao (1979) in his 

experiments. He explains the drilling process as follows. With the accumulation of 

cutting force, the rock in front of the tip will be shear off first, this massive chip 

sheared is called a large shear. Afterwards, the horizontal torque will reduce to a 

lower level. With the advance of the cutting tip, some small shearing is 

continuously occurring. The contact area between the rock and fronfcface of tip will 

increase while the shearing force increases. Up to the stage when the front face of 

the tip is fully in contact with the rock, another large sheared chip will be created 

and the torque will reach its highest level. Consequently, rotary cutting of rocks 

comprises cycles of several mini-shears followed by a large shear. During the 

mini-shear process, the width and depth of the slot is the same as the width of the 

tip bo and the initial cutting depth ho, while in the large shear process, the width b
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and depth h of the slot are much greater than the tool width and the initial cutting 

depth. The horizontal cutting force responds to the sequence of the cutting process, 

it falls to its lowest point after the large shear and then gradually increases to its 

highest point just before the large shear, as shown in Fig. 5.6

Fig. 5.5 Waving Shape of Cutting Slot
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Fig. 5.6 Variation of Horizontal Force with Cutting Distance

The mechanism of rock cutting with drag-bits studied later by Nevill 

et al. (1962), Jackson et al. (1962), Gray et al. (1962), Maurer (1967) and Larsen- 

Basse (1973) includes a force build-up from the applied torque creating fracture of 

the rock initiated at or near the cutting tip. The depth of cut could advance beyond 

the tip of the cutting tips. The fracture usually would extend beneath the plane of 

cut, then curve upwards and connect with the free surface. The tool then loses 

contact with the rock and, again, impacts the rock. The later chipping and crushing 

of the rock take place at the front and clearance faces of a tip, resulting in some bit 

material removal. Tool impact with oscillations of frequencies up to 2,000 per 

minute causes fine ridges on the rock and chip surface. The thrust and torque on 

the bit increase rapidly with depth of cut and with decreasing rake angle, and the 

penetration rate increases with increased clearance angle.

There is some difference of opinion as to whether the major failure 

process in drag-bit drilling is by tension or by shear. Studies by Gray et al. (1962)
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on drag-bit drilling show it is most unlikely that tensile failure is important in drag- 

bit drilling. The fact is the rock fragments are generally uniform in shape, even 

with widely different rocks. This suggests that the line of fracture may be related to 

the plane of maximum shear stress. While the angle that this plane makes with the 

direction of the cutting force will be subject to variation, depending upon the 

internal friction characteristic of the rock, this variation will be small, even for a 

wide range of rock types. Also, tensile failure would be evidenced by the 

propagation of a crack in the direction of the cutting force, and this failure process 

does not appear to happen. Instead, the fracture was seen to be propagated below 

the cutting plane after initiation and then curved upwards to the rock surface. The 

nature of the fracture observed in Gray's experiment was taken to suggest that the 

initiation of failure was by tension fracture, which propagated into a combined 

tension-shear failure process.

5.4 Wear of Tungsten Carbide Tips of a Drag-Bit

The study of wear mechanisms of a tungsten carbide cutting tip in

rotary drilling of sandstone by Blomberry et al. (1974) shows that the main

abrasive wear is due to two factors, selective cobalt removal and microfracture of
*

the carbide skeleton. It was observed during their experiment that fine abrasive 

particles removed cobalt initially, forming small pits. This removal of cobalt may 

lower the fracture strength of the surface layers, and cracks propagate from the pits 

followed by microfracturing of carbide grains and microspalling of the surface 

layer. Cobalt content and its distribution, the size of abraded particles (from the 

abrasive material, rock), and other factors control the abrasive wear.
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The importance of fundamental abrasive mechanisms, rather than the 

gross types of wear, became clearer as a result of the microscopic investigations of 

the effects of rotary drilling of sandstone by Clark (1982). Two apparent distinct 

types of wear were found:

1) Fracture of surface layers, and

2) the removal of the cobalt binder, which was followed by the 

pull- out of tungsten carbide grains.

No correlation was found with either cobalt content or wear rate. A 

possible explanation may be in the simultaneous action of two wear modes in that 

cobalt removal affected the fracture resistance.

Fish et al. (1959) conducted full scale rotary drilling tests in Darley 

Date sandstones. The rate of wear increases with rpm but decreases with 

penetration rate (refer to Fig. 5.7). The experiment study of rotary drilling in a 

fine-grained sandstone with cemented carbide by Stjemberg et al. (1975) led to the 

conclusions that the rate of wear was a function of cutting speed and is markedly 

less for a coarse-grained alloy. It has been stated that high temperatures induced in 

the carbide may have a marked effect on its hardness and wear resistance. An 

increase of rotary speed increases the temperature, followed by deformation, 

reduction of cobalt content, and possible increase of hardness below the surface. 

Thus, at low temperatures the wear is by abrasive carbide grain removal, and at 

high temperatures by plastic deformation and grain boundary sliding, which results 

in greater wear of coarse-grained carbide.
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Fig. 5.7 Effect of Rotation Speed & Penetration Rate 

on Bit Wear in Darley Dale Sandstone

It is suggested (Nevill et al., 1962; and Appl et al., 1973) that the 

major wear is due to abrasion of the front face of the cutting tip, while some wear 

loss also occurs on the clearance face. They argued that the contaot area between 

the rock and the front face is smaller than the depth of cut, therefore, wear takes 

place only in the area of the tip nose. Rock fracture in chipping begins at the tool 

tip, and hence the rounding of the tip requires that the downward thrust must be 

increased to maintain the penetration rate. This increased thrust creates an increase 

in the friction over the clearance face and also in the torque, but the increase of
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torque is not as pronounced as the increase in thrust. The wear is proportional to 

the linear distance traversed by the cutting edge.

After studying the abrasive wear effect in rotary drilling, Fish et al. 

(1958) suggested that the optimum drill speed be determined by the applied thrust 

and an economically acceptable bit-life, and pointed out that the rate of bit wear was 

dependent not solely on the intrinsic abrasiveness of the rock, but also on the 

strength of the rock. It is argued that in a stronger rock a high level of thrust must 

be exerted to achieve penetration, consequently the frictional force between the bit 

and the rock increases. Also, at a higher thrust, the temperature, which is generated 

at the cutting edge, is so high as to reduce the hardness of the sintered tungsten 

carbide and thus increase its susceptibility to wear.

The relationship between the machine torque and penetration shows

less sensitivity to bit wear than does the thrust-penetration characteristic. The

reason is attributed to the fact that the rotational shearing component is less sensitive

than is the normal stress component to the increased thrust that wear on the bit

makes necessary if penetration is to be maintained. The same effect is also

displayed in the speed-thrust-penetration characteristics. An increase in the speed

of rotation of the drill reduces the thrust requirement as shown in Fig.5.8 (Fish et
*

al., 1956), but at the same time it increases the rate of frictional wear on the bit. It 

also reduces the maximum thrust that can be applied without stalling the drill. This 

observation again confirms the viewpoint that the optimum drill speed should be 

determined by the applied thrust and an economically acceptable bit life.
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Fig. 5.8 Characteristic Curves for Rotary Drag-Bit Drilling

The stresses in the cutting edge can be severe, as shdwn by Appl et 

al. (1973), where a large chip is about to be formed. They concluded that the stress 

reached a maximum at the top point of the cutting edge where cutting tip fractures 

tend to initiate. Nevill et al. (1962) noted, when cutting granite, some initial flaking 

of the insert front face at the start of the test with each bit, partially due to the stress 

concentration on the sharp edges of the tip. Again, in a qualitative way, Fish et al. 

(1959) found a general correlation between bit wear in rocks and their abrasiveness
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which was measured in sliding with loads proportional to the crushing strength of 

the rock. All of these facts indicate that the wear of a cutting tip, especially the 

cutting edge of the tip, is more or less due to the high stress concentration on this 

area, which is induced by its feature of a sharp edge together the thrust load.

5 .5  Finite Element Approach to Analyses of the Stress of a

Drag-Bit Tip

Among a number of methods to analyse the wear of a cutting tip, 

stress analysis seems the only quantitative way to describe the pattern of the tip 

wear. By the traditional methods, the stress analysis on a cutting tip can be a 

complicated and time consuming job. However, with the emergence of the finite 

element method, the stress analysis on a cutting tip becomes convenient and a high 

accuracy can be obtained. In this section, a three dimensional (3D) finite element 

package, called STRAND5, is employed to analyse the stress state on a cutting tip.

5 .5 .1  STRAND5 finite element package (G+D Computing Pty.

Ltd., 1988)

STRAND5 is a finite element software for the analysis of 

sophisticated structures within the reach of most of industry. The package is 

designed to run on most personal computers with a hard disk and a maths co

processor. The package uses the full capacity of the machine through a database 

which expands to the full capacity of the hard disk storage available, and can be 

implemented on a range of computers. STRAND5 is a suite of finite element
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programs, including pre-processors (graphics oriented input program), the main 

assembler and solver, and graphics oriented post-processor for interpreting the 

results.

The basic philosophy behind the software has been to develop a 

reliable package of programs incorporating the latest developments in finite element 

technology with the following features:

1) extensive use of graphics to check input data, and display 

response of the structure and stress contouring,

2) file handling and archiving that is transparent to the user but 

almost indestructible and dynamically structured to respond 

easily to changes in the design,

3) interactive operating mode, and

4) data structure which can be converted to or converted from 

other CAD or FE programs.

Applications include small displacement, small strain, linear elastic 

structural analysis in mechanical and structural engineering, including frame, plate, 

shell and solid structures.

No limitation is imposed on the size of the structural model by the 

programs except for a maximum semi-bandwidth in the stiffness matrix of 4000. 

Limits are imposed by the user’s hardware, both by the available memory and the 

real time taken to solve the problem. On modern microcomputers with a 40 

megabyte hard disk and a 80287 math co-processor, problems with up to 4000 

elements and the order of 6000 degrees of freedom can be solved overnight.
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The 3D element in STRAND5 is a 20 node isoparametric brick. 

Regardless of the global node system, the local node numbers 1 to 20 must always 

form a right-hand coordinate set in (£, r|, £) space, as shown in Fig. 5.9. The 

definition of the mid-side nodes may be entered as 12 individual numbers. 

However, when the global node numbers form a regular sequence, STRAND5 can 

then take the appropriate mean global node number (refer to Fig. 5.10). The spatial 

transformations involved in this 20 node isoparametric brick are such that each edge 

of the brick can only be a quadratic curve in Cartesian (x, y, z) space.

Fig. 5.9 Node Numbering O rder for a Brick Element
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Elem ent Nodes

Fig. 5.10 Automatic Midside Node Numbering
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The 20 node brick element has three degrees of freedom at each 

node. Nodal rotations are not required to define the strains in 3D elasticity; rotation 

of a plane face in the model is accommodated by relative translation at the nodes.

5 .5 .2  Physical model of cutting tip of drag bit

The general configuration of the currently used drag bit is shown on 

Fig. 5.11, which has two eccentric cutting tips, defined as a right-hand tip and a 

left-hand tip, respectively. The right-hand tip is the one mounted on a drag bit 

which peaks to the right when looking from behind and the left-hand tip is the one 

peaking to the left.

Fig. 5.11 Drag Bit Currently Used

The stress analysis by the finite element method is only conducted 

here in the right hand tip. The reason for this is that the tangential force, induced by 

the rotary torque during drilling process, acting on a certain point of a cutting tip is 

proportional to the distance between the point and the axis of the bit.
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Consequently, the peak point of the right-hand tip bears a greater tangential force, 

and therefore a more severe stress exists than that for the left-hand tip, as the former 

is farther removed off the axis of the bit than the latter.

The 3D finite element model of the right-hand tip is shown in 

Fig.5.12. The whole structure contains 2835 nodes, and a mesh of 14x11x3

divides the cutting tip into 260 quadratic brick element with approximately 1 mm on 

each edge.

Back face

Front face

Fig. 5.12 3D Finite Element Model of Bit Tip Analysed

The tip is welded to the bit body on its bottom face and on its back 

face, except the first row of the top brick elements. Those nodes which are 

supported on the bit body are supposed to be fully fixed and to have no degrees of 

freedom, whereas the nodes which are not on these two faces have 3 degrees of 

freedom at each node, as shown in Fig. 5.13.
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Nodes with ' x ' are all fixed and have no freedom

Fig. 5.13 Freedom Condition of Structure

The material of the cutting tip is tungsten carbide, containing
s

approximately 91% of WC and 9% of cobalt. Its physical properties are listed on 

Table 5.1.
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Table 5.1 Physical Properties of Cutting Tip Material

Young's Modulus Poisson Ratio Ultimate Tensile Strength Specificai Gravity 

520,000 MPa 0.22 1,800 MPa 14.5

5.5.3 Model of load distribution

The load imposed on the tip is divided into two type of forces, ie. an 

axial force is induced by the thrust of the drill machine, and is distributed on the 

nodes of the top face which cuts into the rock, and a tangential force is induced by 

the rotary torque of the drill machine, and is vertical to the front face of the tip and 

is distributed on the nodes of the top line of the front face.

The probable torque and thrust values are obtained from physical 

observation of the drilling performance of this style of bit in the Strata Mechanics 

Testing machine.

The capacity of the thrust of the machine from 100 lb/iti2 on a 6" 

diameter ram is: s

100 l b / i n 2 x k  x (3 in)2 = 2800 l b s  = 12600 N

So the maximum thrust on each tip is 6300 N.
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The torque on the machine varies, depending mainly upon the rock 

drilled, in a range of 60 to 110 Nm during a drilling operation, which imposes a 

possible maximum torque of 50 Nm on each tip.

The axial force acting the nodes of the top face depends on the 

cutting depth of the tip. It is assumed that only those nodes which cut into rock will 

bear the axial force, and that the axial force acting on a node is proportional to the 

depth of the node cutting into the rock.

The tangential force is assumed to act on the nodes of the top line of 

the front face. The force acting on a node increases with both the cutting depth and 

the radius from the axis of the bit to the node the force acts on.

Three load cases are considered. The original load case, defined as

load case 1, is about 60% of the capacity of the drill rig, with a total axial load of

3500 N and a total tangential load of 3200 N which equals a torque of 30 Nm to the

axis of the bit. The pattern of the load distribution on the cutting tip in this case is

shown in Fig. 5.14. Those load which is smaller than 50 N is not shown in the

diagram. The other 2 load cases, namely load case 2 and load case 3, are 1.4 and

1.8 times of the original load case respectively. At 1.8 times the original load case, 
• * 

the load imposed on the tip is at the capacity of the drill machine.
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Fig. 5.14 Load Distribution in Normal Drilling Condition

• *

The load case 1 refers to a normal drilling condition when an

adequate cutting depth and appropriate drilling parameters are implemented, and the 

rock condition remains consistent. During this period, the penetration of the drill

bit is smooth and constant.
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The load case 2 refers to an inapproriate drilling operation. In this 

case, a much higher drilling parameter than usual is applied to a certain rock 

condition due to the improper operation of the drilling crew. A situation like this 

happens very often, especially when a different rock formation occurs in the drilling 

process, or an inexperienced operator joins the crew.

The load case 3 refers to a severe drilling condition, when very high 

loads have to be imposed in order to remove the extremely hard granules in the rock 

drilled. An instance occurs when a sandstone with a high quartz content appears.

5.5.4 Result of finite element analysis and discussion

In order to interpret and analyse the results of the computation and to 

determine the failure of the material, a failure theory, called the maximum shearing 

stress theory or Tresca-Guest theory (Collins, 1981), concerning combined stress 

states is reviewed first.

The maximum shearing stress theory, proposed by Tresca and later 

experimentally supported by Guest, may be mathematically formulated in terms of 

principal normal stresses as follows:

Failure is predicted by the maximum shearing stress theory to occur
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°2~ a 3 > a o

a 3 - Oj > °0 (5-10)

where a l5 a 2, cj3 are the principal normal stresses and a 0 is the uniaxial

failure strength in tension.

It is important to note that failure is predicted to occur if any one 

expression of (5-10) is satisfied. If a max and a min are defined as the maximum 

and the minimum principal normal stresses respectively, the formulae (5-10) then 

can be simplified as:

^max " ^min — ^0 (5-11)

In words, the maximum shearing stress theory predicts that failure 

occurs in a multiaxial state of stress when the maximum shearing stress magnitude 

becomes equal to or exceeds the maximum shearing stress magnitude at the time of 

failure in a simple uniaxial stress test using a specimen of the same material.

Based on the physical model of the structure, the STRAND5 

program was run on a President IBM/PC-AT computer system witlfa hard disk of 

30 mega bytes and a RAM of 640 K.

Under the load conditions on the structure, described previously, the 

linear elastic static solver is executed in each case. The element stresses associated 

with each load case can be listed at 8 comer points, or at 27 corner and centroid 

points, of each brick element. Each listing gives the following information:
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1) The global x, y and z co-ordinates of the point at which the 

stress is evaluated.

2) Normal stresses on each of 3 directions in a global 

coordinates system, ie. a x, a y and Gz.

3) Shear stresses in a global coordinate system, ie. Txy, t yz 

and Tzx.

According to the maximum shearing stress failure theory stated 

before, the maximum shearing stress, ie. the Tresca stress (Gmax-tfmin) is used to 

determine if the material of the structure is failed or not.

The stress results of brick elements can be shown by stress contours 

in the modules for the post-processing of the STRAND5 package. By setting up a 

contour file, the stress contour of a brick element can be graphically plotted. There 

are eleven stresses available for display, which include the Tresca stress (Gmax"

tfmin)-

From experience and observation, it is known that a stress 

concentration is centred on the cutting edge of a cutting tip, which is also the focus 

of the F.E. analysis. Therefore, the stress contour display is limited in the 40 brick 

elements of the top part of the structure.

Focused on these points, each of the contour files of the maximum 

principal normal stress and the Tresca stress on the 40 brick elements under each 

load case has been established, respectively.
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Table 5.2 shows the range of the Tresca stress on these elements 

under each load case.

Table 5.2 Range of Tresca Stress

Load case no. 1 2  3

Range of a max-amin (MPa) 300 - 3000 600 - 4100 700 - 5800

The Tresca stress seems to increase with the increase of applied load 

as shown in Table 5.2. Its distribution pattern under each load case is such that the 

maximum occurs at the point of the tip and gradually reduces from that point.

By applying the Tresca-Guest failure theory, the top point of the 

structure would fail under any load case, as the Tresca stresses at this point all 

exceed the critical stress, ie. the ultimate shearing stress, set by the Tresca-Guest 

failure theory (refer to Fig. 5.15).
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Fig. 5.15 Range of Tresca Stress 

Under each Load Case

With the increase of the loads applied on the cutting tip, the region 

of the Tresca stress exceeding the critical stress will extend, as shown by the Tresca 

stress contours in load cases 1 and 3 in Figs. 5.16 and 5.17, respectively.
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Pig. 5.16 Tresca Stress Contour in Load Case 1
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Fig. 5.17 Tresca Stress Contour in Load Case 3

In load case 1, the Tresca stresses exceed the critical stress only in 2 

brick elements, while the stresses exceeding the critical stress have extended to 8 

brick elements in load case 3.

Expansion of the critical stress region suggests that the possible 

failure area is extended with the load increase. It can be assumed that the failure of 

a cutting tip starts at the top point of the tip under normal drilling conditions, and 

gradually extends to the rest of the cutting edge of the tip as the drilling conditions 

become severe.
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In summary, the stresses in a cutting tip were calculated by using a 

3D finite element model under specified loads. The complex geometry of a cutting 

tip and load condition can be properly modelled for the computation. The 

distribution of the Tresca stress on the cutting tip in all load cases shows that the top 

point of the tip has the greatest value, and the stress diminishes gradually from 

there. In normal drilling conditions, only the top point of a drill bit will fail. Under 

severe drilling conditions, a high load case has to be applied, and consequently, the 

failure region of a cutting tip would be extended, as in the load cases 2 and 3.
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6 .1  Scope of Work

The previous theoretical study shows that the tip of the conventional 

obtuse cutting tool of a drag bit will suffer a much greater stress than any other part 

of the cutting tool. Consequently, the failure of bits by chipping of the tips will 

dominate other effects. But the result of the theoretical study has to be verified by 

experiment. Moreover, the failure pattern should also be revealed through 

experiment, so that a better tip configuration of drag bit tips may be proposed.

Based on the above idea, a series of experiments, which model the 

process of underground roof drilling, has been conducted at the laboratory of the 

Department of Civil and Mining Engineering, the University of Wollongong. By 

the adoption of a Keithley Data Acquisition System to the drilling testing operation 

unit, the operation parameters and the specific energy have been generated as the 

outcome of the test. In addition, a specially-designed cutting sample collector and a 

sieving shaker have provided information on the size distribution of the cuttings.
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6 .2  Param eters of the Bits Tested

Two groups of bits were tested, with positive and negative rake 

angles, with six in each group. The bits all have eccentric tips, and are most widely 

used as roof bits around the Illawarra collieries. The bits were provided by Seco- 

Titan from stock without special selection. Fig. 6.1 is the sketch of the test bits. 

The details of the tested bits, shown in Table 6.1, were measured respectively 

before testing, and the weighted average values were based on the independently 

measured values.

Fig. 6.1 Sketch Tested Bit
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Table 6.1 Parameters of Test Bits*

Bit Type dl (mm) d2 (mm) d3 (mm) S (mm) ß O O f) al=oc2 (°)

Positive 27.21 12.32 4.96 6.42 4.25 15.75 30.1

Negative 27.33 12.27 5.02 6.01 -2.5 18.5 24.8

Bit Code PI P2 P3 P4 P5 P6

Rake (a°) 4.07 3.97 4.68 4.33 3.84 4.59

Bit Code N 1 N2 N3 N4 N5 N6

Rake (a°) -3.01 -2.41 -2.88 -2.09 -2.21 -2.28

* Refer to Fig. 6.1 for definitions.

The positive and negative rake angle bits are used in different 

situations. Basically, they have different features.

The special features of positive rake roof bits:

1) give faster penetration rate than bits with a negative rake for 

a given feed thrust and torque,

2) have a more acute angle than bits with a negative rake, and 

this feature may lead to severe edge chipping in heavily 

banded or broken roofs, and

3) are usually the fastest and most economic configuration 

when used in homogeneous roofs.

The special features of negative rake roof bits:
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1) give greater durability in non-homogeneous roofs than 

positive rake angle bits,

2) require more feed thrust and torque than bits with a positive 

rake for a given penetration rate,

3) are usually the most economic configuration for medium 

hard or banded sandstone roofs when used with hand-held 

drill rigs.

A bit code number is named with a capital letter P (for positive rake 

bits) or N (for negative rake bits) followed by a number from 1 to 6 representing bit 

number. Therefore, the code numbers of PI to P6 represent the positive rake bits 

tested from number 1 to number 6, and similarly for the code numbers of the 

negative rake bits N1 to N6. A hole code number is named with a bit code number 

followed by a dash line and a number, for example a hole with a hole code number 

of P5-17 is the seventeenth hole drilled by the tested bit P5.

6 .3  Unit Used in the Test Operation

The unit used in the test operation consisted of a drilling medium, a 
. ^

Wombat roof drill rig, a Keithley Data Acquisition system, as well as the test

framework, and has the following advantages:

1) follows closely the practice of drilling roof bolt holes in

mines,

2) provides a standard homogeneous drilling medium which 

reflects the physical mechanical properties of in situ strata,
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3) uses high speed data logging of the dynamic characteristics 

of rotary drilling, and

4) allows control and monitor of all operation parameters.

Fig. 6.2 shows a photograph of the operation unit.

Fig. 6.2 Test Operation Unit
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6 .3 .1  Drilling medium

Field strata vary from place to place, even in the same drilling site, 

and so the drilling medium can be largely different from one hole to the other.

The experimental work is different from field work in light of the 

treatment of the data obtained. On one hand, the drilling medium for an experiment 

should simulate the field condition as closely as possible so that the result from the 

experiment will readily apply to field practice. But on the other hand, the 

experimental conditions have to be constant enough to make the data collected from 

the experiment consistent and comparable, and not subject to errors due to 

randomness of the drilling medium.

The drilling medium made for this particular experiment is a 

homogeneous concrete block shown on the upper half of Fig. 6.2. The concrete 

block is cast in the laboratory with a metal form of one cubic metre volume, and the 

basic constitution of the block is sand, cement and water. The change of the ratio 

of the constituents yield different specifications for the block. The mechanical 

properties of the concrete block for the tests reported here are:

Ultimate Compressive Strength: 50 MPa

Young Modulus: 35.5 GPa
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6 .3 .2  Drill rig

A “Wombat” roof bolting drill rig is employed for the testing. The 

machine is powered by compressed air, and the cooling medium for the drill bit is 

water. Its technical specifications are shown on Table 6.2.

Table 6.2: Technical Specifications of Wombat Roof Rig 

(RG Cram & Sons, 1985)

Operating Air Pressure 551 -758 kPa

Air Consumptions at Free Speed 3.4 - 4.3 m3/min

Operating Water Pressure 760 -1240 kPa

Output Torque at Stall 216.93 Nm

Chuck Free Speed 960RPM +

Air Inlet Size 13 mm Snap Coupling

Water Inlet Size 13 mm Snap Coupling

The drill rod used during the test is a Seco-Titan 19 mm hexagonal

drive shown in Fig. 6.3.
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Fig. 6.3 Hexagonal Drill Rod

6 .3 .3  Keithley data acquisition system

The drilling test system has been developed to model the practice of 

drilling roof bolt holes in underground coal mines, while monitoring with a highly 

efficient data logging unit, a Keithley Data Acquisition System. The drill rig is 

connected to peripheral data acquisition equipment to determine the performance 

characteristics of the bits and drill. Fig. 6.4 shows the schedule of the monitoring 

and data acquisition system.
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Fig. 6.4 Schedule of Data Acquisition System



Chapter Six Experimental Study 6-10

This data acquisition system, which integrates hardware, the System 

570 data acquisition workstation and Soft 500 software, has been employed to 

obtain, store and analyse the operating parameters of the drill rig. The System 570 

is a work station data acquisition and control device — an interface between a 

personal computer and the operator. With this system, an IBM or an IBM 

compatible personal computer can be used for direct data acquisition and intelligent 

process control. Soft 500 is a powerful software package for data acquisition and 

process control written for the Keithley series 500 Measurement and Control 

System and the IBM personal computer and Personal Computer - XT. Fig. 6.5 

shows the Keithley data acquisition system in operation next to the drill rig.

Fig. 6.5 Data Acquisition System in Operation
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The operation of the rig is controlled by the machine operator and 

the operation parameters are stored by the Keithley system. The real time of the 

roof drilling operation is precisely recorded. The load cell, strain gauge, turn 

potentiometer and inductive sensor are installed on the rig to monitor and measure 

the operation parameters, i.e. the thrust, torque, revolution rate and displacement, 

respectively. These gauges and sensors are connected to the System 570 data 

acquisition unit. Programmes have been developed to acquire data from the System 

570 unit, and direct them to a Sperry computer (640 k RAM, and IBM compatible).

6.3.4 Cutting sample analyzing system

A special sample collector and seal ring has been designed to collect 

cuttings while the drilling operation is underway. Figs. 6.6 and 6.7 show the 

sample collector, seal ring and their use in the drilling process.
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Fig. 6.6 Cutting Sample Collecting Accessaries
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Fig. 6.7 Sample Collector in the Drilling Process

The cutting size distribution is determined by a series of sieves, A, 

B, C, D, E &F with mesh square aperture sizes of 6.70 mm, 2.36 mm, 1.18 mm, 

0.60 mm, 0.30 mm and 0.15 mm respectively, and by a sieving shaker, which are 

shown in Figs. 6.8 and 6.9.
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Fig. 6.8 A Series of Sieves for Analysis of Cutting Sample

Fig. 6.9 Electric Sieving Shaker
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6 .4  Experimental Procedure and Results

The experimental work was carried out under the previously 

described conditions and the experimental procedure was designed to obtain detail 

data for each test as follows:

1) Connection of all monitoring and data acquisition 

instrumentation facilities to the drill rig.

2) Measurement of all required parameters of the new drill bits 

to be tested.

3) Attachment of the cutting catcher to the drill rig.

4) Commencement of drilling while data logging system in 

action.

5) Cease drilling when the maximum displacement was 

reached, which is dependent on the space available to the 

hole drilled on the concrete block.

6) Qualitative observation and recording of the bit condition, 

especially the chipping of the cutting tips.

7) Start drilling next hole with the same bit. -
5

6 .4 .1  Number of holes drilled by the tested bits

The length of a hole in this experiment varies approximately from 

0.7 m to 0.9 m. So the number of holes drilled by a tested bit is in proportion to
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the total length drilled. For convenience of description in the following context, the 

number of holes drilled is used instead of the length drilled.

The number of holes drilled by a tested bits is an important index 

determining the bit life. Usually, the more holes a bit can drill, the longer life the 

bit will be considered to have. In this experiment, the tested bits, at first thought, 

were allowed to be used repeatedly until they completely failed or were worn out to 

demonstrate their performance, but soon it was noted that some bits were still in a 

very good condition after drilling more than 20 holes. It was then decided that a 

maximum of 20 holes per bit were to be drilled due to the limitation of space in the 

drilling medium. Definite trends of a bit performance could be established after 

drilling 20 holes. So for some bits, the number of holes drilled by the tested bits 

does not necessarily represent the real life of the bits.

Fig. 6.10 shows the number of holes drilled by each tested bit.
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Fig. 6.10 Number of Holes Drilled by Tested Bits

6 .4 .2  Penetration rate

Penetration rate is an indicator of the performance <)f a bit and 

therefore the quality of a bit. Usually, the penetration rate of a bit will decrease 

with the increase of the total length of holes drilled by the bit, provided that the 

other drilling conditions remain the same. The fact is the cutting tips of a bit will be 

chipped off and worn out gradually with the advance of the drill, simply because 

the drilling operation is a process during which the tools cut rock while being 

chipped off and worn out by rock. The chipping and wearing will degrade the
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sharpness of the cutting tool, and consequently will slow down the penetration rate. 

When the penetration rate decreases to a certain level, the bit will be considered to 

have reached the end of its life.

The penetration rate is usually measured by the length drilled against 

the time spent during the drilling process. The length drilled can be the length of a 

hole or the total length drilled by a bit. So a penetration rate here can be a mean 

value based on a hole length or the total length drilled by a bit.

Fig. 6.11 is the diagram of the average penetration rates versus the 

number of holes drilled respectively by the tested bits. Here the average penetration 

rate is calculated by dividing the total drilling length of a bit by the time spent in 

drilling.
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Fig. 6.11 Mean Penetration Rate vs. 

Number of Holes Drilled by Each Tested Bit

Figs. 6.12, 6.13, 6.14 and 6.15 are the diagrams of the penetration 

rate versus holes drilled by bits P4, PI, N6 and N1 respectively, which are picked 

up from different performance groups, or for its special feature of performance.
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Fig. 6.12 Penetration Rate vs. Holes Drilled by Bit P4
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Hole Number

Fig. 6.13 Penetration Rate vs. Holes Drilled by Bit PI



P
en

et
ra

ti
on

 
R

at
e 

(m
/m

in
)

Chapter Six Experimental Study 6-22

Hole Number

Fig. 6.14 Penetration Rate vs. Holes Drilled by Bit N6
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Hole Number

Fig. 6.15 Penetration Rates vs Holes Drilled By Bit N1

6 .4 .3  Specific energy

Specific energy, in terms of rock drilling, is defined A s  the amount 

of energy required to remove a unit volume of rock. It is a useful parameter to help 

predict performance and power requirements when a certain drilling pattern is set, 

and may be taken as an index of mechanical efficiency of a rock drilling process.

Maurer (1981) expressed specific energy for general drilling activity

as:
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E S
in

dv,
6 t

P i n  
A R P ( 6 . 1 )

where Es

P  in

dv/dt

A

RP

specific energy 

power input 

volume time derivative 

drill hole cross-sectional area 

penetration rate

This expression is a general formula to calculate specific energy for 

any kind of drilling activity. For rotary non-percussive drilling, Teale (1965) 

proposed a formula to calculate specific energy.

Es -  e t + e r-^ -  +
2n
A

IN  T
R P ( 6 . 2 )

where et thrust component of specific energy (J)

er rotary component of specific energy (J)

F applied thrust force on drill bit (N)

A drill hole cross-sectional area

n pi, a constant

N rotary speed of drill bit (rpm)

T applied torque (Nm)

Rp penetration rate (m/min).
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The formula here divides specific energy of rotary non-percussive 

drilling into the components of the thrust and rotary actions, which are directly 

related with the power input in this sort of drilling. It is interesting to note that the 

thrust component (F/A) is equivalent to the mean 'pressure' exerted by the thrust 

over the cross-sectional area of the hole. Specific energy is, in fact, dimensionally 

identical with pressure or stress, since (m N/m3) is equivalent to (N/m2). 

Physically, this arises from the fact that if a force F acting on and normal to a 

surface of area A moves it through a distance ds, the increment of work done, dw, 

is equal to Fds. The volume change effected by the movement, dv, is Ads. If e is 

the specific energy at any point, then

e = dw/dv = F/A = p (6 .3 )

where p  the pressure at that point.

Fig. 6.16 shows the specific energy for the first holes drilled by all 

tested bits. Figures 6.17, 6.18 and 6.19 plot the specific energy versus the hole 

number drilled by the tested bits P4, PI and N6.
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30 r

PI P2 P3 P4 P5 P6 N1 N2 N3 N4 N5 N6

First hole drilled

Fig. 6.16 Specific Energy vs 

the First Holes Drilled by Tested Bits
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Fig. 6.17 Specific Energy vs. Holes Drilled by Bit P4
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Hole Number

Fig. 6.18 Specific Energy vs. Holes Drilled by Bit PI
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Fig. 6.19 Specific Energy vs. Holes Drilled by Bit N6

6 .4 .4  Cutting size analysis by sieving

Sieving analysis is one of the simplest and most widely used 

methods for particle size analysis, that covers the approximate size range 0.02 mm 

to 125 mm using standard woven wire sieves.

The purpose of sieving the cutting samples in this experiment is to 

find out the cutting size distribution, so as to understand the cutting characteristics 

of different bits, and of the same bit as it is wearing out.
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Collected cutting sample from a drill hole was put into a tray and 

then dried in a oven. Determination of cutting size distribution was obtained by 

sieving each sample of cuttings and then weighing the amount of cuttings caught on 

each of the sieves used. The weight percentage of cuttings retained on each sieve 

were calculated. Based on those data, the mean weighed size was worked out to 

interpret the data, after Allen (1981):

Zs.dW |
_  1=1 
S = -----

n

X d w i
i =1

= I S . x P ,
i = 1

(6.4)

where S the mean size of the cutting sample obtained from a drill 

holes

S i the average size of the cuttings retained on the /th sieve

d w i the weight of cuttings retained on the /th sieve

Pj the weight percent of the cuttings retained on /th sieve in the

total weight of the cutting sample

Cuttings retained on sieves A, B, C, D, E & £ are named 

respectively as cuttings A, B, C, D, E & F, and cutting with a size of smaller than 

mesh size of sieve F (0.15 mm) is named as cutting G. The size range of cuttings 

A, B, C, D, E, F & G is shown by Table 6.3
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Table 6.3 Size Range of Cuttings

Cutting Code A B C D E F G

Size Range >6.70 6.70-2.36 2.36-1.18 1.18-0.60 0.60-0.30 0.30-0.15 <0.15

The data concerning the cutting distribution of bits P4, PI, N6 and 

N1 are given in the Appendix of the thesis.

6 .5  Analyses of the Experimental Results

6 .5 .1  Number of holes drilled by, and failure patterns of, the

tested bits

From Fig. 6.10, the test bits can be divided into three groups 

according to their performance. The first group refers to the bits with a bit life of 

not more than 6 holes (approximately 4 metres), and can be called the prematurely- 

failed group. The bits in this group, including bits P6, P3, P4 and N3, completely 

failed up to the number of holes drilled. The second group are the bits with a bit 

life of 9 to 18 holes (approximately 7 to 14 metres). The bits in this group are 

called the normal-performance bits, including bits N2, P2, N5, PI and N4. The 

third group includes bits Nl, N6 and P5 which did not fail up to the number of 

holes drilled, and is called the high-performance group.
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Qualitative observation and records show that the bits in the 

prematurely-failed group all had early severe chipping on the cutting tips, and failed 

by sudden fatal chipping developing on the cutting tips of the bits or a full tear-off 

of the cutting tips. Fig. 6.20 is a photo of these prematurely-failed bits.

Fig. 6.20 Photo of Prematurely-Failed Tested Bits

So the failure pattern of the prematurely-failed bits can be 

summarised into three stages: early severe chipping, sudden fatal chipping and 

failure, as .demonstrated by the diagram of Fig. 6.21.
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o n
b c

Early severe chipping Sudden fatal chipping Failure

Fig. 6.21 Failure Pattern of the Bits 

in Prematurely-failed Group

Those bits in the high-performance group always showed a record 

of a gentle development of a smooth chipping pattern. Fig. 6.22 is a photo of bits 

N1 and N6 taken after drilling 29 and 20 holes respectively. The cutting tips, 

especially the top point of these bits, were gradually chipped off after drilling a few 

holes, and major chips were formed on the top points of the tips after completing 

about 7 holes. Afterwards, the cutting tips seemed to be self-resharpening, and 

their front and side faces of the top points smoothly developed into a round shape 

after completing approximately 9 holes. The rounded shape of the front face of the
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top point is very much similar to the shape of the tips on the bits shown on Fig. 

6.22. The cutting tips with the rounded shape then only developed a little more 

minor chipping in the further drilling until the termination of the testing.

Fig. 6.22 Photo of High-Performance Tested Bits

The chipping development process on the the bits of the normal

performance group, i.e. bits N2, P2, P1,N5 and N4, was similar to the chipping 

pattern developed on the bits of the high-performance group. The only difference 

was that the round shape of the cutting tips formed by the action of self- 

resharpening on the bits of the normal-performance group lasted a shorter period 

than that on the bits of the high-performance group. The normal-performance bits
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then developed some fatal chipping, and failed, instead of developing a little further 

chipping as in the case of the bits of the high-performance group.

So the chipping pattern of the bits in the normal performance or 

high-performance group can be described as: chipping off the top points of the tips; 

self-re sharpening of the tips and development of a round shape on the front and 

side faces of the tips, which was normally maintained for a good period; smoothly 

further minor chipping, or developing fatal chipping and failed, as explained by the 

diagram of Fig. 6.23.
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Fatal chipping & failure as 
in the case of the bits from 
normal-performance group

a b c

Minor chipping Chipping off Self-resharpening 
top points and forming

a round shape

d'

Further minor chipping as 
in the case of bits from 
high-performance group

Fig. 6.23 Failure Pattern of the Bits 

in Normal- & High-Performance Group
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In terms of the number of holes drilled by the test bits under the 

circumstances of this particular testing program, the positive rake bits obviously 

showed a poorer performance than the negative rake bits. Half of the positive rake 

bits tested fell into the prematurely-failed group, and only one bit from the 6 

positive bits tested drilled more than 15 holes.

The reason for the fatal chipping or the full tear-off of the tips of the 

bits in the prematurely-failed group was probably attributable to the too aggressive 

cutting tools of the bits, which cut into the drilling medium to a depth greater than 

what the material of the cutting tools could withstand under the imposed forces. 

Actually, a much greater specific energy almost always accompanied these 

premature failures, as shown by the values of the specific energy of first hole 

drilled by bit P6 on Fig. 6.16 and the fifth hole drilled by bit P4 on Fig. 6.17. This 

observation may be able to explain why more than half of the failures of the positive 

rake bits tested was due to premature failures, while only one case occurred in the 

negative bits. It is an accepted fact that a positive rake bit is more aggressive than a 

bit with a negative rake for a given feed thrust and torque.

6 . 5 .2  Analysis of penetration rate

Fig. 6.11, the diagram of penetration rate versus the number of 

holes drilled by the tested bits, shows a trend that the average penetration rates of 

the tested bits increase with the number of holes drilled up to about 10 holes, and
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afterwards, the penetration rates seems to be maintained at the same level. The 

incremental rate of the penetration rates with the number of holes drilled is 

extremely high for those prematurely failed bits, for each of which the number of 

holes fulfilled was not great than 6. These prematurely-failed bits usually showed 

an extremely low penetration rate as they went into the fatal chipping or failure 

period. The fact that the penetration rates of the bits in normal or high performance 

group remain consistent, means that these test drill bits demonstrated a similar 

performance.

Fig. 6.12 shown the diagram of the average penetration rates in each 

of 5 holes drilled by the bit P4 from the premature-failed group. In holes No. 1 and 

No.2, the penetration rates are as high as the penetration rates of bits from the other 

groups, afterwards the penetration rates decrease sharply. This phenomenon 

corresponds to the qualitative observation of the cutting tool. There was only a little 

minor chipping on the cutting tips of bit P4 after drilling the first two holes. The 

major chipping started when the third hole was drilled, and it developed very 

quickly. The bit totally failed at the completion of hole No.5.

Although the penetration rates versus the holes drilled by bits PI, 

N6 and N l, as shown in Figs 6.13, 6.14 and 6.15, appear rather random, the trend 

is still clear if the hole number is divided into several intervals according to the 

value of the penetration rate, and appropriate lines are fitted to the points of each 

interval. The penetration rates of a bit is obviously at three or four levels. All bits 

had a high initial penetration rate, as can be seen by the penetration rates of the first 

few holes drilled by each of these bits. This interval may be called the First high 

penetration rate period. After holes No.6 - No.9, the penetration rates reduced
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suddenly, and remained at a low level for a few holes. After further drilling, the 

penetration rates seemed to rise up to a certain high degree, which was retained for 

a while, or reduced gently. This interval may be called the second high penetration 

rate period. Following the second high performance period, some bits failed and 

the others reduced to a low performance level.

The trends of the penetration rates here again correspond well with 

the observation of chipping development on the cutting tips of these bits. As stated 

before, the bits in the normal or high performance group developed some major 

chipping after drilling the first a few holes, mainly on the top points of the cutting 

tips. These chipped cutting tips then gradually self-resharpen. Consequently, a 

round-shape of the cutting edges were developed on the front and side faces of the 

tips. Most likely, it was this re-sharpening process that brought the penetration 

rates again to a second high period of performance. Afterwards, some bits 

developed fatal chipping on the cutting tips and failed, while the other bits were 

worn out with the progress of drilling.

The other tendency which is noticed from the diagrams of the 

penetration rates of the bits PI, N6 and N1 is that a bit life is dependent on the 

length of the second high rate period; that is, the longer this period was maintained, 

the longer a bit life would be.
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6 .5 .3  Specific energy

Fig. 6.16 shows that the values of the specific energy of the first 

holes drilled by the tested bits are all fell within the range of 9 x 106 -19 x 106 J, 

except the bits P3 and P6 have much higher values. This phenomenon is quite 

understandable, for the bits P6 and P3 both required a longer time to drill their first 

holes because of the major chipping developed on the cutting tips.

In the drilling system used to conduct the experiments, the bit 

condition i.e. the sharpness of the cutting tools, is the only one of the parameters 

which may dramatically vary from one hole to another.

In the diagrams of specific energy versus the holes drilled by the 

tested bits P4, PI, and N6, shown in Figs. 6.17, 6.18 and 6.19, the values of 

specific energy seem to vary considerably. But if the comparison is made between 

the specific energy and the relevant bit chipping patterns, the trend is not difficult 

to be seen. The specific energy values remain at a relatively low level before major 

chipping starts, while they rise up after severe major chipping occurs. The specific 

energy also tends to reduce during the process of the bit self-resharpening.

The fact that the specific energy responds to the cutting tool 

sharpness over a wide range indicates that specific energy is a useful parameter to 

predict the bit performance in an established drilling system. In fact, comparing the 

diagrams of penetration rate versus the holes drilled by bits P4, PI and N6 on Figs 

6.12, 6.13 and 6.14, a higher specific energy period generally responds a lower 

penetration rate period, vice verse.
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6 .5 .4  Bit performance and its rake angle

The analyses on the bit failure pattern, drilling efficiency and energy 

consuming have made it clear that every bit demonstrates a different performance.

Under the established experimental procedure, the only factor which 

may severely affect a bit performance can be the parameters of the bit itself. 

Through Table 6.1, it is apparent that the test bits are featured and grouped by their 

rake angles, and hence it is of significance to study the relation between the rake 

angle of a bit and its performance.

A negative rake bit has a longer life and a smoother wearing pattern 

than a positive bit under the established test conditions. But it still remains 

unknown how the rake angle has quantitatively affected the performance of a bit 

from different bit groups. To answer this question, the relations between a rake 

angle and the penetration rate of, and/or the number of holes drilled by, a test bit of 

different bit groups have to examined in detail.

The negative rake bit tested has shown its special feature; it usually 

furnishes a greater durability than a positive rake bit. Then, the interesting thing 

would be to reveal the relation between the rake value of a negative bit and its 

average penetration rate, so as to design a durable bit with a feature of 

comparatively high penetration rate.

Fig. 6.24 shows the average penetration rate versus the rake angle 

of the test negative bit. There is a trend that the penetration rate is improved with
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the increase of the rake angle of a negative rake bit. The average penetration rate of 

the bit with a rake angle of around -2.3° is much greater than that of the bit with a 

rake angle of about -3 . Therefore, it may be recommended that the rake angle of a 

negative rake bit should not be smaller than around -2.3° in order to obtain a 

possibly high level of penetration rate.

Rake Angle (degree)

Fig. 6.24 Average Penetrate Rate vs.

Rake Angle of Negative Bit Tested
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The positive rake bits tested in the experiments showed a shorter 

average bit life than that of the negative rake bits tested, especially bits P6 and P3, 

with a bit life of 1 and 2 holes respectively. On the other hand, the best 

performance bit in terms of average penetration rate, out of all the tested bits, is a 

positive bit, bit PI, which has the much higher average penetration rate of 3.71 

m/min than the mean of the average penetration rates of all the test bits, 2.91 m/min. 

Moreover, the test positive bits showed a sound initial-performance with a high 

penetration rate and a low specific energy before the sudden major chipping 

occurred on their cutting tips. Table 6.4 lists the average penetration rate and 

specific energy of the first three holes drilled by positive bits PI, P2, P4 and P5, 

and the means of the penetration rate and the specific energy of the first three holes 

drilled by all the six negative rake bit.

Table 6.4 Comparison of Penetration Rate & Specific Energy of 

the First 3 Holes Drilled by Some Positive Bits & Negative Bits

Bit Code PI P2 P4 P5 Mean of N Bits

Penet.Rate
(m/min)

4.3 4.5 3.5 4.2 3.82

Spe. Energy 
(Xl06 J)

13.9 14.6 19.4 14.9 . 16.6

Apart from bit P4, which had a major chipping when drilling the 

third hole, the positive bits demonstrated a much higher penetration rate and a lower 

energy consumption in drilling their first three holes than the negative bits.
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It seems that bit life is a major issue to be looked at for positive bits. 

Fig. 6.25 plots a diagram of the number of holes drilled versus the rake angles of 

the test positive rake bits. It is clear that the bit life is shortened with the 

enlargement of the rake angle of a positive rake bit under the established test 

conditions. The bit life is extremely low when the rake angle is greater than 4.6°, 

whereas the bit possesses a reasonable life when the rake angle drops to around 4°.
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Fig. 6.25 Number of Holes Drilled 

by Positive Bit Tested vs its Rake Angles s
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6.5 .5  Cutting size distribution of cutting samples

By analysing the data derived from the cutting samples obtained 

from the boreholes drilled by bits P4, PI, N6 and Nl, a tendency is shown clearly. 

Cuttings of size B (<6.70, >2.36 mm) in most of cases take up the highest weight 

percentage of a sample (between 21-41%), while cuttings A (>6.70 mm) or cuttings 

G (<0.15 mm) usually occupy the smallest faction of the weight in a sample 

(between 1-11% and 3-13% respectively).

A diagram of mean cutting size of each of the 43 cutting samples 

versus its value order in ascending sequence from 1 to 43 is plotted on Fig. 6.26. 

Although values of mean sizes all fall into the range of 1.5-2.9 mm, they are mainly 

concentrated on the intervals of 1.65-2.30 mm.
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Fig. 6.26 Mean Cutting Size vs. Its Value Order

The arithmetic mean of the mean size is calculated out with a value 

of 2.085 mm. The interesting thing about the arithmetic mean of the mean cutting 

sizes is that its value is close to the square aperture size of the second largest sieve, 

sieve B (2.36 mm), on which the greatest portion of every sample was retained. It 

is logical to think that the weight percentage of cuttings caught upon sieves A and 

B, i.e. the cuttings no smaller than 2.36 mm, has basically determined the mean 

size value order of a cutting sample. In brief, the faction of cuttings A & B in a 

cutting sample dominates its mean size. Actually, the mean size of a cutting sample 

is defined as the sum of the average cutting sizes on each sieve times their 

respective weight percentages. Therefore, the cuttings with a large size and a great 

portion in a cutting sample should dominate its mean size.



Figs. 6.27, 6.28, 6.29 and 6.30 show the weight distribution of 

cuttings of three typical cutting samples, the samples with the greatest and smallest 

mean cutting sizes (2.837 mm and 1.562 mm), and with the mean cutting sizes 

(2.081 mm and 2.090 mm) closest to the arithmetic mean of mean cutting sizes 

(2.085 mm). Apparently, the percentage of cuttings A takes up a small portion in a 

sample and varies randomly, whereas the percentage of cuttings B claims the largest 

portion and varies with the increase of the mean cutting size.
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Size Range

■ >6.700
<6.7, >2.360
<2.36, >1.180

m <1.18, >0.600
□ <0.60, >0.300
■ <0.30, >0.150

<0.15, >0.000

Hole Code Number: Pl-4 
Mean Cutting Size: 2.837 mm

*

Fig. 6.27 Cutting Size Distribution of the Sample 

with the Largest Mean Cutting Size
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Size Range

■ >6.700
<6.7, >2.360

n <2.36, >1.180
□ <1.18, >0.600
□ <0.60, >0.300
■ <0.30, >0.150

<0.15, >0.000

Hole Code Number: N6-20 
Mean Cutting Size: 1.562 mm

Fig. 6.28 Cutting Size Distribution of the Sample 

with the Smallest Mean Cutting Size
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Size Range

■ >6.700
<6.7, >2.360

§] <2.36, >1.180
<1.18, >0.600

□ <0.60, >0.300
nam <0.30, >0.150
m <0.15, >0.000

Hole Code Number: Nl-19 
Mean Cutting Size: 2.081 mm

Fig. 6.29 Cutting Size Distribution of the Sample with the Mean 
Cutting Size Closest to the Arithmetic Mean of Mean Cutting Size
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Size Range

>6.700

E3 <6.7, >2.360

<2.36, >1.180

<1.18, >0.600

g|

<0.60, >0300 

<030, >0.150 

<0.15, >0.000

Hole Code Number: Nl-22 
Mean Cutting Size: 2.090 mm

Fig. 6.30 Cutting Size Distribution of the Sample with the Mean 
Cutting Size Closest to the Arithmetic Mean of Mean Cutting Size

The diagrams of mean cutting size versus the holes drilled by bits 

P4, PI, N6 and N1 are plotted on Figs. 6.31, 6.32, 6.33 and 6.34. These 

diagrams show that the mean cutting size corresponds well with the cutting tip 

sharpness or the chipping patterns of the cutting ups, i.e. under the same drilling 

condition, the sharper the cutting tips of a bit, the greater the mean cutting size will 

be produced.
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Fig. 6.31 Mean Cutting Size vs. Hole Drilled by Bit P4
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Fig. 6.32 Mean Cutting Size vs. Hole Drilled by Bit PI
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Fig. 6.33 Mean Cutting Size vs. Hole Drilled by Bit N6
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Fig. 6.34 Mean Cutting Size vs. Hole Drilled by Bit N1

But the questions are: what is the real relation between the mean

cutting size and the weight percentage of different cutting sizes, how does the

percentage of cuttings A and B predict the relevant mean cutting size, and how

accurate is this prediction ? .
\

In Figs. 6.35 - 6.42 are plotted the scatter diagrams of the 

percentages of cuttings of sizes A & B, A, B, C, D, E, F and G versus the mean 

cutting sizes respectively.
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Fig. 6.35 Weight Percentage of Cuttings A & B vs. Mean Cutting Size
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Fig. 6.36 Weight Percentage of Cuttings A vs. Mean Cutting Size
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Fig. 6.37 Weight Percentage of Cuttings B vs. Mean Cutting Size
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Mean Cutting Size (mm)

Fig. 6.38 Weight Percentage of Cuttings C vs. Mean Cutting Size
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Mean Cutting Size (mm)

Fig. 6.39 Weight Percentage of Cuttings D vs. Mean Cutting Size
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Fig. 6.40 Weight Percentage of Cuttings E vs. Mean Cutting Size
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Fig. 6.41 Weight Percentage of Cuttings F vs. Mean Cutting Size
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Mean Cutting Size (mm)

Fig. 6.42 Weight Percentage of Cuttings G vs. Mean Cutting Size

From these diagrams, the following conclusions can be drawn from 

the scatter of points on these diagrams:

1) Only the weight percentages of cuttings A and cuttings B 

show an incremental trend with the increase oflbnean cutting 

sizes (refer to Figs 6.36 and 6.37). Cuttings A and cuttings 

B both have an average size (8 mm and 4.53 mm 

respectively) greater than the arithmetic mean of the mean 

cutting size (2.081 mm).

2) The cuttings with an average size smaller than the arithmetic 

mean of mean cutting sizes, i.e. the cuttings of sizes C. D.
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E. F and G, seem to decrease with the increase of mean 

cutting size (refer to Figs. 6.38- 6.42).

3) According to the convergency of the data, the diagrams can 

be divided into three types, i.e.:

a) diagrams with data of very low convergency as in the 

case of Figs. 6.38 - 6.40,

b) diagrams with data of low convergency as in the case 

of Figs. 6.36, 6.41 and 6.42 and

c) diagrams with data of high convergency as in the 

cases of Figs. 6.35 and 6.37.

No relevant conclusions can be drawn if some data are too 

divergent. Consequently, there is no point to analyse mathematically the data 

shown on diagrams of very low convergency.

It is noted that the points on those scatter diagrams of the low 

convergent group and the high convergent group are more or less distributed nearly 

on an imagined line. In the other words, there exists a nearly linear relation 

between the percentage of cuttings and the mean cutting size in these groups.

*
It should be found out, to what degree the scatter diagrams of the 

low and high convergent groups indicate a linear relation, whether there is a 'best 

fit' line to a scatter diagram, and how the line is expressed mathematically if there is

a one.
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If the 43 sample measurements of mean cutting size are denoted by

the symbols Xj (where i is equal to 1,2, 3 , ..... 43), and the relevant 43 sample

measurements of the percentage of cutting size are denoted by the symbols yj

(where i is equal to 1,2, 3 , ..... 43), then the sample mean for the mean cutting

size, Xm, and the percentage of cutting size, Ym, will be

43

X m = -^ r ! r -  (6.5)

Ym

43
X y .
i = 1

43
( 6 . 6 )

Suppose the 'best fit' line has a linear deterministic mathematical 

model, the statistical procedure for finding the line for a set of points would seem, 

in many respects, a formalization of the procedure employed when a line is fitted by 

eye. If a predicted value of y obtained from the fitted line is denoted as Y, the 

predicted equation for the line will be:

Y = A + Bx (6 .7)
s

where A intercept on y axis, i.e. value of Y when x equals 0

B slope of the line, i.e. the change in Y for one unit increase in

x.
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The least squares method is used to determine the line of best fit 

(Mendenhall, 1983). Its basic concept is to choose a line that minimizes the sum of 

squares of the deviations (SSE) of the observed value of y from those predicted Y. 

Expressed mathematically, the values of A and B chosen for the 'best fit' line 

should minimize SSE:

SSE=  ¿ ( y , - Y , ) 2 (6.8)
I = 1

Substituting (6.7) into (6.8), then

S S E =  £  [y i -(A + Bx,)]2 (6.9)
1 = 1

The method of differential calculus is utilized to determine the 

numerical values of A and B, that minimises SSE. In brief, the least-squares 

solutions for A and B are given by the following formulas:

s s * ( 6 . 10 )

A = Ym + BXm '  ( 6 . 1 1 )

where SSX sum of squares for deviation of x, from mean Xm

S S .„ sum of products of deviations of X| and yi froma y

means Xm and Ym respectively
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ssx =
i =1 I =1

< I x , ) 2
i = 1

n ( 6 . 1 2 )

SS x y= Ê (* i
i =1

n n

n X x . I y .
- x m)(y|- Ym)= Xx,y| - ' ' ' '

l =l n

(6.13)

Table 6.5 lists the values of A and B of the line of 'best fit' for the 

points on diagrams of the low and high convergent groups shown on Figs. 6.36, 

6.41, 6.42, 6.35 and 6.37.

Table 6.5 Values of A and B of the Line of 'Best Fit'

Data source Fig. 6.36 Fig.6.41 Fig.6.42 Fig.6.35 Fig.6.37

Cutting Size A F G A & B B

A -7.3158 25.144 19.659 -7.6693 3.0974

B 5.1681 -6.1612 -5.7234 19.517 12.870

Although the equation of the regression line is established, the 

strength of the linear relation between the two variables, x and y still remains 

unknown. The correlation coefficient, r, is defined to measure the strength of the 

linear correlation between the two variables as follows (Alder, 1977):
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where

SS
r = * y

V s S . x S S
(6.14)

S S y sum of squares for deviation of yj from mean Ym

ssy= I ( y i - Y m)2= £ y f
i =1 i =1

( £ y i ) '
I = 1 

n (6.15)

The correlation coefficient r satisfies the following properties:

1) In any case, r is always between -1 and 1.

2) If the absolute value of r equals 1, all points of the scatter 

diagram lie on a straight line.

3) If r is 0, then the regression line becomes the horizontal line 

Y = Ym. This means no linear relationship exists between 

the x- and y-values, and for any value of x, the same value 

of y, namely Ym, is the estimated y-value, Y.

4) The closer the absolute value of r to 1, the better the 

correlation between x and y.

5) The symbol of r is follows the symbol of the slop of the

regression line, B. *

By using formula 6.14, the values of correlation coefficient for

regression lines on Figs. 6.36, 6.41. 6.42, 6.35 and 6.37 are calculated and listed 

on Table 6.6.
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Table 6.6 Values of V of the Line of 'Best Fit'

Data source Fig. 6.36 Fig.6.41 Fig.6.42 Fig.6.35 Fig.6.37

Cutting Size A F G A & B B

r 0.773 -0.734 -0.708 0.985 0.861

According to the properties of the correlation coefficient, the closer 

the absolute value of r is to 1, the stronger the linear relationship exists between the 

two test variables. Qualitatively, the strength order of the linear relationship 

between the percentage of cutting size and the mean cutting size descends as shown 

in Table 6.7.

Table 6.7 Strength Order of Linear Relation Between Percentage of 

Cutting Size and Mean Cutting Size

ir i 0.985 0.861 0.773 0.734 0.708

Cutting Size A & B B A F G

Fig. No. 6.35 6.37 6.36 6.41 6.42

The percentage of cuttings A & B furnishes the best linear relation 

with the mean cutting size, followed by percentages of cuttings B and cuttings A. 

Comparatively, the linear relation between the percentage of cuttings G and mean 

cutting size is the weakest one.

There still remains a question of how to interpret quantitatively the 

precise strength of the lineality of data from its correlation coefficient. The solution
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to this question is a theorem that if from a normal bivariate population which has a 

population correlation coefficient (denoted by p) of 0, all samples of n pairs are 

taken and their correlation coefficients are denoted by r, then

t = J ----- x Vn - 2  (6.16)
V 1 - r2

satisfied a Student's t-distribution with n - 2 degree of freedom (Alder, 1977).

To a certain level of significance, a, the rejection region of the 

hypothesis, that the sample is taken from a population in which there is no linear 

relationship, i.e. B = 0 or p = 0, should be:

|t |^ ty 2 ( 6 . i 7 )

where *Ÿ2 value of the f-Student's distribution with n-2 degrees of

freedom and significance level of a (Mansfield, 1983).

If the formula 6.17 is satisfied, the value of a correlation coefficient, 

r, can be considered significant with a significance level of a, indicating that the x- 

and y-values can be assumed to be linearly related.

By using formula 6.16, the absolute values of t for the regression 

lines on Figs 6.36, 6.41, 6.42, 6.35 and 6.37 are calculated and listed on Table 

6 .8 .
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Table 6.8 Absolute Value of t for the Line of ’Best Fit’

Data source Fig. 6.36 Fig.6.41 Fig.6.42 Fig.6.35 Fig.6.37

Cutting Size A F G A & B B

|t| 7.80 6.92 6.42 36.41 12.42

If a significance level of 0.01 is given, the t-Student's distribution 

* >4 §ives a value of 2.704 for a sample of 43 pairs with 41 (=43-2)  degrees of

freedom. Obviously, the absolute values of t shown on Table 6.8 are all greater 

than to.oi• The fact of |t| > to.oi implies that all correlation coefficients of the 

regression lines on the above-described figures are considered significant on the 

basis of 1% significance level.

After a regression equation is established for a sample of n pairs of 

x- and y-values and confirmed with a certain degree of correlation between x- and 

y-values, the main object is to put the equation into application. One of the 

principal uses of a regression equation has always been regarded as a predictor, i.e. 

estimating the mean value of Y for a given value of x, denoted by E(y|x ), that can 

be very important in a practical problem. -

In practice, interval estimates are generally preferred over point 

estimates because the latter provide no information concerning how much error they 

are likely to contain. Interval estimates, on the other hand, do provide such 

information (Mansfield, 1983).



Chapter Six Experimental Study 6-71

To explain the interval estimates, two definitions have to be 

presented, confidence interval and confidence coefficient. An interval, which has a 

certain probability of including the population mean, is called a confidence interval, 

and this probability is defined as the confidence coefficient. As a rule of thumb, the 

confidence interval would be appropriate when a sample size is not smaller than 30 

(called a large sample). This sample size will be sufficiently large to ensure (for 

most populations) that the normal distribution will be a very good approximation to 

the sampling distribution of Ym? and that the sample standard deviation, s is a good 

approximation to the population standard deviation S.

Mendenhall (1983) stated the prediction interval for y  when x = xq , 

with a confidence coefficient for prediction (1 - a), as:

< < u 8 >
where s2 is estimator of S2

X  (y i - Y  i) 2 
^2_ SSE 1 = 1 
S " df n - 2

(6.19)

where d f is the degrees of freedom.

S S R sum of squares for regression

S S R =  X ( Y , - Y m)2 (6.20)
i =1
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The prediction interval in this case is a region between two 

curvelinears expressed by the formula 6.18. But in practice, a simple and easily- 

calculating expression is expected.

Zhang (1986) suggests that when the sample size is large enough (n 
> 30), the prediction interval can be simplified as:

Y ± 2s when ( l - a )  = 95% (6.21)

Y ± 3s when ( l - a )  = 99% (6.22)

where (1 - a) is the the confidence coefficient

The formulas 6.21 and 6.22 is simple enough to put into practical 

use, and calculation is mainly involved with SSE. The other feature of the 

simplified formulas is that the prediction interval described by them is an area 

between two lines, both of which are parallel to and have an interval of 2s or 3s 

along the y-axis with the regression line. Fig.6.43 shows the two regression lines 

of prediction interval with a value of 3s.

*
According to the previous analysis, the linear relationship between 

the weight percentage of cutting sizes A & B together (i.e. cuttings not smaller than 

2.36 mm) and the mean cutting size is much superior to that between the percentage 

of any other single cutting size and the mean cutting size. Moreover, the high 

' weight percentage of cutting sizes A & B, and their large average cutting sizes make 

them the dominating factor in the determination of the mean cutting size of a
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sample. As a result, the weight percentage of cutting sizes A & B can be a very 

good predictor for the mean cutting size of a cutting sample, hence a good predictor 

for the performance of a drill bit due to the fact that the mean cutting size 

corresponds well with the cutting tip sharpness as been concluded in the earlier part 

of this section.

Consequently, it is of particular importance further to analyse the 

linear relationship between the mean cutting sizes and the weight percentage of 

cuttings A & B, and to establish the regression equation for predicting the mean 

cutting size by the percentage of cuttings A & B of a sample.

Fig. 6.43 is a scatter diagram of weight percentage of cuttings A & 

B versus mean cutting size of 43 samples. It is noted that the 43 points of the 

scatter diagram lie close to a straight line.
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Fig. 6.43 Mean Cutting Size vs. Weight Percentage of Cuttings A & B

A linear regression line is fitted into the scatter diagram. All 

parameters calculated for the regression line are listed in Table 6.9.

Table 6.9 Parameters of Regression Line for Fig. 6.43

Symbol A B r t to.oo s

Value 0.443 0.050 0.985 36.41 3.551 0.063255
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Hence, the regression equation of the line is:

Y = 0.443 + 0.05x (6.23)

From Table 6.8, the following inequality exists:

t — 36.41 »  3.551 = to.ooi (6.24)

The inequality 6.25 implies that the correlation coefficient can be 

considered highly significant on the basis of the 0.1% level of significance.

Following the formulas 6.21 and 6.22, the prediction interval for Y 

on the basis of 95% and 99% confidence coefficients are respectively as:

Y ± 2s = Y ± 0.12651 when (1 - a) = 95% (6.25)

Y ± 3s = Y ± 0.18976 when (1 - a) = 99% (6.26)

The upper and lower prediction limits for the regression line on the 

basis of 95% confidence coefficient is plotted on the Fig. 6.43.
*

For practical use, the prediction for Y on a basis of the 95% 

confidence coefficient can be considered high precision. The prediction error for Y 

with a given x cannot be greater than 0.12651 based on a confidence coefficient of 

95%. Comparing with the smallest mean cutting size, 1.562 mm, the greatest 

possible error 0.12651 mm from predicting a mean cutting size by the regression
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equation 6.24, is only 8.1% of the mean cutting size based on a confidence 

coefficient of 95%. Even on the basis of the 99% confidence coefficient, the 

greatest possible error 0.18976 resulting from predicting a mean cutting size is only 

12.1% of the value of the smallest mean cutting size. Consequently, the regression 

equation 6.24 has a high degree of usability in predicting mean cutting size from the 

weight percentage of cuttings A & B of a cutting sample.

6 .6  Summary

By analysing the results of the experimental research the following 

conclusions can be drawn:

1 . Bit performance or its penetration rate agrees well with the 

conditions of its cutting tip. A bit with less and/or minor chipping on its cutting 

tips usually performs better than a bits with more and/or severe chipping.

2 . The tested sharp and aggressive new bits were prone to 

create some major chipping on their cutting tips, especially at the front point of a 

cutting tip. The cutting tips with major chipping might be further chipped and 

eventually develop fatal chipping which would lead to the failure of the bits, or 

might self-resharpen to a certain degree and form a rounded shape. The major 

chipping could result suddenly or from an accumulation of minor chips. It seems 

that a cutting tool with the major chipping caused suddenly tends to develop fatal 

chipping and fail in the due course of drilling. However, a cutting tool with major
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chipping caused by an accumulation of minor chipping potentially self-resharpens 

and forms a rounded shape.

3 . Major chipping on tips of a positive rake bit is likely to be 

created suddenly, while major chipping on tips of a negative rake bit is likely to be 

accumulated by minor chipping. This fact may explain why the much higher 

percent of positive rake bits fall into the prematurely-failed group

4 . The life of a bit in a normal or high performance group is 

very much dependent on the lasting period of the re-sharpened round-shape tips. 

So, the longer the resharpened round shape cutting tips are maintained, the longer 

the bit life will be.

5 . The specific energy responds to the cutting tool sharpness in 

a wide range and it is a useful parameter to predict the bit performance in an 

established drilling system. The result of the experiments conducted show that a 

higher specific energy period generally corresponds to a lower penetration rate 

period, and vice verse.

6 . The main parameter of a drill bit, which can possibly affect 

the performance of the bit, is the rake angle. General speaking, a negative bit has a 

longer bit life and its penetration rate is improved with the increase of the rake 

angle, whereas a positive bit has a high initial performance in terms of its 

penetration rate and energy consumption, and its bit life is lengthened with 

reduction of its rake angle. The best performance bit in terms of number of holes 

drilled is bit N1 which had a bit life of more than 29 holes (about 24 m), and the
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best performance bit in terms of the average penetration rate, bit PI, had a much 

higher average penetration rate (3.71 m/min) than any of the other test bits. The 

rake angle of a negative bit should not be smaller than -2.4° to reach a possibly high 

penetration rate, and the rake angle of a positive bit cannot be greater than 4° to 

avoid an extremely low bit life.

7 . According to the analysis of the cutting size distribution by 

sieving, cuttings B (<6.70, >2.36 mm) in most cases take up the highest weight 

percentage of a sample (between 21-41%), while cuttings A (>6.70 mm) or cuttings 

G (<0.15 mm) usually occupy the smallest fraction of the weight in a sample 

(between 1-11% and 3-13% respectively).

8 . The value of the mean cutting size falls in the range of 1.5

2.9 mm. The mean cutting size mainly depends on the weight percentage of cutting 

sizes A and B, and maintains a good linear relation with it.

9 . The mean cutting size correlates well with the cutting tip 

sharpness or the chipping patterns of the cutting tools, i.e. under the same drilling 

conditions, the sharper the cutting tools of a bit, the greater the mean cutting size 

will be produced. '
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Rockbolting is the primary roof support system in underground 

mining. It is not suitable for all strata conditions, but where it can be applied, it 

provides the most effective and most economical support system.

The Rapid Face Bolting System, taking a self-drilling bolt as its 

core, can be solution to the removal of the 'double handling’ step of replacing the 

drill rod with the bolt, which is the practice in conventional rockbolting systems. 

The Rapid Bolting System therefore furnishes better productivity and greater safety.

The self-drilling bolt can be implemented by two different systems:

1) A round bar with slot or groove on the side, or with a hole at 

the centre to give the access of water/grout, and a 

conventional bolthole drag-bit.

, 2) A tube or a pipe, and a specially designed tubqlar roof bit.

The bolt in this system can be installed by existing techniques used 

for installation of grouted rockbolts.

The principal conclusions of the work presented in this thesis are as

follows:
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1. The tubular roof bit for the Rapid Face Bolting System is 

totally different from the core-bit for geological site investigation in terms of both 

the technical specifications and the design considerations. Aimed at low cost due to 

its special usage, a tubular roof bit should adopt comparatively cheap materials for 

its cutting tips, and keep a simplified configuration.

2 . Generally speaking, tungsten carbide alloy (WC alloy) is 

chosen as the tip in order to drill a hole in hard rock formations, whereas high 

speed steel (HSS) is selected to drill a hole in soft rock formations. Basically then, 

two kinds of tubular roof bits have been designed respectively for the soft and hard 

rock formations. The suitability of the tubular roof bits to the rock formation may 

be determined by the trial-and-error method first, and later on modifications can be 

made to the bit design according to experience gathered from use.

3 . Three dimensional finite element method is a convenient 

method to describe quantitatively the stress-strain condition of the top point of a 

cutring tip.

The currently used roof drag-bit employs the cutting tips
*

with an obtuse angle in the front face. The result of the finite element analysis 

shows that the top point of this kind of cutting tip possesses a much greater stress 

concentration than any other parts of the tip, and is in a very adverse condition 

when load is imposed on the bit. The stress at the top point of the tip exceeds the 

critical stress even under the load applied in normal drilling conditions, and this part 

of the tip is likely to fail. With the increase of the loads, modelling severe drilling
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conditions, the area with the stress reaching the critical stress is expanded, which 

implies that the failure region would be extended.

4 . The performance of a bit is determined by the condition of 

the cutting tips of the bit. The specific energy generally corresponds to the bit 

performance.

5 . The experimental results are in general agreement with the 

outcome of the finite element analysis. All new tested bits were prone to create 

major chipping at the top points of the cutting tips. There are two kinds of bit 

failure patterns in general for the tested bits, namely, early premature failure and 

gradual wearing-out failure. Positive rake bits showed a greater tendency to follow 

the early premature failure pattern than the negative bits tested.

6 . An important phenomenon, called self-resharpening of 

cutting tips, is always observed in the gradually wearing-out failure. This self- 

resharpening process can resharpen cutting tips with some major chips into a 

round-shape on the front and side faces. As a result, the round-shape tips will 

bring a bit into a new relatively high performance period. It seems that a round 

shape is a more reasonable geometry for long life cutting tips than the currently- 

used sharp and aggressive tips, which have an obtuse angle in the front face and an 

acute angle in the side face.

7 . A positive rake bit presents a high initial performance which 

can be maintained for a reasonable meterage if the rake angle is controlled under 

4°. Therefore, the positive rake bit can be used in the rapid face bolting system as a
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one-pass consumable bit, which is featured with a high penetration rate for a short 

period (approximately 2-3 metres). A negative bit demonstrates a very long life and 

is able to reach a fairly high average penetration rate if the rake angle has an 

absolute value smaller than 2.4°. Consequently it is favoured for the conventional 

bolting system to drill as many bolt holes as possible.

8 . The mean cutting size is a very important index reflecting the 

characteristic of a cutting sample, and it indirectly correlates well with the 

performance of a bit. By comparing Figs. 6.13 to 6.15 with Figs. 6.32 to 6.34 

respectively, it is clear that the variation of penetration rates of a tested bit follows 

the same pattern as the variation of mean cutting sizes, with the holes drilled under a 

specified drilling condition. This fact suggests that under the same drilling 

conditions, a bit produces a large mean size of cuttings when a high average 

penetration rate is reached.

The mean cutting size is determined by the weight percentage 

of cuttings A & B (cuttings with a size not smaller than 2.36 mm) in a sample 

following the regression equation 6.23:

Y = 0.443 + 0.05x (6.23)
s

where x weight percentage of cuttings A & B, i.e. cuttings with a size

not smaller than 2.36 mm, in a cutting sample 

the estimated mean cutting size (mm) of the sample.Y
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This formula has a very high correlation coefficient r with a 

value of 98.5%, which implies that the formula 6.23 is precise enough in practice to 

predict the mean cutting size by the weight percentage of cuttings A & B, and 

therefore the performance of a bit.

Recommendations for Further Work

The following areas for further research are recommended:

1. Further experiments with the proposed tubular roof bits 

should be conducted in the laboratory, so as to evaluate their feasibility in practice 

and further to modify their configuration to improve their performance.

Resin or grouting method should be investigated in detail, 

especially in association with the tubular bit drilling method, as the success of the 

Rapid Face Bolting System largely depends on this incorporation.

2 . The finite element analysis of the stress on a cutting tip

should model the dynamic load imposed on the tip, as it is the real case in the 
' \ 

process of rock drilling. A tip is more likely to fail under dynamic load rather than

static load.

The finite element analysis should also be employed to 

design various tip configurations with features to suit requirements for different 

drilling purposes.
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3 . The drag-bit with tips of a rounded shape on the front face, 

which has been mentioned in Chapter 6, is worthy of investigation. As the bit is 

inclined to demonstrate a constant and high performance, and provides long 

service, it may be an effective and efficient substitute for the currently used drag-bit 

with its sharply pointed tips for conventional bolthole drilling.
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