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Abstract

Cardiovascular responses of trained male Cyclists (20.30 ±1.11 years; 

n=10), trained Runners (26.20 ±1.10 years; n=10), and fit but untrained Controls 

(22.00 ±0.75 years; n=10) were examined at supine and upright rest, and during 

passive cycle exercise. Mean maximal aerobic power of Cyclists (76.25 ±1.44 

ml.kg'1.min1) and Runners (65.50 ±2.16 ml.kg'1.min*1) was significantly higher 

(p<0.05) than that of Controls (46.31 ±2.36 ml.kg*1.min'1). Resting heart rate of 

Cyclists (58.43 ±2.69 b.min'1), Runners (57.21 ±3.47 b.min'1), and Controls 

(65.38 ±2.93 b.m in1) was not significantly different (p> 0.05).

Impedance cardiography was used to examine the response of heart rate, 

stroke volume, cardiac output, contractility of the heart, and arteriolar resistance, 

during passive cycle exercise at three different intensities (30 rpm, 60 rpm, and 80 

rpm). Blood pressure and rate pressure product were measured throughout exercise. 

The vagal influence on the heart was assessed through time series analysis of heart 

rate variability at low (0.07-0.11 Hz) and high frequencies (0.12-0.40 Hz). 

Electromyography was used to ensure that passively moved muscles did not contract. 

Cardiovascular response was compared for all subjects combined and between the 

three groups (Cyclists, Runners, and Controls).

Results indicated that during passive cycle exercise all subjects combined 

showed a significant increase in heart rate, stroke volume, stroke index, cardiac 

output, cardiac index, contractility of the heart, blood pressure, and decreased
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arteriolar resistance and vagal influence on the heart (p< 0.001). However, during 

passive cycle exercise no differences in cardiovascular response were found between 

Cyclists, Runners, and Controls.

The increase in heart rate during passive cycle exercise may be due to the 

stimulation of mechanoreceptor located in the exercising muscles, joints, and 

tendons. The absence of EMG activity during passive cycle exercise support the 

view that central command did not contribute to the heart rate increase to passive 

exercise. The small and similar stroke volume response during passive cycle 

exercise of Cyclists, Runners, and Controls indicates that the muscle pumps may not 

be effective during this form of passive exercise.
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1.1 RATIONALE

One of the major factors underlying the high aerobic power of trained 

athletes is their ability to increase stroke volume during exercise (Rerych et al. , 

1980). The primary mechanism underlying the enhanced stroke volume of the 

trained appears to be enhanced left ventricular end-diastolic volume (Schairer et al. , 

1992). Thus, exercise training appears to increase cardiac performance by inducing 

cardiac dilatation during exercise. This dilatation is also present during rest as 

trained aerobic athletes typically possess significantly larger resting stroke volumes 

and lower resting heart rates compared to sedentary individuals (Convertino, 1991). 

Therefore, untrained compared to trained individuals typically possess smaller stroke 

volumes at rest and fail to significantly increase stroke volume during aerobic 

exercise. The large increase in exercise stroke volume of trained subjects and the 

failure to increase stroke volume in untrained males was verified by a recent study

from our laboratory (Boutcher, 

McLaren, Cotton, & Nurhayati, 

1994). The results of this study 

are shown in Figure 1.1. The 

increased stroke volume of the 

trained during exercise implies 

that, in contrast to the untrained, 

they are able to increase venous 

return to the heart. We have 

shown that this increase in stroke

CHAPTER ONE: INTRODUCTION

Rest Exercise (heart rate)

Figure 1.1 Stroke volume response of trained and untrained during 
exercise
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volume occurs much earlier on during exercise than previously thought (below 20% 

of V02.MX; Boutcher et al., 1994). How trained individuals increase venous return so 

early on during exercise, however, is undetermined. It is feasible that the enhanced 

blood volume accompanying training may be the basis of the greater cardiac 

dilatation of trained subjects during exercise (Convertino, 1991). For instance, a 

number of studies have shown that trained males possess greater blood volume 

compared to untrained subjects (Brotherhood et al., 1975; Dill et al., 1974). 

Importantly, Convertino (1991) has demonstrated that with elevated blood volume 

comes an increase in central venous pressure. Thus, one of the factors underlying 

the inability of untrained subjects to enhance stroke volume during exercise appears 

to be their smaller blood volumes that result in a venous return that is insufficient to 

increase central venous pressure and stroke volume during exercise.

The ability of the exercise muscle pumps to effectively return blood to the 

heart may also contribute to the enhanced stroke volume of the trained subjects 

(Folkow et al., 1971; Laughlin, 1987; Stegall, 1966). For instance, it has been 

shown that cycling results in substantial adaptations in the leg muscles (Gardner & 

Fox, 1993; Ludbrook, 1966). Every major muscle group in the legs acts as a 

muscle pump by compressing the veins and forcing blood back to the heart (Folkow 

et al., 1970; Gauer & Thom, 1965). Thus, more efficient muscle pumps, or what 

Rowell (1986, p.144) has termed the athletes* ”second heart” together with an 

increased central venous pressure through enhanced blood volume may be the 

foundation fo r the early increase in stroke volume o f aerobically trained subjects. 

Consequently, mechanical rather than neural or metabolic factors may be the major 

determinant o f stroke volume increase during light exercise.
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Thus, the examination of the factors that determine the increase in stroke 

volume during initiation of exercise are crucial in explaining how the trained are 

able to expand their hearts so dramatically during aerobic exercise. Unfortunately, 

the initiation of stroke volume increase during exercise is extremely difficult to 

assess because subjects tend to exhibit a sympathetic response to exercise even at 

light work loads. The increase in sympathetic activity either through muscular 

activity or pre-exercise anxiety typically results in elevated heart rates. One method 

of reducing the autonomic and metabolic response to exercise is passive exercise. 

During passive exercise subjects make no voluntary movements and sit passively 

while their limbs are moved through some outside agency. If the increase in stroke 

volume during exercise is driven by mechanical factors (as suggested above) then the 

enhancement of venous return during passive exercise should increase stroke volume 

when the muscle pumps are passively initiated. If individuals possess greater blood 

volume then it would follow that passive stimulation of their muscle pumps would 

result in greater venous return and, therefore, greater increases in stroke volume. 

Although infrequently used preliminary work using passive exercise supports the 

notion that passive movement of the lower limbs results in an increase in stroke 

volume.

For instance, Morikawa et al. (1989) compared the cardiovascular response 

of healthy subjects and paraplegic patients. Interestingly, their results indicated that 

both healthy subjects and paraplegic patients recorded a similar cardiac response to 

passive exercise. They showed that during light passive exercise, cardiac output and 

stroke volume increased for both groups. The mechanism underlying the stroke 

volume increase in paraplegic patients is likely to be the activation of the muscle
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pump as they lack afferent feedback.

Also in the Morikawa et al. (1989) study during passive exercise both groups 

displayed a decrease in heart rate. The decrease in heart rate underlies the lack of 

neural input to the heart during passive exercise and also reflects its unique 

cardiovascular regulation. It is likely that heart rate decreases during light and 

moderate passive exercise because increased venous return results in elevated cardiac 

output, which in turn causes an increase in mean arterial pressure. Thus, heart rate 

decrease may be the likely response to decrease cardiac output, resulting in 

decreased blood pressure. It is feasible that increased parasympathetic influence on 

the heart may be responsible for the decreased heart rate during moderate passive 

exercise.

In contrast, Ndbrega and Araujo (1993) have shown that heart rate increases 

during the first four seconds of high intensity passive exercise. They suggest that 

the increase in heart rate occurring through high intensity passive cycle exercise is 

likely to have been brought about by mechanical stimuli in the exercising limbs. 

Thus, heart rate response to high intensity passive exercise might depend on central 

command or mechanoreceptor activation in the exercising limbs without interference 

from peripheral metaboreceptors. Collectively, these data suggest that heart rate 

may decrease during moderate passive exercise but can accelerate during more 

intensive passive exercise.

In summary, one of the major factors underlying the high aerobic power of 

trained athletes is their ability to increase stroke volume during exercise. The 

primary mechanism underlying the enhanced stroke volume of athletes appears to be 

mechanical, namely enhanced venous return. The mechanical effects on the heart

4



can be studied through passive exercise which substantially reduces neural and 

metabolic response to exercise.

It is predicted that the cardiovascular response to moderate intensity passive 

exercise will be an increase in stroke volume and a decrease in heart rate. There 

are several mechanisms underlying the increase of stroke volume. One of the 

factors influencing stroke volume is the action of the muscle pumps. However, the 

action of the muscle pumps may vary among individuals. In paraplegics, passive 

exercise also results in a decreased heart rate and increased stroke volume 

emphasizing the importance of mechanical factors influencing the return of blood to 

the heart. As trained athletes possess significantly greater blood volume it is likely 

that passively moving the lower limbs, will result in greater venous return to the 

heart and consequently a greater stroke volume.

To examine the influence of aerobic exercise on stroke volume response to 

passive exercise the cardiovascular response in trained cyclists (Cyclists), trained 

runners (Runners), and healthy untrained males (Controls) during passive cycle 

exercise will be examined. The pattern of stroke volume, cardiac output, heart rate, 

blood pressure, total peripheral resistance, and parasympathetic response during 

passive cycle exercise will be assessed in all three groups.

1.2 SIGNIFICANCE

An important factor that influences the performance of endurance athletes is 

their ability to increase stroke volume. The increase in stroke volume can be 

brought about by an increase in end-diastolic volume or a decrease in end-systolic 

volume. The increase in end-diastolic volume or increase in venous return has been 

shown to be a particularly important influence on stroke volume increase during
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early or light exercise. Unfortunately, the initial increase in stroke volume is 

difficult to examine during actual exercise because of pre-exercise anxiety and 

metabolic demands on the heart. Passive exercise may provide a way to examine 

cardiac dynamics during light exercise. Understanding how athletes are able to 

expand stroke volume is important as their larger stroke volumes are the basis for 

their superior cardiovascular performance during aerobic exercise. Also passive 

cycle exercise provides a non-metabolic method of examining cardiovascular 

response to movement of large muscle groups.

1.3 AIMS

The specific aims of this study were to:

i) determine the cardiovascular response during passive cycle exercise of 

Cyclists, Runners, and Controls combined.

ii) determine the possible differences in stroke volume, heart rate, and vascular 

response as well as parasympathetic influence on the heart during passive cycle 

exercise between Cyclists, Runners, and Controls.

1.4 HYPOTHESES

It is hypothesized that,

(i) compared to Controls, trained Cyclists and Runners will display significantly 

greater stroke volume, stroke index, and lower heart rate, and total peripheral 

resistance at rest.

(ii) passive cycle exercise for all thirty subjects combined will result in 

significantly greater stroke volume, heart rate, stroke index, cardiac output, 

cardiac index, contractility of the heart, blood pressure, rate pressure

product, and decreased total peripheral resistance and vagal influence on the heart.

6



(iii) during passive cycle exercise trained Cyclists and Runners will display 

significantly greater increase of stroke volume, reduction of heart rate, and decrease 

of vagal tone compared to Controls.

(iv) trained Cyclists and Runners will display significantly shorter pre-ejection 

period, left ventricular ejection time, and pre-ejection period/left-ventricular ejection 

time (PEP/LVET ratio) compared to Controls during passive cycle exercise.

7



CHAPTER TWO: LITERATURE REVIEW

This literature review describes the cardiovascular response to exercise and to 

passive exercise and in particular focuses on the stroke volume response to aerobic 

exercise. In the first section, cardiovascular response to aerobic exercise is 

described, followed by cardiac adaptation to aerobic exercise (second section).

Stroke volume response to exercise is then discussed together with the factors 

underlying stroke volume changes during exercise (e.g., contractility of the heart, 

venous return, the effectiveness of the muscle pumps, and blood volume). The 

passive cycle exercise paradigm as a method of assessing the effect of venous return 

on the stroke volume response to exercise is described in the next section. Finally, 

the influence of passive cycle exercise on cardiovascular response and the possible 

mechanisms underlying these cardiovascular changes are described in the last 

section.

2.1 CARDIAC RESPONSE TO AEROBIC EXERCISE

Acute aerobic exercise (e.g., treadmill, cycle ergometry exercise) brings 

about rapid cardiovascular changes. Braunwald and Ross (1979) have suggested that 

during exercise, the cardiac response is complex, and involves an interaction of 

changes in heart rate, contractility of the heart, end-diastolic volume, and end- 

systolic volume. During aerobic exercise, the major determinants of cardiac 

performance are heart rate and stroke volume (Brooks & Fahey, 1984, p.313). It is 

well established that during exercise heart rate and cardiac output increase linearly 

with work (Rosiello et a l, 1987). Heart rate is also correlated to oxygen 

consumption and metabolic demands (Fagraeus & Linnarson, 1976; Petro et al., 

1970). Also, maximal oxygen consumption or aerobic power is correlated with
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diastolic filling (Levy et al., 1993). The increase of heart rate during exercise is 

closely correlated with plasma renin activity which reflects increased sympathetic 

activity to the kidneys (Finberg & Berylne, 1977). The rate of heart rate increase 

depends on the type of exercise, age, sex, and fitness of the individual (e.g., 

sedentary or trained). For instance, Rosiello et al. (1987) found that heart rate 

response was significantly higher during rowing than cycle exercise. This result 

indicates that the increase of heart rate depends on the muscle groups that are 

involved in different types of exercise.

The mechanism underlying the increase of heart rate at the onset of exercise 

is brought about by vagal withdrawal (Ndbrega & Araujo, 1993; Petro et al., 1970); 

during harder exercise the increase of heart rate is attributed to an increase in 

cardiac sympathetic activity (Christensen & Galbo, 1983). A study by Maciel et al. 

(1986) attempted to examine the heart rate response during dynamic exercise under 

pharmacological blockade of the parasympathetic and sympathetic nervous systems. 

They found that the increase of heart rate in the first thirty seconds of exercise was 

due to vagal withdrawal. Furthermore, they suggested that the activation of 

sympathetic nervous system plays an important role in increasing heart rate during 

hard dynamic exercise.

Vagal withdrawal from the heart can also be assessed through time series 

analysis of heart rate variability. Heart rate variability as a measure of vagal 

influence on the heart is one noninvasive method of obtaining information about 

cardiovascular autonomic nerve function (Niklasson et al., 1993; Saul, 1990; 

Yamamoto et al., 1991). The measurement of heart rate variability, which will be 

used in this study, can be used both as a marker of parasympathetic and sympathetic
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influence under various conditions (De Meersman, 1993; Malik & Camm, 1993). 

Heart rate variability can be assessed through time series analysis that identifies 

different frequencies within the heart rate variability spectrum. The low frequency 

(0.05-0.15 Hz) usually is modulated by both parasympathetic and sympathetic 

activity, whereas high frequency (0.15-0.50 Hz) is modulated by parasympathetic 

activity (Akserold et al.y 1985; Malik & Camm, 1993; Saul et al.y 1990). The 

increase of heart rate variability at the high frequency indicates increased modulation 

of vagal activity, whereas the decrease of heart rate variability at the high frequency 

reflects reduction of vagal activity modulation (Malik & Camm, 1993). Maciel et 

al. (1986) showed that during moderate dynamic exercise the vagal nerves have a 

greater influence on increase in heart rate compared to the sympathetic pathways. 

Furthermore, a cross-sectional study by DeMeersman (1993) has shown that habitual 

exercise resulted in augmented heart rate variability.

2.1.1 Cardiac Output and End-Diastolic Volume Response To Aerobic Exercise 

The regulation of cardiac output during exercise is complex (Christensen & 

Galbo, 1983). Cardiac output is regulated by multiple mechanisms that include heart 

rate and factors that affect stroke volume (Lakatta, 1993). A study by Thadani and 

Parker (1978) has shown that during upright cycle exercise cardiac output was 

increased about 160% from upright rest values. Furthermore, Poliner et al. (1980) 

have suggested that an increase of cardiac output is caused by tachycardia and an 

increase in myocardial contractility that is brought about by greater sympathetic 

activity and also by the Frank-Starling mechanism. However, during maximal 

exercise, different factors affect the cardiac output of trained athletes and sedentary 

individuals. A study by Ogawa et al. (1992) showed that the effect of exercise
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training on maximal cardiac output in trained subjects was due to a larger stroke 

volume. During maximal exercise, the trained can increase cardiac output by almost 

twice as much as that of the untrained with similar maximal heart rate (Gledhill et 

al., 1994). Therefore, the sedentary can increase cardiac output mainly by 

increasing heart rate, whereas trained athletes can increase cardiac output by 

increasing both heart rate and stroke volume (Schairer et al., 1991). Similarly, 

Tanaka et al. (1986) showed that the increase of cardiac output in trained subjects 

during cycle exercise was attributed to an increase in stroke volume, because the 

heart rate response did not differ significantly between trained and untrained 

subjects. Thus, the greater stroke volume was due to lesser intravascular resistance 

in peripheral circulation and/or greater myocardial contractility. Supine exercise 

resulted in an increase in cardiac output that was probably caused by an increase in 

left ventricular end-diastolic volume as a result of increased central venous pressure 

(Kanstrup et al., 1992). Supine exercise also resulted in an increased heart rate with 

no change in end-systolic volume, whereas stroke volume was unchanged or slightly 

increased (Miyamoto et al., 1983). Furthermore, the increase of cardiac output 

during exercise is primarily caused by the ability of the left ventricle to dilate, 

resulting in increased end-diastolic volume that leads to increased stroke volume 

(Rerych et al., 1980).

The role of diastolic filling during exercise has not been studied extensively 

in humans (Schulman et al., 1992). A study by Levy et al. (1993) showed that the 

increase of diastolic filling during exercise is caused by an increased pressure 

gradient between the left ventricle and left atrium during early diastole.

Furthermore, Levy et al. (1993) have suggested that two mechanisms may be
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responsible for the enhancement of diastolic filling during exercise; that is an 

increase in diastolic suction of the left ventricle and an increase in left atrial 

pressure.

End-diastolic volume increases during both upright and supine exercise. A 

study by Rubai et al. (1980), using radionuclide ventriculography, showed that 

during upright exercise the higher work achieved by trained subjects was caused by 

an increase in end-diastolic volume and stroke volume. Their results indicated that 

the average increase in end-diastolic volume of athletes was about 33%, whereas the 

increase in the control group was about 14%. Similarly, Adams et al. (1992) also 

found that left ventricular end-diastolic volume was related to stroke volume changes 

during progressive exercise in the supine position. Furthermore, Marmor et al. 

(1993) showed that supine cycle exercise in healthy subjects resulted in a significant 

increase in end-diastolic volume.

2.1.2 Stroke Volume Response To Aerobic Exercise

Stroke volume is one of the most important factors underlying the cardiac 

performance of aerobic athletes (e.g., runners, cyclists, swimmers). The ability to 

increase stroke volume during exercise is a major factor in the enhancement of 

cardiac output. Stroke volume in the trained increases during cycle and run exercise 

in the upright position. A study by Ogawa et al. (1992) showed that the effect of 

exercise training on stroke volume was greater in male than female subjects.

Plotnick et al. (1986) have shown that upright exercise resulted in increased stroke 

volume by 31-35%. They suggested that the increase of stroke volume was mainly 

due to the Frank-Starling mechanism. A recent study from our laboratory (Boutcher 

et al., 1994) has shown that during light cycle exercise trained male cyclists can
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increase stroke volume by about 20%. Heart rate during light exercise in this study 

was about 90 b.min'1. Thadani and Parker (1978) have shown that the plateau of 

stroke volume can be reached at 40% of V o ^ .  In contrast, Gledhill et al. (1994) 

have shown that stroke volume of endurance trained athletes does not plateau during 

submaximal exercise, but progressively increases to maximal exercise. These data 

indicate that endurance athletes have the ability to increase ventricular filling and 

ventricular emptying even at high heart rates.

A study by Rosiello et al. (1987), which attempted to investigate the stroke 

volume response in different forms of exercise, found that stroke volume during 

rowing was significantly lower than cycling. They concluded that the different 

stroke volume response during rowing and cycling was due to the different response 

in ventricular contractility. There are several potential mechanisms to explain the 

increase of stroke volume of the trained during aerobic exercise. Some studies 

indicate that the increase of stroke volume during exercise is caused by the increase 

of ventricular filling pressure and end-diastolic volume (Hopper et al., 1988;

Levine, 1993; Spina et al., 1992). The enhancement of inotropic state and/or 

reduction in afterload which leads to increased ventricular emptying may also play a 

role in enhanced stroke volume response to exercise training (Goodman & Plyley, 

1991; Spina et al., 1992). Furthermore, some studies have suggested that stroke 

volume changes are caused by the Frank-Starling mechanism and increased 

contractility (Goodman & Plyley, 1991; Poliner et al., 1980; Sullivan et al., 1991). 

Thus, myocardial contractility becomes a primary mechanism in enhancing left 

ventricular stroke volume which leads to increased cardiac output (Goodman & 

Plyley, 1991). A study that examined the stroke volume response in men and
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women (Sullivan et al., 1991) showed that during exercise the increase of stroke 

volume (about 32 to 41%) was due to an increase in left ventricular end-diastolic 

volume. They also suggested that the increase of left ventricular contractility during 

exercise was indicated by a decrease of left ventricular end-systolic volume and an 

increase of left ventricular ejection fraction which maintained the stroke volume 

changes and end-diastolic volume.

2.1.3 Blood Pressure Response To Aerobic Exercise

Aerobic exercise also affects vasculature adjustment, such as blood pressure 

response. Blood pressure is a product of cardiac output and total peripheral 

resistance. The increase of blood pressure is very important to maintain the blood 

flow to critical areas such as the heart, brain, and exercising muscles (Astrand & 

Rodahl, 1977, p.170; Brooks & Fahey, 1984, p.337). Furthermore, the response of 

blood pressure to exercise can vary greatly, depending on the dynamic and isometric 

characteristics of the exercise (Franz, 1991). Typically, systolic blood pressure 

increases during both static or dynamic exercise (MacDougal, 1994). During 

aerobic exercise, systolic blood pressure increases almost linearly to values of 200 

mmHg or more at maximal exercise (MacDougal, 1994). Franz (1991) has shown 

that systolic blood pressure and diastolic blood pressure are lower in dynamic 

exercise than in isometric exercise. During dynamic exercise, the increase of 

systolic blood pressure is accompanied by decreased peripheral resistance which is 

caused by progressive vasodilatation that occurs in the vessels of the exercising 

muscles (MacDougal, 1994). Furthermore, Melcher and Donald (1981) and 

Ludbrook et al. (1978) have suggested that the carotid sinus reflex is a major factor 

in increasing blood pressure during exercise. A study by Penny et al. (1981) has
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shown that 14-week of jogging program resulted in decreased operational systolic 

blood pressure.

The decrease of peripheral resistance during exercise results in a slight 

increase or no increase in diastolic blood pressure. Toska and Eriksen (1994) have 

shown that the decrease of total peripheral resistance immediately at the initiation of 

exercise reflects the dramatic increase in muscular vascular conductance caused by 

increased blood flow to the exercising muscles. Furthermore, Toska and Eriksen 

(1994) have suggested that during moderate supine dynamic exercise the 

vasoconstriction of non-exercising muscles is caused by the baroreflex response as a 

result of decreased mean arterial pressure.

2.2 CARDIAC ADAPTATIONS TO CHRONIC AEROBIC EXERCISE

It has been established that regular aerobic exercise at a moderate to high 

intensity will change the cardiovascular and metabolic response to acute exercise. 

However, it has been argued that the major changes as a consequence of aerobic 

exercise occur in heart function (Rowell, 1986, p.257). Levine (1993) suggested 

that endurance training results in central and peripheral adaptations that include an 

increase in the ability to distribute and accommodate blood flow through an increase 

in maximal cardiac output and stroke volume. Similarly, McArdle et al. (1978) 

suggested that exercise which activates a relatively large muscle mass (e.g., running 

or cycling) produces general adaptations in heart rate, resulting in an inherent 

change in cardiac function which is brought about by central and peripheral factors. 

Most studies have shown that V o ^  increases as a result of exercise training over a 

long period of time. Mutton et al. (1993) have suggested that five weeks of exercise 

(e.g., running and cycling) can significantly improve Vo2max and run performance.
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The range of Vo2nuut increase varies between male and female and young and old 

individuals. Van Handel et al. (1976) showed that ten weeks of jogging resulted in 

an increase of Vo2max about 19.7% for male subjects and 14.8% for female subjects. 

Stratton et al. (1994) showed that six months of exercise training in older and young 

groups, which consisted of walking, jogging, and cycling, resulted in an increase in 

Vo2nuui by 21% in the older group, whereas the young group increased Vo2max by 

about 17%. Hickson et al. (1977) have shown that the average of Vo2max increases 

by 44% after ten weeks of exercise (e.g., cycling and running). Rowell (1974) has 

shown that endurance athletes showed little or no increase in Vo2max with years of 

exercise training.

What mechanism underlies the increase of maximal oxygen transport to 

exercising muscle? There are several possibilities underlying the mechanism of the 

increased Vo2nuuc. These possibilities are highlighted by the Fick principle:

V o ^  = H R ^  x S V ^  x a-vojdiff^

Based on the Fick equation, an increase in Vo2max could be achieved by an increase 

in heart rate (HR), stroke volume (SV), and arteriovenous oxygen difference 

(a-vo2difference). The increase of Vo2nMX with exercise training is primarily due to 

an increase in maximal stroke volume and cardiac output (Kilbom, 1971). On the 

other hand, Rodeheffer et al. (1984) suggested V o ^  is determined by maximum 

cardiac output and maximum a-vo2difference. Furthermore, Ekblom et al. (1968) 

has shown that exercise training resulted in an increase of Vo2max of about 40% 

which was accompanied by a 32% increase in cardiac output and stroke volume and 

only 8% increase in a-vo2difference. Levy et al. (1993) have shown that six months 

of exercise training in young and old subjects, which consisted of jogging, walking
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and cycling, resulted in an increased maximal oxygen uptake of about 19%, whereas 

resting heart rate decreased by about 14%.

The slow heart rate at rest occurs as a consequence of aerobic exercise 

carried out over a long period of time (Blomqvist & Saltin, 1983; Scheuer & Tipton, 

1977). Furthermore, it is well established that the phenomenon of resting 

bradycardia is present in endurance trained humans and animals (Smith et al., 1989). 

However, the mechanism underlying the decreased heart rate is unclear. The 

mechanism may be mediated by a training-induced increased cardiac parasympathetic 

(vagal) tone and decreased sympathetic activity (Seals & Chase, 1989) or reduced 

intrinsic heart rate (Katona et al., 1982; Lewis et al., 1980; Negrao et al., 1992).

De Meersman (1993) has suggested that parasympathetic activity can be maintained 

by habitual aerobic exercise which is reflected by augmented heart rate variability.

A study by Smith et al. (1989) has found that endurance trained subjects had greater 

parasympathetic influence compared to the untrained. Furthermore, they concluded 

that exercise training bradycardia which is present in endurance trained subjects was 

due to lower intrinsic heart rate and enhanced parasympathetic predominance. Van 

Handel et al. (1976) showed that several days of exercise training (jogging) resulted 

in a reduction of heart rate in male and female subjects.

Cross-sectional studies in humans have shown that improvement of diastolic 

filling occurred through exercise training, whereas longitudinal studies have shown 

that exercise training in young subjects resulted in no improvement in diastolic 

filling (Levy et al., 1993). Furthermore, their study showed that the increase of 

end-diastolic volume of about 13% occurring in the six months of exercise training 

may have contributed to the increase in maximal stroke volume, cardiac output, and
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maximal oxygen consumption. Stratton et al. (1994) showed that the stimulation of 

beta-adrenergic activity through isoproterenol during exercise training did not 

enhance the beta-adrenergic diastolic filling responses in old and young subjects. A 

study by Forman et al. (1992) has shown that endurance training over a long period 

of time is correlated with ventricular filling dynamics.

2.2.1 Blood Volume Expansion

The increase of blood volume as a cardiac adaptation to endurance training is 

well established (Carroll et al., 1995; Convertino, 1991; Green et al., 1990), and 

total blood volume seems to be correlated to endurance training and maximal oxygen 

uptake (Convertino, 1994). Furthermore, Convertino, (1994) has suggested that 

there appears to be no significant difference in hemoglobin levels between the 

trained and untrained. These findings indicate that blood volume expansion mainly 

consists of an increase in plasma volume. It is well established that trained 

endurance athletes have greater blood volume compared to fit, healthy but untrained 

individuals. Blood volume for highly competitive athletes has been shown to be 

about 104 ml/kg compared to 75-85 ml/kg for nonathletes (Dill et al., 1974). 

However, the mechanisms underlying the expansion of the blood volume are 

unclear. There are a number of possible explanations. Firstly, there is a possible 

increase in the ratio of volume to pressure in the vascular space. Another possibility 

underlying the increase of blood volume with exercise is an increase in plasma renin 

and antidiuretic hormone or vasopressin as well as total circulating protein caused by 

an increase in the oncotic pressure across the capillary membrane (Convertino,

1991). This increase would result in an increased retention of sodium and water by 

the kidneys. Also chronic training leads to an increase in plasma protein, mainly
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albumin, which increases the osmolality of the blood. Thus, increased blood protein 

allows the blood to hold more fluid.

Convertino et al. (1991) has shown that blood volume expansion

accompanying exercise training results in increased resting cardiac filling pressure

(central venous pressure) and resting stroke volume (100 ml to 117 ml). A few days

of endurance training resulted in an increase of plasma volume of about 400 ml,

even in relatively fit individuals. This adaptation appears to be an important factor

underlying the increase of stroke volume that occurs with endurance training

(Convertino, 1991). Increased blood volume facilitates venous return of blood to the

heart and enhances the Frank-Starling mechanism, which results in an increase in

cardiac output. Therefore, blood volume expansion is an important consideration in

cardiovascular performance at rest and during exercise.

2.3 FACTORS UNDERLYING STROKE VOLUME RESPONSE TO 
EXERCISE

Stroke volume is determined by ventricular filling or preload and myocardial 

contractility (Feigl, 1974; Vatner & Pagani, 1976). There is a different response in 

stroke volume among trained and untrained individuals. Typically, athletes have a 

larger stroke volume (Bevegird et al., 1963; Ekblom & Hermansen, 1968) 

accompanied by a slow heart rate compared to untrained individuals. Levine (1993) 

suggested that the larger stroke volume in trained subjects was probably caused by 

greater carotid sinus afferent nerve activity which leads to greater inhibition of 

efferent sympathetic nerve traffic. Thus, controlling the change in heart rate is 

mediated by the baroreflex. Schairer et al. (1992) have shown that the increase of 

stroke volume in athletes during exercise resulted in an increase in ventricular filling 

and an increase in ventricular emptying, whereas sedentary subjects had only an
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increase in ventricular emptying without an increase in ventricular filling. Cross­

sectional studies examining cardiac dimensions using radiographic, radionuclide 

imaging, and echocardiographic techniques comparing sedentary and well- 

conditioned individuals have shown that chronic physical training does increase 

ventricular volume (Astrand & Rodahl, 1977; Blomqvist & Saltin, 1983; Scheuer & 

Tipton, 1977), that in turn, leads to an increase in stroke volume. These results 

show that athletes have higher end-diastolic volumes than sedentary individuals at 

supine rest and during exercise. Also six months of physical training in athletes 

resulted in an increase in end-diastolic volume from 133 to 167 ml at rest, and from 

166 to 204 ml during maximal exercise (Rerych et al., 1980). Anholm et al. (1982) 

have also shown that adaptation to habitual exercise involves left ventricular end- 

diastolic volume changes.

The previously mentioned study by Boutcher et al. (1994) showed that there 

was a big difference in stroke volume response during cycle exercise in trained and 

untrained individuals. The trained cyclists in their study increased stroke volume by 

about 20% during actual exercise, whereas untrained individuals did not have the 

ability to increase stroke volume. However, how trained athletes can increase stroke 

volume so early on in exercise is unclear, as are the mechanisms underlying 

enhanced stroke volume during moderate to hard exercise.

There are several possible mechanisms underlying the enhanced stroke 

volume of trained individuals observed during actual exercise. Firstly, an increase 

in stroke volume could be due to either an increase in preload or an increase in 

myocardial contractility (Vatner & Pagani, 1976). Secondly, Astrand and Rodahl 

(1977, p.186) have suggested that the two primary factors affecting stroke volume
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are increased venous return to the heart and distensibility of the ventricles. Thirdly, 

another factor affecting exercise stroke volume is the effectiveness of the muscle 

pumps to function as a second heart (Rowell, 1986, p. 144) by enhancing venous 

return. Lastly, as mentioned, greater blood volume has been documented as a factor 

enhancing resting and exercise stroke volume (Convertino, 1991).

2.3.1 Contractility

One of the non-invasive techniques to assess contractility of the heart is the 

systolic time interval (Ahmed et al., 1972: Lewis et al., 1977; Sheps et ul. , 1982). 

Three basic measurements in systolic time interval were suggested by Lewis et al. 

(1977); that is pre-ejection period, which is determined between the onset of 

depolarization and the beginning of ventricular contraction; left ventricular ejection 

time, which is determined by at the end point of pre-ejection period when the blood 

is actually pumped from the left ventricle; and total electromechanical systole (QSy, 

which is pre-ejection period plus left ventricular ejection time. Also Marmor et al. 

(1993) suggested that the most frequently used index of left ventricular function is 

left ventricular ejection fraction.

Contractility of the heart refers to the strength of cardiac contractions under 

conditions in which ventricular end-diastolic filling, ventricular end-systolic volume, 

and heart rate are constant (Rowell, 1986, p.265). Most studies indicate that 

contractility of the heart contributes to the increase of stroke volume during hard 

exercise. For instance, a study by Sheps et al. (1982) showed that during upright 

exercise a decrease of pre-ejection period/left ventricular ejection time ratio 

(PEP/LVET ratio) was due to an increase in cardiac output, stroke volume, and 

contractility. Furthermore, Newlin and Levenson (1979) have suggested that the
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interpretations of pre-ejection period is limited by such factors as ventricular 

preload, afterload; alpha-adrenergic contractility on contractility, non-adrenergic 

drugs which affect pre-ejection period, and cardiac abnormalities.

It is well known that there is a relationship between pre-ejection period and 

heart rate (Newlin & Levenson, 1979). Furthermore, Newlin and Levenson (1979) 

found that pre-ejection period was decreased and heart rate was increased by positive 

inotropic agents and adrenergic cardio-stimulation, whereas pre-ejection period was 

unchanged by vagal blockade and atrial pacing. Miyamoto et al. (1983) suggested 

that shortening pre-ejection period during exercise is a consequence of an increase in 

venous return together with sympathetic stimulation. Furthermore, they concluded 

that the length of pre-ejection period and left ventricular ejection time during rest 

and exercise is mainly determined by the amount of blood that is available to the 

heart. Also a study by Mahler et al. (1985) has shown that the increase of stroke 

volume during submaximal exercise was dependent on Frank-Starling mechanism 

and increased ventricular contractility.

2.3.2 Venous Return

Venous return is an important factor in controlling cardiac output. This is 

based on the mechanism called the Frank Starling law of the heart, which allows the 

heart to pump the blood automatically, whatever amount of blood flows into the 

right atrium from the veins (Guyton, 1991, p.221). There are several factors that 

affect enhanced venous return such as: sympathetically induced venous 

vasoconstriction; skeletal-muscle activity; the effect of venous valves; respiratory 

activity; and the cardiac suction effect by influencing the pressure gradient between 

the veins and the heart (Sherwood, 1993, p.329). Venous return of blood can also

22



be affected by such factors as increased blood volume, increased tone of large blood 

vessels, and dilatation of small blood vessels (Guyton, 1991, p.225).

2.3.3 Muscle Pumps

The muscle pumps that Rowell (1986, p.144) has called the "second heart" is 

one possible factor that may enhance venous return during exercise thereby causing 

an increase in stroke volume. Blomqvist and Stone (1983) have suggested that the 

systemic circulation can be influenced by rhythmic exercise of the leg either in the 

sitting or standing position which is caused by contribution of the muscle pumps in 

the upper and lower leg. Every major muscle group acts as a muscle pump, so 

when muscles contract the veins are compressed (Gauer & Thron, 1965). Thus, the 

power of the pump is provided by contractions of the muscles (Ludbrook, 1962). 

Venous compression results in decreased venous capacity and increased venous 

pressure that leads to fluid contained in the veins being squeezed back towards the 

heart (Sherwood, 1993, p.329). The mechanism of the muscle pumps was explained 

by Van Leeuwen et al. (1992) as follows: during contraction of the calf muscles, the 

blood is squeezed toward the heart, then the venous valves prevent the blood from 

flowing back. Because of the muscle contractions, the venous pressure is lowered, 

and the perfusion increases by the same amount. Furthermore, if the next 

contraction follows before the venous system is refilled, the venous pressure remains 

decreased for as long as the exercise is continuous.

The effectiveness of the muscle pumps is very important in facilitating 

venous return (Sheriff et al., 1993). For instance, when a person stands up, the 

blood will pool in the legs due to the gravitation effect (Sherwood, 1993, p.331).

The longer the time spent in the standing position, the more the blood will be pooled
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in the leg instead of moving back to the heart. Therefore, when a person stands 

upright for a long period of time, the blood flow to the brain is reduced which can 

lead to fainting. In this condition, mild exercise (e.g., leg movement) is important 

to stimulate the muscle pumps to compress the veins and squeeze the blood back to 

the heart. Thus, these mechanisms act together in an attempt to increase venous 

return (Plotnick et a l , 1986). The single and strong contraction of the calf muscles 

during standing resulted in an increase of blood flow by 60 percent (Ludbrook,

1966) also contraction of the calf muscles can produce a driving force of 90 mmHg 

(Barcroft & Domhorst, 1949; Stegall, 1966). The muscle pumps also prevent the 

blood moving backwards because most veins have one way valves that allow the 

blood to move only in one direction. In addition, Sherwood (1993, p.333) has 

shown that the respiratory pump also enhances venous return.

There are a number of possible functions of the skeletal muscle pump in the 

lower leg. Firstly, the action of the muscle pumps will increase the perfusion of the 

calf muscles resulting in an increased blood back to the heart. Secondly, the veins 

in the leg act as a reservoir for blood (Ludbrook, 1966; Sherwood, 1993, p.328). 

Another possible function of the skeletal muscle pumps has been their role in 

preventing the formation of oedema (Stick et a l , 1993). A study by Sheriff et a l  

(1993) showed that the muscle pump contributes to the dramatic increase in muscle 

blood flow observed at the initiation of exercise. Their study which was performed 

by a manipulation of muscle contraction rate through treadmill running in dogs 

showed that the activation of the muscle pump resulted in a decrease in volume of 

blood from the non-compliant arterial system; this effect resulted in a lowering of 

arterial pressure. Furthermore, the muscle contraction forced blood into the central
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veins that led to increased central venous pressure.

2.3.4 Blood Volume

As briefly mentioned previously, blood volume expansion is one possible 

factor underlying the increase of stroke volume during exercise. It has been well 

documented in cross-sectional and longitudinal studies that blood volume expansion 

occurs as a consequence of physical training. Hopper et al. (1988) have shown that 

during exercise, plasma volume expansion by 400 ml in untrained individuals 

increased stroke volume by 11%. Also, exercise training for two to four weeks 

resulted in an increased plasma volume (Convertino, 1991; Convertino et al., 1991). 

Cross-sectional studies have demonstrated that endurance trained athletes have 

expanded blood volume about 20-25% greater compared to untrained individuals 

(Brotherhood, 1975). Longitudinal studies have also showed that up to ten days of 

endurance training increases blood volume expansion primarily through plasma 

volume expansion (Convertino et al., 1980; Convertino et al., 1980; Green et al., 

1984; Kirby & Convertino, 1986). Allen et al. (1992) showed that mild aerobic 

exercise that consisted of swimming, running, walking, and cycling resulted in 

plasma volume expansion about 5.9%, whereas Pugh (1969) showed that the blood 

volume expansion that occurred was associated with a plasma volume expansion of 

about 7.3%. The average blood volume expansion from longitudinal research is 

reported to be about 7% (Convertino, 1991).

The major cardiovascular advantages from blood volume expansion 

(hypervolemia) induced by exercise training appear to be a reduction in heart rate 

(Convertino, et al., 1980; Convertino et a l ,  1980; Convertino, 1983; Wyndham et 

al., 1976) and elevation in stroke volume (Green et al., 1990). Kanstrup and
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Ekblom (1982) have shown that acute plasma volume expansion resulted in an 

increased cardiac output and stroke volume. Furthermore, Convertino (1983) has 

shown that training induced exercise heart rate and hypervolemia were correlated 

with a 1 % increase in plasma volume being associated with a 1 % reduction in 

exercise heart rate. The mechanism underlying the effect of hypervolemia on stroke 

volume and heart rate during exercise may be the Frank-Starling law (Convertino, 

1991). During rest and exercise, hypervolemia is associated with elevated central 

venous pressure (Thompson et al.y 1990) which is associated with increased stroke 

volume (Hopper et aL, 1988). The increase of stroke volume during exercise may 

result from greater venous return and increased right atrial filling pressure associated 

with a greater pressure gradient from the central venous reservoir to the right atrium 

as a consequence of exercise training (Convertino et al., 1991). Thus, the greater 

blood volume of endurance trained athletes appears to be a major contributor to their 

increase in ventricular function (Gledhill et al., 1994). Therefore, hypervolemia 

may contribute significantly to improved cardiovascular performance by increasing 

stroke volume (Convertino, 1991).

2.4 PASSIVE EXERCISE PARADIGMS

The majority of studies examining stroke volume response to exercise have 

shown that it is difficult to examine stroke volume changes during early, light 

aerobic exercise. Difficulties are caused by factors such as subjects being excited at 

the start of testing session which increases heart rate and confounds stroke volume 

response at the start of exercise. One possible way to examine the increase of stroke 

volume during early, light exercise may be through passive exercise. Passive 

exercise involves the subjects’ limbs being moved by an outside agency while they
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remain relaxed and passive.

Few research studies have attempted to investigate the cardiovascular 

response to passive exercise. However, some passive paradigms have been used to 

investigate cardiovascular regulation. For instance, Bahnson et al. (1949) attempted 

to examine the effect of passive movement on respiration and oxygen consumption in 

male subjects using a bicycle connected to an electric motor, at a rate of 60 rpm for 

5 minutes. The results showed that during passive movement there was an increase 

of oxygen consumption about 36.5%, whereas the average respiratory minute 

volume increase was about 25.3%. The purpose of another study, Morikawa et al. 

(1989) was to examine the respiratory and cardiovascular response by passively 

moving the legs using a weight that was attached to each leg of paraplegic patients 

and healthy subjects. They found that the decrease of heart rate occurs in the first 

five seconds of passive exercise by low intensity passive knee extension. Also a 

tandem bicycle was used to perform passive exercise in healthy subjects in a study 

by Ndbrega and Araujo (1993) that focused on heart rate response. Their results 

showed that high intensity passive exercise, which was performed by a tandem 

bicycle, resulted in a significant increase in heart rate.

In the present study, passive exercise will be performed using a fix-wheeled 

bike that will be secured on a treadmill operating at three different intensities (30 

rpm, 60 rpm, and 80 rpm) for 3 minutes at each intensity. The focus of the present 

study will be to examine the cardiovascular response, particularly heart rate and 

stroke volume of trained and untrained individuals during passive cycle exercise.
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2.5 CARDIOVASCULAR RESPONSE TO PASSIVE EXERCISE

Previous research (Morikawa et al., 1989) has shown that passive exercise 

performed using 1-kg weight attached to the leg resulted in decreased heart rate and 

a slight increase in stroke volume during the first five seconds in paraplegic patients 

and healthy subjects. In contrast, Ndbrega and Araujo (1993) have shown that heart 

rate can increase substantially during passive exercise that emulated sprinting on a 

tandem bicycle. There is a marked difference in the results of passive exercise of 

the studies by Morikawa and Ndbrega. Ndbrega et al. (1994) have suggested that 

the type of passive movement which was used could explain the difference between 

the results of the two studies (Morikawa and Ndbrega). Thus, high intensity passive 

cycling movements may result in greater muscle receptors activation than low 

intensity passive rhythmic knee extension.

It is still debatable whether the heart rate response during passive exercise is 

due to central or peripheral command. Two mechanisms of neural control that 

underlying the cardiovascular response have been suggested; central command and 

exercise pressor reflex (Galbo et al., 1987; Mitchell, 1985; Ndbrega et al., 1994). 

The first mechanism suggests that the cardiovascular response to exercise is due to a 

direct action of central command from cardiovascular controls areas. The second 

mechanism suggests that the cardiovascular response to exercise is due to activity 

from receptors in the skeletal muscle, tendons, and joints. Furthermore, the skeletal 

muscles that include group HI and/or IV afferents are capable of eliciting the 

increase of heart rate and blood pressure (Coote, 1975; Galbo et al., 1987; 

Fernandes et al., 1990; McCloskey & Mitchell, 1992; Williamson et al., 1994). 

Results from the McMahon and McWilliam (1992) study have shown that the
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receptors located in contracting muscles are responsible for shortening of the R-R 

interval, which is mediated by vagal withdrawal. Galbo et al. (1987) suggested that 

cardiovascular response during voluntary dynamic exercise seems to be dominated 

by activity from the exercising muscles. In contrast, Innes et al. (1992) suggested 

that the response of ventilatory, blood pressure, and heart rate to dynamic exercise 

are influenced by central neural drive. A study by Mitchell (1985) has shown that 

the heart rate response is exactly the same whether stimulated electrically (no central 

command) or voluntarily. Thus, the heart rate response must be due to receptors in 

the muscle (mechanoreceptors) which provide afferent feedback to cardiovascular 

controls.

The slight increase of stroke volume during passive knee extension occurred 

in paraplegic patients who lacked an intact nervous system. These results indicate 

that the muscle pumps were activated through passive knee extension even in 

paraplegic subjects. Thus, in the Morikawa study, the activation of the muscle 

pumps during passive knee extension may have affected the venous return resulting 

in greater blood move back toward the heart which led to an increase in stroke 

volume. A further study of passive exercise by Nobrega et al. (1994) has shown 

that passive cycling for five minutes at 40 rpm and 60 rpm resulted in an increase in 

cardiac output which was due to a greater increase in stroke volume that was caused 

by an increase in venous return from passively moved lower limbs. The authors 

also suggest that cardiac output was influenced by the activation of muscle 

mechanoreceptors that elicited an increase in myocardial contractility. Also, they 

found that an increase in blood pressure occurred during passive cycling movements. 

They suggested that an increase in blood pressure during passive cycling movements
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may have been caused by the activation of the muscle mechanoreceptors which are 

able to evoke a pressor response. Furthermore, they concluded that as a 

consequence, in humans, reflex cardiovascular response can be produced by 

activation of the muscle mechanoreceptors.

2.6 SUMMARY

Cardiovascular regulation is significantly influenced by aerobic exercise. The 

major cardiovascular adaptations to regular aerobic exercise are increased stroke 

volume and low resting heart rate. The stroke volume response in aerobically 

trained and untrained individuals is different. Furthermore, the major difference in 

stroke volume response between trained and untrained individuals is due to the 

ability of trained individuals to increased stroke volume via enhanced end-diastolic 

volume accompanied by hypervolemia. Most research has shown that hypervolemia 

occurs as a consequence of regular aerobic exercise. Nevertheless, the mechanism 

underlying the increase stroke volume in trained individuals remains unclear. One 

possible explanation may be the effectiveness of the muscle pumps to facilitate the 

venous return resulting in an increase in exercise stroke volume.

Passive cycle ergometry may provide a method of examining the role of 

venous return and exercise stroke volume through passive stimulation of the muscle 

pumps. Studies that have attempted to investigate the cardiac response during 

passive exercise have found that there was an increase in stroke volume. The 

increase of stroke volume may caused by increased venous return as a consequence 

of activation of the muscle pumps.
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CHAPTER THREE; METHODS

3.1 SUBJECTS

Subjects were 10 trained male Cyclists, 10 trained Runners, and 10 fit but 

untrained Controls males (aged between 18-30 years). Criteria for the Cyclists and 

Runners were participation in a training regimen of at least four training sessions per 

week for greater than four years. Controls were active individuals who were not 

involved in a regular aerobic training program. Subject characteristics are 

summarized in Table 1. The study was approved by the University of Wollongong 

Human Experimentation Ethics Committee (see Appendix A) and all subjects 

provided informed consent (see Appendix B).

3.2 EXPERIMENTAL PROTOCOL

All subjects refrained from eating, smoking, and ingesting caffeine and 

alcohol at least three hours before testing.

3.2.1 Orientation Session

Subjects were required to read and complete a Physical Activity Readiness- 

Questionnaire (PAR-Q) (see Appendix F), a Human Subjects consent form (see 

Appendix B), and a Personal Health and Exercise History questionnaire (see 

Appendix C). The latter detailing the frequency, intensity, duration, and category of 

exercise participation, together with any past or present health problems. Finally, 

subjects were briefly informed of the requirements of the study (see Appendix G).

3.2.2 Testing Session

3.2.2.1 Baseline Measures

Cardiac variables such as stroke volume, cardiac output, and heart rate were 

measured simultaneously with a constant current of impedance cardiography during
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rest. Two band electrodes were placed around the neck, the third electrode was 

placed around the thorax, and the fourth electrode was placed around the abdomen 

between the xiphoid and umbilicus. Three bipolar electrodes of ECG were placed 

around the heart in a lead II configuration (Figure 3.1). The Finapres blood 

pressure was also fitted (Figure 3.2). A mask to monitor breathing was placed. 

Then, subjects were required to rest in the supine position for 15 minutes, after 

which data were collected every 25 seconds during the last 5 min (Figure 3.3).

Next, subjects moved to the upright position, where data were collected every 25 

second for 5 minutes (Figure 3.4). During supine and upright rest subjects were 

requested to breathe at the required rate (3 s inhale and 3 s exhale) through 

breathing instructions from the tape recorder.

3.2.2.2 Passive Cycle Exercise

Subjects were instructed to sit on the fixed wheel bike and were requested to 

remain in an upright position with the left hand used to collect blood pressure placed 

on a tripod positioned at the level of the heart (Figure 3.5). The saddle of the fixed 

wheel bike was adjusted for every subject based on the following calculations: a 

measure of the length of the leg, from the head of femur to the feet with shoes (cm) 

x 0.98, then the length (cm) from these calculations was used to adjust the saddle 

(McLean, 1992, p.76). The cycling bouts were performed using a fixed-wheel bike 

that was secured to a treadmill. Subjects cycled continuously for 3 minutes at three 

different revolutions per minute (30, 60, and 80 rpm). During passive exercise, 

cardiac output, stroke volume, and heart rate was recorded every 25 seconds, 

whereas systolic and diastolic blood pressure was recorded every cardiac cycle. The 

mask to monitor breathing was placed, and subjects were requested to breathe at the
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required rate (3 s inhale and 3 s exhale) through breathing instructions from the tape 

recorder. To ensure no contraction from the leg, three EMG electrodes were placed 

on the right and the left legs (see Figure 3.5). Two electrodes was placed on the 

anterior of the thigh and the third electrode was placed on the knee joint. During 

passive exercise, ECG, EMG, and breathing rate were monitored continuously and 

subjects were requested to keep their legs as relaxed as possible.

3.2.2.3 Maximal Exercise Test

All subjects exercised in the upright position on a stationary electronic- 

braked cycle ergometer (Excalibur) at a cadence of 70 rpm (Figure 3.6). The initial 

load was 30 watts (W) for the first 2 minutes and was increased by 1 W every 2 

seconds thereafter. During exercise, blood pressure was recorded automatically 

every minute.

3.3 APPARATUS

3.3.1 Impedance Cardiography

The impedance cardiography (Minnesota Impedance Cardiogram, Model 304 

B) was used to record the impedance cardiogram (ICG) using four strip electrodes 

placed around the neck and the chest (Miles & Gotshall, 1989).

A computer-based system processed and recorded the ECG, basal thoracic 

impedance between the recording electrodes (Zo: Figure 3.7), and the first 

derivative of the pulsatile impedance (the maximum rate of change in the impedance 

waveform on a given beat (dZ/dt^: Figure 3.7). Specialized software using 

ensemble averaging was used to process the impedance cardiogram (COP, 

Microtronics Inc., Chapel Hill, NC).
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Figure 3.1 Tetrapolar configuration of aluminium electrodes used in impedance 
cardiography.
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Figure 3.2 The Finapres blood pressure monitor, the finger cuff placement, and a 
cross section of a finger and the Finapres cuff.
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Figure 3.3 A subject in the supine resting position. Note the mask and Amlab 
physiograph used to monitor breathing rate and tidal volume; the Finapres blood 
monitor; and the impedance cardiogram.
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Figure 3.4 A subject in the upright rest position. Note the mask and Amlab 
physiograph used to monitor breathing rate and tidal volume; the Finapres blood 
monitor; and the impedance cardiogram.
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Figure 3.5 The subject set-up during passive cycle exercise. Note the subject’s left 
hand on a tripod positioned at heart level; the face mask used to monitor breathing 
rate; EMG electrodes to monitor leg muscle contraction; and the ECG and 
impedance cardiography electrodes.

38



3.3.1.1 Validation o f Impedance Cardiography

Impedance cardiography is a noninvasive method for the estimation of stroke 

volume (Bernstein, 1986; Gastfriend et al., 1986; Miller & Horvarth, 1978) and 

cardiac output (Ovsyshcher et al., 1993). Impedance cardiography has been shown 

to be a valid, reliable method for assessing stroke volume during exercise with 

young subjects in other laboratories (Hatcher & Srb, 1986; Sheps et al., 1982; 

Tanaka et al., 1986; Teo et al., 1985).

Also, impedance cardiography was compared during exercise to carbon 

dioxide rebreathing using a SensorMedics metabolic cart (Model 2900) in our 

laboratory (McLaren, 1995). The measurement of cardiac output in this method is 

based on the Fick equation, that is cardiac output = Vco2/(DC02.v-a), in which Vco2 

is carbon dioxide release in ml/min, DC02.v-a is the difference in mixed-venous to 

arterial carbon dioxide content. This procedure uses Fick’s formula, in which 

oxygen parameters are substituted by carbon-dioxide parameters to estimate the 

carbon dioxide content of mixed venous blood during exercise.

The test consisted of submaximal exercise using a cycle ergometer. During 

this test a subject performed submaximal cycle ergometry at a constant pedalling 

speed (60 revolutions per minute); the intensity progressively increased by 0.8 

kilopond every 4 minutes. The incremental increase of load during exercise allowed 

the subject to achieve a steady-metabolic rate that was required by the rebreathing 

technique (Defares, 1958). During the test rebreathing and impedance cardiography 

estimates of stroke volume were acquired; then the stroke volume values were 

compared. Figures 3.8 shows the heart rate matched values for cardiac output both 

at rest and during exercise up to heart rates of 150 b.mm*1 with a young subject.
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3.3.1.2 Reliability o f Impedance Cardiography

The reliability of impedance cardiography as an estimation of stroke volume 

in humans was tested by Ebert et al. (1984). Also, in our laboratory, the 

assessments of cardiac output and stroke volume during resting conditions in two 

different occasions in six subjects showed that the correlation between the two 

sessions was significant, r = 0.98; < 0.01, (McLaren, 1995).

3.3.2 Finapres Blood Pressure (Ohmeda 2300)

A Finapres blood pressure (Ohmeda 2300) was used to record systolic and 

diastolic blood pressure on a beat-by-beat basis.

3.3.2.1 Validity and Reliability o f Finapres Blood Pressure

Blood pressure measurement through the Finapres has been shown to be valid 

and reliable. The validity and reliability of Finapres blood pressure has been 

established by comparing Finapres with brachial blood pressure (Imholz et al., 1988; 

Imholz et al., 1990; and Parati et a l., 1989).

3.3.3 Amlab Physiograph (Model 1.7)

An Amlab physiograph (Model 1.7) system, which was linked to a 386 PC 

computer, was used to record breathing and to asses the time interval between R 

spikes. Sampling rate was 1000 sec'1.

3.3.4 Face Mask

A face mask that was attached to a flow tube (Morgan, Model AC0980) was 

used to record breathing pattern, rate, and tidal volume by assessing the pressure of 

inspired and expired air. A signal conditioning transducer (Famell, Model 

142SC01D) converted the pressure changes occurring in the flow tube to voltage.
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3.3.5 Electromyography

An electromyography amplifier (Humtec, Model 100) was used to ensure 

there was no muscular contraction in the legs during passive cycle exercise. The 

response of muscle contraction was recorded through a chart recorder (Graphtec 

Linearcorder, FWR 3701).

3.3.6 Fixed Wheel Bike

A bike (see Figure 3.5) was secured to a Quinton treadmill. The rear wheel 

was a fixed wheel so that rotation of the wheels via the treadmill would result in 

passive movement of the subject’s legs. Subject’s legs were securely fixed to the 

pedals by toe grips.

3.3.7 Quinton (Q-Plex I)

The metabolic cart used to measure peak oxygen consumption was the 

Quinton gas analysis system (Model Q-Plex I) that included a Hans Rudolph 

pneumotachograph (Serial No. 187010), a zirconia oxide oxygen analyzer, and an 

infra-red carbon dioxide analyzer. Subjects breathed through a Hans Rudolph two­

way valve that was connected to the Quinton through low resistance tubing. The 

valve was held in place by a headset and a nose clamp was fitted (see Figure 3.6).

3.3.7.1 Validity o f  Quinton (Q-Plex 1)

The Quinton Q-Plex I computerized gas analysis system has previously been 

validated within the present laboratory (Solomon, 1991) for oxygen and carbon 

dioxide concentrations, and minute ventilation by comparing expired gas volumes 

and gas concentrations from values obtained independently to those generated by the 

current system. The partial pressure of oxygen was validated against an Applied 

Electrochemistry oxygen analyzer (model number S-3A) and the carbondioxide
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Figure 3.6 The subject set-up during maximal exercise test. The metabolic cart 
(Quinton system) used to measure maximal oxygen consumption; head set with Hans 
Rudolph valve; and the ECG and impedance cardiography electrodes.
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concentrations were validated against a Beckman carbon dioxide analyzer 

(model number LB-2). A wedge spirometer was used to validate minute ventilation 

with volumes from both systems adjusted to BTPS conditions. Quinton Q-Plex 1 

generated oxygen uptake and carbon dioxide production has been independently 

validated against other gas analysis systems (Chypchar et al. 1990).

3.3.8 Automated Blood Pressure

Automated blood pressure monitor (Quinton, Model 412) with the cuff was 

used during the maximal exercise test. The cuff was wrapped around the upper left 

arm with the microphone placed directly over the brachial artery. During the 

maximal exercise test systolic and diastolic blood pressure were displayed every 

minute and recorded manually.

3.3.9 Electronic-braked Cycle Ergometer

A Lode electronically-braked cycle ergometer (Excalibur Sport) was used 

during actual cycle exercise.

3.4 MEASURES

3.4.1 Anthropometric

Skinfold measures were taken with calipers at eight sites (abdominal, triceps, 

suprailiac, midaxillary, thigh, calf, biceps, and subscapular) together with height and 

body mass. Percentage of body fat was assessed from sum skinfold measures at 

four sites (triceps, biceps, subscapular, and suprailiac) based on the estimation of 

percent body fat by age (Dumin & Womersley, 1974).

3.4.2 Impedance Cardiogram

Cardiac performance was measured non-invasively using impedance 

cardiography (Minnesota Impedance Cardiograph (Model 304B). The impedance
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cardiogram was collected using a tetrapolar configuration of electrodes (see Figure 

3.1) (Miles & Gotshall, 1988).

3.4.3 Heart Rate

Heart rate was calculated based on the mean of inter-beat-interval of R waves 

from the ECG.

3.4.4 Stroke Volume

Stroke volume was determined by the Kubicek (1966) equation:

SV = rho.(L/Zo). LVET. dZ/dT max

where; SV = stroke volume,

rho = resistivity of blood (135 ohm. sec*1)

L = distance between voltage electrodes (cm),

Zo = basal impedance,

LVET = left ventricular ejection time,

dZ/dT max = maximum rate of change of impedance during cardiac systole 

(ohm. sec1).

3.4.5 Stroke Index

Stroke Index (SI) was calculated based on the equation,

SI (ml/m2) = stroke volume divided by body surface area

3.4.6 Cardiac Output

Cardiac output (CO) was calculated based on the equation,

CO (litres) = stroke volume x heart rate

3.4.7 Cardiac Index

Cardiac Index (Cl) was calculated based on the equation,

Cl (litres/m2) = cardiac output divided by body surface area
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3.4.8 Pre-Ejection Period

Pre-ejection period was computed as the interval from the ECG Q wave onset 

to the dZ/dT B point in milliseconds (Lewis et al., 1977; Newlin & Levenson,

1979; Sherwood et al., 1990; Figure 3.7).

3.4.9 Left-Ventricular Ejection Time

Left ventricular ejection time was computed as the interval from the dZ/dT B 

point to the dZ/dT X point in milliseconds (Lewis et al., 1977; Newlin & Levenson, 

1979; Sherwood et al., 1990; Figure 3.7).

3.4.10 Pre-Ejection Period/Left-Ventricular Ejection Time (PEP/LVET Ratio). 

PEP/LVET ratio was computed as the pre-ejection period divided by left-

ventricular ejection time.

3.4.11 Systolic/Diastolic Blood Pressure

Systolic and diastolic blood pressure were recorded automatically every 

cardiac cycle using the Finapres blood pressure monitor.

3.4.12 Mean Arterial Pressure

Mean arterial pressure was calculated using the COP software based on the 

equation: 1/3 x pulse pressure (systolic pressure - diastolic) + diastolic pressure.

3.4.13 Total Peripheral Resistance

Total peripheral resistance (TPR) represents the resistance of the vasculature 

to blood flow and was computed according to the equation:

TPR (dyne-seconds.cm'5) = MAP/CO.80.

3.4.14 Rate Pressure Product

Rate pressure product is linear to myocardial oxygen consumption and was 

computed according to the equation:
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Figure 3.7 Impedance cardiogram waveform components shown are the ECG Q- 
wave (Q), dz/dt B-point (B), and dz/dt X-point (X). Electrocardiogram (ECG), first 
derivative of the pulsatile thoracic impedance signal (dz/dt), and phonocardiogram 
(PCG) recorded during electromechanical systole of a cardiac cycle (from Sherwood 
et al. 1990).
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rate pressure product = systolic blood pressure x heart rate / 100

3.4.15 Heart Rate Variability

Heart rate variability (HRV) reflects to a great extent, the parasympathetic 

effect on the heart. HRV was analyzed using a time series method (HRVte) through 

the MXEDIT software package (Delta-Biometrics, Inc, Bethesda, MD). Time-based 

data was converted from IBIs by sampling successive 200-ms intervals. During 

supine rest and passive cycle exercise IBIs were plotted and edited to remove and 

interpolate artifact and outlying values. To remove sources of variance below the 

two major oscillatory heart rate spectral components a band-pass filter was used.

One of these components, which is termed high frequency, was synchronized 

with respiration and typically occurs at frequencies at 0.12 Hz and above. The other 

component, called Mayer waves, is termed low frequency and is centered at around 

0.10 Hz and below. The slow frequency characteristics of the Mayer waves 

correspond to the slow oscillations present in arterial pressure variability (Furlan et 

al., 1993).

The natural logarithm of the band-passed variance (in msecA2) were then 

calculated and used as high and low frequency measures of HRVte. These estimates 

of HRV* appear as a linear scale ranging from 0 (minimal HRVte) to 10 (maximal 

HRVfc) (Porges, 1985).

3.4.16 Breathing

Subjects’ tidal volume were recorded and then monitored to ensure subjects 

produced a similar tidal volume during exercise at the different intensities.

Breathing was recorded using an Amlab physiograph (Model 1.7) that was linked to 

a 386 PC computer collecting at 1000 sec'1. Breathing pattern, rate, and tidal
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volume were recorded by assessing the pressure of inspired and expired air through 

a flow tube (Morgan, Model AC0980) attached to a face mask. A signal 

conditioning transducer (Famell, Model 142SC01D) converted the pressure changes 

occurring in the flow tube to voltage.

3.4.17 Peak 0 2 Consumption

During the maximal oxygen uptake test, Vo2peak was determined as the oxygen 

consumption in L.min'1 when subjects were unable to continue because of volitional 

exhaustion.

3.5 DATA PROCESSING

3.5.1 Impedance Cardiogram

Impedance cardiograms were initially processed using ensemble averaging to 

filter artifact from the impedance cardiogram every 25 seconds. Each impedance 

wave was edited through the edit mode of the COP software. Data for blood 

pressure (systolic and diastolic) during passive cycle exercise was averaged every 25 

seconds then entered through the blood pressure edit mode to enable mean arterial 

pressure and total peripheral resistance to be calculated.

3.5.2 Statistical Analysis

The design of the study included both between and repeated measures. The 

between factor was Group (Cyclists, Runners, Controls) and the repeated measure 

was Time for each of the measures. Analysis was conducted using the SPSSPC

statistical package.

During resting and passive cycle exercise the changes of cardiac variables 

such as heart rate, stroke volume, cardiac output, stroke index, cardiac index, mean 

arterial pressure, systolic and diastolic blood pressure, total peripheral resistance,
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left-ventricular ejection time, pre-ejection period, PEP/LVET ratio, and rate 

pressure product were compared using between and repeated measures analysis of 

variance.

The difference of each variable between groups were compared using One­

Way Analysis of Variance. A probability of /?<0.05 was considered significant. 

Means and standard error of the mean for all variables at rest and during passive 

cycle exercise are reported in Appendix D.

One-way analysis of variance with Newman-Keuls post hoc tests were 

performed to examine differences in subjects’ physical characteristics and 

cardiovascular response during passive cycle exercise when the overall omnibus F 

was significant. A three (Group: Cyclists, Runners, and Controls) X 4 (Time: 

supine and upright rest) mixed design was used to examine cardiovascular variables 

at rest. A three (Group: Cyclists, Runners, and Controls) X 6 (Time: six 25- 

seconds epochs at each intensity) mixed design was used to examine cardiovascular 

differences during passive exercise.

Analysis was conducted on both absolute and delta scores (calculated by 

subtracting the baseline measure from each response during passive cycle exercise at 

all intensities). For analysis that involved repeated measures the conservative F-test 

correction for degrees of freedom (Geisser & Greenhouse, 1958) was applied when 

symmetry assumptions were violated. When this occurred degrees of freedom for 

the F-statistic were halved and probability values calculated on these revised values. 

All data distributions were examined and all assumptions for each statistical analysis

were tested.
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CHAPTER FOUR: RESULTS

Results of this study are divided into four sections. The first section 

summarizes subjects’ physical characteristics; the second section describes 

cardiovascular response during rest, whereas the next two sections describe the 

passive exercise cardiovascular response for all subjects and the passive exercise 

cardiovascular response between the three groups (Cyclists, Runners, and Controls).

4.1 SUBJECT CHARACTERISTICS

Subject characteristics are shown in Table 1. The trained groups possessed 

lower resting heart rate compared to Controls although no significant difference 

existed between groups (Table 1). The three groups showed no significant 

difference in height. A significant difference between groups existed for age, 

weight, body surface area, sum of skinfolds, percentage of body fat, and V o ^  

(Table 1). Runners were significantly older than Cyclists and Controls. The sum of 

8 skinfolds, percentage of body fat, body surface area, and weight of Controls was 

significantly greater than that of Cyclists and Runners. The V o ^  for the three 

groups is illustrated in Table 1. As expected, Vo2pcak expressed in absolute terms, of 

Cyclists and Runners was significantly higher than that of Controls. Similarly, 

relative of Cyclists and Runners was significantly higher than that of

Controls. Also, Cyclists had significantly higher absolute and relative Vo2pcak than 

that of Runners.
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Table 1: Physical characteristics of the subjects. Data are means with standard
errors of the means in parenthesis.

Variable Cyclists
(«=10)

Runners
(«=10)

Controls
(«=10)

Age (yr) 20.30 (1.11) 26.20 (1.10)a 22.00 (0.75)

Height (cm) 175.72 (2.25) 177.44 (1.41) 179.63 (2.55)

Mass (kg) 65.42 (1.94) 72.74 (1.68)e 78.29 (0.92)b

Body surface area (m2) 1.79 (0.04) 1.89 (0.03)c 1.96 (0.03)"

Vozps* (L.min1) 4.95 (0.12)c 4.74 (0.19)c 3.58 (0.21)

Vc^pd (ml.kg1.min'1) 76.25 (1.44)" 65.50 (2.16)c 46.31 (2.36)

Heart rate (b.min*1) 58.43 (2.69) 57.21 (3.47) 65.38 (2.93)

Sum of 8 skinfolds (cm) 55.73 (3.31) 69.60 (5.48)* 85.88 (4.76)b

Body fat (%) 10.09 (0.57) 12.32 (0.88) 15.12 (0.87)b

Abbreviations: V o ^  = peak oxygen consumption;

* = significantly greater than Cyclists and Controls (p<0.05); 

b = significantly greater than Cyclists and Runners; 

c = significantly greater than Controls; 

d = significantly greater than Runners and Controls; 

c = significantly greater than Cyclists.
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4.2 BASELINE CARDIOVASCULAR RESPONSE

One-way Anova on supine and upright resting heart rate, stroke volume, 

stroke index, cardiac output, cardiac index, left-ventricular ejection time, systolic 

blood pressure, and rate pressure product as well as vagal influence on the heart 

(HRVfc) revealed no significant differences between the three groups (Table 2;

Table 3).

Analysis on supine pre-ejection period, £(2, 27) = 3.69, /?=0.04,

PEP/LVET ratio, £(2, 27) = 3.20, p = 0.05, indicated a significant Group main 

effect. Post hoc analysis indicated that Cyclists and Runners possessed significantly 

greater pre-ejection period than Controls (Table 2; see Figure 4.17), also Runners 

possessed significantly greater PEP/LVET ratio compared to Controls. However, no 

significant different existed for PEP/LVET ratio during upright rest (Table 3; see 

Figure 4.18).

Analysis on supine resting diastolic blood pressure and mean arterial pressure 

revealed no significant difference between groups. However, diastolic blood 

pressure, £(2, 27) = 3.95, p - 0.031, showed a significant Group main effect during 

upright rest. Post hoc analysis showed that Runners possessed significantly greater 

diastolic blood pressure (Table 3; see Figure 4.19) and mean arterial pressure (Table 

3; see Figure 4.20) during upright rest compared to Controls.

Analysis on upright resting total peripheral resistance revealed a 

significant Group main effect, £(2, 27) = 3.44, p = 0.047. Post hoc analysis 

indicated that total peripheral resistance of Runners was significantly greater than 

Controls (Table 3; see Figure 4.21). However, no significant difference was found 

during supine rest between the three groups (Table 2).

53



Table 2 : Baseline measures (supine rest). Data are means with standard errors of
the means in parenthesis.

Variable Cyclists Runners Controls

Heart Rate (b.min1) 58.43 (2.69) 57.21 (3.47) 65.38 (2.93)

Stroke Volume (ml) 134.29 (6.96) 127.75 (7.26) 121.34 (8.07)

Stroke Index (ml/BSA)* 59.61 (4.69) 49.80 (2.39) 46.11 (2.34)

Cardiac Output (L/min) 7.80 (0.45) 7.24 (0.52) 7.79 (0.38)

Cardiac Index (ml/BSA)* 4.35 (0.24) 3.82 (0.26) 3.97 (0.19)

Pre-Ejection Period 
(msec)

77.40 (5.75)a 80.00 (3.13)a 64.23 (3.91)

Left-Ventricular Ejection 
Time (msec)

297.27 (4.34) 309.33 (5.95) 302.27 (6.06)

PEP/LVET ratio 0.263 (0.02) 0.259 (0.01)a 0.213 (0.01)

Systolic Blood Pressure 
(mmHg)

113.53 (3.11) 119.43 (2.52) 112.45 (2.36)

Diastolic Blood Pressure 
(mmHg)

66.12 (4.12) 69.53 (3.61) 59.15 (3.73)

Mean Arterial Pressure 
(mmHg)

81.67 (3.74) 85.88 (3.14) 75.92 (3.48)

Total Peripheral 
Resistance (dynes.s/cm'5)

788.48 (103.71) 994.10 (80.00) 692.83 (96.92)

Rate Pressure Product 
(HRxSBP/100)

66.43 (3.79) 68.65 (5.05) 73.40 (3.28)

Time Series (msec^2) at 
low and high frequency

3.43 (0.33) 
8.49 (0.37)

3.42 (0.29) 
8.51 (0.29)

2.91 (0.34) 
8.10 (0.31)

• = significantly greater than Controls (p< 0.05);

* BSA = body surface area.
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Table 3 : Baseline measures (upright rest). Data are means with the standard errors
means in the parenthesis.

Variable Cyclists Runners Controls

Heart Rate (b.min'1) 63.03 (3.00) 63.37 (3.36) 71.23 (2.33)

Stroke Volume (ml) 106.09 (7.16) 94.32 (5.00) 90.77 (5.16)

Stroke Index 
(ml/BSA)'

61.57 (4.75) 49.43 (3.68) 50.33 (2.70)

Cardiac Output 
(L/min)

6.57 (0.36) 5.90 (0.34) 6.38 (0.28)

Cardiac Index 
(ml/BSA)*

3.67 (0.22) 3.11 (0.17) 3.25 (0.13)

Pre-Ejection Period 
(msec)

90.58 (6.88)a 101.25 (4.01)a 82.75 (5.32)

Left-Ventricular 
Ejection Time 
(msec)

274.20 (7.01) 274.53 (7.66) 268.80 (5.35)

PEP/LVET ratio 0.337 (0.03) 0.368 (0.02)a 0.310 (0.02)

Systolic Blood 
Pressure (mmHg)

129.79 (3.53) 137.10 (4.66) 127.89 (3.38)

Diastolic Blood 
Pressure (mmHg)

84.46 (4.95) 90.55 (4.26)a 74.55 (2.63)

Mean Arterial 
Pressure (mmHg)

99.23 (4.33) 105.78 (4.31)a 92.08 (2.57)

Total Peripheral 
Resistance 
(dynes, s/cm'5)

1178.00 (139.11) 1501.50 (98.32)* 1088.60 (138.77)

Rate Pressure
Product
(HRxSBP/100)

82.00 (5.02) 87.07 (5.97) 91.44 (4.71)

a = significantly greater than Controls (p< 0.05); 

* BSA = body surface area.

55



4.3 CARDIOVASCULAR RESPONSE DURING PASSIVE CYCLE EXERCISE 
FOR ALL SUBJECTS COMBINED

4.3.1 Heart Rate

Analysis on heart rate response to passive cycle exercise revealed significant 

Time main effects at the low, £(6, 174) = 9.65, p =0.0001, medium, £(6, 174) = 

17.56, /?=0.0001, and high intensities, £(6, 174) = 24.45, p - 0.0001. Figure 4.1 

shows that heart rate response for all subjects combined was significantly higher than 

upright rest during all three passive cycle exercise intensities (Table E-l,

Appendix E).

4.3.2 Stroke Volume

Analysis on stroke volume response to passive cycle exercise revealed no 

significant Time main effects at the low, £(6, 174) = 1.23, p > 0.05, and medium 

intensities, £(6, 174) = 1.56, p>0.05. In contrast, stroke volume at the high 

intensity was significantly higher than baseline, £(6, 174) = 5.49, /?=0.0001. As 

can be seen in Figure 4.2, stroke volume for all subjects combined were 

significantly higher than upright rest during high intensity passive cycle exercise 

(Table E-2, Appendix E).

4.3.3 Stroke Index

Analysis on stroke index response to passive cycle exercise revealed no 

significant Time main effects at the low, £(6, 174) = 1.26, />>0.05, and the 

medium intensities, £(6, 174) = 1.60, p > 0.05. In contrast, stroke index was 

significantly higher than upright rest at the high intensity, £(6, 174) = 5.45, 

p = 0.0001 (Figure 4.3; Table E-3, Appendix E).
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Figure 4.1 Heart rate response at rest and during passive cycle exercise at all 
intensities for the three groups combined. Data are means with standard errors of 
the means; (*) indicate that heart rate response during passive cycle exercise 
at the low, medium, and high intensities was significantly higher than heart rate 
response during upright rest.

Figure 4.2 Stroke volume response at rest and during passive cycle exercise at all 
intensities for the three groups combined. Data are means with standard errors of 
the means; (*) indicate that stroke volume response was significantly higher at the 
high intensity passive cycle exercise than stroke volume response during upright rest.
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4.3.4 Cardiac Output

Analysis on cardiac output response to passive cycle exercise revealed 

significant Time main effects at the low, £(6, 174) = 5.68, p = 0.0001, medium, 

£(6, 174) = 10.81, p=0.0001, and high intensities, £(6, 174) = 19.06, p =0.0001. 

Figure 4.4 shows that cardiac output response for all subjects combined was 

significantly higher than upright rest during all three passive cycle exercise 

intensities (Table E-4, Appendix E).

4.3.5 Cardiac Index

Analysis on cardiac index response to passive cycle exercise revealed 

significant Time main effects at the low, £(6, 174) = 5.95, =0.0001, medium, 

£(6, 174) = 10.92, p =0.0001, and high intensities, £(6, 174) = 19.36, p =0.0001. 

Cardiac index for all subjects combined was significantly higher than upright rest 

during all three passive cycle exercise intensities (Figure 4.5; Table E-5,

Appendix E).

4.3.6 Pre-Election Period

Analysis on pre-ejection period response to passive cycle exercise revealed 

significant Time main effects at the low, £(6, 174) = 2.97, p = 0.009, medium, £(6, 

1 7 4 ) = 3.17, p =0.006, and high intensities, £(6, 174) = 11.19, p=0.0001. Pre­

ejection period values for all subjects combined were significantly lower than upright 

rest during all three passive cycle exercise intensities (Figure 4.6; Table E-6, 

Appendix E).
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Figure 4.3 Stroke index response at rest and during passive cycle exercise at all 
intensities for the three groups combined. Data are means with standard errors of 
the means; (*) indicate that stroke index response was significantly higher at the 
high intensity passive cycle exercise than stroke index response during upright rest.

Figure 4.4 Cardiac output response at rest and during passive cycle exercise at all 
intensities for the three groups combined. Data are means with standard errors of 
the means; (*) indicate that cardiac output response during passive cycle exercise at 
the low, medium, and high intensities was significantly higher than cardiac output 
response during upright rest.
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Figure 4.5 Cardiac index response at rest and during passive cycle exercise at all 
intensities for the three groups combined. Data are means with standard errors of 
the means; (*) indicate that cardiac index response during passive cycle exercise at 
the low, medium, and high intensities was significantly higher than cardiac index 
during upright rest.

Figure 4.6 Pre-ejection period response at rest and during passive cycle exercise at 
all intensities for the three groups combined. Data are means with standard errors 
of the means; (*) indicate that pre-ejection period response during passive cycle 
exercise at the low, medium, and high intensities was significantly lower than pre­
ejection period response during upright rest.
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4.3.7 Left-Ventricular Ejection Time

Analysis on left-ventricular ejection time to passive cycle exercise indicated a 

significant Time main effect at the low, £(6, 174) = 8.69, p=0.0001, and medium 

intensities, £(6, 174) = 5.37, p =0.0001. However, no significant difference 

existed at the high intensity £(6, 174) = 1.08, p>0.05. Post hoc analysis revealed 

that all groups recorded significantly shorter left-ventricular ejection time at the low 

and medium intensities compared to supine and upright rest (Figure 4.7; Table E-7, 

Appendix E).

4.3.8 Pre-Ejection Period/Left-Ventricular Ejection Time (PEP/LVET Ratio). 

Analysis on PEP/LVET ratio to passive cycle exercise indicated no

significant Time main effects at the low, £(6, 174) = 0.49, p>0.05 , and medium 

intensities, £(6, 174) = 0.76, p > 0.05. However, PEP/LVET ratio for all subjects 

combined was significantly lower than upright rest only at the high intensity, £(6, 

1 7 4 ) = 7 .2 5 , p=0.0001, (Figure 4.8; Table E-8, Appendix E).

4.3.9 Systolic Blood Pressure

Analysis on systolic blood pressure response to passive cycle exercise 

revealed significant Time main effects at the low, £(6, 174) = 8.77, p =0.0001, 

medium, £(6, 174) = 9.75, p =0.0001, and high intensities, £(6, 174) = 9.08,

/?=0.0001. Figure 4.9 shows that systolic blood pressure for all subjects combined 

was significantly higher than upright rest during all three passive cycle exercise 

intensities (Table E-9, Appendix E).

4.3.10 Diastolic Blood Pressure

Analysis on diastolic blood pressure response to passive cycle exercise 

revealed significant Time main effects at the low, £(6, 174) = 9.49, p =0.0001,
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Figure 4.7 Left-ventricular ejection time response at rest and during passive cycle 
exercise at all intensities for the three groups combined. Data are means with 
standard errors of the means; (*) indicate that left-ventricular ejection time response 
at the low and medium intensities of passive cycle exercise was significantly shorter 
than left-ventricular ejection time response during upright rest.
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Supine Upright 30 60 90 120 150 180
Rest Passive Exercise (time/seconds)

Figure 4.8 PEP/LVET ratio response at rest and during passive cycle exercise at all 
intensities for the three groups combined. Data are means with standard errors of 
the means; (*) indicate that PEP/LVET ratio response was significantly lower at the 
high intensity passive cycle exercise than PEP/LVET ratio response during upright 
rest.

Figure 4.9 Systolic blood pressure response at resst and during passive cycle exercise 
at all intensities for the three groups combined. Data are means with standard errors 
of the means; (*) indicate that systolic blood pressure response during passive cycle 
exercise at the low, medium, and high intensities was significantly higher than 
systolic blood pressure response during upright rest.

63



medium, £(6, 174) = 12.25, p =0.0001, and high intensities, £(6, 174) = 8.67, 

p =0.0001. As can be seen in Figure 4.10, diastolic blood pressure for all subjects 

combined was significantly higher than upright rest during all three passive exercise 

intensities (Table E-10, Appendix E).

4.3.11 Mean Arterial Pressure

Analysis on mean arterial pressure response to passive cycle exercise 

revealed significant Time main effects at the low, £(6, 174) = 10.58, p =0.0001, 

medium, £(6, 174) = 12.58, p=0.0001, and high intensities, £(6, 174) = 9.81, 

p =0.0001. Mean arterial pressure for all subjects combined was significantly higher 

than upright rest during all three passive cycle exercise intensities (Figure 4.11;

Table E -ll, Appendix E).

4.3.12 Total Peripheral Resistance

Analysis on total peripheral resistance response to passive cycle exercise 

revealed no significant Time main effects at the low, £(6, 174) = 0.09, p>0.05 , 

and medium intensities, £(6, 174) = 0.78, p > 0.05. However, total peripheral 

resistance was significantly lower, £(6, 174) = 5.39, p=0.0001, than upright rest at 

the high intensity passive cycle exercise (Figure 4.12; Table E-12, Appendix E).

4.3.13 Rate Pressure Product

Analysis on rate pressure product to passive cycle exercise revealed 

significant Time main effects at the low, £(6, 174) = 18.88, /?=0.0001, medium, 

£(6, 174) = 25.94, /?=0.0001, and high intensities, £(6, 174) = 30.15, p=0.0001. 

As shown in Figure 4.13, rate pressure product for all subjects combined was 

significantly higher than upright rest during all three passive cycle exercise 

intensities (Table E-13, Appendix E).
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Figure 4.10 Diastolic blood pressure response at rest and during passive cycle 
exercise at all intensities for the three groups combined. Data are means with 
standard errors of the means; (*) indicate that diastolic blood pressure response 
during passive cycle exercise at the low, medium, and high intensities was 
significantly higher than diastolic blood pressure response during upright rest.

Supine Upright 30 60 90 120 150 180
Rest Passive Exercise (time/seconds)

Figure 4.11 Mean arterial pressure response at rest and during passive cycle 
exercise at all intensities for the three groups combined. Data are means with 
standard errors of the means; (*) indicate that mean arterial pressure response 
during passive cycle exercise at the low, medium, and high intensities was 
significantly higher than mean arterial pressure response during upright rest.
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Supine Upright 30 60 90 120 150 180
Rest Passive Exercise (time/seconds)

Figure 4.12 Total peripheral resistance response at rest and during passive cycle 
exercise at all intensities for the three groups combined. Data are means with 
standard errors of the means; (*) indicate that total peripheral resistance response 
at the high intensity passive cycle exercise was significantly lower than total 
peripheral resistance response during upright rest.
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Supine Upright 30 60 90 120 150 180
Rest Passive Exercise (time/seconds)

Figure 4.13 Rate pressure product response at rest and during passive cycle exercise 
at all intensities for the three groups combined. Data are means with standard errors 
of the means; (*) indicate that rate pressure product response during passive cycle 
exercise at the low, medium, and high intensities was significantly higher than rate 
pressure product response during upright rest.
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Figure 4.14 Time series (HRVte) analysis, that assesses vagal influence on the heart, 
at rest and during passive cycle exercise at all intensities for the three groups 
combined. Data are means with standard errors of the means; (*) indicate that vagal 
influence at the high frequnecy (0.12-0.40 Hz) was significantly lower at the low, 
medium, and high intensities of passive cycle exercise than vagal influence during 
baseline.

67



4.3.14 Heart rate variability (HRVJ

Analysis on HRV^ during all three passive cycle exercise intensities revealed 

a significant Time main effect at the high frequency (0.12 - 0.40 Hz), £(3, 87) = 

28.04, p =0.0001. However, analysis on HRV^ indicated no significance Time main 

effect existed at the low frequency (0.07 - 0.11 Hz), £(3, 87) = 1.60, p > 0.05. As 

shown in Figure 4.14, HRVte for all subjects combined was significantly lower than 

upright rest during all three passive cycle exercise intensities (Table E-14,

Appendix E).

4.3.15 Summary

During all intensities of passive cycle exercise all subjects combined showed 

a significant increase in heart rate, cardiac output, cardiac index, pre-ejection 

period, systolic and diastolic blood pressure, mean arterial pressure, and total 

peripheral resistance as well as rate pressure product. Stroke volume and stroke 

index were significantly greater only at the high intensity.

PEP/LVET ratio during passive cycle exercise was significantly lower than 

baseline at the high intensity, although no significant difference existed at the low 

and medium intensities. No significant difference existed for pre-ejection period at 

any intensity during passive cycle exercise for the three groups. During passive 

cycle exercise, left-ventricular ejection time was significantly lower than baseline at 

low and medium intensities. HRV* at the high frequency (0.12-0.40 Hz) was 

significantly lower than upright rest during all intensities of passive cycle exercise. 

However, HRVte at the low frequency (0.07-0.11 Hz) did not change throughout 

passive cycle exercise.
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4.4 CARDIOVASCULAR RESPONSE OF CYCLISTS, RUNNERS, AND 
CONTROLS DURING PASSIVE CYCLE EXERCISE

4.4.1 Heart Rate

Analysis on heart rate response to passive cycle exercise revealed no 

significant Group main effect or Group by Time interaction at the low intensity, £(2, 

27) = 2.24, p>0.05; £(10, 135) = 0.92,/?>0.05 (Figure 4.15; Table D-l, 

Appendix D); the medium intensity, £(2, 27) = 0.61, p>  0.05; £(10, 135) = 1.48, 

p > 0.05 (Figure 4.15; Table D-l, Appendix D), or the high intensity, £(2, 27) = 

0.31, p > 0.05; £(10, 135) = 0.87, p>0.05 (Figure 4.15; Table D-l, Appendix D).

4.4.2 Stroke Volume

Analysis on stroke volume response to passive cycle exercise revealed no 

significant Group main effect or Group by Time interaction at the low intensity, £(2, 

27) = 2.52, p > 0.05; £(10, 135) = 1.50, p>0.05, (Figure 4.16; Table D-2, 

Appendix D); the medium intensity, £(2, 27) = 0.21, p > 0.05; £(10, 135) = 1.12, 

p > 0.05 (Figure 4.16; Table D-2, Appendix D), or the high intensity, £(2, 27) = 

0.30, p > 0.05; £(10, 135) = 1.03, p>0.05 (Figure 4.16; Table D-2, Appendix D).

4.4.3 Stroke Index

Analysis on stroke index response to passive cycle exercise revealed no 

significant Group main effect or Group by Time interaction at the low intensity, £(2, 

27) = 2.25, p > 0.05; £(10, 135) = 1.40, p>0.05, the medium intensity, £(10,

135) = 0.20, /?>0.05; £(10, 135) = 1.13,p>0.05, or the high intensity, £(2, 27) 

= 0.34, p>0.05; £(10, 135) = 1.12,p>0.05 (Table D-3, Appendix D).
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Supine Upright 30 60 90 120 150 180
Rest Passive Exercise (time/seconds)

Figure 4.15 Heart rate response of Cyclists, Runners, and Controls at rest and 
during passive cycle exercise at the low, medium, and high intensities. Data are 
means with standard errors of the means.

70



St
ro

ke
 V

ol
um

e 
(m

l) 
St

ro
ke

 V
ol

um
e 

(m
l) 

St
ro

ke
 V

ol
um

e 
(m

l)

Rest Passive Exercise (time/seconds)

Figure 4.16 Stroke volume response of Cyclists, Runners, and Controls at rest and 
during passive cycle exercise at the low, medium, and high intensities. Data are 
means with standard errors of the means.
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4.4.4 Cardiac Output

Analysis on cardiac output response to passive cycle exercise revealed no 

significant Group main effect or Group by Time interaction at the low intensity, £(2, 

27) = 1.59, p>0.05; £(10, 135) = 1.57, /?>0.05, the medium intensity, £(2, 27)

= 0.41, p>0.05; £(10, 135) = 0.72, p>0.05, or the high intensity £(2, 27) = 

0.68, /?>0.05; £(10, 135) = 1.09,p>0.05 (Table D-4, Appendix D).

4.4.5 Cardiac Index

Analysis on cardiac index response to passive cycle exercise revealed no 

significant Group main effect or Group by Time interaction at the low intensity, £(2, 

27) = 1.17,/?>0.05; £(10, 135) = 1.62, /?>0.05, the medium intensity, £(2, 27)

= 0.22, />>0.05; £(10, 135) = 0.71, p > 0.05, or the high intensity £(2, 27) = 

0.81, p>0.05; £(10, 135) = 1.16,/?>0.05 (Table D-5, Appendix D).

4.4.6 Pre-Ejection Period

Analysis on pre-ejection period response to passive cycle exercise revealed no 

significant Group main effect or Group by Time interaction at the low intensity, £(2, 

27) = 1.06, /?>0.05; £(10, 135) = 0.71, p>0.05, the medium intensity, £(2, 27)

= 0.82, >0.05; £(10, 135) = 0.51, p>0.05, and the high intensity £(2, 27) = 

1.60, /?>0.05; £(10, 135) = 1.02, p>0.05 (Figure 4.17 ; Table D-4, Appendix D).

4.4.7 Left-Ventricular Ejection Time

Analysis on left ventricular ejection time response to passive cycle exercise 

revealed no significant Group main effect or Group by Time interaction at the low 

intensity, £(2, 27) = 1.28,/» 0 .0 5 ; £(10, 135) = 0 .5 2 ,/» 0 .0 5 , the medium 

intensity, £(2, 27) = 0.21,/» 0 .0 5 ; £(10, 135) = 0.91,/» 0 .0 5 , or the high 

intensity £(2, 27) = 0.29, p > 0.05; £(10, 135) = 1.04, /» 0 .0 5  (Table D-7,
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Appendix D).

4.4.8 Pre-Election Period/Left-Ventricular Ejection Time (PEP/LVET Ratio). 

Analysis on the PEP/LVET ratio response to passive cycle exercise revealed

no significant Group main effect or Group by Time interaction at the low intensity, 

£(2, 27) = 0.77, p>0.05; £(10, 135) = 0.77, /?>0.05, the medium intensity, £(2, 

27) =  0.23, p>0.05; £(10, 135) = 0.59, p > 0.05, or the high intensity £(2, 27) = 

0.49, p>0.05; £(10, 135) = 1.56, p>0.05 (Figure 4.18 ; Table D-8, Appendix D).

4.4.9 Systolic Blood Pressure

Analysis on systolic blood pressure response to passive cycle exercise 

revealed no significant Group main effect or Group by Time interaction at the low 

intensity, £(2, 27) = 0.43, p>0.05; £(10, 135) = 0.55, p>0.05, the medium 

intensity, £(2, 27) = 0.41, p>0.05; £(10, 135) = 1.35, p>0.05, or the high 

intensity £(2, 27) = 0.67, p>0.05; £(10, 135) = 1.04,p>0.05 (Table D-9, 

Appendix D).

4.4.10 Diastolic Blood Pressure

Analysis on diastolic blood pressure to passive cycle exercise revealed no 

significant Group main effect or Group by Time interaction at the low intensity, £(2, 

27) =  0.61, p>0.05; £(10, 135) = 1.18, p>0.05, the medium intensity, £(2, 27)

= 1.66, p>0.05; £(10, 135) = 1.37, p > 0.05, or the high intensity £(2, 27) = 

1.89, >0.05; £(10, 135) = 0.61, /?>0.05 (Figure 4.19 ; Table D-10,

Appendix D).
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Figure 4.17 Pre-ejection period response of Cyclists, Runners, and Controls at rest 
and during passive cycle exercise at the medium intensity (60 rpm). Data are means 
with standard errors of the means; (*) indicates that pre-ejection period reponse of 
Cyclists and Runners was significantly greater than pre-ejection period response of 
Controls during supine rest.
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Figure 4.18 PEP/LVET ratio response of Cyclists, Runners, and Controls at rest 
and during passive cycle exercise at the medium intensity (60 rpm). Data are means 
with standard errors of the means; (*) indicates that PEP/LVET ratio response of 
Runners was significantly greater than PEP/LVET ratio response of Controls during
supine rest.
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Figure 4.19 Diastolic blood pressure response of Cyclists, Runners, and Controls at 
rest and during passive cycle exercise at the low intensity (30 rpm). Data are means 
with standard errors of the means; (*) indicates that diastolic blood pressure response 
of Runners was significantly greater than diastolic blood pressure response of Controls 
during upright rest.
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4.4.11 Mean A rterial Pressure

Analysis on mean arterial pressure response to passive cycle exercise 

revealed no significant Group main effect or Group by Time interaction at the low 

intensity, £(2, 27) = 0.56, p > 0.05; £(10, 135) = 0.53, p > 0.05, the medium

intensity, £(2, 27) = 1.21,/?>0.05; £(10, 135) = 1.34,/?>0.05, or the high

intensity £(2, 27) = 1.43, />>0.05; £(10, 135) = 0.70, /?>0.05 (Figure 4.20 ; 

Table D -ll, Appendix D).

4.4.12 Total Peripheral Resistance

Analysis on total peripheral resistance response to passive cycle exercise 

revealed no significant Group main effect or Group by Time interaction at the low 

intensity, £(2, 27) = 0.09, /?>0.05; £(10, 135) = 1.02,/?>0.05, the medium

intensity, £(2, 27) = 0.15, /?>0.05; £(10, 135) = 0.80, p > 0.05, or the high

intensity £(2, 27) = 2.26, /?>0.05; £(10, 135) = 0.93,/?>0.05 (Figure 4.21 ; 

Table D-12, Appendix D).

4.4.13 Rate Pressure Product

Analysis on rate pressure product response to passive cycle exercise showed 

no significant Group main effect or Group by Time interaction at the low intensity, 

£(2, 27) = 2.52, /?>0.05; £(10, 135) = 0.73, /?>0.05, the medium intensity, £(2, 

27) = 1.72, p > 0.05; £(10, 135) = 1.34, p > 0.05, or the high intensity £(2, 27) = 

0.88, /» 0 .0 5 ;  £(10, 135) = 1.47, p>0.05  (Table D-13, Appendix D).
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Figure 4.20 Mean arterial pressure response of Cyclists, Runners, and Controls at 
rest and during passive cycle exercise at the low intensity (30 rpm). Data are means 
with standard errors of the means; (*) indicates that mean arterial pressure response 
of Runners was significantly greater than mean arterial pressure response of Controls 
during upright rest.
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Figure 4.21. Total peripheral resistance response of Cyclists, Runners, and Controls 
at rest and during passive cycle exercise at the low intensity (30 rpm). Data are 
means with standard errors of the means; (*) indicates that total peripheral resistance 
response of Runners was significantly greater than total peripheral resistance 
response of Controls during upright rest.
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4.4.14 Heart Rate Variability (HRVJ

Analysis on HRVto response revealed no significant Group main effect or 

Group by Time interaction at the low, F(2, 27) = 0.13, /?>0.05; £(4, 54) = 1.04, 

/?>0.05 (Figure 4.22 ; Table D-14/Appendix D) and the high frequencies F(2, 27) 

= 1.79, p>0.05; F(4, 54) = 1.79,/?>0.05 (Figure 4.22 ; Table D-15, Appendix 

D).

4.4.15 Summary

During passive cycle exercise at all intensities no significant Group main 

effects or Group by Time interaction existed for heart rate, stroke volume, stroke 

index, cardiac output, cardiac index, pre-ejection period, left ventricular ejection 

time, PEP/LVET ratio, systolic blood pressure, diastolic blood pressure, mean 

arterial pressure, total peripheral resistance, rate pressure product, or HRV^.
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Figure 4.22 Time series (HRV^) analysis of Cyclists, Runners, and Controls at the 
low ffequnecy at rest and during passive cycle exercise at the low (30 rpm), medium 
(60 rpm), and high (80 rpm) intensities. Data are means with standard errors of the 
means.

Figure 4.23 Time series (HRV J  analysis of Cyclists, Runners, and Controls at the 
high frequency at rest and during passive cycle exercise at the low (30 rpm), 
medium (60 rpm), and high (80 rpm) intensities. Data are means with standard 
errors of the means.
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CHAPTER FIVE: DISCUSSION

The main purposes of this study were to ascertain the overall cardiovascular 

response of thirty male subjects to passive cycle exercise and to compare the 

cardiovascular response to passive cycle exercise of Cyclists, Runners, and Controls. 

The major findings of this study were firstly, passive cycle exercise resulted in a 

number of cardiovascular changes. The overall cardiovascular response to passive 

cycle exercise at all intensities for the three groups combined was increased heart 

rate, cardiac output, cardiac index, contractility of the heart, systolic and diastolic 

blood pressure, mean arterial pressure, and rate pressure product. Stroke volume 

and stroke index response during passive cycle exercise were only increased at the 

high intensity, whereas PEP/LVET ratio was significantly lower at the high 

intensity. Left ventricular ejection time was also significantly reduced at the low 

and medium intensities. Total peripheral resistance and vagal influence of the heart 

(HRVte) for all subjects combined were significantly decreased during passive cycle 

exercise. Secondly, the cardiovascular responses to passive cycle exercise of 

Cyclists, Runners, and Controls were not significantly different.

The first section will discuss cardiovascular response to passive exercise for 

all groups combined, whereas the cardiovascular response to passive exercise of 

Cyclists, Runners, and Controls will be discussed in the second section. Finally, 

conclusions and limitations will be discussed, and recommendations for future 

research outlined.
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5.1 MAJOR FINDINGS

5.1.1 Cardiovascular Response To Passive Cycle Exercise

For the three groups combined, cardiovascular response was significantly 

influenced by passive cycle exercise. There was an increase of heart rate, cardiac 

output, cardiac index, stroke volume and stroke index only at the high intensity, 

contractility of the heart, systolic and diastolic blood pressure, mean arterial 

pressure, rate pressure product, and decreased total peripheral resistance and vagal 

influence on the heart. These findings supports the second hypothesis that passive 

cycle exercise for all thirty subjects would result in a significant cardiovascular 

response.

However, the elevation of heart rate at all intensities of passive cycle exercise 

does not support the third hypothesis that trained subjects carrying out passive cycle 

exercise would demonstrate a greater increase in stroke volume and greater 

reduction in heart rate. Furthermore, this finding also does not support previous 

research (Morikawa et al., 1989) that has shown that decreased heart rate occurred 

during passive exercise in paraplegic patients and healthy people. Passive exercise 

in the Morikawa study involved using a 1-kg weight that was attached to each leg; 

the legs were then passively moved by pulling strings attached to each leg at a rate 

of 60 times/min for 1-1.5 min. Also stroke volume response to passive exercise was 

examined for 5 seconds. In the present study we assessed stroke volume response to 

passive exercise over a 25-second period. Thus, it is possible that the enhanced 

stroke volume response to both leg movement passive exercise and cycle passive 

exercise may only occur immediately upon initiation of the passive exercise

stimulus.
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In contrast, the increase of heart rate found in the present study does support 

other research (Ndbrega & Araujo, 1993) that has shown an increase of heart rate in 

healthy people during intense passive exercise. Passive exercise involved subjects 

sitting on a tandem bicycle that was propelled by an experimenter whilst the subjects 

sat passively. Passive exercise occurred for 4 seconds with the experimenter on the 

rear seat of the tandem sprinting as fast as possible. Thus, significant increases in 

heat rate during passive cycle may only occur at high intensity.

The mechanism underlying the increase of heart rate during passive cycle 

exercise is likely to be mechanoreceptors that are located in the muscle spindles, 

joints, and tendons (Coote, 1975; Ndbrega et al. , 1994). During passive exercise 

these receptors may provide feedback to the medulla resulting in an increase of heart 

rate. The actual increase in heart rate may be brought about by reduced vagal 

influence on the heart as HRV* was significantly decreased during passive cycle 

exercise. HRVto response was most greatly influenced at the high frequency (0.12­

0.40 Hz) as HRVU did not change at the low frequency (0.07-0.11 Hz).

Another possibility underlying the enhancement of heart rate may be that 

central command was involved during passive cycle exercise. Benjamin and Peyser 

(1964) have suggested that passive exercise is never purely passive, and that there is 

always a certain degree of positive or negative active work involved. However, in 

the present study the EMG signals showed that little muscular contraction was 

present. Therefore, the absence of EMG activity indicates that central command did 

not contribute in a significant way to the heart rate increase during this form of 

exercise.

During passive cycle exercise stroke volume was significantly larger than
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baseline only at the high intensity. Stroke volume showed only small non-significant 

increases at the low and medium intensities of passive cycle exercise. How was 

stroke volume increased during high intensity passive cycle exercise? There are a 

number of possible explanations underlying the enhancement of stroke volume such 

as an increase in ventricular preload and filling pressure; increased ventricular size 

or a decreased constraint of the pericardium; an increase in myocardial contractility; 

or a decrease in ventricular afterload (Feigl, 1974).

However, during passive cycle exercise venous return is likely to be the 

mechanism responsible for the increase of stroke volume during the high intensity. 

The faster movement of the legs at the high intensity may have resulted in enhanced 

venous return to the heart which may have led to an increase in end-diastolic volume 

or by a muscle mechanoreceptor-evoke increase in myocardial contractility (Nobrega 

et al. , 1994). Factors that could have affected venous return may have been an 

increase in the pressure gradient between the veins and the heart (Ludbrook, 1962). 

For instance, sympathetically induced venous vasoconstriction, skeletal muscle 

activity, the effect of venous valves, and the cardiac-suction effect could all have 

enhanced venous return (Sherwood, 1993, p.332) during passive exercise.

However, because of the lack of central command during passive exercise and the 

lack of respiratory change the major factor affecting the enhanced venous return 

appears to be the pumping action of the skeletal-muscles. Rowell (1986, p.144) 

thinks that the muscle pumps are so influential on cardiac performance that he has 

called them the "second heart". As mentioned in Chapter 2, the muscle pumps work 

by compressing the veins and squeezing the blood towards the heart, resulting in an 

increase in venous return, which leads to enhanced stroke volume. Surprisingly, the
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stroke volume was not significantly increased at the low and medium intensities of 

passive cycle exercise. However, stroke volume was significantly increased at the 

high intensity. This finding indicates that passive cycle exercise at the low and 

medium intensities may not be powerful enough to stimulate the muscle pumps to 

increase venous return and enhance stroke volume.

Pre-ejection period (isovolumic contraction) was significantly lower at low, 

medium, and high intensities of passive cycle exercise. Left ventricular ejection 

time was significantly shorter only at the low and medium intensities, whereas 

PEP/LVET ratio was significantly lower only at the high intensity. Systolic time 

intervals are accepted markers of cardiac contractility. However, systolic time 

intervals only indicate increased beta-adrenergic activity to the myocardium under 

constant conditions of loading and heart rate. As heart rate and venous return were 

increased during passive cycle exercise the change in pre-ejection period and left 

ventricular ejection time are likely to reflect the Frank-Starling mechanism rather 

than increased beta-adrenergic activity (Newlin & Levenson, 1979).

Systolic, diastolic, and mean arterial blood pressure were significantly 

increased during passive cycle exercise at the low, medium, and high intensities. 

The increase of systolic blood pressure from upright to passive exercise was about 

16 mmHg, whereas diastolic blood pressure was increased about 10 mmHg. The 

increase of blood pressure during passive cycle exercise was probably caused by the 

increase in cardiac output. The increase of cardiac output was likely to be a 

consequence of the enlarged stroke volume that was brought about by an increase in 

venous return and/or an increase in muscle mechanoreceptor-evoked myocardial 

contractility (Nobrega et al., 1994). Furthermore, increased peripheral resistance
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can also cause an increase in blood pressure. However, total peripheral resistance 

was lower during passive cycle exercise. There are two mechanisms underlying the 

decrease of total peripheral resistance; decreased vaso-motor tone (decreased 

sympathetic activity) and increased intrinsic vasodilatation (Guyton, 1991, p.188). It 

was likely that the increase of blood pressure during passive cycle exercise brought 

about the decrease in total peripheral resistance.

Passive cycle exercise also resulted in a unique blood pressure response. For 

example, the increase of blood pressure during passive cycle exercise resembled the 

blood pressure response pattern found during isometric exercise. However, the 

decrease of total peripheral resistance during passive cycle exercise showed a similar 

response as that found with dynamic exercise. Thus, blood pressure and total 

peripheral resistance response to passive cycle exercise appears as a combination of 

static and dynamic response, although no voluntary movement from the legs 

occurred during passive cycle exercise. Furthermore, Stebbins et al. (1985) have 

shown that the activation of group III and IV afferents by passive movement resulted 

in an increase of intramuscular pressure and tension that brought about an increase 

in blood pressure. Rate pressure product, which is linear to myocardial oxygen 

consumption (McArdle et al. , 1991, p.307), was also significantly increased during 

passive cycle exercise at the low, medium, and high intensities. The increase in rate 

pressure product reflects the increased heart rate and blood pressure brought about 

by passive cycle exercise.

5.1.2 Group Comparison of Cardiovascular Response During Passive Cycle
Exercise

The second purpose of this study was to examine the cardiovascular 

responses of trained and untrained subjects. Trained subjects were fit Cyclists and

87



Runners. Both Cyclists (76.25 ±1.44 ml.kg'1.min*1) and Runners (65.50 ±2.16 

ml.kg'1.m in1) possessed significantly higher Vo2pcak than Controls (46.31 ±2.36 

ml.kg'1.min'1). Also resting heart rate for Cyclists (58.43 ±2.69 b.min1) and 

Runners (57.21 ±3.47 b.min'1) were lower than that of Controls (65.38 ±2.93 

b.min'1). Despite these differences, results of the group comparison indicated that 

no differences in cardiovascular response to passive cycle exercise existed. Overall, 

these findings do not support the hypothesis that trained subjects will have greater 

stroke volume and greater reduction of heart rate compared to untrained subjects 

during passive cycle exercise. Interestingly, the most highly trained Cyclist in this 

study did show a deceleration of heart rate (Figure 5.1) and an increase in stroke 

volume during passive exercise at the low intensity (Figure 5.2). The increase of 

heart rate appears to have been caused by an increase of stroke volume. Thus, a 

decrease in heart rate and an increase in stroke volume during passive cycle exercise 

may only occur if the subject is extremely well trained.

During passive cycle exercise, no difference in stroke volume was found 

between groups, although Cyclists and Runners had greater absolute stroke volume 

relative to body mass at upright rest than Controls. The possible explanation for the 

lack of stroke volume differences during passive cycle exercise may be that passive 

cycle exercise did not activate the muscle pumps sufficiently to increase venous 

return and enhance stroke volume. A previous study (Boutcher et al. , 1994) has 

shown that during actual cycle exercise stroke volume was increased by about 20% 

in male Cyclists. The difference in stroke volume during actual cycle exercise of 

trained and untrained appears to be caused by the ability of the trained to increase 

stroke volume by augmentation of left ventricular end-diastolic volume (Schairer
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Figure 5.1 The heart rate response of one cyclist during passive cycle exercise at 
the low intensity (30 rpm).
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Figure 5.2 The stroke volume response of one cyclist during passive cycle exercise 
at the low intensity (30 rpm).
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et a/., 1992). Thus, passive stimulation of the leg muscle pumps may not provide a 

sufficient increase in left ventricular end-diastolic volume.

During passive cycle exercise, Cyclists and Runners had higher absolute values 

of heart rate variability (HRVJ at both low (0.07-0.11 Hz) and high (0.12-0.40 Hz) 

frequencies compared to Controls (Table D-15; Appendix D). In addition, both 

Cyclists and Runners had higher absolute values of HRVU at rest and at low and 

high frequencies, Cyclists (3.43 ±0.33; 8.49 ±0.37), Runners (3.42 ±0.29; 8.51 

±0.29), and Controls (2.91 ±0.34; 8.10 ±0.31). The mechanism underlying the 

greater, although not significant, HRVte of the trained may be the ability of aerobic 

exercise to enhance parasympathetic tone to the SA node. Also long term aerobic 

exercise appears to be effective in attenuating the loss of HRV* which accompanies 

a sedentary life-style (De Meersman, 1993).

Systolic and diastolic blood pressure, mean arterial pressure, and total peripheral 

response to passive cycle exercise showed no differences between groups. Resting 

systolic and diastolic blood pressure of Runners (119.43 ±2.52 mmHg; 69.53 

±3.61 mmHg), Cyclists (113.53 ±3.11 mmHg; 66.12 ±4.12 mmHg), and Controls 

(112.45 ±2.36 mmHg; 59.15 ±3.73 mmHg) were similar. During passive cycle 

exercise both Cyclists and Runners had greater systolic and diastolic blood pressure 

although it was not significantly greater than Controls. Because blood pressure is a 

function of cardiac output and total peripheral resistance the greater blood pressure 

of Cyclists and Runners may have resulted because of their greater cardiac output.

5.2 CONCLUSIONS

Overall, for all subjects combined there was a series of cardiovascular responses 

during passive cycle exercise. Initially, passive cycle exercise resulted in an
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increase of heart rate probably caused by the stimulation of mechanoreceptors 

located in the exercising muscles, joints, and tendons. These receptors may have 

provided afferent feedback to cardiovascular centers that, in turn, sent impulses to 

the heart, resulting in an increase of heart rate. The increase in heart rate is likely 

to have been caused by decreased vagal influence on the heart. The increase of 

heart rate resulted in an increase in cardiac output which led to an increase in blood 

pressure. Lastly, the decrease of total peripheral resistance that occurred during 

passive cycle exercise was likely to have been a response to the increase in blood 

pressure.

The results of the group comparison showed that no difference in heart rate and 

stroke volume existed between Cyclists, Runners, and Controls. These findings 

showed that passive cycle exercise may not have been strong enough to activate the 

muscle pumps. The lack of stimulation of the muscle pumps would not have 

resulted in enhanced venous return and, therefore, an increase in stroke volume 

would not have occurred. The lack of increase in stroke volume of Cyclists, 

Runners, and Controls indicates that the muscle pump may not be effective during 

this form of passive cycle exercise.

5.3 LIMITATIONS

One of the assumptions of this study is that trained subjects had greater blood 

volume than the untrained. The expectation was that because trained subjects would 

be hypervolemic they would have greater stroke volume and greater reduction of 

heart rate during passive cycle exercise. Unfortunately, blood volume was not 

measured. However, the great majority of studies have shown that aerobically 

trained subjects typically possess high stroke volume and low heart rate. Other
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studies have indicated that stroke volume, heart rate, and Vo2max are all highly 

correlated with blood volume. Therefore, although blood volume was not measured, 

the greater stroke volumes, lower heart rates, and higher Vo2max of the trained 

subjects may reflect hypervolemia (Convertino, 1991). Also, blood flow in the legs 

was not directly measured. Therefore, we did not know whether passive cycle 

exercise was powerful enough to activate the muscle pump to increase venous return 

and enhance stroke volume.

5.4 RECOMMENDATIONS FOR FUTURE RESEARCH

Future research should focus on the mechanisms underlying the larger stroke 

volume response of trained athletes by incorporating blood volume and blood flow 

measurements. The measurement of blood volume and blood flow may help clarify 

the factors underlying the stroke volume difference between trained and untrained 

subjects.

Because of the difficulty in avoiding participation of central command in 

assessing cardiac response to passive exercise, different method to assess cardiac 

response to passive exercise is needed. For instance, electrical stimulation of the 

muscle pumps may provide an alternative method.

As mechanical factors may be responsible for the greater venous return and the 

increase in stroke volume during actual cycle exercise in trained aerobic athletes, 

future investigations should focus on the role of venous return and the muscle pumps 

on exercise cardiac performance.
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INFORMED CONSENT

The researchers conducting this project support the principles governing both the ethical conduct of 
research, and the protection at all times of the interests, comfort and safety of subjects.

This form and the accompanying Subject Information Package are given to you for your own 
protection. They contain a detailed outline of the experimental procedures, and possible risks. Your 
signature below indicates six things:

(1) you have received the Subject Information Package;
(2) you have read its contents;

(3) you have been given the opportunity to discuss the 
contents with one of the researchers prior to commencing the 
experiment;
(4) you clearly understand these procedures and possible 

risks;
(5) you voluntarily agree to participate in the project; and
(6) your participation may be terminated at any point in 
time without jeopardizing your involvement with the 
University of Wollongong, or your assessment for this or any 
other course undertaken through the University.

Any concerns, complaints or further questions may be directed initially to Dr. Stephen Boutcher 
(Department of Biomedical Science: phone 214-093), or subsequently to the Secretary of the 
University of Wollongong Human Research Ethics Committee (phone 214-457).

Last nam e:_______________________ Given name:

Date of B irth :__/__/__
Address: ___________________________________

Name and phone number of contact person
N am e:________________________

Family doctor:_______________________
Signature:___________________________
Witness: N am e_______________________

in case of an emergency:

_  Phone:_____________
__Phone:____________

D ate:__/__/__
Signature:___________
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PERSONAL HEALTH HISTORY

Please complete this form as accurately as possible.
Name:________________ Date:___________ Age:
Height:___________ Weight:________  Sex;____
Date of b irth_______ Ethnicity:______________ _

1. GENERAL MEDICAL HISTORY circle one
Any medical complaints? (Please specify) YES NO

Are you on any medication? 
Specify

YES NO

Adrenal disease? YES NO
Fainting spells? YES NO
Hypoglycemia? YES NO
Seizures? YES NO
Diabetes? YES NO
Kidney problems? YES NO
Stomach ulcers? YES NO

2. EXERCISE HISTORY
Do you jog, cycle or swim? YES NO
If yes then specify:
a. how many times a week?____________
b. how long is each session?__________
c. what kind of pace?_______________
d. how long have you been regularly exercising?

e. how many years overall have you been
exercising?______________________

Do you do any other form of exercise? 
Specify _______________________
a. how many times a week?_____________
b. how long each session?_____________
c. how many years have you participated in

this activity?__________________

3. CARDIORESPIRATORY HISTORY
Any heart disease now? YES NO
Any heart disease in past? YES NO
Heart murmurs? YES NO
Occasional chest pains? YES NO
Fainting? YES NO
Asthma or allergies? YES NO
Family history of heart disease? YES NO
High blood pressure? YES NO
Shortness of breath after walking YES NO
flights of stairs?



4. MUSCULAR HISTORY 
Any muscle injuries now? 
Muscle injuries in past?
Muscle pains during exercise? 
Family history of muscle pains?

5. BONE-JOINT HISTORY 
Any bone or joint injuries now? 
Any in past?
Ever had swollen joints?

YES NO 
YES NO 
YES NO 
YES NO

YES NO 
YES NO 
YES NO

6. PREPAREDNESS FOR TESTING SPECIFY

a. Any food during the last 8 hours?
b. Any liquids during the last 8 hours? 

(except water).
c. Any caffeine during the last 8 hours?
d. Any medication during the last 8 hours? 

(including insulin, except for
basal infusion in pump patients).

e. Any over the counter drugs during the 
last 8 hours? (aspirin, antihistamines, 
nasal sprays, etc).

f. Any alcohol in last 24 hours?
g. Any tobacco during the last 8 hours?
h. Any vigorous exercise in the 

last 24 hours? (any exercise not 
part of patient’s daily routine 
ie ., routine jogging ok, but 
marathon running is not. No 
exercise morning of test).

i. Any emotional upset in last 24 
hours? Depression, crying 
episodes, anxiety from personal 
trauma (death, divorce, car accident 
dentist, etc).

j. Acute illness in last 48 hours?
(cold, flu, measles, etc).

k. Any hypoglycemic episodes during 
the last 8 hours?

l. a) Fasting blood sugar value (mmol)_
(finger-stick method is ok)
b) Signs or symptoms 

of hypoglycemia?

YES NO 
YES NO

YES NO 
YES NO

YES NO

YES NO 
YES NO

YES NO

YES NO

YES NO 

YES NO

YES NO
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Controls.
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Table D-l: Heart rate (b.min1) during supine, upright rest, and passive cycle
exercise at all intensities (30 rpm, 60 rpm, and 80 rpm). Data are means with
standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 58.43 (2.9) 57.21 (3.47) 65.38 (2.93)

Upright rest 1 63.03 (3.00) 63.37 (3.36) 71.23 (2.33)

30 rpm 1 64.21 (2.93) 70.68 (4.49) 75.19 (2.43)

2 65.64 (2.79) 70.16 (4.64) 74.58 (2.91)

3 64.18 (2.83) 70.47 (4.61) 72.55 (2.81)

4 65.24 (2.95) 71.73 (4.65) 75.28 (2.79)

5 64.93 (2.60) 72.10 (4.83) 77.42 (2.94)

6 66.27 (3.08) 72.37 (5.57) 77.42 (2.90)

60 rpm 1 71.32 (3.16) 73.82 (4.04) 79.40 (3.35)

2 68.18 (3.03) 71.63 (4.28) 81.57 (3.87)

3 67.78 (3.27) 70.25 (4.53) 79.55 (3.25)

4 68.98 (3.01) 70.77 (4.28) 79.83 (3.00)

5 . 67.92 (3.17) 72.48 (4.59) 79.14 (3.50)

6 66.91 (2.96) 71.81 (4.54) 79.77 (3.25)

80 rpm 1 73.27 (3.17) 74.58 (4.68) 81.01 (3.78)

2 70.92 (3.40) 75.70 (4.72) 81.34 (3.13)

3 71.12 (3.37) 73.66 (4.69) 80.40 (3.69)

4 71.70 (3.42) 75.22 (4.57) 79.71 (3.83)

5 71.16(3.60) 75.22 (4.59) 79.13 (4.16)

6 71.74 (3.51) 72.73 (4.75) 79.20 (3.54)
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Table D-2: Stroke volume (ml) during supine, upright rest, and passive cycle
exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are means with
standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 134.29 (6.96) 127.75 (7.26) 121.34 (8.07)

Upright rest 1 106.09 (7.16) 94.32 (5.01) 90.77 (5.16)

30 rpm 1 104.62 (6.81) 90.89 (6.13) 101.25 (5.52

2 106.48 (6.66) 93.95 (6.96) 100.21 (6.67)

3 109.48 (6.95) 93.45 (6.93) 99.03 (5.81)

4 105.13 (6.66) 90.69 (6.70) 98.07 (6.07)

5 107.73 (6.62) 90.75 (7.66) 96.08 (6.36)

6 108.04 (7.31) 91.91 (7.45) 94.11 (6.14)

60 rpm 1 102.85 (5.37) 90.28 (5.15) 95.12 (4.93)

2 108.33 (6.35) 96.12 (6.51) 91.77 (4.87)

3 106.52 (6.63) 93.12 (6.82) 94.28 (5.45)

4 105.83 (5.75) 96.18 (7.13) 91.79 (5.30)

5 105.86 (6.34) 93.53 (6.15) 92.82 (5.96)

6 109.63 (7.20) 98.02 (5.21) 94.66 (5.20)

80 rpm 1 107.38 (7.20) 104.78 (7.65) 96.49 (5.75)

2 112.61 (6.47) 109.65 (6.81) 97.52 (4.94)

3 115.01 (6.65) 104.28 (5.49) 96.62 (4.64)

4 112.31 (7.07) 105.89 (7.39) 95.56 (4.90)

5 114.56 (7.27) 105.11 (6.63) 98.99 (6.03)

6 120.38 (6.21) 104.87 (6.51) 104.65 (6.78)
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Table D-3: Stroke index (ml/m2) during supine, upright rest, and passive cycle
exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are means with
standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 75.17 (4.29) 67.41 (3.47) 61.63 (3.84)

Upright rest 1 59.61 (4.69) 49.80 (2.39) 46.09 (2.34)

30 rpm 1 58.93 (4.79) 48.02 (3.31) 51.48 (2.62)

2 59.95 (4.69) 49.72 (3.71) 50.85 (3.01)

3 61.58 (4.75) 49.43 (3.68) 50.32 (2.70)

4 59.16 (4.65) 48.50 (3.56) 49.81 (2.77)

5 60.58 (4.56) 47.99 (4.07) 48.83 (3.02)

6 60.68 (4.77) 48.58 (3.89) 47.82 (2.95)

60 rpm 1 57.63 (3.56) 47.78 (2.73) 48.41 (2.37)

2 60.83 (4.31) 50.87 (3.47) 46.61 (2.14)

3 59.82 (4.42) 49.27 (3.65) 47.94 (2.59)

4 59.45 (4.05) 50.85 (3.74) 46.63 (2.46)

5 59.43 (4.21) 49.48 (3.25) 47.26 (3.00)

6 61.50 (4.58) 51.83 (2.69) 48.13 (2.47)

80 rpm 1 59.88 (3.92) 55.37 (3.93) 49.12 (2.88)

2 62.94 (3.78) 58.11 (3.79) 49.56 (2.20)

3 64.25 (3.85) 55.10 (2.74) 49.11 (2.06)

4 62.76 (4.13) 55.89 (3.68) 48.72 (2.54)

5 64.15 (4.42) 55.61 (3.54) 50.34 (2.91)

6 67.38 (3.88) 55.44 (3.33) 53.11 (3.07)
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Table D-4: Cardiac output (litres) during supine, upright rest, and passive cycle
exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are means with
standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 7.80 (.45) 7.24 (.52) 7.79 (.38)

Upright rest 1 6.58 (.36) 5.90 (.34) 6.38 (.28)

30 rpm 1 6.59 (.32) 6.26 (.38) 7.53 (.33)

2 6.93 (.44) 6.36 (.35) 7.35 (.39)

3 6.96 (.46) 6.40 (.44) 7.09 (.37)

4 6.82 (.47) 6.37 (.38) 7.29 (.39)

5 6.94 (.43) 6.28 (.36) 7.33 (.38)

6 7.07 (.47) 6.37 (.38) 7.17 (.36)

60 rpm 1 7.33 (.51) 6.55 (.34) 7.50 (.42)

2 7.33 (.48) 6.72 (.38) 7.39 (.38)

3 7.14 (.45) 6.34 (.33) 7.40 (.37)

4 7.23 (.40) 6.62 (.39) 7.23 (.36)

5 7.11 (.39) 6.66 (.48) 7.24 (.38)

6 7.23 (.41) 6.88 (.33) 7.45 (.32)

80 rpm 1 7.79 (.54) 7.70 (.62) 7.72 (.42)

2 7.92 (.53) 8.16 (.55) 7.83 (.31)

3 8.11 (.49) 7.61 (.48) 7.67 (.35)

4 7.92 (.41) 7.86 (.61) 7.58 (.47)

5 8.05 (.53) 7.71 (.37) 7.66 (.34)

6 8.59 (.54) 7.50 (.52) 8.17 (.45)

119



Table D-5: Cardiac index (litres/m2) during supine, upright rest, and passive cycle
exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are means with
standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 4.35 (.24) 3.82 (.26) 3.97 (.19)

Upright rest 1 3.67 (.22) 3.11 (.17) 3.25 (.13)

30 rpm 1 3.69 (.22) 3.32 (.21) 3.83 (.15)

2 3.89 (.31) 3.37 (.18) 3.73 (.17)

3 3.91 (.31) 3,39 (.23) 3.61 (.16)

4 3.83 (.31) 3.37 (.21) 3.71 (.18)

5 3.89 (.29) 3.32 (.19) 3.73 (.18)

6 3.96 (.30) 3.37 (.21) 3.65 (.17)

60 rpm 1 4.11 (.32) 3.47 (.19) 3.82 (.21)

2 4.11 (.32) 3.56 (.21) 3.76 (.18)

3 4.00 (.31) 3.36 (.19) 3.77 (.18)

4 4.05 (.27) 3.50 (.21) 3.68 (.16)

5 3.98 (.26) 3.53 (.26) 3.69 (.19)

6 4.05 (.26) 3.64 (.18) 3.79 (.15)

80 rpm 1 4.34 (.29) 4.08 (.33) 3.94 (.22)

2 4.43 (.30) 4.33 (.31) 3.99 (.14)

3 4.52 (.28) 4.00 (.25) 3.90 (.15)

4 4.43 (.23) 4.16 (.33) 3.88 (.26)

5 4.51 (.31) 4.09 (.21) 3.90 (.16)

6 4.80 (.32) 3.97 (.29) 4.15 (.19)
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Table D-6. Pre-ejection period (msec) during supine, upright rest, and passive cycle
exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are means with
standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 77.40 (5.75) 80.00(3.13) 64.23 (3.91)

Upright rest 1 90.58 (6.88) 101.25 (4.01) 82.75 (5.32)

30 rpm 1 91.80 (6.01) 91.20 (4.67) 73.40 (5.55)

2 88.20(6.13) 94.60 (5.83) 74.60 (4.93)

3 89.20 (6.97) 93.60 (4.37) 71.80(5.12)

4 90.40 (6.76) 93.00 (5.32) 73.20 (5.69)

5 89.40 (7.17) 95.00 (4.83) 75.40 (5.35)

6 88.20 (7.10) 93.00 (5.73) 75.60 (5.47)

60 rpm 1 87.00 (6.78) 94.20 (5.21) 72.80 (4.95)

2 87.00 (6.03) 90.80 (4.03) 75.60 (4.76)

3 88.60 (5.85) 95.20 (4.86) 75.00 (6.39)

4 89.60 (5.72) 93.40 (3.81) 74.40 (5.78)

5 88.40 (6.70) 90.40 (4.66) 75.60 (5.06)

6 89.40 (6.91) 92.00 (5.31) 75.60 (5.34)

80 rpm 1 82.00 (7.05) 79.80 (4.25) 70.20 (5.01)

2 82.20 (5.80) 80.60 (3.38) 69.80 (4.58)

3 82.00 (5.72) 85.40 (3.63) 69.40 (5.17)

4 84.80 (6.98) 83.40 (4.15) 70.20 (4.47)

5 85.40(7.18) 87.60 (4.89) 68.80 (4.99)

6 85.20 (6.49) 89.80 (4.39) 69.80 (5.35)
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Table D-7. Left-ventricular ejection time (msec) during supine, upright rest, and
passive cycle exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are
means with standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 297.27 (4.34) 309.33 (5.95) 302.27 (6.06)

Upright rest 1 274.20 (7.01) 274.53 (7.66) 268.80 (5.35)

30 rpm 1 264.40 (6.96) 257.80 (8.63) 262.60 (7.07)

2 266.80 (6.06) 261.40 (9.52) 264.40 (7.00)

3 266.20 (5.91) 259.80 (8.69) 265.20 (6.90)

4 265.60 (5.66) 258.80 (9.18) 262.80 (7.12)

5 265.80 (5.35) 257.60 (9.72) 262.40 (7.45)

6 267.00 (7.06) 258.80 (9.37) 259.60 (7.08)

60 rpm 1 264.80 (6.23) 260.60 (7.77) 261.20 (6.86)

2 269.20 (5.88) 265.80 (8.09) 257.20 (9.67)

3 269.80 (6.97) 267.60 (9.38) 261.80 (8.98)

4 268.80 (6.22) 267.20 (8.18) 260.60 (7.80)

5 269.80 (6.25) 266.00 (9.23) 263.20 (6.71)

6 272.60 (6.76) 266.40 (8.54) 262.80 (7.36)

80 rpm 1 276.40 (9.88) 270.40 (8.73) 257.80 (7.82)

2 273.40 (5.82) 273.00 (8.78) 265.40 (8.34)

3 275.60 (5.71) 269.00 (8.47) 265.80 (7.20)

4 271.60 (5.96) 268.00 (8.29) 256.00 (9.97)

5 273.60 (8.16) 267.40 (7.19) 267.00 (8.26)

6 272.00 (5.83) 269.80 (7.41) 274.60 (12.0)
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Table D-8. Pre-ejection period/Left-ventricular ejection time ratio during supine,
upright rest, and passive cycle exercise at each intensity (30 rpm, 60 rpm, and 80
rpm). Data are means with standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 .263 (.021) .259 (.013) .213 (.010)

Upright rest 1 .337 (.032) .368 (.019) .310 (.020)

30 rpm 1 .352.( 029) .359 (.025) .282 (.023)

2 .335.(029) .371 (.032) .286 (.022)

3 .339.( 031) .366 (.025) .272 (.021)

4 .341 (.028) .366 (.028) .281 (.024)

5 .340 (.031) .376 (.028) .289 (.023)

6 .336 (.033) .367 (.031) .296 (.024)

60 rpm 1 .332 (.029) .368 (.029) .280 (.021)

2 .326 (.027) .346 (.023) .298 (.020)

3 .332 (.028) .362 (.027) .290 (.028)

4 .337 (.027) .355 (.022) .288 (.025)

5 .332 (.031) .346 (.024) .289 (.020)

6 .333 (.031) .351 (.028) .288 (.021)

80 rpm 1 .301 (.032) .301 (.021) .273 (.019)

2 .304 (.025) .299 (.019) .266 (.019)

3 .299 (.025) .321 (.018) .262 (.020)

4 .313 (.029) .314 (.020) .279 (.023)

5 .319 (.034) .330 (.024) .260 (.020)

6 .316 (.027) .336 (.017) .255 (.019)
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Table D-9: Systolic blood pressure (mmHg) during supine, upright rest, and passive
cycle exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are means with
standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 113.53 (3.11) 119.43 (2.52) 112.45 (2.36)

Upright rest 1 129.79 (3.53) 137.10 (4.66) 127.89 (3.38)

30 rpm 1 134.30 (6.46) 149.40 (4.58) 140.20 (3.48)

2 137.40 (6.08) 148.90 (3.64) 144.10 (4.05)

3 137.50 (6.11) 148.30 (3.94) 140.10 (4.84)

4 136.20 (5.82) 146.90 (4.31) 140.50 (4.89)

5 137.50 (6.47) 148.20 (4.06) 139.70 (5.21)

6 137.70 (6.41) 147.80 (3.69) 141.70 (5.08)

60 rpm 1 138.70 (6.58) 149.60 (3.80) 143.70 (6.08)

2 137.90 (6.98) 150.10 (3.39) 141.90 (6.11)

3 138.70 (7.14) 151.60 (3.08) 141.20 (5.78)

4 139.70 (6.47) 147.10 (3.72) 142.50 (3.72)

5 137.70 (6.89) 147.20 (4.46) 142.10 (4.35)

6 136.60 (7.36) 147.90 (3.54) 147.10 (4.22)

80 rpm 1 140.90 (6.76) 151.80 (4.71) 149.40 (5.08)

2 137.90 (5.79) 148.70 (4.07) 150.60 (6.12)

3 139.00 (7.65) 149.90 (4.23) 149.20 (5.27)

4 141.60 (7.61) 146.10 (5.52) 143.60 (5.51)

5 137.80 (7.65) 149.60 (7.25) 147.10 (5.45)

6 139.00 (7.33) 145.10(7.31) 143.60 (6.07)
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Table D-10. Diastolic blood pressure (mmHg) during supine, upright rest, and
passive cycle exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are
means with standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 66.12 (4.12) 69.53 (3.61) 59.15 (3.73)

Upright rest 1 84.46 (4.95) 90.55 (4.26) 74.55 (2.63)

30 rpm 1 92.60 (3.62) 98.10 (4.98) 86.30 (3.63)

2 88.90 (4.80) 98.20 (4.19) 87.60 (4.35)

3 88.40 (5.28) 97.50 (4.37) 85.30 (3.69)

4 89.80 (5.33) 97.90 (4.21) 85.20 (4.34)

5 89.30 (5.24) 98.10 (4.35) 84.30 (3.96)

6 89.60 (5.04) 96.70 (3.83) 86.40 (4.42)

60 rpm 1 90.60 (5.19) 98.30 (4.66) 90.00 (4.98)

2 89.50 (5.54) 98.80 (4.89) 90.40 (4.79)

3 90.40 (5.64) 100.20 (4.38) 89.60 (4.61)

4 91.20 (5.52) 96.70 (3.94) 90.20 (4.26)

5 90.20 (5.67) 97.20 (3.88) 90.40 (4.25)

6 89.70 (5.63) 98.80 (4.88) 92.70 (3.96)

80 rpm 1 93.40 (5.33) 96.80 (4.16) 92.40 (4.28)

2 91.70 (4.88) 96.80 (4.32) 94.90 (4.54)

3 91.00 (5.04) 95.60 (4.05) 94.10 (4.76)

4 93.20 (5.28) 95.20 (5.58) 91.60 (4.25)

5 90.40 (5.46) 95.30 (5.41) 91.00 (4.49)

6 90.20 (5.44) 95.30 (5.89) 91.30 (4.45)
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Table D -ll. Mean arterial pressure (mmHg) during supine, upright rest, and passive
cycle exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are means with
standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 81.67 (3.74) 85.88 (3.14) 75.92 (3.48)

Upright rest 1 99.23 (4.33) 105.78 (4.31) 92.08 (2.57)

30 rpm 1 106.20 (4.28) 114.90 (4.57) 103.90 (3.07)

2 104.80 (4.96) 114.80 (3.59) 106.00 (3.95)

3 104.40 (5.97) 114.00 (3.86) 103.20 (3.64)

4 105.00 (5.35) 113.90 (3.68) 103.30 (4.23)

5 104.90 (5.44) 114.50 (3.94) 102.50 (4.00)

6 105.20 (5.28) 113.50 (3.25) 105.50 (4.35)

60 rpm 1 106.30 (5.35) 115.10 (4.04) 107.50 (4.88)

2 105.30 (5.79) 115.50 (3.99) 107.20 (4.79)

3 106.20 (5.92) 116.90 (3.44) 106.50 (4.62)

4 107.10 (5.68) 113.30 (3.19) 107.30 (3.89)

5 105.70 (5.92) 113.70 (3.36) 107.60 (3.78)

6 104.90 (6.06) 114.90 (3.92) 110.50 (3.53)

80 rpm 1 108.90 (5.55) 114.70 (3.82) 111.00 (3.83)

2 106.80 (4.80) 113.90 (3.83) 113.10(4.32)

3 106.70 (5.58) 113.40 (3.89) 112.10 (4.40)

4 108.80 (5.71) 111.90(5.18) 108.60(4.19)

5 106.00 (5.91) 113.20 (5.78) 109.30 (4.41)

6 106.10 (5.79) 111.50(6.16) 108.30 (4.44)
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Table D-12. Total peripheral resistance (dyne.sec/cm'5) during supine, upright rest,
and passive cycle exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data
are means with standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 862.31 (57.34) 994.48 (80.00) 814.68 (74.33)

Upright rest 1 1267.03 (73.92) 1501.85 (98.33) 1202.45 (80.96)

30 rpm 1 1327.30 (91.51) 1518.40 (110.68) 1127.40 (59.84)

2 1271.40(113.86) 1484.90 (98.17) 1182.30 (67.87)

3 1267.90 (123.82) 1479.60 (99.91) 1185.10(55.75)

4 1301.40 (122.62) 1471.50 (89.41) 1159.20 (67.51)

5 1270.10 (116.19) 1498.10 (88.95) 1148.50 (74.54)

6 1256.80 (117.50) 1478.20 (106.79) 1199.30 (83.76)

60 rpm 1 1230.30 (119.84) 1447.00 (94.66) 1187.40 (90.31)

2 1220.50 (125.36) 1424.90 (106.46) 1189.30 (78.66)

3 1252.90 (118.89) 1521.60 (98.88) 1185.40 (84.37)

4 1234.70 (108.08) 1422.20 (104.84) 1216.80 (75.87)

5 1241.90 (111.83) 1447.10 (134.05) 1219.80 (76.11)

6 1215.20 (113.88) 1363.80 (74.34) 1210.80 (65.30)

80 rpm 1 1183.60 (115.47) 1265.70 (110.58) 1197.20 (91.99)

2 1126.20 (92.52) 1160.40 (84.65) 1174.10 (63.69)

3 1091.70(88.11) 1250.40 (96.36) 1188.70 (59.32)

4 1135.60 (92.47) 1216.10 (118.87) 1199.60 (102.1)

5 1097.00 (97.19) 1213.80 (99.39) 1158.40 (56.14)

6 1032.50 (96.53) 1257.50 (118.16) 1085.40 (57.27)
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Table D-13. Rate pressure product (HR x SBP/100) during supine, upright rest, and
passive cycle exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are
means with standard errors of the means in parenthesis.

Activity Data Cyclists Runners Controls

Supine rest 1 66.43 (3.79) 68.65 (5.05) 73.40 (3.28)

Upright rest 1 82.00 (5.02) 87.07 (5.97) 91.44 (4.71)

30 rpm 1 86.04 (5.33) 105.20 (6.91) 105.66 (4.88)

2 89.65 (4.61) 104.06 (6.74) 107.95 (6.07)

3 87.84 (5.14) 104.06 (6.76) 102.29 (6.60)

4 89.18 (6.36) 104.90 (6.84) 106.06 (5.97)

5 88.90 (4.99) 106.67 (7.48) 108.56 (6.54)

6 90.66 (5.24) 106.41 (7.92) 110.15 (6.51)

60 rpm 1 98.63 (6.26) 110.33 (6.52) 115.06 (8.27)

2 93.31 (5.37) 107.23 (6.25) 116.89 (9.30)

3 93.40 (5.99) 105.92 (6.25) 113.38 (8.31)

4 95.80 (5.16) 103.36 (5.64) 114.30 (6.66)

5 93.11 (6.04) 105.72 (6.03) 113.09 (7.10)

6 91.25 (6.33) 105.64 (6.38) 118.03 (7.25)

80 rpm 1 102.75 (6.18) 112.53 (7.00) 121.69 (8.29)

2 97.46 (5.75) 111.70(6.24) 123.24 (8.11)

3 98.40 (6.68) 110.02 (7.26) 121.05 (8.58)

4 101.06 (6.89) 109.06 (6.80) 115.16 (8.18)

5 97.95 (7.57) 111.47(7.48) 117.35 (8.79)

6 99.65 (7.40) 104.76(8.11) 114.89 (8.71)
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Table D-14. Time series (msec^2) at high frequency (0.12-0.40 Hz) during baseline
and passive cycle exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data
are means with standard errors of the means in parenthesis.

Activity Cyclists Runners Controls

Baseline 8.49 (.37) 8.51 (.29) 8.10 (.31)

30 rpm 8.11 (.44) 7.91 (.35) 7.08 (.48)

60 rpm 7.85 (.44) 7.81 (.36) 6.76 (.37)

80 rpm 7.43 (.48) 7.76 (.35) 6.70 (.38)

Table D-15. Time series (msec^2) at low frequency (0.07-0.11 Hz) during baseline 
and passive cycle exercise at each intensity (30 rpm, 60 rpm, and 80 rpm). Data 
are means with standard errors of the means in parenthesis.

Activity Cyclists Runners Controls

Baseline 3.43 (.33) 3.42 (.22) 2.91 (.34)

30 rpm 3.58 (.31) 3.26 (.29) 2.88 (.31)

60 rpm 3.46 (.26) 3.27 (.34) 2.65 (.30)

80 rpm 3.07 (.42) 3.35 (.38) 2.52 (.38)
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Appendix E Resting and Passive cycle exercise means and standard errors for 
all cardiovascular variables of Cyclists, Runners, and Controls 
combined.
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Table E -l: Heart rate (b.min'1) during supine, upright rest, and passive cycle
exercise for the three groups combined at each intensity (30 rpm, 60 rpm, and 80
rpm). Data are means with standard errors of the means in parenthesis.

Activity Data Values

Supine rest 1 60.34 (1.82)

Upright rest 1 65.88 (1.78)

30 rpm 1 70.03 (2.07)

2 70.13 (2.09)

3 69.07 (2.07)

4 70.75 (2.13)

5 71.48 (2.21)

6 72.02 (2.40)

60 rpm 1 74.85 (2.06)

2 73.79 (2.34)

3 72.53 (2.28)

4 73.19 (2.13)

5 73.18 (2.28)

6 72.83 (2.26)

80 rpm 1 76.29 (2.27)

2 75.99 (2.27)

3 75.06 (2.32)

4 75.54 (2.29)

5 75.17 (2.38)

6 74.56 (2.31)
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Table E-2: Stroke volume (ml) during supine, upright rest, and passive cycle
exercise for the three groups combined at each intensity (30 rpm, 60 rpm, and 80
rpm). Data are means with standard errors of the means in parenthesis.

Activity Data Values

Supine rest 1 127.79 (4.26)

Upright rest 1 97.06 (3.48)

30 rpm 1 98.92 (3.61)

2 100.21 (3.88)

3 100.65 (3.87)

4 98.30 (3.75)

5 98.19 (4.06)

6 98.02 (4.11)

60 rpm 1 96.08 (3.03)

2 98.74 (3.56)

3 97.97 (3.71)

4 97.93 (3.57)

5 97.40 (3.61)

6 100.77 (3.52)

80 rpm 1 102.88 (3.95)

2 106.59 (3.62)

3 105.30 (3.45)

4 104.59 (3.87)

5 106.22 (3.89)

6 109.97 (3.87)
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Table E-3. Stroke index (ml/m2) during supine, upright rest, and passive cycle
exercise for the three groups combined at each intensity (30 rpm, 60 rpm, and 80
rpm). Data are means with standard errors of the means in parenthesis.

Activity Data Values

Supine rest 1 68.07 (2.39)

Upright rest 1 51.83 (2.13)

30 rpm 1 52.84 (2.21)

2 53.50 (2.32)

3 53.78 (2.35)

4 52.49 (2.26)

5 52.47 (2.44)

6 52.36 (2.45)

60 rpm 1 51.27 (1.83)

2 52.77 (2.20)

3 52.34 (2.25)

4 52.31 (2.18)

5 52.06 (2.19)

6 53.82 (2.16)

80 rpm 1 54.79 (2.17)

2 56.87 (2.13)

3 56.15 (2.02)

4 55.79 (2.23)

5 56.70 (2.30)

6 58.64 (2.24)
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Table Er4: Cardiac output (litres) during supine, upright rest, and passive cycle
exercise for the three groups combined at each intensity (30 rpm, 60 rpm, and 80
rpm). Data are means with standard errors of the means in parenthesis.

Activity Data Values

Supine rest 1 7.61 (.26)

Upright rest 1 6.28 (.19)

30 rpm 1 6.79 (.22)

2 6.88 (.23)

3 6.82 (.24)

4 6.83 (.24)

5 6.85 (.23)

6 6.87 (.24)

60 rpm 1 7.13 (.25)

2 7.15 (.24)

3 6.96 (.23)

4 7.03 (.22)

5 7.00 (.24)

6 7.19 (.24)

80 rpm 1 7.74 (.20)

2 7.97 (.31)

3 7.78 (.26)

4 7.79 (.28)

5 7.81 (.24)

6 8.09 (.29)
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Table E-5: Cardiac index (L/m2) during supine, upright rest, and passive cycle
exercise for the three groups combined at each intensity (30 rpm, 60 rpm, and 80
rpm). Data are means with standard errors of the means in parenthesis.

Activity Data Values

Supine rest 1 4.05 (.14)

Upright rest 1 3.35 (.11)

30 rpm 1 3.61 (.12)

2 3.67 (.13)

3 3.64 (.14)

4 3.64 (.14)

5 3.65 (.13)

6 3.66 (.14)

60 rpm 1 3.80 (.15)

2 3.81 (.14)

3 3.71 (.14)

4 3.75 (.13)

5 3.73 (.14)

6 3.83 (.12)

80 rpm 1 4.12 (.16)

2 4.25 (.15)

3 4.14 (.14)

4 4.15 (.16)

5 4.17 (.14)

6 4.31 (.17)
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Table Er6: Pre-ejection period (msec) during supine, upright rest, and passive cycle
exercise for the three groups combined at each intensity (30 rpm, 60 rpm, and 80
rpm). Data are means with standard errors of the means in parenthesis.

Activity Data Values

Supine rest 1 73.88 (2.77)

Upright rest 1 91.53 (3.39)

30 rpm 1 85.47 (3.42)

2 85.80 (3.51)

3 84.87 (3.57)

4 85.53 (3.71)

5 86.60 (3.61)

6 85.60 (3.68)

60 rpm 1 84.67 (3.58)

2 84.47 (3.03)

3 86.27 (3.55)

4 85.80 (3.26)

5 84.80 (3.32)

6 85.67 (3.55)

80 rpm 1 77.33 (3.24)

2 77.53 (2.80)

3 78.93 (3.02)

4 79.47 (3.22)

5 80.60 (3.58)

6 81.60 (3.44)
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Table E-7: Left-ventricular ejection time (msec) during supine, upright rest, and 
passive cycle exercise for the three groups combined at each intensity (30 rpm, 60 
rpm, and 80 rpm). Data are means with standard errors of the means in 
parenthesis.

Activity Data Values

Supine rest 1 302.96 (3.20)

Upright rest 1 272.51 (3.78)

30 rpm 1 261.60(4.26)

2 264.20 (4.29)

3 263.73 (4.08)

4 262.40 (4.19)

5 261.93 (4.34)

6 261.80 (4.46)

60 rpm 1 262.20 (3.90)

2 264.07 (4.57)

3 266.40 (4.78)

4 265.53 (4.21)

5 266.33 (4.21)

6 267.27 (4.29)

80 rpm 1 268.20 (5.13)

2 270.60 (4.37)

3 270.13 (4.09)

4 265.20 (4.75)

5 269.33 (4.43)

6 272.13 (4.92)
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Table E-8: Pre-ejection period/left-ventricular ejection time (PEP/LVET ratio) 
during supine, upright rest, and passive cycle exercise for the three groups combined 
at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are means with standard 
errors of the means in parenthesis.

Activity Data Values

Supine rest 1 .24 (.01)

Upright rest 1 .34 (.01)

30 rpm 1 .33 (.02)

2 .33 (.02)

3 .33 (.02)

4 .33 (.02)

5 .34 (.02)

6 .33 (.02)

60 rpm 1 .33 (.02)

2 .32 (.01)

3 .33 (.02)

4 .33 (.01)

5 .32 (.01)

6 .32 (.02)

80 rpm 1 .29 (.01)

2 .29 (.01)

3 .29 (.01)

4 .30 (.01)

5 .30 (.02)

6 .30 (.01)
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Table E-9: Systolic blood pressure (mmHg) during supine, upright rest, and passive
cycle exercise for the three groups combined at each intensity (30 rpm, 60 rpm, and
80 rpm). Data are means with standard errors of the means in parenthesis.

Activity Data Values

Supine rest 1 115.14 (1.61)

Upright rest 1 131.59 (2.29)

30 rpm 1 141.30 (3.01)

2 143.47 (2.76)

3 141.97 (2.93)

4 141.20 (2.92)

5 141.80 (3.09)

6 142.40 (2.99)

60 rpm 1 144.00 (3.24)

2 143.30 (3.31)

3 143.83 (3.28)

4 143.10 (2.88)

5 142.33 (3.07)

6 143.87 (3.10)

80 rpm 1 147.37 (3.23)

2 145.73 (3.18)

3 146.03 (3.41)

4 143.77 (3.51)

5 144.83 (3.93)

6 142.57 (3.89)
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Table E-10: Diastolic blood pressure (mmHg) during supine, upright rest, and 
passive cycle exercise for the three groups combined at each intensity (30 rpm, 60 
rpm, and 80 rpm). Data are means with standard errors of the means in 
parenthesis.

Activity Data Values

Supine rest 1 64.93 (2.27)

Upright rest 1 83.19 (2.57)

30 rpm 1 92.33 (2.46)

2 91.57 (2.63)

3 90.40 (2.68)

4 90.97 (2.77)

5 90.57 (2.74)

6 90.90 (2.61)

60 rpm 1 92.97 (2.84)

2 92.90 (2.94)

3 93.40 (2.87)

4 92.70 (2.63)

5 92.60 (2.67)

6 93.73 (2.80)

80 rpm 1 94.20 (2.61)

2 94.47 (2.58)

3 93.57 (2.61)

4 93.33 (2.84)

5 92.23 (2.89)

6 92.27 (2.98)
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Table E -ll:  Mean arterial pressure (mmHg) during supine, upright rest, and passive
cycle exercise for the three groups combined at each intensity (30 rpm, 60 rpm, and
80 rpm). Data are means with standard errors of the means in parenthesis.

Activity Data Values

Supine rest 1 81.16(2.07)

Upright rest 1 99.03 (2.37)

30 rpm 1 108.33 (2.41)

2 108.53 (2.48)

3 107.20 (2.58)

4 107.40 (2.64)

5 107.30 (2.69)

6 107.73 (2.55)

60 rpm 1 109.63 (2.76)

2 109.33 (2.86)

3 109.87 (2.81)

4 109.23 (2.51)

5 109.00 (2.58)

6 110.10(2.69

80 rpm 1 111.53 (2.53)

2 111.27(2.48)

3 110.73 (2.66)

4 109.77 (2.83)

5 109.50 (3.06)

6 108.63 (3.11)
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Table E-12: Total peripheral resistance (dyne.sec/cm‘5) during supine, upright rest, 
and passive cycle exercise for the three groups combined at each intensity (30 rpm, 
60 rpm, and 80 rpm). Data are means with standard errors of the means in 
parenthesis.

Activity Data Values

Supine rest 1 890.49 (42.09)

Upright rest 1 1323.78 (53.02)

30 rpm 1 1324.37 (58.13)

2 1312.87 (58.02)

3 1310.87 (58.88)

4 1310.70 (58.42)

5 1305.57 (59.25)

6 1311.43 (61.87)

60 rpm 1 1288.23 (60.81)

2 1278.23 (61.72)

3 1319.97 (62.71)

4 1219.23 (56.87)

5 1302.93 (64.09)

6 1263.27 (50.26)

80 rpm 1 1215.50 (59.66)

2 1153.57(45.36)

3 1176.93 (47.66)

4 1183.77 (58.83)

5 1156.40 (48.99)

6 1125.13 (55.34)
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Table E-13: Rate pressure product (HR x SBP/100) during supine, upright rest, and 
passive cycle exercise for the three groups combined at each intensity (30 rpm, 60 
rpm, and 80 rpm). Data are means with standard errors of the means in 
parenthesis.

Activity Data Values

Supine rest 1 69.49 (2.35)

Upright rest 1 86.84 (3.01)

30 rpm 1 98.97 (3.63)

2 100.55 (3.58)

3 98.06 (3.71)

4 100.05 (3.84)

5 101.38 (3.93)

6 102.41 (4.02)

60 rpm 1 108.01 (4.14)

2 105.81 (4.38)

3 104.23 (4.15)

4 104.49 (3.55)

5 103.97 (3.88)

6 104.97 (4.23)

80 rpm 1 112.32 (4.26)

2 110.80 (4.25)

3 109.82 (4.54)

4 108.43 (4.21)

5 108.92 (4.69)

6 106.43 (4.65)
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Table E-14. Time series (msec"2) at low (0.07-0.11 Hz) and high (0.12-0.40 Hz) 
frequencies during baseline and passive cycle exercise for the three groups combined 
at each intensity (30 rpm, 60 rpm, and 80 rpm). Data are means with standard 
errors of the means in parenthesis.

Activity low (0.07-0.11 Hz) high (0.12-0.40 Hz)

Baseline 3.25 (.18) 8.36 (.19)

30 rpm 3.24 (.18) 7.69 (.25)

60 rpm 3.13 (.18) 7.47 (.24)

80 rpm 2.98 (.23) 7.30 (.24)
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Appendix F Physical Activity Readiness Questionnaire (PAR-Q)
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PHYSICAL ACTIVITY READEVESS QUESTIO^AIRE (PAR-Q) 
A Sell-adm inistered Q uestionnaire (or Adults

PARTICIPANT IDENTIFICATION

P A R -Q  & YOU
PAR-Q is designed to help you help yourself. Many health benefits are associated with 

regular exercise, and the completion of PAR-Q is a sensible first step to take if you are planning 
to increase the amount of physical activity in your life.

For most people physical activity should not pose any problem or hazard. PAR-Q has been 
designed to identify the small number of adults for whom physical acbvity might be inappropri­
ate or those who should have medical advice concerning the type of activity most suitable for 
them.

Common sense is your best guide in answering these few questions. Please read them 
carefully and check the 3  YES or NO opposite the question if it applies to you.

YES NO

□ D 1

□ Q 2

□ Q 4

□ a 4

Q P 3.

□ Q 6 .

□ □ 7.

that has been aggravated by exercise, or might be made worse with exercise?

Is there a good physical reason not mentioned here why you should not foflow a 
activity program even if you wanted to?

Y ES  to one o r more questions NO to all questions

If you have not recently done so. consult with your 
personal physician by teieonone or in person 
BEFORE increasing your pnysical aaivity and/or 
taking a fitness test. Tell him what questions you 
answered YES on PAR-Q. or snow him your copy.

programs
After medical evaluation, seen advice from your 
physician as to your suitability for:
• unrestncted physical activity, prooaoly on a gradu­
ally increasing basis.

• restricted or suoervised activity to meet your spe­
cific needs, at least on an initial basis. Check in 
your community for special programs or services.

If you answered PAR-Q accurately, you have rea­
sonable assurance of your present sirfabiiity foe

• A GRADUATED EXERCISE PROGRAM- A grad­
ual increase m orooar exerase pronxres ga^ 
fitness development wmle minimizing or eiimin» 
ing discomfort.

• AN EXERCISE * EST- Simoie tests rffitnessfsu* 
as the Canadian Home Fitness ' est) cr m®» 
complex types rr ay oe undertaken if you so dess

postpone II

If you have a temporary minor illness, such asa 
common cold.

3 i Th« Physical Activity Readiness Q uestionnaire (PAR-Q) is useful in health fair or 
5ituaOOn3,or s a e e n m 8 out individuals at risk for cardiovascular or metabolic disease.3
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INFORMATION FOR SUBJECTS

ITEM 1: PROJECT OBJECTIVES
The aim o f the project is to investigate the cardiovascular regulation during passive 
cycle exercise.

ITEM 2: RATIONALE
Passive cycle exercise causes blood to return to the heart which causes an increase 
in stroke volume. As trained cyclists and runners possess greater blood volum e, we 
expect that they w ill record greater increases in stroke volume than the untrained.

ITEM 3 : TEST PROCEDURES
Testing will involve application of surface electrodes and a blood pressure cuff (on 
the third finger). Measures of cardiovascular function, such as heart rate and blood 
pressure, will be collected during the experimental session. The study consists of 
measurement of cardiovascular response during resting position and during passive 
cycle exercise. Passive cycle exercise involves sitting on a fixed wheel bike that 
was secured on a treadmill; the treadmill moves the pedals of the bike and 
consequently the lower limbs of the person sitting on the bike. Subjects make no 
effort to cycle and simply sit on the bike and relax. The passive cycle exercise is 
performed against no resistance at three different intensities continuously, for three 
minutes, at each intensity.

ITEM 4: RISKS AND DISCOMFORTS
Before the session begins, your cardiac function will be screened for abnormalities; 
this will include examination of the three major heart leads and the impedance 
cardiogram (e.g., abnormal axis, conduction problems, assessment of the impedance 
wave for valvular problems). During the experimental session it is anticipated that 
your heart rate and blood pressure will rise, although not to levels higher than you 
would commonly experience.

ITEM 5: INQUIRIES
Questions concerning the procedures and/or rationale used in this study are welcome 
at any time. Please ask for clarification of any point which you feel is not explained 
to your satisfaction. Your initial contact person is the investigator conducting this 
project (Dr. Steve Boutcher, Department of Biomedical Science: phone 214-093). 
Subsequent inquiries may be directed to Karen McRae (Secretary of the Human 
Ethics Committee, phone 214-457).

ITEM 6: FREEDOM OF CONSENT
You are free to deny consent before or during the experiment. In the latter case 
such withdrawal of consent should be made at the time you specify, and not at the 
end of a particular trial. Your participation and/or withdrawal of consent will not 
influence your present and/or future involvement with the University of Wollongong. 
You have the right to withdraw from any experiment, and this right shall be 
preserved over and above the goals of the experiment.

ITEM 7: CONFIDENTIALITY .
All questions, answers, and results of this study will be treated with abso ute 
confidentiality. Subjects will be identified in the resultant manuscripts, reports or 
publications by the use of subject codes only.
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