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Abstract
2D hexagonal boron nitride (2D-hBN) is a lesser utilised material than other 2D counterparts in electrochemistry due to initial
reports of it being non-conductive. As we will demonstrate in this review, this common misconception is being challenged, and
researchers are starting to utilise 2D-hBN in the field of electrochemistry, particularly as the basis of electroanalytical sensing
platforms. In this critical review, we overview the use of 2D-hBN as an electroanalytical sensing platform summarising recent
developments and trends and highlight future developments of this interesting, often overlooked, 2D material.

Keywords 2D hexagonal boron nitride . 2D-hBN . Electroanalysis . Sensors . Electrochemistry

Introduction

2D nanomaterials have attracted significant interest in a
plethora of fields, particularly electrochemistry and elec-
troanalysis, as can be observed by this article being part
of this special issue. The first 2D nanomaterial that gained
significant attraction and launched this field was graphene
after Novoselov and Geim first isolated monolayer
graphene and its interest has only grown since the award
of their Nobel Prize in 2010, due to its reported extraor-
dinary physical and chemical properties [1]. Nowadays,
the term “2D nanomaterials” include more than a hundred
different materials, including the family of carbon
nanomaterials such as graphene, CNTs, fullerenes,
graphene oxide, graphene QDs and other variants [2].
This has been rapidly extended to, for example, hexagonal
boron nitride (2D-hBN, the so-called white graphene),
transition metal chalcogenides (TMDs) (such as MoS2,
MoSe2, WS2, WSe2) and homoatomic materials (such as
antimonene, silicene, germanene, phosphorene) [3–11].

A graphical representation of the exponential interest of
research in graphene, 2D materials and boron nitride is
depicted in Fig. 1, where the number of articles published
between the years 2000 and 2020 is compared for the search
terms “graphene”, “2D material” and “boron nitride”. It is
clear upon inspection of Fig. 1 that the first isolation of pristine
graphene in 2004, and then, the Nobel Prize Award in 2010
helped putting first graphene and then other 2D materials
(including h-BN) in the spotlight of a wide variety of different
research topics. To name a few, materials science, chemistry
and physics are the main topics for graphene research, being
energy, materials science and chemistry the main ones for
both terms “2D materials” and “boron nitride”.

The application of electrochemistry in analyticalmethods
investigates changes in electrical properties that are related to
chemical reactions/parameters. Electroanalysis has been
widely explored for quality control [12], water [13] and en-
vironmental monitoring [14, 15], forensics [16–18], food
[19–21] and biomedical [22, 23] applications to name just a
few. In the application of 2D nanomaterials, they have re-
ported to have significant benefits over other nanomaterials
in the field of electroanalysis [8, 24]. Monolayered 2D ma-
terials offer high surface-to-volume ratios, which enhances
their chemical reactivity than the one exhibited by their bulk
form (inert activity) [25, 26]. In this critical review, we over-
view the use of 2D-hBN as the basis of electroanalytical
sensing platforms and summarising recent exciting develop-
ments and highlight potential future developments of this
interesting material.
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2D-hexagonal boron nitride in electroanalysis

2D-hexagonal boron nitride (2D-hBN) is a structural analogue
of graphite which presents an sp2 hybridisation of B–N bonds
in a layered honeycomb structure comprising rings of
borazine (B3N3H6) [27]. Boron nitride (BN) is chemically
stable exhibiting four well-known polymorphs: wurtzite,
rhombohedral, cubic and hexagonal [28] (and references
therein). Figure 2 overviews the various hexagonal boron ni-
tride structures highlighting the intra- and inter-planar sizes
and the edges of a nanosheet. Nanoribbons can be in either a
zigzag (B- or N-edged) or armchair (BN pair edge) conforma-
tion, which are typically comprised of lateral sizes from a few
hundred nanometres to tens of microns, depending on the
various fabrication approaches employed. 2D-hBN layers
can also stack on each other forming few- and multi-layers
via van der Waals forces at a distance of 0.333 nm [27]. Other
common structural forms are nanotubes, fullerenes and quan-
tum dots.

Typically, 2D materials are fabricated via one of two
routes: a bottom-up (BU) or a top-down (TD) method. TD
approaches start from bulk materials as a starting point and
transform it to achieve a monolayer. On the other hand,
bottom-up (BU) approaches synthesise a pristine/monolayer
from precursor(s). BU fabrication methods give larger yields
of end products but do exhibit larger contamination (which

might affect the electrochemistry of the material itself
[31–33]), defects and lower quality of the nanosheets; on the
contrary, TD lead to pristine materials but in lower quantities.
In the case of hexagonal boron nitride, liquid-phase,
ultrasonication-assisted, microwave-assisted, chemically
assisted and mechano-chemical exfoliation methods are the
most common BU approaches utilised within the literature
[34–36]. In regard to BU methods, the most common are
chemical vapour deposition (CVD) and physical vapour de-
position (sputtering) [37–40]. Figure 3 includes a schematic
representation of exfoliation (a), chemical vapour deposition
(b) and sputtering (c) manufacturing methods for boron nitride
from the literature [37, 41, 42]. The various fabrication ap-
proaches reported to 2D-hBN will not be covered in detail
here, but we note that the fabrication route can affect the
electrochemical performance of 2D-hBN (see, for example,
the work by Khan et al. reporting the effect of surfactants in
the electrochemical properties of 2D-hBN [43]).

According to the literature, 2D-hBN has a wide band gap of
ca. 5.6 eV [44, 45]; therefore, it is usually reported as an
electrical insulator [45, 46]. Theoretical simulations have been
used to describe physical and chemical properties of multiple
combinations of synthesis, characterisation and substrates
with 2D-hBN [47–49]. From the electroanalysis perspective,
researchers are in a continuous search of new electrode mate-
rials that offer a wide useful potential range, low background
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current, reproducibility and stability, and lastly fast electron
transfer kinetics. Although 2D-hBN is commonly reported as
non-conductive [49, 50], it is finding use as the basis of elec-
troanalytical sensing platforms. Table 1 provides a summary
of some recent advances of 2D-hBN applied to electroanalyt-
ical applications, and one can readily see that there is a limited
amount of literature reporting the use of 2D-hBN as the main
active material for this purpose.

Uosaki et al. [49] first reported the use of 2D-hBN upon
gold (single crystal) electrodes as an electrocatalyst for the
important electrochemical reaction, the oxygen reduction re-
action (ORR) which was only possible on the gold electrode
with no electrocatalytic effect observed upon glassy carbon
electrodes. While the ORR was found to proceed to produce
hydrogen peroxide, rather than the desired product of water,

this work was seminal in demonstrating that there is an im-
portance of 2D-hBN–substrate interaction and that 2D-hBN
can be utilised in electrochemistry [49]. This work has been
extended by others (see, for example, references [43, 67] and
[68]).

Following the above seminal work, Khan et al. reported for
the first time the utilisation of 2D-hBN as the basis of an
electrochemical sensing platform using the example of the
simultaneous electrochemical sensing of dopamine and uric
acid determination via drop-casting the 2D-hBN onto screen-
printed graphite macroelectrodes (SPEs) [30]. The electro-
chemical response was found to be highly dependent upon
the interaction of the 2D-hBN and the underlying supporting
electrode material and amount of deposited material, giving an
electrocatalytic response in comparison to the (bare)

Fig. 2 An overview of hexagonal boron nitride structures. Figures reproduced from a [27], b [29] and c [30]

Exfoliation Chemical Vapour Deposition Sputtering

a b c

Fig. 3 Schematic representation of boron nitride manufacturing methods: exfoliation (a), chemical vapour deposition (b) and sputtering (c). Reprinted
from [37, 41, 42] with permission from the American Chemical Society and Elsevier respectively
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underlying carbon electrodes. Using optimised condition,
suitable peak resolution between dopamine and uric acid
was found to be possible with competitive electroanalytical
outputs. This manuscript was the first to report that the novel
nanomaterial 2D-hBN is a beneficial electrocatalytic material
for what might be considered an initially unlikely candidate.
Such work has been extended by Li et al. [62] for the simul-
taneous sensing of vitamin C, dopamine and uric acid using
flake 2D-hBN upon glassy carbon electrodes (GCE) which
has a high density of defects and active surface groups
resulting in wide linear ranges and low limits of detection
and also exhibited anti-interference abilities.

Other reports of utilising 2D-hBN have been in electrode
configurations with other nanomaterials in the form of nanocom-
posites. For example, Yola and Atar [56] utilised graphene quan-
tum dots with 2D-hBN with molecularly imprinted polymers
upon a GCE for the sensing of serotonin. This approach was
shown to be (electro)analytically competitive over other literature
reports with the authors attributing the enhanced outputs of their
sensor due to charge transfer facilitated by the graphene quantum

dots/2Dh-hBN, reduced mass transfer resistance on the underly-
ing supporting electrode (GCE) and synergistic effect between
the 2D-hBNand the graphene quantumdots [56]. Further inspec-
tion of their reported voltammetric responses [56], where a bare
GCE is compared to a GCE electrode modified with 2D-hBN
and graphene QDs/2D-hBN towards a simple redox probe, indi-
cates a significantly differing voltammetry, which can be inferred
as a change from diffusional (at the GCE) to thin-layer/adsorp-
tion type effects (at the 2D-hBN and graphene QDs/2D-hBN
modified electrodes. The later gives rise to larger peak current/
analytical response, which is expected [69]. This potentially con-
tributed to the factors that the authors attributed to the improved
electrochemical response, but further analysis would have been
useful. The authors successfully utilised their nanocomposite
sensor for the reliable measurement of serotonin in urine samples
[56]. This avenue of using 2D-hBN in nanocomposites has been
extended to the sensing of methyl parathion using graphitic car-
bon nitride, 2D-hBN and molecularly imprinted polymer [63].
This approach was shown to exhibit electroanalytical perfor-
mances superior to previous literature reports and was shown

Table 1 Overview of recent
literature reports of 2D-hBN
utilised as the basis of electroan-
alytical sensing platforms towards
various (electro)analytical targets

Material Analyte Linear range LOD Reference

Au-NPs/2D-hBN/GCE H2O2 0.04–50 mM 8.3 μM [51]

Au-NPs/2D-hBN/GCE Luteolin 10–400 pM 1.7 pM [52]

MIP/Au NPs/2D
h-BN/GCE

Diethylstilbestrol 5 pM–0.02 μM 0.1 pM [35]

Au-NPs/2D-hBN/FTO Myoglobin 0.1–100 μg mL−1 34.6 ng mL−1 [53]

MIP/Fe@Au NPs/2D
hBN/GCE

Cypermethrin 10−13–10−8 M 0.03 pM [54]

HMICI-Pt-NPs/POM/2d
h-BN/CPE

N-Hydroxysuccinimide 0.1–300 μM 60 nM [55]

MIP/GQDS/2D-h-BN/GCE Serotonin 0.001–10 nM 0.1 pM [56]

Trz-BN/GCE L-Cysteine - - [57]

Cu-h-BNNS/GCE Nitrite 0.09–9853.45 μM 0.03 μM [58]

2D-hBN-QDs Vitamin C 0.8–5 mM 0.45 μM [59]

D-2D-hBN/GCE 4-AP and Ph 0.01–30 μM (4-AP),
0.1–30 μM (Ph)

0.003 (4-AP)

0.035 (Ph)
μM

[60]

2D h-BN/SPE Dopamine - 0.65 μM [30]

2D h-BN whiskers/Ti Nitrite 10–400 μM 0.089 μM [61]

flake 2D-hBN/GCE Vitamin C 30–1000 μM 3.77 μM [62]

flake 2D-hBN/GCE Dopamine 0.5–150 μM 0.02 μM [62]

flake 2D-hBN/GCE Uric acid 1–300 μM 0.15 μM [62]

CN-hBN/GCE Methyl parathion 0.0002–2 nM 0.001 nM [63]

2D-hBN/f-MWCNTs/GCE β-Agonists 0.001–10 nM 0.0001 nM [64]

BN/graphene/GCE Nicotine 1–1000 μM 0.42 μM [65]

Bi2O3/h-BN/SPCE Flutamide 0.48–87 μM 0.009 μM [66]

Au, gold; NPs, nanoparticles; GCE, glassy carbon electrode;MIP, molecular imprinted polymer; Fe, iron; FTO;
fluorine-doped tin oxide electrode; HMICI, 1-hexyl-3-methylimidazolium chloride; POM, polyoxometalate;
CPE, carbon paste electrode; GQDS, graphene quantum dots; Trz, triazine; Cu, copper; QDs, quantum dots; Ti,
titanium; 4-AP, 4-aminophenol; Ph, phenol; BNNS, boron nitride nanosheets; SPE, screen-printed electrodes;CN,
graphitic carbon nitride
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to be successfully applied to orange juice samples for methyl
parathion detection. In a similar vein, β-agonists have been
shown to be electroanalytically detected in urine samples using
2D-hBN/multi-walled carbon nanotube nanocompositemodified
GCE in the presence of ascorbic acid and uric acid [64]. Other
approaches have combined 2D-hBN with graphene for the de-
tection of nicotine applied in real tobacco samples [65] and 2D-
hBN with bismuth oxide for the sensing of flutamine applied in
environmental samples [66]. In all cases, the synergy of mixing
the various components comprising the nanocomposite is attrib-
uted to the beneficial electrochemical response. Generally, au-
thors fail to show data of the various ratios of the components
comprising the nanocomposite upon the electrochemical/
electroanalytical response demonstrating how they chose their
final composition.

Shen et al. have utilised defect-enhanced h-BN (termed
(D-h-BN) on a GCE as a sensing platform for the detec-
tion of 4-aminophenol (4-AP) and phenol (Ph) [60] and
lead [70]. They report the synthesis of defective h-BN via
a single precursor calcination process. As shown in Fig. 4,
defective h-BN exhibits the presence of pore holes within
the basal plane of the typical laminar structure of 2D-
hBN. These defects/holes are reported to be chemically
active and provide electrochemical active sites via
defect-related sub-levels in the band gap [60]. In both
cases, the improved electrochemical response was

compared to a bare GCE, which demonstrated the D-h-
BN to give to superior electroanalytical signatures, attrib-
uted by the authors to be due to the material exhibiting
fast electron transfer, large electrochemical active surface
area and abundant electroactive sites, which were induced
by the defective nature of the D-h-BN structure. The au-
thors demonstrated the successful determination of 4-AP
and Ph in tap and lake water samples.

Luo et al. [61] reported the useful fabrication of hexagonal
boron nitride (h-BN) whiskers. Their hBN whiskers were syn-
thesised via a polymeric precursor methodology utilising
boric acid (H3BO3) and melamine (C3H6N6) as raw materials
with the precursors slowly heated in a tube furnace to high
temperatures (1073–1273 K) in a flowing nitrogen/hydrogen
(5% hydrogen) atmosphere. The fabricated h-BNwhiskers are
shown in Fig. 5, which are 0.5–3 μm in diameter and 200–
500 mm in length. The authors sought to demonstrate the
usefulness of their h-BN whiskers by exploring the electroan-
alytical sensing of nitrite. Figure 5 shows cyclic voltammetric
curves of h-BN whiskers (poorly and highly crystallised) and
compared to those of a bare Ti electrode. The choice of elec-
trode gives the impression that the h-BN whiskers give rise to
outstanding electrochemical signatures, even electrocatalytic,
one might suggest. That said, nitrite can be readily electro-
chemically oxidised using a range of carbon electrodes
[71–75]. It would have been insightful to compare the
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Fig. 4 TEM image of defect-
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multaneous calibration plot
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BN/GCE (b) and electrochemical
impedance spectra of d-h-BN/
GCE (c). Reprinted from [60]
with permission from Elsevier
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electrochemical response of the h-BN whiskers to other
carbon-based electrodes under the same employed experimen-
tal parameters to demonstrate that they exhibit a large electro-
chemically area, as stated by the authors [61]. Additionally, it
would have been insightful to explore different coverages to
try and optimise the electroanalytical outputs; that said, the
sensor was shown to allow the determination of nitrite at var-
ious concentrations within tap water [61].

From the above analysis and inspection of Table 1, it is
clear that 2D-hBN is being beneficially used in the field of
electroanalysis. A critical question from the above literature is,
however, why does this initially overlooked material, reported

to be an insulator, clearly functions as an electrochemical/
electroanalytical sensing platform? As the literature has
progressed, many infer their beneficial responses to be due
to a range of factors, such as high surface area, increased
electron transfer, high accessible active sites and fast electron
transfer due to defects [43, 67, 76–91]. Many different surface
morphologies have been reported, but only the work reported
by Garcia-Miranda et al. [91] has shown the origin of electro-
catalytic properties at true mono-layer 2D-hBN (CVD grown
on Si/SiO2). As shown in Fig. 6, they compared the electro-
chemical signatures of monolayer 2D-hBN with that of 2D-
hBNwith physical linear defects (PLDs). In the former case, a
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Fig. 5 SEM and TEM micrographs of the h-BN whiskers. a Low-
magnification SEM images; b, c high-magnification SEM images. d
TEM images. e HRTEM. f The SAED pattern. Cyclic voltammetric
curves (g) of the poorly crystallised BN whiskers electrode (red line),

the highly crystallised BN whiskers electrode (black line) and bare Ti
electrode (blue) towards the electrochemical oxidation of nitrite
(1.0 mmol L−1 nitrite in 0.1 mol L−1 phosphate buffer). Reproduced from
reference [61] with permission of the Royal Society of Chemistry

Fig. 6 Graphical representation of physical linear defects (PLDs) upon 2D-hBN, giving rise to electrochemically useful signatures supported with DFT
theory. Adapted with permission by the Royal Society of Chemistry from reference [91]
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pristine (no defects) 2D-hBN monolayer is utilised which
gives rise to zero/negligible electrochemical outputs. This
has probably been encountered previously and might have
led to abandoning the use of this material in electrochemistry
which, on first sight, agrees with literature reports of 2D-hBN
being non-conductive. In the latter case, PLDs are introduced
which transforms this previously electrochemically inert ma-
terial into giving useful electrochemically signatures; these
induced defects upon the basal plane of the 2D h-BN surface
are the only source of the newly electroactive material and the
reason of the change from insulator to semi-conductor. DFT
calculations were used to calculate the band gap of the intro-
duced PLDs, which reported that the fully hydrogenation and
oxygen passivation of the created edges are capable of reduc-
ing the band gap from 6.11 to 2.36 eV. This insight explains
why 2D-hBN utilised in the above studies (see Table 1) give
rise to electrochemical/electroanalytical outputs, since a range
of 2D-hBN materials are not true monolayer and have abun-
dant edges and defects across their basal plane for electron
transfer to occur; this will be further enhanced for multi-
layers of 2D-hBN.

Conclusions

In this review, we have demonstrated that the previously
overlooked 2D-hBN is beneficially being utilised as the basis
of electroanalytical sensing platforms. Tailored defect-rich bo-
ron nitride microstructures have great potential as active ma-
terials for electroanalytical sensor fabrication, rather than their
conventional use as electrode substrates (i.e. monolayer 2D-
hBN). Although the electrocatalytic behaviour of 2D-hBN is
still relatively unexplored territory, with careful execution of
defect incorporation into the boron nitride nanosheets, re-
searchers are unveiling its novel sensing applications towards
a variety of analytes. Based upon current literature reports, we
provide a summary of areas that could potentially be explored/
reported in future work utilising 2D-hBN and related struc-
tures: (1) exploring the lateral sizes, La and Lc and defects (at
edges and across basal surfaces) and understanding how these
parameters affect the electrochemical/electroanalytical re-
sponses and can be be tailored and utilised to optimise elec-
trochemical outputs; (2) exploring the role of the underlying/
supporting electrode; (3) undertaking and reporting coverage
studies, such that optimisation of the electrochemical/
electroanalytical responses can be achieved and also noting
that thin-layer responses can be observed that might be mis-
taken for “electrocatalysis”; (4) exploring the synergy of var-
ious materials mixed together to form nanocomposites—
which are the origin/dominated the electrochemical response
and understanding how the various ratios of each material
comprising the nanocomposite can give rise to optimal elec-
troanalytical outputs. As research grows in the area of 2D-

hBN electrochemistry, more parameters will likely need to
be explored/unravelled but it is clear that this is an emerging
and exciting field utilising an interesting and previously
overlooked 2D nanomaterial.
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