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Abstract

Echolocation is the process of building an acoustic image of the environment by 

sensing the ultrasonic echoes that are bounced off objects in the environment. It is 

naturally observed in bats and dolphins, who use it for navigation and orientation.

The Finite Element Method is one of several numerical techniques that simplify 

the abstract equations of calculus and obtain approximate solutions for real-world 

physical problems.

This thesis evaluates the suitability of various numerical 'Element Methods' for 

the modelling and design of ultrasonic transducers and the study of their radiated and 

scattered sound fields. To achieve this, it determines the selection criteria to choose 

between the alternate methods and identifies the essential set of elements that are 

required to model the problem. Further, it studies various commercial FEM software 

packages and identifies software language features necessary to implement the software 

package.

It arrives at conclusions regarding the basic requirements to develop a minimal 

software package capable of modelling ultrasonic transducers. On the basis of this 

thesis, software can be developed to provide a structure upon which future researchers 

can build and develop more complex models, such as those involving transducers and 

their interaction with the environment.
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Chapter 1 - Introduction

1.1 The Focus of Our Research Group

I am a member of a research group that is studying and modelling echolocation. 

Echolocation is the process of building an acoustic image of the environment by 

sensing the ultrasonic echoes that are bounced off objects in the environment. It is 

naturally observed in bats and dolphins, who use it for navigation and orientation.

While we can hear audio frequency sounds (16 Hz to 20 KHz approx.), we can 

neither see nor hear ultrasonic frequency sounds. They exist in a frequency range that 

is beyond the threshold of human hearing capabilities. The goal of our project is to try 

to 'see' the ultrasonic echoes and interpret them to identify objects and learn about the 

environment. This requires a combination of physical observations, measurements, and 

computer imaging techniques.

This problem has diverse aspects, one of which is the study of ultrasonic

transducers and their interaction with the environment.

1.2 The Aim of this Thesis

This thesis evaluates methods for the modelling of ultrasonic transducers, 

especially piezoelectric block, piezoelectric film and electrostatic. Two types of facets 

are to be modelled; the vibration of the transducer itself (both resonant and forced) and, 

through coupling to air, the resultant acoustic wave motion.

Different approaches are possible, including experimental observations to build 

an empirical model for the evaluation of echoes and the prediction of object shapes. 

The aim of this thesis is to examine/evaluate the suitability of numerical techniques for
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this type of acoustics analysis, particularly the various 'element' methods like FEM, 

BEM* WEEM* etc.

Consequently, this thesis looks at a set of sub-problems, to arrive at some 

conclusions A how to model the transducers and their sound fields, and to ascertain 

the difficulty of achieving these goals. The sub-problems are :-

1) Can the techniques used and the models and equations developed for analysing 

structural vibration be directly transferred to this problem?

2) Is a special formulation of the Finite Element Method (FEM) required for 

acoustics problems?

3) Is the Boundary Element Method (BEM) a better approach? What about 

alternate formulations?

4) Are various kinds of mixed approaches, involving both the FEM and the BEM, 

more suitable?

5) What are the selection criteria for choosing between alternate approaches?

6) What elements are needed? What is their complexity?

7) What kind of software is needed? Would buying a commercial package be 

preferable to writing it oneself?

8) Which language is most suitable for 'Element Method' (EM) software programs? 

Are there any peculiarities that favour Fortran, the traditionally-used language? 

Are there any 'better' languages that can be used? What are the restrictions, if 

any, that preclude their use? What is the time frame for program development?

9) Are there any advantages in selecting a 'special' acoustics package (eg. 

SYSNOISE) rather than a general purpose problem-solver (eg. NASTRAN, 

ANSYS)?

10) Is the inverse problem possible? ie. given the sound field, can the cause of the 

sound field be recovered?

1. F€W £ FfNlTE eCEMEMT METHOD
2. &OUN&MV ECCMÊNT METHOb
â  w een \  wave envelope element m e t m »



1.3 The Approach

1.3.1 Diversity in Nature

Nature is fascinating in its various diverse life forms, each of which has specific 

biological systems that aid the organism in its day to day functioning. These biological 

systems are often 'tailor-made' to suit the organism's habitat and its preferred feeding 

pattern and mating rituals.

One very important biological system is the sense of hearing, which serves 

varied purposes in different organisms, ranging from locating, hunting and capturing of 

prey to a means of communication. Different organisms can perceive a different range 

of the sound spectrum, which varies from slightly more than 0 Hz to an upper limit of 

around 150 KHz. In Chapter 2, we examine the bat's hearing mechanism and study 

how echolocation helps in its 'night-to-night' activities.

1.3.2 Sound

The sense of hearing is the ability of living organisms to sense sound waves, 

which are mechanical disturbances that are propagated through solids, liquids and gases 

by longitudinal waves of alternate compression and decompression of the medium. The 

frequency of these waves is measured in cycles per second or Hertz (Hz).

Physical acoustics is the observation of sound in various physical systems, eg. 

strings vibrating, tuning forks, etc. Physiological acoustics is sound as observed by 

some sort of vibration sensing apparatus of biological origin, eg. bat hearing, in 

particular (Chapter 2).

I define 'Artificial' acoustics as the development of any man-made device that is 

used to study hearing, to prevent its deterioration (eg. ear-muffs, [Ciskowski91]) and to 

make it more acute (enhance sensitivity in the case of hearing loss).
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When I talk about acoustics, I use it in a loose sense to include all of the above 

categories.

1.3.3 The Difficulty in Modelling the Ear

The physical principles that have been developed over the years for physical 

acoustics can not be directly applied to the mechanism of hearing. Physical concepts 

like elasticity, plasticity, mass, viscosity, fluidity, etc, have no simple equivalents 

applicable in the case of the ear. Hence, it becomes difficult to develop mathematical 

physical models of the ear. Additionally, the ear is buried deep in the temporal bone, 

making measurements of equivalent physical properties tedious. Specialised surgical 

techniques have to be devised to overcome this hurdle, and, quite often, these still result 

in damage to the ear, hence making corresponding measurements imprecise 

[Khanna80]. Besides, the measuring instruments themselves can affect the quantity 

being measured and hence the accuracy of measurements.

Hearing is dynamic in nature. The use of cadavers permits static characteristics 

to be measured. Bekesy [60] states that, "the elasticity of the basilar membrane of a 

guinea pig remained within a few percent of its normal value for several hours after 

death", while the eardrum's stiffness does increase if suitable precautions are not taken.

In spite of the difficulties involved, various experiments have been performed 

[Bekesy60] and different mathematical and computational models have been proposed 

to explain the observed phenomena. Geisler [76] gives an overview of the maths 

models that developed for the cochlea, and discusses their limitations.

1.3.4 Artificial Hearing?

It is evident that naturally occurring biological mechanisms (eg. echolocation) 

provide a high degree of functionality and versatility. Hence, humans try to replicate 

these mechanisms for use in daily activities, and, to facilitate this duplication, they
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utilise the most convenient means, be it mechanical, electronic, etc. In particular, 

ultrasonic sensors have been used in diverse applications by ingenuously modifying a 

basic technique to suit the specific needs of the application. In Chapter 3, we examine 

the concept of the ideal transducer and study two basic transducer types, the 

electrostatic transducer and the piezoelectric transducer, used in the study of 

echolocation.

1.3.5 Modelling Views

In the study of any problem (study of transducers, in particular), we would like 

to know what is happening, understand how it happens and predict what would happen 

if various parameters are modified. There are two main approaches to the problem - the 

use of experimental observations or the use of numerical methods coupled with 

computer-aided-design. Their relative merits in tackling the problems stated above are 

depicted in Figure 1.1.

Figure 1.1: Comparison of Numerical Methods and Experiments [Migeot93].

The design, testing and debugging of physical systems by use of experimental 

observations is always an expensive process because it is very difficult to predict, 

necessitating manufacture of newer trial systems for subsequent observations. Instead, 

it is efficient to simulate the model of the process on a computer, permitting ’costly’ 

mistakes to be made much faster, but without the cost (and possible damage to human 

life), resulting in overall savings in time and money. In addition, various parameters in



the model can be 'tweaked' to predict the optimal physical model that will satisfy all 

design criteria.

It seems most appropriate to integrate both of the above methods; to combine 

accurate physical measurements with computer-aided design and numerical modelling 

methods. This potentially will give us the best of both worlds; the observations taken 

providing us with useful real-life data so that we can increase our knowledge quickly, 

while the numerical methods help us to predict optimal design solutions much faster.

1.3.6 Modelling Methods

Acoustic problems require one to be able to model the geometry of the problem 

accurately, and to provide various kinds of boundary conditions like damping and 

admittance, fluid-structure interaction and coupling, and radiation to infinity. Besides, 

it should be possible to simulate different materials.

Hence, we examine modelling methods like the FEM, the BEM and their 

coupled approaches to see if they are suitable for the problem. The specific derivations 

required for acoustics are reproduced in Chapter 4. We note that the latter will tend to 

be biased by the views of Numerical Integration Technologies (NIT), who have 

implemented SYSNOISE, a package that provides an acoustic implementation of both 

FEM and BEM.

We further discuss the advantages and disadvantages of the various methods 

and the criteria required to select a method for solving a given problem.

1.3.7 'Element Method’ Software?

With so many commercial 'Element' Method packages available, is it really 

necessary to develop one of our own?. Chapter 5 discusses the various elements used 

in formulating a problem and gives the rationalisation and justification for our views.
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Chapter 6 then discusses the software design details of our package FAME 

(Finite element Analysis in Modula-2 for Echolocation) and considers possible hooks 

for future enhancements and upgradation.

The FEM is a numerical analytical method for solving problems and the 

traditional approach would have been to use time-honoured FORTRAN to code it. 

However, we have implemented it in Modula-2 (M2) and Chapter 7 discusses the 

various language features required to solve numerical problems, and evaluates whether 

M2 is apt for the task. It also summarises debugging and porting problems, and the 

results obtained so far.

1.3.8 Is it worthwhile?

Gain of knowledge for immediate practical application and commercial 

exploitation is preferable to the pure gain of knowledge for its own sake. The 

development of better (more sensitive) ultrasonic transducers will open up applications 

in air that are not achievable with current technology.

For example, the ability to recognise an object's shape from its echoes could 

permit an 'intelligent' mobile robot to operate in environments that are dangerous to 

humans. Of course, in this respect, the machine's cost could be an inhibitory factor, but 

that is a different issue!

Object recognition could also be used to design a 'seeing' eye for blind people 

(assuming that their hearing is not impaired!) It could be in the form of a head-phone, 

thus freeing up the person's hands. An ultrasonic pulse/chirp could be emitted and the 

echoes processed and translated into audible frequencies, one for each of 4 or 8 

directions. Loudness would indicate nearness.

Once the skeleton of the software has been developed, it provides a structure 

which future researchers can utilise to develop more complex models, such as those 

involving transducers and their interaction with the environment. Chapter 8 suggests 

future enhancements and summarises the results of this research.
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Chapter 2 - Bats and Echolocation

2.1 Introduction

In this chapter, we will take an in depth view of hearing peculiarities in bats. 

We will then go on to study their specialised development and functionality in the 

particular case of the moustached bat and hence consider the relevance of developing 

mathematical models to mimic the performance of bats.

2.2 The Mechanism of Hearing

The fundamental structure of the bat's ear can be broken up into 3 parts:- the 

external ear, the middle ear and the inner ear. The external ear serves a dual purpose. 

Firstly, it is a protection to the ear drum and the inner ear. Secondly, it behaves as a 

resonator and amplifies and focuses the sound energy of certain frequencies that are 

critical to the life cycle of the organism. The tympanic membrane or eardrum lies at or 

near the body surface. Sound waves impinge on it and are transmitted through to the 

fluid filled chambers of the inner ear (cochlea) via the bony structures of the middle ear 

(Figure 2.1). When sound crosses the interface between two different media, there is 

usually loss of sound energy if one of the media is liquid while the other is gaseous. 

The middle ear amplifies the sound signal and ensures that information content is not 

lost in the process of transmission of sound to the fluid of the inner ear.
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HIGH FREQUENCY — LOW FREQUENCY 

Figure 2.1: Block Diagram of the Bat's ear [Suga90].

Within the cochlea is the basilar membrane, which is vibrated at the outer part 

by high frequencies, and at the inner part by lower frequencies (Figure 2.1). Frequency 

coding in the cochlea is done via two mechanisms. At low frequencies (up to 3 KHz), 

the periodicity principle operates. Nerve fibres fire in phase with the acoustic stimulus 

and directly reflect its periodicity. At middle to high frequencies, the place principle 

operates. Here the acoustic frequency is directly linked to a position in the cochlea, 

and the presence of the given stimulus activates the nerve fibre present at that location.

The mechanism of sound localisation is quite tricky. Heads act as a sound 

shadow at certain frequencies. Hence, the sound is more intense in the ear nearer the 

source. In addition, there will

be a slight delay in the arrival of sound in the far ear. These two differences, one in 

loudness and the other in arrival time at the two ears, function as cues to

enable localisation of the position of the sound. The techniques involved require and 

attain a high degree of precision.

2.3 Bats and Echolocation - An Introduction

Bats are nocturnal mammals and have to rely almost exclusively on their sense 

of hearing to derive any information about their environment. As a result they have 

evolved the system of écholocation to facilitate them in navigation and in locating prey.
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Echolocation is a means of imaging the environment by the vocal emission of sound 

pulses which are reflected from surrounding objects.

?----------------------------------------------------------------------------- 1
TIME DELAY

A_______1

DOPPLER SHIFT 
AND FLUTTER

SUBTENDED 
ANCLE PLUS 
DISTANCE — SIZE

SUBTENDED ANCLE

ELEVATION

Figure 2.2: Information obtained by bats through écholocation [Suga90].

The bats process the echoes and manage to extract a wealth of information from 

them (Figure 2.2). The time delay of the echo indicates the distance of the target. The 

amplitude of the echo, combined with the time delay, indicates the size of the target. 

The amplitudes of the component frequencies correspond to the size of various features 

of the target. Differences between the ears in intensity and arrival time of the sound 

echoes give the azimuth (angular deviation in the horizontal plane) of the target, while 

the interference pattern of sound waves reflected in the structure of the outer ear gives 

the elevation (angular deviation in the vertical plane). Doppler shifts (changes in the
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frequency of the echo relative to the original signal) inform about the relative velocity 

of the flying insect and its wing beat.

Leaves and ground and other stationary objects may produce stronger echoes 

than smaller insects and prey. These misleading signals are known as echo clutter. 

Bats solve this problem by use of fluttering target detection, changing echo colours or 

by listening to prey generated noises [Neuweiler89].

2.3.1 Pulse Types used by Bats

The Bat calls can be classified into three main types; constant frequency (CF), 

frequency modulated (FM) and combined CF/FM (Figure 2.3). CF pulses consist of a 

single tone. FM pulses start at a high frequency and sweep downwards to a lower 

frequency passing through all intermediate frequencies. They sound like chirps. 

CF/FM pulses are a long tone followed by a downward chirp. Tones may usually also 

include overtones (multiples of the fundamental frequency).

These pulse types are strongly dependent on the specific foraging areas in 

which the bat feeds [Neuweiler89]. Those species foraging high above vegetation and 

in the open spaces between vegetation emit pure tones while searching for insects and
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then switch to FM sounds when actually hunting prey (Figure 2.3). Species hunting 

around and within dense foliage usually use a CF/FM signal. Species searching for 

prey on leaves and on the ground rely exclusively on FM signals to hunt.

2.3.2 Efficacy of the Different Pulse Types

Sound waves are reflected by an object if their wavelengths are shorter than the 

object's dimensions. Lower frequencies will only give an outline of the entire object 

with no details of its configuration or texture. Hence, high frequencies and shorter 

wavelengths are ideal for detecting echoes from insects or other small objects.

Unfortunately, high frequencies propagate -for oniu short distances in air before 

beuuj ̂  attenuated. So high frequency signals must be emitted at very high pressure 

levels if they are to be transmitted over long distances.

To solve the above problems, certain bat species control the energy in each 

harmonic they emit. If the target is far, they amplify the lower harmonics which are 

less attenuated in air. If the target is near, they amplify the higher harmonics to obtain 

finer details of the target.

CF pulses are ideal for detecting Doppler shifts and targets larger than the 

wavelength of the signal. However, they can not locate a target precisely nor provide 

fine details. FM pulses can provide fine details about the target. They also contain 

more temporal information and are used to compute echo delays and distance to the 

target.

As they close in on the prey, FM bats (like the little brown bat) increase the rate 

of pulse emission and simultaneously reduce the duration of the emitted pulse. This 

serves to obtain finer details of the prey and also to track it more accurately.
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2.4 The Moustached Bat

The moustached bat is adept in the art of fluttering target detection. It easily 

detects the ripples from insect wings against echoes of stationary backgrounds. Nobuo 

Suga [90] has done an in depth study of its auditory system. The following is a 

summary of his work.

2.4.1 Detection of Acoustic Signals

The moustached bat is a CF/FM type emitter. At rest, it emits a fundamental 

tone (CF1) of 30.5 KHz with three higher harmonics. The resting frequency of the 

second harmonic (CF2) is 61 KHz while that of the third harmonic (CF3) is 92 KHz.

If the bat detects an echo Doppler-shifted to 63 KHz, it reduces its emitted 

frequency by about 1.8 KHz, so that the echoes are stabilised at around 61.2 KHz (its 

reference frequency). This is known as Doppler Shift Compensation (DSC).

Nature has enabled these bats to be able to detect very small frequency shifts 

(0.01%) near the reference frequency (within the range 61-61.5 KHz). In addition, the 

echo of the emitted frequency is masked out due to high insensitivity of the neurons of 

the inner ear to frequencies around 59 KHz.

The neurons of the basilar membrane of the inner ear are sharply tuned to single 

frequencies within the reference frequency range and are able to detect the signal even 

if it is embedded in background noise.

2.4.2 Processing of Acoustic Signals

Subsequent to coding of the acoustic signal into nerve signals, further 

processing is done in the central auditory cortex, in which function specific regions are 

present.
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Figure 2.4: Parallel Processing of the various CF and FM harmonics to obtain the relevant echo

information [Suga90].

2.4.2.1 The DSCF Region

This region is responsive to the frequencies and the amplitudes of the echoes 

(Figure 2.4). It consists of a neuron matrix, where each neuron is tuned to a specific 

frequency (around CF2) and a specific amplitude. Consequently, small variations 

around the reference frequency can be accurately detected. This region is thought to be 

responsible for the precision of DSC. Any damage to it results in much longer times to 

perform DSC and reduces performance.

2.4.2.2 The CF/CF Region

This region is responsive to the frequency differences between the pulses and 

the echoes. This type of response has been observed in two areas. The first has a
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neuron matrix of CF1 versus CF2 while the second has a neuron matrix of CF1 versus 

CF3. Each location in the matrix specifies a particular relative target velocity, varying 

from minus 2 to plus 9 m/s. Velocities from 0 to 4 m/s have been emphasised, as these 

speeds arise during critical activities. A neuron here can become sensitive to a paired 

signal 6,300 times weaker than the unpaired signal alone.

2.4.2.3 The FM/FM Region

This region is sensitive to the time intervals between the pulses and the echoes. 

It comprises a matrix of FM pulses and echoes. There are separate areas for emitted 

pulses FM1 versus the delayed echoes FM2, FM3, FM4 respectively. Each neuron 

here is specifically tuned to a particular pulse-echo delay and most also prefer a 

particular echo amplitude. This translates to a target at a particular distance having a 

specific size. Delays ranging from 0.4 to 18 milliseconds can be sensed and this 

corresponds to distances ranging from 70 to 3100 mm with a resolution of about 10 

mm. A neuron here can become sensitive to a paired signal 28,000 times weaker than 

either signal alone.

2.4.3 Need for the First Harmonic?

The first harmonic is the weakest component of the pulse, containing less than 

1% of the total energy in the pulse. Hence it cannot be heard by any of the other bats 

nearby. However, it is conducted to the ears of the emitting bat through its own body 

tissues. It thus acts as a signature and helps in identifying all the other vocal emissions 

of the bat. It also provides a reference frequency so that it can filter and reject the 

sounds of all the other bats.
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2.5 Modelling of the Vocal and Audio Systems of Bats

How do bats manage to emit such complicated frequencies?

Roderick Suthers [88] describes developments in the laryngeal physiology and 

vocal tract acoustics of three families of echolocating bats. From his description, it is 

clear that there is no generalised vocal tract model that will apply to all species of 

echolocating bats.

In spite of this limitation, researchers continue to develop more sophisticated 

mathematical models of the acoustic system of bats.

Patrick Flandrin [88] used time-frequency distributions for signal analysis and 

signal processing. Signal analysis helps describe the time varying portion of bat 

signals, while signal processing helps formulate receiver models for bats via a time- 

frequency modulation.

Richard Altes [88] conducted behavioural experiments to examine time- 

frequency signal representation. Below is a quote from his conclusions.

"Recent behavioural experiments seem to indicate that detectors 

designed for random signals are the most likely candidates for 

écholocation. Random echoes are obtained when nonrandom (or 

random) signals are passed through filters with randomly time-varying 

coefficients. Such filters can be used to model scattering of sound from 

a fluttering insect."

2.6 Conclusion

Echolocation is a biological marvel. It consists of a customised closed loop 

control system. This customization occurs at both the macro and the micro levels. At 

the macro level, it operates on a regional basis, providing each different species of bats
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vocal and audio characteristics to suit their hunting habitat and habits. At the micro 

level, it operates within a species, Voice-printing' each bat with its individual vocal 

signature.

The 'how' of a bat's acoustic system is known, but the 'why' is still an unknown 

factor [Oxford64]. In other words, why DOES the bat's acoustic system work? What 

are the individual components that comprise the entire control system? How do they 

link together? These are relevant questions to which there are no answers at present!

Carver A. Mead [91] is attempting to throw some 'sound' on the situation by 

designing his artificial cochlea.

I will evaluate the FEM and other 'Element Methods' to see whether, through 

their use, we can gain any new insights into this phenomenon.
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Chapter 3 - Ultrasonic Transducers

3.1 Introduction

Ultrasonic sensors have been in use for many years in mediums other than air. 

They have been used extensively for underwater purposes such as exploration, range 

measurement and for the study of dolphins, whales and bats. In addition, in the medical 

field, they have been used for non-invasive diagnosis of various ailments.

More recently, improved procedures have been developed that permit a larger 

energy transfer from an ultrasonic transmitter to air. This has led to a spurt in research 

relating to the use of ultrasonic devices in two dimensional (2-D) and three dimensional 

(3-D) mapping of the environment using audio 'images' [McKerrow93] and in the 

related study of bats and echolocation.

Other regions of interest include determining parameters such as position, 

distance, thickness, slope and orientation.

The common underlying theme appears to be to apply the knowledge gained to 

improve the ability of 'semi-intelligent' machines to sense and identify their 

environment and subsequently interact with it [RoboScrub93].

3.2 Basic Detection Techniques

All ultrasonic systems transmit high frequency sounds (>20 KHz) through the 

air to the receiver which converts the acoustic energy into an electrical signal.

The system can use either one or two transducers. In the former case, duplexing 

ensures that the single transducer is used for both transmitting and receiving. In the 

latter, one is used for transmitting and the other for receiving.

18



Duplexing is used quite often because it uses only one transducer, hence saving 

cost and space, and ensures that both the transmitter and the receiver are pointed along 

the same acoustic axis, avoiding parallax errors. Its major disadvantage is that it creates 

a blind zone. This is a region close to the transducer in which no object can be 

detected. Duplexing is usually used for the detection of contours and small targets.

On the other hand, the use of a two transducer system eliminates the blind zone, 

at the cost of parallax. It also permits the transducer to be optimised for efficiency. 

Transmitters are designed for maximum mechanical power transfer while receivers are 

optimised for maximum voltage sensitivity [Lamancusa88].

There are four main types of systems [Monchaud87].

1) Continuous wave (CW) ultrasonic systems send out a signal continuously. 

Echoes are continually picked up from the surrounding objects. An amplitude 

sensitive detector responds to changes in the echo signal magnitude caused by a 

moving target.

2) In the impulse echo mode, the transmitter is pulsed and the time interval 

between the transmitted pulse and the received echo is used to determine the 

range. To aid in linking the echo to its parent pulse, usually only one pulse is in 

the air at a given instant.

3) Sophisticated ultrasonic systems use frequency modulated, continuous wave 

(FM/CW) chirps to measure both distance and relative velocity.

4) A system developed as a blind aid [Kay86] uses a continuously transmitted 

frequency modulated (CTFM) signal to permit continuous sensing in air.

3.3 The Ideal Transducer

Before we examine the two main types of ultrasonic transducers, we require to

have some reference model. Hence, it is instructive to consider an ideal transducer as 

applied to ultrasonics.

19



A transducer may be defined as any device that is capable of converting some

form of energy to another. Ideally, it should be [Hunt82]:-

1) linear, where the output variables are linear functions of the input variables,

2) passive, where all the energy delivered to the output load is only obtained from 

the input source, and

3) reversible, where energy can be converted in either direction.

One further requirement is,

4) efficiency, where all the power should be transferred from input to output, 

resulting in 100% efficiency. This implies impedance matching between the 

transducer and air.
press  p5

For ultrasonic transducers, the radiatedAfield^must satisfy the Sommerfeld 

radiation condition at a large distance, r ,  from the body.

ie. lim ra
r—

=  0 3.1

where CL — 1 for 3-D and CL — for 2-D.

This condition implies that the infinite regions do not contribute to the radiation field, 

and hence require no special attention.

3.4 Flat Circular Piston in an Infinite Baffle

Consider an infinite plane that is at rest in all regions except for a small circular 

region, of radius CL, that vibrates harmonically, with velocity Vq.

The total sound pressure at some arbitrary point X can be given by [Kuttruff91]

p(x , t) = v0Z0^ lkx- e- ik̂ )jeiox ..................  3.2
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where

Z q is the characteristic impedance of the medium 

CO is the angular frequency of the oscillation
, _  co 2 n f
k  — —  —-------is the wave number

C C

where f  is the frequency

C is the speed of sound in the medium

Figure 3.1: Approximate extension of the sound field in front of a circular piston with ka »  1

[Kuttruff91].

As shown in Figure 3.1 [Kuttruff91], equation 3.2 describes the sound intensity

in front of the piston as a 'near field', which is approximately a circular tube of radius CL 
and length Vy , beyond which exists the 'far field', which is a conical region, whose top

lies at the piston's centre and whose radius is CL at f y , extending to infinity.

In reality, the equation does result in a slightly more complex near field, whose 

outer envelope can be approximated as specified above, and exhibits the inverse square 

law in the far field [Bjomo86 ].

The directivity or radiation pattern of the circular piston varies with kCL, which 

equals the circumference of the piston divided by the wavelength. Typical plots are 

shown in Figure 3.2 [Kuttruff91].
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ka 1 2

kacS

Figure 3.2: Directional pattern of the sound pressure amplitude of a circular piston for various values of

ka [Kuttruff91].

As is obvious, for small k d  ( k d  = 2), the piston acts like a point source with a 

circular wavefront. But as k d  increases, the piston acts as a multiple point source and 

the ensuing interaction between the individual wavefronts results in maxima and 

minima, creating one main lobe and 2 or more side lobes. Also obvious, beamwidth 

decreases with increasing k d .

For maximum power transfer, we require that the impedance of the piston be 

matched to that of the medium. For efficient transfer of sound energy to air, we need 

the entire transducer surface to oscillate uniformly with equal amplitude and phase. 

Hence the forcing function should be capable of extracting such performance. If this is 

not directly possible, then some additional means for coupling should be used, such as a 

mechanical membrane [Babic91] or acoustic impedance matching materials [Magori87]
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Fluid loading only plays an important part when the effects of the fluid on the 

structure cannot be neglected. Usually fluid loading by air can be neglected due to its 

small resistance. However, for very light structures, it becomes necessary to consider 

its effects, eg. in loudspeaker analysis, the speaker membrane has very little stiffness 

and is very light. When water is the medium, the coupling effects cannot be isolated, 

due to the large mass of water.

3.5 The Polaroid (Electrostatic) Transducer

The principle of the electrostatic transducer has been used to develop the 

Polaroid transducer which performs precise automatic focusing of the camera lens of 

the Polaroid SX-70 Sonar Camera.

The transducer assembly is shown in Figure 3.3 [Biber80]. It consists of a 

plastic (Kapton) foil plated with gold on the front side and stretched over an aluminium 

backplate, which has a series of concentric grooves. The backplate and the foil together 

represent an electrical capacitor.

HOUSING GOLD PLATED PLASTIC FOIL

300 VOLTS

Figure 3.3: Block diagram of Polaroid Electrostatic Transducer [Biber80].
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The operating principle of this transducer is explained below [Biber80]. A 

steady bias voltage (300V) is applied across the backplate and the foil, generating an 

attractive force between them. An alternating voltage is superimposed on this bias 

voltage. It changes the force of attraction in a manner proportional to the alternating 

voltage and at the same frequency. The foil vibrates in response to this force and hence 

transmits an acoustic signal into the air.

The force exerted on the diaphragm [Kuhl54], and consequently the sound 

pressure, is proportional to: [U + U sitl (Ot) .

i e - f  d  x  ( u  +  U  s i n  ( Q t )  .............................................................  3.3

where

U is the DC voltage 

U is the AC voltage

The device can also be used as a receiver. The acoustic signal causes the foil to 

vibrate and hence there is a periodic change in capacitance between the foil and the 

backplate. This varying capacitance is converted to voltage via suitable electronics.

i

.0 ! • ■ 1 ■ 1 i'•*“« » » •• » W 1* M m 'M
Typical Free Field Receive Response

Figure 3.4a: Polaroid Electrostatic Transducer response plots [Polaroid80],
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T y p ic a l  Beam Pattern  A t  50  k H z  N o te :  ab n o rm a l iz e d  to on-axis  response 
N o te :  curves are representat ive  o n ly .  Ind iv idua l  responses m a y  d i f fe r .

Figure 3.4b: Polaroid Electrostatic Transducer Directivity plot [Polaroid80].

The resulting frequency plot and beam width are given in Figures 3.4a and 3.4b 

respectively [Polaroid80]. We note that with a diameter of 4.013 cm and a frequency of 

50 KHz, k d  -  19, which accounts for the high directivity of the beam pattern. Also 

note the large differences in sensitivity between transmission and reception. Its
I

minimum transmitting and receiving sensitivities at 50 KHz are 107 dB and -45 dB
1

respectively [Polaroid80].
!•
ii
ffr
(

3.6 The Piezoelectric Transducer \

3.6.1 The Principle

If a static or dynamic pressure is applied to certain natural crystalline substances 

like quartz or Rochelle salt, a DC or AC voltage is generated respectively. Conversely, 

if a voltage is applied to these crystals, they exhibit a mechanical vibration. This 

relationship between the electrical and mechanical effects is known as the piezoelectric 

effect.

Certain ceramics, like PZT (Section 3.6.2), require to be poled before they 

exhibit the piezoelectric effect. Poling is the momentary application of a strong direct 

current, which converts an isotropic ceramic into an anisotropic piezoceramic.
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These piezoelectric substances usually have a natural frequency of vibration. If 

the applied frequency matches this natural frequency, then the substance will resonate. 

This frequency selectivity is exploited for sensing applications.

The piezoelectric transducer can either be a transmitter or a receiver or both. If 

the applied voltage varies at an ultrasonic frequency, the transducer vibrates at the same 

frequency and transmits these vibrations via a diaphragm to the surrounding air and 

thus produces ultrasonic waves. As a receiver, the received input frequency generates a 

proportional AC voltage. This voltage is amplified and processed.

3.6.2 Materials

Ferroelectric materials like barium titanate ( B c i T i 0 2 ) and lead zirconate 

titanate ( P b ( Z r , T c JO3) (PZT) are in powder form and so are used in 

piezoceramics.

There are also piezoelectric high polymers like polyvinylidene fluoride (PVDF 

or PVF2). .

3.6.3 Design is Critical

The design of piezoelectric transducers is critical. The natural frequency of 

these resonators is inversely proportional to the thickness. However, no matter the 

shape of the element, a number of natural modes of vibration exist. Hence, all 

dimensions should be precisely specified to prevent coupling between various modes of 

vibration when the driving frequency is close to one of the other modal frequencies. 

Even minor coupling can lead to degradation of the overall transducer's performance. 

[Smith84] So accurate modelling of piezoelectric transducers must include this cross

coupling.
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3.6.4 M odes of O peration

Piezoelectric substances have various modes of operation. In piezoelectric 

crystals, these are controlled by the placement of electrodes (the direction of the electric 

field) and the alignment of the crystallographic axes [Berlincourt64]. Piezoceramics 

additionally require appropriate poling to ensure the best possible alignment of the 

dipoles.

1. Thin Disc Radial Mode 3 Electroded on flat surfaces. 
Poled through thickness. 
Frequency constant N =dia X fr

Capacitance dia X £r 
5.664 X th

Zrx  (5.664) (Co) (th) 
dia

2. Thin Disc or Plate Thickness Mode 3 Electroded on flat surfaces. 
Poled through thickness. 
Frequency constant N = th X fr

Capacitance dia X e r 
5.664 X th

£ r _ (5.664) (Co) (th) 
dia

3. Long thin Bar Length Mode Electroded on shaded surfaces. 
Poled through thickness 
Frequency constant N = L X fr

C apaw anca - .P *  area.

„  (4 448) (Co) (th)
------arei------

Electroded on shaded stripes.
Poled between stripes.
Frequency constant N = mean dia X fr

Capacitance £r X area 
4.448 X th X .8

4,448 (Co) (ave space between stripe) 
(wall) (L) (N)

N « number of stripes

Figure 3.5a: Modes of vibration of the Piezoelectric resonator [Seippel83].
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5. Th in  w all T u b e  
L ength  M ode

1 Electroded on ends 
Poled through length. 
Frequency constant N = L X fr

Capacitance = (OD -  ID ) X Sr 
5.664 X th

6. Thin  w all T u b e  
Th ickness  M od e

3 Electroded on curved surfaces. 
Poled through wall thickness. 
Frequency constant N = th X fr

A Sr X L
Capacitance  ---------------------- — -

1.628 X (tog 1 0 ^2 ) 
ID

(1.628) (Co) (log 1 0 ^ )
Sr = ----------------------------------

L

7. Thin w all S phere  
Radial M ode

Electroded on curved surfaces.
Poiea through wall thickness. 
Frequency constant N: = mean dia X fr

8- Shear Plate Electroded on shaded surfaces. 
Poled through thickness. (3 axis) 
Frequency constant N̂  = th X fr

^ Sr X area
Capacitance--4 448Xth

(4,448) (Co) (th) 
area

Figure 3.5b: Modes of vibration of the Piezoelectric resonator [Seippel83].

The various modes of vibration achieved with different shapes and poling 

characteristics are summarised in Figures 3.5a and 3.5b.

Let us consider some simple modes applied to the quartz crystal in Figure 3.6. 

Assuming the international convention for crystallographic axes is applied, we have the

28



z-axis as shown. Any one of the three x-axes can be selected (all are equivalent). 

Then, the y-axis is chosen so that x, y and z-axes form a right-handed co-ordinate 

system.

I z I I I

Figure 3.6: Quartz crystal. [Kuttruff91].

y
(a)

(b )

Figure 3.7: Relation between the piezoelectric moduli and the deformation of a quartz plate;

(a) x-cut, (b) y-cut [Kuttruff91].

Now, the x-cut is cut out of a quartz crystal perpendicular to its crystallographic 

x-axis (Figure 3.7). The electric field is applied parallel to the x-axis. This results in a
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tensile stress (7 ^  that tends to increase/decrease the thickness of the plate (longitudinal 

effect) and a corresponding 'opposite' tensile stress (7 that tends to decrease/increase 

a lateral dimension (transverse effect). A shear stress (7 (associated with shearzy

deformation) is also produced.

Similarly, the y-cut (perpendicular to the y-axis) has two shear stresses, (7xy

and G zx, while the z-cut does not exhibit piezoelectricity as all the corresponding 

constants are zero.

In similar fashion, all other piezo-resonators have different modes of operation. 

The interested reader is referred to Seippel [83] or Berlincourt [64]. Figure 3.5 

illustrates some of the principal shapes and direction of polarisation and modes of 

vibration of the more commonly used driving elements.

3.6.5 Bimorph sensors

The change in dimensions of a disc of piezoelectric material under voltages 

below the breakdown level is small. The discs are also quite stiff and this limits the 

amplitudes of their vibrations. Bimorph structures are used to overcome these 

limitations (Figure 3.8).

Figure 3.8: Bimorph composite structures for ultrasonic sensors; 

(a) trilaminar, (b) bilaminar and (c) bimorph [Bjomo86].
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Structure (a) consists of two similar PZT ceramic discs attached to a central 

metallic disc. Electrodes are connected to both ceramic discs, which are poled in the 

same sense if the output terminals are to be the central metal disc and either of the outer 

electrodes. If the output terminals are to be the outer electrodes, then the ceramic discs 

are poled in the opposite sense. Alternately, a single ceramic disc could be attached to 

the metallic disc to give structure (b). The central metal disc in (a) may be so thin as to 

be negligible and this gives rise to structure (c). These composite structures (a), (b) and 

(c) are known as trilaminar, bilaminar and bimorph structures respectively.

When an excitation voltage is applied to the electrodes of the discs, the 

piezoelectric ceramic composite flexes in and out in a motion perpendicular to the plane 

of the disc. This flexural vibration can be transferred to the fluid around the 

composites. The transfer of acoustic energy may occur either via a coupling structure 

such as a diaphragm [Babic91] or by direct coupling to the fluid medium [Magori87].

Figure 3.9a: Schematic of RU type high-directivity ultrasonic transducer;

(1) piezoceramic disk, (2) matching element, (3) metal ring, (4) maximum radiation direction.

[Magori87]

This latter phenomenon is exploited in the Siemen's RU-x series of transducers 

(Figure 3.9a), where the outer periphery of the radial transducer is clamped. The radial 

resonance mode is preferred because all spurious resonance modes are far separated 

from it, and, compared to the thickness mode vibrator, it requires less material for a 

larger surface resonance excitation, other parameters being the same [Magori87]. It 

requires a special matching element to improve signal transmission to the medium. 

Figures. 3.9b and 3.9c show its typical motion and high directivity.
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Figure 3.9b: Motion of radiating surface of RU type high-directivity ultrasonic transducer in 3

successive phases [Magori87].

Figure 3.9c: Radiation pattern of RU type high-directivity ultrasonic transducer [Magori87].

3.6.6 PVF2

PVF2 is a piezoelectric transducer available in sheet form. It has excellent 

linearity and low hysteresis. Due to its thin film format, it can be used as shown in 

Figure 3.10.

Vottepe-eppfcceuon Direction

2 AXIS (3 )

T A X IS  ( 2 )

Amplitude Direction 
tPoiym eaelioftel 

X AXIS ( I ) Direction)

Sound Wave

Figure 3.10: Piezoelectric high-polymer and its transmitting mode; left (undamped) and right (clamped)

[Schoenwald87].
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Referring to the left side of the figure, when a sinusoidal field is applied to the 

PVF2 sheet along the normal axis (z), the sheet vibrates along the transverse axis (x).

When the sheet is firmly clamped at the two ends (right side of figure), 

compressional waves (basically, sound) can be excited or detected [Schoenwald87].

A transducer based on this principle has been developed by CSIRO Applied 

Physics. It has a 12 dB better response than the Polaroid transducer.

3.6.7 Piezoelectric Equations

Piezoelectric materials are intrinsically anisotropic and involve the coupling of 

elastic and dielectric phenomena.

The coefficients are typically arranged in a 9x9 matrix, where each column 

describes an independent stress variable (eg. elastic stress component or electric field 

component) and each row describes a dependent strain variable (eg. geometric strain 

component or electric dipole component).

The piezoelectric constants are third-order tensors relating second order 

symmetric tensors (stress or strain) to vectors (electric field or charge density). The 

elastic constants are fourth-order tensors relating two second-order symmetric tensors. 

The dielectric constants are second-order tensors relating two vectors.

Hence, for any direction of propagation, there are three possible acoustic waves 

with mutually perpendicular directions of propagation, and, usually, different velocities. 

The corresponding physical constants and variables have components along all three 

axes. These components interact with each other, resulting in tensors.

Let us consider a very simplistic derivation to obtain the basic piezoelectric 

equations.
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3.6.7.1 Simple derivation

Let E, D, T and S correspond to the electric field, electric displacement, 

stieatr stress and strain components respectively.

We get four different sets of relations, by selecting any two of the above to be 

independent variables, and making the others dependent.

In particular, if T and D are functions of S and E, we have:

T = T(S,E)  .......................................................  3.4

and D = D(S,E)  ...............................................................  3.5

By Taylor's expansion for small fields, we get the following constitutive 

equations:-

T =UsJ S +UeJ

and D = (dD)  J d D )
V d S  )  £ v d E

3.6

3.7

In matrix representation, equations 3.6 and 3.7 become

{T} = [c]E{S}-[ef{E}  ....................................... 3.8

and { D }  =  M { S }  +  [ £ ] 5 { £ } ....................................... 3.9

where

{ 7 } is a 6-by-l stress vector

34



{ 5 }  is a 6-by-l strain vector

{Z3} is a 3-by-l electric displacement vector

{ £ }  is a 3-by-l electric field vector

[c]  is 6-by-6 elastic stiffness matrix for constant field E

[ p ] is 3-by-6 piezoelectric coefficient matrix

[ £  ] is 3-by-3 dielectric coefficient matrix for constant strain S

r r n r is  (TaUe3*()
We note that [CJ , [P j and [£ ]  are material property constants. These are

A

affected by various parameters like the type and composition of the materials and the 

cut used.

The exact equations have been derived from thermodynamic potentials 

[Berlincourt64], and the interested reader is referred there.

Table 3.1: Material data of the piezoelectric material VIBRIT 420 [Lerch90] 

Density: p = 1600kg / rn .

Elastic Stiffness constants: [c]E =

Piezoelectric constants:

Dielectric constants:

M

[£]S =

"14.9 10.1 9.8 0 0 0
14.9 VO oo 0 0 0

14.3 0 0 0
10107V

2.2 0 0
2.2 0

- 2.4

0 0 0 0 11.7 o '
0 0 0 11.7 0 0 As / m2

-5.4 -5.4 13.5 0 0 0_

"8.0 0 0 '
0 8.0 0 10'" A s / V m
0 0 7.2
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Chapter 4 - Element Methods

4.1 The Finite Element Method

The Finite Element Method is a computer-aided mathematical 

technique for obtaining approximate numerical solutions to the abstract 

equations of calculus that predict the response of physical systems 

subjected to external influences."

David S. Burnett [Bumett88]

The total problem domain is modelled by subdividing it into regions called 

finite elements, each of which is fully specified by a set of functions that describe all 

the variables in that region. These specially chosen functions ensure continuity of 

behaviour through the entire domain, and with their help an approximate solution is 

interpolated. A description of the intricacies of the FEM for the solution of 1-D general 

problems is detailed in Appendix E.

The FEM can be used to solve:-

Boundary Value problems (BDVP), eg. equilibrium or steady state problems 

Eigenproblems (EIGP), eg. resonance or stability problems 

Initial Boundary Value problems (IB VP), eg. vibration or diffusion problems 

Dynamics problems (DYNP), eg. wave propagation problems.

The partial differential equations (PDEs) for the above types of problems are 

listed in Appendix C.
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4.1.1 Derivation of Acoustics FEM

When solving acoustic problems, the Helmholtz equation is utilised most 

frequently. So we state the necessary boundary conditions (BCs) and derive the 

equations for acoustic FEM.

In some arbitrary domain V , we have the Helmholtz equation (Appendix B)

V 2p  +  k 2p  =  0 4.1

The surface of the domain can be split into 3 regions, 5 2 , and S 3, on each 

of which a different boundary condition (BC) can be applied.

S l : p  =  p  , (a specified pressure) 4.2

S 2 : Vn — Vn <=> d np  — —ipCOVn , (a specified normal velocity) 4.3

V,
S 3 - A n =  —  ^ d n P  =  ~ i p a A np ,  (a normal admittance) 4.4

p

Now, note that at all points on the surface, one and only one of the above 

conditions must hold.

In a FEM calculation, Sj is usually satisfied exactly by the approximate
* * 

solution p  , and hence generates no residual. Substitution of p  in equations 4.1, 4.3

and 4.4 would usually result in some remainder left over due to the inexact nature of 
*

p  . This gives us the corresponding residuals.

R v = V 2 p * + k 2 p 4.5
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r s2 = - d nP* - i p o y v n 4.6

R s3 = ~ d nP* ~ i p a A np*  ................................................  4.7

To obtain the best solution, we would prefer all BCs to be satisfied and hence all 

residuals (or the sum of their averages over their region of relevance) should be zero. 

So application of the Method of Weighted Residuals, for some specified weighting 

function W , gives us

\ W  R v d V  +  R ^ d S  +  \ w  R s d S  =  0  .. .. 4.8

V S2 S3

Substituting for the residuals, we obtain,

J W ( V 2 p *  +  k 2 p* ) d V  -  J W ( d np *  +  ipcovn }dS

v  Sl

- j w ( d np* +  ipcoAnp* }dS  =  0
Si

....................................................  4.9

Integrating the first term of equation 4.9 by parts gives us

J ( ~ d kW . d kp * +  k 2 Wp* )d V  +  j w .  d np * d S

s

-  J w ( d np * +  ip(dvn )d S  -  J w ( d np*  +  ip(0Anp * )d S  =  0
s2 s3

......................................................... 4.10
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The second term of equation 4.10 is a positive integral over the entire surface, 

S .  Its positive value over 5*2 and S 3 would cancel out with the corresponding

negative integrals in the third and fourth terms, resulting in

\ { - d kW . d kp * +  k 2 W p * ) d V  +  j w . d np * d S

Si

- i p c o j w . v nd S  -  i p c o j  W . A np * d S  =  0

Since we have fixed pressure conditions on the surface, we select W  such that 

W  =  0  on 5}. This eliminates the integral over 5^ in equation 4 .11, giving us

J ( ~ d kW . d kp * +  k 2W p * )dV -  i p c o j  W . v nd S  -  i p c o j \ V . A np * d S  =  0

s2 s3

...................................................  4.12

Defíne the shape function to be

/?* =  ^  P i ^ i  (away from S j) .. 4.13

Using the Galerkin Method, we let the weighting function W  =  giving us

[ \ { - d kN i . d kN j  +  k 2N iN j ) d v ) . p j - i p ( ù \ v nN id S
Si

f

i p c o j  A nN ¿N j d S  \.pj =  0  

V i

4.14
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Collecting terms of P j  on the left hand side (LHS) and taking all other terms to 

the right hand side (RHS), and writing in matrix notation, we get

d ^ . d . N d V
-1 c A r  r N : N :  1 A

+  i p ( D J  A t N i N j d S
_S3 .

-  ft)2

1--
---

- 1

V
 

1__
__

J

—i p  CO

4.15

Equation 4.15 has the form

( [ K ]  +  i p c o [ C ] -  o ) 2 [ M ] ) { p }  =  - i p c o { F }  .. .. 4.16

where

[ K ]  =  [ k i j } =  [ j d kN i . d k N j d v ' is 'acoustic stiffness' matrix 

.. .. 4.17

[C ]  =  k l  = \ \ N > N t d S

s3

[ M ]  =  [ m i J ] =  J - ^ V

is 'acoustic damping' matrix

..........................  4.18

is 'acoustic mass’ matrix

..........................  4.19

{ F }  =  { f i } =  J v A r f S > is 'acoustic forces' matrix

4.20
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Equation 4.16 is the standard equation for acoustics problems. It bears a close 

resemblance to the equations for structural dynamics problems (Appendix C). The 

corresponding matrix terms have identical meanings while the unknown is pressure.

4.1.2 Solution of Acoustics FEM

There are three possible solution schemes.

1) Harmonic response - direct method

Here we wish to find the unknown pressures at some arbitrary fixed frequency. 

So we substitute the value of the fixed frequency into 4.16 and hence,

(o  =  ( 5  = > { p }  =  - i p a ( [ K ]  +  i p c o [ C ] - ( Q 2 [ M ] }  ’ { F }

....................................................  4.21

Equation 4.21 is then solved to determine the pressures.

2) Acoustic modes extraction

Here we assume that no forces act on the system and that damping is negligible. 

Substituting F  =  C  =  0  into 4.16, we get 4.22, which is a standard 

eigenproblem formulation. Hence we get the free oscillating modes of the 

system.

(Oi , { <p i } * 0 : ( [ K ] - m f [ M ] ) { ( f ) i }  =  0 ........................... 4.22

3) Harmonic response - modal superposition

Here we express the unknown pressures as a linear combination of the modal 

frequencies (obtained by acoustic mode extraction), and solve the resulting
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system of equations to determine the participation factor, CL̂ of each mode 

towards the final solution. We note that these matrices are all complex.

{ P }  =  =  [ < P ] { a }  ....................................................  4.23

(0  =  CO ( [ £ ]  +  i p c o [ c ]  -  W 2 [ m ] ) { û } =  - i p w { p ) 4.24

4.1.3 Disadvantages

One of the major problems of the FEM is its limitation in solving acoustics 

problems. These require a uniform mesh with a minimum of 6 elements per 

wavelength to obtain a reasonably accurate solution. Hence a finite cube of side 2 

metres would require 6000 elements at 500 Hz. At 20 KHz, it would contain 380 

million elements! Obviously, ultrasonic problems would only exacerbate the situation!

Its second major problem is that it does not satisfy the Sommerfeld condition 

(Equation 3.1) and hence has to depend on other formulations for solution of infinite 

domain problems. The latter invariably results in a very large number of degrees of 

freedom, with the corresponding increase in computation time.

4.2 Alternate Formulations

Higher frequencies and infinite domains require alternate formulations. Dr. 

McKerrow suggested considering, each ultrasonic chirp to be a single pulse of energy. 

At present, the author is not cognisant of this approach. Whether it falls under the 

category of FEM or some other high frequency analysis (like statistical energy analysis) 

is a question that requires further study.
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4.2.1 Approximate Formulation

One method for modelling radiation (exterior) problems is to surround the 

object at some 'large' finite distance by a perfectly acoustic absorbing surface to prevent 

reflection. However, this never represents the real problem and seldom gets good 

results.

4.2.2 Parallel Processing

To handle the large number of DOF, efforts have been made by various authors 

to speed up computing by use of vector processors, like CRAY1 [Rratz83] and Cyber 

205 [Diekkamper83], and processor arrays, like ICL DAP [Duller83]. However, in all 

cases, it was necessary to coerce the problem into a form suitable for solution on these 

machines. In fact, Kratz [83] states that the use of commercial packages may not give 

the fastest results, as they are not fine-tuned to the corresponding CPU architecture. He 

suggested that better CPU utility can be obtained by writing your own pipelined 

programs. His recommendation is suitable for those who wish to fully utilise the CPU 

time they buy.

Unfortunately, these large computers are not readily available to all users. 

There is always a premium on time, cost and availability. So it seems appropriate to 

consider any alternate method that reduces the number of computations required. The 

Wave Envelope Element Method (WEEM) and the Boundary Element Method (BEM) 

fill this slot.

4.2.3 Wave Envelope Element Method

This method has only recently been developed and is still in the experimental 

stages [Coyette92-2]. It uses a special weighting function that involves the product of
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the complex conjugate of the shape function and a factor that tends to zero as distance 

increases (tends to infinity). This effectively permits wave envelope elements to extend 

to infinity. Its complex conjugate nature results in cancellation of all exponential terms. 

This permits evaluation by Gauss-Legendre schemes rather than the more complex 

Gauss-Laguerre schemes [Abramowitz64] needed by the infinite element [Bettess77 ].

The latter has not gained a large following because its complex nature made its 

implementation tedious.

4.3 The Boundary Element Method

Green's third identity [Stakgold68] forms the basis of the BEM. It states that, 

for any two sufficiently continuous functions, U and V, we have the relation

J ( w V 2v -  v ^ u p V  =  § ( u d nv - v d ni i ) d S  .. .. 4.25
v s

The importance of this relation lies in the fact that volume integrals and second- 

order derivatives on the left hand side are replaced respectively by surface integrals and 

first order normal derivatives on the right hand side.

Instead of the volume, the surface is discretised, resulting in the matrix 

formulations yielding full matrices of lower dimension than the sparse matrices of the 

FEM. For typical problems, it reduces the number of degrees of freedom required to 

model the problem, while still maintaining similar accuracy in the solution. Being a 

surface method makes it easier to model infinite domain problems and quicker to 

generate and refine the mesh, simultaneously reducing computational costs. So it was 

quickly accepted as a powerful alternative to the FEM.

Shaw [91] states, "There are essentially an infinite number of Boundary Integral 

Equation (BIE) formulations". These may be based on source distributions or Green's 

functions or Betti’s reciprocal theorem or virtual work, etc.
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Brebbia [80] developed the Galerkin Method of Mean Weighted Residuals for 

BEM. We examine it to try to provide common features between the FEM and the 

BEM formulations (Appendix D), to speed up software development time.

Wu [91] showed how the Helmholtz equation could be used for acoustic 

radiation and scattering problems. Bernhard [91] used it to discuss the sensitivity of BE 

acoustics response to boundary condition changes, to geometry shape changes and to 

frequency changes. This would be useful in transducer analysis and design.

Ciskowski et al [91] claim that they are aware of only two BEM applications in 

bioacoustics, of the vocal tract and of the hearing system. They further develop it to 

model ear-muffs (Figure 4.1).

4.3.1 Theory of the Acoustics Direct BEM

The field at point Q due to the point source at point P is given by the Green 

function [Stakgold68]

rw rn v

Figure 4.1: The plugged ear canal and its assumed equivalent model [Ciskowski91].

e - ik r

GP(Q)= 4 K r
4.26
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where T is the distance between P and Q.

We note the choice of Green function incorporates the Sommerfeld radiation 

condition in its formulation, thus permitting the BEM to be used for infinite domain 

problems.

Let p  and Gp be solutions to the Helmholtz equation. Hence they satisfy it. 

y 2GP = dP —k 2GP o  p V 2GP =  p S P -  pk2GP .. 4.27

V 2p  =  - k 2p  <=> - G p V 2p = ( - G p ) ( - k 2p) .. .. 4.28

where dp — S ( P )  is the Dirac Delta function at P.

Setting U =  p  and V =  Gp in Green's 3rd identity, we get

j ( p V 2G p - G PV 2p)dV = j ( p d nGP - G p d np)dS .. 4.29
P s

Substituting from 4.27 and 4.28 into 4.29, we get

j p d p d V  = j>(pdnGP - G Pdnp)dS ..........................  4.30
v s

takes

value

Depending on the location of the point of evaluation, the LHS of equation 4.30

different values. In particular, for a point on the boundary surface, we have the
1
r Pp. since only half the delta function lies inside the boundary.
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Let us assume that the surface is discretised into n  parts.

ie- 5 =  L K  ..............................................................................  4.31
i-\,n

Let the nodal pressure on S¿ be

p = i N , p j 4.32

Let the nodal normal derivative of pressure on S- be 

d n P  =  ^ N j d „ P j  ................................................................. 4.33

Substituting 4.31, 4.32 and 4.33 into 4.30, we find that the pressure at any node 

on the surface is given by

Í

j i » *
S i \ \  J )

(

d n G P ~ G P

w

' L n A p ,
V j

dS

JJ
4.34

Since p  and d np are constants, they are removed from within the integration

to give

5> J (V A )« s
J Si

i * . p , n  G ^ ¡ y s
J Si

4.35

Simplifying 4.35 gives us
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4.36
1

2 P P  = Y \ P k h k ( P ) - d n P k S k ( P ) ]
k

where

P k and d np k are unknown constants 

h k ( p )  and g k ( p )  are known functions of p .

The equivalent matrix equation becomes

H + i  
2 {p} = [G]R/>} 4.37

This is a system of Tl equations in 2 Tl unknowns. Application of the Tl BCs 

involves moving columns of H  and G  to the other side of the equation, finally 

resulting in a system of Tl equations in Tl unknowns,

A x  =  y 4.38

where X  is a vector of unknown quantities of p  and d np

This can be solved for all the boundary surface values. To find the value at any 

point in the domain, these boundary surface values are re-substituted into

Pp = j ( p d nGP - G Pdnp)dS .......................................  4.39
s

4.3.2 Theory of the Acoustics Indirect BEM

Pp =  j { p d nGP - o G P) d S ....................................................  4.40
5
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is the final relation for the Indirect BEM. It is similar in form to that for the Direct 

formulation. However, rather than the nodal pressure and the nodal normal derivative 

of pressure,

H = P+ ~ P ................................................................. 4.41

and O  =  d np + -  d np ~  ....................................................  4.42

are used. These are the pressure difference and the velocity difference, respectively, 

between the exterior and interior fields. The ’+' and denote the exterior and interior 

fields respectively.

4.3.3 Discussion

One peculiarity of the Direct approach is that it either solves the interior 

problem or the exterior problem, but not both. To simultaneously analyse both the 

interior and exterior fields, it is necessary to use the Indirect BEM, which can be used 

to directly obtain the solution to the problem of an ultrasonic transducer radiating into 

space. However, the results can not be used directly, but must be manipulated into a 

meaningful physical representation.

4.4 Coupled Methods

The acoustic and structural (mechanical) behaviours of any vibratory system are 

inter-linked and strongly depend on various coupling factors which relate the two 

individual behaviours (Figure 4.2).
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Figure 4.2: Interaction between structural and acoustic problems [Migeot93].

Any vibrating body (source) perturbs the media in which it is immersed and also 

any surrounding objects with which it is in contact. This results in the generation of 

acoustic waves that propagate away from the source. The uncoupled structural problem 

typically neglects the effect of the surrounding media in the calculation of the radiated 

sound field.

On the other hand, pressure waves (acoustic waves) impinging on any body 

induce vibrations in it. These pressure waves may have been caused by the body itself 

(resulting in feedback between the acoustic and structural behaviours), or may have 

been generated from an entirely different source. The uncoupled acoustics problem 

typically calculates the pressure field on any bodies placed in the acoustics field (sound 

scattering), neglecting any structural deflections that could arise and modify the 

pressure field.

In either case, the calculated results can be used as boundary conditions for the 

corresponding coupled problem; ie. the structural problem determines the radiated 

sound field that can be used as velocity boundary condition for the acoustical problem, 

while the acoustics problem determines the pressure that can be used as subsequent 

structural loading.

In many problems, these two behaviours can not be separated. The interactions 

are so intricate that it becomes necessary to study both simultaneously, because each, 

individually, can not describe the solution correctly. The fluid influences the structure 

and the structure influences the fluid. Hence, the structural and acoustic equations are
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solved simultaneously, by relating their degrees of freedom with suitable coupling 

constraints. These latter are defined by two basic physical phenomena:-

a) structural vibrations cause sound waves in the fluid, and

b) pressure on a body's surface acts as a supplementary load.

So the coupled problem can be represented as

acoustic + mechanical solve sound + surface

sources loading — > field displacements

.........................................................  4.43

Neglecting damping effects, uncoupled structural behaviour for the FEM can be 

expressed as

[ K s - O i 2 M s ] { u }  = {Fs } .................................................... 4.44

Similarly, uncoupled acoustic behaviour can be expressed as 

[ K F - C O 2M F ] { p }  =  {FA} (FEM)   4.45

[A( CO )]{ /> }  =  { f i  } (Direct B E M ) .......................................  4.46

— -¿-[H ( CO )]{p] = { f A} (IndirectBEM) .. .. 4.47
p e a

If coupling is considered in the formulation of the equations, then the structural 

behaviour generates an additional 'acoustic' loading, p p C Q 2 [C $  ]{w } , while the

acoustic behaviour generates an additional 'structural' loading, [cF]{p} or 

[ C ,  ]{ /< } . These are usually added to the RHS of the above equations (4.44 to

4.47), and after suitable manipulation leads to the following sets of coupled equations:
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Direct BEM

[k s - co2m s ] [c ]‘ I f M
pœ2[B(cû)]

{ F s }

{M
4.48

Indirect BEM

[k s - co2Ms ] icr  lr
[C]

mm
pco 1

W

{ /> }

i(^} 4.49

FEM

[Ks - cû2Ms ] 
pco2[C]

[C]‘ Î W l
-û>2Mf ]l[{p}J

IM
IM

4.50

A typical method of solving the coupled problems efficiently is by first 

eliminating all structural unknowns (as the structural impedance matrix is banded 

symmetric) and then solving the reduced fluid system.

4.5 The Piezoelectric Formulation

For the study of piezoelectric substances, we have the following system of 

global equations [Lerch90], which couple together the intrinsic structural and potential 

variations.

Mil + Dmii + Kuuu + Ku$<p = Fu ............................ 4.51

K tu<t,u  +  K ^  =  F <t, ....................................... 4.52
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where

U , 0  are unknown displacement and potential respectively

M is mass matrix 

D uu is mechanical damping matrix 

K uu is mechanical stiffness matrix 

f^ u(p is piezoelectric coupling matrix 

K qq is dielectric stiffness matrix

Fu =  Fb +  Fs + FP is the total displacement force due to all the

mechanical forces like body forces, surface forces and point 

forces

F $ = Q s  +  Q p  is the total potential force due to electrical surface 

charges and electrical point charges

For a system of ft nodes, with 4 DOF per node, there are typically 4 ft 

equations, ie. 3ft equations for the mechanical positions (a vector with 3 structural 

displacements) and ft equations for the electric portion - a scalar quantity (eg. 

potential).

4.5.1 Piezoelectric Analyses

Three types of analyses can be done to determine the required piezoelectric 

response: static, modal and dynamic.

4.5.1.1 Static Analysis

This is done by ignoring inertial and damping effects in equations 4.51 and 4.52, 

giving us

F u " "  •* -  •* ••
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K uóU +  K ^ <P - i7<tl 4.54

Manipulating equation 4.54, we get

0  = -K ^K ^u  + ....................................  4.55

Substituting from 4.55 into 4.53 to eliminate all unknown potentials gives us 

[ K m - K ^ K ^ ] { u }  =  { F u } - { K ^ K - ^ }  .. 4.56

which is solved to find the solution (displacements), and hence other dependent 

parameters like strain, electric field, stress and electric flux density.

4.5.1.2 Modal Analysis

Modal analysis is used to extract the natural frequencies and the mode shapes of 

the piezoelectric structure. This knowledge is useful in determining the dynamic 

response. Additionally, some transient solution procedures (eg. modal superposition) 

require the results of a modal analysis.

Ignoring damping and forces in equations 4.51 and 4.52, we get

MU +  K uuu  +  K ^ c f )  =  0 .. .. .. .. .. 4.57

K l f U  +  K " 4 >  =  0  ....................................................  4.58

As for static analysis, equation 4.58 is used to eliminate potential from equation 

4.57. The resulting equation is then used to determine the modes.
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4.5.1.3 Dynamic Response Analysis

This is used to determine the frequency response of the piezoelectric structure to 

one or more sinusoidally-varying forcing functions, all of which must have the same 

frequency though they can have separate phase.

The displacements (solution) are also assumed to vary sinusoidally at the same 

frequency, though they may have a different phase compared to those of the forcing 

function(s). They are specified in terms of either amplitudes and phase angles or real 

and imaginary parts.

4.5.2 Observations

4.5.2.1 Matrices

The piezoelectric equations have an underlying complexity beneath their matrix 

equations [Lerch90]. An examination reveals extensive use of various matrix 

operations like multiplication, transpose, etc. Is it necessary for the software to have 

generalised matrix functions for the above operations? Or is hard coding of these 

operations preferable for run-time efficiency? The latter is only possible if all problems 

fall under the same class. However, if the involved tensors have variable dimensions, 

then a more generalised format would permit flexibility for later enhancements and 

extensions. At the present stage, this researcher has not found any definitive answers to 

these two questions, though most literature use the form of equations reproduced here. 

This lack of literature could probably be attributed to the fact that this theory is 

presently being commercially exploited!

4.5.2.2 Axes

The orientation of the axes is particularly intricate. If the orientation is 

changed, different behaviour is observed (Chapter 3). While it may be mathematically 

feasible to obtain such results under the prevailing physical conditions and geometry, it
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may not be physically possible to manufacture (or obtain in natural form) the material 

with the axes oriented in the given directions.

4.5.2.3 Material Constants

The physical transducer's behaviour depends on the material constants (l& bU , 

3.1). Slight variations in the percentage composition of the individual components 

of the piezoelectric material can result in different material constants [Berlincourt64]. 

This implies the ability to repeatedly manufacture the material with the required 

constants (repeatability), and to accurately measure the constants to guarantee reliable 

simulations.

It makes no sense to model a transducer with concocted constants, due to the 

likelihood of being unable to find a real-world material with the requisite properties.

This essentially makes this kind of modelling a preserve of the transducer 

manufacturers, who have a vested interest in the results and would prefer not to release 

information that may be of commercial importance to their competitors. Obtaining 

accurate constants is critical for the success of these 'Element' methods.

4.5.2.4 Equation Solvers

This is a finite problem involving only the characteristics of the piezoelectric 

transducer. So standard FE equation solvers can be used as the matrix equations are 

banded symmetric - a typical FEM formulation.

However, extension of the problem to include the generation of the radiated 

field would cause it to be an infinite problem and hence require use of the BEM or 

WEEM or one of the coupled formulations. In general, the WEEM results in banded 

symmetric matrices, implying that the FE solver can still be utilised. But the BEM and 

the coupled approaches usually result in asymmetric full matrices that cannot avail of 

the efficiency of the FE equation solver.
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4.6 How to select Optimal Method of Solution?

As a general rule of thumb, the FEM is constrained to those problems involving 

low frequencies and having domains of limited size - so that the total number of 

unknowns is less than some upper bound that is determined by the CPU speed, the 

system memory capacity and the hard disk storage capacity of the machine on which 

the problem is being solved. On the other hand, high frequencies and infinite domains 

are handled by the BEM.

However, the choice is not always so trivial. The ability to select a suitable 

method (from among FEM, BEM, FEM/FEM, FEM/BEM) for the solution of a given 

problem is not an easy task. It depends on practical experience and can be facilitated by 

consideration of the parameters listed in Table 4.1. These very often influence each 

other. The choices are not exhaustive and vary from problem to problem.

The use of the WEEM also requires further study. Astley[91] found that the 

WEEM obtained the solution marginally faster than the BEM, even though it had 

approximately ten times the number of DOF of the latter. This could be attributed to 

the sparsity of the matrix and the simpler calculations required for the WEEM as 

compared to the BEM.

However, in the calculation of the exterior solution, the WEEM was much faster 

then the BEM; because the former required only simple interpolation whereas the latter 

required an integration over the entire surface for every field point.

In Table 4.1, details about the WEEM that I cannot find in the literature are 

indicated by a question-mark.
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Table 4.1: Comparison of the different element methods

Selection Parameter FEM WEEM BEM

Modelling time -high (3-D complex) -medium -low (surface only)

-difficult & tedious -medium -relatively easy

Time to solve equations short (solution of banded short (solution of banded long (solution of full matrices)

symmetric matrices) symmetric matrices)

Time to generate field quick (interpolation within quick (interpolation within slow (integration over the entire

the element) the element) surface)

Solution generated At all the nodes (?) At user selectable nodes

Number of DOF very high low(?) low

Computer resources -large disc space -small(?) -less disk space

-large main memory -small(?) -less main memory

Frequency of interest low high high

Volume absorption easily modelled (?) not so easy

Nature of the fluid heterogeneous
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Table 4.1: Comparison of the different element methods (contd.)

Selection Parameter FEM WEEM BEM

Interior Problem yes yes yes

Exterior Problem can't be modelled yes automatically handled

System Matrices -freq independent -freq independent -freq dependent

-symmetric -symmetric -asymmetric(Direct BEM)

-symmetric (Indirect BEM)

Variation of frequency Matrices calculated only once Matrices calculated only once Recalculation of Matrices for

each frequency under study

Modal response -yes, preferred as faster (?) complicated due to implicit

-permits mode selection frequency

Direct Response yes (?) yes
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4.7 Conclusions

1) To date, all the applications viewed by the author apply the Helmholtz Equation 

for the solution of acoustics problems. Appendix B shows how the Helmholtz 

Equation is a special case (frequency domain harmonic motion) of the linear 

wave equation, which in turn is a special (isotropic) case of the general 

(anisotropic) quasiharmonic equation. In fact, it can only be used for those 

problems whose geometries and boundary conditions are defined by coordinate 

systems that are separable in the Helmholtz equation. In other words, this 

precludes the use of the Helmholtz equation for those problems which involve 

coupling between the axes.

For such problems, some form of the quasiharmonic equation will have to be 

used. In the 2-D case, this is quite tedious. But in the 3-D case, the problem 

becomes formidable. So it is quite usual, for problems involving classical linear 

elasticity theory, to assume infinitesimally small linear gradients and neglect 

non-linear second-order gradient products (rotation effects), hence reducing the 

problem to more manageable proportions. Similar approximations will have to 

be made for piezoelectric problems.

The end result is that the Helmholtz Equation is not suitable for the analysis 

and design of piezoelectric transducers. Instead some form of the 

quasiharmonic equation will have to be used.

2) Appendix C lists the FEM equations for various 1-D and 2-D problems and 

assumes equivalent results for 3-D. We note that the overall form of the matrix 

equations remains the same. However, in spite of approximating the inter-axial 

coupling (2-D case), the individual elements that comprise the matrices become 

more complex. In the 3-D case, coupling extends to interactions between all

60



three axes. Thus 3-D formulations have much more complexity, which is not 

readily apparent by inspection of the matrix equations.

3) We note that the Dynamics formulations for both structural and acoustics 

problems results in the same form of matrix equations, though the constant 

coefficients may differ.
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Chapter 5 - Software

5.1 FE models for piezoelectric transducers

of 2-D and 3-D FE models of 

researchers have used 1-D

5.1.1 2-D models

Within the last 5 years there has been quite a spate 

piezoelectric transducers. Previous to that, various 

theoretical models [Berlincourt64].

Kunkel[90] used axisymmetric rectangles, each divided into 4 triangles, to study 

PZT-5H transducers (Figure 5.1).

z

t

d/2

Figure 5.1: Finite-element mesh representing the cross-section of a piezoelectric disk. It consists of 

axisymmetric rectangles, each divided into 4 triangles. Top and bottom represent disk surfaces. Left side 

is axis of symmetry r = 0 , and right side is disk edge r = d  / 2 [Kunkel90].

Babic[91] used axisymmetric triangular ring elements (Figure 5.2a) for design 

and optimisation of a PZT-5A piezoceramic transducer (Figure 5.2b). Each element 

had 6 degrees of freedom, 2 per node, which represented axial and radial displacements 

respectively. His transducer used a vibrating membrane to ensure efficient transmission 

of the radiation field to air.
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Figure 5.2a: Triangular ring elements used in finite-element analysis of the transducer in Figure 5.2b

[Babic91].

ra d ia t io n

d i re c t io n

V/'AV/Ú/'tW.W/

Figure 5.2b: Cross-sectional view of a transducer. The shaded area shows the piezoceramic disk, the 

shaded lines show the silver electrodes and the C-shaped aluminium housing is used to improve radiation

in the direction shown [Babic91].

5.1.2 3-D models

According to Lerch[90], of the Siemens Research Centre in Germany, 1-D 

models, though in use, are inadequate for correctly computing all physically present 

modes of 2-D and 3-D piezoelectric media. Preferably, 3-D models, with their 

associated accurate data of material tensors, are required to accurately model practical 

transducers. He used 2-D (plane-stress, plane-strain, axisymmetric) and 3-D 

piezoelectric finite elements (Figure 5.3) to simulate and optimise piezoelectric devices 

for ultrasonic applications. For experimental verification of the computed eigenmode 

shapes, he used laser interferometric measurements. He claims that the "thickness 

mode is the mode of interest for ultrasonic imaging applications", as for suitable width-
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to-thickness ratio, most of the electric energy is converted into a normal displacement 

of the sound emitting face.

Figure 5.3: 3-D mode shape of the thickness mode of a piezoceramic bar with W I T  = 2.0 [Lerch90].

Ostergaard[86], of Swanson Analysis Systems (SAS), used 8-noded 3-D brick 

elements to model a NEPEC6 piezoceramic disc (Figure 5.4) and a PZT4 cube. 

Subsequently, SAS has made further progress and expanded ANSYS, its proprietary FE 

analysis software package (Section 5.2.3).

Figure 5.4: Cylindrical transducer model using 8-noded 3-D brick elements [Ostergaard86].

5.1.3 Wave Envelope Element Models

Though these are not particularly suitable for transducers, they are worth a 

mention here because of their far-field performance, and the fact that the WEEM has a 

very similar formulation to the FEM and so can be easily incorporated into existing FE 

programs.

U M M : W w r« -V fa it 4 »
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5.2 FE software packages for ultrasonics

5.2.1 STRAND'S Approach

STRAND has two approaches to solving Acoustics Problems.

The first involves converting the Wave Equation to the Helmholtz Equation and 

solving for the complex pressure solution. A separate solution is required for each 

frequency. This technique is only suitable for uncoupled problems. Thus, if the 

structural problem generates the sound, the structural solution is obtained first and the 

surface motion is then decomposed by Fourier analysis into its individual frequency 

components, which are used as input for the Helmholtz problem.

An alternate approach is to 'fool' the structural analysis part of the program into 

thinking that the Acoustics problem is an elastic one, with sound pressure replacing 

displacement, by selecting special choices of the elastic constants (property tensors). 

However, STRAND only supports symmetric property tensors [Atkinson91], which 

may not be used for piezoelectric materials. Additionally, Atkinson [91] claims that the 

method is inefficient, as it solves for 'displacement' in 2 or 3 dimensions, when only one 

dependent variable is actually required.

Although it is relatively cheap, STRAND is, however, lim ited to low 

frequencies or small problem domains [Atkinson91]. This seems to preclude ultrasonic 

applications and infinite domain problems.

5.2.2 NASTRAN's Approach

Some FE codes, like NASTRAN [Estorff91], set shear = 0 for acoustics 

problems. This makes them unsuitable for modelling of piezoelectric materials, which 

have shear. They could, however, be used for those modes of operation in which shear 

does not play an important role, if such modes exist!
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5.2.3 ANSYS* A pproach

The ANSYS program [ANSYS5.0] utilises special 2-D and 3-D fluid elements 

(FLUID29 and FLUID30) designed for the purpose of acoustic analysis. These 

elements model the fluid medium and the fluid-structure interface (Figure 5.5a). They 

assume small density changes and compressible fluids. Solutions are in terms of 

pressures or displacements.

2 -D  Acoustic Fluid 3-D  Acoustic Fluid

FLUID29 4 nodes 2 -D  
DOF: UX. UY. PRES 
Acoustical analysis and 
fluid /structure interaction involving 
compressible fluids.

FEATURES: B

FLUID30 Snoots 3 -D  
DOF: UX. UY. UZ, PRES 
Acoustical analysis and 
ftmd/structuft interaction involving 
com press^« fluids.

FEATURES B

Figure 5.5a: ANSYS5.0 acoustic elements [ANSYS5.0].

2 -D  Coupled-Field Solid 3 -D  Coupled-Field Solid 3 -D  Tetrahedral Coupled-Field Solid

PLANE 13 Anodes 2 -D
DOF: UX. UY, TEMP AZ.VOLT 
Ptanar/axaym m odtis. Magnetic, 
m egneto-structural, 
m agneto-therm al coupling.

FEATURES: ID . LS. S. B. E

SOUD5 8 nodes 3 -0
DOF: U X UY, UZ. TEMP VOLT, MAG 
Limited coupling of structural, 
thermal, eiectne. and magnetic 
effects. Piezoelectric analysis. See 
PLANE 13 for similar 2 -D  capability.

FEATURES: S. B. E

SOUD96 10 nodes 3 -D  
DOF: UX. UY, UZ. TEMP, VOLT. MAG 
Similar to SOUD5. Suited to 
automatic meshing of arbitrary 
volumes.

FEATURES: S, B. E

Figure 5.5b: ANSYS5.0 piezoelectric elements [ANSYS5.0].

For the study of piezoelectric structures, 3 solid coupled-field elements 

(SOLID5, SOLID98, PLANE 13) are provided (Figure 5.5b). These permit a variety of
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input data such as complete 6-by-3 piezoelectric constants; isotropic, orthotropic and 

anisotropic elastic stiffness or compliance constants; and dielectric constants.

ANSYS supports substructuring, which can be used to improve the modelling 

efficiency and/or the solution computation time. Substructuring is the reduction of a 

group of elements to a single independent element (superelement). This could be 

particularly useful in the design of array transducers, where each element of the array 

could be a pre-calculated superelement.

ANSYS' acoustic capabilities are limited to the study of the propagation of 

sound waves in a contained fluid medium (eg. the distribution of sound waves in an 

auditorium) or the analysis of structures immersed in a fluid (eg. damping effects of 

water on a ship's hull). Hence, it can not solve infinite domain problems.

5.3 SYSNOISE for ultrasonics

This package combines both the FEM and the BEM into a powerful tool for 

solution of acoustics problems. It basically matches our requirements. But it is 

prohibitively expensive for academic work.

SYSNOISE costs $100,000 for the entire commercial package, though it does 

provide universities with a stripped down version that handles problems up to 200 

nodes in size. This costs $2500 per year, with the provision that a yearly report be 

made about its use! This limited version of software would be unsuitable for our main 

areas of interest, viz. a study of transducer analysis and far field problems.

Consider! With our desired frequency being 50 kHz typical, we have a 

wavelength of 6.8 mm (approx.). With a minimum of 6 elements per wavelength, we 

would require the nodes to be spaced approx. 1 mm apart. With a piezoceramic bar of 

dimensions 50 mm by 2 mm by 4 mm (length, thickness, width) [Lerch90], we would 

have a total of 51 * 3 * 5  = 755 nodes, which is beyond the capability of the educational 

package.
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5.4 Selection of Elements - A Discussion

From the preceding sections, it follows that designing of a minimal package 

with rudimentary piezoelectric modelling capabilities would entail implementation of 

2-D axisymmetric elements (at least). Later, 3-D elements and wave envelope elements 

could be added for more functionality.

A time frame for implementation of these elements and the associated FE solver 

is unknown as it is not specified in the literature. Lerch[90], Ostergaard[86] and 

Kunkel[91] only incorporated their new elements into the existing FE packages.

5.5 The Need for One's Own Software

A study of ultrasonic transducers would require software that could model both 

the near field and the far field. This capability would inherently support the design and 

analysis of transducers and the study of radiation and scattering effects.

It is evident that the only package that fulfils both needs is SYSNOISE. 

Unfortunately, its cost lies beyond the means of an academic institution's budget, while 

its cheaper educational version confines problems to be most trivial (Section 5.3).

An alternative is to buy some software that provides our needs partially and 

develop and integrate any additional software that we require into that package. This 

requires a knowledge of the source code of the original commercial software (an 

impossible or an expensive proposition).

A further shortcoming is that SYSNOISE, in its present form, is incapable of 

directly modelling piezoelectric transducers. It has to rely on external pre-processing to 

obtain the global system equations for the problem, before it can initiate a solution. In
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this respect, its developers (NIT) are collaborating with Thomson Sintra ASM 

(TSASM) to develop software for the study of piezoelectric transducers.

So it is obvious that there is a potential market for this software. Are there any 

other advantages?

5.6 Reasons for Writing Own Software

Many advantages would accrue from writing an 'Element' Method software

analysis package for acoustic echolocation.

1) Firstly, the FEM relies on physical principles that can be represented by suitable 

partial differential equations. This would require a detailed knowledge of the 

physics of acoustics, echolocation and transducers, (and the equations that 

characterise them), before implementation of the software. This would typically 

broaden the author's knowledge base and could suggest alternate research areas, 

thus providing future applications for the program.

2) Most commercial packages were primarily written for structural analysis; and 

have subsequently been coerced to solve acoustics problems by setting the 

elastic constants to suitable values. Hence the acoustics problems have been 

constrained to fit the structural analysis formulations.

3) Writing a custom package would make execution marginally faster as the 

program would not have overheads for selecting different options.

4) One very important motivation for writing one's own software is the exorbitant 

cost of commercial packages!

5) On completion, the package could be used as an in-house study reference, 

providing future researchers with a tool for optimal design of transducers, both 

single and array. Additionally, it could be used to model and analyse radiation 

and scattering problems that are typically encountered in real-life.
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It could also have other offshoots, like biological research into the working of a 

bat's hearing mechanism, or design of a 'hearing-aid' for humans, or 'intelligent' 

devices that use sound to ’see' and aid blind men in navigation.

6) The availability of source code would permit future expansion and modification 

of the program to incorporate additional functionality that is not available in 

commercial packages.

’Custom design’ of elements would enable particular problems to be solved most 

efficiently.

7) It could also provide the ability to modify and update material parameters as a 

result of measuring the radiation fields produced by transducers and by 

measuring the acoustic vibrations. Hence, local knowledge could be added to 

improve the simulations, resulting in a feedback loop to optimise the transducer 

design.

5.7 Reasons for not Writing Own Software

The major disadvantage is that of re-inventing the wheel! And no knowledge 

about an accurate estimate for the development time!
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Chapter 6 - Software Design

To get a feel for the software complexity and to obtain knowledge enabling a 

rough estimate of the development time required, it was decided to implement a small 

FEM package, called FAME (Finite element Analysis in Modula-2 for Echolocation), 

which could be used as the groundwork around which additional routines could be 

built. We have decided to base our software upon an existing Finite Element Method 

Package called UNAFEM, written in F77 by John Denkmann for David Burnett's book, 

'Finite Element Analysis: From Concepts To Applications' [Bumett88]. The following 

section considers our software design criteria, and justifies our choice of UNAFEM.

6.1 Software Requirements

1) UNAFEM was developed in a detailed structured manner, as it was to be 

primarily an educational tool. This is identical to our purposes for developing 

FAME.

2) A good user interface is needed. The data input should be easily manipulated 

and corrected with meaningful error messages where required and (the fewest 

possible keystrokes). The use of a dialog box would be preferable.

In this respect, UNAFEM fails. It has a non-interactive user interface in which 

data was read in from a data file by use of a formatted input read statement. 

Error messages are displayed on screen and caused the program to HALT. 

Consequently, the Pre-Processing Section will have to be modified extensively 

to support interactive Dialog Boxes for data entry and online error messages.

3) The data output should be graphically displayed to give a clear visual 

representation of the solution.
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UNAFEM used DISPLA, a commercial graphics package, to display the output 

solution. We will have to develop some simple graphics software to view the 

same or similar results.

4) It should be modular and easily expandable to add more functionality to the 

package. The final product should be a program capable of solving ultrasonic 

problems by use of either the FEM or the BEM or the WEEM. These problems 

would include transducer design and analysis, and radiation and scattering 

problems.

UNAFEM, though written in F77, has been developed in conformance with 

standard structured programming rules. GOTO's have been use with caution, 

resulting in a highly modular, readable comprehensible package. So, adoption 

of this package for FAME would reduce the design cycle, with the associated 

time saving benefits.

5) It should be easy to test and verify. Testing and verification of the initial parts 

of FAME could follow the lines laid out in Burnett [88], hence eliminating time 

spent in designing test problems and solutions. Subsequent testing and 

verification of the Acoustics solving portion of FAME, that is not covered in 

Burnett [88], will have to be developed from scratch.

6) It should be possible to develop a working prototype soon. This last criteria 

has been added because most commercial FEM packages have a relatively long 

development cycle before reaching the market.

M2 (Appendix A) is the language being used to develop all the research 

software in our lab. So, to enable intelligent discussion of program 

implementation and bugs, it was decided to use M2 to develop 'Element Method' 

software on the Macintosh. It was felt that the adoption of UNAFEM (with its 

associated plus points stated above), the advanced features of M2 and the 

powerful menu-driven user interface libraries of the Macintosh could be 

combined to achieve working results quickly.
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6.2 The Ideal Software Interface

A sophisticated interactive interface would provide immediate graphic feedback 

to visually indicate to the user the data being input. Hence, action could be taken to 

correct any incorrect data. Separate windows could be defined to display particular 

data. Hence input of nodes and elements would be reflected in an appropriate window. 

Definition of different element properties could result in the corresponding elements 

being shaded a different hue. Addition of different kinds of loads could be indicated by 

different types/coloured arrows, whose tip would indicate direction and size would 

indicate magnitude. .

The mouse could be used to point at particular features to obtain related 

information. It could also facilitate various block editing functions like deleting, 

copying and adding sections to speed up problem definition. The monitor screen would 

either represent a 2-D image of the physical world (for 2-D problems) or select between 

a 2-D slice and 3-D perspective (for 3-D problems).

6.3 Software Estimate of UNAFEM

Since we are adopting UNAFEM as a model for our package, FAME, it makes 

sense to examine how best it can be translated/ported to M2. As previously noted, we 

will concentrate on developing an interactive interface. To determine a rough index for 

FAME'S development time, a bit of reverse engineering is in order here.

The COCOMO model, designed by Boehme [81], is a productivity tool that 

predicts the total number of people required to complete a project on time. It uses an 

empirical set of constants to estimate the number of man-months of work involved in 

the project, and hence the number of real-time months within which it should be 

completed. Each man-month is estimated to be approximately 152 working hours. The
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values of the constants depend on different criteria that evaluate hardware, software and 

personnel characteristics.

The basic COCOMO model, as explained by Sommerville [89], was used to 

estimate the development time for UNAFEM (4500 lines of code and comments). Very 

conservatively, we assume that UNAFEM is an 'organic mode' (simple) project, due to 

its small size and reduced communication overheads as most of the work was done by a 

single person, John Denkmann. (In retrospect, it appears to be an 'embedded' (complex) 

project!) We further assume that 20 percent of the code consists of comments, leading 

to 3600 lines of 'delivered source instructions'.

Application of the relevant formulae provided the result that two persons could 

finish the software if they worked 6 months full-time (excluding time spent in 

mathematical formulations like deriving systems equations, element equations, etc.). 

Use of the intermediate COCOMO model did not significantly alter the above figures.

6.3.1 Implications for FAME

The COCOMO estimate predicts the total project development time required for 

software design, implementation, debugging and testing. However, it does not indicate 

the relative contributions of each of these factors to the total figure. This makes 

adoption of UNAFEM's figures for FAME slightly suspect. Since we are porting 

UNAFEM to FAME, these figures are the best estimate that we have. However, we 

should keep in mind that, to reach the level of utility of UNAFEM, FAME does not 

need any design, though it does need the other three factors. It is only when additional 

functionality is being incorporated (new elements, method for solution of dynamics 

problems, user interface, graphics output, etc) that all four factors will come into play. 

For our purposes, rather than making a detailed estimate of the development time for 

FAME, we will assume that UNAFEM's estimates are accurate enough and can be used 

as predictors to develop FAME up to the same functionality as UNAFEM.
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6.4 Software Design

6.4.1 Elements Needed

From Sections 5.1 and 5.4, we find that we only require to add the axisymmetric 

element to UNAFEM to obtain a rudimentary package capable of Acoustics. More 

advanced features can be implemented with 3-D elements.

Though UNAFEM has not implemented these elements, Burnett [88] has 

explained them and derived the relevant equations. He states that UNAFEM can be 

extended to include the above, though the extension is not trivial. Unfortunately, he 

does not specify a time frame.

However, it makes sense to develop FAME up to the level of functionality of 

UNAFEM before any other developments. This would provide us with a basic FEM 

solver, having capability for static analysis, modal analysis and first-order time 

transient analysis. Additionally, as seen in Appendix D, the isoparametric elements, 

have potential use in BEM solutions.

One drawback is that the Dynamics (second-order time transient analysis) 

equations are not implemented. This is essential for study of wave propagation.

6.4.2 Records Needed

Keeping the above in mind, and referring to all variables used in UNAFEM 

(Appendix G), we defined the following data types. The code for these data structures 

can be found in Appendix F. We note that these data types affect all subsequent design 

and they pervade through the entire software.
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6.4.2.1 General Types

System  contains common variables that specify a particular problem, eg. type and 

dimension of the problem; total numbers of nodes, elements, properties, load 

conditions, etc; flags to indicate whether FEM and Eigen calculations have been 

completed or aborted.

6.4.2.2 Input Types

Each Node specifies one of the nodes of the problem mesh.

Each Element describes an element of the problem mesh.

Each Property specifies physical properties of a particular material 

Each ILC specifies one of the internal loads of the problem.

Each EBC specifies one of the essential BCs of the problem.

Each NBC specifies one of the natural BCs of the problem.

Each Graph specifies display parameters for the problem.

6.4.2.3 Output Types

Each NodeSolution specifies the function value at the node.

Each ElementFlux specifies values of the gauss points of the element.

Each EigenSolution specifies an eigenvalue and its eigenvector.

With the implementation of these data structures, dynamic storage allocation of 

all data would be possible (note the pointers), enabling larger problems to be solved and 

making more efficient use of available memory. This would be preferable to having 

static allocation of data, as it is at present. A slight debugging disadvantage would be 

to keep track of the pointers needed to manipulate the data, though this would be offset 

by the subsequent computation speed increase.

The required data types have been defined and are a preferable way to 

implement the software (at a later date). However, it has not been put to use as it would
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have meant restructuring of the entire program, hence slowing down porting. Instead, 

the variables in Appendix G are used.

6.4.3 Files and Modules Needed

One time saver suggested was to use a single ASCII file for data input, rather 

than design an entire user interface with files, menus, dialog boxes and friendly error 

messages. However, the FEM is a data intensive technique. It was opined more 

advantageous to have a user friendly interface rather than something cryptic, as it would 

permit flexibility in problem definition and would save time in the long run. Hence, 

separate data files and data processing modules were required for each data type 

defined above.

One file called the system file contains data about the problem parameters. This 

data specifies the size of the other files indirectly, by indicating the total number of 

records of a given type.

All the data is not stored contiguously in one file, in order to permit easy 

modification and expansion of problems. Instead, different data is stored in different 

data files, with all the data records of a given type stored in a single contiguous file.

Each file's records can be individually updated by a particular module and the 

corresponding data will be hidden from all others for data integrity. Assuming the 

grouping together of similar records, separate files would permit a new record to be 

added directly to the corresponding file, whereas a single data file would require the 

entire file to be read and re-written in order to write a new record to the file. In the 

absence of grouping, the concept becomes much more complex, due to the records 

being of different sizes. Now each record would require some form of identification, 

such as a tag-field (type) and an index field (number), with corresponding increase in 

complexity of the processing software.
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Table 6.1: Data files and their contents

DATA FILE NAME INFORMATION CONTAINED

filename: System RECORD

filename.nodes: x, y

filename.elems: ntype, ngpint, nphys, icon

filename.props: alphax, alphay, beta, gamma, mu

filename, ilcs: fint

filename, ebcs: iuebc, uebc

filename, nbcs: inp, jnp, knp, taunbc

filename.plot: Graph RECORD

The data files that have been implemented are listed in Table 6.1 with the 

corresponding data items that they contain. More information regarding the data can be 

found in Appendices F and G. Note that the user only requires to remember the 

'filename'. The program inserts the extensions and manipulates the required data.

6.4.4 Menus Needed

We will provide the 8 menus shown in Appendix H. Note that the greyed out 

items have not yet been implemented.

1) A FILE Menu to permit design of N ew  problems, to Open  existing problems 

(either for recalculating or modification) and to Save problems to disk.

Page Setup and Print options are hooks to be implemented later.

2) An EDIT Menu with commands like Undo, C u t, C o p y , Paste  and C lea r  to 

facilitate later development of a powerful User Interface.

78



3) A MISC (miscellaneous) menu from which you can select the dimension of the 

problem, 1-D , 2-D , Axisymmetric or 3-D  (to be implemented later), and define 

whether it is Single or Batch.

The Batch concept (to be implemented) is targeted at permitting the user to set 

up the data files for several problems, which can then be solved without any user 

interaction (maybe, overnight!). Errors would automatically abort the problem 

and update an error file with the appropriate information. The next problem 

would then be initiated. Of course, this presumes sufficient disk space to store 

calculated results and some sort of simple interpretive control language.

4) A Windows menu that permits 9 windows to be Opened and Closed. Windows 

may display either function or flux values of either the same or different 

problems.

5) An Input menu to specify all numerical data relevant to the problem. Intelligent 

menus grey out any options that aren't permitted. Each option brings up a dialog 

box. (See Section 6.4.5 for details) Checks are implemented to ensure that the 

user can not input invalid data and detailed messages inform about the cause of 

any error.

6) A Problem Type menu that supports solution of:-

a) Boundary Value Problem (BDVP)

b) Eigen Problem (EIGP)

c) Initial Boundary Value Problem (IBVP) (later development)

d) Dynamics Problem (DYNP) (later development)

Other types of problems can be included later.

7) An Output menu which:-

a) generates ASCII text files of various input data and the solution,
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b) draws a simple graphie representation of the BDVP solution.

8) The Solve menu initiates the calculation of the solution. It supports:-

a) Finite Element Method (FEM)

b) Boundary Element Method (BEM) (future expansion)

6.4.5 Dialog Boxes Needed

The dialog boxes (Appendix I) were designed to be user-friendly (they should 

be easy to use), consistent (the same buttons should have the same meaning in different 

dialog boxes), aesthetic (they should look good, ie. not appear cluttered), and coherent 

(they should permit modification of related data) with feedback (they should show 

meaningful error messages).

The Nodal Dialog Box is shown in Figure 6.1.

Nodal Data Input

Node No. 

h co-od  

y co-od  

z co-od  

Bll O.K.

ñuto Inc

0.0000000E0 DeleteFrom
To

OK
AbortPreu
Ne»t

Figure 6.1: Dialog box used to input nodal data.

First, an explanation of the common options/functions is in order. Each dialog 

box contains a variable which is an index into the corresponding data arrays.
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Prev decrements the index and displays preceding data.

Next increments the index and displays succeeding data.

D elete  deletes the current data, decrements the index and displays preceding data.

OK  verifies all entered data and only closes the dialog box if there is no error. Any 

error generates an error message in the lowest region of the box.

Cancel clears all the corresponding data and exits the dialog box.

Abort closes the dialog box without any data checks.

From  and To in conjunction with the Auto Inc field behave as a rudimentary automatic 

data generator, which updates the corresponding data arrays from the From  

index to the To index, with an array index step size of Auto Inc.

Each dialog box would group together related information (Appendix I shows 

the dialog boxes), representative of a single element of the corresponding data arrays. 

Later, each dialog box would be representative of the corresponding data types (as 

defined in Appendix F). The dialog boxes would require some modifications in order 

to support 3-D elements and problems. .

6.5 Program Flowchart

The general program flow is shown in Figure 6.2. Flowing from the top left 

comer, the program starts by initialising all arrays and constants, and then entering the 

infinite command loop, which can only be terminated by 'Quit'ting the program.

The various command options, from top to bottom, are for manipulating files, 

problem definition and data entry, and solution generation and solution display.

Hooks have been provided for expansion of the software.
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Figure 6.2: Block Diagram Flowchart of FAME.
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Chapter 7 - Language Requirements

7.1 Introduction

FORTRAN was one of the first High Level Languages to be developed (1957). 

At that time, people were under the popular misconception that all problems were 

numerically intensive and hence their corresponding algorithmic solutions could easily 

be obtained by the use of some sort of massive 'number crunching' device, viz. the 

computer. As a result, more attention was given to the development of efficient matrix 

manipulation routines and functions that were capable of performing these calculations 

rather than to the development of a methodical and structured language.

In spite of these deficiencies, or maybe because of its non-methodical loose 

structure, FORTRAN has become one of the most widely used languages and is 

universally available on both large and small machines throughout the world. The 

ANSI X3.9-1978 Fortran77 (F77) standard ensured that all programs conforming to 

the standard would be portable.

Is 'FORT-RAN' a 'past-tense' language, as its very name seems to imply? Is 

there any other modem contender capable of filling its shoes? Why do people 

invariably turn to FORTRAN whenever numerical computations need to be done? Are 

there any special features of FORTRAN that make it indispensable in this regard?

To answer these questions, we decided to use M2 as a development language for 

a FEM software package. This would automatically eradicate any tendency to rely on 

Fortran's in-built features, and hence provide a better perspective from which to 

critically evaluate the software language features required to solve numerical problems.
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7.2 Useful Language Features

7.2.1 Modularity

The EM's typically have a large amount of data to process. So it is 

advantageous to have similar data records stored and manipulated within a single 

module. It is preferable that modules do not export variables and that data-hiding is 

encouraged. This ensures that only certain predefined procedures can modify the value 

of a variable. This is to safeguard a module from incorrectly modifying another 

module’s data and also aids in debugging as it localises the program code that is capable 

of changing the value of a variable.

Since we have separate modules, separate compilation would be in order, to 

permit debugging and testing to proceed in stages. Compiler checks would ensure that 

each program entity (library or user-defined) is used in a manner that is consistent with 

its definition. Any inconsistencies could be used to flag intermodule housekeeping 

errors that would otherwise be difficult to track down. Additionally, when linking, the 

compiler could check all dependent modules to ensure that all modules are up to date.

7.2.2 Control Structures

A versatile set of control structures, such as REPEAT - UNTIL; WHILE - DO; 

WITH - DO; CASE; and FOR loops [King88], permits easy readability and 

maintainability of the program (Appendix K) and also provides an easy way to 

implement structured programs. Use of these control structures would make use of the 

GOTO statement redundant and discourage programmers from lapsing into bad non

structured programming practices, leading to more coherent programs.
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7.2.3 Data Types

For numerical computations, double precision complex number support would 

greatly expand the range of calculations that can be done, and hence, the types of 

problems that can be solved.

Additionally, a rich variety of data types would permit the programmer to 

custom build the relevant data structures or data variables required to solve a particular 

problem. The data type typically specifies the range of values that a particular data 

variable is permitted to assume. Hence, it provides information for:-

a) compile time checks, eg. data type mismatch in an operation,

b) data storage space,

c) run time checks, eg. array indices exceeding array bounds.

Record types permit great flexibility in custom definition of data structures to 

suit the application. Procedure types are useful for calling or choosing a different 

method of solution from a list of solution methods. Opaque types are always pointers 

to variables, whose structure is not visible outside the defining module. So the only 

way to use these variables is to use the associated manipulation routines in the 

definition modules. This is a very powerful tool for compelling modularity.

Chapter 6 (Section 6.4.2) and Appendix F indicate the various data structures 

that would be useful in implementing the program.

7.2.4 Type Checking

A multiplicity of data types is best handled with very strict type checking, such 

as limiting operators to only accept operands of similar type. An operation between 

dissimilar operands is flagged as an error and hence prevents easy mobility between 

dissimilar data types (as can occur by default in the C language). Likewise,
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irregularities between the formal and actual parameters of functions and procedures are 

to be flagged as errors.

Automatic type conversions should not be permitted as they have enormous 

potential for erroneous type conversions. Instead, the programmer should ensure that 

variables are used consistently. Hence, the programmer is forced to evaluate the 

suitability of variables for a particular task/problem and so consciously makes a 

knowledgeable decision about the type of the data variable and whether type 

conversion is relevant in any particular case and hence may be permitted.

Of course, this may also imply that the programmer be sufficiently 

knowledgeable in the underlying machine dependent implementation of the various 

data types, (eg. an INTEGER implies varied data storage on different machine 

architectures and a type conversion from INTEGER to CHAR may potentially result in 

relevant information being truncated). This latter problem could be solved by 

preventing type conversions between data objects of different sizes.

7.2.5 Formal Typing

Formal declaration of variables is preferable to the implicit type specification 

mechanism. Firstly, the latter reduces the readability of the program, where variables 

just appear to come into existence out of nowhere. Secondly, proper initialisation of the 

implicit variables may be overlooked. The only advantage of implicit typing lies in the 

fact that repeated declaration of variables is unnecessary provided the programmer 

follows the implied convention.

7.2.6 Free Format in Program Source

A free format style of programming, in which the source code can occupy any 

position on the line, is preferable. This improves programmer flexibility by freeing him
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from adhering to the fixed format style of programming, in which the position of the 

source code on the line has predefined connotations.

7.2.7 Global Data

Common global data can be accessed from any module that requires it. 

data may be specified in any order. The compiler ensures that all references to the 

variable name from different modules refer to the same data.

7.2.8 Dynamic Memory Allocation

Dynamic memory allocation results in a more flexible program that is capable 

of 'adjusting' itself to suit the run-time requirements of the problem at hand. However, 

the penalty incurred is a loss of time/money due to additional processing overhead and 

also the extra complexity introduced into the program implementation.

7.2.9 Multi Dimensional Arrays

These are a must for any computational software. However, different software 

languages implement them differently.

Some languages (like F77) support multi-dimensional arrays in which the 

leftmost subscript is varied the fastest (column major). This means that all the elements 

of the same column are stored sequentially in memory. On the other hand, other 

languages (like M2 and C) are row major and all the elements of the same row are 

stored contiguously in memory.

This seems an insurmountable problem. On initial inspection, it would appear 

that the same array is being accessed differently. On taking a closer look, it is evident 

that the difference is compiler generated. References by either language to the element

The

same
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N(i,j) refer to the same element in the matrix. However, the physical storage position 

of that element in memory has changed.

This difference in the array representation has been exploited to implement 

different algorithms that are optimised to run on specific hardware architectures.

7.2.10 Open Array Parameters

Open array parameters permit a procedure to accept variable length arrays as the 

actual parameters. This concept is very useful as it permits the development of 

generalised array manipulation procedures, where the initial compile-time dimensions 

of the arrays are unknown, and are only passed to the procedure at run time.

7.2.11 Size of Variable and Procedure Names

These should be large enough to indicate the function of the variable or the 

procedure with reasonable clarity. Hence meaningful names can be declared rather than 

obscure cryptic ones.

7.2.12 Libraries

Numerical computations typically require large numbers of matrix operations to 

determine the solution. This has led to the development of extensive libraries of 

machine independent routines, which provide support for various kinds of matrix 

manipulations and numerical computations, including the solution of systems of linear 

equations and eigenvalue problems. However, most of these libraries are written in 

FORTRAN, as it is the de facto scientific computing language, eg. LAPACK 

[Anderson92].
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7.2.13 File System and I/O functions

Versatile input/output functions are required. The input must be flexible enough 

to permit entry of the variety of input parameters. The output must be capable of visual 

display of the solution in a meaningful fashion.

Since it is data intensive, a powerful filing system is required to keep track of all 

the data - input parameters, intermediate calculations and the output results.

7.3 Discussion

7.3.1 Modula-2

The strongest points in favour of M2 are its modularity and strict type checking. 

Tests have shown [Griffiths91] that the latter results in much fewer errors, resulting in 

faster development time.

The present versions of M2 (Appendix A) supports all of the above features 

except 7.2.12 and 7.2.13 and complex numbers.

There are no libraries of numerical routines available!

A separate I/O statement is needed for each variable, thus causing I/O 

formatting to be very verbose. This tends to increase programmer errors, as the 

repetitive nature of the task results in programmer boredom and negligence. It may be 

possible to minimise this problem with the new ISO standard I/O libraries which are 

based on I/O channels.

The lack of complex number support places a few restrictions on the types of 

problems that can be solved; in particular, the solution of wave equations is not 

possible. One way of circumventing this set-back would be to define a complex 

number as a record of the form:-
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Complex = RECORD 

R eal: REAL;

Imag : REAL;

END(*Complex*);

and define suitable operations for the set of complex numbers. In the absence of 

the operator overloading facility, this would necessitate separate functions for each of 

the above operations. This would render the program verbose, unwieldy and difficult to 

comprehend. Hence, it was decided to implement solutions involving complex 

numbers only in the next software version, using a later version of the compiler, which 

supports complex numbers.

7.3.2 Fortran77

F77's strong points are M2's weak points and vice versa.

There are powerful libraries available, eg. LAPACK [Anderson92].

It supports sophisticated formatted data processing commands which enable 

variables of different types to be transferred with a single command. The only 

disadvantage may be in remembering all the options and what they mean. However, 

this is amply offset by the elegant and concise representation of the input/output 

statements.

It has intrinsic compiler support for complex numbers.

7.4 Porting Problems

The design of software is typically an iterative process. No matter how good 

the design, 'bugs' invariable creep in. Additionally, there is an underlying complexity 

in the software design cycle that is not readily apparent at the superficial level, eg. 

'critical' variables/records are overlooked, resulting in schedule delays due to redesign.
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7.4.1 The Black-Box Approach

One basic assumption/mistake made in trying to speed up the software 

development/translation cycle was to assume the 'black box' approach. That is, if you 

have a line by line translation of F77 to M2, and all input parameters and returned 

results are catered for, then it is unnecessary to understand the inner detailed workings 

of any function or module. This assumption, though plausible, would fail if,

a) the implementation of variables was language or machine dependent, or,

b) the constructs of one language could not be translated to the other's.

Quite obviously, the resultant code would not be particularly efficient. However, at a 

later stage, a profiler could be used to target required code sections for optimisation.

In the present case, both a) and b) were absent. The main problems reared their 

heads elsewhere. This is where the black box approach broke down. It became 

imperative to delve inside functions and modules to discover the source of the error. 

This necessitated a study of:-

a) Gaussian Elimination (GE) to solve a system of Yl equations

b) Generalised Jacobi Algorithm Eigensolver (GJAE) for a system of Yl equations.

Appendix O details the problems faced while porting UNAFEM to FAME.

7.4.2 Conclusions - Porting Problems

Porting of F77 to M2 was not without pain. In spite of stringent checks (both 

human and computer), problems were caused by typographical errors and logic 

translation mistakes. Lack of detailed understanding on the author's part compounded 

the problem, leading to further delays.

This author spent 8 man-months, spread over a time period of approximately 

half a year, to develop the software up to its present level of performance. This
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includes the solution of 1-D BDVP and EIGP. The results, though not relevant to the 

problem at hand, are shown in Appendix P.

Most of the time went into debugging problems that arose as a result of manual 

translation errors (Appendix O). No doubt, the final outcome was a clearer 

understanding of the algorithms! However, it would be preferable if manual errors 

could be eliminated altogether, as they introduce unnecessary bugs into debugged 

algorithms and code. An automatic F77 to M2 translator software, if available, could 

fix the problem.

7.5 Conclusions

The existence of a versatile library of functions is the strongest indicator in 

F77’s favour. However, UNAFEM does not use any predefined library functions for 

the solution of the matrix equations. This would tend to imply that it is not such an 

important factor after all, as the required functions can be easily implemented if you 

have a copy of the algorithms.

This library could also explain the popularity of F77 over other languages for 

solving numerical problems. In general, people would prefer to have debugged library 

routines rather than waste time re-inventing the wheel.

On the other hand, M2 has many advantages in its favour. However, these are 

all general structured programming features. This can be explained by the fact that M2 

has been designed by Niklaus Wirth as an exercise in compiler creation rather than for 

the solution of some specific problem. To target specific applications, additional 

features need to be incorporated. In this author's opinion, combination of the 

advantages of M2 with those of F77 would result in a very powerful language that 

would be well-suited to solve the task in hand.
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Obviously, the programmer would have to be willing to invest a lot of time in 

debugging M2 functions. Though tedious, by making a start, this could be the 

beginning of a M2 library of numerical routines!

The primary reason for the choice of Modula 2 as the language of 

implementation was a specific request by my supervisor, who is interested in the 

application of ALGOL style languages for major software engineering projects.

The comparison of two languages (the source language, FORTRAN, and the 

target implementation language, Modula 2) was considered adequate to extract the 

features required for Finite Element Analysis.

Hence, no other languages were considered for the application.
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Chapter 8 - Conclusions

This thesis shows the efficacy of écholocation in the natural world (bats) and 

recommends that studies be done to try to duplicate these effects by artificial means. 

Consequently, it evaluates a numerical approach to the study of ultrasonic transducers, 

comparing the individual approaches of FEM, BEM and WEEM, with various coupled 

approaches. It further proposes guidelines to develop a rudimentary Finite Element 

Analysis software package, FAME.

8.1 Just Right

The Element Methods appear to be just right for the task of transducer design 

and analysis. By changing the spatial orientation and inter-node distances in the system 

and by varying the properties of the elements, it is possible to simulate different 

solutions and determine the best transducer geometry and material composition for 

optimal output requirements. This is a cost-effective strategy, as we fabricate only 

those transducers that exhibit a 95% (or maybe more stringent) chance of meeting our 

requirements. Further, artificial environments can be created to model radiation and 

scattering problems. The solutions obtained can be examined in the lab by use of 

microphones controlled by a precision positioner, to see how theory and observations 

tally.

8.1.1 A Mix of Methods

The BEM should not be used to eliminate the FEM. Instead, it provides a 

powerful complement to extend the capabilities of the FEM.
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In the ultrasonic frequency range, the number of nodes and elements increases 

very rapidly as the size of the problem is increased. This restricts the FEM to the 

solution of relatively small problems like the study of transducers and their resonant 

modes. Large problems like the study of the radiation field of a transducer will have to 

be solved by the BEM or the WEEM or the use of coupled methods (FEM/WEEM or 

FEM/BEM).

1-D piezoelectric models are inadequate for representing the interactions of all 

the piezoelectric modes. Preferably, for more accurate results, 2-D and 3-D models 

should be used. Also, the Helmholtz equation can not be used for the solution of 

piezoelectric systems. Rather, a wave equation formulation for anisotropic media, with 

its additional complexity and corresponding intricate FE formulation, would have to be 

developed and solved.

Most acoustic solutions to date are in the frequency domain. However, there are 

advantages to working in the time domain. Firstly, the solution has only real 

coefficients (no amplitude and phase!). Secondly, there is only one matrix inversion as 

opposed to the frequency domain, which incurs one inversion for each frequency! NIT 

is working on obtaining time domain solutions by using the Kirchoff Integral Equation 

to solve the Time Harmonic Wave equation.

8.2 An 'Element-Method' Software?

This thesis re-examines old well-worn techniques (FEM, BEM, FEM/FEM, 

FEM/BEM) and suggests that they should be coalesced into a single software package 

to enable users/researchers to benefit from the advantages of both techniques (and the 

ability to solve both near field and far field problems). This would basically permit the 

solution of problems that would be impossible or impractical by use of either method 

individually. In particular, the analysis of acoustics problems, and specifically, 

ultrasonic transducer design and analysis will benefit from this facility.
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In this respect, Numerical Integration Technologies (NIT) has already made a 

start by developing SYSNOISE (over the past 6 years), which provides the above 

features in the solution of the Helmholtz equation (frequency domain).

Recent developments [Astley91, Coyette89, Coyette92-l, Coyette92-2] indicate 

that the WEEM may be a viable alternative (computationally more efficient) to the 

BEM in the far field. This requires further study and research.

8.3 Software Developed

This researcher has begun development on a software package called FAME. It 

is presently able to solve 1-D Boundary Value Problems and Eigen Problems. 

Undebugged code is available to solve 1-D Initial Boundary Value Problems and 2-D 

problems of all three kinds. Besides training this researcher in the mathematical basics 

behind these numerical methods, it has provided an easy to use tool for the solution of 

simple non-acoustic problems. It provides hooks that could be used to add relevant 

modules to extend this program to solve Dynamics problems and also 3-D applications. 

Incorporation of more efficient algorithms will result in it being able to solve larger 

problems.

8.3.1 Observations on Software development

One typical problem, characteristic of all software development projects, is for 

the programmer to admit the capability of software faults due to personal errors. Lack 

of this results in a wild-goose search for non-existent flaws, with a corresponding waste 

of time. It would be constructive to stress in all computer science courses that personal 

errors are one of the major reasons for debugging problems, thus instilling in 

programmers the concept that they can and do make mistakes.
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The 'need-to-know' approach to software (the 'black-box' approach) is cautioned 

against, because, in the event of errors, the subsequent search for knowledge may 

require restructuring entire modules (and maybe even the overall code structure), 

causing more delays in the long term. This author believes that the knowledgeable 

('leam-everything') approach is much more productive as compared to the use of a 

black box.

The graphs displayed by Word5 are sufficiently detailed to impart the required 

information. Consequently, writing software for graphic depiction of 1-D results was 

unproductive. Similarly, when expanding to 2-D and 3-D displays, it would be 

worthwhile examining if the results can be displayed suitably by some off-the-shelf 

package, rather than re-inventing the wheel. FORTRAN packages are available but are 

difficult to link to M2. Once again, the cost of the software will play a dominant role in 

the selection process. Writing custom display software should only be a last resort.

Towards the end of this project, I discovered Fortran90 (F90) [Adams92]. I 

have glanced at it only cursorily. However, it appears to have most, if not all, of the 

features that I've stated F77 as lacking. In this respect, there is one comment. Is it 

preferable to retain use of a package/language (F90) that has grown bulky due to the 

need to maintain compatibility with older implementations while still incorporating new 

features? Or should we advance with the times and utilise software that is compact and 

incorporates all the good features of the previous languages, while eliminating all/most 

of the bad? This author would prefer the latter!

8.4 Potential Applications

8.4.1 Ultrasonic Transducer Design

E lf Atochem Sensors [ElfAtochem92] provides standard and custom 

piezoelectric film elements. These could be used to test out our theories and, in the
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future, maybe even build our own custom transducers. Experimental verification of the 

computed eigenmode shapes of the simulated transducers may not be possible as laser 

interferometers [Lerch90] are not accessible to this researcher! However, the radiation 

field generated by the transducers could be measured in the laboratory by using the 

precision positioner, which permits translation along the x and y axes, and rotation 

around all 3 axes.

8.4.2 Other

The substructuring facility [ANSYS5.0] can be utilised in the analysis and 

design of array transducers, where each element of the array is a substructure. 

Modelling bats' vocal tracts (near field problem) and how they interact with the 

environment (far field problem) could provide further insights into écholocation.

The BEM has potential to support inverse problems like acoustic imaging 

(sonagrams) [Ciskowski91] and so could be used for modelling the inverse problem in 

écholocation, ie. to determine the shape, orientation, texture, relative motion, etc. of any 

body by measuring the ultrasonic echoes it emits. Besides, there is large scope for the 

BEM in bioacoustics. Coupled with Probabilistic BEM [Daddazio91], it can be used to 

study and model various aspects of the human body.

As side effects, the same software techniques and analysis can be applied to 

develop other fields that depend on the piezoelectric effect, eg. smart-sensors and 

micro-motors.

8.5 Present Applications

In fact, the design of piezoelectric ultrasonic transducers is an ongoing area of

research being tackled by a collaboration between a transducer developer (Thomson 

Sintra Pacific) and experts in numerical methods for Acoustics (NIT).
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8.5.1 A M F IB IE

AMFIBIE [Migeot93] is a custom package developed by NIT for Thomson 

Sintra ASM to solve coupled problems involving non-homogeneous media. It 

combined the advantages of the FEM pressure formulation and the Direct BEM into a 

single package. All three acoustic BC's can be applied to both models, and coupling 

was ensured by special pressure and flow continuity conditions at the interface between 

the two models.

Application to sonar]

FEM and BEM mesn of the antenna Directivity of emitted sound field

Model courtesy of Thomson SINTRA ASM "

Figure 8.1: FEM-BEM solution for development of a phased array [Migeot93].

It was used to develop a phased array for a sonar application. A 3-D 

representation was used in which the antenna was modelled by 6-node wedges and 8- 

node hexahedrons for the FEM. Its surroundings (water) were modelled by 4-node 

surfaces for the BEM. The mesh used and the sound field obtained are shown in Figure 

8. 1.
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8.5.2 Piezoelectric Development

Another TS ASM project involves piezoelectric transducer design. It aims to 

couple TS ASM's piezoelements to NIT's acoustic modelling package, SYSNOISE. 

The resultant system equations will be modified to eliminate electrical unknowns and 

then solved to get the resultant displacement.

8.6 In Conclusion

To model piezoelectric transducers in air for both transmission and reception, 

we require:

1) 2-D or 3-D piezoelectric elements

2) the piezoelectric constants for the materials of the transducer

3) a FEM model of the transducer

4) a BEM model of the waves in air

5) coupling between the FEM and BEM models

6) a numerical formulation to solve the coupled Dynamics equations, ie. second 

order time differential equations.

To apply this software to electrostatic and bimorph transducers would require 

additional work, including finding the transducer parameters.

It is evident that no available software package can directly support our needs. 

At present, 2 major companies, NIT and TSASM, are collaborating to develop software 

that can solve this problem for piezoelectric transducers in water.

We have studied the equations required to solve piezoelectric problems and 

identified elements that could be used to model piezoelectric transducers. 2-D 

axisymmetric elements are the minimum required to obtain models with a reasonable 

amount of accuracy. For more realistic models, 3-D elements must be used. Also, this
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would extend the range of possible problems. In addition, wave envelope elements 

could be used for a complete FEM solution instead of using a BEM model for the 

waves in air.

We wrote rudimentary FEM software to enable us to estimate the time required 

to develop an Acoustic FEM package for piezoelectric transducers, and to evaluate the 

language factors involved.

Based on the work done and results obtained, we estimate that a minimum of 

three years will be needed to develop such a package. Subsequently, to accurately 

model the transducers, requires values for the transducer parameters; either from some 

reliable source (data from some transducer manufacturer) or else by actual 

measurements. In the latter case, considerable time and effort will be required, and, in 

this thesis, we have not studied the techniques involved.

Hence, we conclude that the overall work involved is way beyond a Masters 

Honours thesis. Instead, it is conservatively estimated to be at least one Ph.D's work, 

though it could possible be even two or more! For this reason, rather than being a 

solution, this thesis is an evaluation of what is required to solve the problem.

8.7 Tailpiece....

Numerical modelling of acoustic transducers is a young field and still 

developing. It combines concepts from widely varying fields, such as crystallography, 

piezoelectricity, wave theory, materials manufacture and testing, transducer design, 

ultrasonics, echolocation, matrix algebra, numerical analysis and the various ’element’ 

methods. A mastery of these fields plus a lot of software development will eventually 

result in a package suitable for our application.
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Appendix A - Tools Used

A.1 Hardware Used

1) Macintosh!! © Apple Computer, Inc.

2) Quadra 950 © Apple Computer, Inc.

3) IBM PC/AT 386/486 © IBM Corporation

A.2 Software Used

1) Modula-2 V4.2 © 1990 p i Gesellschaft für Informatik mbH.

2) Modula-2 V4.3.2 © 1991 p i Gesellschaft für Informatik mbH.

3) MPW V3.2 © 1986-1991 Apple Computer, Ine.

4) Microsoft Word 5.1a © 1987-1992 Microsoft Corporation.

5) Aldus SuperPaint 3.0-IE © 1986, 1988-1991 Silicon Beach Software, In e ..

6) Strand 5 © 1989 G&D Computing, Pty. Ltd.

7) SYSNOISE © Numerical Integration Technologies.
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Appendix B - Types of Equations

This Appendix has been included to indicate the basic assumptions made in 

deriving the Helmholtz equations. In particular, note equations B.2.3 and B.2.5 that 

convert an anisotropic equation to an isotropic one.

Typical boundary conditions have been assumed and hence are not included.

B.1 1-D Problem

A typical 1-D Boundary Value Problem (BDVP) can be represented in mathematical 

notation by the following differential equation

d  f  d  \
—  a ( x )  —  U ( x )  ] + f 3 ( x ) U ( x )  =  f ( x )  
d x  V d x  )

B .l.l

where

X  is the independent variable 

U ( x )  is the unknown function

a ( x ) , P ( x )  are known functions (usually representing physical 

properties of the system)

f  ( X )  is a known function (usually representing loads applied to the 

domain of the system)

B.2 2-D Problem

2-D problem s can, in general, be represented by th e  q u a s ih a r m o n ic  e q u a tio n :-
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{ V Y { [ a ] { V U } )  +  l 3 U  =  f B.2.1

where

X,  y  are the dependent/independent variables 

U  =  U ( X , y )  is the unknown function

a a xy

a xy a .
,P(x,y)  are known functions

(usually representing physical properties of the system) 

f  ( X , y  ) is a known function (usually representing loads applied to the

{V}' = {

domain of the system) 
d

—  —  f is the gradient operator for 2-D 
dx dy)

A matrix expansion of B.2.1 results in

d ( dU) d ( du \
\ dx j dx (Xxy

\ dy J
d _ (  d U )  

d y y * *  d x  j

d_

d y

d U
+ p u  =  f

Now a ^ ( x , y )  =  0  <?=> [ a ]  =
CCX 0
0 a y

and putting B.2.3 into B.2.2 we get

d _ (  d u _ \

d x y *  d x  j

d _ (  d U

d y y " *  d y
+ p u  =  f

B.2.2

B.2.3

B.2.4
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which is the anisotropic equation solved by UNAFEM. It however restricts that the 

anisotropicity be only along two mutually perpendicular axes that are parallel to the x 

and y axes of the system.

Further ax(x,y) = ay(x,y) <=> [ a ]  =  a ' 1  O '
0  1

B.2.5

Substituting B.2.5 into B.2.4 we get

-aV 2U + pu = f B.2.6

d2 d2
where V2 =  2 »is the Laplacian operator for 2-D.

We note that we have now reduced the material to isotropicity, ie. its properties are 

independent of direction.

Now if f 3 ( X , y )  — 0, then B.2.6 becomes

V2t/ = = b ..a B.2.7

which is P oisson 's equation , where b  is some known function of space, or of the 

potential U itself, or includes time dependent terms.

Now if f  ( X,y) — 0 , then B.2.7 becomes

W2U = 0 B.2.8

which is L a p la c e 's  e q u a tio n  o r  th e  h a r m o n ic  e q u a tio n .
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„ l _ 1 d2U
n O  — —y —~ — then B.2.7 becomes 

C2 d 2t

v2u 1 d2U
c 2

B.2.9

which is the wave equation in the time domain.,

where

U is a velocity potential (function of both position and time) 

and C is the velocity of sound in the medium.

If U is a harmonic function, ie. U ( X,  t ) =  U( X )eim .. .. B.2.10

__ /s/
then B.2.9 becomes V2i/ + k2U =  0 .. .. .. .. B.2.11

which is the Helmholtz equation (in the frequency domain), 

where 7 ®K — —  is the wave number 
C

CO is the angular frequency.

We note that Helmholtz equation is a special case of the Wave Equation and that the 

time domain and frequency domain models are equivalent for harmonic cases.

B.3 3-D Problem

The quasiharm onic equation for 3-D problems is:-
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- { V } ' ( [ « ] { V i / } )  +  /3t/  =  / B.3.1

where

X , y , Z  are the dependent/independent variables 

a(x,y,z) is 3-by-3 matrix relating all 3 axes

/V7V \ d  d  , j - .  _i v ) = j —  —  —  Vis the gradient operator for 3-D 

and all terms are functions of all 3 independent variables

In the 3-D domain, anisotropic materials will have interaction between all 3 axes. Only 

in the special case of isotropicity will the form reduce to that of equation B.2.7, with the 

corresponding Laplacian operator for 3-D.

B.4 Wave Equation for Acoustics

In the case of acoustics problems, the unknown function in the wave equation is 

the pressure field. So, setting U  — p  in B.2.9 gives,

V 2p  +  k 2p  =  0 ..............................................................................  B.4.3

B.4.1

Assuming a steady state harmonic motion,

p( x,y,z,t) =  p(x,y,z)eim B.4.2

and we get the Helmholtz equation
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Appendix C - FE Equations

This Appendix considers different types of problems and lists their PDEs, BCs 

and FEM formulations. It has been included to demonstrate how the underlying unseen 

complexity of the FE formulations increases as we move from 1-D to 2-D to 3-D.

C.1 1-D Boundary Value Problem (BDVP)

d f  d  A
—  a(x)— U(x)]+ß(x)U(x) = f(x) 
dx\ dx J

with boundary conditions

V(*.) = U. or a(x)— U(x) 
dx

=  T,
- lx ,

and

U(xb) = Ub or ■a(x)— U(x) 
dx

=  Tt

Equivalent Matrix Representation

[ * ] { « }  =  { F }

where

C.1.1

C.1.2

C.1.3

C.1.4
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dé(e)(x) \̂ (er
a ( x ) — ^ ------  dx+ J (¡)[e)(x)ß(x)(f)(je)(x)dx

J

C.1.5

and
(e)

\f(x)<f>f(x)dx
(
-a (x )

v

d_
dx

Ü{e)(x,a)
J

C .l.6

C.2 1-D Eigen Problem (ElVP)

d ( d \
—  a(x)  —  U(x) +ß(x)U(x)-X7(x)U(x) = 0 
dx\  dx J C.2.1

The system undergoes natural oscillations (forcing function = 0) and has the Equivalent 

Matrix Representation

[ K ] { u } - X [ M ] { u }  =  0 ................................................................. C.2.2

C.3 1-D Initial Boundary Value Problem (IBVP)

n  ( X )  4- U ( x , t )  a ( x )  4 -  U ( X ,  t ) ) +ß(x)U(x, t) = f(x,  t)
ot ox \  ox J

C.3.1

with

at xa,t>t0
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-  UJt)  or -a(x) d_

dx
U(x,t) = * J 1) C.3.2

and

at xb,t>tO

U{xb,t) = Ub(t) or -a(x) d_

dx
U(x,t)

xb
C.3.3

The initial conditions could be defined as 

at tO,xa<x<xb

U(x,t0) -  U0(x) .................................................................  C.3.4

Equivalent Matrix Representation

[C]{u(t)}  + [K]{u(t)}  = {F( t ) }  ....................................................  C.3.5

C.4 1-D Dynamics Problem (DYNP)

Wave Propagation and vibration problems are typically expressed by second order time 

partial differential equations as

d2p(x)^p;U(x,t) +

ji(x) U(x, t) -  ( a(x) U(x, t) ] + ¡3(x)U(x,t) = f(x,t)
at ox V  ox )

C.4.1
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The initial conditions could be defined as 

at tO,xa<x<xb

U(x,t0) = U0(x) C.4.2

and

(  d  \
-Tf U(x,t) =V0(x)

Kdt Jto C.4.3

Equivalent Matrix Representation

[M]{ü(t )}  + [C]{ù(t)} + [K]{u(t)}  = { F ( t ) } .......................................  C.4.4

C.5 2-D Problems

As we move on to 2-D problems, we again note the similarity in the form of the PDEs. 

All parameters are functions of both X  and y .

Boundary Value Problems

+ ß(x, y)U( x, y ) =  f(x, y )

C.5.1

Eigen Value Problems
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d ( d \
3 “  ax(x,y)— U(x,y) 
ox \ ox J dy

d ( d ^
a (x,y)— U(x,y) 

dyV J
+ß(x,y)U(x,y)-XY(x,y)U(x,y) = 0

....................................................  C.5.2

Initial Boundary Value Problems

ß(x,y)— U(x,y,t)
ot

d (
dx \

d \ax(x,y)— U(x,y) 
dx J

d f  . .d  ... }—  a (x,y)— U(x,y) 
oy\ oy

+${ x , y)U (x,y)- KY(x, y)U (x,y) = 0

....................................................  C.5.3

The matrix equations have the same form as the corresponding 1-D problem, but the 

elements of the matrices are now double integrals, eg. element of stiffness matrix is

KV-y
(e)

(e)

JJ
(e)

dx
a W -dxdy + ' j j ^

(e)

dx
a.

d<t> (e)

dy y dy
-dxdy

(e)+ J J (¡){e> ß tyf dxdy

C.5.4

C.6 3-D Problems

The basic form of the PDEs and the matrix equations remain the same, though 

the complexity increases (triple integrals).
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Appendix D - BE Formulations

This Appendix is included to demonstrate that the Galerkin method has been 

used to solve BEM problems. The isoparametric elements developed have a dual utility 

and can be utilised in both FEM and BEM formulations.

Brebbia [91] used the Galerkin method to develop the BIE for equations D.4 to

D.7 over the 2-D domain Q ,  which has two 1-D surfaces, respectively named F i and 

r 2, as shown in the figure,

Figure D .l: Geometric definition for Laplace's equation [Brebbia91]. 

and subject to the conditions:-

1) Dirichlet or Essential

u  — U on .. .. .. .. .. .. .. D .l

2) Neumann or Natural

<7 =
d U  -  r D.2
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3) Robin or Mixed

a U  +  [3 q  =  y  ................................................................. .. D.3

Laplace's equation .. .. .. .. .. .. .. D.4

Poisson’s equation .. .. .. .. .. .. .. D.5

The wave equation (Time Domain mode) .. .. .. .. D.6

Helmholtz equation (Frequency Domain mode) .. .. .. D.7

Here U  is a function of position only and relates to acoustic pressure by

p  =  - i ( O p QU  .............................................................................. D.8

where pQ is the density of the fluid.

He further derived the following 1-D boundary elements to solve 2-D problems:

a) Constant element

b) Isoparametric linear element

c) Isoparametric quadratic element

d) Isoparametric cubic element

We note that the equations of b), c) and d) are identical to those developed for the FEM. 

This is to be expected. However, a) has a different formulation.

We also note that the isoparametric elements developed for 2-D problems in FEM 

[Bumett88] can be used for the 3-D problems in BEM [Wu91]. Appendix N gives the 

equations for 1-D and 2-D isoparametric quadratic elements.
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Appendix E - Detailed FEM Steps

This Appendix has been included for completeness purposes only. Most of the steps can be found in any standard text book 

describing the FEM.

The typical approach to the FEM can be split up into two broad sections (theoretical and numerical) sub-divided into twelve steps. 

We shall develop the steps assuming that we are solving the 1-D boundary value problem described by the following differential equation,

-tj-(a(x)-^-U(x)\+P(x)U(x) = f(x) 
d x \  a x  J

E.l

whose residual is

R ( x , a )  =
d . d

d x
a ( x ) — U <e)( x , a )  + P ( x ) Ü (e> ( x , a )  — f ( x )  

d x  J

The general form of the element trial solution and its derivative can be written as

E.2
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E.3
N

U<e>(x,a) = Y laj<l,<f >(x) ■■
j =i

— U<e)(x,a) = 
dx E.4

where

0 ^  f X j  is the j-th shape function (usually polynomial) for the e th element

Clj , V /' =  1 ..N  are unknown parameters (constants)^ o r 4f\e decrees ov* (bO F^.

is the local node numbering for the element.

E.1 - The Theoretical Section

The theoretical section describes the mathematical manipulations necessary to lay the ground-work for the numerical solution. It 

basically involves the underlying calculus that determine the expressions and formulae to be used in the calculation of the solution.
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Step 1) Using Method of Weighted Residuals, we derive the Galerkin residual equations, one for each DOF ¿Z;

(e)J R(x,a)(/)je>( x ) d x  =  0 , V i  =  Ì . . N E.5

Putting E.2 in E.5, we get

(e)/  j

i f - J l, d x
—  a ( x )  —  U <e>( x , a )  +  j 3 ( x ) U <e>( x , a ) -  f ( x )  <j><i c)( x ) d x  =  0 
d x \  d x  )  ' )

E.6

Step 2) The general formula for integration by parts of the two functions U and V over the interval Xa to Xb is given by the relation

d v  , 
u  —  d x  

d x

Integrating bv parts the highest derivative term in the equation E.6 gives us
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E.7

(e) /

i —  a ( x ) — U (e>( x , a )  ip(i e}( x ) d x  =  
d x \  d x  J )

r - a ( x ) ^ - U <e>( x , a ) ) ^ j e>( x )  
dx  y

l (e)  (e)

+ [ a ( x )
d d

U (e) ( x , a )  —  (t>le> ( x ) d x  
d x  d x

Hence, substituting E.7 into E.6 above, and the Galerkin residual equations becomes

(e)t
d _ ^

dx

(e)

j f(x)<l>le>( x ) d x

j [ a ( x )  — U <e) ( x , a ) — ^  ( x ) + P ( x ) U M (x ,  a)$\e) ( x )

7
- a ( x ) — U <e>( x , a )  (¡>\e)( x )  

A  d x

d x -

l (e)
V/ =  l../V

Step 3) Substitute the general form of the element trial solution into the integrals in the residual equations, 

equations.

Substituting E.3 and E.4 into equation E.8 gives

E.8

Hence get the element
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(e)f (  N i A

j a ( x )  J i a j —  <l><jt>( x )
V v;=i ux

d

d x

\ f( x ) < p le>( x ) d x -
<e)

0/ (X) + P(X)

f

r N \

YJaj<t><f >(x)
\ J = 1

A

4>le) ( x )
J

d  "(e )  /  „ „  ^(e)

d x  =
J
1 (e)

- a ( x ) ^ - U {e> (x,a)  t f > ( x )
. d x  J .

E.9

N ( (e>( /  ] \  /  \ \  ^
y  f — ^ ( x )  \ a (x )  —  4>[e)( x )  k x +  ( U <ie>(x)l3(x)(t><je>( x ) d x )  

J \ \ d x  J \ d x  1 ) )  JV ' )

f  

\

(e)

jf(x)<l>ie>( x ) d x -

d j  =

a ( x ) — U <e)( x , a )  4>ie>( x )  
d x  J _

V/  =  1 . .N

1 (e)

E.10

Note that E.10 represents the set of the element equations for a typical element. It can be represented in the conventional matrix 

format by the notation:
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' C
j f ( e )
*M2

j f ( e r  
* * **1N —

i 

__
__

i

---
---

1

__
__

1

js(e)
**21

j\s(e) 
^ 2 2

V (e)
' • *^2N a 2

=

p (e )
r 2

I--
---

---
---

---

is(e)
&N2

--------------1
. 

2
2

J a N.
r?(e)

_ N _

E.11

where

(e)

F f =  \ f ( x W ? > ( x ) d x

d ( p f ( x ) ^  

d x  j  

7

(e)

d x +  J  (¡)\e) ( x ) f 5 ( x ) ^ (j e) ( x ) d x

d
1 (e)

Lv
- a ( x )  —  U { J( x , a )  0- }( x )  

d x  )

Step 4) Develop specific expressions for the shape functions (element trial functions). For the standard elements, these are usually 

Lagrange interpolation polynomials with the values of the functions at the nodes defined to equal 1. Hence, for a linear interpolation 

between 2 nodes, we have
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h ( x a) = l

fa(xb) = 0
and

<p2 ( x a ) =  0  

(¡>2 ( x b ) =  \

This can be clearly understood from Figure E.l which graphically depicts the relationship.

In general, for N  nodes, we have the following definition:-

<t>j(xi ) =  Sj i = l J  =  i

<t>j ( x i ) =  8 J i = 0 , j ± i

E.12

E.13
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In the case of isoparametric elements, the development is nearly the same. In fact, if the elements are strictly symmetric, then the

trial functions are identical in both cases.

Note that this step is Element dependent.

Step 5) Put the shape functions into the element equations and transform  the integrals into a form suitable for numerical evaluation.

This requires that the integrals in K \ ^  and F - e* be evaluated analytically. This has two aspects.

Firstly, we need to know the functions that describe OC(x) ,  ( 5 ( x )  and /  ( X ).  These functions may be constants, or they may 

be low order polynomial approximations.

Secondly, we need flexibility in order to be able to have a general problem solver.

Hence, we assume that the above values are constants or simple functions over the entire element, and let the user input them. 

Then their values are calculated by Gauss-Legendre quadrature.

Note that this step is Element dependent.

Step 6) Prepare expressions for the flux using the shape functions. 

Note that this step is element dependent.
x ;
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E.2 - The Numerical Section

The numerical section does the actual number-crunching.

Step 7) This step handles all Pre-Processing, requiring entry of all input data, including

a) Control parameters, such as type and dimension of problem

b) geometric data, such as node numbers and co-ordinates

c) physical data, such as values of (X (  X )  and f5 (  X )

d) load data, such as f  (  X ) .

Step 8) Assembly of the System Equations involves two steps. First, an evaluation of the interior terms in the element equations for each 

element individually. Then all corresponding terms in the element equations referring to the same node are coalesced into a single term 

for that particular node (DOF).

eg. Assuming a simple mesh of 2 linear elements (element 1 consisting of nodes 1 and 2; element 2 consisting of nodes 2 and 3), we 

would end up with the following banded matrix/system equations
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' C K n * a \ " FI{1> " i <v( X i )

is( ')
^ 2 1 +  K<1> is (  2) 

^ 2 3 a2 = F l (2l> +  f i (22> - t <1>( x 2 ) +  f < v ( x 2 )

j s (  2) 
^ 3 2

v (  V
^ 3 3  _ . « 3 . 1--

---
--

5
to

1__
__ _ - t <v ( x 3 ) _

E. 14

where

the superscript ^  (in all arrays) refers to the element number

the subscript / in F\l[ %) refers to the node number
Flt r e p r e s e n t s ,  t k t  i n t e r i o r  t o o u i

In general, for a system having hj nodes, we would end up with the familiar FEM matrix equation:

M « i = m E. 15

where

[ K ] is a banded symmetric stiffness matrix of order A/

[ a ] , [ ^ ]  are column matrices of order N  representing unknowns and loads respectively
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Step 9) AppIv the boundary conditions.

The natural boundary conditions (BC's) and inter-element boundary conditions (IBC's) are unconstrained. So, they would be 

directly added to their corresponding matrices, i n

The essential boundary conditions (EBC's) are constrained. So suitable constraints would have to be imposed on the system 

equations. In general, some CtL would be set equal to the EBC's. This would imply modifying the [ /^ ]  and [ K ]  matrices.

Step 10) Solve the system equations, typically by Gaussian Elimination, to find the values for all Cl¿, other than those that have been 

assigned values by the EBC's.

Step 11) Evaluate the flux and/or other related quantities in all or some of the elements by re-substituting for the known

Step 12) Display the solution and evaluate its accuracy. If need be, a partially or completely refined mesh is constructed (p-refinement, 

which uses higher order polynomials; or h-refinement, which uses smaller elements; or both) to generate a more accurate solution in some 

particular region or over the entire domain of the problem respectively. (And we loop back to Step 1)
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E.3 - Other Types of Problems in 1-D

Appendix C indicates that additional matrices [ C ]  and [ M ]  come into play when we consider the solutions to the Eigenproblem 

(EIGP), the Initial Boundary Value problem (IBVP) and the Dynamics problem (DYNP). Their development is along similar lines to the 

12 steps outlined above.

EIGP requires FEM matrix assembly and an eigensolver to obtain the solution. IBVP requires FEM matrix assembly and GE to 

obtain the solution and Finite Differences (FD) for the time iterations. DYNP needs to develop some form of time stepping.

134



Appendix F - Data Types

This Appendix lists the various data types defined during the design of FAME.

F.1 General Types

Dimension =

(DIM1, (* one dimension problem *)

DIM2, (* two dimension problem *)

DIMAXI, (* axisymmetric problem *)

DM 3); (* three dimension problem *)

Problem = 

(BDVP, (* boundary value problem *)

EIGP, (* eigen problem *)

IB VP, (* initial boundary value problem *)

DYNP); (* dynamics problem *)
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(* These are common variables that specify a particular problem *) 

System = RECORD

Stitle : Str255;

Sdimen : Dimension;

Sprob : Problem;

Snumnp : INTEGER;

Snum el: INTEGER;

Snumpp : INTEGER;

Snumilc : INTEGER;

Snumebc : INTEGER;

Snumnbc : INTEGER;

Snumtdata : INTEGER;

Snum pdata: INTEGER;

Seigen_calc_done : BOOLEAN; 

Seigen_solution_found: BOOLEAN; 

Sfem_calc_done: BOOLEAN; 

Sfem_solution_found: BOOLEAN;

(* title of problem *)

(* no. of dimensions of problem *) 

(* type of problem *)

(* no. of nodal points *)

(* no. of elements *)

(* no. of physical properties *)

(* no. of internal load conditions *)
r

(* no. of essential BC's *)

(* no. of natural BC's *)

(* no. of time stepping data *)

(* no. of plot data *)

EN D;



F.2 Input Types

(* Each Node specifies the co-ordinates of one of the nodes of the problem mesh *) 

Node = RECORD 

num ber: INTEGER;

x : REAL; 

y : REAL; 

z :R E A L ;

node_valid: BOOLEAN; 

next_node : POINTER TO Node; 

prev_node : POINTER TO Node;

END;

(* Each Element describes an element of the 

Element = RECORD 

num ber: INTEGER; 

type : INTEGER; 

gauss : INTEGER; 

prop : INTEGER;

nodes : ARRAY [1..8] OF INTEGER;

next_elem : POINTER TO Element; 

prev_elem : POINTER TO Element; 

END;

(* number of the node *)

(* x coordinate of the node *) 

(* y coordinate of the node *) 

(* z coordinate of the node *) 

(* validity of the node *)

(* pointer to next node *)

(* pointer to previous node *)

(* number of the element *)

(* type of the element *)

(* no. of Gauss points of elem. *)

(* property no. of the element *)

(* numbers of all the nodes belonging to 

this element*)

(* points to next Element *)

(* points to previous Element *)

problem mesh *)
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(* Each Property specifies coefficients of quadratic functions that describe the physical 

properties of a particular material/media *)

Property = RECORD

number : INTEGER; (* number of this property *)

alphax : ARRAY [1..6] OF REAL;

alphay : ARRAY [1..6] OF REAL;

beta : ARRAY [1..6] OF REAL;

gamma : ARRAY [1..6] OF REAL;

mu : ARRAY [L.6] OF REAL;

next_prop : POINTER TO Property; (* pointer to next Property *)

prev_prop : POINTER TO Property; (* pointer to previous Property *)

END;

v Each ILC specifies one of the internal loads of the problem *)

ILC = RECORD

num ber: INTEGER; 

no d e : INTEGER; 

fin t: REAL; 

ilc_pres: BOOLEAN; 

next J l c  : POINTER TO ILC; 

prev_ilc : POINTER TO ILC;

END;

(* number of this ILC *)

(* ILC is applied to this node *) 

(* load value of this ILC *)

(* validity of this ILC *)

(* pointer to next ILC *)

(* pointer to previous ILC *)
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(* Each EB C specifies one o f the essential BCs o f the problem  *)

EB C  = RECORD

num ber: INTEGER;

iuebc : INTEGER;

uebc : REAL;

ebc_pres : BOOLEAN;

next.ebc : POINTER TO EBC ;

prev_ebc : POINTER TO EBC ;

END;

(* number of this EBC *)

(* EBC is applied to this node *) 

(* load value of this EBC *)

(* validity of this EBC *)

(* pointer to next EBC *)

(* pointer to previous EBC *)

(* Each NBC specifies one of the natural 

NBC = RECORD 

number : INTEGER; 

inp : INTEGER; 

jnp : INTEGER; 

knp : INTEGER; 

taunbc : REAL; 

nbc_pres: BOOLEAN; 

next_ebc : POINTER TO NBC; 

prev_ebc : POINTER TO NBC;

BCs of the problem *)

(* number of this NBC *)

(* NBC is applied to this node *) 

(* NBC is applied to this node *) 

(* NBC is applied to this node *) 

(* load value of this NBC *)

(* validity of this NBC *)

(* pointer to next NBC *)

(* pointer to previous NBC *)

END;



(* Each Graph specifies display param eters for the problem  *)

G raph = RECORD

num ber: INTEGER; 

variable : INTEGER; 

Gxmax_needed : REAL; 

Gxmin_needed: REAL; 

Gx_num_divs : INTEGER; 

Gx_scale_factor: REAL;

G x_scale: INTEGER;

Gx_string : Str63;

Gymax_needed : REAL; 

Gymin_needed : REAL; 

Gy_num_divs : INTEGER; 

Gy_scale_factor: REAL;

G y_scale: INTEGER;

G y_string: Str63; 

next_Graph : POINTER TO Graph; 

prev_Graph : POINTER TO Graph; 

END;

(* number of this graph *)

(* variable that it describes *) 

(*input*)

(*input*)

(*input*)

(^calculated*)

(*calculated*)

(*input*)

(*input*)

(*input*)

(*calculated*)

(*calculated*)

(* pointer to next Graph *)

(* pointer to previous Graph *)



F.3 Output Types

(* Each NodeSolution specifies the function value at the node *)

NodeSolution = RECORD 

iu : INTEGER; 

tauxnp : REAL; 

tauynp : REAL;

END;

(* Each ElementFlux specifies values of the flux/gauss points for the given element *) 

ElementFlux = RECORD

xgp : ARRAY [1..4] OF REAL; 

ygp : ARRAY [1..4] OF REAL; 

tauxgp : ARRAY [1..4] OF REAL; 

tauygp : ARRAY [1..4] OF REAL;

END;

(* Each EigenSolution specifies an eigenvalue and its eigenvector *)

EigenSolution = RECORD

eigsm l: REAL; (* specify eigenvalue *)

vecsm l: ARRAY [1 ..61] OF REAL; (* specify eigenvector *)

END;
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Appendix G - Variables Used

This Appendix has been included to indicate the actual variables used in the 

implementation of FAME.

DEFINITION MODULE FECommon;

(*Robert Pierre C. D'Souza; Feb 1, 1993*)

TYPE (* some necessary types ; RPD; Feb 1, 1993 *)

Print_Choice = (Print, No_Print); (* To print or not to print *)

Jacobi_Choice = (Complete_Solution, Forward_Reduction);

Dimension = (DIM1,

Problem = (BDVP,

Option = (FORM, 

FLUX);

EIGP,

DIM2,

DIM3);

IB VP);

(* Complete Solution of matrix; 

or only Forward Reduction *)

(* one dimension problem *)

(* two dimension problem *)

(* three dimension problem *) 

(* form element matrices *)

(* calculate flux *)

(* boundary value problem *)

(* eigen problem *)

(* init. boundary value prob. *)

VAR (translated/ported from those listed in UNAFEM [Bumett88]) 

dimen : Dimension; 

prob : Problem; 

title : Str255;
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numnp, 

numel, 

numpp, 

numilc, 

numebc, 

numnbc, 

numtdata, 

numpdata, 

mband

: INTEGER;

maxnp, 

maxel, 

maxpp, 

maxil, 

maxebc, 

maxnbc, 

maxtdata, 

maxpdata, 

maxbnd

: INTEGER;

ntype : ARRAY [1..200] OF INTEGER; 

ngpint : ARRAY [1..200] OF INTEGER; 

nphys : ARRAY [1..200] OF INTEGER; 

icon : ARRAY [1..8],[1..200] OF INTEGER;

(* no. of nodal points *)

(* no. of elements *)

(* no. of physical properties *)

(* no. of internal load conditions *)

(* no. of essential BC's *)

(* no. of natural BC's *)

(* no. of time data; RPD; Feb 12, 93 *)

(* no. of plot data ; RPD; Feb 12, 93 *)

(* half bandwidth *)

(* max no. of nodal points *)

(* max no. of elements *)

(* max no. of physical properties *)

(* max no. of internal load conditions *) 

(* max no. of essential BC's *) .

(* max no. of natural BC's *)

(* max no. of time data ; RPD; 12/2/93 *) 

(* max no. of plot data; RPD; 12/2/93 *) 

(* max half bandwidth *)

k : ARRAY [1..300],[1..50] OF REAL; 

f : ARRAY [1..300] OF REAL;
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a : ARRAY [1..300] OF REAL;

keig : ARRAY [1..61],[1..61] OF REAL; 

meig : ARRAY [1..61],[1..61] OF REAL;

ck : ARRAY [1..300],[1..50] OF REAL; 

anml : ARRAY [1..300] OF REAL; 

fnml : ARRAY [1..300] OF REAL; 

fn : ARRAY [1..300] OF REAL; 

fo : ARRAY [1..300] OF REAL; 

clump : ARRAY [1..300] OF REAL; 

delu : ARRAY [1..300] OF REAL; 

uo : ARRAY [1..300] OF REAL; 

keffdu : ARRAY [1..300] OF REAL; 

keffuo : ARRAY [1..300] OF REAL;

intrvl,nsteps,ntime : INTEGER; 

time,dt,theta,ao : REAL;

nnodes : ARRAY [1..30] OF INTEGER; 

intdef : ARRAY [1..30] OF INTEGER; 

ioptau : ARRAY [1..30] OF INTEGER;

ke : ARRAY [1..8],[1..8] OF REAL; 

fe ; ARRAY [1..8] OF REAL; 

me : ARRAY [1..8],[1..8] OF REAL; 

ce : ARRAY [1..8],[1..8] OF REAL;

xi, eta, jac :REAL;



jacinv : ARRAY [1..2],[1..2] OF REAL; 

xx, yy, phi : ARRAY [1..8] OF REAL; 

dphdx : ARRAY [1..8] OF REAL; 

dphdy : ARRAY [1..8] OF REAL; 

dphdxi : ARRAY [1..8] OF REAL; 

dphdet : ARRAY [1..8] OF REAL; 

nno : INTEGER;

alphax : ARRAY [1..6],[1..20] OF REAL; 

alphay : ARRAY [1..6],[1..20] OF REAL; 

beta : ARRAY [1..6],[1..20] OF REAL; 

gamma : ARRAY [1..6],[1..20] OF REAL; 

mu : ARRAY [1..6],[1..20] OF REAL;

x ; ARRAY [1..300] OF REAL; 

y : ARRAY [1..300] OF REAL;

node_valid : ARRAY [1..300] OF BOOLEAN; (* RPD; Feb 1,93 *) 

fint : ARRAY [1..200] OF REAL;

ilcs_pres : ARRAY [1..300] OF BOOLEAN; (* RPD; Feb 1,93 *)

iu : ARRAY [1..300] OF INTEGER; 

tauxnp : ARRAY [1..300] OF REAL; 

tauynp : ARRAY [1..300] OF REAL;

xgp : ARRAY [1..4],[1..200] OF REAL; 

ygp : ARRAY [1..4],[1..200] OF REAL; 

tauxgp : ARRAY [1..4],[1..200] OF REAL; 

tauygp : ARRAY [1..4],[1..200] OF REAL;



gp : ARRAY [1..5],[1..5] OF REAL; 

wt : ARRAY [1..5],[1..5] OF REAL;

uc : ARRAY [1..200] OF REAL; 

xc : ARRAY [1..200] OF REAL; 

yc : ARRAY [1..200] OF REAL; 

tauxc : ARRAY [1..200] OF REAL; 

tauyc ; ARRAY [1..200] OF REAL;

ntip ; ARRAY [1..7] OF INTEGER; 

gpxi : ARRAY [1..7],[1..7] OF REAL; 

gpet : ARRAY [1..7],[1..7] OF REAL; 

wght : ARRAY [1..7],[1..7] OF REAL;

tri : ARRAY [1..6],[1..4] OF REAL; 

tr2 : ARRAY [1..8],[1..4] OF REAL;

iuebc : ARRAY [1..100] OF INTEGER; 

uebc : ARRAY [L. 100] OF REAL;

inp : ARRAY [1..100] OF INTEGER; 

jnp ; ARRAY [1..100] OF INTEGER; 

knp : ARRAY [L. 100] OF INTEGER; 

taunbc : ARRAY [1..100] OF REAL;

xvec : ARRAY [1..61],[1..61] OF REAL; 

eigv : ARRAY [1..61] OF REAL;



time_data : INTEGER; (* RPD; Feb 1, 93 *) 

tplot : ARRAY [1..501] OF REAL; 

ftplot : ARRAY [1..3],[1..501] OF REAL; 

nnodei : ARRAY [L.3] OF INTEGER;

eigsml : ARRAY [L.5] OF REAL; 

vecsml : ARRAY [1..61],[1..5] OF REAL; 

numeig : INTEGER;

(* Some additional variables needed; RPD; Feb 1, 93 *)

(* Specifies if ”batch_mode"(TRUE) or "single_prob_mode"(FALSE) *) 

batch_mode : BOOLEAN;

(* Specify output options; "enabled"(TRUE) or "disabled"(FALSE) *) 

printer_enabled : BOOLEAN; 

file_enabled : BOOLEAN; , 

screen_enabled : BOOLEAN;

(* Specify calc options; "done"(TRUE) or "not done"(FALSE) *) 

eigen_calc_done : BOOLEAN; 

eigen_solution_found : BOOLEAN; 

fem_calc_done : BOOLEAN; 

fem_solution_found : BOOLEAN;

(* this is a blank string to clear any strings *) 

blank_str63 : Str63; 

blank_str : Str255;

END FECommon.



Appendix H - All Menus

H.1- File Menu

Edit Mise Lbindouus Input Problem Output Solue
Ne lu  
Open...

o \ o % e  
S o \} 0
Saue fls...
R e i t e r i  Io Sooed

P a g e  Salopp. 
Printe*

Quit

Echo Record 1

H.2- Edit Menu

4  File Edit Mise
----- ....~ 1

Windows Input Problem Output Solue

IIS lindo Echo Record 1 ^

Cot ' M H  

Copy M €  

P a s t e  m i  

Clear

Select OH
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H.3 Mise Menu
m  File Edit Mise Windows Input Problem Output Solue

Grid 3SC .fr.Hft RPf il rff 1

s / 1 - D
2-D
Unì sym

^S ing le  Prob
8a Ich»,

H.4 Windows Menu
m  File Edit Mise W indows Input

1
Problem Output Solue

Window 1
Window 2 
Window 5  

IJjimloüi 4 
Window 5 
Window 5 
Window 7 
Window 8 
Window 9

cho Record 1

New Window  
Close Window
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H-S Input Menu

m  File Edit Mise UJindoLus Input Problem Output Solue
Nodal Data 
Element Data 
Phy. Props. 
ILC Data 
EBC Data 
NBC Data 
Time Data 
Plot Data

d 1

H.6 Problem Menu

m  File Edit Mise LUindoujs Input Problem Output Solue
n/Boundary Ualue 

Eigenualue
Boimdary Ualue 

0 y n a its its_________

H.7 Solve Menu

m  File Edit Mise UJindoLus Input Problem Output Solue
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H.8 Output Menu

File Edit Mise LUindoms Input P ro b le m i

iHwsrSSS E cho R e con



Output Solue
Nodal Data 
Element Data  
Phy. Props.
ILC Data 
EDC Data 
NBC Data 
Time Data 
Plot Data 
Print Rll 
Print Solution

Plot Func to Screen 
Plot Flun to Screen 
Plot Rll to Screen
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Appendix I - Ali Dialogs

1.1 The interior load conditions data input dialog box.

In te r io r  Load Input

ILC inde» 0

Node No.

ILC Load

fiuto Inc

O.OOOOOOOEO

Cancel

Delete

From

To

OK

Preu

Ne«t

fill O.K.

1

1.2 The essential boundary conditions data input dialog box.

Essential Boundary Condition Input

EBC inde»  

Node No. 

EBC Load 

fiuto Inc 

fill O.K.

1 0

O.OOOOOOOEO

/ X
Cancel\________ y

/ \ 
OK\________ /

Delete Abort\________ /

FromV _____ /
—

Preu\________ J

/ 
\ 

—I o \__ Newt»______ ___/



1.3 The natural boundary conditions data input dialog box

-I -------- =  Naiurai uounaary uonamon inpux =NBC inde« 1
/----------- -Cancel f \OK

1 2 3Node Nos. 0 0 0 / NPreuv - yNBC load 0.0000000E0 r - ---nDelete NewtRII O.K.

1.4 The plot data input dialog box.

Plot Data InputPlot No. h min h man h string y min y ma« y string

i r ì1 Cancel----------------------------- v  y OK-0.1000000E Delete fibort
v , , --------------/  \ ✓0.1 000000E3 r \PreuNe»t_̂_________ /-0.1000000E0.1 000000E3

RII O.K.
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1.5 The element data Input dialog box
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1.6 The physical property data input dialog box.

= □ -  : ______..........-di Physical Property Data Input ... ■■ ■■...... ^ .

I'scoeff h ’s coeff «sq coeff y s coeff ysq coeff «y coeff
an 0.0000000E0 O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO

ay

R

2

M

0.0000000E0 O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO

0.0000000E0 O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO

0.0000000E0 O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO

O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO O.OOOOOOOEO

mi O.K
Prop No. ' > 

OK

1 Preu

DeleteS____________ A Neut
s_________ __________ >

155



Appendix J - FORTRAN Code

1
2 C

3 C

4 C

5 C

6 C

7 C-

8 C

9 C

10 C

11 C

12 C

13 C

14 C

15 C

16 C

17 C

18 C

19 C

SUBROUTINE GENJAC ( A , B , X , E I V , D , N , R T O L , N S M A X , I F P R , I O U T )

R E F E R E N C E :  BATHE AND WIL SON,  'NUMERICAL METHODS IN  F I N I T E  

ELEMENT A N A L Y S I S ' ,  P P  4 5 8 - 4 6 9 .

T I T L E  OF SUBROUTINE -  J A C O B I

P R O G R A M
TO SOLVE THE GENERALIZED EIGENPROBLEM U S IN G  THE 

GENERALIZED J A C O B I  I T E R A T I O N

-  -  IN PU T  V A RIAB LES -  -

A ( N , N)  = S T I F F N E S S  MATRIX (ASSUMED P O S I T I V E  D E F I N I T E )  

B ( N , N )  = MASS MATRIX (ASSUMED P O S I T I V E  D E F I N I T E )

X ( N , N )  = MATRIX STORING EIGENVECTORS ON SO LUTION E X I T  

E I G V ( N )  = VECTORS STORING EIGENVALUES ON SOLUTION E X I T  

D (N) = WORKING VECTOR 

N = ORDER OF MATRICES A AND B
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20 C RTOL = CONVERGENCE TOLERANCE(USUALLY SET TO 1 0 * * - 1 2 )

21 C NSMAX = MAXIMUM NUMBER OF SWEEPS ALLOWED

22 C (USUALLY SET TO 15)

23 C I F P R  = FLAG FOR P R I N T  DURING I T E R A T I O N

24 C EQ.O NO PRINTING

25 C E Q . l  IN TER M ED IA TE RESULTS ARE P R IN T E D

26 C IOUT = OUTPUT D E V IC E  NUMBER

27 C

28 C -  -  OUTPUT -  -

29 C A ( N , N )  = D IAG ON ALIZED S T I F F N E S S  MATRIX

30 C B ( N , N )  = D IAG ON ALIZED MASS MATRIX

31 C X ( N ,  N) = EIGEN VECTORS STORED COLUMNWISE

32 C E I G V ( N )  = EIGENVALUES

33 C

34 C ------------------------------------------------------------------------------------------------------------------------------------------------

35 C I M P L I C I T  R E A L * 8 ( A - H . O - Z )

36 C A B S ( X )  = DABS (X)

37 C S QRT( X)  = DSQRT(X )

38 C ------------------------------------------------------------------------------------------------------------------------------------------------

39 C T H I S  PROGRAM I S  USED IN  S IN G L E  P R E C I S I O N  A R IT H M E T I C  ON

40 C CDC EQUIPMENT AND DOUBLE P R E C I S I O N  A R IT H M E T IC  ON IBM

41 C OR UNIVAC MACHINES. A C T IV A T E ,  DEACTIV ATE,  OR A D JU ST ABOVE

42 C CARDS FOR S IN G L E  OR DOUBLE P R E C I S I O N  A R IT H M E T IC
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43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

C

DIMENSION A ( N , N ) , B ( N , N ) , X ( N , N ) , E I G V ( N ) , D ( N )

C

C INITIALIZE EIGENVALUE AND EIGENVECTOR MATRICES

C

DO 10 1 = 1 , N

IF (B ( I , I )  . GT. 0 . )  GO TO 4 

I I  = 1

WRITE ( I OUT, 2 0 2 0 )  I I  

STOP

4 D ( I ) = A ( I , I ) / B ( I , I )

10 EI GV( I )  = D ( I )

DO 30 I = 1 , N 

DO 20 J  = 1 , N 

20 X ( I , J )  = 0 .

30 X ( I , I )  = 1 . 0

IF ( N . E Q . l )  RETURN 

C

C INITIALIZE SWEEP COUNTER AND BEGIN ITERATION

C
NSWEEP = 0 

NR = N - l

40 NSWEEP = NSWEEP +1
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66
67

68

69

70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88

IF (IFPR.EQ.l) WRITE (IOUT,2000) NSWEEP
C

C CHECK IF PRESENT OFF-DIAG EL LARGE ENOUGH TO REQ. ZEROING

C

EPS = ( .0 1 * * N S W E E P )* * 2  

DO 2 1 0  J  = 1 , NR  

J J  = J  + 1 

DO 2 1 0  K = J J , N  

EPTOLA = ( A (J , K ) * A ( J , K ) )

EPTOLB = (B ( J , K ) * B ( J , K ) )

IF ( (EPTOLA. L T . E P S * A ( J , J ) * A ( K , K ) ) .AND.

1 (EPTOLB. LT. E P S * B ( J ,  J ) * B  ( K , K ) ) ) GO TO 2 1 0

C

C IF ZEROING IS  REQ. CAL. ROTATION MATRIX ELEMENTS CA AND CG

C

AKK = A( K, K)  * B ( J , K )  -  B (K,K) * A (J , K)

AJ J  = A (J , J ) * B (J , K)  -  B ( J ,  J)  * A ( J , K )

AB = A ( J ,  J ) * B ( K , K )  -  A (K, K ) * B (J , J )

CHECK = (AB*AB + 4 . *AKK*AJJ) / 4 .

IF (CHECK) 5 0 , 6 0 , 6 0  

50 I I  = 2

WRITE ( IOUT, 2 0 2 0 )  I I  

STOP
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89

90
91
92

93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111

60 SQCH = SQRT(CHECK)

D l = A B / 2 . + SQCH 

D 2 - A B / 2 . - S Q C H  

DEN = D1

IF ( A B S ( D 2 ) . G T . A B S ( D l ) ) DEN = D2 

IF ( DEN) 8 0 , 7 0 , 8 0  

70 CA = 0 .

CG = - B ( J , K ) / B ( K , K )

GO TO 90 

80 CA = AKK/DEN 

CG = -A J J /D E N  

C

C PERFORM GEN. ROTATION TO ZERO PRESENT OFF-DIAGONAL ELEM

C

90 IF ( N - 2 ) 1 0 0 , 1 9 0 , 1 0 0  

100 JP1 = J  + 1

JM1 = J  -  1

KP1 = K + 1

KM1 = K -  1

IF (JM1 -  1) 1 3 0 , 1 1 0 , 1 0 0  

110  DO 120  1 = 1 , JM1 

AJ = A ( I , J)

BJ = B ( I , J)
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112

113
114

115
116
117
118

119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134

AK = A ( I ,  K)

BK = B ( I , K)

A ( I , J)  = AJ + CG*AK 

B ( I , J)  = BJ + CG*BK 

A ( I , K) = AK + CA*AJ 

120 B ( I , K) = BK + CA*BJ  

130 IF (KP1-N) 1 4 0 , 1 4 0 , 1 6 0  

140 DO 150  I = KP1,  N 

AJ = A ( J , I )

BJ = B ( J , I)

AK = A (K, I )

BK = B (K, I)

A ( J , I )  = AJ+CG*AK 

B (J , I )  = BJ+CG*BK 

A ( K , I ) = AK+CA*AJ 

150 B ( K , I)  = BK+CA*BJ 

160 IF ( J P 1 - K M 1 ) 1 7 0 , 1 7 0 , 1 9 0  

170  DO 1 8 0  I = J P 1 , KM1 

AJ = A ( J , I)

BJ = B ( J , I)

AK -  A ( I , K)

BK = B ( I , K)

A (J , I)  = AJ + CG*AK
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135
136
137
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152

153
154

155
156
157

B ( J , I )  = B J  + CG*BK 

A ( I , K )  =  AK + C A * A J  

1 8 0  B ( I , K) = BK + C A * B J  

1 9 0  AK = A ( K , K )

BK = B (K, K)

A (K,K) = AK + 2 . *CA* A( J , K)  + C A * C A * A (J ,J )

B( K,  K) = BK + 2 . * CA* B(J , K)  + C A * C A * B (J ,J )

A ( J ,  J )  = A ( J , J )  + 2 . * C G * A ( J , K )  + CG*CG*AK

B ( J , J )  = B ( J , J )  + 2 . * C G * B ( J , K )  + CG*CG*BK 

A ( J ,  K) = 0 .

B (J , K)  = 0 .

C

C UPDATE THE EIGENVECTOR MATRIX AFTER EACH ROTATION

C

DO 2 0 0  I  = 1 , N 

XJ = X ( I , J )

XK = X ( I , K )

X ( I , J )  = X J  + CG*XK 

2 0 0  X ( I , K) = XK + C A * X J  

2 1 0  CONTINUE 

C
C UPDATE THE EIGENVALUES AFTER EACH SWEEP

C
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158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

DO 2 2 0  I = 1 , N

IF ( B ( I , I ) . GT. 0 . )  GO TO 2 2 0

I I  = 3

WRITE ( I O U T , 2 0 2 0 )  I I  

STOP

2 2 0  EI GV( I )  = A ( I , I ) / B ( I , I )

IF ( I FPR. EQ. O)  GO TO 2 3 0  

WRITE (IOUT, 2 0 3 0 )

WRITE ( I O U T , 2 0 1 0 )  ( EI GV( I ) , 1 = 1 , N)

C

C CHECK FOR CONVERGENCE

C

2 3 0  DO 2 4 0  I = 1 , N  

TOL = RTOL*D( I)

DIF = A B S ( E I G V ( I ) - D ( I )  )

IF ( DI F. GT. TOL)  GO TO 2 8 0  

2 4 0  CONTINUE 

C
C CHECK ALL OFF-DIAG ELS TO SEE IF ANOTHER SWEEP IS  REQUIRED

C

EPS = RTOL**2

DO 2 5 0  J = 1 , N R  

J J  = J  + 1
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181

182

183

184

185

186

187
188

189

190
191
192
193

194
195

196
197
198

199
200

201

202

203

DO 2 5 0  K = J J ,  N 

EPSA = (A (J , K ) * A ( J , K )  )

EPSB = ( B ( J , K ) * B ( J , K )  )

IF ( ( E P S A . L T . E P S * A ( J , J ) * A ( K , K ) ) .AND.

1 ( E P S B . L T . E P S * B ( J / J ) * B ( K ,  K ) ) ) GO TO 2 5 0

GO TO 2 8 0  

2 5 0  CONTINUE

C
C FILL BOTTOM TRI OF RESULTANT MATRICES & SCALE EIGENVECTORS

C

2 5 5  DO 2 6 0  I = 1 ,N  

DO 2 6 0  J  = 1 , N 

A ( J , I )  =A ( I , J)

2 6 0  B ( J , I )  = B ( I ,  J)

DO 2 7 0  J  = 1 , N 

B B = S Q R T ( B ( J , J ) )

DO 2 7 0  K = 1,  N 

2 7 0  X ( K , J )  = X (K, J ) / B B  

RETURN 

C
C UPDATE D MATRIX AND START NEW SWEEP, IF ALLOWED

C

2 8 0  DO 2 9 0  I = 1 , N
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204 2 9 0 D ( I )  = E I G V ( I )

205

206

IF (NSWEEP . LT . NSMA.X) GO 

GO TO 2 5 5

TO 40

207 2 0 0 0 FORMAT (27HOSWEEP NUMBER IN 'JACOBI'  = . 1 4 )

208 2 0 1 0 FORMAT ( 1 H O . 6 E 2 0 . 1 2 )

209 2 0 2 0 FORMAT ( 3 H I I = . I 2 / 2 5 H O * * * ERROR SOLUTION STOP /

210 1 31H MATRICES NOT POSITIVE DEFINITE)

211

212

2 0 3 0 FORMAT

END

( 3 6HOCURRENT EIGENVALUES IN 'JACOBI' ARE
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Appendix K - Modula-2 Code

(*
*

* reference: Bathe and Wilson, ’numerical methods in finite
* element analysis', pp 458-460,
* title of subroutine - jacobi
** _________________________________________________________________________________
* p r o g r a m
* to solve the generalized eigenproblem using the
* generalized jacobi iteration

* _- input variables - -

* a [n,n] := stiffness matrix [assumed positive definite]
* b [n,n] := mass matrix [assumed positive definite]
* x [n,n] := matrix storing eigenvectors on solution exit
* eigv[n] := vectors storing eigenvalues on solution exit
* d [n] := working vector
* n := order of matrices a and b
* rtol := convergence tolerance [usually set to 10e-12]
* nxmax := maximum number of sweeps allowed
*
* ifpr :=

[usually set to 15]
flag for print during iteration

eq = 0; no printing
* eq = 1; intermediate results are printed
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28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

* iout :=
*

* - - output - -
* a[n,n] :=
* b [n,n] :=
* x [n,n] :=
* eigv [n] :=

output device number

diagonalized stiffness matrix 
diagonalized mass matrix 
eigenvectors stored columnwise 
eigenvalues

* implicit real*8[a-h,o-z]
* abs[x] := dabs[x]
* sort[x] := dsqrt[x]*  ____________________________________________
*

*)

PROCEDURE Genjac (n: INTEGER; rtol : REAL; nsmax,ifpr,iout : INTEGER); 
(* a[n,n],b[n,n],x[n,n],eigv[n], global access; d[n], local in Genjac *)

VAR
i, j, nsweep, nr, jj, k, jpl, jml, kpl, kml : INTEGER; 
eps, eptola, eptolb, akk, ajj, ab, check, sqch : REAL; 
d l, d2, den, ca, eg, aj, bj, ak, bk, xj, xk :REAL; 
tol, dif, epsa, epsb, bb : REAL; 
dif_more_than_tol, condition : BOOLEAN; 
d : ARRAY [1..61] OF REAL; 
loop 1,loop 2 : INTEGER;

BEGIN
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56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

initialize eigenvalue and eigenvector matrices*)
FOR i := 1 TO n DO

IF (meig[i,i] <= 0.0) THEN
Handle_Calc_Errors_Dialog (82,i);

(* matrices not +ve definite *)
RETURN;

ELSE
d[i] := keig[i,i]/meig[i,i]; 
eigvfi] := d[i];

END(*IF*);
END(*FOR*);

FOR i := 1 TO n DO
FOR j := 1 TO n DO 

xvec[i,j] := 0.0;
END(*FOR*); 
xvec[i,i] := 1.0;

END(*FOR*);

IF n = 1 THEN 
RETURN;

END(*IF*);

initialize sweep counter and begin iteration *) 
nsweep := 0; 
nr := n-1;

REPEAT

168



84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111

IF (ifpr = 1) THEN
(*show message write [iout,2000] nsweep;

format [27hosweep number in 'jacobi' := ,i4] *)
END(*IF*);

check if present off-diagonal element is large enough to require zeroing *) 
eps := Power ( (Power(0.01, FLOAT(nsweep) )), 2.0);

FOR j := 1 TO nr DO
jj := j + i;

FOR k := jj TO n DO
eptola := keig[j,k]*keig[j,k]; 
eptolb := meig[j,k]*meig[j,k];

IF ( (eptola < (eps*keig[j,j]*keig[k,k])) AND (eptolb < (eps*meig[j,j]*meig[k,k])) ) THEN 
(*do nothing! exit IF*)

ELSE

if zeroing is required calculate the rotation matrix elements ca and eg *)
akk :=keig [k,k] *meig [j ,k] -meig [k,k] *keig [j ,k]; 
ajj := keig[j,j]*meig[j,k] - meig[j,j]*keig[j,k]; 
ab := keig[j,j]*meig[k,k] - keig[k,k]*meig[j,j]; 
check := (ab*ab + 4.0*akk*ajj)/4.0;

IF check < 0.0 THEN

nsweep := nsweep +1;
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112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

Handle_Calc_Errors_Dialog (83, 
nsweep*4096 + j*64 + k);

(* matrices not +ve definite *)
RETURN;

END(*IF*);

sqch := Sqrt(check);
dl:=ab/2.0+sqch;
d2:=ab/2.0-sqch;
IF ABS(d2) > ABS(dl) THEN 

den := d2;
ELSE

den := dl;
END(*IF*);

IF den = 0.0 THEN 
ca := 0.0;
eg := -meig [j ,k] / meig [k,k];

ELSE
ca := akk/den; 
eg := -ajj/den;

END(*IF*);

perform the generalised rotation to zero the present off-diagonal element *)
IF (n-2) o  0 THEN 

j p l  := j +  1; 
jml := j - 1; 
k p l  := k  +  1;
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140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167



IF (jml-1) >= 0 THEN
FOR i := 1 TO jml DO 

aj := keig[i,j]; 
bj := meig[i,j]; 
ak := keig[i,k]; 
bk := meig[i,k]; 
keig [i,j] := aj + cg*ak; 
meig [i,j] := bj + cg*bk; 
keig [i,k] := ak + ca*aj; 
meig [i,k] := bk + ca*bj; 

END(*FOR*);
END(*IF*);

IF (kpl-n) <= 0 THEN
FOR i := kpl TO n DO 

aj := keig[j,i]; 
bj := meig[j,i]; 
ak := keig[k,i]; 
bk := meig[k,i]; 
keig[j,i] := aj+cg*ak; 
meig[j,i] := bj+cg*bk; 
keig[k,i] := ak+ca*aj; 
meig[k,i] := bk+ca*bj; 

END(*FOR*);
END(*IF*);

kml := k - 1;
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168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

IF (jpl-kml) <= 0 THEN
FOR i := jpl TO kml DO 

aj := keig [j ,i]; 
bj := meig[j,i]; 
ak := keig[i,k]; 
bk := meig[i,k]; 
keig[j,i] := aj + cg*ak; 
meig[j,i] := bj + cg*bk; 
keig[i,k] := ak + ca*aj; 
meig[i,k] := bk + ca*bj; 

END(*FOR*);
END(*IF*);

END(*IF*);

ak := keig[k,k];
bk := meig[k,k];
keig[k,k] := ak + 2.0*ca*keig[j,k] +

ca*ca*keig[j,j];
meig[k,k] := bk + 2.0*ca*meig[j,k] +

ca*ca*meig[j ,j];
keig[j,j] := keig[j,j] + 2.0*cg*keig[j,k] +

cg*cg*ak;
meig[j,j] := meig[j,j] + 2.0*cg*meig[j,k] +

cg*cg*bk;
keig[j,k] := 0.0;
m e ig [j,k ]  := 0 .0;

update the eigenvector matrix after each rotation *)
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196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

FOR i := 1 TO n DO 
xj := xvec[i,j]; 
xk := xvec[i,k]; 
xvec[i,j] := xj + cg*xk; 
xvec[i,k] := xk + ca*xj;

END(*FOR*);
END(*ELSE eptola*);

END(*FOR k*);
END(*FOR j*);

update the eigenvalues after each sweep *)
FOR i := 1 TO n DO

IF (meig[i,i] > 0.0) THEN
eigv[i] := keig[i,i]/meig[i,i];

ELSE
Handle_Calc_Errors_Dialog (84, nsweep*4096 + i); 

(* matrices not +ve definite *)
RETURN;

END(*IF*);
END(*FOR*);

IF ifpr <o 0 THEN
(* write current eigenvalues in 'jacobi' are

format [lho,6e20, [eigv[i],i:=l,n] *)
END(*IF*);

check for convergence *)
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224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

i := 1;
dif_more_than_tol := FALSE;
WHILE ( (i<=n) AND (dif_more_than_tol = FALSE) ) DO 

tol := rtol*d[i]; 
dif := ABS(eigv[i]-d[i]);
IF dif > tol THEN

dif__more_than_tol := TRUE;
END(*IF*); 
i := i+1;

END(*WHILE*);

check all off-diagonal elements to see if another sweep is required *) 
IF NOT dif_more_than_tol THEN 

condition := FALSE; 
eps := rtol*rtol;

j := i;
WHILE ( (j<=nr) AND (condition = FALSE) ) DO 

jj := j + l;
k * — j j *
WHILE ( (k<=n) AND (condition = FALSE) ) DO 

epsa := keig[j,k]*keig[j,k]; 
epsb := meig [j ,k] *meig [j ,k];
IF ( (epsa < eps*keig[j,j]*keig[k,k]) AND

(epsb < eps*meig[j,j]*meig[k,k]) ) THEN 
(*do nothing! exit IF*)

ELSE
condition := TRUE;
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253
254
255
256
257
258
259
260
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262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

END(*IF*); 
k := k+1;

END(*WHILE*);
j := j+l;

END(*WHILE*);

fill out bottom triangle of resultant matrices and scale eigenvectors *) 
IF NOT condition THEN 

FOR i := 1 TO n DO
FOR j := 1 TO n DO

keig[j,i] := keig[i,j]; 
meig[j,i] := meig[i,j];

END(*FOR*);
END(*FOR*);

FOR j := 1 TO n DO
bb := Sqrt(meig[j,j]);
FOR k := 1 TO n DO

xvec[k,j] := xvec[k,j]/bb;
END(*FOR*);

END(*FOR*);
RETURN;

END(*IF*);
END(*1F*);

update d matrix and start new sweep, if allowed *)
FOR i := 1 TO n DO 

d[i] := eigv[i];
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END(*FOR*);
UNTIL (nsweep >= nsmax);

FOR i := 1 TO n DO
FOR j := 1 TO n DO

keig[j,i] := keig[i,j]; 
meig[j,i] := meig[i,j]; 

END(*FOR*);
END(*FOR*);

FOR j := 1 TO n DO
bb := Sqrt(meig[j,j]);
FOR k := 1 TO n DO

xvec[k,j] := xvec[k,j]/bb; 
END(*FOR*);

END(*FOR*);

END Genjac;
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Appendix L - Error Messages

This Appendix lists some of the error messages indicated by FAME. They are 

not exhaustive, but are only representative of the kinds of errors reported. Where 

applicable, similar error messages will also be present for the other data types. Most of 

the following examples apply to Nodes.

Error 0: "AllO.K."

Error 1: "Number of nodal points exceeds ", m axnp," the maximum allowable."

Error 7: "Node number ", value, " is not in permissible range of node numbers.

Defaulting to 1."

Error 8: "Node number ", value," is out of order."

Error 18: "maximum bandwith as calculated ", value, " exceeds maximum

permissible bandwidth", maxbnd.

Error 19: "zero or negative determinant of the jacobian matrix is found for element

", value.

Error 21: "for an eigen problem, the number of nodes exceeds ", maxbnd, " the

maximum allowable for eigen problems.".

Error 22: "The node ", value," seems to be missing!".

Error 23: "The node ", value," was not used in any element.".
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Error 24: 'Duplicate essential boundary loads input.".

Error 26: "The number of nodes = ", value. "There must be two or more nodes for

each problem.".

(* error number 50 onwards have been added by Robert Pierre D'souza 6/2/93 *)

Error 50: "Index = ", value," is out of range. Default value is 1.".

Error 51: "Index = ", value," has reached the maximum limit.".

Error 52: "Index = ", value," has reached the minimum limit.".

Error 54: 

contiguous.".

"You have deleted internal node ", value. "The nodal data is no longer

Error 59: "Not a 2-D problem! So 'alphay' not required.".

Error 67: "An Eigen problem can not have ILCs.".

Error 70: "A 1-D problem can not have y co-ordinates.".

Error 72: "Eigen Solution Analysis not done. Aborting Print!".

Error 76: "FROM node =", value, " and TO node =", value. "FROM and TO

nodes have to be different.".

Error 82: "Error in eigen solution. The matrices are not positive definite.

meig[i,i] is negative."
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Appendix M - Shape Functions

Shape functions for a 1-D Quadratic Isoparametric bar element. It can be used 

to solve 1-D FEM problems or 2-D BEM problems.

=  .................................................................  M.l

02(£) = (l + £)(l-£) .............................. M.2

03(£) = ^£(l + l) ............................................... M3

Shape functions for a 2-D Quadratic Isoparametric quadrilateral element. It can be used 

to solve 1-D FEM problems or 2-D BEM problems.

n) = ^(i-£)(i-??)(-£-n -i)  •• M-4
n) = ¿(1 + ^)(l-  77)(<f -  7̂-1) •• M.5

k (£’ i7) = ? ( 1 + £)(1 + 77)(£ + rJ “ 1) • •• M-6

n) = ¿(1 -£ )( i +*7 )R  + n -i) •• •• M-7

n) = -̂(i-<^2) ( i - 77) ......................  M-8

^ ( ^ 77) = ^(l + ̂ ) ( l-772) ......................  M-9

^(^-77) = | ( l - ^ 2)(l+ 77)   M-10

M Z ’Ji) = j ( l - Z ) ( l - 'n2)   M11
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Appendix N - Modula-2 P1 Reply

Date: 21 Jun93 17:39 GMT

From: GER.XSE0109@applelink.apple.com (Germany - PI GmbH, H Henne,IDV)

Subject: Re-no subject

To: PIERRE@CS.UOW.EDU.AU

Message-Id: <74068472 L5759264@AppleLink.Apple.COM>

Status: RO

Hello,

sorry for my late response, but I just returned from a two week visit to 

Canada.

What you have noticed is a known problem for the current release of our 

compiler. After V4.2 we changed the error handling to using the same entry 

point as MacsBug, but the MacsBug error entry is not called for FPU errors on 

68040 CPUs. We have just a few days ago detected how to circumvent this and 

plan an according change for the next releases (V5.1/V4.4.2). The latest 

release V5.0.1/V4.4.1 does at least report divison by zero, but it does not yet 

handle it properly.

The characters I and N stand for ’Infinity' and 'NAN' (not a number), these are 

generated by the FPU if no errors are reported.

Elmar Henne 

p i GmbH
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Appendix O - Porting Problems

This Appendix contains some of the debugging problems faced when porting 

the F77 program UNAFEM to a M2 version FAME.

0.1 No Equivalence Problems

F77 supports multi-dimensional arrays, which can be equivalently represented 

as a linear array having the same number of elements. This concept of equivalence is 

used to :-

a) access the same data by using different data formats,

b) access the same data by using different names,

c) conserve storage space by making different variables occupy the same memory 

locations at different times during program execution.

In UNAFEM, b) has been implemented. This permits programmers to 

individually develop modules using names that are most convenient to them. On 

completion of the individual debugging, both modules are integrated by declaring the 

corresponding variables to be EQUIVALENT. Obviously, in this case, the number of 

dimensions and the size of each dimension of the array are the same.

A potential porting problem, that did not arise, is case a), eg. a two dimensional 

array has been declared equivalent to a linear array. In such a case, all manipulations to 

the equivalent linear array would have to be re-coded to generate the desired output 

results.

M2's variant records provide the same features as a), b) and c). Besides, ADR 

and ADDRESS can change the type of anything, by bypassing the type-checking 

mechanism of M2.
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0.2 Typographical Errors

To retain continuity between the F77 and M2 software, it was decided to use the 

variables without modifying their names. Subsequently, debugging of the software and 

testing of sample programs (with known solutions; [Bumett88]) would impart on-line 

information about software intricacies and the inter-relationships between the software 

and the matrix equations it implemented. This increased understanding would enable 

more comprehensible names to be declared at a later stage, hence improving readability 

and maintainability of the package.

F77 supports only 6 character variable and function names, resulting in rather 

cryptic names and hence many typographical errors, most of which were caught by M2 

at compile time (as undefined variables!)

The more insidious typographical errors were those that correctly spelt another 

variable. If these slipped through the human checker (me), they only declared 

themselves at run time when they generated erroneous results. This required generation 

of a global cross-reference file to trace the interactions of the variables across modules, 

and also necessitated studying the internal workings of the functions.

0.3  Gaussian Elimination (GE)

The first series of tests, modelled with 44 standard 1-D linear elements, passed 

with no problems, the results tallying with those in the text [Bumett88]. The next series 

of tests, based on 10 1-D isoparametric quadratic elements, gave erroneous results. A 

check of the element's implementation revealed that, through oversight, some constant 

DATA had not been initialised as they were mistaken for variables. This is a grave 

flaw in M2, which did not even flag a warning to indicate the anomaly (unlike some 

implementations of the C language, which warn if variables are used before 

initialisation).
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However, no other bugs could be detected, which only left the GE algorithm, 

even though it had apparently been debugged by use on the linear elements. Reference 

to Zienkiewicz[83] and Wilkinson[63] eliminated the possibility of rounding errors or 

of an ill-conditioned problem. Manual iterations through the GE function with a hand 

held calculator and reference to a text on numerical analysis [Chapra88] discovered the 

modification used to speed up GE for solution of a banded matrix of Yl equations, and, 

finally, elucidated the result that, during translation, a single line of code in the forward 

elimination section of the algorithm had slipped into a FOR loop, when it really 

belonged outside.

Further development of the 1-D isoparametric cubic and quintic elements was 

without incident.

0.4  Generalised Jacobi Algorithm Eigensolver (GJAE)

0.4.1 Open Array Parameters

Both F77 and M2 (Appendix A) support open-array parameters, though the 

default index of the first element of the open array parameter is different. It is the first 

element for F77, while it is the zeroth element for M2. Limited knowledge regarding 

the detailed workings of the GJAE precluded the modification of the indices of all the 

arrays in the code (in case of any implementation dependent code). An alternative 

approach would have been to keep the indices of all the matrices unchanged and to re

specify all the arrays as beginning from 0 rather than 1, and leave the zeroth element of 

each unused. This latter option has not been implemented either.

So, it was decided to access all the open array parameters globally, requiring the 

function call to be changed from (Appendix J, line 1)

S UBROUTI NE GENJAC ( A , B , X , E I V , D , N , R T O L , N S M A X , I F P R , I O U T )  

to (Appendix K, line 44)



PROCEDU RE GenJac (n: INTEGER; r to l : REAL; nsmax,ifpr,iout: INTEGER).

Additionally, all references to formal parameters within the function had to be 

changed to global references (Appendices J and K).

0.4 .2  Common Terminal Statements

GJAE contained several nested loops with a common terminal statement.

(eg. Appendix J, lines 195-198)

DO 270 J = 1,N 

BB=SQRT(B(J,J))

DO 270 K = 1,N 

270 X(K,J) = X(K,J)/BB

which was equivalent to [Meissner80]

DO 270a  J= 1 ,N  

BB=SQRT(B(J,J))

DO 270b  K= 1 ,N  

270 X(K,J) = X(K,J)/BB 

270b  CONTINUE 

270a  CONTINUE

and was translated into M2 (Appendix K, lines 290-295) as 

FOR j := 1 TO n DO

bb := Sqrt(meig[j,j]);

FOR k := 1 TO n DO

xvec[k,j] := xvec[k,j]/bb;

END(*FOR*);

END(*FOR*);
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0.4.3 A REPEAT-UNTIL Loop

The F77 code portion (Appendix J, lines 63-205)

NS WEEP = 0 

NR = N-l

40 NS WEEP = NS WEEP +1

IF (NSWEEP.LT.NSMAX) GO TO 40

and converted into a M2 REPEAT-UNTIL loop (Appendix K, lines 80-281) as 

nsweep := 0; 

nr := n-l;

REPEAT

nsweep ;= nsweep +1;

UNTIL (nsweep >= nsmax);

0.4 .4  Arithmetic IF's

The arithmetic IFs required special attention. Initially, due to a typographical 

error on line 108, lines 104-118,

100 JP1 = J + 1 

J M 1 = J - 1 

KP1 = K +  1 

KM1 = K - 1 

IF (JM1 - 1) 130,110,100
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110 DO 120 1=1, JM1

120 ...

130 IF (KP1-N) 140,140,160

were translated as 

REPEAT

jp l := j + 1;

jm l := j - 1; 

kpl := k + 1; 

kml := k - 1;

UNTIL ( ( jml-1)<=0);

IF (jml-1) = 0 THEN

FOR i := 1 TO jm l DO

END(*FOR*);

ELSE

Code from label 130 onwards was inserted here!

END(*IF*);

During debugging, this module caused the program to loop forever. Resort to Gourlay 

[73], Wilkinson [65] and Bathe [82] revealed the theory, and the fact that line 108 

(Appendix J) should have been:- 

IF (JM1 - 1) 130,110,110

Correspondingly, the M2 translation simplified to lines 137-153 (Appendix K) 

jp l := j + 1;
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jm l := j - 1; 

kpl := k + 1; 

km l := k - 1;

IF (jml-1) >= 0 THEN

FOR i := 1 TO jm l DO

END(*FOR*);

END(*IF*);

Knowledge of the algorithm and a questioning approach to translation would 

have detected this during the translation cycle, because it is obvious (in retrospect) that 

if the test at the end of the REPEAT-UNTTL loop fails once, then the program will loop 

forever, due to the invariant values of the variables within the loop!

0.4 .5  A WHILE Loop with multiple conditions

Lines 170-174 (Appendix J) are handled specially. We note that line 173, if the 

condition is true, indicates a jump out of the loop over lines 175-202 to line 203, by 

using a GOTO. An alternate terminating condition for the loop is specified by the loop 

count, which, on reaching the maximum, permits lines 175-202 to be executed.

230 DO 2 4 0 1 = 1,N

TOL = RTOL*D(I)

DIF = AB S (EIG V (I)-D(I))

IF (DIF.GT.TOL) GO TO 280 

240 CONTINUE

lines 175-202
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280 DO 2 9 0 1 =  1,N

The M2 translation became lines 224-233 (Appendix K) 

i := l;

dif_more_than_tol := FALSE;

WHILE ( (i<=n) AND (dif_more_than_tol = FALSE)) DO 

tol := rtol*d[i]; 

dif := ABS(eigv[i]-d[i]);

IF dif > tol THEN

dif_more_than_tol := TRUE;

END(*IF*); 

i := i+1;

END (* WHILE*);

We note that the IF condition, on passing, sets a flag. The WHILE loop tests both 

conditions, the loop count and the flag, either of which can cause the loop to terminate. 

The flag, if FALSE, conditionally permits the ensuing code to execute; else, it is 

jumped over.

Similar concepts were used to translate lines 175-202 (Appendix J) to lines 236

276 (Appendix K).

0.5  Compiler Problems

To speed up work, I tried to use Modula-2 V4.3.2 © 1991 p i  Gesellschaft für  

Informatik mbH  on a Quadra 950.

Unfortunately, it did not flag a divide-by-zero error at the point of occurrence. 

Instead, it carried on with all its calculations, and declared final values to be 'infinite's 

or 'NAN's, making pinpointing of numerical problems difficult.
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A letter to the company elicited the response (Appendix N) that future software 

releases would fix the problem.

Also, complex number support was promised! Both have been delivered in 

Version 5.0.1.

0.6 Error Messages

All variables and error messages in UNAFEM were rather cryptic. So their 

detailed interactions were difficult to comprehend, leading to the design decision that a 

first stage approach would be to port F77 to M2, retaining UNAFEM's variable names.

This was got around by 'discovery' during the run-time and debugging stages, 

which enriched understanding and led to the incorporation of twice the number of error 

messages, some of which are reproduced in Appendix L.
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Appendix P - FAME Results

This Appendix shows that, to improve the solution accuracy, it is necessary to 

either increase the number of elements or the order of the shape function, or both. For 

the same number of DOF, higher order elements show better results.

These facts are  already known and the testing indicates that the program 

works properly as it is able to reproduce/corroborate standard results.

P.1 Graphics Display

A simple graphics screen layout was developed to depict 1-D solutions 

pictorially (Figures P .l to P.3). It assumes a rectangular window with ( X ^  , y ^  )

and (Xmax , ymax ) being the co-ordinates of the top-left and bottom-right comers 

respectively. From the Plot Data input menu, the user inputs ( X ^ ^ ^  , yr^nireq) )  

and (  X max(req) > ymax(req) )  t0 define t îe limits of the region within which he would

like to examine results.

This permits the program to calculate scaling factors along both the axes

scale _ factor x = (  ̂  max ^  min )

(X —  Xmax( req) min( req)

scale _ factor - (  y  max y  min )

(  ymax(req) ”  ^ min(req) )

P.l

P.2

Hence, to plot a point (  X val , y vai)> *he program scales it by

X plot =  ( X val -  X minirep) )  *  S C d U _  fü C tO Y  % . .
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y  plot = y m a X - (  y  val -  y  min( * P.4

P.2 BDVP Displays and Observations
The following 3 graphs (Figures P .l to P.3) were obtained using the formulae 

above. Figures P.l and P.3 are solutions of the same problem; using a different number 

of nodes and different shape functions. They have, respectively, 44 linear and 10 

quadratic elements. As is obvious, higher-order shape functions require fewer nodes 

for the same accuracy.

Figure P.2 is a 'zoomed' version of Figure P.l. With a constant y-axis, the left 

half of the x-axis has been expanded to fill the entire screen. This provides a 

programmable (via the Plot Data input option) selection to observe any portion of the 

solution in detail.

Figure P.l: Display of solution to problem using 44 linear elements.
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Figure P.2: 'Zoomed' display indicating left 40% of Figure P .l.

Figure P.3: Display of solution to problem using 10 quadratic elements.
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One shortcoming with my implementation is the lack of scales along the axes. 

These would provide a useful indication of the magnitude of the output.

The numerical results of Figure P.3 are duplicated in the Table P.1, and 

Microsoft Word 5.1a has been used to graph them in Figure P.4. We note the increase 

in information content, due to use of the scales along the axes.

Table P.l: Numerical Solution to problem in Figure P.3

Node number x-coordinate function value flux value
1 O.OOOOE1 0.4125E2 0.9910E-1
2 0.5000E1 0.3740E2 0.8599E-1
3 0.1000E2 0.3409E2 0.7298E-1
4 0.1500E2 0.3122E2 0.6464E-1

5 0.2000E2 0.2870E2 0.5625E-1
6 0.2500E2 0.2646E2 0.5145E-1

7 0.3000E2 0.2441E2 0.4662E-1

8 0.3500E2 0.2251E2 0.4476E-1

9 0.4000E2 0.2068E2 0.4307E-1

10 0.4500E2 0.2045E2 0.4294E-1

11 0.5000E2 0.2022E2 0.4260E-1

12 0.5500E2 0.1999E2 0.4261E-1

13 0.6000E2 0.1975E2 0.4242E-1

14 0.6500E2 0.1796E2 0.4376E-1

15 0.7000E2 0.1611E2 0.4526E-1

16 0.7500E2 0.1413E2 0.4966E-1

17 0.8000E2 0.1197E2 0.5402E-1

18 0.8500E2 0.9558E1 0.6183E-1

19 0.9000E2 0.6817E1 0.6960E-1

20 0.9500E2 0.3665E1 0.8181E-1

21 0.1000E3 0.0000E1 0.9412E-1
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Figure P.4: Word 5.1a display of solution to problem using 10 quadratic elements.
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P.3 Eigenresults and Observations

As an example of the use of FAME to study Eigen modelling, consider a cable 

of length 20, fixed at both ends, modelled by 6 linear elements. Its first three modes are

shown below.

Figure P.5: Word 5.1a display of solution to eigenproblem (first three modes).

Table P.2: Numerical values for the eigenproblem

Node mode 1 mode 2 mode 3

1 0.0000E1 0.0000E1 O.OOOOE1

2 0.1298E1 -0.2407E1 0.3108E1

3 0.2248E1 -0.2407E1 0.2742E-6

4 0.2596E1 0.5869E-7 -0.3108E1

5 0.2248E1 0.2407E1 -0.3105E-6

6 0.1298E1 0.2407E1 0.3108E1

7 0.0000E 1 0.0000E1 O.OOOOE1
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These are the fourth and fifth mode of the problem stated above.
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Figure P.6: Word 5.1a display of solution to eigenproblem (fourth and fifth modes).

Table P.3: Numerical values for the eigenproblem

Node mode 4 mode 5

1 0.0000E1 0.0000E1
2 0.3108E1 0.2064E1

3 -0.3108E1 -0.3574E1

4 0.608 IE-6 0.4127E1

5 0.3108E1 -0.3574E1

6 -0.3108E1 0.2064E1

7 0.0000E 1 0.0000E1
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The modal frequency can be calculated from the eigenvalue by

f i
1

2  n 1 , 2 , . . . P.5

Table P.4: Modal
Mode
number

Eigenvalue FEM frequency 
solution (Hz)

Analytical 
solution (Hz)

1 162.5 2.029 2.006
2 695.4 4.197 4.012
3 1739 6.637 6.018
4 3477 9.385 8.024
5 5722 12.039 10.03

The eigensolution was also obtained by increasing the number of elements (h- 

refinement) and by increasing the order of the shape functions (p-refinement). Tables 

P.5 and P.6 summarising the results are reproduced from [Bumett88].

Table P.5: Modal frequencies for the eigenproblem fh-refinement)

Mode 6 linear 
(7 DOF)

12 linear 
(13 DOF)

18 linear 
(19 DOF)

24 linear 
(25 DOF)

30 linear 
(31 DOF)

1 2.029 2.012 2.009 2.007 2.007

2 4.197 4.058 4.033 4.024 4.019

3 6.637 6.174 6.088 6.056 6.044

4 9.385 8.395 8.188 8.117 8.083

5 12.039 10.75 10.35 10.21 10.15

P.6: Modal ffeqtiendes for the eigenproblem (p-refinement)

Mode 6 linear 
(7 DOF)

6 quadratic 
(13 DOF)

6 cubic 
(19 DOF)

6 quartic 
(25 DOF)

1 2.029 2.006 2.006 2.006

2 4.197 4.015 4.012 4.012

3 6.637 6.042 6.018 6.018

4 9.385 8.112 8.027 8.024

5 12.039 10.27 10.04 10.03
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P.4 Discussion - is 8 elements a better minimum?

For reasonably accurate results, it is commonly recommended by the sellers of 

acoustic packages that a minimum of 6 elements be used per wavelength. But is this 

sufficient to properly model the problem?

We note from mode 4 (Figure P.6) that a minimum of 3 elements per 

wavelength is sufficient to indicate the period of the wave under consideration. 

However, the wave shape is incorrect! Its amplitude exceeds that obtained by use of 

the analytical solution, which predicts a maximum value of 2.5. From mode 2 (Figure 

P.5), we observe that a minimum of 6 elements per wavelength gives both period and a 

rough outline of the wave's shape. However, the maximum amplitude of displacement 

that the wave could attain is not obtained!

To obtain the maximum value for mode 2, the least change would be to add one 

more element per half wavelength. With 8 elements per wavelength, we see that we 

could get both the period and a reasonably good outline of the wave's shape, including 

the maximum. This seems to indicate that a minimum of 8 elements is preferable to 

obtain all information regarding the wave.

An obvious counter-argument is that this would only be a valid supposition 

provided that zero displacement only occurred at the nodes. If it occurred elsewhere, 

then the possibility exists that the maximum would not be obtained by the use of 8 

elements.

A solution to the latter problem is not readily obvious. However, in the event 

that the maximum amplitude is of importance, I would recommend a minimum of 8 

elements per wavelength, and ignore the possibility that it may not apply to the problem 

under consideration. The marginally extra cost in terms of computation would be well 

worth the results. Further study may be required to generalise this concept to all 

problems.
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