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ABSTRACT

This thesis examines the resultant behaviour of a population in
response to changes of the age-specific birth and death rates with time.
The deterministic one-sex population model of Sharpe and Lotka is used
as the basis for the analysis. In particular, the asymptotic behaviour
is determined for a population with a time dependent net maternity
funetion. Thus, the present study may be looked upon as representing
a generalisation of siable~population theory to include models of time
dependent vital rates of birth and death. Laplace transform techniques

are used extensively throughout the present work.

The problem of Keyfitz on the momentum of population growth is
generalised té contain a gradual exponential scaling (at a rate X) of
the age-specific birth rate to the level of bare feplacement. An
algorithm for obtaining the asymptotic total birth rate for general
initial net matermity functions is outlined. The method is evaluated
by comparing known analytic asymptotié values for two simple initial
net maternity functions, to the approximations obtained through the
algorithm. The converse problem is also examined: given a prescribed
asymptotic population level, it is desired to determine the transition
rate \ , which characterises the change of the age-specific birth rate.
The converse problem is important in the planning and management of

populations.

An extension of the recurrence relation method on which the above
algorithm was based, enables a description of the transient behaviour
of the population. Short of using a strictly numerical method for
solving the integral equation governing the total birth rate, the
transient behaviour may also be obtained by a stepping procedure when

the age structure of the time dependent net matermity function is



defined in a ptecewise fashion.

Models are also proposed which allow for a time dependent change
of the initial net maternity fumction more gemeral than the simple

exponential. The asymptotic behaviour of the emsuing population is

evaluated.
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1. Introduction.

Wide use has been made of the single sex deterministic

| population model developed by Sharpe and Lotka (1911) in which the
population is assumed to bec closed to migration and the vital rates of
birth and death are assumed to be unchanging with time. Under such
conditions the population approaches an asymptotic state known as ''stable"
(Sharpe & Lotka (1911), Feller (1941) and Lopez (1961)) in which the

age distribution is independent of time.

In this work, stable population theory will be extended to allow
for time dependent models of changes in the age-specific birth and
death rates. These changes constitute a time dependent net maternity

function.

Stable population theory has been studied by a number of authors,
forkexample Bourgeois-Pichat (1968), with pioneering work being done
by Lotka (1939) and Rhodes (1940).k Related concepts of semi-stable
and quasi-stable populations have been introduced to describe,
respectively, populations whose age distribution is constant, and those
whose mortality only is changing with time so that the age distribution

is almost constant (Bourgeois-Pichat (1968), (1971) and Coale (1973)).

-

It was conjectured by Coale (1957) that the same forces that cause
the effects of the initial age distribution to be transient for time
independent vital rates would also operate if these rates changed with
time. These two properties were given the names (following Hajnal (1956),
(1958)) of strong and weak ergodicity in Lopez (1961) where he proved
Coale's conjecture with the discrete formulation, and later, in Lopez (1967)

showing it to be true for the continuous model.

There are basically two formulations of the one-sex population model,



namely the continuous model of Sharpe and Lotka (with which we are
concerned) and, the discrete model pioneered by Bernardelli(1941),

Lewis (1942), which is énalysed in detail in Leslie (1945). In this

thesis the main concern lies in the determination of parameters which
describe the asymptotic behaviour of the total birth rate, total number and
age distribution due to a Variety of time dependent changes in the vital

rates.

The sensitivity of the intrinsic rate of change r to perturbations

of the vital rates was studied by Demetrius (1969). Goodman (1971),
Keyfitz (1971a).and (1975) examined the extent to which alterations in
the age-specific birth and death rates affect stable population
parameters. Compensating changes, bctween those in the age-specific
birth rate to changes in the age-specific death rate, having no effect
on T, have been reported in Goodman (1971) and, Espenshade and Chan
(1976). A related concept of neutral change in either fertility or
mortality in which the stable age distribution is unaffected has been
examined iﬁ Keyfitz (1968a), Coale (1972) and Preéton (1974).
Espenshade and Chan (1976) give a wider definition of neutrality as a
state in which either the intrinsic rate of change r , or, the stable
age distribution, is unaffected through changes of either of the vital
rates. A neutral change in the age-specific birth rate is neutral with

-

respect to both.

The asymptotic quantities will be obtained which characterise
the eventual stable population resulting from models depicting time
dependent changes in the age-specific birth and death rates. Besides
determining the asymptotic behaviour, the transient behaviour may also
be examined by three methods described in this work, using the basic

Sharpe-Lotka model.



Firstly, a strictly numerical solution of the integral equation
governing the total birth rate may be used, which is based on a modified
block-by-block method of Campbell and Day (1971) (described in Chapter
2). Secondly, a stepping procedure is developed in Chapter 3 where the
time dependent net maternity function is défined in a piecewise fashion
with respect to age. Finally, the transient behaviour may be obtained
by an extension of a method presented in Cerone and Keane (1978a) in
which the time dependence is exponential. This extension is given in

Section [4.41.

Keyfitz (1971b) determined the asymptotic results due to an
abrupt constant scaling of the age-specific birth rate to replacement
level. - Assuming the population to be initially stable, he obtained
clegant cxpressions for the asymptofic total bifth rate and the
asymptotic total number in terms of entities pertaining to the initial
population. Keyfitz was able to demonstrate what he’termed the momentum

of population growth, in that even though the age-specific birth rate

is abruptly scaled down to replacement level, the asymptotic total

number is greater than the initial.

Frejka (1968) first called attention to the phenomenon of residual
growth, however, as in a later study (Frejka (1973)) his analysis was
based on projecting populations under different linear paths of change,
to replacement level fertility. The.growth potential of a particular
age distribution has been studied by a number of authors (Vincent (1945),
Keyfitz (1969), Bourgeois-Pichat (1968) and (1971), Preston (1970), and,
Espenshade and Campbell (1977)). Keyfitz (1969) called attention to
the stable equivalent population which when compared with the observed
age distribution would demonstrate the potential for growth. The stable

equivalent which is closely related to R.A. Fisher's ''reproductive



value of a woman"‘[Fisher (1930)), would give the level to which a
population would tend if the total numbers were discounted at the
intrinsic rate of change. Abrupt changes in the age distribution at
particular ages representing migration, were analysed by Keyfitz (1971c).
Instantaneous changes of the age distribution representing a catastrophe
were examined by both Le Bras (1969) and Tognetti (1976a). Preston
(1970) demonstrated the major role played by age composition towards
growth of a population. Keyfitz (1971b) and (1971d) stated that the

age distribution which is more favourable to population increase, affects
the momentum to a greater extent. The asymptotic total birth rate
resulting from an abrupt Keyfitz change to replacemeht level, is smaller
than the initial, and it is the age redistribu;ion to stationary levels
which more than compensates, resulting in a tendency for continued

growth of the population.

Since the pioneer article of Keyfitz (1971b) a number of
generalisations and extensions have appearcd in the literature.
Frauenthal (1975), Tognetti (1976b) and Mitra (1976) présent models
which consist of abrupt changes of the age-specific birth rate, while

Cerone and Keane (1978a), and (1978b) give gradual models.

Frauenthal (1975) ébtained the asymptotic stationary total birth
rate and numbers by considering a model which was also mentioned in
Keyfitz (1971b). Frauenthal allowed the parent population to continue
with the old regime while those born after the origin t = 0 , adopted
replacemeﬁt age-spécific birth rate brought about by scaling that of
the initial population by the net reproductive rate, R . Such a model
results in the asymptotic total birth rate and hence numbers, R times
those of Keyfitz (1971b). Frauenthal obtained approximations to these

asymptotic values in terms of R , by assuming that all births occur at



the mean age of childbearing, thus showing that continued asymptotic
‘growth is largely due to age redistribution. Frauenthal's model is
discontinuous at the net maternity function level like the Keyfitz
(1971b) model. However, unlike the Keyfiti sdlution, the total birth
rate, fhe-total number, and the time dependent net reproduction rate

are continuous.

Keyfitz (1975) scaled the age-specific birth rate so that a
population would eventuate with smaller intrinsic rate of change.
Tognetti (1976b) scaled the age-specific birth rate by a general

constant, thus resulting in an eventual stable population.

A model consisting of a gradual exponential scaling, at a rate A
to replacement level age-specific birth rate, was presented in Cerone
and Keane (1978a) and an algorithm was developed for obtaining the
asymptotic total birth rate. The analysis is given here in Chapter 4.
The algorithm is tested against known analytic solutions developed in
Chapter 3 with two simple initial net maternity functions. More
realistic initial net maternity functions are also used and residual
-growth occurs which is greater than that of Keyfitz (1971b) since the
transition to replacement is now monotonically decreasing in a gradual
fashion. Simple extensions of the method on which the algorithm was
based, provide for exponential time dependent generalisations of the
Frauenthal (1975) and Tognetti (1976b) problems, which are given in
Chapter 4. The all important converse prbblem of determining the
transition rate ) (characterising the variation with time of the age-
specific birth rate), which is needed when given a desired asymptotic
goal, is also treated in Chapter 4. The solution of such a problem is
not always possible since some goals may be unachievable using only the

proposed change.



The above models which provide a scaling with time (whether
abrupt or gradual) of the initial age-specific birth rate, will be known
as separablc since all age-groups arc affected in a proportionate
manner. Such models have also appeared in Coale (1956), (1970) and,
Keyfitz (1969), amongst others. A number of authors (Ryder (1975) and
Potter, Wolowyna and Kulkarni (1977)) have eﬁphasised the need for models
in which the initial age structure of the age-specific birth rate is
allowed to vary. Even Keyfitz (1971b) states that a fall is likely
to be greater for older women than for younger and later reiterates in
Keyfitz (1975) that a disproportionate change in the age-specific birth
rate is more realistic. Mitra (1976) gives a model in which the initial
age-specific birth rate is abruptly altered to chaﬁge exponentially with
age giving replacement. Mitra in concluding, states that the abrupt
change can be from ggz.initial-age-specific birth rate to any other
which causes replacement and obtains an expression for the asymptotic

total number. Thus Mitra allows for a non-separable or disproportionate

change of the initial age-specific birth rate.

Cerone and Keane (1978b) developed a model in which the time
dependent net maternitf function changed exponentially from the initial
net maternity function towards any arbitrary function. Thus the model
is non-scparable. The cventual stable equivalent births is obtained
using the methods of Cérone and Keane (1978a) and hence the asymptotic

behaviour of the total number and age distribution is evaluated.

When the eventual net maternity function is a scalar multiple of
the initiél,then the separable models are a special case of the non-
separable. Both types of models are treated in this thesis since they
each have their advantages and their disadvantages. The separable models,

although less realistic, are more amenable to analytic investigation.



For example, the error analysis used in the algorithm developed in

Cerone and Keane (1978a) can not in general be usedvfor the non-separable
model of Cerone and Keane (1978b). The non-separable model has its
disadvantage in its generality - the cventual age structure of the net

maternity function neceds to be specified in advance.

Frejka (1973) discussed the problem of an increase followed by a
decrease to feplacement level. Keyfitz (1975) maintained that it may
become necessary to hold a population at its initial numbers and thus
a decrease of the age-specific birth rate at first well below replacement
is essential - all other factors being equal. Ruzicka (1977) saw a
shift to replacement level fertility being like "an inverted logistic
curve" - gradual at first, then rapid, and ultimately gradual again.
These articles and a natural exiension of the work that has preceded
provide the impetus and need for improved time variation of the nct

matermity tunction. This is donc in Chapter 5.

Using extensions of the method prescnted in Cerone and Keane
(1978a) and de§eloped in Chapter 4, generalised models are given for
the time path of change of the initial age-specific birth rate and the
asymptotic behaviour is determined. These models allow, for example,
a more gradual transition than exponential, towards a set goal, and thus
may represent an initial reluctance of a population to change by .
adopting new policies aimed at altering its present age-specific birth
rate. The time path of change depends to a large extent on whether the
change is a vbluntary fesponse to stimuli generated by a government
family planning programme or whether it is a direct consequence of a
planned and perhaps forced nature. A model is given in‘Section [5.2]
which allows for different age-groups, under diverse time paths, to
tend towards a prescribed goal, thus allowing differential effects of

certain policies by age.



For realistic models, the age-specific birth rate and hence the
nét maternity function, is non-zero over a finite inferval. Then if
we allow the age—specific birth rate to change explicitly with time
only for 0 <t <t <o (a, the minimumn age of childbearing), the
convolution integral is unaffectedAand we may determine the eventual
stationary population. In fact, if the net maternity function changes
explicitly with time only for the parent population then the convolution
integral for the total birth rate is not disrupted and stable population
theory without time dependent vital ratés, is still applicable. The
present wérk also allows for continuation of time variation beyond «,
when the timc dependence affecting the convolution integral is in terms
of‘exponentials. Although, for t > o only exponential (or a
combination of exponentials) paths can be handled by the methods of
the present work, a great variety of paths covering a wide range of
possibilities, can be obtained. A piecewise defined net maternity

function is given in Section [5.5] taking these points into consideration.

Throughout the literature, changes in the existing population are
assumed at various levels or tiers. Rhodes (1940) assumed the total
‘birth ratec and total number to be given by various expressions. Ryder
(1975) assumed the rate of change of a population to vary in a linear
manner over a period of 40 years, without explicitly specifying the .
change at the net maternity function level. Potter etal. (1977) went
to the other extreme and analysed the amount of residual growth caused
by a set of sferilisation policies twithin marriage) resulting in an
eventual stationary population. The age-specific birth rate was
represented in terms of expressions for the proportion currently
married, together with the marital fertility models developed by Coale
and co-workers (Coale (1971), Coale and Lesthaeghe (1971), Coale and

Trussell (1974), and, Coale, Hill and Trussell (1975ﬁ covering the full



range of human experience. Potter et al. considered changes in the
agc—specificAbirth rate causcd by changes to the marital fertility of
the initial population. In the present work all changes arc made at
the net maternity function level. Hence the impact of changes of the
initial age-specific birth rate and of the initial survivor function
are considered. All changes of the age-sﬁecific death rate are made

through the survivor function.

A time dependent survivor function is given in Chapter 6 which
changes from an initial to an eventual survival behaviour. The methods
developed in Chapter 4 and Chépter 5 are also used. However, some of
the models (the separable models in particular) used for the time
dependent age-specific birth rate cannot be used for the time dependent
survivor function. It should be noted that the models of the time
dependent survivor function presented hcrc causé the age-specific death

rate to change gradually with time.

With the aim of obtaining a stationary population, it should be
noted that the asymptotic values obtained in Chapters 4 and 5, in which
the survivor function is assumed not to change, are under-estimates with

increased healthcare, which reduces mortality.

The tables of Demographic Symbols and Other Notation are
provided following the Table of Contents. The nomenclature differs
widely throughout the literature but the terminology of the Table will
be used here except perhaps in Chapter 3 where analytic net maternity

functions are discussed.

Offprints of published papers are given in Appendix B as

supporting evidence.
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2. Mathematical Models and Numerical Methods.

The basic Sharpe-Lotka one-sex deterministic population model is
reviewed using Laplace transform techniques, the vital rates of birth
and death being assumed independent of time. The models for the time
dépendent net maternity function are presented and a numerical method
(the modified block-by-block method of Campbell and Day (1971)) to solve

the integral equation for the total birth rate is introduced.

By presenting preliminary information, definitions and equations
this chapter sets the foundation upon which the work in the later chapters

can proceed.
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2.1 The Deterministic One-Sex Population Model of Sharpe and Lotka.

In order to extend the deterministic onc-sex model of Sharpe and
Lotka to include time dependent vital rates, the original formulation

of Sharpe and Lotka (1911) will be presented.

The method of solution for the time igﬁepeﬁdent vital rates will
differ froﬁ that of the pioneers, and, to some extent from current
users of the model, in that formal Laplace transform techniques will
be used to solve the linear Volterra integral equation of the second

kind with a difference kernel, for the total birth rate.

The rigorous exposé of Feller (1941), to some extent a direct
consequence of the controversy surrounding the initial complex
exponential scries solution of Sharpe and Lotka (1911), will not be
examined in too much detail hcfe. It suffices to present an outline of
the method of Lope:z (1961)_showing that Lotka's solution is valid if,
as always happens in a demograpﬁic context, fe:tility rates are continuous
over a finite span of the female life time. Lopez (1961) proved the
validity of the complex exponcntial series solution, for the total birth
rate, by using Laplace transform methods, with contour integration and
residue theory being used for the inQersion process. However, care
must be taken when ﬁsing models of graduation of the net maternity
function, such as the normal curve, the incomplete gamma function and
the Malthusian function, each often used by demographers (see Keyfitz
(1968b) and Pollard (1973)], and which do not satisfy the postulates of

Lopez (1961).
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2.1.1 Dpevelopment of the Sharpe-Lotka Model.

The main assumptions of the deterministic Sharpe-Lotka model are:
(1) The population is isolated, namely, it is closed to migration.

(ii) The study can be applied to either sex. We shall apply the one-
sex model to the female.sex since females have a shorter and
better defined reproductive life-span. Sharpe and Lotka (1911)
used the male sex, but, Demographers today usually apply the model

to the female sex.
(iii) The vital rates, that is, the birth and death rates, are age-

specific and independent of time (see definition below).

In order to procecd with the formulation of the Sharpe-Lotka model

we nced some definitions.

Definitions.

Survivor Function (z(x)).

2(x) 1is the fraction of newborn females that will survive to

age x .

Age-Specific Birth Rate (m(x)) .

m(x)dx is the probability that a woman of age x will give

birth to a female child between ages x to x+dx .

Age-Specific Death Rate (u(x)).

u(x)dx is the probability of a woman who has survived x years
of age dying in the interval x to x+dx .

2(x) 1is related to >ﬁ(x) (see for example Keyfitz (1977)) by
) X
o(x) = epo u(u)du:]

[¢]

Net Maternity Function (¢(x)) .

6(x) = m(x)2(x) . This is also known as the net fertility
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schedule [Cbale (1972));and the maternity function (Lopez (1961)).

Vital Rates (m(x)&u(x)) .
The age-specific birth and death rates arc known collectively as

vital rates.

It should be noted that the condition that a person will die

implies

H g2 (x)dx =] J p()R(x)dx = 1 . (2.1)
(8] . 0

Now, if B(t) 1is the total birth rate at time t due to all
mothers, then the birth ratc of mothers alive at time t , of age x to
x+dx , is

B(t-x)2(x)m(x)dx ,

and so integrating (summing) over all ages,
B(t) = J B(t-x)¢(x)dx . . (2.2)
o

It can be seen that (2.2) may be written in the form of a Volterra
integral equation of the second kind with a difference kernel, namely

t )
F(t) + J B(t-x)¢(x)dx

(6]

B(t)

q 2.3
where, ( )

F(t)

J B(t-x)¢(x)dx = J B(-x)¢(x+t)dx ,
t o

is the birth rate at time t due to the females already alive at the

origin, that is, due to the parent or initial population.

An expression for B(-x) , in terms of known entities at the

origin, will be developed subsequently.

Let N(t) be the total number in the population at time t and

a(x,t) be the age density at time t then,



14

N(f)a(x,t)dx , is the number of females of age x to x+dx at
time t . Females alive at time t , of age x to x+dx , must have
been born t-x to t;(x+dx) and have survived a period of at least x
years. Thus,

N(t)ya(x,t)dx = B(t-x)L4(x)dx . . (2.4)
Consequently, using the fact that a(x,t) is a'density function with

respect to x , and integrating over all ages we obtain
N(t) = j B(t-x)2(x)dx . (2.5)
o

Also, from (2.4), we have'

N(t)a(x,t) = B(t-x)e(x) , ‘ (2.6)
from which we obtain the total births at the origin B(-x) to be given '
by v

B(-x) = N(0)a(x,0)/(x) ,

and hence, from (2.3),,

F(t) = N(0) [j éé%igl é(x+t)dx . (2.7)

Now, (2.6) must be modified to account for the lack of knowledge
about the population prior to our chosen origin. Equation (2.6) only
holds for t 2 x , but, for t < x the number of mothers in the age
group x to x+dx 1is

a(x-t,0)

N(t)a(x,t)dx = N(0) L (x-1)

L(x)dx ,

which can most easily be obtained from the use of (2.6) or by consulting

a Lexis diagram as'used, for example, by Keyfitz (1968b) .

Hence if H(x) 1is the Heaviside unit function defined by

1, x>0
H(x) =

0 otherwise ,

’

then
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a(x-t,0)

Alx,t) = N(t)a(x,t) = N(0) =5

L(x)H(x-t)+B(t-x)L(x)H(t-x).
(2.8)

Integrating (2.8) with respect to x , using the fact that a(x,t)

is a density, gives the total number . in the population at time t ,

t BN
N(t) = G(t) + J B(t-x)2(x)dx ,
.0 :
where, q (2.9)
_  a(x,0)
G(t) = N(O)Jo —E(T)_ 2(x+t)dx > J

is the number of female children due to those mothers that were alive

at the origin.

F and G from (2.3)1 and (2.9)1, are known as the forcing

functions of the integral equation.

Thus, if we can solve for the total birth rate B(t) , as given
by the Voiterra integréi equation (2.3)1 with (2.7), given the age
distribution at the origin and the age-specific vital rates, then, we
can (theoretically at least) calculate the total number in the
population, N(t) , and the age distribution, A(x,t) , from (2.6) (or,
(2.9)) and (2.8) respectively.

2.1.2 The Transient and Asymptotic Solution of the Sharpe-Lotka
Model.

The solution for the total birth rate B(t) has been obtained
from (2.2) by Sharpe and Lotka (1911),'Lotka (1939), Rhodes (1940) and
others. Once the solution is known for t > 0 a matchiﬁg process with
some initial arbitrary function for t < 0 is necessary. In spite of
the warning given by, for example, Feller (1941) and Lopez (1961), current

literature is still treating (2.2) rather than (2.3)1.
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We shall restrict our attention to the soiution of (2.3)1 where,
as in the general thepry of self-renewing aggregates, both ¢ and F
are non-negative functions. The Volterra integral equation (2.3)1 has
beenvextensively treated in the literature, for cxample Hochstadt (1973)
and, Bellman and Cooke (1963), in which the existance and and uniqueness
of the solution are guaranteed. Also,‘characteristics of the solution
of (2.3)1 depending on propertieslof'both ¢ and F are amply treated

in the literature.

Now, (2.3)1 is a linear Volterra integral equation of the second
kind with a difference kernel, and thus, is amenable to Laplace transform
techniques. The methodology of solving (2.3)1 using Laplace transforms

will now be demonstrated.

Formally taking the Laplace transform of (2.3)1 we obtain, upon

using the convolution theorem,
B*(p) = F*(p) + ¢ (P)B"(p)

or B*(p) = ngé%%y , (2.10)

where =+ denotes the one-sided Laplace transform viz.
u*(p) = J e Plu(tyat
o}

and the complex variable p 1is chosen in such a way as to ensure
convergence of the integrals. This can be done under very general
conditions on the functions since if ¢ and F are of exponential

order, then so is B (Bellman and Cooke (1963)).

Feller (1941) states that, in order that the solution to (2.3)1

can be represented in the standard form

B(t) = J Q.ePit , t>o0, (2.11)
pj ’
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where convergence is absolute for t 2 0 ,

and the sum is over all pj the roots of the characteristic equation
$*(p) =1, (2.12)

it is necessary and sufficient that B*(p) , of (2.10), admit an

expansion of the form

Q.
B' () = ] o2- (2.13)
Pj J
and that ) |Qj| converges absolutely. The coefficients Qj are
Pj- '
given by
F(p;) )
Q. = _ (2.14
T v
p
P=Pj

Also Feller (1941) states that it is necessary that B*(p) be a one-

valued function.

As noted by both Doetsch(1950) and Lopez (1961), Feller's (1941)
condition requiring a partial fraction decomposition for the solution
to be written in the form (2.11), is difficult to apply since even
though (2.10) and (2.13) have the same singularities, they may differ

by a non-zero integer (or entire) function.

The method of solving for B(t) wusing contour integration and
residue theory will now be outlined following Doetsch (1950). However,
we will firstly discuss the location of the roots of (2.12) since their

influence on the solution is paramount.

When ¢ is a non-negative function, it can be established
(Bellman and Cooke (1963) or Pollard (1973)] that there exists a unique
real root r , of the characteristic equation (2.12), such that

'Re(pj) < r . That is, the real root r has the greatest real part with
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|

VILA
VA

} 0 depending on whether the net reproduction rate R { } 1 where,

R = ¢*(0) = J o(x)dx . (2.15)
(¢} .

Further, the complex roots of (2.12) appear in conjugate pairs (see
Pollard (1973)) which is to be expected since the solution we are

seeking is real.

Now, ;hé inversioﬁ of the Laplace transform (2.10) involves, as
outlined by Doetsch (1950), constructing a‘sequence of simple closed
contours Fn uniformly bounded away from the roots of (2.12). We note
that the Fn can bebtaken as contours joining the points Yiirn only
to the lcft of Re(p) = vy since B*(p) is an analytic function for
Re(p) > vy > r and so by Cauchy's residue theorem (see Levinson
and Redheffor(1970)) we obtain no contribution from a contour enclosing
the region of the plane Re(p) > y . Now, by traversing the remaining
enclosed region in an ahti-clockwise direction we have, using Cauchy's

residue theorem

Y+iT * *
1 ‘L noPt _F(p) 4, J Pt _F(p) 4
T

LN W 1-¢*(p) ami 1-¢*(p)
- pt ﬂp_)_}
g_ Reéj{e 1-6* (p)
J
_ 7 Pjt F*(p) }
- g. ePi Reéj{1_¢*(p) , (2.16)
J

where the sum is over the residue ReAj from the poles contained within
some simple closed contour. In (2.16) different subscripts, n and j ,
are used to denote the fact that we may have a different number of poles

within a particular contour.
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Lopez (1961) has shown, using rectangular confours that, for ¢
continuous and of compact support (that is, non-zero over a finite
interval), the contribution from integrating around the contour Fn
tends uniformly to zero and ﬁence by the invcrsibn theorem of Laplace
transforms (see Bellman and Cooke (1963)) he obtains, from (2.16) and

using (2.10)

Y+ioo
B(t) = = L' ePtB™ (p)dp

27w .
-1%

z Q.epjt , t >0,
o)
Pj

where, assuming that the poles are simple,

Y R‘“j{l-w(p) o PP TRy (2.17)
Pj
Consequently
F*(p.)
Q. =-—7;~L- , (2.18)
) j
where
< = -&%; ¢*(p)] = J e PiXxp(x)dx (2.19)
p=p; o
F'(p;) = N(O)j a(x,0)v(py,x)dx (2.20)
(¢]
Pjx (> __.
. € pju
and v(pj,x) = T [{e J%¢(u)du . (2.21)

Here we have assumed the poles of the meromorphic function (2.10), at
least those in any finite region, are the roots pj of (2.12). Lopez
(1961) further states that, for ¢ continuous and of compact support,
(2.10) is a quotient of»two non-rational entire functions so that (2.12)
will have a countably infinite number of roots with -« being an

essential singular point.
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Of particular interest in renewal theory, and of any process in
general, is the asymptotic bechaviour of the solution. There are classes
of Tauberian thecorems in general, and, as applied to Laplace transforms
in particular, (Bellman and Cookc (1963) or Widder (1941)) which
determine the behaviour of the original problem knowing that of the
transform. As stated earlier, the real rdot r , of (2.12), is the
root with greatest realipart, and we may write

B(t) = Qe™" + 0(e™") , (2.22)
where O(ert) represents terms which approach zero as t + » so that

gim e TB(t) = Q . | (2.23)

toc

Q represents the stable equivalent births and is given by (2.18) with
pj = r . Equations (2.19) and (2.21), with pj = r , represent the mean
age of childbearing in the stable population and Fisher's reproductive

value of a woman, respectively.

Using (2.22) and (2.23) in (2.5) and (2.6) we obtain the
asymptotic behaviour of the numbers and the ége distribution given by

N(t) ~ Peft ,

where P = QJ e "X (x)dx , (2.24)
o]
and, _
a(x,t) ~ %-e'rxz(x) = be X (x) , (2.25)
where b = — 1 is the intrinsic birth rate and ' ~ ' denotes
L e "X (x)dx
"asymptotically approaches'. We have further assumed, in deriving

(2.24) and (2.25), thatv O(ert) terms tend uniformly to zero. Hence

we have that a closed one-sex population, subject to unchanging fertility
amd mortality séhedules, asymptotically attains a fixed age composition,
(2.25), and a constant rate of change T . This fixed state towards which

a population tends, is known as stable.



2.2 The Model With Time Dependent Vital Rates.

If the age-specific vital rates of birth and death, presented in
Subsection [2.1.1], are allowed to change with time, then, it is possible
‘to proceed in a similar manner and obtain expressions for the total birth

rate, the numbers in the population and the age distribution.

We let ¢(x,t) denote the time dependent net maternity function
which is given by
#(x,t) = M(x,t)L(x,t) , (2.26)
where M(x,t) is the time dependent age-specific birth rate and L(x,t)
is the time dependent survivor function, representing the probability
that a female borniat time .t-x ‘survives-to age x . L(x,t) 1is related
to U(x,t) , the time dependent age-specific death rate, by (see

Hoppensteadt (1975))

t
exp[—] U(x-t+u,u)du] , t <X
Lix,t) =4 ° , (2.27)

X
' exp[:-j U(u,t-x+u)du] , t > x

(]

The time dependent net reproduction rate R(t),'is given by

R(t) = J o(x,t)dx . (2.28)
o]

With ¢(x,t) in place of ¢(x) in the discussion of the previbus
section it may be seen that the total birth rate B(t) . is given by the

generalised renewal equation

o t
B(t) = N(O)J %%gig%-¢(x+t,t)dx . J B(t-x)0(x,t)dx .  (2.29)
o ’ o

Further, the total number N(t) and the age density a(x,t) may be

represented respectively by
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Gl t
N(t) = N(O)J %%%4%%-L(x+t,t)dx + J B(t-x)L(x,t)dx , (2.30)
(o] ’ o

and,

N(t)a(x,t) = N(0) %%ie%f%%

L(x,t)H(x-t)+B(t-x)L(x,t)H(t-x) , (2.31)
where H is the Heaviside unit function. It should be noted that we
obtain (2.30) by integrating the age distribution with respect to x

and using the fact that a(x,t) is a density. 'Equations (2.30) and (2.31)

correspond to generalisations of (2.9) and (2.8) respectively with time

dependent vital rates.

For simplicity, and as is often done in practice, we may assume
the population to be initially stable so that, from (2.29) and (2.25),
we have the total birth rate B(t) satisfying
® -rx t
B(t) = QIJ e 1Mo(x+t,t)dx + J B(t-x)®(x,t)dx . (2.32)
() ()
Basically two broad classes of time dependent net maternity

functions, namely separable and non-separable, are presented in this

thesis.

For the separable model ¢ (x,t) is such that all age groups have
the same time dependence, so that
o(x,t) = ¥()o(x) (2.33)
where ¢(x) can be regarded as the age-shape function and ¢(t) as the
time scaling function. If ¢(0) =1 then ¢(x) is the initial net

maternity function.

To allow for the final shape of the net maternity function to
differ from the initial shape we consider a non-separable ¢(x,t) . In

particular we will study a model of the form
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(92]

o(x,t) = E(t)¢1(X) + c(t)¢2(X) ) (2.34)
where the functions & and ¢ are such that

¢(x,0) = ¢,(x)
(2.35)
and fim ¢(x,t) = ¢2(x)
Especially we shall have ¢z(t) =1 - &(t)
Thus, ¢1(x) and ¢2(x) are the initial and eventual net maternity
functions and constifute the starting and final shapes of ¢(x,t)

¢1(x) and ¢2(x) will also be known as the extreme net maternity

functions and together with ¢(x) , as the inherent age-shape functions.

We note that the non-separable model (2.34) contains both change
with time and with age, whereas, the separable model (2.33) represents

only a change, with time, of the initial net maternity function.

The convention will be used that the initial population parameters
relating to the non-separable model will be denoted with a subscript of
1 and with no subscript for the scparable model. A subscript of 2 will
be used in either case for eventual population parameters. Hence for

the non-separable model, for example,
* - * = { = 2.36
¢, (r;) =1 and ¢.(0) =R, , i=12, ( )

where * denotes the one sided Laplace transform and {ri} and {Ri}
are the intrinsic rates of change and the net reproduction rates,
respectively, of {¢i(x)} . The braces { } are used to denote the

whole set over the subscript i .



2.3 Numerical Solution and Spline Interpolation.

The time dependent deterministic Lotka model presented in the
previous section cannot readily be solved, by Laplace transform
techniques described in Subsection [2.1.2], as could the model with

time independent net maternity function.

Besides the classical iterative method proposed by Volterra [see,
for example, Hochstadt‘(1973ﬁ there is, for a general continuous time
dependent net maternity function, no other avenue known to the author,
of soiving the integral equation (2.29), other than a strictly numerical
one. If (2.29) is solved for the total birth rate B(t) then the total

number and age density can be obtained from (2.30) and (2.31) respectively.

There is a‘vast number of numerical methods for solving general
Volterra integral equations. However the modified block-by-block method,
as described by Campbell and Day (1971), wés chosen because of, among
other reasons, the merits stated for general block-by-block methods
by Linz (1969). The main advantages of block-by-block methods, as
stated by Linz (1969), are due to the fact that no special starting

procedures are needed and switching step-size, h, presents no problem.

The block-by-block methods in general use numerical quadrature but
the calculations are arranged so that several’valuesbof the unknown
function are obtained simultaneously. The basic idea of the block-by-
block approach was first suggested by Young (1954) with regards to
product integration techniques. O'Neill and Byrne (1968) use what is
essentially the block-by-block approach to develop a starting procedure,
but their method requires the use of values of the kernel outside the
range of infegration. Linz (1969) presents a modified block-by-block
method of »0(h4) thaf does not require the use of values outside the

range of integration. Campbell and Day (1971) utilize the method of



Linz to develop an O(h6) algorithm for the solution of non-linear

Volterra integral equations of the second kind.

A FORTRAN programmc was written, using the modified block-by-
block method of Campbell and Day (1971), to solve general linecar Volterra

integral equations of the form
t

B(t) = F(t) + J B(x)K(x,t)dx . (2.37)
(o}

In particular (2.32) is solved in order to demonstrate the total birth
rate B(t) converging towards the known asymptotic behaviour which is
determined by, the use of an algorithm developed in Chapter 4 and

presented in Cerone and Keane (1978a).

" In order to solve integral equations of the form (2.37), it is
nccessary that F be continuous and bounded and K be continuous and
uniformly bounded (sec Linz (1969)). Data for the net maternity function
is often only available as average rates over standard 5-year age-groups
(see for example Keyfitz and Flieger (1971)). Usually the smoothing or
interpolation of this data is accomplished by fitting a polynomial or

some model curve such as the normal curve.

Fitting a single polynomial to the discrete data of the initial
net maternity function is not satisfactory since it may produce
difficulties such as violation of the non-negativity condition, especially
near the external points (see for example McNeil, Trussell and Turner
(1977)). The attractiveness of fitting a piecewise smooth polynomial,
a spline, to discrete data is stated widely in the literature. For
example, (Greville (1969)) it maykbe shown that given f(x) defined at

{xn} ¢ (a,b) then a spline of degree 2k-1 is the unique fuﬁction,

passing through {xn, f(xn)} , which is the smoothest in the sense that
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it minimiscs
b 2
J (£ (0] ax = 0
a

Hence only splines of odd order should be considered if the smoothness

property is desired.

Cubic spline interpolation was used to fit the discrete data of
the net matefnity function. A cubic spline S(x) on an interval (a,b):

(i) passes through all the discrete points {xn, f(xn)} ,

(ii) 1is a cubic Sn(x) on each interval (xn, xn+1) c (a,b) ,

and (iii) possesses continuous first and second derivatives at the

nodes {xn} .
For an excellent presentation of spline functions in general and cubic
splines in particular the reader is referred to Ahlberg, Nilson and

Walsh (1967).

Often the end data points of the net maternity function are
comparatively small and thus the spline fitted curve S(x) is inclined
to take negative values. A method of overcoming this was suggested by
McNeil, Trussell and Turner (1977) which entaiis taking a higher order
spline. However instead of introducing the unnecessary complexity of
taking a higher order spline we fit ordinary cubic polynomials over the

two end intervals.

The discrete data from Keyfitz and Flieger (1971) is taken as
occurring at the mid-points of the 5-year age-groups so that the nodes

occur at

X = o(= 10) , the minimum age of childbearing,

2.5, n=1,
xn+l - xn = hn = 5, n=2,...,N-2 , (2.38)
2.5, n = N"l"’

Xy = B(= 50) , the maximum age of childbearing, (N=10).
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llence  $(x)  can be written in the form
" N-1 :
o(x) = ) S (x), (2.39)
n=1

where Sl(x) and SN_l(x) are ordinary cubics with ¢(x1) = ¢(xN) =0
and 'SZ(x), cees SN_q(x) are cubic splines.

In any event {Sn(x)} are of the form

3
S (x) = mzo a

b

X HOCX HG %) (2.40)

where H 1is the Heaviside unit function.

With ¢(x) given by (2.39) and (2.40) the forcing term in (2.32)

’

with (2.33) can be evaluated analytically by writing it in a form similar

to that of fn(t) in (3.51). The resulting integrals like

) (2.41)

t
I .(t) = J e T*xMdx , toe (x> Xp41

can be evaluated analytically using the recurrence relation

t
rl (t) = _[;me-rx] +ml (¢) , m=1,2,3,
m+1 X, m
(2.42)

and 1l (t) = e TXn - 7Tt

which is obtained by integrating (2.41) by parts.

In general howevér the forcing term‘in (2.29) and (2.32) has to
be evaluated numerically by using, for example, Gaussian quadrature.
Solving the equations (2.29) or (2.32) numerically is slow and time
consuming since we have to proceed in small steps of time t in order
to obtain a sufficiently accurate solution. The transient solution for
the total birth rate from (2.32) is obtained in Chapter 3, when the age
structure of the time dependent net maternity function is piecewise
defined with the nédal points being integer multiples of some constant.
The methods of Chapter 3 do however become complicated for non-simple

time dependence.
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3. The Total Birth Rate Resulting from Specific Representations
-of the Extreme Net Maternity Functions.

In this chapter, time dépendent net maternity functions, &(x,t),
are considered and their resultant effect, on the total birth rate
B(t) , is examined for special forms of inherent age-shape functions
(or extreme net maternity functions). Both separable and non-separable
time dependent net maternity functions are considered where the age-
shape functions are Malthusian, histogram, point form, and, defined in

a piecewise fashion.

In Sections [3.1]1, [3.2] and [3.3] the population is assumed,
for simplicity, and as is often done in the literature, to be initially

t for t < 0, where r is the intrinsic rate

-

stable. Thus B(t) = Qer
of change. The transient total birth rate is also obtained in Section

[3.4], for general initial age distribution represented by a histogram.

The birth and death rates are assumed to be constant, in Section
[3.1],and hence the age-shape functions are Malthusian. With a Malthusian
initial net maternity function (when o(x,t) is separable] the integral
equatién for the total birth rate, is transformed info a first order
differential equation which is easily solved. Further, when &(x,t) is
not separable, we obtain a second order differential equation which is
not easily solved, but certain solutions are extracted which would
otherwise not have been possible. Some of these solutions are given

in Appendix A.

Although a Malthusian net maternity function is not a demographically
realistic model, it has in the past been used by a number of authors
(for example Kendall (1949), Hoppensteadt (1975) and Tognetti (1975)).

More specifically it was the starting point of population analysis and
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it seems fitting to return to this point.for time dependent net
maternity fun;tiohs. Further, the Malthusian provides insights into
the effects of a time dépendent net maternity function on the
population. It algo.providés analytic results which may be used to

compare numerical solutions for more realistic age-shape functions.

In Section [3.2] use is made of the disérete nature of the
available data (see for example Keyfitz and Flieger (1971)) to transform
the integral equation for B(t) into an integro-difference or
difference equation depending on whether a histogram or point
representation of the age-shape'function is made. A stepping procedure
developéd in Cerone (1978) is then used to solve for the transient total

birth rate.

The use of the stepping procedure for the total birth rate is also
discussed in Section [3.3] where the age-shape functions are piece-

wise defined (for example by splines).

Using a similar process to that in Sections [3.2] and [3.3] the
transient total birth rate is obtained when both the initial, age
distribution and net maternity function are represented by histograms.
As a coﬁsequence, the solution for B(t) with a time independent net
maternity function is obtained as a polynomial on each interval of
length y . Such a solution is.beliéved to be novel. Rhodes (1940)
also used a stepping procedure although he assumed the population to
consist initially of individuals of the same age. Further, Rhodes'

net maternity function was independent of time.

We restate here that extreme population parameters regarding the
non-separable model will be denoted by subscripts of 1 and 2 depend-
ing on whether the parameter relates to the initial or the eventual

population, respectively.
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- 3.1 The Malthusian lFunction as the Agce-Shape l'unction.

In the present section the time dependent net maternity function
is considered where the vital fates are assumed to be constant with age.
Thus, the age-shape functions are taken to be Malthusian and the effect
on the total birth rate is determined.

3.1.1 The Separable Time Dependent Net Maternity Function with
Malthusian Shape Function.

The problem, for the total birth rate B(t) in the form of (2.32)
will be examined where the time dependent net maternity function is

separable (given by (2.33)) with Malthusian age-shape function, ¢(x).

Theorem: Let the time dependent net maternity function be separable
with‘Malthusian time independence, so that from (2.33)
o(x,t) = ¥(t)ye ", (3.1)

and hence only the birth rate vy 1is changing with time.

Further let y(t) satisfy the following conditions
(i) 9(0) =1 and y(t) >0, for all t e R,, and

(i1) v e cD(w).
Then the solution to (2.32) is given by |
Bu)=wuwm@f@w)-%w}, (3.2)
wheie Q = B(0) and R =3u—

Proof: With &(x,t) as given by (3.1), (2.32) becomes, after some
rearrangement and upon using condition (1),

t

ut
e B(t) _Q HX ] ,

Differentiating (3.3) with respect to t and using condition (ii)

the first order linear differential equation,



B'(t) = [yyp(t) - u + ¥'(t)/¥(t)IB(Y) (3.4)

is obtained, subject to the initial condition, from (3.3) and condition
(1),
B(0) = Q . (3.5)

Hence (3.4)-(3.5) has, on noting that R = , solution given

==

by (3.2).

Corollary: With the conditions as stated in the above Theorem and

further if

(1iii) fim Y(t) = y <<= , and

tro

t
(iv) zimf (w(s) - %]ds A<w, then
(o]

oo
B(t), from (2.32), admits an asymptotic value Q2 given by,

Q, = Qe™ . | (3.6)

In particular, let ¢(t) satisfy the conditions of the Corollary

and be of the form

wt) = v+ (1-u )E(Y) (3.7)
where g(t) is such that £(0) =1 and iim E(t) = 0 , then the
solution (3.2) is of the form

B(t) = %_erzt[Yz + mg(t)]exp{m[fg(s)ds} , (3.8)

w =YY, and we have used the fact, from (2.36), that

Y2
R2 = r¢2(x)dx = -l-_l— ,
(o) 2

Ry Yo |
where ¢2(x) = y_¢(x) and hence, ¢ _ = Y =-;—, since u, = u .

[ -]
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Hence b(t) = e-rztB(t) , as given by (3.8), is the solution of
b'(t) = [yu(t) - (urry) + v (£)/9(t)Ib(t) , b(0) = Q (3.9)

where, y(t) is given by (3.7). Further, b(t) has an asymptotic value

t
provided that %im f £(s)ds < = (is finite).
)

T >0

3.1.2 A Non-Separable Time Dependent Net Maternity Function
with Malthusian Shape Functions.

Consider the time dependent net maternity function to be given by
(2.34) with Malthusian extreme net maternity functions {¢i(x)} so that

o(x,t) = £(t)y e 1%+ g(e)y,eHEE . (3.10)

From (2.34), (3.10) and (2.36) {ri} and {Ri} , the intrinsic rates of

change and the net reproduction rates respectively, are given by

ri i i
(3.11)

and R. .
i i

1]
<

1
=

"
<
~
=

[
-
o
H
p—
-
N

Further, &(t) and Z(t) , besides satisfying conditions (2.35), are
such that £, € C(z)(R+) , namely,. the functions and their first and

second derivatives are continuous.

Substitution of (3.10) into (2.32) results, after some manipulation,
in B(t) being given by

B(t) = vy MIRE(OF (1) + v,e 2R e()F, (1) - (3.12)

where,

Q1 t BiX .
Fo(t) = ——+ f B(x)e'17dx , 1i=1,2
1 r1 Hi o

In order to obtain B(t) explicitly from (3.12) we divide both

sides of (3.12) by e-ylt&(t) and differentiate, thus eliminating the

-
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integral within the expression for Fl(t) and so, on rearrangement,

we get
B'(t) + B(t)B(t) = Yze-uzta(t)Fz(t) , (3.13)
where,
a(t) = g(t)06 - &' (t)/&(t) ] + ¢'(t) , © = wu; - u,,
' (3.14)
and B(t) = u - £'(£)/E(Y) - Y E(t) - v,T(t) .

Dividing both sides of (3.13) by e'uzta(t) and differentiating again
we obtain, after some algebra, the second order homogeneous linear

differential equation

a(t)B"(t) + P(t)B'(t) + Q(t)B(t) =0, (3.15)
where,
P(t) = a(t)[B(t) + uy] - a'(t) ,
: (3.16)
and Q(t) = a(t)[B'(t) + u,B(t) - Yza(t)] - a'(t)B(t)
Now, the conditions (2.35) imply that
E(0) =1, %imE(t) =0,
; to
(3.17)
and z(0) =0, fimg(t) =1,
£t
so that, from (3.12) and (3;13)—(3.14) respectively, the initial
conditions '
B(0) = Q,
, (3.18)
and B'(0) + @(m —rfmz.cﬂoﬂBUD_=0,

are obtained. Here, (3.11) has been used.

Thus the problem of solving the integral equation (3.12) has been
changed to that of solving the differential equation (3.15) with (3.14),

(3.16) and, with initial conditions (3.18), about which a great deal
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more is known and from which a number of interesting results will be

obtained.

In the special situation in which 6 =0 (ul = U, (= u)) the
time dependent net maternity function is separable (and hence only the

birth rate is being changed with time). That is,

Co(x,t) = v ()e(x)
where

v Yy
p (t) = E(t) + ;I-c(t) , (3.19)

for which the solution has been previously dbtained and is given by (3.2).

Thus,

t :
B,(t) = Qwo(t)eXP{L)(Ylwo(S)—u]ds} , | (3.20)

where wo(t) is given by (3.19), is the solution of

a (1)B (1) + P (t)BI(t) + Q (t)B (t) =0, (3.21)
where
P () = o ()[B (t)+ul - a (L) , )
Q (1) = a (DIBL(E) + u (8) - v, ()] - al (DB (2) ,
b (3.22)
a () = £'(t) - C(t)E (1)/E(L) ,
and B (t) = u - &£ (8)/E(L) - v ¥ (V) , | )
with initial conditions, from (3.18) (with © = 0) given by
B,(0) = Q; (3.23)
' Y2 _
and BO(O) + ’:BO(O) - 71— ao(O)]BO(O) =0 .

Using variation of parameters (see for example Boyce and Di Prima

(1969)) the general solution W(t) , of (3.21)-(3.22) is found to be
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: t s £(s)a_(s)
W(t) = U(t)]A + CJ exp{-ylf wo(v)dv} ———————ir-ds
o 0 [wo(s)l
where,
t
U(t) = wo(t)exp{f (ylwo(s)-u)ds} is a known solution of (3.21)-
o)
(3.22),

wo(t) and ao(t) are given by (3.19) and (3.22) respectively,

and, both A and C are arbitrary constants.

Consider now the problem (2.32) with (3.10) where ¢(t) has the
special form
z(t) =1 - ¢&(t) , (3.24)
in order that the system (3.15), with (3.14) and (3.16), and with
initial conditions (3.18), may be simplified somewhat and may allow

also a change in the survivor function (see Theorem in Section [6.1]).

In addition, if we let,
B(t) = e 2%b(t) , | (3.25)
so that b(t) admits an asymptotic value (normally) then (3.15), (3.16)

with (3.14); and (3.18) are transformed into, Qith t(t) given by

(3.24),
u(t)b"(t) + p (t)b'(t) + q (t)b(t) =0, (3.26)

where

P (t) = u(t)lv(t) + r, + v,] - u'(t) , )

q, (1) = u(®) [V (t) * v,lv(t) + T, - u(®)] - u'(DIv(t) + 7,0, 5.2

u(t) = 0(1-£(8)) - E'(R/E(Y) , O =my - my

and, v(t) =y - Yz - wg(t) - g (B)/E(L) , w= Y- Y, )

with initial conditions



b(0) = q .
y (3.28)
' + - 2 =
and b'(0) E/(O) + r, 1‘1+u2 u(O)}b(O) o,
respectively.

Further, we can eliminate v(t) by noting that

v(t) + T, = 8 - wE(T) - E;EE; = u(t) + (0-w)E(t) and hence
(3.26), (3.27) and (3.28).become
u(t)b"(t) + p(t)b'(t) + q(t)b(t) = 0, : (3.29)
where |
p(t) = u(t)ly, + u(t) + (e-wE(t)1 - u'(v) , ‘
a(t) = (8-w)lu(e) (&' (1) + v,E(D)) - &(B)u' ()], o (3.30)
and u(t) = 61 - £(t)) - £'(t)/E(Y) , J
with initial conditions,
b(0) = Q, ,
and b'(0) + (B-m)[l . -;‘1(+—(L)2]b(0) = 0. (3.31)

‘A number of special and interesting solutions exist for the system
(3.29)-(3.31). Six different possibilities, A, B, ..., F, are

considered in Appendix A.
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3.2 The Transient Total Birth Rate Resulting from Discrete Shape
Functions in an Initially Stable Population.

Herc we discuss the transient total birth rate resulting from
time dependent net maternity functions where the extreme net maternity

functions are discrete. The population is assumed to be initially stable.

3.2.1 The Single Delta Shape Function.

The delta function has been used extensively in the literature,
for example by Keyfitz et al. (1967), Coale (1972) and Tognetti (1976a),
as the shape function or as the net matérnity function. Let the average
age of mothers at the birth of their daughters be P , then assuming that
all births occur at age « we have

#(x) = RS(x-x) , (3.32)
where R 1is the net reproduction rate and,

§(x-x) 1is the Dirac delta function defined as zero everywhere

except at x = k and is such that
f f(x)8(x-x)dx = f(x) , (3.33)

provided « belongs to the interval of integration.

With such a net maternity function, (3.32), Keyfitz (1968b) points out

fn R , will rarely be in error by as much as 5%.

that the value T =
- Also, with ¢(x) as given by (3.32), «k = To where To is the mean

length of a generation in the stable population defined by kerTo =R .

With (3.32) in the separable time dependent net maternity function
(2.33) the integral equation (2.32), for the total birth rate, becomes
[on using (3.33)) a difference equation with non-constant coefficients,

namely

Qer(t-K) s 0 <t<ck ‘
B(t) (3.34)

RO e RELE
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where Re ™ =1 and r is the intrinsic rate of change, for t < 0.

We solve (3.34) by proceeding in steps of length «k . Since we
known the solution on 0 < t < k we can obtain the solution on
kK <t <2, and so on. That is, using thc stepping proccdure we have
the solution of (3.34) given by

N

B(t) = Q [T R™lo(e-nk)e ™t (K] b o )i,
n=0
rt N
= Qe [l w(t-nk) , (3.35)
n=0
K

since R = e . The substitution t =t - Nk in (3.35) results in

N
T v(r + (N-n)x)

B(1+Nk) = Qef (T*N¥)
_ n=0

+N N |
_ ch(r ) [T v(tenk) , 0 <t <k . (3.36)
n=0

J -B;t
If we let ¢(t) = 2 aje J

, B. >0, then (3.36) may be
J=0 )

written simply as

N

1 e-Bj(T+nK) ,
n=0

J
B(+Nk) = QeX (T*N<) ¥
J:

a.
o

_ Qe (¥R g

o.exp{B.[t+N(N-1)x/2]}, O<t<k . (3.37)
oo 3

In particular with,
w(t)=;11-+(1-—]e-)‘t » A>0,

so that the population tends gradually towards an average stationary

state, (3.36) becomes

N ,
B(relk) =3 e™T I] (1 +sgh), 0<t<x, (3.38)
n=0
where s = (R-l)e')\T and q = e A

The asymptotic standing wave QZ(T) (see Bourgeois-Pichat (1971)) is
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obtainced by taking the limit, as N »> e« , in (3.38). Thus,

rT

N
Qu(n) =g e ain [ (145",
N> n=0

which exists (from Bellman and Cooke (1963) or Andrews (1971)) since

lq] < 1 . Hence,

[}

T 1+sqh), 0<t<k. ©(3.39)

n=0

o

Q,(1) =

In order to obtain the asymptotic average stationary value, Q2 s
which is given by
1 K
Q, = ¢ LQZ(r)dr , (3.40)
we write the product expression for Qz(r) , from (3.39), as a series.

Namely, also from Andrews (1971),

© L4 n(n-l)/z n
(1+sqh =1+ ] s,
n=0 n=1 , k
T (a-q9)
k=1

and hence from (3.38), (3.39) becomes
-%(n—l)kK
e (R-1)

0 ﬁ [l_e-kklc]
k=1

Substituting (3.41) into (3.40) and integrating we obtain the asymptotic

n_-nig
Q rrt e

Q,(1) =ge 1+ 0 <tT<K. (3.41)

I o~18

average stationary value Q2 from

-% (n-1) Ak
e (R-1)

n
1 H i:l_e-k}\l(]
k=1

n Ak

1-Re ™

. (3.42)

szg- R-1+

r
Rk n

e~ 8

The above asymptotic value, given by (3.42), will be used for
comparison purposes to test the numerical algorithm developed in Chapter
4. The algorithm alloWs.for the calculation of the asymptotic total
birth rate for general age-shape functions with, in particular, the

above mentioned single exponential time dependence.
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3.2.2 The Single Step (Rectangular) Shape Functions.

We will consider the problem for the total birth rate B(t) , in

an initially stable population, with separable time dependent net

maternity function. That is, B(t) is given by (2.32)-(2.33), with

¢(x) being represented by _
$(x) = AH(x-a)H(8-x) , 0 <a<8,

where H is the Heaviside unit function defined by

H(u)

i

—_—r
O
. -
e =t
A v
o o
- -

(3.43)

(3.44)

and A = R/(B-a) , R being the net reproduction rate. Thus, B(t)

is given by

B(t)

Ay(t) {(2 ert]we-rxH(x-a)H(B—x)dx
t

t
+ J B(t-x)H(x-a)H(B-x)dx } , (3.45)
o

or, on using the definition, (3.44), of the'Heéviside unit function,

0stga

( Q.ert ' >
B(t) Tt | t -rX t
05 =4 Q.e [1 - Le dx:l + LB(t-x)dx s a<gtcg<B
B
[ B(t-X)dX >
L o '

Making the substitution u =t - x in the above integrands we obtain

the following system of integro-difference equations

( Q ert ’ 0 <
t-a
B(t) _J Q r(t-8) f
Ay(t) 11 [1 € ] + X B(uydu , «a g
t-a
[ B(u)du s t >
\

£ B (3.46)
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From (3.46), we know the solution on [0,a] so that we can proceed
in steps of leﬁgth a unless we come to straddle B8 at which stage we
would require the solution interval to be further subdivided. If
however B8 1is some integer multiple of o then we could proceed, in
steps of length o , unhindered. Let B = Ka , K some positive integer,
and Bn(t) be the solutioh for te [(n-1)a, nal , n=1,2,... then

we have from (3.46),

( Q.ert ' ' , s =1
B_(t) t-o
s _1Q r(t-Ka) _
Av(t) 17 [l'e ] + L BS_I(U)du , S = 2,3,...,K (3.47)
t-a t-Ka
\ f BS_I(U)du - j BS_K(u)du , s = K+1,K+2,...
o o}

We note that Tognetti (1976a) considered (3.43) with B.= 20 ,
that is, with K = 2 , and used Laplace transform techniques. We cannot
readily use Laplace transforms here because of the time dependence y(t).

Tognetti did not have any time dependence.

If both o and B are integer multiples of some constant
y (viz. « = ky, B = Ky) then the solution to (3.46) can most easily be

obtained by proceeding in steps of length y . That is, if we let

Bn(t) be the solution for t ¢ [(n-1)y, nylJ , n =1,2,3,... then,
(Q.e™t , n=1,2,...,k

B_(t) t-ky

n 7 _1Q [1-er(t"(*):’ + f B .(uwdu, n=k+l,k+2,...,K  (3.48)

AV(t) T A n-1

t-ky t-Ky
f Bn_k(u)du - f Bn_K(u)du , n = K+1,K+2,...
vLO (o}
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3.2.3 The Separéble Time Dependent Net Maternity Function
with Discrete Shape Function.

With a time dependent net ﬁaternity function the integral
equation for the total birth rate B(t) is no longer readily amenable
to the Laplace transform (or equivalent) method, since the convolution
theorem cannot be used. It is common however to tabulate the data, for
shape functioné, in discrete form [see for example, Keyfitz and Flieger
(1971)]. With such a discrete representation the problem for the total
bifth rate will be solved by an extension of the stepping procedure

discussed in [3.2.2].

Rhodes (1940) used a stepping procedure for the total birth rate
with the net maternity function having no time dependence and the

population having no age distribution, consisting only of the newborn.

Discrete data may be represented in either histogram or in
concentrated form. The histogram may be represented by
N-1
o(x) = nzl anH(x—bn)H(bn+1-x) s, N2, (3.49)

where H is the Heaviside unit function defined by (3.44). The

concentrated or point form, for the initial net maternity function is
represented by

¢(x) = and(x—bn) R (3.50)

1

[ e 4

n

where & 1is the Dirac delta function defined by (3.33).

We note that in (3.49) and (3.50) {an} and {bn} are such that

2 N’ where, { }

denotes the whole possible set. The {bn} will hence forth be called

a s0 for n=1,2,..., and, 0 < b1 <b,< ... <b

nodal points. Also, b1 = o and bN = B where o and B are the

youngest and oldest ages of childbearing in the population.
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With the shape functions in discrete form, as given by (3.49)
and (3.50), the integral equation, (2.32) with (2.33), for the total
birth rate can be written as a system of difference equations. If the
{bn} in (3.49) and (3.50) are commensurable, that is, from Bellman and
Cooke (1963), if

bn - Ykn ’

where Yy 1is some constant and {kn} are non-negative integers, then
the system of difference equations can be solved more conveniently, as

may be seen from [3.2.2], by advancing the solution in steps of vy .

We shall firstly examine the solution of (2.32) with (2.33) for
B(t) , with the initial net maternity function ¢(x) represented as a
histogram, in the form of (3.49). Substituting (3.49) into (2.32) and
using the definition of the Heaviside unit function, (3.44), we can
rewrite the problem (2.32) with (2.33) in the form of a system of integro-

difference equations

(
Qe’t , tel0,by]
n-1 t-b t-b
e t) + a B(u)du + a B(u)du, telb_,b_..1, (3.51)
p(t) n( ) mZI mt-bm+1 nj, n’ n+l
n=1,2,...,N-1
a B(u)du : , t 2D
N
Ln=1 nt'bn+l .
where, :
 n:l bmel t o
£ (1) = Qe'ti1 - ¥ a L e Tdu - a L e rudu} ,
L. m=1 m n

—~

N-1 b t
Tt m+l -ru, -Tu
Qe | % amL e du anL e dl{l ,
n

m=n m

and we have used the fact that ¢*(r) = 1, where * denotes the one-
sided Laplace transform. We have further made the substitution u =1t - x

in the integrands of (3.51).
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As we saw in [3.2.2], marching in steps of b1 (or a) produces
difficulties when we come to straddle one of the nodal points {bn} .

Let {bn} be such that

b, = Ykn , fot n=1,2,...,N, _ (3.52)

where, now {kn} are positive integers and 0 <b, <b, < ... < by -
We note that the above is a slightly more general problem than that
discussed by demographers since (3.52) allows for irregular spacing of

the {bn} .

The solution to problem (3.51) with (3.52) can most easily be
represented if we let Bn(t) be the solution for t ¢ [(n-1)y, nyl,
n=1,2,... . Hence proceeding systematically in steps of length y we
have from (3.51) that,

(
Qe’t | o s = 1,2,k

B (t) n-1 t-kpy t-kne1¥ 3.53
e = 1fn(t) + Zl a_ L} Bs_km(u)du-£J Bs_km+1(u)du (3.53)

t-kny
+ anlL | Bs_kn(u)du , s = kn+1,kn+2,...,km_1 s

for n=1,2,...,N-1,

Nil Jt-ka t'km+1Y
a B (u)du - J B (Wdu|, s = k,+1,k+2,.. .
m=1 my s-kp b s-Kp+1 N N

Thus,
B(t) = Qe™Tu(r) ,  (s-Dy s tssy, s = L2k
n _ (t-Kpy
Bkn+s(t) = w(t){fn(t) ¥ mzl amL) Bkn-km+s(u)du} ?
(k #s-1)y € t < (k +s)Y » (3.54)
with s = 1,2,...,kn+1-kn 5 n=1,2,...,N-1,
' N _ rt-kpy

and BkN+s(t) = w(t)mzl am£) BkN-km+s(u)du , (kN+s-1)Y £tg (kN+s)Y,

for s =1,2,... ,
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where a, = a; »
a = am - am_1 , m=2,3,...,N-1,
and ay = -ay.1

We note that with ¢(t) 1 then the solution (3.53) or (3.54)

reduces to the initial stable population.

If we take N = 2 in the above problem then we obtain the results

of [3.2.23 .

In practice the data is often given in five year age-groups from
10 to 55 years (see Keyfitz and Flieger (1971)). Hence in problem
(3.51), with (3.52), and in the solution (3.53), or (3.54), we have
k1 =2, y=5, kn - kn-l =

n = 2,3,{..,N(=10) .. A range from 10 to.SSAyears is the largest interval

1 that is, bn -b =y for

n-1
of reproduction encountered, but intervals of 15 to 45 (or 50) years are
not uncommon allowing for differing cultures and customs. Cultural and
social pressures, besides the biological constraints, play an important
role in determining the length of the reproductive period. To conform
to this possible variation in the length of the reproductive period we
will keep the end nodal points general, but we will have regular spacing
of length y of the internal nodal points. Hence the solution, (3.54),
with kn - kn_1 = 1 namely bn - bn-l =y for n=2,...,N, may be

written as

B_(t) = Qftu(t) , (s-Dystssy, s=1,2,...k

) n _ t-kpy
B, (8~ w(t){fn(t) < 1oa, f B, _km(u)du} :

=1 [o) n+l

kny £tcg kn+1Y" for n=1,2,...,N-1,

N _ rt-kpy
d B t) = t
and By (1) = ¥( )mz f

a B (Wdu , k,y <t <Kk .Y
p om), kN+1-Km N N+1

for n=1,2,... ,
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where we have used the fact that kn+ = kn + 1.

1

In the solution to problem (3.51), as given by (3.53) or (3.54),
we have to integrate the solutions over preVious intervals in order to
obtain the solution on the present interval. This can be done
systematically and analytically for certain forms of time dependence
Y(t) . For example if y(t) 1is a strict sum of exponentials then the
solution Bn(t) , from (3.54), on successive intervals of length vy ,
can be done analytically using a recurrence relation of the form (2.42).
The sum does however become more complicated as we proceed to higher
intervals. For certain exponential forms of y(t) we can use (3.54)
to obtain the transient solution, and, the methods of Chapters 4 and 5

for the asymptotic behaviour of the solution.

We will now examine the solution of (2.32) with (2.33) where the
initial net maternity function is in concentrated or point form, as given.
by (3.50). Using the properties of the Dirac delta function, explicit

integration is avoided.

Substituting (3.50) into (2.32) with (2.33) and using (3.33) we

obtain a system of difference equations namely,

4

Qe »  te(0,b)
B(t) | {g (t) + g a B(t-b ) te (b, b ..) (3.55)
P(t) &n =1 M m’ n’ “n+l’ °
n=1,2,...,N-1
N
E 3nB(t-bn) ’ t > bN
\n=1 '
where,
n
rt -rb
g (t) = Qe [} - mzl ae M,

and we have used the fact that $*(r) =1 . Thus from (3.50), and
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using (3.33),

N | -rb
Yy ae M=, : (3.56)
n
n=1. :

Again, if we let {bn} be such that bn = ykn where {kn} are
positive integers, and let Bn(t) be the solution for t ¢ ((n-l)y,ny)
n=12,..., then, by proceeding in steps of y , the solution to (3.55)

may be given by
rt
B (t) = Qe "¥(t) 3 (s-)y <t <sy, s-= 1,2,...,k;s

: n
B 4s(0) = w(t){gn(t) - amBkn-km+s(t'ka)}; (k #s-1)y < t < (k_+s)Y,

where s =1,2,...,k .-k_; n=1,2,...,N-1, (3.57)

N
and By, (t) = w(t)mzl Bk vs (Tkpt)s  (kyrs-D)y <t < (kgs)y

for s =1,2,...
We note that if N = 1 we obtain the results of Subsection [3.2.1].

In a practical situation one might model the concentrations at
the mid-points of the five-year intervals discussed earlier with regards
to the histogram model. Such a procedure has been used by Lotka (1948),
and by Cole (1954) as noted in Keyfitz (1968b). Hence we may have k1 = 5,
y =2.5, k -Kk

n n-1"
The solution (3.57) is thus now defined over smaller intervals than for

2 , that is, bn - bn-l =2y for n=2,3,...,N(=9).
the histogram formulation. Since larger intervals are more desirable
we may interpolate the nodes, at which the concentrations occur, to
multiples of 5 years as shown by Lotka (1948). Further, Lotka realised
that we obtain a polynomial in the characteristic equation (3.56) and
hence there are a finite number of roots. The polynomial is obtained

because the {bn} are integer multiples of some constant vy .



48

3.2.4 A Non-Separable Time Dependent Net Maternity Function
with Discrete Shape Functions.

In this subsection we will discuss the solution for the total
birth rate B(t) , in an initially stable population in which the time

dependent net maternity function is given by (2.34).

We will firstly consider the discrete shape functions {¢i(x)}

represented by a histogram, of the form given by (3.49), so that

(3.58)

N-1
$;(x) = nzl an’iH(x-bn)H(bn*l-x) » 0<by <b, <...<b,

where {bn} are commensurable. That is, {bn} , are as given by (3.52).

Substituting (3.58) into (2.34) we obtain

N-1

o(x,t) = nzl wn(t)H(x-bn)H(bn+l-x) , (3.59)
where,

v (1) = E(t)a | + t:(t)an,2 . ' (3.60)

We note that (3.59)vis a sum of separable functions and is similar to
the separable net maternity function
N-1
@(X,t) = l[)(t) ngl anH(x’bn) ’

if we have

a - v(t) = wn(t) for n=1,2,...,N-1 .

Now, substituting (3.59) into (2.32) and using (3.44) we obtain a system

of integro-difference equations similar to (3.51) with the substitutions

w(t) = x(t)
where x(t) = £(t) * c(t)¢;(r1) , (3.61)
and a  ¥(t) = wnct) R

with wn(t) as given by (2.60). We have further used the fact that

¢I(r1)‘= 1 . Hence thevsolution to (2.32) with (3.59) is given by
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(3.54) with the substitutions (3.61). Consequently if, Bn(t) denotes

the solution for t e [(n-1)y, nyl , n = 1,2,..., then

B(t) = Q - e’ 1° x(1);  (s-Dystssy , s=1,2,...k

1 ]
n _ t-kpy
Bkn+s(t) = F (t) + m§1¢m(t)f Bkn_km+s(u)du ;
(k +s-1)y £ t < (k +s)y
with s =1,2, Kook, s n=1,2,...,N-1 ’ (3.62)
and »
N t-kpy
BkN+s(t) = 2 wm(t)f BkN—km+s(u)du ; (kN+S°1)Y £tcs (kN+s)y ,
m=1 o
for s =1,2,... ,
where il(t) = wl(t) s
wm(t) = ‘Pm(t) - le_l(t) E} m = 2’3)""N'1 )

Furfher, Fn(t) is given by

rt ncl Bm+1 -riu Y ru
F () =Qelixt) - 1 v “eldu-y (1) e ldu
n

m=1 m

Similarly, we obtain the solution to (2.32), with (3.34) and
{¢i(x)} given by

¢i(X) =

) a, ;8(x-b)) (3.63)

2z

1

from (3.57) by making the substitutions (3.61).

We note that in (3.58) and (3.63), {bn} are independent of i
‘and hence are the same for both the initial and final net maternity
functions. If the {bn} do differ between the two shape functions
 then the positivity condition on the time dependent net maternity
function may be violated if, for examplé,vthe support of the age-shape

b

functions changes with time. Although the case with {bn i}, relating
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to {¢i(x)} , is of importance it will not be examined further here.

It is enough to say that if {bn i} are integer multiples of the same

’

constant then we may advance the solution in steps of that constant.
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3.3 Shape Functions Piecewise Defined Over a Finite Interval with
Commensurable Nodal Points.

We now discuss the resultant total birth rate, B(t) , duc to
shape functions defined in a piecewise fashion wherc thc nodal points

are commensurable.

We assume the time dependent net maternity function to be
separable, of the form (2.33), where
N-1
$(x) = § s (XH(x-b IH(b , ,-X) , (3.64)

n=1

with {bn} being given by (3.52).

sn(x) =a has been previously considered in Section [3.2].
Thus proceeding in a similar fashion we obtain the solution to (2.32)-
(2.33) with (3.64) which contains inherent difficulties, similar to those
of (3.54), due to the initial net maternity function being represented
by a histogram. Here the difficulties are greater because of the
{sn(x)} since we need to integrate explicitly, over previous intervals,
to obtain the solution on the current interval. However, for simple
time dependence Y(t) such as exponential, we may make some progress.
The solution is further enhanced if y = o , the minimum age of child-
bearing, thus allowing for the lérgest possible step length in the

stepping procedure.

A simple example of (3.64) is provided in Rhodes (1940) with

N = 2, b1 = a, b2 = 8 and sl(x) = A sin a(x-a} .

" We note that most of the curves used for graduation (see Keyfitz
(1968b) or Pollard (1973)) such as the normal curve, do not have compact
support. Even if these curves were truncated we would need, short of

numerical quadrature, to be able to integrate the solution over



52

successive steps of length vy .

The attraction of fitting piecewise smooth polynomials was
discussed in Chapter 2. McNéil, Trussell and Turner (1977) advocate
the use of splines for a piecewise fit of the discrete data. With
¢(x) of the form (2.39)-(2.40) and if ¢(t) is given by a sum of
exponentials then a sum of integrals of the fofm (2.41) result, which
may be evaluated by using (2.42). The solution to (2.32)-(2.33) with

(2.39)-(2.40) and (3.52) does however become complicated as we proceed

to higher intervals.
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(93]
&S

The Transient Total Birth Rate Resulting from Histogram Shape
Functions and Age Distributions.

In the present section we will discuss the resultant transient
total birth rate where the initial net maternity function as well as
the age distribution, are represented by histograms. Namely we will
not assume the population to be initially stable, as we have done in
the previous sections of this Chaﬁter, but will contend with a general

age distribution represented by a histogram.

Ffom (2.29), the total birth rate with an arbitrary initial age
distribution is given by
B(t) = [mA(x)Q(x+t,t)dx + f B(t-x)é(x,t)dx , (3.65)
0 o
where &¢(x,t) is assumed separable - of the form (2.33), and

N(0)a(x,0) _

A(x) = 0

B(-x) (from (2.3), and (2.7)), the total births at

t=20.

We consider the solution to (3.65) where K(x), and ¢(x), the
initial net maternity function, are given by
- M- 1 |
A(x) = ] c H(x-b)H(b  ;-X) . (3.66)

n=1

and (3.49) respectively.

For simplicity we will only consider the nodal points {bn} to
be regularly distributed, as they often are in practice. Thus, with

b, = 0 , we have

1

bn+1 = ny for n=1,2,...,N-1 (or M-1) . (3.67).

We note that b1 =0,

bM = w , the maximum possible age of an individual,

b a , the minimum age of childbearing, and hence,

k
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a1 = a2 = ... = ak_1 =0,
and bN = B , the maximum age of childbearing.

In practice k will be 2 or 3 (with y = 5 years) so that o is 10 or

15 years.

Proceeding in a manner similar to that of Subsection [3.2.3] we

obtain the solution Bn(t) on [(n-1)y, nyl for n =1,2,..., of
(3.65) with (2.33), (3.49) and (3.66), using (3.44), as
Bn(t) n _ rt-my
70 = Fn(t) + Z am[ Bn_m+1(u)du , n=1,2,...,N-1 (3.68)
m=1 o}
N _ rt-my
a J B (wdu , n = N,N+1,... ,
m n-m+l
m=1 (o} ,
where,
a; =2},
a =a -a , m= 2,3,...,N-1,
m m m-1
and ay = -ay 1 3
Further, using (3.49) and (3.66) we have
- M-1 py
F (1) = Yo, ¢(x+t)dx ,
m=1 ‘(m-1)y
M-1 rt+my
= 2 Cm ¢(u)du >
m=1 “‘t+(m-1)y
M-1 _
= 3§ c (t-(-Dy)a , + (ny—t)am+n_1] , (3.69)
m=1 -
and a; =a,= ... = ak_1=0 with Fn(t) =0 for t >Ny (or n > N).

We note that if ¢(t) = 1 then, (3.68) represents the solution
for the total birth rate, (3.65), where the net maternity function is

independent of time and is defined by a histogram. The solution, to the
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time independent problem on cach interval of length y , is given simply
by a polynomial, as can be seen from (3.68) with (3.69). It is
believed, by the author, that such a solution as (3.68) has not previously

been presented.

Rhodes (1940) used a stepping procedure for the total birth rate
where the solution was assumed to consist of équi-aged individuals. The
net maternity function was assumed by Rhodes to be continuous and

unchanging with time.

In evaluating the solution (3.68) with (3.69), similar problems
to those encountered in Section [3.2] present themselves. If ¢(t) is
a sum of exponentials, with Fn(t) as defined by (3.69) it can be
easily seen that we need to evaluate integrals of the form (2.41) which

can be done using (2.42).

The problem for the total birth rate, with a non-separable time
dependent net maternity function and with nodal points {bn} being the
same for the extreme net maternity functions, can be solved in a similar

manner to that outlined in Subsection [3.2.4].
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4. The Asymptotic Effects of General Extreme Net Maternity
Functions With Exponential Time Dependence.

The effects of both abrupt and gradual changes of the age-specific

birth rate on the ensuing population will be discussed in the present

chapter.

The first analytic study demonstrating what Keyfitz termed "the
momentdm of populétiop growth' was presented in Keyfitz (1971b). He
showed by abruptly scaling the age-specific birth rate down to
replacement level, that the population would have a tendency towards
continued growth. Keyfitz did this by demonstrating for various data
that under such a change, the éventual stationary population would be

greater than the initial.

For a number of populations‘Frejka (1968), (1973) has noted the
phenomenon of residual growth resulting from allowing the age-specific
birth rate to change along different paths of time. Frejka (1973)
however projects the populatibn whereas Keyfitz (1971b) produces an
elegant Elosed—form expression for both the asymptotic total birth rate

and the asymptotic total number of the eventual stationary population.

Since the foundation article of Keyfitz (1971b) a number of

generalisations and extensions have appeared in the literature.

Firstly Frauenthal (1975) produces a ''gradual' change by assuming
that only the new-born population scales its age-specific birth rate by _

a constant, to replacement level.

An extension by Keyfitz (1975) and also Tognetti (1976b) assumes
that the age-specific birth rate is instantaneously scaled by a constant

so that a stable rather than stationary pdpulation results. In an
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adjacent paper to Tognetti's, Mitra (1976) generalised the Keyfitz
(1971b) model by allowing the net maternity function to change from

the initial to any other without being necessarily scaled by a constant
as in previous models. Mitra's model allows for the age structure of

the net maternity function to change.

As Keyfitz has noted in Keyfitz (1971b), an abrupt change to
replacement level fertility is "unrealistic' and hence gradual changes
should be considered. A model which allows a gradual exponential change
of the age-specific birth rate, to bare replaceﬁent, was presented in
Cerone and Keane (1978a). A numerical method for obtaining the
asymptotic total birth rate, and hence, the asymptotic numbers and age

density function, was outlined and is given here in Subsection [4.1.2].

Extending the‘ideas of Frauenthal (1975), the astptotic effects of
an éxponéntial time dependent differential scaling towards replacement .
level fertility rates is studied in Subsectiqn [4.1.3]. With this model,
the parentvpopulation is allowed to change ifs age-specific birth rate

at a different transition rate to that of those born after the origin.

The stablekbirth rate resulting from an exponential time
dependent change between any two net maternity functions was analysed in
Cerone ;nd Keane (1978b) and is presented here in Subsection [4.1f4].
The model allows for change with both age and time, and, represents a
non-separable time dependent net maternity function. As stated earlier,
the initial and final net maternity functions will be referred to as the
extreme net maternity functions or as the inherent age-shape functions

of the time dependént net maternity function.

The converse problem is discussed in Section [4.3] and consists

of determining the transition rate that will result in a given
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asymptotic behaviour, with the initial net maternity function being
assumed to change in a certain exponential fashion. Such a problem is
very important in the planning and management of populations as pointed

out by Nortman and Bongaarts (1975).

The method of Cerone and Keane (1978a), to obtain the asymptotic
behaviour, is generaiised in Section [4,4] where the transient total

birth rate is obtained.

It should be noted that, in this chapter, all changes of the net

maternity function are via the age-specific birth rate.
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4.1 The Separable Time Dependent Net Maternity Function and its
Effect on the Momentum of Population Growth.

The momentum of population growth problem of Keyfitz is
generalised to contain a gradual exponential change, at a rate A , of
the age-specific birth rate to the level of bare replacement. It is
shown that for a Malthusian initial net maternity function, the
asymptotic total birth rate for the gradual change is the Keyfitz value
multiplied by exp(r/A) where, r is the rate of increase of the
population before t = 0 . All age-groups experience the same time

dependent scaling and hence the model is separable.

A numerical algorithm is presented forrobtaining the asymptotic
total birth rate for general initial net maternity functions with
exponential time dependence. The numerical method is demonstrated
by comparing it to known analytic solutions, found in Chapter 3, for
the model with, Dirac delta and Malthusian initial net maternity
functions. The method is aiso demonstrated for demographically more
realistic data.

4.1.1 The Asymptotic Effects of an Instantaneous Scaling, to
Replacement Level, of the Age-Specific Birth Rate.

Keyfitz (1971b) analysed the potential or momentum of a growing
population, for further growth. He showed that even if a growing
population reduced its age-specific birth rate abruptly to replacement
leVel, there would be e tendency for further growth, with the extent
of the residual growth after the change depending on the age
distribution and the number of people of reproductive age. Frejka
(1968) and (1973) has studied the phenomenon of residual population
growth by projection. For present high fertility countries in

particular, Keyfitz (1971b) showed that it was unwarranted to hesitate
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in making contraception available merely because the population had not
yet reached the desired level. Even if high-fertility countries were
to drop immediately to,replacément level age-specific birth rates,
Keyfitz maintained that the ultimate stationary population would be

approximately two thirds highef than the present total.

We shall present the analysis of Keyfitz, but, we will use

Laplace transform techniques.

Let the population be initially stable, changing such that the
total birth rate B(t) = Qert , >0 . Keyfitz abruptly alters the
age-specific birth rate, at time t =0 , from m(x) to m(x)/R, R
being the net reproductive rate. Thus, the population will eventually

become stationary. That is, B(t) will aysmptotically tend to Q2 .

Recall that ¢(x) = m(x)2(x) , where 2(x) is the probability
of living to age x . Further let ¢*(p) = L)e'px¢(x)dx denote the

one-sided Laplace transform of ¢(x) , and, hence
* * .
¢ (0) =R and ¢ (r) =1 . : (4.1)

For t > 0 , the total birth rate B(t) , for a females-only

population closed to migration, is thus given by the renewal equation

© t
B(E) = QI o-TX 9_(:;_;1 dx + J B(t-x) i’iRi‘lclx : (4.2)
() 0 ‘

Taking Laplace transforms of (4.2) we obtain

B (p) = ¢ (r) - ¢ ( ) s » . (4.3)

(pr)[- R]

which may be inverted using the residue theorem.

We note that p = r is not a pole but is merely a removable

singularity; and hence, the only contribution to the solution results
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from the roots of

efp) . . (4.4)

Using the results of Chapter 2 we know that the real root of the
characteristic equation (4.4) has the greatest real part. Hence by the
Tauberian theorem an asymptotic value Q2 exists; since, on using

(4.1), the real root of (4.4)‘can be seen to be zero. Thus, we have

. * _ Q * * . P
Q2 = fim pB (p) = ﬁ‘ [¢ (0) -¢ (r)] £1m '———T‘;—(—T
p>0 . pr0o1 - _-Tgl—

Therefore using L'Hopital's rule and (4.1), the asymptotic total birth

rate,
Q, = Q. %% , (4.5)
where
«=-1 [(—;‘3 ¢*(p)]p=0 - J:x 809 4y

is the expected age of childbearing.

Now, since the population is assumed to be initially stable, the

rt

total number, N(t) , is initially of the form N(t) = P.e and will

tend asymptotically to the stationary state N(t) = P2 . Thus from

(2.6) we obtain

P = QJ e T*2(x)dx
(o}

o o]

and P2 = QZL)Q(x)dx

Hence the asymptotic total number of females P2 is given by

J 2(x)dx
0

J e TXq(x)dx
o

That is, using (4.5),



o
eob(R-l)
Pr=P = > (4.6)
where,
= Q. 1
b = P = s

00 P
o _ N
and e, = J 2(x)dx {—E— = ——) ’
o
the life expectancy at birth.

Keyfitz (1971b) shows by using a number of examples that a
population has the tendency to continue to grow even after an abrupt
change to stationary reproductive rates. That is, he shows that, (from

(4.6))

The task of showing that P2 > P analytically for general

parameters, is thought by the author to be an impossible one. This is

Q
so because we need to know the amount by which gob >1 and T%'< 1.
‘"However, we can show that Q2 < Q by simply using (4.1) in (4.5) to
obtain
J (1-e " e(x)dx
L _b
Q oo
j rXx¢ (x)dx
()
Now, since 1-e ¥ < rx for all rx > 0 then the result follows because

¢#(x) is a non-negative function.

The initial stable age density is given by (from (2.6)]

“a(x) = be TXa(x)



63

and, the eventual stationary age density by

a? (x) = bL(x) = léx) . 4.7
eO

Hence, assuming an initially stable population, an abrupt scaling
of the age-specific birth rate by the net reproductive rate resulting
eventually in a stationary population, then the asymptotic total birth rate
Q2 » the asymptotic numbers P2 and the eventual stationary age density
a(z)(x) are given by (4.5), (4.6) and (4.7) respectively. The abrupt
scaling of the age-specific birth rate by the net reproductive rate will
henceforth be known as, the Keyfitz change to replacement level fertility

rates.

As a simple example, consider m(x) =y and £(x) = e ™™ . That
is, to illustrate the results of Keyfitz (1971b) we will consider a

Malthusian net maternity function ¢(x) = Thus we have

{
<
o

*(p) = X =X - y- e =1. -
$ (p) = i’ R=y» T=Y w0, e =—-=x and b=y so that,

Q, - %Q, P, =P and a(z)(x) = pe X, (4.8)

obtained from (4.5), (4.6) and (4.7) respectively. We notice from (4.8)

that, the asymptotic numbers in the eventual stationary population equals
the present numbers, and, since the Malthusian does not have a transient

solution the asymptotic behaviour is attained immediately and for all

t>0.

Using the data from Keyfitz and Flieger (1971), Table 4.1 shows
the intrinsic birth rate, b , the intrinsic rate of change, r , the
expectation of life at birth, go , the mean age of childbearing, « ,
and the net reproduction rate R , for five countries. The values differ
~ from those presented in Keyfitz and Flieger (1971) since spline

"interpolation was used for both the net maternity function and survivor
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function data. Spline interpolation is used in order to solve the
integral equation numerically where the method is dependent, amongst
other conditions, on the integrénds being continuous. The modified
block-by-block method as described by Campbell and Day (1971) is used to
solve the integral equation. The.method is further discussed in Chapter

2.

The asymptotic, total birth rate and total numbers, under the
assumption of replacement level age-specific birth rates, are presented
for five countries in Table 4.2. We observe that countries of highest
present growth have the greatest ability to grow further. The tendency
to remain on the present path of growth occurs, as noted by Keyfitz
(1971b), because a history of high fertility has brought about a high
proportion of women in the reproductive ages. High crude birth rates
result long after the age-specific birth rates have dropped to replacement
level. We sece, from Tables 4.1 and 4.2, that the total birth rate
decreases most for Honduras and, for Trinidad and Tobago, that is, for
countries of highest present age-specific birth rates, as examplified
by the intrinsié rate of change r and the net reproductive rate R .

The decrease to replacement level fertility, naturally, has the least
impact on those countries which are closest to a stationary state, for
example, England and Wales. The greatest potential for growth comes

from the size of the intrihsic birth rate b , as governed by the intrinsic
rate of change r (since the survivor function is not assumed to change).
From equation (4.6) we see that as r increases so does b and hence

so does the asymptotic numbers in the population.

Since the pioneer work of Keyfitz (1971b) a number of extensions

and generalisations have appeared in the literature.
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bXIOZ T g K R
o
AUST-67 2.05177 1.09537><10-2 71.1806 27.256 1.3451
E § W-67 1.85845 8.1114SX10-3 71.7249 27.029 1.2437
HOND-66 4.42545 3.57580><10"2 59.7896 29.558 2.7698
T § T-67 1.84109 2.14292><10_2 66.3965 27.450 1.7821
U.S.-67 2.93059J 7.40129x10'3 70.5488 26.273 1.2134
TABLE 4.1

Intrinsic birth rate, b , intrinsic rate of change, r ,

. . . o
expectation of life at birth, €, » mean age of childbearing, «x and

net reproduction rate, The discrete data

R , for five countries.
from Keyfitz and Flieger (1971) together with cubic spline interpolation
was used for both the net maternity function and the survivor function

for the determination of the tabulated values. The countries are
respectively; Australia, England and Wales, Honduras, Trinidad and

Tobago, and, The United States.

e_b
: _ —32 P /P = —
AUST-67 0.859355 1.25505 0.862225 1.25924
E & W-67 0.893781 1.19138 0.896685 1.19525
HOND-66 0.604553 1.59962 0.600858 1.58985
T & T-67 0.746053 1.45168 0.749095 1.45760
U.S.-67 0.904495 1.17482 0.907807 1.17912
TABLE 4.2

Asymptotic total birth rate Q2 and asymptotic total number P2 s
as given by (4.5) and (4.6), resulting from an abupt Keyfitz change.
The

The countries are respectively;

The last two columns give Frauenthal's approximation, (4.11).

values from Table 4.1 are used as data.
Australia, England and Wales, Honduras, Trinidad and Tobago, and,

The United States.



66

Frauenthal (1975) produces a gradual change to a stationary level
by using a technique also noted by Keyfitz (1971b). That is,
Frauenthal allows only the females born since time t = 0 to be
subjected to the new regime of fertility and those already alive at
fhe origin (the parent population) to continue with the initial stable
regime. It is the age structure of the population which produces the
gradual change from one net reproductive rate to another since
individuals of the parent population age out of, and those born after

the origin age into, the reproductive period.

The effect of Frauenthal's assumptions is that, for t > 0 , the

total birth rate B(t) is now given by
" -TX, ¢ $(x)
B(t) = QJ e T¢(x+t)dx + j B(t-x) —15—-dx s (4.9)
) o

which, unlike the Keyfitz model, is continuous at the origin. Following
the analysis performed for the Keyfitz model we obtain the asymptotic

total birth rate

Q=Q. 1 - (4.10)

We note that the asymptotic total birth rate and hence the
asymptotic numbers obtained for the Frauenthal model is R -times the
resuits obtained using the Keyfitz model. Hence since R > 1 the
ratio of subsequent to initial births seems to be greater than one
although this has nbt been shown analytically. Thus there is an
increase, rather than a decrease as with the Keyfitz model, from the
initial to the asymptotic total birth rate. This serves to accentuate
the effects of the age redistribution on the momentum of population

growth demonstrated for the Keyfitz model.

Frauenthal obtains an approximation to the Keyfitz formula (4.5)
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(and hence his own (4.10ﬂ by assuming that all births occur at the

mean age of childbearing. That is, he assumes that (in our notation)
¢(x) = R8(x-x) ,

where, ¢&(u) 1is the Dirac delta function defined in (3.33). With this
net maternity function, making the further assumption that rx is
small, Frauenthal obtains

£ (4.11)

The values using Frauenthal's approximation for the Keyfitz problem
are also presented in Table 4.2, and agreement is quite good (within
0.4% relative error for Q,/Q) compared with the simplicity of the

calculation of (4.11).

. . . 0
Frauenthal also obtains an approximation for beo as

be = R 4.12
eo~ ’ (')

and notes it to be accurate within 7%. The combined effect of
Frauenthal's approximations is to produce a relative error, for the
asymptotic numbers, in the range of 4 to 8% for the 5 populations
examined. Such approximations, in particular (4.12), are not
satisfactory since results for a gradual exponential change (to be
outlined presently) can differ by a comparable amount. The
approximations do however illustrate the relative contribution towards
the momentum of the population due to a shift to bare replacement

reproductive behaviour - which was the foremost intention of

Frauenthal.
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4.1.2 The Asymptotic Effects of a Gradual Time Dependent
Scaling to Replacement Fertility.

The momentum of population growth problem of Keyfitz will be
generalised to include an exponential time dependent change from the
initial age-specific birth rate to replacement level fertility. Thus
the model will consfitute a gradual Keyfitz change resulting in an

eventual stationary population.

Let the time dependent net maternity function &(x,t) be

separable such that
¢(x,t) = v(t)¢(x) = M(x,t)2(x) , (4.13)

where ¢(0) =1 and &im y(t) = %- ’

to

which implies that all age—groups have the same time dependence. It is
assumed, as may be seen from (4.13), that the change occurs only in
the age-specific birth rate. Hence only the total birth rate will be
directly affected while the total number and age density function will
be affected indirectly and will tend asymptotically to

2(x)
o 2
e

o

p2 = pbgon and a(Z)(x) =

respectively. From (4.13) and (2.28) we see that
R(t) = Ry(t) ,

which is continuous, unlike the Keyfitz model.

Hence with &(x,t) given by (4.13), we have the generalised
renewal equation for B(t) , the total birth rate, as
® _rx t
B(t) = w(t){QJ e T¢(x+t)dx + j B(t-X)¢(X)dX} s (4.14)
0 0
where the population is assumed to be initially stable and growing, so

that Tt > 0 . In particular we will consider
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Y(t) = 1, [1 - %)e'“ , A>0 . (4.15)

=|

Then, instead of a discontinuity as with the Keyfitz model (4.2), we
have from (4.13) and (4.15), a gradual change in the time dependent

net méternity function from ¢(x) at t = 0 , decreasing exponentially
to -9%§l . The model (4.14)-(4.15) was first presented in Cerone and
Keane (1978a). We note that, if A =0 in (4.15) then from (4.13)
there would be no change and the population would continue with its

initial parameters.

.We now consider some values of A that describe realistic changes
in the net maternity function. Let the population have a doubling time
Ty then e’ '© = 2 . Further let us assume.that the effectiveness of
the contraception method is such that the total birth rate will be
within 0.1% of the stafionary level in the time T, - Then e}‘To = 210.
Thus ‘A = 10r . A reduction to only 1% of the desired total birth rate

in the same time would give X =~ 7r . One would expect such reductions

to occur over one or two generations.

Figure 4.1 shows the behaviour of (4.15) for A = 0,r,4r,7r,10r
and the abrupt Keyfitz change corresponding to letting A + = is
represented by the broken line. The values of r and R are those

of the 1967 Australian females given in Table 4.1.

Now, we have already obtained an analytic solution to (4.14) for
¢(x) = ye'ux - the Malthusian initial net maternity function - as given

by (3.2). Thus with the particular time dependence (4.15), we have

B(t) = %.[é + (R-l)e-xﬁ]exp[% (l—e“xti] s (4.16)

where we have used the fact that r =y - u and R = %—. From (4.16)

or directly from (3.6), the asymptotic total birth rate is given by
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FIGURE 4.1
Diagram showing ¢(t) as given by (4.15), versus time.
From top to bottom the graphs represent ¢(t) for
A =0,r,4r,7r,10r, and the broken line is the abrupt Keyfitz
change to replacement level (corresponding to allowing A - « in

(4.15)). R and r "are the values for the Australian Fcmale's
data of Table 4.1.

*
*
*
*

e I‘/)\.

e

Q, = 2im B(t) =

to

(4.17)

Letting A > «» in (4.17) we obtain the asymptotic value, as given by
(4.8), for the Keyfitz change and Malthusian net maternity function.
We note that our gradual change to replacement level with an initial
Malthusian net maternity function results in asymptotic total birth

' T/

rate and numbers, e times those obtained under an abrupt Keyfitz

change.

Now, to obtain the asymptotic total birth rate for the model

(4.14)-(4.15) with general ¢(x) , we proceed in the following manner.

Taking Laplace transforms of (4.14), with equation (4.15), and

using the results of Section [2.1], we obtain
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*p) = — L 1-¢™ (p) 1-¢* (p*))
B (p) Roo*(p) {Q S Q(R-1) vy
+ (R-1)¢*(p+x)s*cp+x)} , (4.18)

where we have, further, used (4.1).

If we let p > 0 in (4.18) and recall the Tauberian result that

£im pB*(p) = Q2 »  the asymptotic value,

p>0
we obtain
R-1 . R-1 1-6* (A T
Q =Q. 5t R [Ez L ¢*(A)B*(A)] : (4.19)
_ 1 [d  « . .
where « = - R 35-¢ (p) » the mean age of childbearing.

p=0

Expanding the square bracket in (4.19) we obtain three terms
which are the contributions to the asymptotic total birth rate from an
abrupt change, and, from a gradual changec relating to the parent and

subsequent populationsrespectively.

In equation (4.19) we have two unknowns, Q2 and B*(A)
Although we have no specific knowledge of the form of B(t) , and hence

B*(A) , we do know that
B(t) < Qe’" ,

since ¥(t) <1 for all t >0 . Hence for X > r we have that

BY (M) < 3o - (4.20)

Substituting (4.20) into (4.19), we have an upper bound for Q2 given
by
- A
Q, < Q %ﬁ% Sx= s A0 (4.21)

We note that for A = 10r and X = 7r , likely values as discussed

earlier, the asymptotic value Q2 under a gradual exponential change
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can differ at most by %- and %

respectively from that obtained as a result of the abrupt Keyfitz change.

(11.11% and 14.28%) relative error

Further, a lower bound is, of course, given by (4.5), the value
obtained by Keyfitz under the assumption of an instantaneous change in

the age-specific birth rate at t =0 .

Calculation of Q2 .

It would be possible to find the asymptotic total birth rate QZ’
from (4.19),if we knew B*(A\) . To this end let p =nA , n # 0 in

equation (4.18), thus obtaining the following backward recurrence

relation
B*(n)\) = 8. * € B*((n+1)2) , (4.22)
where,
.9 1-¢*(n}) i 1-9" ((n+1)))
Gn ~ R-¢*(n}) m-r (R-1) . (n+1)A-r ’
and
3 o™ ((n+1)2)
€y = (R-1) R-6* () °
Now, the error EéN) in B*(NA) produced from assuming that

B*(NA) = 0 , with X > r , is such that

(N) Q
EN' < W-r

and from equation (4.22) the resulting error Eén) in B*(nx) is

given by
N-1 N-1
(n) _ (N) _Q
By~ = By g}n i © NA-t 151-81 : (4.23)

However, ¢ (q\) , q > 0 , decreases as q increases, so that

| 5(2) < Egm) for 2 <m . Hence, Eél) , the error in B¥(A) when
I\

N
we assume B*(NA) = 0 , can be made as small as we wish by taking N
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large enough. In fact, E&l) decreases so rapidly as N increases
that small values of N 1lead to very accurate results for B*()) and,

hence, Q2 .

The absolute error ey in Q2 produced by assuming that

B*(NX) = 0 can be seen, on using (4.19) and (4.23) (with n = 1), to

satisfy the inequality

ey < (R-1) i%é}l e = o ) i%éél-fii c, = bﬁ . (4.24)
An algorithm to calculate B*(A) and hence Q2 , follows.
Calculate

62=Q%B.+l:.‘§;'}(il] . (4.25)

Evaluate the upper bound, bN , on the absolute error ey as given by

(4.24) for N = 2,3,..., until bN is considered small enough. Note

that the magnitude of 62 must be taken into consideration in order to

obtain a bound on the relative error.

Then, with B*(NA) = 0 for some N found above, we can calculate
from (4.22)
B*(n\) for n = N-1,...,2,1 ,
and hence, from (4.19),
~ R-1 * *

with an upper bound on the absolute error bN given by (4.24).

We note that 62 is the approximation to Q2 in assuming
B*(A) = 0 , with absolute error

*(

where A > 1 .
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For 0 <X <r, N must be chosen so that NA > r in order that
the bound, on the absolute error, bN , as given by (4.24), is defined

and decreases with increasing N .

If r <0, so that 0 <R <1, then we have from (4.14), and
(4.15), a gradual change in the time dependent net maternity function
from ¢(x) at t = 0 , increasing exponentially at a rate A >0 , to
9%%1 . The above algorithm cannot be used since we do not have an upper
bound on B(t) and hence on B*(A) . We can however take successive

approximations to Q2 and compare, stopping when the relative error is

considered small enough.

In order to observe the operation of the numerical method it is
instructive to consider a number of examples of ¢(x) for which we have

already obtained analytic results.

“MX for which we have already obtained

Firstly consider ¢(x) = ve
the asymptotic value analytically as given by (4.17). With y = 2u ,
py=1 and X = 10r we have the analytic asymptotic total birth rate
Q2 = 0.552585Q , which is to be compared with numerical values of Q2

given in Table 4.3. It is obvious from the table that six decimal place

accuracy is obtained from assuming that B*(4)) = 0 in the algorithm.

N Q,/Q by

1 0.545455 1.010x1072
2 0.552381 2.506x10"4
3 | o0.552581 | 5.562x107°
4 | 0.552585 1.042x1077
5 0.552585 1.667x107°

TABLE 4.3
Approximations to the asymptotic value Q2 of (4.14)-(4.15) where,

o(x) =ve "X, y=2u, w=1, A

10r . bN is the bound on the
0.

* * * *

error, (4.24), from assuming B*(NA)
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It is also of interest to evaluate the upper bound given by
equation (4.21) as Q, < 0-5Q and the value Q2 = 0-5Q , given by (4.8),
resulting from the abrupt Kéyfitz change. There is a 10-5% relative
difference between the Keyfitz value for Q2 and that resulting from

a gradual change at a rate A = 10r .

From (4.16) - the analytic solution for the problem with a
Malthusian ¢(x) - if we evaluate B*(A) and substitute into (4.19) we
correctly obtain, after some algebra, the asymptotic value (4.17) which

was obtained directly from the solution.
Secondly we have already obtained in Subsection [3.2.11] the
average asymptotic total birth rate for the problem (4.14)-(4.15), with

¢(x) = R§(x-x) ,

fn R and X = 10r

Al

as given by (3.42). With R=2, =27, r=
we have, from (3.42), Q2 = 0.801456Q , which is to be compared with

numerical values of Q2 , (obtained from using the algorithm) given in

Table 4.4.
N Q,/Q by
1 0.801341 1.565x10"2
2 0.801456 7.079x10~ 11
TABLE 4.4

Approximations to the asymptotic value Q2 of (4.14)-(4.15) where,
1 .
$(x) = R§(x-x) , R=2, x=27, r==4nR , A=10r . by is
0.

the bound on the error, (4.24), from assuming B*(NA)

* * * *

The upper bound from (4.21), and‘the asymptotic value, as given
in (4.8), resulting from an abrupt change to replacement fertility, are
given by 0.801497Q and 0.721347Q respectively. Hence there is a
relative difference of 11-1% between, the asymptotic total birth rate

resulting from an abrupt Keyfitz change to that due to a gradual change
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at a rate X = 10r .

It may be seen from (4.22) and (4.24) that, the speed of
convergence of the above numerical method, depends mainly on how fast
¢*(nk) decreases for increasing n . For the Malthusian ¢(x) ,

¢*(nx) decreases like 'ﬁi while with the delta function formulation

e(r-nk)K '

the decrease, for increasing n , is like With a more

realistic representation of ¢(x) , that is one which is bounded and

-nia -
Ae > Ae ni(a+l)
ni
where A = max {¢(x)} , and, « and B are the minimum and maximum
o<x<fB
age of childbearing, respectively. Hence we expect the convergence, to

of compact support, ¢*(nx) would behave like

the asymptotic total birth rate Q2 , with a realistic initial net
maternity function ¢(x) to be faster than that with the Malthusian
function, and slower than that with the delta function since «k > a + 1.
We note that the magnitude of A plays an important role in the speed
of convergence of the method. The larger A becomes, and hence the
more abrupt the change, the more the error decreases and; from (4.19),

‘the asymptotic value Q2 , tends towards the Keyfitz value, (4.5).

In order that we mdy appreciate the convergence of the numerical
method with a more realistic initial net maternity function we will
consider mainly the data of 1967 Australian Females obtained from
Keyfitz and Flieger (1971). That is the initial and final net maternity
functioms are as given by Figure 4.2 where interpoiation has been
necessary so that (4.14) could be solved numerically. In what follows,
unless specifically stated otherwise, the interpolated Australian data

will be used.

The convergence of the numerical method to the stationary
asymptotic total birth rate Q, is demonstrated in Table 4.5 with

varying rates of decrease, A . For X =10r and X = 7r , which are
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C=0.75,

1.0, R .

where ¢ (x)
function of 1967 Australian females.

is the net maternity
From top to bottom,



78

N Q,/Q by
(a) 10r 3
1 0.947003 7.836x10
2 | 0.953705 | 6.871x107®
3 0.953712 8.072x107 1!
(b) r -2
1 | 0.976359 2.622x10
2 0.998282 1.055x107%
3 0.998378 9.618x10"8
4 0.998378 1.983x107 1!
(c) 4T -1
1 1.025257 | 1.205x10
2 1.117392 2.694x10" >
3 1.119781 2.395x107°
4 1.119804 | 8.338x10°%
5 1.119804 1.160x107 10
(d) r
1 1.112364 ?
2 2.063362 6.415x10"
3 2.416502 1.034x107!
4 2.492048 1.275x1072
5 2.502471 1.134x107°
6 2.503456 7.340x10™°
7 | 2.503522 3.499x107°
8 2.503525 1.244x1077
9 2.503525 3.332x107°
TABLE 4.5

Results for the asymptotic value Q2 of (4.14)-(4.15) and the
bound on the error bN , (4.21), in taking B*(NX) = 0 for varying A.
As )\ decreases it may be seen that the number of iterations increases

to obtain the same accuracy. Also, Q2 increases with decreasing A.
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realistic values of transition rates as discussed earlier, 10 and 7
decimal place accuracy is obtained from assuming B*(SA) =0 . As A
increases it should be discernable that the value obtained by assuming
B*(A) =.O is closest to the "true”zasymptotic value. In general, as

A increases the less gradual is the change and the faster is the method.
the fhat for A = r‘ we d§ not have an upper bound, on the error, b1
caused by taking B*(X) = 0 since, as stated earlier, we need N) to
be greater than r in order that an‘upper bound on B¥(NA) exist.

The upper bounds on' Q2 ; as given by (4.21), for X = 10r , 7r and

4r are 0.954839Q, 1.002581Q and 1.145807Q respectively. The asymptotic
values of Table 4.5 are compared, in Table 4.6, with the asymptotic
total birth rates obtained as a result of an abrupt Keyfitz change. The

asymptotic total numbef, P2 , are also given for the various A values.

Relative % Difference

A QZ/Q PZ/P From the Keyfitz Values
o 0.859355 1.25505 0
10r 0.953712 1.39286 10.98

7r 0.998378 1.45809 16.18

4r 1.119800 1.63543 30.31

T 2.503525 3.65630 191.54

TABLE 4.6

Asymptotic total birth rates Q2 for the model (4.14)-(4.15).
The asymptotic total number P2 is also given, and the values are

compared to those of Table 4.2 resulting from an abrupt Keyfitz change
(A > ). % x %

We note here, that, the asymptotic values, with A = 10r , for
the countries whose essential data is presented in Table 4.1, are all
approximately 11% different from the values obtained in Table 4.2

resulting from the abrupt Keyfitz change.
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B(t) resulting from an exponential change of the net maternity function from ¢(x) to
6(x)/R at a rate A = 10r. ¢(x) is given in Figure 4.2 with C = 1. The graph is that of

B(t)/Q versus time t. The straight line represents the asymptotic value Q2/Q as determined
using the algorithm and as given in Table 4.5.
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B(t) resulting from an exponential change of the net maternity function from ¢(x) to
#(x)/R at a rate X = 4r. ¢(x) 1is given in Figure 4.2 with C = 1. B(t) approaches

the asymptotic value Q2/Q (the straight line). Qp is obtained using the algorithm and is given
in Table 4.5.
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The approach of the total birth rate to the asymptotic value is
demonstrated in Figures 4.3 and 4.4 for X = 10r and 4r respectively.
From Figure 4.4 it may be seen that the transition to replacement A = 4r

is not large enough to immediately check the momentum of the total birth

rate let alone that of the numbers.

The modified block-by-block method, as described by Campbell and
Day (1971) is used to solve the Volterra integral equation (4.14)-(4.15)
for the total birth rate given in Figures 4.3 and 4.4.

4.1.3 The Asymptotic Effects of a Differential, Gradual Time
Dependent Scaling Towards Replacement Level Fertility Rates.

The potential growth, due to those already ali?e at the origin
compared with that of those born after, will be demonstrated by taking
various transition rates v and A . A separable time dependent net
maternity function will be considered where the time dependence wk(t)
differs between the parent and subsequent populations. That is,
assuming an initially stable population then, the model to be

considered for the total birth rate B(t) is

o t
B(t) = Qwv(t)f e TXp(x+t)dx + wlct)f B(t-x)$(x)dx , (4.27)
(0]

0

where,
-1 _ Lkt
P (8) =g+ (1 R]e , k>0. , (4.28)
The above model has already been examined for v = A and is given by

(4.14)-(4.15).

It can be seen that by taking various values of v and X we
may obtain the previous models. For example if we let v and A >«
we obtain the abrupt Keyfitz model. If v =0 and we let A > « then
we obtain Frauenthal's model. The model (4.27) with (4.28) permits
differential fertility schedules for those born before the origin to
those born after, and, represents a single exponential time dependent

generalisation, to its fullest extent, of Frauenthal's model.
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From (4.28) we can see that k = 0 represents no change in the
original net maternity function, while taking the limit as k + =
gives an abrupt change from ¢(x) to ¢(x)/R . For 0 < k < = there

.is a gradual change to replacement level fertility.

The asymptotic behaviour of (4.27)-(4.28) may be ascertained by
again using Laplace transform techniques. If X = 0 then there is no
change in the net maternity function of the new-born population and
hence the population will continue to grow at the same initial
exponential rate r with the initial stable equivalent births only

changing if v 1is not also zero.

Taking Laplace transforms of (4.27) and using (4.28) we obtain

upon isolating B*(p)

E‘igﬁfw)=%1§g) +  {RD) 107 (pry) (4.29)

p+v-T

+ XL 6% (pe)8* (p+)

With X # 0 , the rcal root of the characteristic equation occurs at
p = 0 so that we have the asymptotic value Q2 , using the Tauberian

result, being given by

R-1 R-1 1-¢" (v) "
QZ = Q TRe + -TR-K-— [Q . —\’-1"— + ¢ (A)B (}\)] N (4.30)

where « = - 1-11-¢*(Pi] , the mean age of childbearing. We note
Ridp p=0
that (4.30) is exactly the same as (4.19) with A replaced by v for

the terms arising from the parent population. Tabie 4.7 shows the
asymptotic total birth rate, given by (4.30), for A and v taking
in turn the values 10r , 7r and 4r . The values for A = v ,
presented also in Table 4.5, have been included for completeness.
B*(A) in (4.30) is obtained by putting p = nX in (4.29) and thus

setting up a recurrence relation as in the previous section.
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v/r AT QZ/Q
10 10 0.953712
7 0.968411
4 1.034882
7 10 0.983249
7 0.998378
4 1.066869
4 10 1.032397
7 1.048167
4 1.119804

TABLE 4.7

Values of Q2 as a result of the generalised time dependent
counterpart of the differential fertility model of Frauenthal, as given
by (4.27)-(4.28). v and X are transition rates belonging to the
parent and subsequent populations respectively. The data used is that
of the Australian females of 1967.

x k% *
Perhaps the most realistic model as represented by (4;27)-(4.28)
would be a gradual change, with the change for the initial population
being slower than that for the subsequent population. Therefore, the
model with v = 7r and A = 10r would not be unreasonable. The
extreme situation representing a realistic model would be a gradual
‘change for those born before the origin with an abrupt change for the
others, since, those born after the origin would have had o (the
minimum age of childbearing) years to become accustomed to the new -
regime of fertility. The asymptotic total birth rate Q2 , for this
latter situation, is obtained, from (4.30) by taking the limit as

A > ® , giving

where the first term is that obtained by Keyfitz under an abrupt change

to bare replacement. We note that the above expression for Q2 is the
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same as (4.25) and hence the asymptotic values obtained are the values
for the first approximations in Table 4.5. The contribution from the
gradual change at a rate v , the second term in the above expression,
can be determined by cpmparing the first values of Table 4.5 with the
asymptotic values, for thé Australian females, obtained under an abrupt
change to bare replacement (Table 4.2). It can be seen, after a small

calculation, that the contribution to Q2 , from the gradual component,

is 10-2% and 29.4% for v = 10r and v = r respectively.

For extreme (A = 0 and X - «) values of A , when wk(t) does
not explicitly involve time, the convolution in (4.27) is not violated
and hence there is no need to use the algorithm described in [4.1.2].
Further generalisations capitalising on this fact will be presented in
Chapter 5.

4.1.4 The Asymptotic Effects of a Gradual Time Dependent General
Scaling of the Age-Specific Birth Rate.

Tognetti (1976b) extended the Keyfitz (1971b) momentum problem by
considering an abrupt constant scaling of the age-specific birth rate
so that the population would eventually become stable rather than |
stationary. Keyfitz (1975) examined the model where the age-specific
birth rate is abruptly scaled down and thus resulting in a population

with a lower intrinsic rate of change.

By allowing the age-specific birth rate to change abruptly from
m(x) to m(x)/C, C-= él- Tognetti (1976h obtains, assuming an
2 .
initially stable population,

C-1 2

L= e T 4 TrpRe (4.31)

where,
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K = J e 2% $%$l-dx , the expected age of giving birth for the
(o]

stable population after the change.

Then, the total birth rate will asymptdtically approach B(t) = Q2erzt .
To allow for a gradual time dependent change we will take
TORE S [1 - é}e'*t , A>0 , (4.32)

in (4.14) and thus the stable equivalent births Q2 may be obtained in
a fashion similar to that of Subsection [4.1.2]. The Laplace transform

of (4.14), with (4.32), yields on rearrangement

[C-0* (p)IB*(p) = Q 2Bl v qre-1) LRI 4 (c-1)0" (pr)BY (peh) . (4.59)

Hence with the real root of ¢*(p) =C, T, having the greatest real

part we have, from (4.33), using the Tauberian result, that

2im  (p-T,)B (P)

Q, m
: P 2

[ 10T
C-1 C 1[; 2

= Q (r-r,)Cx * T AT T + ¢ (r,+A)B (r2+x)} , (4.34)

where

1 l:d *
K= o= |5= ¢ (p):l >
C {dp p=r,

and Q, is such that the total birth rate will asymptotiéally approach

B(t) = Q2" .

It wouid be possible to evaluate Q2 from (4.34), and hence the
asymptotic behaviour of the resulting population could be determined if,
B*(¥2+A) were known. In order to obtain B*(r2+A) we proceed as in
Subsection [4.1.2] and set up a recurrence relation from (4.33). Thus
putting p =71, + n\A into (4.33) results in a recurrence relation from
which we may obtain approximations to the stable equivalent births Q2

* . .
by determining approximations to B (r,+A) , obtained from assuming
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B*(r2+NA) = 0 for successive values of integer N . If r, = 0 we

have C = R and thus we obtain the model treated in Subsection [4.1.21.

If 0 <C <1 then ¢(t) , as given by (4.32), is a monotonically
increasing function of time approaching é—. Thus the error analysis,
and hence the algorithm of Subsection [4.1.2], cannot be used since we
- do not have an obvious upper bound on B(t) . Hence, comparison of
successive approximations of Q2 will have to be made stopping when
the relative error is considered small enough. We note that the present

model need no longer be one of contraception depending on C relative

to R since if C < R we have r2 >r .

The effect of C on the stable equivaleﬁt births Q2 is shown
in Table 4.8 with the intrinsic rates of chahge and the net reproduction
rates of ¢(x)/C given in Table 4.7. For C = 0.75 we do not have an
upper bound on the absolute error since ¥(t) , as given by (4.32), is
now monotonically increasing. The approach to Q2 for C =0.75 Iis

demonstrated in Figure 4.4 with XA = 10r .

C T R
1.0 1.09537x10"2 1.3451
C Ty Rz
1.50 | -3.98839x107° 0.89674
1.25 2.69517x10 2 1.07609
R 0.0 1.0
0.75 2.17295x10" 2 1.79348

TABLE 4.7

Intrinsic rates of change r and net reproduction rates R of

the net maternity functions ¢(x)/C for varying C . ¢(x) is the
net maternity function for the Australian females (1967).

* * * *
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NOT o Q/Q by
C=1.50 ,
1 0.931268 1.115x10
2 0.940661 1.384x10"°
3 0.940673 2.287x10"°
C = 1.25 "
| 1 0.958691 5.746x10
2 | 0.963661 | 3.707x107%
3 0.963664 3.217x10" 10
N Q,/Q RELATIVE ERROR
C=0.75
1 1.067154 —
1.061161 | 5.648x10"°
3 1.061165 4.240x10°°
TABLE 4.8

Approach to the stable equivalent births Q2 of (4.14) with
(4.32) for varying C, at a rate X = 10r . Approximations to Q2 in
taking',B*(r2+Nk) = 0 with bound on the error, by , are presented.
There is no known bound on the error for C < 1 ; hence the relative
error is computed. The total birth rate will asymptotically behave
like

B(t) = Qe .



.10

.09

.08

.07

. 06

.05

.04

.03

.02

- 01

.00

T QYR A PN P

, \ v//// \\\\////f ~_ _— —
I N N R D D A R B B B
0 30 50 0. E 150
FIGURE 4.5
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4.2 A Non-Separable Time Dependent Net Maternity Function and Its
Effect on the Momentum of Population Growth.

A number of authors have stated that a uniform scaling of the age-
specific birth rate is difficult to rationalize. Keyfitz (1971b) himself
noted that '"the fall in the birth rate is likely to be more rapid for
older women than for younger', later reiterating this in Keyfitz (1975),
noting that the drop is related to the method of contraception used.
Ryder (1975) indirectly obtains a gradual change to replacement including
a change in the age structure of the net maternity function, by allowing
the intrinsic rate of natural increase to change. Ryder notes "it seems
plausible that reductions in fertility will ténd to appear dispropor-
tionately in births of higher order, which generally occur at higher
ages'. Potter et al. (1977) analyse the impact of certain sterilisation
policies on the momentum which affects cerfain older age-groups and

postulate a gradual coverage of the population.

‘To allow women of older ages to be more affected by a fall in the
age-specific birth rates,Mitra (1976) abruptly changes ml(x) to
e_rlxml(x) so that the population wou}d eventually become stationary.
Mitra states as a 'final observation', what I consider to be the more
important result (although suffering from lack of analytic investigation),
that we can chénge from ggx_age-specific'birth rate ml(x) to any other
mz(x) . Thus with ¢;(O) =1, in Qur notation, Mitra obtains, the
asymptotic total birth rate

Q
Q = 5 (1937 | (4.35)

where k = J x¢2(x)dx , the average age of childbearing in the
o

subsequent stationary population.
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Again, it is unfealistic that such a change can occur abruptly.
Thus in Cerone and Keane (1978b) the non-separable time dependent net

maternity functions
2(x,t) = 0,(x) + e o ()-0,(x)] , A0, (4.36)

was presented, incorporating both a change with time and age. As
discussed in Chapter 2, ¢1(x) and ¢2(x) are the initial and the

eventual net maternity functions, respectively.

It should be noted that a subscript-of 1 refers to population
parameters of the initial population while a subscript of 2 refers

to the ultimate value of a parameter after the change.

We will assume that the initial and final net maternity functions

to be such that
* _ * - T
| ¢i(ri) =1 and ¢i(0) Ri , i 1,2, , (4.37)

and hence the population will, in general, eventually become stable with
the stationary state being a special case (r2 = 0 and R2 = 1). Thus
from (2.28), (4;36) and (4.37) we have the time dependent net
reproduction rate

R(t) = R

-At
2 * e [R-R,]

Inserting (4.36) into the generalised renewal equation

t
B(t) = Qlerlt fwe-r1x¢(x,t)dx + f B(t-x)o(x,t)dx , (4.38)
t o]

where B(t) is the total birth rate, gives the model to be solved. We
have further assumed, for simplicity, that the population is initially

stable.

Now, to obtain the asymptotic behaviour of (4.38) with (4.36) we

proceed in a similar manner as in Section [4.2]. Taking Laplace



92

transforms of (4.38) and using (4.36) gives on rearrangement

5(r)-65(p) L ¢§(r1)-¢;(p+xi]

* * ¢
[1-¢2(p)JB (p) = Ql[ p-T p+A-r

ptA-T

1 1

+ B (pA) [0 (p#A) - 05(p+)] . (4.39)

We obtain the asymptotic behaviour by letting p - T, in (4.39)
where T, is given by (4.37)1 , and using the Tauberian result

Qim’ (p-rz)B*(p) = Q2 » the stable equivalent births.

p°T,
Hence on using L'Hopital's rule

*

por, por. J e-rzxmz(X)dx =K, (4.40)
2 2 o

the average age of childbearing, we have

$5(r))-1  1-¢7(r,#x)  65(r))-05(r,*A)
Q = Q|5 Y Xero-T - A+T_-T

2 1 271 271
B*(r +A) [ ¢, (. +A *(r,+2)] (4.41)
+ (rz ) ¢1(r2 ) - ¢2(r2 > .
where the ultimate total birth rate will be of the form B(t) = Q2erzt .

If we let X » o in (4.41) so that, using (4.36), the change in
the net maternity function occurs instantaneously at t = 0 , we obtain

a generalisation of equation (4.35) as

Q .
Q = Trorpye - el

1 2
which is now the stable equivalent births rather than the asymptotic

stationary value.

In order to find the stable equivalent births Q2 from (4.41),
we need to know B*(r2+A) . B*(r2+l) can be found by using the
technique developed in Section [4.1], with the separable time

dependent net maternity function, which involves setting up a backward



93

recurrence relation by putting p = r, + nA in (4.39).

The error analysis and hence thc-algorithm developed in Subsection
[4.1.2] may not readily be used, since, a meaningful upper bound on
B(t) is not at all obvious for the non-separable model. If, for
example, ¢2(x) < ¢1(x) for all values of x , then (4.36) is a
monotonically decreasing function of time, t . Hence, now, B(t) < Qlerlt
and thus the algorithm of [4.1.2] may be used. In general, however,
comparison of successive approximations of Q2 will have to be made,

stopping when the relative error is considered small enough.

Consider a numerical example where ¢1(x) and ¢2(x) are as
given by Figure 4.6. The convergence of the numerical method, for
A = 10r , to the stable equivalent births is démonstrated in Table 4.9.

The approach of the scaled total birth rate to Q2/Q1 is shown in Figure

4o7o * * * *
r, = 1.095374x10"% R, = 1.345111
r, = 1.210951x10°2 R, = 1.372250
N Q,/Q, RELATIVE ERROR
1 1.006630 —
2 1.005075 1.547x10"3
3 1.005075 1.580%10"7
TABLE 4.9

Approach to the stable equivalent births Q2 for the model (4.38)
with (4.36) at transition rate A = 10r . Approximations, to Q2 , are
given from assuming 'B*(r2+Nx) = 0 . The time dependent net maternity
function varies exponentially from ¢1(x) to ¢2(x) which are given

in Figure 4.6. The total birth rate will asymptotically behave like

B(t) = Qzerzt
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Extreme net maternity functions ¢;(x), ¢2(x) where
$1(x) 1is the net maternity function of 1967 Australian females.
The graph of ¢j(x) 1is that with the lower peak.



B(t) !

€

]
[§9)
—+

010

.09

- 208

.07

. P06

005

- B4

. 0083

. P02

. 001

- 000

A /\ /\ /\ P e

ERVEAVER

!

I

I T T R R DR T B R R D R T

2 30 50 90 120 150.
t

FIGURE 4.7

Scaled total birth rate resulting from a non-separable time dependent net maternity function
with X = 10r; and ¢7(x) and ¢2(x) as given by Figure 4.6. The diagram shows the approach

of e T2t B(t)/Q; towards the asymptotic value Qz/ngiven in Table 4.9. B(t) is the solution of
(4.38) with (4.36).

S6



96
A model for the total birth rate B(t) ; which allows for
differential rates between the parent and subsequent population, with

exponential time dependence from one net maternity function towards

another, is given by

B(t) = Qljwe-r1x¢v(x+t,t)dx + J B(t-x)@x(x,t)dx , (4.42)
o ()

where
2, (x,t) = ¢,(x) + e'kt[¢1(x)-¢2(x)3 , k > 0. (4.43)

Here the population is still assumed to be initially stable.

Equation (4.42) allows the females born before the origin to adopt a
transition rate v and those after, a rate A . Thus the total birth
rate B(t) will eventually be of the form B(t) = Qzer2t , Where Q2
is given by (4.41) with ) replaced by v in the terms arising from

the initial population.

While particular choices of v and A will reproduce the models
previously discussed, the above extension (4.42) provides for a further
variety of possibilities. Also if ¢2(x) is a constant multiple of

¢1(x) then we will obtain the models discussed in Section [4.1].

If 0 < A <« then the numerical method of setting up a
recurrence relation to obtain B*(r2+A), and hence Q2, will have to
be used. Comparison of successive approximations to Q, will have to

be made stopping when the relative error is deemed small enough.
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4.3 The Transition Rate Needed to Approach a Given Asymptotic
Behaviour - The Converse Problem.

In Sections [4.1] and [4.2] we have been concerned with obtaining
the asymptotic behaviour of a population resulting from the net maternity
function, in particular the age-specific birth rate, changing with time.
A question of both theoretical and practical importance asks what changes,
in the age-specific birth rate, are needed in order to approach a given
asymptotic behaviour? In other words we have the converse problem.
Nortman and Bongaarts (1975) determine the total annual number of
contraceptive acceptors required to achieve a prescribed crude birth
rate target path. Although our aims here are not as ambitious, we are
able to find, using}the results and models of Sections [4.1] and [4.2],

the transition rate A , given the stable equivalent births Q2 .

We will assume that the age-specific birth rate changes at a rate
A according to the model (4.13) and (4.15). Then, given the
asymptotic total birth rate Q2 , (4.19) results in an equation in A ,
where B*(A) is found in a similar manner to that indicated in
Subsection [4.1.2], using the backward recurrence relation. We can
find A by using any of a number of root finding procedures such as
the Newton-Raphson method and the secant method (see for example
Keyfifz (1968b)). The author has used the Modified Muller method, as
presented in Blatt (1975), which is both rapid and stable. The method
involves giving an estimate of an upper and lower bound on A as initial
values. Care must be taken in determining whether such a )\ does exist.
For example, if the asymptotic total birth rate Q2 is less than that

obtained under an abrupt Keyfitz change to bare replacement, then no

such A exists.



98

We can also determine a transition rate XA that will

asymptotically result in a certain total number P2 , in the population.

~

For, given P2 = P2 then we can find a X , from (4.18) and (4.19),

with which the total birth rate, of (4.14)-(4.15), will asymptotically

tend to .
Q@ - -2
2 o
€o
and hence the total number will tend to 32 .

Table 4.10 presents values of A given Q2 and/or P, for the

2

Australian data. We note that we can obtain a A so that Q2 =Q
asymptotically but no A exists which will result in P2 = P
since, we see from Table 4.2 that under an abrupt Keyfitz change

(corresponding to A + «) P, > P .

2
Q,/Q P_/P A x 102

2 2
1.0 | 1.369432 7.587028
1.027074 | 1.5 6.468735
1.369432 2.0 2.502898
2.054147 3.0 1.343036

TABLE 4.10

The transition rates A are obtained for the model (4.14) with
(4.15) for given asymptotic total birth rates Q2 or equivalently for

given asymptotic numbers P, . The data of the Australian females of

1967 is used (Table 4.1).

* * * *

The converse problem can also be solved for the models of
Subsection [4.1.4]Jand Section [4.2] in a similar manner. However, given
the desired asymptotic behaviour under the differential fertility models
of Subsection [4.1.5], and also of [4.2], one of the transition rates
must be specified, either in terms of the other or explicitly, in order

that the other may be obtained.
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4.4 The Transient Solution Resulting From an Exponential Time
Dependent Change of the Age-Specific Birth Rate.

In the present chapter we have been concerned with obtaining the
asymptotic behaviour of a population undgr various time dependent
fertility behaviour. We will now considerbobtaining the transient
beﬁaviour of the solution resulting from the time dependent net
maternity function as given by (4.36) - the non-separable model. The
asymptotic behaviour was determined in Section [4.2] by obtaining the

contribution from the real root of the characteristic equation
*
¢,(p) = 1. (4.44)

Using residue theory, we can develop the transient solution of (4.38)
with (4.36) by obtaining the contribution from the complex roots of

(4.44).

Let pj be a complex root of (4.44) which is assumed to be simple.
" Then proceeding in a formal manner, using the residue theorem, letting

p pj in (4.39) gives
k5Q = F*(pj) + B (py*A 00 (3 +A) -0, (py+0) ] (4.45)

where

Q; = &im (p-p)B (®)
P*Pj

F*(pj) is the contribution from the parent population,

K, = -[EL'¢§(pi] = J e'p5XX¢2(X)dx ,
J ‘P P=pj ©

and B.(t) = Q.epjt is the contribution, to the total birth rate B(t),
o )

from p, a root of (4.44). Equating real and imaginary parts of (4.45)
J

we obtain

.q. = £(p.) *+ C(p+M)R(P;*N) (4.46
K95 £lpy) + (p; )b(py )
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where,
Re x. -Im«. Re Q. Re F*(s)
K. = ) N, g, = N, f(s) = .
J Im <. Re x. ~) Im Q. Im E*(s)
J J ]
Re B*(s) Re $7(s) -Im §*(s)
B = | L, |, o= -
Im B (s) Im ¢ (s) Re ¢ (s)

and §7(s) = ¢;(s) - 0,(s)

We do not know Q(pj+k) which is needed to obtain qj . Hence
proceeding as we did previously in similar circumstances, we let
P = pj + nA in (4.39), and equating real and imaginary parts we obtain

the recurrence relation

b(ps+nd) = d + E b(ps+(n+1)2) (4.47)
where,
dy = A g0 Epyenh)
E_ = A (p +n)C(p,+(n+1)2)
n j j
1 - Re ¢;(s) Im ¢;(s)
-1 1
A (S) = T * ) % >
ALl _ 1 $5(s) 1 - Re ¢3(s)

and |A| = [1 - Re ¢;(s)32 + [Im ¢;(s)12

We let g(pj+NA) = 0 for some N chosen so that each of the

entries of the matrix C(pj+NA) is numerically less than 1 . That is,

we choosé N so that
Re(pj) + NA > max{rl,rz} ,

where T and r, are given by (4.37). Such a choice of N is

necessary to enable the method to converge and thus obtain a reasonably

accurate approximation»to B*(pj+k)
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The numerical methbd, to obtain the contribution from the complex
roots of the characteristic equation, is slower than that described
earlier to obtain the asymptotic behaviour which results from the
contribution from the real root. Thus the method is less efficient
the more Re(pj) becomés negative. We can however obtain the solution
resulting from a ''few'" of the right—most roots, which will be sufficient
to characferise the solution for large.time t , and use the methods of
Chapter 3 to obtain the total birth rate for smaller values of time.

In any event, the above procedure is still more efficient than a
detailed projection obtained by solving the integral equation

numerically.

It should be noted thatvthe population need not be initially stable
for the methods of the present chapter to be used. This assumption is
only made for simplicity and invaluable only in obtaining the error
analysis of Subsection [4.1.2]. If the assumption of initial stability
is not made then; as in other sections, comparison of successive

approximations to the stable equivalent would have to be made.
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5. The Asymptotic Behaviour Resulting From a General Time
Dependent Net Maternity Function.

In the present chapter the methods developed in Chapter 4 to
obtain the asymptotic behaviour of a population, will be extended to
include more general time dependent changes of the initial age-specific

birth rate.

The time dependence is firstly extended to a sum of exponentials
which provides scope for a great variety of paths of change from the
single exponential of Chapter 4. Using the extension of Section [5.1]
to the recurrence relation method developed in the previous chapter,
we present a model in Section [5.2] which allows the various age groups
of the initial net maternity function to change at different transition
rates of time, towards the eventual net maternity function. Keyfitz
(1975) notes that thevdissemination of birth control information and
materials strikes the various age-groups unequally and hence the model

of Section [5.2] would amply cover this situation.

One could postulate that the effects of policies aimed at changing
the age-specific birth rate are slow at first, then accelerate only to
slow down as a set target is approached. A model which allows for a
more gradual cﬁange with time than the exponential, is presented in
Section [5.3]. The general sum of exponéntials of Section [5.1]

may also represent this type of a more gradual change.

Realistic net maternity functions are positive for age x such
that o < x < B and zero elsewhere. Thus if the initial net maternity
function is allowed to change with time over an interval less than or
equal to the lowest age of childbearing a then, the convolution is not

disrupted. In Section [5.4] the asymptotic effects of a general time
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dependent scaling of the initial net maternity function for
0 <t<tsga is examined. A non-separable model which allows for
the age structure of the initial net maternity function to differ from

that at t = 1t , is also presented and the asymptotic behaviour is

obtained.

A change of the age-specific birth rate with time is likely
however, especially in the less developed countries, to occur over a
period of more than o = 10 or 15 years. Frejka (1973) allows for a
linear change to replacement level fertility over 0, 10, 30, 50, 70
years and'Keyfitz (1971b) states that at best, such a change would occur
over 30 or more years. Appreciating the need for the time dependence
to occur over a larger period than o , and utilising the fact that we
can now handle problems with>exponentia1 time dependence, we present
models in Section'[S.S] which take these points into consideration.

The time dependence for 0 < t < a can be general whereas for t > o
any of the exponential-based models presented previously may be used
to find the asymptotic ﬁehaviour oflthe population where the recurrence

relation method will have to be utilised.

Only the asymptotic behaviour of the total birth rate is
considered since that of the total number and the age density,
information which is usually wanted, follow without too much

difficulty.
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5.1 The Time Dependence as a Sum of Exponentials.

We have discussed, in the previous chapter, the asymptotic
behaviour of a population subjected to an exponential time dependent
change of a general, initial age-specific birth rate. We will now
consider the time dependence to be a sum of expdnentials and thus allow
a more general time path. The methods of the previous chapter can again
be used here But require some modification. The non-separable model
will be examined since the separable model is a special case. However,
it is more enlightening to determine the time path for a separable net
maternity function since the effect on the initial age structure is
more obvious because the time dependence merely provides a scaling

factor.

Let the time dependent net maternity function be given by

o(x,t) = ¢,(x) + £(8)[o;(x) - ¢,(x) ], (5.1)
where é(t) 'is a continuous non-negative'function satisfying

£(0) =1 and &im £(t) = 0 , (5.2)

tow

and, ¢1(x) and ¢2(x) are the initial and the final net maternity
functions, respectively. The time dependence, in (5.1), is assumed
only to affect the age-specific birth rate and not the survivor function
(and hence, not the age-specific death rate). Then, with ¢(x,t) as
given by (5.1), we havé, assuming ankinitially stable population, the

total bifth rate B(t) being given by

‘ © t ) .
B(t) = Q j e "1%p, (x+t)dx + LB(t-xwz(x)dx
- (5.3)

oo

t
+ g(t){Q1J e'rlx[¢1(x+t)-¢2(x+t)]dx + L B(t—x)[¢1(x)-¢2(x)]dx} .
o
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Let IM = {1,2,3,...,M} and,

M
g(t) = § yemt, (5.4)

m=1

where the conditions, on £(t) , (5.2) imply that; Am # 0 unless

Yo = 0 and hence, without loss of generality,

A >0 forall me I
m M

(5.5)

M
and ) Y, =1
m=1

The above time dependence, (5.4), while including the model of
Chapter 4 as a special case (viz. M = 1), provides scope for a further
variety of paths from the initial, to the eventual net maternity
function. The above sum for £(t) , in (5.4), allows for 2M degrees
of freedom in detérmining the {Ym} and {Am} . However, finding these
values is a very difficult problem. A variety of shapes can be obtained
even if we take M = 2 . For example, Figures 5.1 and 5.2 show the
types of time variations that can be obtained from (5.4) with (5.5),
where M = 2 and AZ = 2A1 = 2) . Figure 5.1 shows the effect of
changes in A by fixing Yp =Y = 2.0, and thus having §&'(0) = 0 .

The response to variations in y is demonstrated in Figure 5.2 with

A = 0.05.

To obtain. the asymptotic behaviour of the total birth rate, for
the model given by (5.3) with (5.4), we proceed in a formal fashion

similar to that of the previous chapter viz. by Laplace transform

techniques.

Taking the Laplace transform of (5.3) and using (5.4) we obtain,

on rearrangement
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g(t)

g 30. 70. &0 50, T20.

FIGURE 5.1 At -2

Diagram showing &£(t) = ve + (1-y)e s (M = 2 and
Ao = 2X1 = 2X in (5.4)) for y = 2 and varying A . From
top to bottom x = 0.0, 0.05, 0.1, 0.5, 1.0.

At

g(t)
FIGURE 5.2
-A -2t
Diagram showing £&(t) = ye t, (1-v)e s (M = 2 and
Ap = 21 = 2X in (5.4)) for A = 0.05 and varying y . From
top to bottom y = 2.5, 2.0, 1.5, 1.0, 0.5.
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[1-63(P)IB*(p) = q

o5(r)-65(p) M 1-¢7 (p+2 )
¥ m Ql
m=1

p-r p+A_-rT
1 m 1 (56)

$5(r1) =45 (p*A )
P+A,-Ty

- Q + B*(p+xm)[¢;(p+xm)-¢§(p+xm)3}-

We let p ~» T, , the real root of ¢§(p) = 1 , and using the Tauberian
result

Q2 = 2im (p-rz)B*(p) , the stable equivalent births, we obtain

T, _
* * * *
KQ - Q ¢2(r1)"1 M v Q l'¢1(r2+)‘m) ) ¢2(r1) '¢2(r2+}‘m)
2 1 rz-rl m=1 m]*1 Am+r2-r1 1 Am+r2-r1
+ BT (r#x J00](r,*A ) - ¢;(r2+xm)1}, (5.7)

where « 1is the expected age of childbearing in the eventual stable

population and is given by (4.40).

In order to obtain Q2 from (5.7) we need to evaluate

B*(r2+Am) for m=1,2,...,M.

Then, the total birth rate would tend asymptotically to B(t) = Qzer2t

Obtaining B*(r2+xm) for arbitrary Am , by setting up.a recurrence
relation (as it was done in Chapter 4), does not seem possible. However,

if {Ang are commensurable, in particular if
A= koA, - (5.8)

where X 1is some constant and {km} are positive integers then, the
method is successful. Putting p = T, + nA in (5.6) and using (5.8)
produces a recurrence relation of the form

M

B*(ryem) = 6+ ) el B*lre(nek AT, n=1,2,...
m=1 )

0 for some N we acquire, using the backward

Choosing B*(rszA)

recurrence relation above, successive approximations to the {B*(r2+kmx)}



108

and hence to Q2 .

When determining the unknown constants, in (5.4) with (5.8), a
number of optimising conditions for the above process (using the

recurrence relation) should be observed. Namely,

(1) The smaller M 1is the better since M determines the number

of unknown quantities in (5.7).

(ii) The smaller {km} are the better since they determine the
relative size of N , in assuming B*(r2+NA) = 0 , for obtaining

approximations to {B*(r2+kml)} .

(iii) The convergence of the method is dependent on the speed with

which the {eﬁm)} decrease as n increases. Hence the bigger A is
the better; and, if lyml <1 for all m , then the convergence of the
numerical method is fasteét. The effect of A on the convergence is
greater than that.of the {Ym} , when the {¢i(x)} are defined over a
finite interval since, as demonstrated in Chapter 4, {¢;(nk)} would then

decrease exponentially with increasing n .

Although it is difficult to determine the function (5.4) with
(5.8, especially for "large" M , the above exercise does show that
the recurrence relation method can still be applied if more than one
exponential is present; provided, the exponents are integer multiples
of some constant. This fact allows for a number of further generalities
such as being able to allow the various age-groups, of the age-specific
birth rate, to change at different rates of time. This model is

presented in the next section.
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5.2 Differential Time Dependence For the Various Age-Groups.

Problems in which the age-specific birth rate is scaled abruptly
at the origin, by a constant, have been studied by Keyfitz (1971b) and,
Tognetti (1976b). A gradual exponential time dependent scaling was
developed and presented in Cerone and Keane (1978a). Mitra (1976)
analysed the consequences of an abrupt change of the net maternity
function to any other; and, hence allowing variation in the age
structure of the maternity behaviour. A time dependent counterpart

to Mitra's model was presented in Cerone and Keane (1978b).

We shall, here, pfesent a model in which not only does, the age-
specific birth rate change its age structure with time as in Cerone
and Keane (1978b), but, the time dependence will differ with age. Thus
we will have the various age-groups changing at different rates from one

net maternity function to another.

The initial and final net maternity functions will be assumed to
be represented in a discrete fashion since e?en if they were continuous
then, with differential time dependence over the age-groups, ®(x,t)
would in general be discontinuous. We will consider the time dependent
net maternity function to be of the form (5.1) where {¢i(x)} are

represented by histograms with the discontinuities occurring at the

same points {bm} . Hence, the model to be considered is
M
o(x,t) = mzl_wm(t)sm(x) : (5.9)
where,
bt = ay 5+ (ag g = 3y EL(D)

(5.10)

and Sm(x) H(x-bm)H(bm+1 - X)
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The above model (5.9) was also presented in Chapter 2, and the
transient solution was obtained, however the time dependence Em(t)

in (5.10) was the same for all age-groups. The model (5.9) not only
allows for a change in the age structure but also for the rate at which

the eventual net maternity function is achieved.

The simplest example of (5.9)-(5.10) is when particular policies
influence one age-group at a different rate to the rest. Thus the time
dependence gm(t) for m=1,2,...,M would be the same except for the

one age-group.

Hence, with &(x,t) as given by (5.9)-(5.10), and, assuming the
population to be initially stable, the total birth rate B(t) 1is given

by

M o t
B(t) = z wm(t){QII e_rlem(x+t)dx + I B(t-x)Sm(x)dx} . (5.11)
m=1 o 0

In order to obtain the asymptotic total birth rate we recall from
Section [5.1] that the algorithm developed in Chapter 4 can be
extended to handle problems where the time dependence is a sum of
exponentials with commensurable exponents. Thus we will consider in
particular

g (t) = eTkmt (5.12)

where {km} are positive integers and X 1is a constant. We obtain the

model of Section [4.2] if km =1 for m=1,2,...,M.

The Laplace transform of (5.11) with (5.10) and (5.12) yields,

M S*(r,)-SZ(p) S*(r,)-S’(p+k A)]
m-1 m m-1 m m
B*(p) = + Qy(a 4-a 5)

() z {Ql am,2 p-T, 1'“m,1 "m,2 p+km)\-r1 J

m=1
*
+ am,ZS;(p)B*(p) + (am’l—am,z)s;(p+kmA)B (p+kmA)} .

Hence, using the fact that
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M
$;7(P) = 1 a S(P), i=1,2,
m=1

5 (r)-65(p) M S*(r,)-S (p+k_A)
ok * - 2417 72 m-1° "m m
[1-0,(P)IB(P) = Q p-T, *Q ‘ (B 17202 [ p+k_A-T,
M *
+ 21 (a, {-a. z)sm(p+kmx)3*(p+kmx) . (5.13)
m= ’ »

To obtain the stable equivalent births Q2 we proceed by using the

Tauberian result and letting p - T, (the real root of ¢;(p) = 1)

then
* » * *
2771 m1 mIm ry+k A-T, J
M ) .
+ mzl (3 173n, 2 Sy (Tyrk DB (ryek A) (5.14)

where B(t) will asymptotically behave like B(t) = Qzer2t .

We need {B*(r2+kmx)} in order that the stable equivalent births
Q2 may be evaluated using (5.14). To do this, we proceed in much the
same manner as previously. Putting p = T, *+ nx in (5.13) results in
a recurrence relation of the form

B*(r2+nx) =8 + ? egm)B*[r2+(n+kmjA] , n=1,2,... . (5.15)
m=1
Successive approximations to {B*(r2+kmk)}, and hence from (5.14), to
Q2 , are obtained by taking B*(r2+NA) = 0 for some N . We compare
successive approximations to Q, , stopping, when the relative error
is considered small enough. It should be noted that N need not be
taken as 1,2,3,... but a sequential advancement in equal steps is

advisable for the comparison of successive approximations to Q2 , to

be of value.
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5.3 Time Dependence as a Generalised Sech Function.

In Chapter 4, a change in the age-specific birth rate was
assumed to bhe cither abrupt or cxponential. lHowever, one would postulate
that the implementation of certain policies, which are to bring about a
change in the age-specific birth rate, would at first be slow in their
implementation, accelerating, then slowing down as the appropriate set
target is approached. The model would also be able to represent an

initial reluctance of a population to adopt the new policies.

We will consider the time dependent net maternity function ¢&(x,t)
to be given by (5.1) where,

1 e Mt
— = s Y,A > 0 . (5.16)
At « (1-y)e At n(t)

£(t)
ve

When vy =1, (5.1) with (5.16) represents the model presented in
Section [4.2] in which the change is exponential between two net
maternity functions. If y =% in (5.16) then £(t) = Sech At .
Furthermore (5.16) can be looked upon as an exponentially scaled

logistic, where n(t) is an upside down logistic (Keyfitz (1968b)).

The behaviour of (5.16), due to changes of X , is demonstrated
(for fixed <y) in Figure 5.3. The effect of y on £(t) 1is shown in
Figure 5.4; It can be shown, by differentiating (5.16), that &(t) has

} 0 depending on whether

vilA

no turning point t for y > 1 and t, {

A

and thus with such a vy , §&(t) would represent a function which

AllV

} % . Hemce t = is to the left of the vertical axis for % <y <1

decreases to zero monotonically for t > 0 . A possible way of
determining the two unknowns y and A of (5.16) would be to specify

the slope at the origin and the point of inflection (for 0 <y < 1).



113

b
£(t)

60. TH 100.

FIGURE 5.3
The effect of X on £&(t) as given by (5.16) with vy =

0.5
The graphs represent ¢£&(t) from top to bottom with A = 0.0, 0.05,
0.1, 0.5, 1.0.

£(t)

FIGURE 5.4
Diagram of the time dependence ¢£(t) given by (5.16) with

0.05 and varying values of y . From top to bottom
.25, 0.5, 0.75, 1.0, 1.25.
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With ¢(x,t) given by (5.1) and (5.16) we have, assuming an
initially stable population, the total birth B(t) being given by

(from (2.32))

n(t)B(t) = Q.| e T n(t)e, (x+t) + e o, (x+t) -4, (x+t) T¥dx
1), 2 1 2

t
. [ B(t—x){n(t)¢2(x) - [¢1(x)-¢2(x)3}dx ,
o .

where we have multiplied throughout by the non-zero n(t) with

n(t) =y + (1-y)e 2t

To obtain the asymptotic behaviour of B(t) we again use Laplace
transform techniques. The Laplace transform of the above equation

yields, upon rearrangement,

v[1-¢3(p)1B*(p) = F*(p) + B*(p+A)[$](p*+1) - ¢3(p+))]

- (1-7)B*(p+20) [1-¢3(p+20) 1, (5.17)
where,
F*(p) _ ¢,(r{)-¢,(p) . (en) ¢5(11) =65 (p+21)
Ql P-Ty : p+2)\--r1

1-67(p*2)  ¢5(x)-65(p)
- p+A-T

pP+A-T

1 1

. t
The total birth rate will asymptotically approach B(t) = Q2er2 ,

where Q2 is obtained, from (5.17) by using the Tauberian theorem and

letting p > 1, . Thus we have
¥KQ, = F*(r,) + B*(r;#)[4](x)#1) - ¢3(r;+2))
- (1-¥)B*(r#20[1 - ¢5(rp+20)] . (5.18)
We need to find B*(r2+2A) and B*(r2+k) in order that the

stable equivalent births Q, may be evaluated from (5.18). Letting

p=7T,+* n: in (5.17) gives the following recurrence relation
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B*(r2+nx) = §

0t egi?B*[r2+(n+1)A] + cﬁz)B*[rzf(ﬁ+2)X], n=1,2,.., (5.19)

where,
F*(r2+nx)
n Y[l-¢3(r2+nk)] -

(D $10r (AT - ¢)lr, e (n+1)A]
n Y[1-¢5(r2+nx)] g

L) oy Dy e
n Ty 15¢;(r2+nx)

As we saw in Section [5.1] the recurrence relation, now given by
(5.19), can be used to obtain successive approximations to B*(r2+2A)
and B*(r2+A) and hence, from (5.18), to Q, by assuming B*(r2+NA) =0

for some N .

We have stated previously that the speed of convergence of the
method depends upon the coefficients (egl) and egz) in the present
situation) of the B* terms on the right hand side of the recurrence
relation. Hence, the method converges fastest if y 1is 'close" to 1;
that is, for %—s Yy < g-. The method is slower than for the previous
models since the error, produced in B*(r2+ZX) and B*(r2+k) from
assuming B*(r2+NA) =0, (for the separable_model at least) is
E:YEZ) C[(‘1)

and terms respectively. A

dependent on a product of
product of 652) terms here decreases according to the coefficient

in y and not exponentially as would be the case for demographically

realistic {¢i(x)}

Comparable shapes (See Figures 5.1, 5.2, 5.3 and 5.4) to those of
(5.16) can be obtained by representing £(t) , as in Section [5.1], by a
sum of exponentials and thus the speed of convergence of the recurrence

relation method would be faster if the latter were used. However the
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difficulty in determining the various parameters rises sharply as the

number of exponentials in the sum increases.

Various generalisations of (5.16) are possible, such as

1

Yeklxt . (l—Y)e—kZAt

g(t) =

where k1 and k2 are positive integers and A is a real

constant. However these will not be pursued further here.

As shown in’Sectioﬁ £5.1] any non;negative function £(t)
satisfying conditions (5.2) can be used in (5.1) and, the recurrence
relation method is appropriate; provided, £(t) is a strict function
of exponentials with commensurable exponents. Hence we may have a wide
variety of functions as the time dependence, as long as, they consist
of exponentials with the exponents being integer multiples of some

A >0 .
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5.4 General Time Dependence No Greater Than The Lowest Age of
Childbearing, a.

We noted in Subsection [4.1;3] that the convolution, for the
total birth rate, is not violated for extreme values of the transition
rate A . This is also the case if only the maternity behaviour of
those already alive at the origin is allowed to change explicitly with
time. Further, with a demographically realistic net maternity function
- one that is non-zero on a finite interval (a,B8) - the convolution
is not violated if the time dependence is explicit only for

D<t<T<ga,

We present both separable and non-separable models for the
time dependent net maternity function where the time dependence is

explicit only for 0 <t <t < a.

It should be noted‘that the total number and age density are not
affected.explicitly if the time dependence, as here, refers only to
the age-specific birth rate. A changing age-specific birth rate
only affects the total birth rate explicitly and the change is
transmitted to the total number and age density through its effect
on the total birth rate. Hence we will only consider the effects of

the time dependent net maternity function on B(t) .

Consider the time dependent net maternity function given by

x(t)o(x) 0O<t<tsga,
it = |
a(x,t) * ¢ (x) , t > 1 .
R

which, on using the Heaviside unit function defined by (3.44), can

be written conveniently as
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o(x,t) = [x(t)H(T—t) . H(tR-T)};,(x) , to> o", Tsa. (5.20)

Hence (5.20) is a separable time dependent net maternity function of
the form (2.33) which provides a time dependent scaling of the initial
net maternity function. Figure 5.5 gives a diagrammatic representation

of the time dependence in (5.20) with linear and exponential X(t)

With ¢(x,t) from (5.20) we have, assuming an initially stable
population, the total birth rate B(t) , from (4.13) with (4.14), given

by

® t
B(t) = [%(t)H(T-t) + Ei%gl%]{qf e TXp(x+t)dx + J B(t-x)¢(x)dx} ,
0
° T<o0, (5.21)

where ¢(x)‘# 0 for o <x< B .

We proceed to solve (5.21) in the usual manner using Laplace
transform techniques. In particular we are interested in determining

the asymptotic behaviour of B(t)

The Laplace transform of (5.21) yields

B*(p) = F*(p) + Q:égl B*(p) (5.22)

F (p) _ rre'(p'r)tx(t)dt + %Jae-(P—r)tdt + J
T .

8 8
e'(P'r)tJ e‘rx¢(x)dxdt}
Q. T,

o t

r T
= | e P TI (tyat
3

e PIT ')
R(p-T) ’

where we have used, the fact that ¢*(r) = 1 and the definition (3.44)
of the Heaviside unit function.

Hence, rearranging (5.21) and substituting for F*(p) we obtain
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T
f e” (PO (44t

* '(p'r)T *
B (P) _ ‘o + e - ¢ (P)
i} i} - (5.23)
Q ) R(»p_r)[l 3 'gg)]

Now P = r is not a pole, in the second expression of (5.23), but is
merely a removable singularity. Further, the integral in (5.23) is an
entire function for all positive functions x(t) so that it has no
poles. Hence letting p > 0 , the real root of Q:éEl = 1 which is

greater than the real part of all the other roots, and using the

Tauberian result,

Q2 = %im pB*(p) , the asymptotic value,
p0

we obtain the eventual stationary total birth rate, from (5.23), as

T

T
Q, = 8—J e"tx(t)dt + ;g; [R-e" "1, (5.24)

o

where «k 1s the average age of childbearing.

Note that if we let Tt > 0 in (5.20) then we obtain the abrupt
change to replacement level fertility model of Keyfitz and hence from
(5.23) we correctly obtain the asymptotic value found by Keyfitz as
given by (4.5). The difference D of (4.5) from (5.24) gives a
comparison, between the asymptotic total birth rate Q2 , resulting from
an abfupt Keyfitz change to replacement level fertility with that from
a gradual change depicted by (5.20), where

TT
1-e

TRk

D = S-JTertx(t)dt + Q (5.25)
(o]

Hence writing (5.24) as
Q2 = QZ(Keyfitz) + D,

we can say that if for all t , 0 <t <1, x(t) 2 then D > 0 ,

D= D

and for 0 < x(t) < then D < 0 .
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However if x(t) can take values on either side of %- then we cannot
readily say whether, with the present model (5.20), we would have an

asymptotic value higher or lower than that obtained by Keyfitz.
We now consider a number of models for y(t)

If x(t) =1 then we obtain a model also discussed by Keyfitz
(1971b)in that the abrupt change to replacement level fertility
behaviour is adopted at time t = 1 and not necessarily at the origin.

Hence from (5.24) we obtain the asymptotic value

R-1
Q, = QI('RK : e, (5.26)
which is e'' times the value obtained under an abrupt change, to
replacement level fertility, at the origin. Note that the time
de?endence affects the convolution if T > a . In particular, an abrupt

change at some time 1 would have to be such that 1 < o , the minimum

age of childbearing.

Further models involve the separable time dependent net
maternity function (5.20)with linear and exponential x(t) . Thus

we can determine the asymptotic total birth rate due to the model (5.20)

with
X(t) =1- 6t ’
: (5.27)
and x(t) = et , )
. 1 1 A
where, for continuity 6 = ;‘[1 - ﬁ] and e ' =R .

Figure 5.5 shows a diagram of x(t) given by (5.27) which make
v(t) , the coefficient of ¢(x) in (5.20), continuous. A discontinuous
p(t) at t =0 and t = 1 1is demonstrated in Figure 5.6 for linear and

exponential x(t) viz.,
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t t
t e %
x(t) ao[l 'T] * ar o ?

-it AT o

and  x(t) a e . e " = ,

n

respectively. The asymptotic total birth ratec Q, may bc obtained

from (5.24).

y—
]
|
|
|
|
|
|
|
|

T

FIGURE 5.5

Linear and exponential time dependence over 0 < t < T < a.
This diagram represents the continuous time scaling models of the age-
specific birth rate to replacement level, as given by (5.20) with

x(0) =1 and x(t) = 1/R.

T
1
R |
|
|
I
|
|
|
]
| |
T a t
FIGURE 5.6
Sketch of linear and exponential time dependence over
0 <t<Tz¢< o with discontinuities at t =0 and t =1t . The

above sketch represents the coefficient of ¢(x) 1in (5.20) with
linear and exponential x(t).
* * * * .
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With the time dépendence (5.27) we obtain, from (5.24), the asymptotic

total birth rate as
i (R-1) oTT \
QZ Q TRk TT ?

and Q2 = Q

s (5.28)

respectively.

Table 5.1 gives the asymptotic values QZ/Q , as given by the
formulae (5.26), (5.‘28)1 and (5.28)2 for the abrup;, linear and
exponential change on ’0'< t<t<go respectiﬁely, for, varying values
of T . We see from the table that a delay of 10 years in changing
abruptly to bare replacement fertility, results in an 11.58% relative

increase in the asymptotic total birth rate, Q2 .

The converse problem’for an abrupt, linear or exponential change
on 0 <t<1goa can also be solved. Thus given an asymptotic total
birth rate Q, we can determine < (which characterises the particular
time dependence x(t)) from (5.26), (5.28)1 and (5.28)2 depending on
whether we assume an abrupt, linear or exponential change. Some root
finding procedure would have to be used to find T from (5.28).
However 1 can be obtained directly, in the case of an assumed abrupt
change, from (5.26). No such 1t will exist if the given asymptotic
value is outside the interval between the upper and lower bound which
occurs, for x(t) monotonically decreasing, at T =a and T =0
respectively. The bounds are obtained from (5.26) or (5.28) depending

on the type of time dependence, x(t) , that is assumed.

It is of interest to note that a given asymptotic value Q2 may
possibly be obtained as a result of more than one particular type of

time dependence. For example, given a linear change to bare replacement
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Q,/Q
T ABRUPT LINEAR EXPONENTIAL
0 0.859355 0.859355 0.859355
(0.0) (0.0) (0.0)
2 0.878389 0.868837 0.868368
(2.21) (1.10) (1.05)
4 0.897845 0.878459 0.877510
(4.48) (2.22) (2.11)
6 0.917731 0.888224 0.886784
(6.79) (3.36) (3.19)
8 0.938058 0.898132 0.896192
(9.16) (4.51) (4.29)
10 | 0.958836 0.908188 0.905735
(11.58) (5.68) (5.40)

Asymptotic total birth rate Q2 resulting from an abrupt change

at t =1 , and, a linear and an exponential change over 0 < t < T < a.
Various values of +t are taken and Q2 is given by (5.26), (5.28)1
and (5.28)2 respectively. The numbers in the brackets”are the percent
relative difference from the asymptotic value obtained under an abrupt
change at the origin (t = t = 0) , to replacement level. The

Australian 1967 female data is used.
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for 0 < t < 1, then an abrupt change at

T = %-Qn{gzz:F—ll ,
rT

obtained from equating (5.26) with (5.28)1; will produce the same
asymptotic total birth rate Q2 . Care must be taken with such problems
since we have the restriction on t that 0 < 1 < a , and, no such =
may exist. For example, it can be easily seen from Table 5.1 that for
1 =17=10 in the abrupt model, resulting in 62 = 0.958836Q, then
neither a linear nor an exponential change can produce the same
asymptotic value 62 . We need to check that 62 is in the range of

possible asymptotic values of the new model.
Another example of the time dependence x(t) in equation (5.20)
is '

x(t) =
n

I o~12Z

. an(t-tn_l)H(tn-t) y ty = 0, t,=t1t<ca0, (5.29)

which represents a histogram and thus allows great flexibility in the
type of change involved. The {cn} are all strictly positive since

x(t) 1is positive. The expression (5.29) allows for variable width

{hn} of the rectangles, where

s n=1,2,...,N
n n n-1

and thus wider rectangles may be used where the change is gradual, while

- narrower rectangles are used when the change with time is rapid. The

" time dependence x(t) can thus be used when the change is expected to

be irregular enough for a simple mathematical curve to be able to
represent it. Figure 5.7 gives a diagrammatical demonstration of an
approximation of some x(t) Dby (5.29). Keyfitz (1971b) used a two

step time dependence.
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FIGURE 5.7

Diagrammatic representation showing the approximation of an
arbitrary curve by a histogram ((5.29)). The function of time
varies for 0 < t < 1t £ o until 1/R is reached at t=t. R 1is the
net reproductive rate and o 1is the minimum age of childbearing.

* * * *
With the separable time dependent net maternity function (5.20)
where x(t) 1is represented by the histogram (5.29) we obtain, from

(5.24), the asymptotic total birth rate Q2, given by

Q, = % ngo 5 et L orre™y (5.30)
- where,

o, = -0,

S; SOy, 2 = 1.2, N-1 -,

oy = Oy

Consider now, a non-separable time dependent net maternity function,
of the form (5.1), which allows the final net maternity function to be of
a different age structure to that of the initial net maternity function.
Let the time dependence only be explicitly stated for 0 <t £ T < a

and let the age structure of the time dependent net maternity function

at t = 1 be ¢T(x) which is maintained for t > t . Thus we consider

Vi



126

a time dependent net maternity function of the form,

{a(t)¢1(x) +[1-6(1)]¢,(x) , O0<t<tsa
d(x,t) =

(5.31)
¢ (x) , t>T o,
from which, insisting on continuity at t = t , we have
,(x) = [¢_(x) - £(0)4;(0)]/(1-6(D)) . (5.32)

Hence given ¢1(x) and ¢T(x) we can define the non-separable time

dependent net maternity function ¢&(x,t) , using Heaviside notation, by

2(x,t) = {[6(1)-E(1))¢;(x) + [1-£(t)10_(x) H(t-t)/[1-E(1) ]

+ ¢T(X)H(t-T) , T<a . (5.33)

With ¢(x,t) as given by (5.33) and assuming an initially stable

population we have the total birth rate B(t) from (2.32),'given by

t
B(t) = F(t) + J B(t-x)¢_(X)dx , tsa (5.34)
_ o ,
where,
e T1t H(t-t)
q; F(t) = {[E(t) F,(T)J¢ (ry) + [1- E()]6) P 1o TE(0)

* B -r1X
+ ¢T(r1)H(t—T)H(a-t) + H(t-a)I e 1 ¢T(x)dx .
t

Assume that ¢:(0) = 1 so that a stationary population results.
We obtain the asymptotic stationary birth rate Q2 by the usual method
of Laplace transforms. The Laplace transform of (5.34) yields, upon

rearrangement and using the definition of the Heaviside unit function,

T T
[1'¢:(p)]B*(p) = F*(p) = C]_J e-(p-rl)ti(t)dt + CZJ e"(p‘rl)tdt
° ° (5.35)

: ra B B
. ¢:(r1)L e (PTtye J e'(p‘rl)tJt e Ty (x)dx dt
o}

where, using the fact that ¢;(r1) =1,



10 (x))
17 T
| ¢x(r)-E(1) 1
and C2 = Tg—('t—)_ . . )

From (5.35), evaluating the last three integral expressions and

combining the result of the last two, yields
T
-(p-Tr1)t
e (Pt (1) g Le-(P-TDT
0

B*(p) = Cl * + C2 *
1-¢_(p) (p-r)l1-¢_(p) ]

62 (r)e” PTVT _yxp)
+

(p-1)[1-9.(p)]

(5.36)

(5.37)

Now, since ¢:(O) was assumed to be 1 , and using the fact (from

Chapter 2) that the real root has the greatest real part we have the

asymptotic value Q2 , using the Tauberian result, given by

Q c, (1 c 1-¢7(r,)
= = vim pB*(p) = - j "1 (t)dt « —2 [eT17-1] + EAME
Qo o 1 1

or, on using (5.36)2 and combining the last two expressions we have,

*
1.6 (r) i g()etlT

1-£(7)

Q c T
2 . 1 j eF1t (1) dt +
Q Koy

k 1is the expected age of childbearing in the eventual stationary

population and is given by,

K = J x¢T(x)dx
‘o

We note that p = ry is not a pole, in (5.37), and the

(5.38)

numerator of the first term in (5.37) is an entire function and thus

using residue theory there is no contribution from this term.



128

Letting 1 > 0 in (5.38) results in the asymptotic total birth
rate obtained by Mitra (of the form (4.35)) under an abrupt change from

any net maternity function ¢1(x) to any other ¢T(x)

As an example, consider the time dependence £(t) to be

exponential so that, £(t) = e-At in (5.38) gives the stationary
asymptotic total birth rate,
*
0 - q )1l ‘s o
2 1 r K ’ 1-g£(1) " A-r O’ ’

where we have used (5.36)1 .
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5.5 General Time Dependence Defined in a Piecewise Fashion.

~The time dependent change to replacement level fertility over
0 <t <t <o which was presented in the previous section, represents
in many circumstances an unachievable goal. At best the change allowed
isup to t = o (= 10 or 15 years) whereas a number of authors have
indicated a longer period of time for the change of the age-specific

birth rate to replacement level.

Frejka (1973) allows for a linear change over 0, 10, 30, 50, 70
- years of the Gross Reproduction Rate to replacement level and thus
presents a range of alternatives that would be meaningful for both the
more and the less developed countries. Keyfitz (1971b) states

""About the best any country can hope for is a gradual drop of

fertility over 30 or more years."

In Seétion [5.1] we considered the time dependence to be expressed
as a sum of exponentials with commensurable exponents, but, determining
the constants {Ym} and {Am} is an extremely difficult‘problem. A
model which allows for a more gradual (than exponential) change was
presented in Section [5.2] but, the convergence of the backward
recurrence relation method to obtain Q2 is slower than that for the

models of Chapter 4.

It is difficult to anticipate the effects of certain policies
which would produce changes in the fertility behaviour of a population.
However one can imagine that such a_change would vary most in the
short term before settling down. Thus, in the present section we
introduce a time depeﬁdent net maternity function which is defined in a
piecewise fashion. The model allows for a general time dependent change

over 0 <t <1 < a with a simpler change (such as exponential) for
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Consider the separable time dependent net maternity function given

by

d(x,t) = {x()H(1-t) + 8()H(t-1)}o(x) , T<a, (5.39)
where,

x(0) =a , x(1) = a

_ 1 1

8(t) = g+ [aT - §J€(t-r) s

£(t) satisfies the conditions (5.2) and is strictly [ (5.40)

exponential,

¢(x) # 0 for a <x<B ,
and ‘H is the Heaviside unit function. )

With (5.39) and assuming an initially stable population the total

birth rate B(t) , from (4.13) and (4.14), is given by

t
B(t) = F(t) + e(t)H(t—r)J B(t-x)¢(x)dx , T < a , (5.41)
0
where,
-rt B —rx
6(2 F(t) = x(t)H(t-t) + G(t){H(t-t)H(a-t) + H(t-a)[ e ¢(x)dx} s
t

and, we have used the fact that o (r) = 1.
We will examine in some detail the above model with

£(r) = et (5.42)

but, any of the previous exponential representations of £(t) ,

satisfying (5.2), could be taken.

In order to find the asymptotic total birth rate Q2 we proceed

in the usual manner using Laplace transform techniques.

The Laplace transform of (5.41), with (5.40) and (5.42), yields
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B*(p) = F*(p) + LB B*(p) + [aT - %]e“cb*(pms*(pm ,
where,

c* T - - a - -
E_(gPl - J e (Pt (4yqe + J e (P r)tGO(t)dt
(o}

T

8 ‘ B
+ J e'(P°r)teo(t)L:e‘rx¢(x)dx dt »

a

_1 1] -A(t-1)
and eo(t) =x* [aT - R]e J

(5.43)

(5.44)

Evaluating the integrals in (5‘44)P and using (5.44)2 we obtain, after

some simplification,

* T ' ’ )
F ég) - J e P (tyar + KL, {aT - %}e*rf(p+k) ,
(o]

where,

o~ (p-T)T
pP-T

- o7 (p)

f(p) =

Isolating B*(p) in (5.43) and using the facts that

and 2im pB*(p) = Q2 , the asymptotic value,
pO0

we have, on letting p -~ 0 ,
KQZ = F*(O) + [aT - %}eAT¢*(X)B*(A)‘,

where from (5.45) and using $*(0) = R

AT, %
*(0 T rt R-eT" 1) e" - e A
: é - (,er x(dt + =x—*+{2 "} A-r¢ )

(5.45)

(5.46)

(5.47)

In order to obtain the asymptotic value Qz from (5.46) we need

* . - . .
to know B (A) . Hence we proceed, as discussed on earlier occasions,

by putting p = nx ‘in (5.43) and using (5.45); thus resulting in a

recurrence relation of the form

B*(nA) = s, + e B*((m+1))) , n=1,2,...,

(5.48)
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where,
s - RE"(n)
n R-¢*(nr) °’

and e = (Ra_-1) eAT¢*((n+l))
n T R-¢*(n})

Successive approximations to B*(A) and hence Q2 are obtained
from (5.48) and (5.46) respectively by assuming B*(NA\) = 0 for some

N . We note that

is the approximation to Q2 in assuming _B*(A) = 0 . Also, the error
analysis of Subsection [4.1.2] may not readily be used here since a
meaningful upper bound on B(t) , and hence B*(A) , is not at all
obvious for general x(t) . However, comparison of.successive
approximations to Q2 can be made, stopping when the relative error is

considered small enough.

Frejka (1973) considers the problem of determining the transient
effect on a population, of a 15% linear increase of the age-specific
birth rate over 10 years followed by a decrease to replacement level,
over a variety of time intervals. Keyfitz (1975) notes that; with an
initially increasing population it is necessary, at first, to reduce the
age-specific birth rate to well below replacement level in order that the
population be kept at its present size. A time dependent net maternity
function of the form (5.39) — (5.40) with (5.42) may be used to model the
general initial increase followed by a decrease to replacement level
fertility. The alternative problem of an initial gradual drop followed
by an increase to replacement level fertility of Keyfitz may also be
modelled in a similar fashion. Figures 5.8 and 5.9 represent general
changes,VOf the age-épecific birth rate, of the type described by

Frejka (1973) and Keyfitz (1975).
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|

=

t

FIGURE 5.8 _
Diagrammatical representation of an initial increase, followed
by a decrease to replacement as envisaged by Frejka (1973).

FIGURE 5.9 S .
An initial decrease in the age-specific birth rate is necessary

(Keyfitz (1975)) if the present numbers are to be asymptotically
maintained. The above sketch shows such a change.
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A non-separable time dependent net maternity function of the form

(5.3) with exponential time dependence for t greater than « can be

handled in a similar manner. Thus, given ¢1(x) , ¢T(x) the net

= 1t and, the eventual net maternity

maternity functions at t =0, t

function ¢2(x) we can define

o(x,t) = {[&(t)-&(1) J¢;(x) + [1-£(t)T¢_(x)}H(t-t)/[1-E(T)]

¢ 0,00 + e 6 (0-0,(0IM(E-1) , T
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6. The Asymptotic Effects when a Time Dependent Net Maternity
Function Includes Changes in the Survivor Function.

In considering the asymptotic effects of a time dependent net
maternity function, only the age-specific birth rate has so far been
assumed to change. IA the present chapter the time dependent net
maternity function includes temporal changes in the survivor function

and thus, in the age-specific death rate.

The effect of abrupt changes in the vital rates on stable
population parameters in general, have been extensively treated by
Coale (1956), Goodman (1971), Keyfitz (1968a) and (1971b), Preston
(1974) and Tognetti (1976b), to name a few. Coale (1956) also
determines the effect on the age distribution for t < 2a (where a
is the youngest age of childbearing) when the age-specific death
rate, and hence the survivor function, changes with time. The
transient behaviour of a population was determined by Frejka (1973)
using projection techniques, where he assumed the age-specific death

rate to change linearly with time.

A non-separable time dependent survivor function is presented
iﬁ Section [6.1] and the asymptotic behaviour is determined for the
case of a simple exponential time dependence. This time dependent
survivor function invokes a gradual change in the age-specific

death rate.

The eventual stable population parameters due to time dependent,
age-specific birth rate and survivor function are examined in Section
[6.2]. Both the time dependent survivor function and the time

dependent age-specific birth rate are taken as being non-separable

and hence the time dependent net maternity function is non-separable.
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The time dependence is taken for simplicity to be exponential, and
thus, by taking extreme values of the exponent transition rates the

results of previous models can be obtained.

Given certain restrictions on changes of the net maternity
function parameters, the achievement of a given goal may not be
possible unless the age distribution is allowed to change (through
migration for example). Abrupt changes of the initial age distribution

are discussed in Section [6.3].
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6.1 A Gradual Change in the Survivor Function.

In the previous two chapters we have been concerned with finding
the asymptotic behaviour of a populatioﬁ experiencing time dependent
changes in the age-specific birth rate. We now consider the consequences
of changes with time in the survivor function, and, hence of changes in

the net maternity function.

In this section we show that the time dependent survivor function
must not be separable. Although we only examine single exponential
changes in the survivor function, the extensions of Chapter 5 can

equally well be applied.

Theorem: Any time dependent function of theiform
Lix;t) = £(0)2,(x) + [1-E()18,(x) (6.1)

with L(x,t) >0 for all x and .t , can be a survivor function,
given that Ql(x) and zz(x) are the initial and the eventual

survivor functions respectively.

Proof: For {Zi(x)} to be survivor functions we have, from (2.1)

lei(x)dx = -ijui(x)ki(x)dx =-1, i=1,2, (6.2)

where ul(x) and uz(x) are the initial and the eventual age-specific

death rates respectively.

Differentiating (6.1) with respect to x Yyields

Lx(x,t) = ()1 (0) + [1-5(0)12,(x) , (6.3)

where the subscript x denotes partial differentiation with respect to
x . Thus, integrating (6.3) with respect to X from 0 to « and

using (6.2) gives
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ImLx(x,t)dx =-1 ,
o

and hence we conclude that (6.1) is a permissible survival behaviour.

Corollary: Given that {li(x)} are survivor functions then, a function

of the form

£, (D)2, (x)

I
L(x,t) = )
i=

1

is also a survivor function provided that

The time dependent survivor function of the Corollary is at present
mainly of theoretical, as opposed to practical, interest. Quite the

opposite is true of (6.1), however. Coale (1972) states that

"Therc is a remarkable similarity in the age schedules of mortality
among today's highly industrialized countries' and hence, there is a
similarity in the age-specific survivor functipnsﬁ The time dependent
survivor function, as‘given by (6.1), represents a smooth transition
from some initial survivor function zl(x) towards some eventual
survival goal, QZ(X) . Hence, (6.1) may'represent a temporal change
of the mortality behaviour of a less developed country towards some

standard mortality pattern of a more developed country.

We will now consider the effects, in particular the asymptotic
effects, of a time dependent survivor function of the form (6.1). The

age-specific birth rate m(x)  is assumed not to change with the passage

of time.

Assuming an initially stable popuiation we have, from (2.32),
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. t
B(t) = Qlerltfme‘rlxm(x)L(x,t)dx + J B(t-x)m(x)L(x,t)dx , (6.4)
t (o}
for the total birth rate, where t > 0 .

The asymptotic behaviour of the population will be discussed where,

from (6.1) with £(t) = e M , L(x,t) 1is given by

-2

Lut) = e (0 + 11 - eI, a0 . (6.5)

It should be noted that; (6.1) in general and, (6.5) in particular,
represent non-separable time dependent survivor functions. The question
arises as to whether we can have L(x,t) separable. L(x,t), defined
for all positive x and t , cannot be separable; for if lz(x) = cll(x)
where c¢ is a constant and zl(x) is a survivor function then Zz(x)
is necessarily not a survivor function except for the trivial case,

c=1.

It is of interest to find the asymptotic behaviour of (6.4), with
(6.5). We do not have to proceed further however, if we note that the
time dependent net maternity function from (2.26), (2.32), (6.4) and
(6.5), is non-separable and is given by (4.36) where the initial and
the eventual net maternity functions, ¢1(x) and ¢2(x) » are now given
by

6, (x) = m)L () , i=1,2. (6.6)
Hence, the total birth rate B(t) will asymptotically behave like
B(t) = Qe’2" ; (6.7)

where 'Qz is obtained from (4.41) , using the recurrence relation

method discussed in Section [4.2]; and, T, is given by (4.37).
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Once the asymptotic behaviour for the total birth rate ((6.7))
is determined then the asymptotic behaviour of the total number and
hence the asymptotic stable age density can be found. The total number

will asymptotically apprOach’

N(t) = pzeth , (6.8)
where,
Q,
P2 =5 the eventual stable equivalent,
2
with b2 = 1 , the eventual crude birth rate.

Jwe_rlez(x)dx
o

The asymptotic stable age density is given by

-a(z)(x) =kb2e-r2x22(x) . ' (6.9)

It should be noted that, if we let X - « in (6.5) then we obtain
an abrupt or step change in the survivor function at time t = 0 . Hence
the stable equivalent births Q2 may be obtained from (4.41) by letting
A > « , where, the population is, of course, assumed to be initially

stable.

Given a survivor function of the form (6.5), one may ask the
important question as to what change is needed in the age-specific birth -
rate so that an asymptotically stationary population results. If the
change in the age-specific birth rate is assumed to be abrupt then a
change from m(x) to any mz(x) so that ¢;(O) = 1 would suffice.

m(x)

In particular if we abruptly scaled m(x) to R , in a manner
2

similar to that of Keyfitz (1971b), then, a stationary population would
eventuate. Temporal changes of the age-specific birth rate are discussed

in the next section.
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The converse problem discussed in Section [4.3] can also be

analysed here.

we can determine the transition rate

we can find a

would then asymptotically behave like

Thus; given the stable equivalent births Q2 then,

A needed for the total birth

rate to asymptotically behave like Q2er2t . Similarly, given P2 = 52
A which will produce 62 = b252 and the population
P2t .
interest to determine the required transition rate, A,

It is of

for a population to have the eventual stable equivalent numbers equal

to the initial.

Hence we seek

which will give Q2 = Q2 =

That is, we want to determine a A which will produce

p b Q

2= l=g .o (6.10)
1 2

X , from (4.41) and using (4.39) with p=r, + nA ,

2

b
2 Of course, such a A may not exist.

by 1

~
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6.2 Changes in Both the Survivor and the Age-Specific Birth Rate
with Time. :

The problems of determining the asymptotic behaviour of a
population resulting from time dependent changes in the age-specific
birfh rate and in the survivor function, have been discussed in Chapters
4 and 5, and, in Section [6.1] respectively. We now consider the
asymptotic effects of the more realistic situation in which both thé
age-specific birth rate and the survivor, and hence the age-specific
death rate, change with time. However, the previous studies are
necessary in evaluating the relative contribution between a change in
the age-specific birth rate with time while keeping the age-specific

death rate constant, and visa versa,
Let the time dependent age-specific birth rate M(x,t) , and the
time dependent survivor function L(x,t) , be given by

M(x,t) = £ ()m (x) + E,(t)m,(x) , .11

and L(x,t) = g, ()2, (x) + g,(t)2,(x)

The time dependent net maternity function &(x,t) is thus given, from

(2.26), by
2 2
= .. (t)¢.. R 6.12
o(x,t) izl jzl b5 (04550 (6.12)
where
.(t) = E.(B)L.(t) ,
le( ) 1( ) j (6.13)
and ¢ij(X) = mi(X)lj(X) s
with cz(t) = l—gl(t) so that L(x,t) 1in (6.11)2 satisfies the
Theorem of [6.1]. Further, {gi(t)} and {cj(t)} are such that
(6.14)

and im ¢(x,t) = ¢22(x)

tox
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Thus ¢11(x) and ¢22(x) are the initial and the eventual age-shapes

of the time dependent net maternity function, (6.12).

We extend the notation used previously so that population paramcters
relating to the inherent age structure {¢ij(x)} of the time dependent
net maternity function (6.12) will be denoted by using a double subscript
of ij . For example, the intrinsic rates of change {rij} and the net

reproduction rates {Rij} relating to (6.13)2 are given by

* _ * _ P . < _
¢ij (rij) =1 and ¢ij 0) = Rij , 1=1,2; j=1,2. (6.15)

Thus from (2.28), (6.12) and (6.15) we have the time dependent net

reproduction rate

2 2
R(t) = §J ) R..v..() . (6.16)

i=1 j=1 Y
Substituting (6.12) into (2.32) and making use of the notation just
outlined, we have the total birth rate, in an initially stable population,

represented by

2 2 \
B = ) MRIOETION
e b (6.17)
where,
- ryit| -T1 K dx + tB d
Cij(t) = Qe e ¢ij(X) x A (t-X)¢ij(X) X |

Assuming that ¢22*(0) = 1, we proceed to find the asymptotic

total birth rate sz , from (6.17) with (6.13), where

1}
o

gl(t) ’ v>0 > gz(t) l'gl(t) ’

(6.18)

1
(]

and Cl(t) - ’ g > 0 ’ Cz(t) 1'C1(t)

From the results of Section [5.1] we can anticipate that slight

difficulties will be encountered in using the recurrence relation
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method to obtain the asymptotic value. These minor difficulties may be
overcome, as noticed in [5.1], by allowing v and o of (6.18) to be

commensurable; viz.

\Y

and o

kA
(6.19)
Kx

where k and K are positive integers and,

A 1s a positive constant.

We proceed to find the asymptotic value sz (for 0 <0, v < )
of (6.17) with (6.13) and (6.18) in the usual manner, using Laplace
transform techniques. fhe Laplace transform of (6.17) and using (6.13)
with (6.18), yields |

[1-95,(P)IB*(p) = C; (prv+a) + Ciz(p+v) - CIz(p+v+o) + €5, (p+0)

* * * * *
= C21(p*V+O) + Fzz(p) - sz(p+v) - sz(p+0) + C22(P+V+0),

(6.20)
where we have isolated B*(p) , and, from (6.17)2 ,
* - %* * *
Cij(P) - Fij(p) + ¢ij(P)B (P) s
6.2
. ¢35 (T1p) - ¢3;(P) . 6-21)
Fi_](p) = Qll p _ rll ’ l)J had 1’2 .

Hence letting p - 0 , the real root of ¢;2(p) = 1, (and the root with

-

the greatest real part) and using the Tauberian result

= 2im pB*(p) , the asymptotic value,

Q
22 o

we obtain from (6.20), the eventual stationary total birth rate as

2%, = €y (vro) + CIzcv) 'kciz(v+°) * C§1(°) y C;1(”+°)

*
1 - ¢y5(ry;) .
*Q iil - Cy (W) = Cyp(0) + Coylvra) ,  (6.22)

where
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Kyy = me¢22(x)dx , the expected ége of childbearing in the
(o]

subsequent stationary population.

The expression (6.22) with (6.21) for the asymptotic value Q22 s
contains the unknown quantities B*(v) , B*(c) and B*(v+o) where
v and o are given by (6.19). Since v and o are integer multiples
of some constant ) we may recover these unknown quantities by setting
up a recurrence relation from (6.20) in the same manner as on previous
occasions. Thus putting p = nA in (6.20) and, using (6.19) with (6.21)

gives a recurrence relation of the form
B (n)\) = 6n + egl)B*[(n+k)A] + eiz)B*[(n+K)A]
. e£3)3*[(n+k+x)x] , n=1,2,..., (6.23)

where k and K are fixed positive integers.

Assuming B*(NA\) = 0 for some N , successive approximations to
B*(kA) , B*(KA) and B*[ (k+K)A] may be obtained from (6.23), which
in turn, from (6.22), give successive approximations to sz .  As stated
earlier on many other occassions, the speed of convergence of the
backward recurrence relation method relies on how fast a product

:yIN-1
{;ﬁJ)} >0 as N increases. Since, as in all demographically
n=1

realistic situations {¢ij(x)} have compact support, then {¢;j(qk)} .
decrease exponentially for increasing q and hence {%iJ)} decrease
rapidly. The speed of convergence of the method was amply demonstrated

in Chapter 4 and we will not do so here.

The error analysis of [4.1.2] cannot be used here since we do
not have a useful upper bound on B(t) , and hence, on the unknown
quantities B*(v) , B*(0) and B*(v+o) of (6.22) with (6.21).

However, successive approximations to Q22 can be made, stopping when
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the relative error is considered small enough.

For 0 < v, o <« the time dependent net maternity function,
(6.12) with (6.13) and (6.18), represents a gradual change in both the
age-specific birth rate and the survivor function (and hence in the age-
specific death rate). It may be seen that by taking extreme values of
v and o , not only can we reproduce the models of Chapter 4 and
Section [6.1] but, we'cén also obtain a variety of further possibilities.
The quantities v énd o are known as transition parameters since they
chéracterise a gradual exponential change from an initial to an eventual
fuhction. From (6.11), (6.13)1 and (6.18) it can be seen that if we
allow a transition parameter to tend to zero, there is no change from the
initial data. Letting a transition parameter tend to infinity results
in an abrupt change to a new schedule. There are eight various models
possible if we allow v and/or o to tend to 0 and/or « . It is

instructive to consider some examples.

If we let v,0 - » then we have a model in which both the initial
age-specific birth rate and survivor, change abruptly to mz(x) and
lz(x) respectively and hence, from (6.22), the asymptotic total birth
rate Q22 is

*
1 - 05507y

Q,, = Q
22 11 r11K

22

We note that the asymptotic, (6.22), only exists if eventually the time
dependent net maternity function approaches ¢22(x) ; otherwise, we
would have to go back to (6.20) to determine the asymptotic behaviour.
The simplest example of this occurs if we let v and o+ 0 ; then
there is no change, and, the population would continue on its initial
trajectory. Letting o >0 results in the model of Section [4.2] and,

from (6.20) and using (6.21), we get



147

[1-65,(P)IB*(P) = F31(p) + C];(P+v) - Cyy(p*v) ,

and hence

o To1t
B(t) ~ Qe 1"
where

* * *
K21Qp1 = Fpp(Ty)) + Cpy(xy#v) - Gy (xy4v)

with  «,, = Jwe-r21xx¢21(x)dx and we have used (6.15).
o

With the stationary total birth rate sz given from (6.22),

the asymptotic total number P is given by

22
oY)
N(t) ~ Py =5 >
: 22
where
b = 1 , the crude birth rate in the eventual

22
fwlz(x)dx
(o

stationary population.

The asymptotic stationary age density is given by

a2 () = by, £, (x)

The converse problem can be somewhat more difficﬁlt than in
Section [4.3] since we now have 3 parameters of freedom namely; k, K °
and A . If either v or o were given then only one transition rate
would remain to be determined. For 0 < v, 0 <~ where v and o

satisfy (6.19) we need to specify two parameters and hence determine

the third.
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6.3 A Time Dependent Net Maternity Function With Abrupt Changes of
the Initial Age Distribution.

The converse problem of determining changes of the initial
population parameters which will produce a certain goal is a very
important and worthwhile one. There are basically three parameters
which are necessary to characterise or determine a particular population,
namely, the initial age-specific birth and death rates, and, the initial
age distributiqn, ‘A(x,0) . Thus changes of a population are brought
about or are due to, changes of these three parameters. The converse
- problem has already been examined in the present study where, given a
particﬁlar asymptotic behaviour, the transition rate characterising
the variation with time of the initial vital rates, has been sought.

If the changes in the vital rates are restricted then, changing the
initial age distribution through migration, for example, would have to

be implemented if a certain goal is to be realised.

Keyfitz (1971c) discusses the use of migration as a means of
controlling a population. Preston (1970) states that the role of age-
composition, which is often ignored, is a major factor in the growth
of many populations. Both Le Bras (1969) and Tognetti (19763 discuss
the effect of a cafastrophe (an abrupt change of the age distribution)

on the ensuing population.

The age-specific birth and death rates alone determine the intrinsic
rate of change of a population. Whereas, the stable equivalent births
and numbers are a function of both vital rates and also the initial
age distribution. Given ¢22(x) of (6.13), such that ¢;2(0) = 1 then,
the population resulting from the model (6.17)-(6.18) will eventually
become stationary. Specifying a particular goal for the total number,

then we may determine transition rates v and o that will achieve the
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set tarpet. Such transition rates may not exist however, and to rcalisc
the goal, changes to the initial age distribution through migration

would have to be imposed. The changes of tﬂe initial age distribution
would have to be assumed to be abrupt since it is not known by the
author how these changes can be implemented otherwise, unless, the change
only relatedvto those of the initial population. Allowing for changes
of the age distribution with time for the continuous model is an area

for further research.
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7. Conclusion

In the present work, stable population theory has been extended
to allow exponential-based time variation in the age-specific, vital
rates of birth and death. Thus the analysis allows for the determination
of the effect of a time dependent net maternity function on the ensuing

population.

Using Laplace transform techniques and residue theory, (reviewed
in Chapter 2) a general method for finding the asymptotic total birth
rate has been obtained where the time dependent net maternity function
has been scaled exponentially to replacement level. The method, which
involves sctting up a recurrence rclation, convefges very rapidly and
isbdependent on how fast the replacement level rates are achieved. With
such a model, a change at a rate of ten times the initial rate of
increase of a population, gives of the order of 10% increase in the
eventual total number, over the abrupt change of Keyfitz. A slower
transition towards replacement level fertility rates produces a greater
amount of impetus for further growth. The momentum or potential of a
population is evaluated by comparing the asymptotic total number,
obtained as a consequence of the recurrence relation method, with the

initial total number.

The transient behaviour of the population is obtained by three

methods which are thought by the author to be novel to this thesis.

Firstly, a strictly numerical quadrature method (the modified
block-by-block method of Campbell and Day (1971)) is used to solve the
Volterra integral equation»of the second kind, which governs the total
birth rate of the Sharpe-Lotka population model. To do this, spline

interpolation of the discrete data was used to obtain continuous
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integrands.

Secondly, with the net maternity function defined in a piecewise
manner, a stepping procedure hés been developed which may suffice to
obtain a solution for simple time dependent changes in the net
maternity function. However, this procedure does become less efficient

the further away from the origin the solution is sought.

Thirdly, the recurrence relation method used to obtain the stable
equivalent, has been extended to obtain the contribution from some of the

complex roots of the characteristic equation with greatest real part.

A number of generalisations and extensions have been presented
which allow the determination of the effect of various time paths of
change of the initial net maternity function. A model which is of
substantial importance is that which allows for various age-groups to
change differently with time, thus depicting variations with age of the
influence of certain policies which produce the change. Differential
fertility models between the parent and subsequent populations have
also been examined, and the effect on the momentum of population growth

analysed.

The problem of paramount importance in the management of
populations is that of determining the time path of change in the net
maternity function, given the desired asymptotic behaviour. This
converse problem was analysed in Chapter 4 where the transition rate
A (which characterises the assumed exponential change) was determined,

given a desired asymptotic value.
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APPENDIX A. Special Solutions of the System (3.29)-(3.31).

(A) wy=mn, (8=20)

The solution to (3.29)-(3.31), with 6 = 0 (that is, when only

the birth rate changes with time), is given by (3.20) and (3.19); with

(3.24) and b(t) = "2'B_(t) (from (3.25)). Thus,
Q, | t
b(t) = §_'[Y2 + mE(t)]exp{wf E(s)ds} s W= Y, (A.1)
1 ’ o :

t
If 2im f €(s)ds = £ < = then b(t) , as defined in (A1),
(o

tor
12 ot

Y ] and, we have used the
1

admits an asymptotic value (Ql

condition on §£(t) , (3.17)1.

(B) r, =71

1 (6 = w)

2

With © = w , namely when the initial and final rates of change

are equal, the diffefential equatioh (3.29)-(3.30) is reduced to
b"(t) + [yz + u(t) - u'(t)/u(t)lb'(t) =0, (A.2)

where the initial conditions (3.31) become

PO =%y } (A 3)'
and b'(0) = 0 . ’

From (A.2), by reducing the order of the differential equation,

we obtain

t
b'(t) = Ae'Yltg(t)u(t)exp{ef g(s)ds} ,
(o]

where A is an arbitrary constant of integration. Upon using the
initial condition (A.S)Z we obtain the rather surprising result that
b(t) =Q, (A.4)

-for all t ¢ R and for arbitrary g(t) satisfying conditions (3.17)1.



Thus from (3.25) B(t) continues with its initial trajectory of

B(t) = Qlerlt , t>0, since 1, =71, .

(Q) |8-w|] =€ << 1

The solution of (3.29)-(3.31) with 6 = w , namely (A.4), suggests

that we may formally seek a perturbation type solution of the form
b(t) = Q1 + ebl(t) , (A.5)
where |6-w| = ¢ << 1.

Substitution of (A.5) into the system (3.29)-(3.31) and neglecting

2 . . . . .
0(e“) terms results in the differential equation for bl(t) given by

b;(t) + [y, + u(t) - u' (t)/u(t)] bi(t) = g(t)[%'(t) _E'(Y) Yé]Ql’

u(t) £(t)
(A.6)
subject to the initial conditions
b,(0) =0
_ _ (A.7)
and b1 (0) + (1 rlfg;]Ql , G{Z}w ,

obtained from (3.31) and (A.5). Hence from (A.6), reduction of the

order of integration results in

1(t)b,'(t) = Y u'(s) _E'(S) _ | 145 + A (A.8)
(t) 1 (t) —'Qlo (S)E(S) U(S) - E(s) Yz S .
where,
t
I(t) = exp{Ylt - 6[ E(s)ds}/é(t)U(t) , (A.9)
[o]

and upon using (A.7)2 and assuming 6 > w ,

1
A = (ETT5T4+ r1+u2]Q1 . (A.10)

Hence, noting that (Eég; = - :%;tI€;T) and integrating a portion

of (A.8) by parts we obtain, after some algebra,



I(t)[by(t) + QE(t)] = QV(t) + A, (A.11)

where,

t
V(t) = f I(s)E(s)lw - BE(s) - £'(s)/E(s)]lds . (A.12)
0

.'Rearranging and then integrating (A.11) and using (A.12) yields

bl(t)

t
" f [V(v) - E(v)1dv + { 1 1
1 o]

' (0) T,

t 1
}J (I1(v)] “dv , (A.13)

where I(v) and V(v) are defined by (A.9) and (A.12) respectively,

and, use has been made of the initial condition (A.7)1 and of (A.10).

In the above special cases (A), (B) and (C), conditions have been
imposed on the vital parameters (birth and death rates) of the Malthusian
extreme net maternity functions in order to obtain a solutioh in a
closed form for (2.32), with ¢(x,t) given by (3.10) and in particular

(3.10) with (3.24).

Consider now, functions £(t) satisfying conditions (3.17)1 for
which the differential equation (3.29)-(3.30) can be reduced to an

equation which has a solution expressible in a closed form.

(D) ¢&(t) = [i + Ce” €]- » 8 <0 (B <my

Consider the differential equation (3.29)-(3.30) with initial -
conditions (3.31) and let us seek g(t) which makes u(t), the coefficient
of the second derivative term, zero and also satisfies conditions (3.17)1.
That is, we want g(t) such that u(t) =0, or

o(1-g(t)) - £'(t)/E(t) =0 . (A.14)

Upon dividing by &(t) , equation (A.14) can be written as

d 1 1 -
a'f[e:—c‘fﬂ*e[mﬂ'e’

which has solution,



1 -ot
gy Sttt o
and hence,
_ot]-1
E(t) = [1 e, (A.15)

with C an arbitrary constant, and on applying the conditions (3.17)1,

we have the restriction 6 < 0 (pl < uz) .

With £(t) as given by (A.15), then u(t) = 0 so that (3.29)-
(3.30) become,
b'(t) + (6-w)&(t)b(t) =0,

whose solution is given by,
t
b(t) = Qlexp{(w-e)f g(s)ds} s (A.16)
0

where we have used the initial conditions (3.31). Thus, upon using

(A.lS) and integrating, (A.16) becomes

w
1-3

b(t) = o [(10re e (]

it

1 - =
Ql[(l«‘C)/(eet + C)] v, (A.17)

where 6 <0 and C is arbitrary.
The solution for_ b(t) , given by (A.17), has an asymptotic value,

1 -8
Q, = %im b(t) = Ql\:l + 8 5, (A.18),

1t

where, from (3.25) b(t) = e'rztB(t) and hence the total birth rate

B(t) behaves asymptotically like Q2erzt .

We note that with 6 = w , (A.17) correctly agrees with (A.4).

(E) E(t) = |:1 + D(eYZt - e’et]]'l ,

Let us now seek a function §£(t) which will make q(t) (the

coefficient of the b(t) term in (3.29)-(3.30)} vanish, and also such



that £(t) satisfies the conditions (3.17)1. If such a §&(t) exists
then, the differential equation (3.29) will be reducible and we will be
able to obtain the solution in a closed form. That is, we require

a £(t) that satisfies

u(t)Le' (1) + v,8(t)] - E(t)u'(t) =0,

which becomes, upon substitution for u(t) from (3.30)3 s

1] 2 ’
e - 2 BT oy o v vee@iE®T =0, (A1)

with conditions (3.17)1 on &(t) .

Dividing (A.19) by £>(t) and letting

h(t) = -E—(i—) , (A.20)

we obtain a non-homogeneous second order linear differential equation

with constant coefficients in h(t) ,
h''(t) + (8-v,)h'(t) - éy,h(t) = 6y, , (A.21)
with conditions from (3.17)1 and (A.20)

h(0) = -1 and %im h(t) = - ,

tor

which has solution

het) = -[1 + pe¥2t - o0t]]

with restrictions on D , so that h(t) and hence g(t) will satisfy

(A.22)

-

the second of the above conditions,

D<0 if 0 < Yy < -6,
(A.23)

and D>0 if 0 < -6 <y, or -6 <0 (ul > “2) .

Hence the equation (A.19) with (3.17)1 has solution, on using
(A.20) and (A.22),
o -1
E(t) = [i + D(eY2t -e 9‘]] , (A.24)

where (A.23) gives the restrictions on D .



Since £(t) , as given by (A.24), was chosen so that q(t) =0

in (3.29), we have; from (3.29), upon'dividing by u(t)
bU(E) + [yy + u(®) + (B-0)E(E) - w(D/UOIB(E) =0,  (A.25)

and the associated initial conditions from (3.31), with &(t) given by

(A.24) and using (3.30)3, are

b(0) = q ,

TytHy (A.26)
and b'(0) + (6-w)|1 - D e b(0) = 0 .
172

Reducing the order of the differential equation (A.25), integrating

twice and using the conditions (A.26) we obtain

t S
b(t) = EI u(s)&(s)exp{j E(v)-r,-u,|d }d + , A.27
X i (m ) “1] vids + Q (A.27)

where,

u(t) and £(t) are given by (3.30)3 and (A.24) respectively,

b'(0)

i} - (oo 1 1 ]
E = U(O) (6 U)) [r1+u2 D(r2+u1)J ’

and D is given by (A.23). Thus, (A.27) becomes

' t s
b(t) = E.D.(ewz)f gz(s)exp{[ (wg(v)-e)dv}ds + Qs (A.28)
(o]

(0]

where £(t) 1is given by (A.24).
We note that if 6 = w , with £&(t) as given by (A.24), then
the solution (A.28)[or (A.27)] reduces to (A.4).

(F) &t) =et, 1>0.

The substitution;
b(t) = n(E) , E£(t) =et, A>0, (A.29)

transforms equation (3.29)-(3.30), after some algebra, into

, g(o-6E)n"(E) + [Tl + 1,6 4+ tsﬁz]n'(ﬁ) + ["1 + pzﬁ:]n(él) =0, &e€ (0,1),

(A.30)



a second order homogeneous linear differential equation with polynomial

coefficients; where,

o=Xx+86 » Aty = -o(uy4r) )

0 = ul - uz , Atz = 9(0+y1) + Aw

w=Y; -, | » ATy = =B + (A.31)
TSy ot My i=1,2 , Azpl = c(yz-l)(rz-rl)

2 —3 L
and A Py = -eyz(rz-rl) ; ]

with the initial conditions (3.31) now becoming, under the transformation

(A.29),
n(1) = Q
' (0-) i (A.32)
and n'(1) + ———"("1*“2) (0-v;In(1) = 0 .

The problem (A.30)-(A.31) has already been solved, indirectly,

for 6 = 0 , in the form of (A.1) with £(t) = e ™t , A >0 . That is,

Ql - w
- n(g) = ;—1— [_Yz + w&]exP[x (1-5)] s (A.33)

is the solution of

en'(g) + [a+BEIN'(E) + B(1l+a)n(E) = 0, (A.34)
where, |
| .2 gl -y -
a = - T ’ - A’ w = Yl Yz ’

with initial condtions

(D) = Q

|
o

and n'(l1) + ;%I (v;-M)n(1) =

We note that if Y, = Y, in (A.34), so that w =0 (B = 0), then

w=26=0 and the solution (A.33) is in agreement with (A.4).

The integral equation (3.12); with g(t)'=’e-kt , A>0 and



t(t) =1 - g£(t) , defined for all positive t , has been transformed
by (A.29) (with (3.25)) into the differentiai eﬁuation (A.30) defined
for £ ¢ (0,1) . Numerical procedures for solving (3.12) are dependent
on advancing in small steps of time t , whereas, there are numerous
methods such as the Runge-Kutta méthod,(see for example Froberg (1969))
for solving the differential equation (A.30) in which the step size can
be varied. Thus we can take smaller steps near £ = 1 , corresponding

to t =0, where the solution varies the most.

We may, however, proceed more directly, in solving the differential
equation (A.30), by formally assuming a power series solution. We note
that regular singular points exist at £ =0 and & = %- (6 # 0) , the
latter being outsidé the interval (0,1) when 6 > 0 . With 6 < 0 we
' "may assume a formal Frobenius type solution (see for example Coddington
(1961) or Boyce and Di Prima (1969)), about the regulér singular point

o

51 =9 - That is there exists a solution of the form;

n(e) = I e 0™, (A.35)
n=0
where k and {cn} are determined by substitution into (A.30).

" If however 6 > 0 , and hence El is outside the interval (0,1),
then a Taylor series expansion may be assumed about £ = 1 and hence
facilitate the use of the boundary conditions (A.32), which are given .

at £ =1 . Thus we have a formal solution of the form

e = § a0-n". | (A.36)
n=0

For convenience we make the transformation
n(g) =y(x) , &=¢€-X, (A.37)

in (A.30) where ¢ is arbitrary for the time being, and we obtain



(e-x) (v+BX)y'"(x) + [}1 +ayx + asxé]y'(x)

+ [31 + Bzx]y(x) =0, xe (e-1,€) , (A. 38)
wheré,
Vv=o0 - 0¢ )
01 = —[Tl + TZE +. 1'362]
. } (A. 39)
% T Tyt 275 By =Pyt PpE s
Az = -Tqg : and Bz =-p, J

With 6 >0 and ¢ =1 we thus try, from (A.36) and (A.37), a

solution for (A.38) of the form

a_x" » (A.40)

y(x) = n

n

He~8

0
from which, after substitution into (A.38), we obtain a recurrence
relation for the coefficients {an} of the power series (A.40) by

equating coefficients of successive powers of x . Namely we obtain

= )
hay +ogap B3 =0,
6)\83 + 2((11-0')32 + (81"’&2)31 + BZaO =0, ‘
and '(n+2)(n+1)xan+2 + (n+1) (o;-no)a_ . }(A-41)
+ {n[az + 8(n-1)] + Bl}an + [(n-1)o, + BJa, _; =0,
for n = 2,3,... , J *

where,
{an} and {Bn} are given by (A.39) with € =1,

and we have used o - 6 = A from (A.31)1 .

The solution to (A.38) may then be written as a sum of two linearly
independent solutions Yy and Yy o that is
y(x) =F.y;(x) + G.y,(x) (A.42)

where y, and y, can be obtained by taking, for example, a =0,



a; =1 and a; =1, a, = 0 respectively in (A.41). We note, from
(A.41), that a for n > 2 is a function of arbitrary a, and a;
‘that is

'an = an(ao,al) for n=2,3,... . (A.43)

So that if we let

A =a (0,1) ,
n n (A.44)
and Cn = an(l,O) , n=2,3... ,
then,
y () = x+ J AX"
; n=2
(A.45)
and yz(x) =1+ 2 c_x"
n=2

Hence from; (A.37), with € =1, (A.42) and (A.45),

;

n=2

n(g) = F.[l - £+ An(1,~g)“] +G. ll:l + 22 Cn(l-g)n], (A.46)
n=

where
{An} and {Cn} are given by (A.41) on noting (A.43) and (A.44).
Also, using the boundary conditions (A.32), F and G are given by

- _(8-w)

F = W (O—YI)QI and - G = Q1 .

We note that for 6 < 0 , from (A.35) and (A.37) with € = ¢

a formal Frobenius solution for (A.38) of the form

yx) = 1 e MK,

n

It 0~ 8

0

, may be readily obtained but will not be pursued

®la

where € = €1 =

further here.
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