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ABSTRACT 

This thesis examines the resultant hehaviour of a population in 

response to changes of the age-specific birth and death rates with time. 

The deterministic one-sex population model of Sharpe and Lotka is used 

as the basis for the analysis. In particular^ the asymptotic behaviour 

is determined for a population with a time dependent net maternity 

function. Thus, thè present study may be looked upon as representing 

a generalisation of stable population theory to include models of time 

dependent vital rates of birth and death, Laplace transform techniques 

are used extensively throughout the present work. 

The problem of Key fits on the momentum of population growth is 

generalised to contain a gradual exponential scaling (at a rate X) of 

the age-speoific birth rate to the level of bare replacement. An 

algorithm for obtaining the asymptotic total birth rate for general 

initial net maternity functions is outlined. The method is evaluated 

by comparing known analytic asymptotic values for two simple initial 

net maternity functions^ to the approximations obtained through the 

algorithm. The converse problem is also examined: given a prescribed 

asymptotic population levels it is desired to determine the transition 

rate X , which characterises the change of the age-specific birth rate. 

The converse problem is important in the planning and management of 

populations. 

An extension of the recurrence relation method on which the above 

algorithm was based^ enables a description of the transient behaviour 

of the population. Short of using a strictly numerical method for 

solving the integral equation governing the total birth rate, the 

transient behaviour may also be obtained by a stepping procedure when 

the age structure of the time dependent net maternity function is 



defined in a pieoewise fashion. 

Models are also proposed which allow for a time dependent change 

of the initial net maternity function more general than the simple 

exponential. The asymptotic behaDiour of the ensuing population is 

evaluated. 
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DEMOGRAPHIC SYMBOLS 

a(x) Stable age density. 

a(x,t) Age density. 

A(x) Stable age distribution. 

A(x,t) Age distribution. 

a Minimum age of childbearing 

b Intrinsic (or Crude) birth rate. 

B(t) Total birth rate. 

3 Maximum age of childbearing. 

o 

e^ Expectation of life at birth. 

F(t) Total birth rate due to the initial or parent population, 

G(t) Total number due to the initial population. 

K Expected age of childbearing in the stable population. 

¿(x) Survivor function. 

L(x,t) Time dependent survivor function. 

m(x) Age-specific birth rate. 

M(x,t) Time dependent age-specific birth rate. 

lj(x) Age-specific death rate. 

N(t) Total number (or simply: numbers) in population. 

P Stable equivalent (numbers). 

(|)(x) Net maternity function. 

<i>(x,t) Time dependent net maternity function. 

i|;(t) Scaling factor in <I>(x,t). 

Q Stable equivalent births. 

r Intrinsic rate of change. 

R Net reproduction rate. 

R(t) Time dependent net reproduction rate. 

t Time. 



T Generation time, o 
T^ Doubling time. 

U(x,t) Time dependent age-specific death rate. 

0) Oldest possible age. 

X Age. 

C(t) Time dependence in $(x,t). ^(0) = 1, Jlim C(t) = 0 
t ^ 

C(t) Time dependence in $(x,t). c(0) = 0, ilim C(t) = 1 
t-x» 

OTHER NOTATION 

Positive real numbers. 

f € The function f, defined on R^ , and all its 

derivatives up to order n, are continuous. 

a << b a is much less than b . 

(Section)Ca.b3 a refers to the chapter in which the section, characterised by b , is located. 

(Subsection)[a.b.c] Similar to section except that c characterises 
the subsection. 

(a.b) Equation b in Chapter a. 

1st equation 
2nd equation 

^^ ̂ ^ 1st and 2nd equations are referenced as (a.b)^ 
and (a.b)2 respectively. Similar referencing is 
made if the equations are on the same line. 

~ Asymptotically approaches 

K Approximately equals. 

X e (a,b] {x : a < X ^ b} . 



1. Introduction. 

Wide use has been made of the single sex deterministic 

population model developed by Sharpe and Lotka (1911) in which the 

population is assumed to be closed to migration and the vital rates of 

birth and death are assumed to be unchanging with time. Under such 

conditions the population approaches an as>Tnptotic state known as "stable" 

(Sharpe § Lotka (1911), Feller (1941) and Lopez (1961)) in which the 

age distribution is independent of time. 

In this work, stable population theory will be extended to allow 

for time dependent models of changes in the age-specific birth and 

death rates. These changes constitute a time dependent net maternity 

function. 

Stable population theory has been studied by a number of authors, 

for example Bourgeois-Pichat (1968), with pioneering work being done 

by Lotka (1939) and Rhodes (1940). Related concepts of semi-stable 

and quasi-stable populations have been introduced to describe, 

respectively, populations whose age distribution is constant, and those 

whose mortality only is changing with time so that the age distribution 

is almost constant (Bourgeois-Pichat (1968), (1971) and Coale (1973)). 

• 

It was conjectured by Coale (1957) that the same forces that cause 

the effects of the initial age distribution to be transient for time 

independent vital rates would also operate if these rates changed with 

time. These two properties were given the names (following Hajnal (1956), 

(1958)) of strong and weak ergodicity in Lopez (1961) where he proved 

Coale's conjecture with the discrete formulation, and later, in Lopez (1967) 

showing it to be true for the continuous model. 

There are basically two formulations of the one-sex population model. 



namely the continuous model of Sharpe and Lotka (with which we are 

concerned) and, the discrete model pioneered by Bemardelli (1941), 

Lewis (1942), which is analysed in detail in Leslie (1945). In this 

thesis the main concern lies in the determination of parameters which 

describe the asymptotic behaviour of the total birth rate, total number and 

age distribution due to a variety of time dependent changes in the vital 

rates. 

The sensitivity of the intrinsic rate of change r to perturbations 

of the vital rates was studied by Demetrius (1969). Goodman (1971), 

Keyfitz (1971a) and (1975) examined the extent to which alterations in 

the age-specific birth and death rates affect stable population 

parameters. Compensating changes, between those in the age-specific 

birth rate to changes in the age-specific death rate, having no effect 

on r, have been reported in Goodman (1971) and, Espenshade and Chan 

(1976). A related concept of neutral change in either fertility or 

mortality in which the stable age distribution is unaffected has been 

examined in Keyfitz (1968a), Coale (1972) and Preston (1974). 

Espenshade and Chan (1976) give a wider definition of neutrality as a 

state in which either the intrinsic rate of change r , or, the stable 

age distribution, is unaffected through changes of either of the vital 

rates. A neutral change in the age-specific birth rate is neutral with 

respect to both. 

The asymptotic quantities will be obtained which characterise 

the eventual stable population resulting from models depicting time 

dependent changes in the age-specific birth and death rates. Besides 

determining the asymptotic behaviour, the transient behaviour may also 

be examined by three methods described in this work, using the basic 

Sharpe-Lotka model. 



Firstly, a strictly numerical solution of the integral equation 

governing the total birth rate may be used, which is based on a modified 

block-by-block method of Campbell and Day (1971) (described in Chapter 

2). Secondly, a stepping procedure is developed in Chapter 3 where the 

time dependent net maternity function is defined in a piecewise fashion 

with respect to age. Finally, the transient behaviour may be obtained 

by an extension of a method presented in Cerone and Keane (1978a) in 

which the time dependence is exponential. This extension is given in 

Section [4.4]. 

Keyfitz (1971b) determined the asymptotic results due to an 

abrupt constant scaling of the age-specific birth rate to replacement 

level. Assuming the population to be initially stable, he obtained 

elegant expressions for the asym|)totic total birth rate and the 

asymptotic total number in terms of entities pertaining to the initial 

population. Keyfitz was able to demonstrate what he termed the momentum 

of population growth, in that even though the age-specific birth rate 

is abruptly scaled down to replacement level, the asymptotic total 

number is greater than the initial. 

Frejka (1968) first called attention to the phenomenon of residual 

growth> however, as in a later study (prejka (1973)) his analysis was 

based on projecting populations under different linear paths of change, 

to replacement level fertility. The growth potential of a particular 

age distribution has been studied by a number of authors (vincent (1945), 

Keyfitz (1969), Bourgeois-Pichat (1968) and (1971), Preston (1970), and, 

Espenshade and Campbell (1977)). Keyfitz (1969) called attention to 

the stable equivalent population which when compared with the observed 

age distribution would demonstrate the potential for growth. The stable 

equivalent which is closely related to R.A. Fisher's "reproductive 



value of a woman" (Fisher (1930)), would give the level to which a 

population would tend if the total numbers were discounted at the 

intrinsic rate of change. Abrupt changes in the age distribution at 

particular ages representing migration, were analysed by Keyfitz (1971c). 

Instantaneous changes of the age distribution representing a catastrophe 

were examined by both Le Bras (1969) and Tognetti (1976a). Preston 

(1970) demonstrated the major role played by age composition towards 

growth of a population. Keyfitz (1971b) and (1971d) stated that the 

age distribution which is more favourable to population increase, affects 

the momentum to a greater extent. The asymptotic total birth rate 

resulting from an abrupt Keyfitz change to replacement level, is smaller 

than the initial, and it is the age redistribution to stationary levels 

which more than compensates, resulting in a tendency for continued 

growth of the population. 

Since the pioneer article of Keyfitz (1971b) a number of 

generalisations and extensions have appeared in the literature. 

Frauenthal (1975), Tognetti (1976b) and Mitra (1976) present models 

which consist of abrupt changes of the age-specific birth rate, while 

Cerone and Keane (1978a), and (1978b) give gradual models. 

Frauenthal (1975) obtained the asymptotic stationary total birth 

rate and numbers by considering a model which was also mentioned in 

Keyfitz (1971b). Frauenthal allowed the parent population to continue 

with the old regime while those bom after the origin t = 0 , adopted 

replacement age-specific birth rate brought about by scaling that of 

the initial population by the net reproductive rate, R . Such a model 

results in the asymptotic total birth rate and hence numbers, R times 

those of Keyfitz (1971b). Frauenthal obtained approximations to these 

asymptotic values in terms of R , by assuming that all births occur at 



the mean age of childbearing, thus showing that continued asymptotic 

growth is largely due to age redistribution. Frauenthal's model is 

discontinuous at the net maternity function level like the Keyfitz 

(1971b) model. However, unlike the Keyfitz solution, the total birth 

rate, the total number, and the time dependent net reproduction rate 

are continuous. 

Keyfitz (1975) scaled the age-specific birth rate so that a 

population would eventuate with smaller intrinsic rate of change. 

Tognetti (1976b) scaled the age-specific birth rate by a general 

constant, thus resulting in an eventual stable population. 

A model consisting of a gradual exponential scaling, at a rate X 

to replacement level age-specific birth rate, was presented in Cerone 

and Keane (1978a) and an algorithm was developed for obtaining the 

asymptotic total birth rate. The analysis is given here in Chapter 4. 

The algorithm is tested against known analytic solutions developed in 

Chapter 3 with two simple initial net maternity functions. More 

realistic initial net maternity functions are also used and residual 

growth occurs which is greater than that of Keyfitz (1971b) since the 

transition to replacement is now monotonically decreasing in a gradual 

fashion. Simple extensions of the method on which the algorithm was 

based, provide for exponential time dependent generalisations of the 

Frauenthal (1975) and Tognetti (1976b) problems, which are given in 

Chapter 4. The all important converse problem of determining the 

transition rate X (characterising the variation with time of the age-

specific birth rate), which is needed when given a desired asymptotic 

goal, is also treated in Chapter 4. The solution of such a problem is 

not always possible since some goals may be unachievable using only the 

proposed change. 



The above models which provide a scaling with time (whether 

abrupt or gradual) of the initial age-specific birth rate, will be known 

as separable since all age-groups are affected in a proportionate 

manner. Such models have also appeared in Coale (1956), (1970) and, 

Keyfitz (1969), amongst others. A number of authors (Ryder (1975) and 

Potter, Wolow>Tia and Kulkami (1977)) have emphasised the need for models 

in which the initial age structure of the age-specific birth rate is 

allowed to vary. Even Keyfitz (1971b) states that a fall is likely 

to be greater for older women than for younger and later reiterates in 

Keyfitz (1975) that a disproportionate change in the age-specific birth 

rate is more realistic. Mitra (1976) gives a model in which the initial 

age-specific birth rate is abruptly altered to change exponentially with 

age giving rc])lacement. Mitra in concluding, states that the abrupt 

change can be from any initial age-specific birth rate to any other 

which causes replacement and obtains an expression for the asymptotic 

total number. Thus Mitra allows for a non-separable or disproportionate 

change of the initial age-specific birth rate. 

Cerone and Keane (1978b) developed a model in which the time 

dependent net maternity function changed exponentially from the initial 

net maternity function towards any arbitrary function. Thus the model 

is non-separable. The eventual stable equivalent births is obtained 

using the methods of Cerone and Keane (1978a) and hence the asymptotic 

behaviour of the total number and age distribution is evaluated. 

When the eventual net maternity function is a scalar multiple of 

the initial, then the separable models are a special case of the non-

separable. Both types of models are treated in this thesis since they 

each have their advantages and their disadvantages. The separable models, 

although less realistic, are more amenable to analytic investigation. 



For example, the error analysis used in the algorithm developed in 

Cerone and Keane (1978a) can not in general be used for the non-separable 

model of Cerone and Keane (1978b). The non-separable model has its 

disadvantage in its generality - the eventual age structure of the net 

maternity function needs to be specified in advance. 

i-rejka (1973) discussed the problem of an increase followed by a 

decrease to replacement level. Keyfitz (1975) maintained that it may 

become necessary to hold a population at its initial numbers and thus 

a decrease of the age-specific birth rate at first well below replacement 

is essential - all other factors being equal. Ruzicka (1977) saw a 

shift to replacement level fertility being like "an inverted logistic 

curve" - gradual at first, then rapid, and ultimately gradual again. 

These articles and a natural extension of the work that has preceded 

provide the impetus and need for improved time variation of the net 

maternity function. This is done in Chapter 5. 

Using extensions of the method presented in Cerone and Keane 

(1978a) and developed in Chapter 4, generalised models are given for 

the time path of change of the initial age-specific birth rate and the 

asymptotic behaviour is determined. These models allow, for example, 

a more gradual transition than exponential, towards a set goal, and thus 

may represent an initial reluctance of a population to change by 

adopting new policies aimed at altering its present age-specific birth 

rate. The time path of change depends to a large extent on whether the 

change is a voluntary response to stimuli generated by a government 

family planning programme or whether it is a direct consequence of a 

planned and perhaps forced nature. A model is given in Section [5.2] 

which allows for different age-groups, under diverse time paths, to 

tend towards a prescribed goal, thus allowing differential effects of 

certain policies by age. 



For realistic models, the age-specific birth rate and hence the 

net maternity function, is non-zero over a finite interval. Then if 

we allow the age-specific birth rate to change explicitly with time 

only for 0 < t < T ^ a (a, the minimum age of childbearing), the 

convolution integral is unaffected and we may determine the eventual 

stationary population. In fact, if the net maternity function changes 

explicitly with time only for the parent population then the convolution 

integral for the total birth rate is not disrupted and stable population 

theory without time dependent vital rates, is still applicable. The 

present work also allows for continuation of time variation beyond a, 

when the time dependence affecting the convolution integral is in terms 

of exponentials. Although, for t > a only exponential (or a 

combination of exponentials) paths can be handled by the methods of 

the present work, a great variety of paths covering a wide range of 

possibilities, can be obtained. A piecewise defined net maternity 

function is given in Section [5.5] taking these points into consideration 

Throughout the literature, changes in the existing population are 

assumed at various levels or tiers. Rhodes (1940) assumed the total 

birth rate and total number to be given by various expressions. Ryder 

(1975) assumed the rate of change of a population to vary in a linear 

manner over a period of 40 years, without explicitly specifying the 

change at the net maternity function level. Potter et al. (1977) went 

to the other extreme and analysed the amount of residual growth caused 

by a set of sterilisation policies (within marriage) resulting in an 

eventual stationary population. The age-specific birth rate was 

represented in terms of expressions for the proportion currently 

married, together with the marital fertility models developed by Coale 

and co-workers (Coale (1971), Coale and Lesthaeghe (1971), Coale and 

Trussell (1974), and, Coale, Hill and Trussell (1975)) covering the full 



range of human experience. Potter et al. considered changes in the 

age-specific birth rate caused by changcs to the marital fertility of 

the initial po|nilation. In the present work changcs are made at 

the net maternity function level. Hence the impact of changes of the 

initial age-specific birth rate and of the initial survivor function 

are considered. All changes of the age-specific death rate are made 

through the survivor function. 

A time dependent survivor function is given in Chapter 6 which 

changes from an initial to an eventual survival behaviour. The methods 

developed in Chapter 4 and Chapter 5 are also used. However, some of 

the models (the separable models in particular) used for the time 

dependent age-specific birth rate cannot be used for the time dependent 

survivor function. It should be noted that the models of the time 

dependent survivor function |)resentcd here cause the age-specific death 

rate to change gradually with time. 

With the aim of obtaining a stationary population, it should be 

noted that the asymptotic values obtained in Chapters 4 and 5, in which 

the survivor function is assumed not to change, are under-estimates with 

increased healthcare, which reduces mortality. 

The tables of Demographic Symbols and Other Notation are 

provided following the Table of Contents. The nomenclature differs 

widely throughout the literature but the terminology of the Table will 

be used here except perhaps in Chapter 5 where analytic net maternity 

functions are discussed. 

Offprints of published papers are given in Appendix B as 

supporting evidence. 



2. Mathematical Models and Numerical Methods. 

The basic Sharpe-Lotka one-sex deterministic population model is 

reviewed using Laplace transform techniques, the vital rates of birth 

and death being assumed independent of time. The models for the time 

dependent net maternity function are presented and a numerical method 

(the modified block-by-block method of Campbell and Day (1971)) to solve 

the integral equation for the total birth rate is introduced. 

By presenting preliminary information, definitions and equations 

this chapter sets the foundation upon which the work in the later chapters 

can proceed. 



2.1 The Deterministic One-Sex Population Model of Sharpe and Lotka. 

In order to extend the deterministic one-sex model of Sharpe and 

Lotka to include time dependent vital rates, the original formulation 

of Sharpe and Lotka (1911) will be presented. 

The method of solution for the time independent vital rates will 

differ from that of the pioneers, and, to some extent from current 

users of the model, in that formal Laplace transform techniques will 

be used to solve the linear Volterra integral equation of the second 

kind with a difference kernel, for the total birth rate. 

The rigorous expose of Feller (1941), to some extent a direct 

consequence of the controversy surrounding the initial complex 

exponential series solution of Sharpe and Lotka (1911), will not be 

examined in too much detail here. It suffices to present an outline of 

the method of Lopez (1961) showing that Lotka's solution is valid if, 

as always happens in a demographic context, fertility rates are continuous 

over a finite span of the female life time. Lopez (1961) proved the 

validity of the complex exponential series solution, for the total birth 

rate, by using Laplace transform methods, with contour integration and 

residue theory being used for the inversion process. However, care 

must be taken when using models of graduation of the net maternity 

function, such as the normal curve, the incomplete gamma function and 

the Malthusian function, each often used by demographers (see Keyfitz 

(1968b) and Pollard (1973)], and which do not satisfy the postulates of 

Lopez (1961). 



2.1.1 Development of the Sharpe-Lotka Model. 

The main assumptions of the deterministic Sharpe-Lotka model are: 

(i) The population is isolated, namely, it is closed to migration. 

(ii) The study can be applied to either sex. We shall apply the one-

sex model to the female sex since females have a shorter and 

better defined reproductive life-span. Sharpe and Lotka (1911) 

used the male sex, but. Demographers today usually apply the model 

to the female sex. 

(iii) The vital rates, that is, the birth and death rates, are age-

specific and independent of time (see definition below). 

In order to proceed with the formulation of the Sharpe-Lotka model 

we need some definitions. 

Definitions. 

Survivor Function (¿(x)) . 

il(x) is the fraction of newborn females that will survive to 

age X . 

Age-Specific Birth Rate (m(x)} . 

m(x)dx is the probability that a woman of age x will give 

birth to a female child between ages x to x+dx . 

Age-Specific Death Rate (p(x)} . 

y(x)dx is the probability of a woman who has survived x years 

of age dying in the interval x to x+dx . 

£(x) is related to y(x) (see for example Keyfitz (1977)) by 

Jl(x) = exp y(u)du 
L 0 

Net Maternity Function h M ) . 

<i>(x) = m(x)£(x) . This is also known as the net fertility 



schedule (Coale (1972)} and the maternity function (Lopez (1961)). 

Vital Rates (m(x)iiM(x)) . 

The age-specific birth and death rates are known collectively as 

vital rates. 

It should be noted that the condition that a person will die 

implies 

il'(x)dx = M(x)fc(x)dx = 1 (2.1) 

Now, if B(t) is the total birth rate at time t due to all 

mothers, then the birth rate of mothers alive at time t , of age x to 

x+dx , is 

B(t-x)ii(x)m(x)dx , 

and so integrating (summing) over all ages, 

B(t) = B(t-x)(|>(x)dx . (2.2) 

It can be seen that (2.2) may be written in the form of a Volterra 

integral equation of the second kind with a difference kernel, namely 

•t 
B(t) = F(t) + B(t-x)(i)(x)dx 

where. 

F(t) = B(t-x)(i)(x)dx = B(-x)(j)(x+t)dx , 

(2.3) 

is the birth rate at time t due to the females already alive at the 

origin, that is, due to the parent or initial population. 

An expression for B(-x) , in terms of known entities at the 

origin, will be developed subsequently. 

Let N(t) be the total number in the population at time t and 

a(x,t) be the age density at time t then. 



N(t)a(x,t)dx , is the number of females of age x to x+dx at 

time t . Females alive at time t , of age x to x+dx , must have 

been born t-x to t-(x+dx) and have survived a period of at least x 

years. Thus, 

N(t)a(x,t)dx = B(t-x)£(x)dx . (2.4) 

Consequently, using the fact that a(x,t) is a density function with 

respect to x , and integrating over all ages we obtain 

N(t) = B(t-x)Jl(x)dx . (2.5) 

Also, from (2.4), we have 

N(t)a(x,t) = B(t-x)ii(x) , (2.6) 

from which we obtain the total births at the origin B(-x) to be given 

by 

B(-x) = N(0)a(x,0)/il(x) , 

and hence, from (2.3),,, 

.oo 

a(x,0) 
F(t) = N(0) 

U x ) • (2.7) 

Now, (2.6) must be modified to account for the lack of knowledge 

about the population prior to our chosen origin. Equation (2.6) only 

holds for t 5 x , but, for t $ x the number of mothers in the age 

group X to x+dx is 

N(t)a(x,t)dx = N(0) ' 

which can most easily be obtained from the use of (2.6) or by consulting 

a Lexis diagram as used, for example, by Keyfitz (1968b). 

Hence if H(x) is the Heaviside unit function defined by 

1 , X > 0 
H(x) = 

0 , otherwise , 

then 



A(x,t) = N(t)a(x,t) = N(0) ^^^^^^^^ il(x)H(x-t)+B(t-x)il(x)H(t-x). 

(2.8) 

Integrating (2.8) with respect to x , using the fact that a(x,t) 

is a density, gives the total number in the population at time t , 

N(t) = G(t) + 

where, 

G(t) = N(0) 

t 
B(t-x)il(x)dx , 

Mx.t)dx , 

(2.9) 

is the number of female children due to those mothers that were alive 

at the origin. 

F and G from (2.3)^ and ( 2 . 9 ) a r e known as the forcing 

functions of the integral equation. 

Thus, if we can solve for the total birth rate B(t) , as given 

by the Volterra integral equation (2.3)^ with (2.7), given the age 

distribution at the origin and the age-specific vital rates, then, we 

can (theoretically at least) calculate the total number in the 

population, N(t) , and the age distribution, A(x,t) , from (2.6) (or, 

(2.9)) and (2.8) respectively. 

2.1.2 The Transient and Asymptotic Solution of the Sharpe-Lotka 
Model. 

The solution for the total birth rate B(t) has been obtained 

from (2.2) by Sharpe and Lotka (1911), Lotka (1939), Rhodes (1940) and 

others. Once the solution is known for t > 0 a matching process with 

some initial arbitrary function for t < 0 is necessary. In spite of 

the warning given by, for example. Feller (1941) and Lopez (1961), current 

literature is still treating (2.2) rather than (2.3)^. 



We shall restrict our attention to the solution of (2.3)^ where, 

as in the general theory of self-renewing aggregates, both <(> and F 

are non-negative functions. The Vol terra integral equation (2.3)^ has 

been extensively treated in the literature, for example Hochstadt (1973) 

and. Bellman and Cooke (1963), in which the existance and and uniqueness 

of the solution are guaranteed. Also, characteristics of the solution 

of (2.3)^ depending on properties of both 4» and F are amply treated 

in the literature. 

Now, (2.3)^ is a linear Volterra integral equation of the second 

kind with a difference kernel, and thus, is amenable to Laplace transform 

techniques. The methodology of solving (2.3)^ using Laplace transforms 

will now be demonstrated. 

Formally taking the Laplace transform of (2.3)^ we obtain, upon 

using the convolution theorem, 

B*(P) = F*(p) + 4.*(p)B*(p) 

or 

where * denotes the one-sided Laplace transform viz. 

u*(p) = 

i 
e"P^u(t)dt , 

and the complex variable p is chosen in such a way as to ensure 

convergence of the integrals. This can be done under very general 

conditions on the functions since if (j) and F are of exponential 

order, then so is B (Bellman and Cooke (1963)). 

Feller (1941) states that, in order that the solution to (2.3)^ 

can be represented in the standard form 

B(t) = I Q.ePJ^ , t > 0 , (2.11) 

Pj 



where convergence is absolute for t ^ 0 , 

and the sum is over all p^ the roots of the characteristic equation 

TCp) = 1 , (2.12) 

it is necessary and sufficient that B*(p) , of (2.10), admit an 

expansion of the form 

Q-
B*(P) = I ^ > C2.13) 

Pj ^ 

and that I. |Q.| converges absolutely. The coefficients Q. are 
Pj ^ ^ 

given by 

Q, = -7-i -^"-i . (2.14) 3 
dp P=Pj 

Also Feller (1941) states that it is necessary that B*(p) be a one-

valued function. 

As noted by both Doetsch(1950) and Lopez (1961), Feller's (1941) 

condition requiring a partial fraction decomposition for the solution 

to be written in the form (2.11), is difficult to apply since even 

though (2.10) and (2.13) have the same singularities, they may differ 

by a non-zero integer (or entire) function. 

The method of solving for B(t) using contour integration and 

residue theory will now be outlined following Doetsch (1950). However, 

we will firstly discuss the location of the roots of (2.12) since their 

influence on the solution is paramount. 

IVhen <p is a non-negative function, it can be established 

(Bellman and Cooke (1965) or Pollard (1973)) that there exists a unique 

real root r , of the characteristic equation (2.12), such that 

Re(p^) < r . That is, the real root r has the greatest real part with 



1=1 0 depending on whether the net reproduction rate R |=| 1 where, 

4>(x)dx . (2.15) R = (i)*(0) = 

Further, the complex roots of (2.12) appear in conjugate pairs (see 

Pollard (1973)1 which is to be expected since the solution we are 

seeking is real. 

Now, the inversion of the Laplace transform (2.10) involves, as 

outlined by Doetsch (1950), constructing a sequence of simple closed 

contours r^ uniformly bounded away from the roots of (2.12). We note 

that the r^ can be taken as contours joining the points Y-i'̂ ĵ  only 

to the left of Re(p) = y since B*(p) is an analytic function for 

Re(p) > Y > r and so by Cauchy*s residue theorem (see Levinson 

and Redheffcr (1970)} we obtain no contribution from a contour enclosing 

the region of the plane Re(p) > y . Now, by traversing the remaining 

enclosed region in an anti-clockwise direction we have, using Cauchy's 

residue theorem 

2TTi ® l-(i)*(p) ̂  2Tri "Y-iXn ^̂ ^ -Tn 

^ l-(i>*(p)j 

1-4,*(p) ̂ P 

Pj 

where the sum is over the residue from the poles contained within 

some simple closed contour. In (2.16) different subscripts, n and j , 

are used to denote the fact that we may have a different number of poles 

within a particular contour. 



Lopez (1961) has shown, using rectangular contours that, for 

continuous and of compact support (that is, non-zero over a finite 

interval), the contribution from integrating around the contour r 
n 

tends uniformly to zero and hence by the inversion theorem of Laplace 

transforms (see Bellman and Cooke (1963)) he obtains, from (2.16) and 

using (2.10) 

fY+i< 
B(t) = ^ 

27T1 
ePS*(p)dp 

Jy-ioo 

= I Q^ePj^ , t > 0 , 

Pj 

where, assuming that the poles are simple. 

Q. = Re^. 
^J J 

l l M . 

Consequently 

where 

(PJ 
Q. = 
^ <J 

K . = -
j y P 

d i * /• ^ 
<t> (P) 

p-̂ pj ^ ^^^ 

e'Pj*xci)(x)dx , 

P=Pj 'o 

(2.17) 

(2.18) 

(2.19) 

F (p.) = N(0) a(x,0)v(p^,x)dx , (2.20) 

ePj^ 
and v(p.,x) = e"PJ"(|)(u)du . (2.21) 

Here we have assumed the poles of the meromorphic function (2.10), at 

least those in any finite region, are the roots p. of (2.12). Lopez 

(1961) further states that, for (p continuous and of compact support, 

(2.10) is a quotient of two non-rational entire functions so that (2.12) 

will have a countably infinite number of roots with being an 

essential singular point. 



Of particular interest in renewal theory, and of any process in 

general, is the asymptotic behaviour of the solution. There are classes 

of Tauberian theorems in general, and, as applied to Laplace transforms 

in particular, (Bellman and Cooke (1S)63) or Widder (1941)) which 

determine the behaviour of the original problem knowing that of the 

transform. As stated earlier, the real root r , of (2.12), is the 

root with greatest real part, and we may write 

B(t) = Qe^^ + , (2.22) 
rt 

where 0(e ) represents terms which approach zero as t « so that 

Urn e"^^B(t) = Q . (2.23) t-X» 

Q represents the stable equivalent births and is given by (2.18) with 

Pj = r . Equations (2.19) and (2.21), with p^ = r , represent the mean 

age of childbearing in the stable population and Fisher's reproductive 

value of a woman, respectively. 

Using (2.22) and (2.25) in (2.5) and (2.6) we obtain the 

asymptotic behaviour of the numbers and the age distribution given by 
rt N(t) - Pe 

where P = Q 

and, 

fCO 
-VX e , (2.24) 

a(x,t) ~ I e"^^il(x) = be"^*£(x) , (2.25) 

where b = is the intrinsic birth rate and " ~ " denotes foa 

. 0 
"asymptotically approaches". We have further assumed, in deriving 

rt 
(2.24) and (2.25), that 0(e ) terms tend uniformly to zero. Hence 

we have that a closed one-sex population, subject to unchanging fertility 

amd mortality schedules, asymptotically attains a fixed age composition, 

(2.25), and a constant rate of change r . This fixed state towards which 

a population tends, is known as stable. 



2.2 The Model With Time Dependent Vital Rates. 

If the age-specific vital rates of birth and death, presented in 

Subsection [2.1.1], are allowed to change with time, then, it is possible 

to proceed in a similar manner and obtain expressions for the total birth 

rate, the numbers in the population and the age distribution. 

We let i'Cxjt) denote the time dependent net maternity function 

which is given by 

$(x,t) = M(x,t)L(x,t) , (2.26) 

where M(x,t) is the time dependent age-specific birth rate and L(x,t) 

is the time dependent survivor function, representing the probability 

that a female born at time t-x survives to age x . L(x,t) is related 

to UCx,t) , the time dependent age-specific death rate, by (see 

Hoppensteadt (1975)} 

- rt 
exp - U(x-t+u,u)du t ^ X 

- . 0 

P •x 
exp - U(u,t-x+u)du , t > X 

0 

L(x,t) = 

The time dependent net reproduction rate R(t), is given by 

(2.27) 

R(t) = $(x,t)dx . (2.28) 

With $(x,t) in place of (i>(x) in the discussion of the previous 

section it may be seen that the total birth rate B(t) is given by the 

generalised renewal equation 

B(t) = N(0) f f ^ <I>(x+t,t)dx + B(t-x)<i>(x,t)dx . (2.29) 
Jo Jo 

Further, the total number N(t) and the age density a(x,t) may be 

represented respectively by 



N(t) = N(0) 

and. 

L(x+t,t)dx + L(x,0) B(t-x)L(x,t)dx , (2.30) 

N(t)a(x,t) = N(0) L(x,t)H(x-t)+B(t-x)L(x,t)H(t-x) , (2.31) 

where H is the Heaviside unit function. It should be noted that we 

obtain (2.30) by integrating the age distribution with respect to x 

and using the fact that a(x,t) is a density. Equations (2.30) and (2.31) 

correspond to generalisations of (2.9) and (2.8) respectively with time 

dependent vital rates. 

For simplicity, and as is often done in practice, we may assume 

the population to be initially stable so that, from (2.29) and (2.25), 

we have the total birth rate B(t) satisfying 

B(t) = Qj e"^l*<D(x+t,t)dx + 
rt 
B(t-x)4>(x,t)dx . (2.32) 

Basically two broad classes of time dependent net maternity 

functions, namely separable and non-separable, are presented in this 

thesis. 

For the separable model $(x,t) is such that all age groups have 

the same time dependence, so that 

$(x,t) = iî (t)4)(x) , (2.33) 

where (i)(x) can be regarded as the age-shape function and i|i(t) as the 

time scaling function. If ip(0) = 1 then (i)(x) is the initial net 

maternity function. 

To allow for the final shape of the net maternity function to 

differ from the initial shape we consider a non-separable 4>(x,t) . In 

particular we will study a model of the form 



Jo 

4>(x,t) = + i(t)(|>2(x) , (2.34) 

where the functions K and c are such that 

and liiin ̂ (x,t) = (j>2(x) . 
(2.35) 

t->«> 

Especially we shall have c(t) = 1 - ^(t) . 

Thus, (|)j(x) and (̂ (̂x) are the initial and eventual net maternity 

functions and constitute the starting and final shapes of $(x,t) . 

(J>̂ (x) and will also be known as the extreme net maternity 

functions and together with (|>(x) , as the inherent age-shape fimctions. 

We note that the non-separable model (2.34) contains both change 

with time and with age, whereas, the separable model (2.33) represents 

only a change, with time, of the initial net maternity function. 

The convention will be used that the initial population parameters 

relating to the non-separable model will be denoted with a subscript of 

1 and with no subscript for the separable model. A subscript of 2 will 

be used in either case for eventual population parameters. Hence for 

the non-separable model, for example, 

(j)*(r̂ ) = 1 and (i»*(0) = R^ , i = 1,2 , (2.36) 

where * denotes the one sided Laplace transform and {r^} and {R^} 

are the intrinsic rates of change and the net reproduction rates, 

respectively, of {<i»̂ (x)} . The braces { } are used to denote the 

whole set over the subscript i . 



2.3 Numerical Solution and Spline Interpolation. 

The time dependent deterministic Lotka model presented in the 

previous section cannot readily be solved, by Laplace transform 

techniques described in Subsection [2.1.2], as could the model with 

time independent net maternity function. 

Besides the classical iterative method proposed by Volterra (see, 

for example, Hochstadt (1973)) there is, for a general continuous time 

dependent net maternity function, no other avenue known to the author, 

of solving the integral equation (2.29), other than a strictly numerical 

one. If (2.29) is solved for the total birth rate B(t) then the total 

number and age density can be obtained from (2.30) and (2.31) respectively, 

There is a vast number of numerical methods for solving general 

Volterra integral equations. However the modified block-by-block method, 

as described by Campbell and Day (1971), was chosen because of, among 

other reasons, the merits stated for general block-by-block methods 

by Linz (1969). The main advantages of block-by-block methods, as 

stated by Linz (1969), are due to the fact that no special starting 

procedures are needed and switching step-size, h, presents no problem. 

The block-by-block methods in general use numerical quadrature but 

the calculations are arranged so that several values of the unknown 

function are obtained simultaneously. The basic idea of the block-by-

block approach was first suggested by Young (1954) with regards to 

product integration techniques. O'Neill and Byrne (1968) use what is 

essentially the block-by-block approach to develop a starting procedure, 

but their method requires the use of values of the kernel outside the 

range of integration. Linz (1969) presents a modified block-by-block 

method of O(h^) that does not require the use of values outside the 

range of integration. Campbell and Day (1971) utilize the method of 



Linz to develop an O(h^) algorithm for the solution of non-linear 

Volterra integral equations of the second kind. 

A FORTRAN progranune was written, using the modified block-by-

block method of Campbell and Day (1971), to solve general linear Volterra 

integral equations of the form 

•t 
B(t) = F(t) + B(x)K(x,t)dx . (2.37) 

In particular (2.32) is solved in order to demonstrate the total birth 

rate B(t) converging towards the known asymptotic behaviour which is 

determined by, the use of an algorithm developed in Chapter 4 and 

presented in Cerone and Keane (1978a). 

In order to solve integral equations of the form (2.37), it is 

necessary that F be continuous and bounded and K be continuous and 

uniformly bounded (see Linz (1969)). Data for the net maternity function 

is often only available as average rates over standard 5-year age-groups 

(see for example Keyfitz and Flieger (1971)}. Usually the smoothing or 

interpolation of this data is accomplished by fitting a polynomial or 

some model curve such as the normal curve. 

Fitting a single polynomial to the discrete data of the initial 

net maternity function is not satisfactory since it may produce 

difficulties such as violation of the non-negativity condition, especially 

near the external points (see for example McNeil, Trussell and Turner 

(1977)]. The attractiveness of fitting a piecewise smooth polynomial, 

a spline, to discrete data is stated widely in the literature. For 

example, (Creville (1969)) it may be shown that given f(x) defined at 

(x } e (a,b) then a spline of degree 2k-l is the unique function, n 
passing through {x » ' which is the smoothest in the sense that 



dx == 0 

i t m i n i m i s e s 

r (k) V 
•'a 

Hence only splines of odd order should be considered if the smoothness 

property is desired. 

Cubic spline interpolation was used to fit the discrete data of 

the net maternity function. A cubic spline S(x) on an interval (a,b): 

(i) passes through all the discrete points {x^, f(x^)} , 

(ii) is a cubic on each interval (x^, x̂ +ĵ ) (a,b) , 

and (iii) possesses continuous first and second derivatives at the 
nodes {x } . 

For an excellent presentation of spline functions in general and cubic 

splines in particular the reader is referred to Ahlberg, Nilson and 

Walsh (1967). 

Often the end data points of the net maternity function are 

comparatively small and thus the spline fitted curve S(x) is inclined 

to take negative values. A method of overcoming this was suggested by 

McNeil, Trussell and Turner (1977) which entails taking a higher order 

spline. However instead of introducing the unnecessary complexity of 

taking a higher order spline we fit ordinary cubic polynomials over the 

two end intervals. 

The discrete data from Keyfitz and Flieger (1971) is taken as 

occurring at the mid-points of the 5-year age-groups so that the nodes 

occur at 

x^ = a(= 10) , the minimimi age of childbearing. 

X , - X = h = n+1 n n 

2.5 , n = 1 , 
5 , n = 2,...,N-2 , 
2.5 , n = N-1 , 

Xĵ  = 3(= 50) , the maximum age of childbearing, (N=10).^ 

(2.38) 



llonce .i>(x) can be written in the form 

N-1 
<PM = y. ŝ (̂x) , 

n=l 

where S^Cx) and Ŝ ^ ^(x) are ordinary cubics with cf)(xp 

and S^Cx), Sĵ  ^(x) are cubic splines. 

In any event {S^(x)} are of the form 

ra=0 

where H is the Heaviside unit function. 

(2.39) 

= 0 » 

(2.40) 

With (})(x) given by (2.39) and (2.40) the forcing term in (2.32) 

with (2.33) can be evaluated analytically by writing it in a form similar 

to that of fpjCt) in (3.51). The resulting integrals like 

I i(t) = 
-rx m, 

e X dx 

can be evaluated analytically using the recurrence relation 

t 
rl ,(t) = -

m -rx 
X e + ml (t) , m = 1,2,3 , 

^n 

-rx -rt 
and rl^(t) = e n - e , 

which is obtained by integrating (2.41) by parts. 

(2.41) 

(2.42) 

In general however the forcing term in (2.29) and (2.32) has to 

be evaluated numerically by using, for example, Gaussian quadrature. 

Solving the equations (2.29) or (2.32) numerically is slow and time 

consuming since we have to proceed in small steps of time t in order 

to obtain a sufficiently accurate solution. The transient solution for 

the total birth rate from (2.32) is obtained in Chapter 3, when the age 

structure of the time dependent net maternity function is piecewise 

defined with the nodal points being integer multiples of some constant. 

The methods of Chapter 3 do however become complicated for non-simple 

time dependence. 



3. The Total Birth Rate Resulting from Specific Representations 

of the Extreme Net Maternity Functions. 

In this chapter, time dependent net maternity functions, $(x,t), 

are considered and their resultant effect, on the total birth rate 

B(t) , is examined for special forms of inherent age-shape functions 

(or extreme net maternity functions). Both separable and non-separable 

time dependent net maternity functions are considered where the age-

shape functions are Malthusian, histogram, point form, and, defined in 

a piecewise fashion. 

In Sections [3.1], [3.2] and [3.3] the population is assumed, 

for simplicity, and as is often done in the literature, to be initially 

rt 

stable. Thus B(t) = Qe for t < 0, where r is the intrinsic rate 

of change. The transient total birth rate is also obtained in Section 

[3.4], for general initial age distribution represented by a histogram. 

The birth and death rates are assumed to be constant, in Section 

[3.1], and hence the age-shape functions are Malthusian. With a Malthusian 

initial net maternity function (when $(x,t) is separable) the integral 

equation for the total birth rate, is transformed into a first order 

differential equation which is easily solved. Further, when $(x,t) is 

not separable, we obtain a second order differential equation which is 

not easily solved, but certain solutions are extracted which would 

otherwise not have been possible. Some of these solutions are given 

in Appendix A. 

Although a Malthusian net maternity function is not a demographically 

realistic model, it has in the past been used by a number of authors 

(for example Kendall (1949), Hoppensteadt (1975) and Tognetti (1975)). 

More specifically it was the starting point of population analysis and 



it seems fitting to return to this point for time dependent net 

maternity functions. Further, the Malthusian provides insights into 

the effects of a time dependent net maternity function on the 

population. It also provides analytic results which may be used to 

compare numerical solutions for more realistic age-shape functions. 

In Section [3.2] use is made of the discrete nature of the 

available data (see for example Keyfitz and Flieger (1971)) to transform 

the integral equation for B(t) into an integro-difference or 

difference equation depending on whether a histogram or point 

representation of the age-shape function is made. A stepping procedure 

developed in Cerone (1978) is then used to solve for the transient total 

birth rate. 

The use of the stepping procedure for the total birth rate is also 

discussed in Section [3.3] where the age-shape functions are piece-

wise defined (for example by splines). 

Using a similar process to that in Sections [3.2] and [3.3] the 

transient total birth rate is obtained when both the initial, age 

distribution and net maternity function are represented by histograms. 

As a consequence, the solution for B(t) with a time independent net 

maternity function is obtained as a polynomial on each interval of 

length Y • Such a solution is believed to be novel. Rhodes (1940) 

also used a stepping procedure although he assumed the population to 

consist initially of individuals of the same age. Further, Rhodes' 

net maternity function was independent of time. 

We restate here that extreme population parameters regarding the 

non-separable model will be denoted by subscripts of 1 and 2 depend-

ing on whether the parameter relates to the initial or the eventual 

population, respectively. 



3.1 The Malthusian l-'unction as the Age-Shape I'unction. 

In the present section the time dependent net maternity function 

is considered where the vital rates are assumed to be constant with age. 

Thus, the age-shape functions are taken to be Malthusian and the effect 

on the total birth rate is determined. 

3.1.1 The Separable Time Dependent Net Maternity Function with 
Malthusian Shape Function. 

The problem, for the total birth rate B(t) in the form of (2.32) 

will be examined where the time dependent net maternity function is 

separable (given by (2.33)) with Malthusian age-shape function, <l)(x). 

Theorem: Let the time dependent net maternity function be separable 

with Malthusian time independence, so that from (2.33) 

$(x,t) = , (3.1) 

and hence only the birth rate y is changing with time. 

Further let i|j(t) satisfy the following conditions 

(i) 1/̂ (0) = 1 and iĵ(t) > 0 , for all t € ]R+ , and 

(ii) If; € . 

Then the solution to (2.32) is given by 
rt 

B(t) = Qiij(t)exp|Ŷ  Hs) - i ds , (3.2) 

where Q = B(0) and R = • 

Proof: With <i>(x,t) as given by (3.1), (2.32) becomes, after some 

rearrangement and upon using condition (i), 

'B(x)e^^dx . (3.3) e^^B(t) _ Q ^ 
Y^(t) Y 

Differentiating (3.3) with respect to t and using condition (ii) 

the first order linear differential equation. 



B'(t) = iy^W - vi + ii''(t)/i|;(t)]B(t) (3.4) 

is obtained, subject to the initial condition, from (3.3) and condition 

(i). 
B(0) = Q . (3.5) 

Hence (3.4)-(3.5) has, on noting that R = ^ , solution given 

by (3.2). 

Corollary: With the conditions as stated in the above Theorem and 

further if 

(iii) Him ip(t) , and 
t ^ 

(iv) ilim r̂ r 
^(s) - ^ ds = A < «> , then 

B(t), from (2.32), admits an asymptotic value Q^ given by, 

= . (3.6) 

In particular, let ii;(t) satisfy the conditions of the Corollary 

and be of the form 

where C(t) is such that C(O) = 1 and iim C(t) = 0 , then the 
t-X» 

solution (3.2) is of the form 

B(t) = ̂  * wC(t)]exp 0) 5(s)ds (3.8) 

(jj = y-y^ and we have used the fact, from (2.36), that 

«2 = (i)-(x)dx = 

where 4)2(x) = and hence, P̂« = ^ 
^2 ^2 , since = y 



-rot 

Hence b(t) = e - B(t) , as given by (3.8), is the solution of 

b'(t) = [yil̂ Ct) - iu^T^) + iĵ '(t)/i|̂ (t)]b(t) , b(0) = Q (3.9) 

where, i|i(t) is given by (3.7). Further, b(t) has an asymptotic value 
ft 

provided that Him C(s)ds < «> (is finite), 
t-x» •'o 

3.1.2 A Non-Separable Time Dependent Net Maternity Function 
with Malthusian Shape Functions. 

Consider the time dependent net maternity function to be given by 

(2.34) with Malthusian extreme net maternity functions {<i>j|̂(x)} so that 

$(x,t) = + c(t)Y2e'^2x ^ (3.10) 

From (2.34), (3.10) and (2.36) {r^} and {R^} , the intrinsic rates of 

change and the net reproduction rates respectively, are given by 

(3.11) 
r. = Y- - W. 1 1 1 

and R. = Y'/y. , i = 1,2 . 1 'i 1 ' ^ 

Further, ?(t) and C(t) , besides satisfying conditions (2.35), are 
f 21 

such that € C (IR̂ ) , namely, the functions and their first and 

second derivatives are continuous. 

Substitution of (3.10) into (2.32) results, after some manipulation, 

in B(t) being given by 

B(t) = Yie'^l^^t)F^(t) ^ , (3.12) 

where. 

Qi F. (t) = — + 
t 
B(x)e^i^dx , i = 1,2 . 

In order to obtain B(t) explicitly from (3.12) we divide both 

sides of (3.12) by e'^l^C(t) and differentiate, thus eliminating the 



integral within the expression for Fj^(t) and so, on rearrangement; 

we get 

B'(t) + 6(t)B(t) = y^e-^^^aMV^it) , (3.13) 

where. 

(3.14) 

cx(t) = Ut)[0 - C'(t)/C(t)] + C'(t) , 0 = y^ - VI2 ' 

and 3(t) = - ?'(t)/C(t) - Yj^t) - y^Kit) . 

Dividing both sides of (3.13) by e'^2^a(t) and differentiating again 

we obtain, after some algebra, the second order homogeneous linear 

differential equation 

a(t)B"(t) + P(t)B'(t) + Q(t)B(t) = 0 , (3.15) 

where. 

P(t) = a(t)t6(t) + " M > 
(3.16) 

and Q(t) = a(t)[3'(t) + M^^it) - Y2«(t)] - a'(t)3(t) . 

Now, the conditions (2.35) imply that 

5(0) = 1 , lim C(t) = 0 , 
t-^ 

and C(0) = 0 , Zim C(t) = 1 , 
t-x» 

so that, from (3.12) and (3.13)-(3.14) respectively, the initial 

conditions 

B(0) = Q^ 

(3.17) 

and B'(0) + 3(0) - . a(0) B(0) = 0 , 

(3.18) 

are obtained. Here, (3.11) has been used. 

Thus the problem of solving the integral equation (3.12) has been 

changed to that of solving the differential equation (3.15) with (3.14), 

(3.16) and, with initial conditions (3.18), about which a great deal 



more is known and from which a number of interesting results will be 

obtained. 

In the special situation in which 6 = 0 (y^ = (" 

time dependent net maternity function is separable (and hence only the 

birth rate is being changed with time). That is. 

where 

i^o(t) = iit) + C(t) , (3.19) 

for which the solution has been previously obtained and is given by (3.2) 

Thus, 

B^j(t) = Qii;Q(t)exp (yi^Q(s)-m)ds 

where lî Q(t) is given by (3.19), is the solution of 

where 

a^(t) = C'(t) - C(t)c'(t)/at) , 

and ^^(t) = y - c'(t)/^(t) - , 

with initial conditions, from (3.18) (with 6 = 0 ) given by 

B J O ) = Q, 

and b;(O) . B (0) - — a^(0) B^(0) = 0 . 

(3.20) 

a^(t)B^(t) + Po(t)B;(t) + Qo(t)B-^(t) = 0 , 

= «.(t)C3^(t) + y3^(t) - Y2ao(t)] - <(t)3^(t) , 

(3.21) 

(3.22) 

(3.23) 

Using variation of parameters (see for example Boyce and Di Prima 

(1969)) the general solution W(t) , of (3.21)-(3.22) is found to be 



W(t) = U(t) A + C exp- -Y-
s C(s)a^(s) 

(v)dvV ^ ds 
0 ° J 

where, 

U(t) = ip^Ct)exp is a known solution of (3.21)-

(3.22), 

and «^(t) are given by (3.19) and (3.22) respectively, 

and, both A and C are arbitrary constants. 

Consider now the problem (2.32) with (3.10) where C(t) has the 

special form 

C(t) = 1 - ^(t) , (3.24) 

in order that the system (3.15), with (3.14) and (3.16), and with 

initial conditions (3.18), may be simplified somewhat and may allow 

also a change in the survivor function (see Theorem in Section C6.1]). 

In addition, if we let, 

B(t) = e^^hct) , (3.25) 

so that b(t) admits an asymptotic value (normally) then (3.15), (3.16) 

with (3.14); and (3.18) are transformed into, with c(t) given by 

(3.24), 

u(t)b"(t) + PQ(t)b'(t) + q^(t)b(t) = 0 , (3.26) 

where 

p^(t) = u(t)Cv(t) + r^ + - u'(t) , 

q (t) = u(t)rv'(t) + Y.[v(t) + r_ - u(t)]] - u'(t)Cv(t) + r ], 
o ^ ^ ^ ^ I (3.27) 

u(t) = e(i-c(t)) - c'(t)/at) , e = - ' 

and, v(t) = - Y2 - ^^^Ct) - ?'(t)/C(t) , ^ = , 

with initial conditions 



b(0) = Qj , 

and b'(0) + 

respectively. 

v(0) + r^ -
2 r^.p^ 

u(0) b(0) = 0 , 

(3.28) 

Further, we can eliminate v(t) by noting that 

- -^-iii-= u(t) + (e-a))^(t) and hence v(t) + r^ = e - u)C(t) 

(3.26), (3.27) and (3.28) become 

u(t)b"(t) + p(t)b'(t) + q(t)b(t) = 0 , 

where 

p(t) = u(t)[Y2 + u(t) + (e-a))C(t)] - u'(t) , 

q(t) = (e-a))Cu(t)(c'(t) + Y2Ut)) - C(t)u»(t)] 

and u(t) = e(l - ^(t)) - C'(t)/C(t) , 

with initial conditions. 

(3.29) 

(3.30) 

and 

b(0) = Qj , 

b'(0) + (e-co) 1 -
u(0) 

V ^ 2 
b(0) = 0 . 

(3.31) 

A number of special and interesting solutions exist for the system 

(3.29)-(3.31). Six different possibilities. A, B, ..., F, are 

considered in Appendix A. 



3.2 The Transient Total Birth Rate Resulting from Discrete Shape 
Functions in an Initially Stable Population. 

Here we discuss the transient total birth rate resulting from 

time dependent net maternity functions where the extreme net maternity 

functions are discrete. The population is assumed to be initially stable 

3.2.1 The Single Delta Shape Function. 

The delta function has been used extensively in the literature, 

for example by Keyfitz et al. (1967), Coale (1972) and Tognetti (1976a), 

as the shape function or as the net maternity function. Let the average 

age of mothers at the birth of their daughters be k , then assuming that 

all births occur at age k we have 

<t>M = R5(x-K) , (3.32) 

where R is the net reproduction rate and, 

6(x-k) is the Dirac delta function defined as zero everywhere 

except at x = k and is such that 

f(x)6(x-K)dx = f(K) , (3.33) 

provided k belongs to the interval of integration. 

With such a net maternity function,(3.32), Keyfitz (1968b) points out 
An R that the value r = , will rarely be in error by as much as 5%. 

Also, with (j)(x) as given by (3.32), < = T^ where T^ is the mean 
rT length of a generation in the stable population defined by e ° = R . 

With (3.32) in the separable time dependent net maternity function 

(2.33) the integral equation (2.32), for the total birth rate, becomes 

(on using (3.33)) a difference equation with non-constant coefficients, 

namely 

B(t) _ 
Ri/.(t) ' 

Qe^^'-^^ , 0 < t < K 
(3.34) 

B(t-<) , t > K , 



where Re = 1 and r is the intrinsic rate of change, for t < 0. 

We solve (3.34) by proceeding in steps of length K . Since we 

known the solution on 0 < t < K we can obtain the solution on 

K < t < 2K , and so on. That is, using the stepping procedure wc have 

the solution of (3.34) given by 

B(t) = Q n , NK < t < (N+1)K , 
n=0 

N 
= Qe""̂  n 'Kt-nK) , (3.35) 

n=0 
ric since R = e . The substitution T = t - NK in (3.35) results in 

. N 
B(T+NK) = N ^(T + (N-n)K) 

n=0 

N 
= Qe^^^^ ^̂  n «/'(T+NK) , 0 < T < K . (3.36) 

n=0 

If we let ij/Ct) = I a.e'^j^ , B. > 0 , then (3.36) may be 
j=0 ^ ^ 

written simply as 

B(X.NK) = QE'^I^^N'^^ I A. FL . 
j=0 ^ n=0 

= i A.exp{e.CT+N(N-l)K/2]}, 0<T<K . (3.37) 
j=0 ^ ^ 

In particular with. 

•(t) • i • e'^^ , A > 0 , 

so that the population tends gradually towards an average stationary 

state, (3.36) becomes 
N 

B(T+NK) = ̂  Ê "" n (1 + SQ'̂ ) , 0 < X < K , (3.38) 
^ n=0 

-AT -XK where s = (R-l)e and q = e 

The asymptotic standing wave Q2(T) (see Bourgeois-Pichat (1971)) is 



obtained by taking the limit, as N -»-«>, in (3.38). Thus, 

N 
Q (T) = ^ Urn n (1 ^ sq") , 

N ^ n=0 

which exists (from Bellman and Cooke (1963) or Andrews (1971)} since 

q| < 1 . Hence, 

00 

Q2(t) = I n (1 + sq"") , 0 < t < K . (3.39) 
n=0 

In order to obtain the asymptotic average stationary value, Q^ , 

which is given by 

Q2 = k Q 2 M d r , (3.40) 

we write the product expression for Q2(t) , from (3.39), as a series 

Namely, also from Andrews (1971), 

® » n(n-l)/2 n 
n (1 - sq'^) = 
n=0 n=l 

n 

n d-q") 
k=l 

and hence from (3.38), (3.39) becomes 

Q,(x) = I e", 
® 2 ̂  /n iaH -nXic 

1 + ^ (R-1) e 

n=0 
n r 

n Ll-e 
k=l 

-kXK 
0 < T < K . (3.41) 

Substituting (3.41) into (3.40) and integrating we obtain the asymptotic 

average stationary value Q^ from 

r n 
n=l 

n u - e 
k=l 

-kXK 
nX-r 

(3.42) 

The above asymptotic value, given by (3.42), will be used for 

comparison purposes to test the numerical algorithm developed in Chapter 

4. The algorithm allows for the calculation of the asymptotic total 

birth rate for general age-shape functions with, in particular, the 

above mentioned single exponential time dependence. 



3.2.2 The Single Step (Rectangular) Shape Functions. 

We will consider the problem for the total birth rate BCt) , in 

an initially stable population, with separable time dependent net 

maternity function. That is, B(t) is given by (2.32)-(2.33), with 

(j)(x) being represented by 

(j)(x) = AH(x-a)H(3-x) , 0 < a < 3 , (3.43) 

where H is the Heaviside unit function defined by 

1 , u > 0 , 

^ 0 , u < 0 , 

and A = R/(3-a) , R being the net reproduction rate. Thus, B(t) 

is given by 

H(u) = (3.44) 

B(t) = Ai|;(t) < Q e { rt e"^*H(x-a)H(a-x)dx 

B(t-x)H(x-a)H(3-x)dx (3.45) 

or, on using the definition, (3.44), of the Heaviside unit function, 

rt 

B(t) _ ̂  
Hit) ' 

Q.e 

Q.e 

rt 1 - -rx , e dx 
a 

0 $ t ^ a 

B(t-x)dx , a ^ t $ 3 
a 

3 
B(t-x)dx t ^ 3 . 

a 

Making the substitution u = t - x in the above integrands we obtain 

the following system of integro-difference equations 

rt » 

r t - a 
B(t) _ ̂  
Aii;(t) 

Q.e^ 

Q r 1-e r(t-3) 

0 $ t ^ a 

B(u)du , a ^ t ^ 3 (3.46) 

't-a 
B(u)du t ^ 3 . 



From (3.46), we know the solution on [0,a] so that we can proceed 

in steps of length a unless we come to straddle 3 at which stage we 

would require the solution interval to be further subdivided. If 

however 3 is some integer multiple of a then we could proceed, in 

steps of length a , unhindered. Let 3 = Kot , K some positive integer, 

and B^(^) be the solution for t € C(n-l)a, na] , n = 1,2,... then 

we have from (3.46), 

rt 

Aii;(t) 

Q.ê  

Q r_^r(t-Ka) 
r ' ^ 

s = 1 
t-a 

t-a 
B^_^(u)du -

0 

t-Ka 

B ,(u)du , s = 2,3,...,K S ̂  X (3.47) 

B3.^(u)du s = K+l,K+2,... . 

We note that Tognetti (1976a) considered (3.43) with 3 = 2a , 

that is, with K = 2 , and used Laplace transform techniques. We cannot 

readily use Laplace transforms here because of the time dependence iKt). 

Tognetti did not have any time dependence. 

If both a and 3 are integer multiples of some constant 

Y (viz. a = ky, 3 = Ky) then the solution to (3.46) can most easily be 

obtained by proceeding in steps of length y • That is, if we let 

B ft) be the solution for t e L(n-1)Y, ny] , n = 1,2,3,... then, n 

mt) 

Q.e rt n = 1,2,. .. ,k 

a r 1-e 

t-ky 

r(t-Ky) t-ky 
B ,(u)du , n = k+l,k+2,...,K (3.48) n-1 

rt-Ky 
B ^(u)du , n = K+l,K+2,... . n-K 



3.2.3 The Separable Time Dependent Net Maternity Function 
with Discrete Shape Function. 

With a time dependent net maternity function the integral 

equation for the total birth rate B(t) is no longer readily amenable 

to the Laplace transform (or equivalent) method, since the convolution 

theorem cannot be used. It is common however to tabulate the data, for 

shape functions, in discrete form (see for example, Keyfitz and Flieger 

(1971)). With such a discrete representation the problem for the total 

birth rate will be solved by an extension of the stepping procedure 

discussed in [3.2.2]. 

Rhodes (1940) used a stepping procedure for the total birth rate 

with the net maternity function having no time dependence and the 

population having no age distribution, consisting only of the newborn. 

Discrete data may be represented in either histogram or in 

concentrated form. The histogram may be represented by 

N-1 
4)(x) = I ' N ^ 2 , (3.49) 

n=l 

where H is the Heaviside unit function defined by (3.44). The 

concentrated or point form, for the initial net maternity function is 

represented by 

HX) = I , (3-50) 
n=l 

where 6 is the Dirac delta function defined by (3.33). 

We note that in (3.49) and (3.50) {a^} and {b^} are such that 

a^ > 0 for n = 1,2,..., and, 0 < b^ < b2 < ... < bĵ  , where, { } 

denotes the whole possible set. The {b^} will hence forth be called 

nodal points. Also, b^ = a and b^ = 3 where a and 3 are the 

youngest and oldest ages of childbearing in the population. 



With the shape functions in discrete form, as given by (3.49) 

and (3.50), the integral equation, (2.32) with (2.33), for the total 

birth rate can be written as a system of difference equations. If the 

{b^} in (3.49) and (3.50) are commensurable, that is, from Bellman and 

Cooke (1963), if 

b = Yk , 

n ' n * 

where y is some constant and {k^} are non-negative integers, then 

the system of difference equations can be solved more conveniently, as 

may be seen from [3.2.2], by advancing the solution in steps of y . 
We shall firstly examine the solution of (2.32) with (2.33) for 

B(t) , with the initial net maternity function <i>(x) represented as a 

histogram,in the form of (3.49). Substituting (3.49) into (2.32) and 

using the definition of the Heaviside unit function, (3.44), we can 

rewrite the problem (2.32) with (2.33) in the form of a system of integro-

difference equations 

rt 

B(t) . ̂  
il;(t) " 

Qe^ 

n-1 

f (t) + I 
m=l 

t-b m 

t-bm+1 
B(u)du + a 

n 

t-b n 

N-1 

n=l 
n 

t-b n 
B(u)du 

t-bn+1 

t€[0,bj] 

B(u)du, (3.51) 

n=l,2,...,N-l 

, t b^ 

where. 

fj^(t) = Qe 
rt 

n-1 
1 - I a 

m 
r^m+l -ru^ 

e du 
m=l -b m 

-ruj 
e du 

= Qe 
rt 

N-1 

I a 
m=n 

m 
e du - a n 

'm 

-rUj 
e du 

'n 

and we have used the fact that (j>*(r) = 1 , where * denotes the one-

sided Laplace transform. We have further made the substitution u = t 

in the integrands of (3.51). 



As we saw in [3.2.2], marching in steps of b^ (or a) produces 

difficulties when we come to straddle one of the nodal points {b^} . 

Let {b } be such that 
n 

b = yk > for n = 1,2,...,N , 
n n 

(3.52) 

where, now {k^} are positive integers and 0 < b̂ ^ < b2 < • • • < b̂ ^ . 

We note that the above is a slightly more general problem than that 

discussed by demographers since (3.52) allows for irregular spacing of 

the {b } . 
n 

The solution to problem (3.51) with (3.52) can most easily be 

represented if we let B^(t) be the solution for t £ C(n-1)Y, ny] , 

n = 1,2,... . Hence proceeding systematically in steps of length y we 

have from (3.51) that, 

rt 

JW 
Qe 

n-1 

m=l 

, s - 1,2, 

t-k^y 
B^ . (u)du-

f^-^m+lY 
(3.53) 

rt-k^y 
+ a 

n 

for n=l,2,...,N-1 , 

N-̂ 1 I 
m=l 

m 
B , (u)du - B^ (u)du 

Thus, 

B (t) = Qe^^i|;(t) , (s-l)y t ^ sy , s = l,2,...,k^ 
s 

m=l 

t-kmY 

\ -k 

(k^+s-l)y ^ t $ (kj^+s)y 

with s = ; n = 1,2,...,N-1 , 

N 

m=l 

t-kmY 

(3.54) 

B, , ^ ru)du , (k +s-l)y ^ t ^ (k +s)Y 0 k^-Kn^+s IN 

for s = 1,2,... , 



where â ^ = a^ , 

= - 1 » m = 2,3,...,N-1 , m m m-1 
and a^ = 

We note that with ip(t) = 1 then the solution (3.53) or (3.54) 

reduces to the initial stable population. 

If we take N = 2 in the above problem then we obtain the results 

of [3.2.2] . 

In practice the data is often given in five year age-groups from 

10 to 55 years (see Keyfitz and Flieger (1971)). Hence in problem 

(3.51), with (3.52), and in the solution (3.53), or (3.54), we have 

k^ = 2 , Y = 5 , k^ - = 1 that is, b^ - = Y for 

n = 2,3,...,N(=10) . A range from 10 to 55 years is the largest interval 

of reproduction encountered, but intervals of 15 to 45 (or 50) years are 

not uncommon allowing for differing cultures and customs. Cultural and 

social pressures, besides the biological constraints, play an important 

role in determining the length of the reproductive period. To conform 

to this possible variation in the length of the reproductive period we 

will keep the end nodal points general, but we will have regular spacing 

of length Y of the internal nodal points. Hence the solution, (3.54), 

with k - k , = 1 namely b - b i = Y for n = 2,...,N , may be n n-1 " 
written as 

B (t) ̂  Qe^^iKt) , (s-l)Y ^ t ^ SY , s = l,2,...,kj , s 
n ^ rt-knjY 

f (t) + I a^ B, , (u)du 
. ̂  m=l "" Jo ^n+1-% 

k Y ^ t ^ k , for n = 1,2,...,N-1 , n n+1 

N ^ ft-kmY 
and B (t) = Kt) a^ , k̂ Ŷ ̂  t k^^^Y 

N̂+1 m=l ^N+l-Km 

for n = 1,2,... , 



where we have used the fact that l̂ĵ+ĵ  ~ ̂ n ^ ^ ' 

In the solution to problem (3.51), as given by (3.53) or (3.54), 

we have to integrate the solutions over previous intervals in order to 

obtain the solution on the present interval. This can be done 

systematically and analytically for certain forms of time dependence 

ii;(t) . For example if ii;(t) is a strict sum of exponentials then the 

solution Bĵ (t) , from (3.54), on successive intervals of length y » 

can be done analytically using a recurrence relation of the form (2.42). 

The sum does however become more complicated as we proceed to higher 

intervals. For certain exponential forms of i|;(t) we can use (3.54) 

to obtain the transient solution, and,the methods of Chapters 4 and 5 

for the asymptotic behaviour of the solution. 

We will now examine the solution of (2.32) with (2.33) where the 

initial net maternity function is in concentrated or point form, as given 

by (3.50). Using the properties of the Dirac delta function, explicit 

integration is avoided. 

Substituting (3.50) into (2.32) with (2.33) and using (3.33) we 

obtain a system of difference equations namely. 

B(t) _ ̂  
Ht) ' 

where. 

Qe rt , t e (0,bp 

n 
g„{t) - I . t c b^^p . 

m=l 
n = 1,2,...,N-1 

I a^B(t-bJ , t > b^ 
n=l 

g„(t) = Qe rt 
n 

^ - I V -rb m m=l 

(3.55) 

and we have used the fact that (j)*(r) = 1 . Thus from (3.50), and 



using (3.33), 

N 
I a e-^^n = 1 . (3.56) 

n=l. 

Again, if we let {b } be such that b = yk where {k } are n n n n 
positive integers, and let B^(t) be the solution for t e ((n-l)Y,nY) 

n = 1,2,..., then, by proceeding in steps of y , the solution to (3.55) 

may be given by 

= Qe^S(t) ; (s-l)Y < t < sy, s = 

n 
; (kĵ +s-l)Y < t < (k^+s)Y, 

where s = 1,2,...^-k^ ; n = 1,2,...,N-1 , (3.57) 

N 
and B, (t) = t|;(t) T a B. , (t-k Y) ; (k^>s-l)Y < t < (k̂ ,+s)Y , k|yj+ŝ  ̂  ^ ĵf:̂  m kĵ -k̂ +ŝ  m'^' N ^ N ' ' 

for s = 1,2,... . 

We note that if N = 1 we obtain the results of Subsection [3.2.1]. 

In a practical situation one might model the concentrations at 

the mid-points of the five-year intervals discussed earlier with regards 

to the histogram model. Such a procedure has been used by Lotka (1948), 

and by Cole (1954) as noted in Keyfitz (1968b). Hence we may have k^ = 5, 

Y = 2.5, k^ - = 2 , that is, b^ - b^ .̂  = 2Y for n = 2,3,. .. ,N(=9) 

The solution (3.57) is thus now defined over smaller intervals than for 

the histogram formulation. Since larger intervals are more desirable 

we may interpolate the nodes, at which the concentrations occur, to 

multiples of 5 years as shown by Lotka (1948). Further, Lotka realised 

that we obtain a polynomial in the characteristic equation (3.56) and 

hence there are a finite number of roots. The polynomial is obtained 

because the {b^} are integer multiples of some constant Y • 



3.2.4 A Non-Separable Tiroe Dependent Net Maternity Function 
with Discrete Shape Functions. 

In this subsection we will discuss the solution for the total 

birth rate B(t) , in an initially stable population in which the time 

dependent net maternity function is given by (2.34). 

We will firstly consider the discrete shape functions {<i>̂ (x)} 

represented by a histogram, of the form given by (3.49), so that 

N-1 
^ ^ M = I ' 0 < bj < b2 < ... < bĵ  , (3.58) 

n=l * 

where {b^} are commensurable. That is, {b^} , are as given by (3.52). 

Substituting (3.58) into (2.34) we obtain 

N-1 
4>(x,t) = I r(t)H(x-b^)H(b^^j-x) , (3.59) 

n=l 

where, 

V(t) = J . C(t)a„ • 

We note that (3.59) is a sum of separable functions and is similar to 

the separable net maternity function 

N-1 
$(x,t) = ip(t) I aj^H(x-bJ , 

n=l 

if we have 

â ^ . 4'(t) = for n = 1,2,...,N-1 . 

Now, substituting (3.59) into (2.32) and using (3.44) we obtain a system 

of integro-difference equations similar to (3.51) with the substitutions 

H t ) = x(t) 

where x(t) = C(t) + c(t)(i)*(rp , 

and â ^ i|̂ (t) = il̂ (̂t) , 

(3.61) 

with lî  (t) as given by (2.60). We have further used the fact that n 
<j,*(rj) = 1 . Hence the solution to (2.32) with (3.59) is given by 



(3.54) with the substitutions (3.61). Consequently if, Bjj(t) denotes 

the solution for t e [(n-l)Y, ny] , n = 1,2,..., then 

B^(t) = Q^ . e^l^ x(t); (s-l)Y ^ t ^ SY , s = l,2,...,k^ , 

n 
B, ^ (t) = F (t) + I il) (t) 

" m=l 

t-kn,Y 

(kj^+s-l)Y S t $ (kj^+s)Y , 

with s = 1 , 2 , . . , n = 1,2,...,N-1 , (3.62) 

and 
N 

m=l 

t-kniY 

for s = 1,2,... , 

where l̂̂ j(t) s ip^(t) , 

Further, ^^ given by 

F„(t) = Qje 
rjt 

X{t) - V t ) 
m=l 

r°m+l . rju 
du - ii/̂ (t) 

m n 

Similarly, we obtain the solution to (2.32), with (3.34) and 

{(i>^(x)} given by 
N 

n=l 

from (3.57) by making the substitutions (3.61) 

(3.63) 

We note that in (3.58) and (3.63), {b^} are independent of i 

and hence are the same for both the initial and final net maternity 

functions. If the {b^} do differ between the two shape functions 

then the positivity condition on the time dependent net maternity 

function may be violated if, for example, the support of the age-shape 

functions changes with time. Although the case with {b .}, relating n, 1 



to {<i>̂ (x)} , is of importance it will not be examined further here. 

It is enough to say that if {b^ are integer multiples of the same 

constant then we may advance the solution in steps of that constant. 



3.3 Shape Functions Piecewise Defined Over a Finite Interval with 
Commensurable Nodal Points. 

We now discuss the resultant total birth rate, B(t) , due to 

shape functions defined in a piecewise fashion where the nodal points 

are commensurable. 

We assume the time dependent net maternity function to be 

separable, of the form (2.33), where 

N-1 

K x ) = I s^(x)H(x-b^)H(b^^j-x) , (3.64) 
n=l 

with {b^} being given by (3.52). 

s^(x) = a^ has been previously considered in Section [3.2]. 

Thus proceeding in a similar fashion we obtain the solution to (2.32)-

(2.33) with (3.64) which contains inherent difficulties, similar to those 

of (3.54), due to the initial net maternity function being represented 

by a histogram. Here the difficulties are greater because of the 

{s^(x)} since we need to integrate explicitly, over previous intervals, 

to obtain the solution on the current interval. However, for simple 

time dependence lî (t) such as exponential, we may make some progress. 

The solution is further enhanced if y = « » the minimum age of child-

bearing, thus allowing for the largest possible step length in the 

stepping procedure. 

A simple example of (3.64) is provided in Rhodes (1940) with 

N = 2, bj = a, b2 = 6 and s^(x) = A sin a(x-a) . 

We note that most of the curves used for graduation (see Keyfitz 

(1968b) or Pollard (1973)) such as the normal curve, do not have compact 

support. Even if these curves were truncated we would need, short of 

numerical quadrature, to be able to integrate the solution over 



successive steps of length y • 

The attraction of fitting piecewise smooth polynomials was 

discussed in Chapter 2. McNeil, Trussell and Turner (1977) advocate 

the use of splines for a piecewise fit of the discrete data. With 

(i)(x) of the form (2.39)-(2.40) and if ili(t) is given by a sum of 

exponentials then a sum of integrals of the form (2.41) result, which 

may be evaluated by using (2.42). The solution to (2.32)-(2.33) with 

(2.39)-(2.40) and (3.52) does however become complicated as we proceed 

to higher intervals. 



3.4 The Transient Total Birth Rate Resulting from Histogram Shape 
Functions and Age Distributions. 

In the present section we will discuss the resultant transient 

total birth rate where the initial net maternity function as well as 

the age distribution, are represented by histograms. Namely we will 

not assume the population to be initially stable, as we have done in 

the previous sections of this Chapter, but will contend with a general 

age distribution represented by a histogram. 

From (2.29), the total birth rate with an arbitrary initial age 

distribution is given by 

rt 

B(t) = A(x)<I)(x+t,t)dx + B(t-x)<i>(x,t)dx , (3.65) 

where <I>(x,t) is assumed separable - of the form (2.33), and 

X(x) = N(0)a(x,0) ^ ^^^^^ i2.3) and (2.7)), the total births at 

t = 0 . 

We consider the solution to (3.65) where A(x), and (|)(x) , the 

initial net maternity function, are given by 

M-1 
A(x) = I c^ H(x-bJH(b^^j-x) , (3.66) 

n=l 
and (3.49) respectively. 

For simplicity we will only consider the nodal points {b^} to 

be regularly distributed, as they often are in practice. Thus, with 

bĵ  = 0 , we have 

b = ny for n = 1,2,...,N-1 (or M-1) . (3.67) n+1 

We note that b^ = 0 , 

b. = 6j , the maximum possible age of an individual, M 
b, = a , the minimum age of childbearing, and hence, 

K 



a^ = a^ = ... = = 0 , 

and bĵ  = 3 , the maximum age of childbearing. 

In practice k will be 2 or 3 (with y = S years) so that a is 10 or 

15 years. 

Proceeding in a manner similar to that of Subsection [3.2.3] we 

obtain the solution B^(t) on [(n-l)Y, ny] for n = 1,2,..., of 

(3.65) with (2.33), (3.49) and (3.66), using (3.44), as 

^it) 
n ^ 

F (t) + y a 
m=l 

•t-my 
B ^,(u)du , n = 1,2,...,N-1 
n-m+1 

N 

I a 
m=l 

m 

t-my 
B ^i(u)du 
n-m+1^ 

, n = N,N+1,... , 

(3.68) 

where. 

a^ = a^ , 

a = a - a , , m = 2,3,...,N-1 , 
m m m-1 

and 

Further, using (3.49) and (3.66) we have 

rmy M-1 
F„(t) = I c 
n 

m=l 

M-1 

= I 
m=l 

M-1 

m 

m 

(l>(x+t)dx , 
(ni-l)y 

t+my 

t+(m-l)y 
(i)(u)du , 

m=l ^ 

(3.69) 

and a^ = a2 = . V i 
= 0 with F^(t) = 0 for t ^ Ny (or n > N). 

We note that if i|̂ (t) h 1 then, (3.68) represents the solution 

for the total birth rate, (3.65), where the net maternity function is 

independent of time and is defined by a histogram. The solution, to the 



S5 

time independent problem on each interval of length y > is given simply 

by a polynomial, as can be seen from (3.68) with (3.69). It is 

believed, by the author, that such a solution as (3.68) has not previously 

been presented. 

Rhodes (1940) used a stepping procedure for the total birth rate 

where the solution was assumed to consist of equi-aged individuals. The 

net maternity function was assumed by Rhodes to be continuous and 

unchanging with time. 

In evaluating the solution (3.68) with (3.69), similar problems 

to those encountered in Section C3.2] present themselves. If ii;(t) is 

a sum of exponentials, with Fjj(t) as defined by (3.69) it can be 

easily seen that we need to evaluate integi-als of the form (2.41) which 

can be done using (2.42). 

The problem for the total birth rate, with a non-separable time 

dependent net maternity function and with nodal points {b^} being the 

same for the extreme net maternity functions, can be solved in a similar 

manner to that outlined in Subsection [3.2.4], 



4. The Asymptotic Effects of General Extreme Net Maternity 

Functions With Exponential Time Dependence. 

The effects of both abrupt and gradual changes of the age-specific 

birth rate on the ensuing population will be discussed in the present 

chapter. 

The first analytic study demonstrating what Keyfitz termed "the 

momentum of population growth" was presented in Keyfitz (1971b). He 

showed by abruptly scaling the age-specific birth rate down to 

replacement level, that the population would have a tendency towards 

continued growth. Keyfitz did this by demonstrating for various data 

that under such a change, the eventual stationary population would be 

greater than the initial. 

For a number of populations Frejka (1968), (1973) has noted the 

phenomenon of residual growth resulting from allowing the age-specific 

birth rate to change along different paths of time. Frejka (1973) 

however projects the population whereas Keyfitz (1971b) produces an 

elegant closed-form expression for both the asymptotic total birth rate 

and the asymptotic total number of the eventual stationary population. 

Since the foundation article of Keyfitz (1971b) a number of 

generalisations and extensions have appeared in the literature. 

Firstly Frauenthal (1975) produces a "gradual" change by assuming 

that only the new-born population scales its age-specific birth rate by 

a constant, to replacement level. 

An extension by Keyfitz (1975) and also Tognetti (1976b) assumes 

that the age-specific birth rate is instantaneously scaled by a constant 

so that a stable rather than stationary population results. In an 



adjacent paper to Tognetti's, Mitra (1976) generalised the Keyfitz 

(1971b) model by allowing the net raatemity function to change from 

the initial to any other without being necessarily scaled by a constant 

as in previous models. Mitra's model allows for the age structure of 

the net maternity function to change. 

As Keyfitz has noted in Keyfitz (1971b), an abrupt change to 

replacement level fertility is "unrealistic" and hence gradual changes 

should be considered. A model which allows a gradual exponential change 

of the age-specific birth rate, to bare replacement, was presented in 

Cerone and Keane (1978a). A numerical method for obtaining the 

asymptotic total birth rate, and hence, the asymptotic numbers and age 

density function, was outlined and is given here in Subsection [4.1.2]. 

Extending the ideas of Frauenthal (1975), the asymptotic effects of 

an exponential time dependent differential scaling towards replacement 

level fertility rates is studied in Subsection [4.1.3]. With this model, 

the parent population is allowed to change its age-specific birth rate 

at a different transition rate to that of those born after the origin. 

The stable birth rate resulting from an exponential time 

dependent change between any two net maternity functions was analysed in 

Cerone and Keane (1978b) and is presented here in Subsection [4.1.4]. 

The model allows for change with both age and time, and, represents a 

non-separable time dependent net maternity function. As stated earlier, 

the initial and final net maternity functions will be referred to as the 

extreme net maternity functions or as the inherent age-shape functions 

of the time dependent net maternity function. I 

The converse problem is discussed in Section [4.3] and consists 

of determining the transition rate that will result in a given 



asymptotic behaviour, with the initial net maternity function being 

assumed to change in a certain exponential fashion. Such a problem is 

very important in the planning and management of populations as pointed 

out by Nortman and Bongaarts (1975). 

The method of Cerone and Keane (1978a), to obtain the asymptotic 

behaviour, is generalised in Section [4,4] where the transient total 

birth rate is obtained. 

It should be noted that, in this chapter, all changes of the net 

maternity function are via the age-specific birth rate. 



4.1 The Separable Time Dependent Net Maternity Function and its 
Effect on the Momentum of Population Growth. 

The momentum of population growth problem of Keyfitz is 

generalised to contain a gradual exponential change, at a rate X , of 

the age-specific birth rate to the level of bare replacement. It is 

shown that for a Malthusian initial net maternity function, the 

asymptotic total birth rate for the gradual change is the Keyfitz value 

multiplied by exp(r/X) where, r is the rate of increase of the 

population before t = 0 . All age-groups experience the same time 

dependent scaling and hence the model is separable. 

A numerical algorithm is presented for obtaining the asymptotic 

total birth rate for general initial net maternity functions with 

exponential time dependence. The numerical method is demonstrated 

by comparing it to known analytic solutions, found in Chapter 3, for 

the model with, Dirac delta and Malthusian initial net maternity 

functions. The method is also demonstrated for demographically more 

realistic data. 

4.1.1 The Asymptotic Effects of an Instantaneous Scaling, to 
Replacement Level, of the Age-Specific Birth Rate. 

Keyfitz (1971b) analysed the potential or momentum of a growing 

population, for further growth. He showed that even if a growing 

population reduced its age-specific birth rate abruptly to replacement 

level, there would be a tendency for further growth, with the extent 

of the residual growth after the change depending on the age 

distribution and the number of people of reproductive age. Frejka 

(1968) and (1973) has studied the phenomenon of residual population 

growth by projection. For present high fertility countries in 

particular, Keyfitz (1971b) showed that it was unwarranted to hesitate 



in making contraception available merely because the population had not 

yet reached the desired level. Even if high-fertility countries were 

to drop immediately to replacement level age-specific birth rates, 

Keyfitz maintained that the ultimate stationary population would be 

approximately two thirds higher than the present total. 

We shall present the analysis of Keyfitz, but, we will use 

Laplace transform techniques. 

Let the population be initially stable, changing such that the 

total birth rate B(t) = Qe^^ , r > 0 . Keyfitz abruptly alters the 

age-specific birth rate, at time t = 0 , from m(x) to m(x)/R , R 

being the net reproductive rate. Thus, the population will eventually 

become stationary. That is, B(t) will aysmptotically tend to Q2 . 

Recall that ((>(x) = m(x)il(x) , where il(x) is the probability 
» 0 0 

of living to age x . Further let = e"^ (|>(x)dx denote the 
k> 

one-sided Laplace transform of (i»(x) , and, hence 

<t>*iO) = R and <i)*(r) = 1 . (4.1) 

For t > 0 , the total birth rate B(t) , for a females-only 

population closed to migration, is thus given by the renewal equation 

«CO 

B(t) = Q 
«'o 

-rx i O ^ ^^ ^ \ ( t - x ) ^ ^ d x . (4.2) 

Taking Laplace transforms of (4.2) we obtain 

R (p-r) '1 . i l M I 
(4.3) 

R 

which may be inverted using the residue theorem. 

We note that p = r is not a pole but is merely a removable 

singularity; and hence, the only contribution to the solution results 



from the roots of 

O E l = 1 
R ^ • (4.4) 

Using the results of Chapter 2 we know that the real root of the 

characteristic equation (4.4) has the greatest real part. Hence by the 

Tauberian theorem an asymptotic value Q2 exists; since, on using 

(4.1), the real root of (4.4) can be seen to be zero. Thus, we have 

Q. = U m pB*(p) = ^ [r(0)-(|)*(r)] Urn ^ ^ . 
^ p ^ p ^ 1 -

Therefore using L'Hopital*s rule and (4.1), the asymptotic total birth 

rate, 

D _ 1 
(4.5) Qo = Q • ̂  » 

where 

^ = - R 

rRK 

4» (P) Ldp p=0 
x i ^ d x . 

is the expected age of childbearing. 

Now, since the population is assumed to be initially stable, the 

rt 

total number, N(t) , is initially of the form N(t) = P.e and will 

tend asymptotically to the stationary state N(t) = P^ • ^ ^ ^ from 

(2.6) we obtain 

P = Q e"^*i.(x)dx 

and P2 = Q2 Jl(x)dx . 

Hence the asymptotic total number of females P2 is given by 

Q ' 

jl(x)dx 

That is, using (4.5), 



where, 

e b(R-l) 
P = P 
2 • TRK 

(4.6) 

and 

the crude birth rate in the stable population, 

P-o e = o £(x)dx 

the life expectancy at birth. 

Keyfitz (1971b) shows by using a number of examples that a 

population has the tendency to continue to grow even after an abrupt 

change to stationary reproductive rates. That is, he shows that, (from 

(4.6)) 

P rRK 

The task of showing that P2 > P analytically for general 

parameters, is thought by the author to be an impossible one. This is 
o Q2 

so because we need to know the amount by which e^b > 1 and < 1 . 

However, we can show that Q2 < Q by simply using (4.1) in (4.5) to 

obtain 
(l-e"'''')<|)(x)dx 

rx(t)(x)dx 

-TX Now, since 1-e < rx for all rx > 0 then the result follows because 

(|)(x) is a non-negative function. 

The initial stable age density is given by (from (2.6)) 

a(x) = be"^*£(x) 



and, the eventual stationary age density by 

a^^^x) = b^ZM = . (4.7) 

Hence, assuming an initially stable population, an abrupt scaling 

of the age-specific birth rate by the net reproductive rate resulting 

eventually in a stationary population,then the asymptotic total birth rate 

Q2 , the asymptotic numbers P2 and the eventual stationary age density 
(2) 

a^ ^(x) are given by (4.5), (4.6) and (4.7) respectively. The abrupt 

scaling of the age-specific birth rate by the net reproductive rate will 

henceforth be known as, the Keyfitz change to replacement level fertility 

rates. 
""liX As a simple example, consider m(x) = y and ¿(x) = e . That 

is, to illustrate the results of Keyfitz (1971b) we will consider a 
—ux Mai thus ian net maternity function (j)(x) = ye . Thus we have 

"pnT' ^ " y ' ' ®o " y " ^ " ̂  

Q2 = I > P2 = P and a^^^(x) = ye""̂ "" , (4.8) 

obtained from (4.5), (4.6) and (4.7) respectively. We notice from (4.8) 

that, the asymptotic numbers in the eventual stationary population equals 

the present numbers, and, since the Malthusian does not have a transient 

solution the asymptotic behaviour is attained immediately and for all 

t > 0 . 

Using the data from Keyfitz and Flieger (1971), Table 4.1 shows 

the intrinsic birth rate, b , the intrinsic rate of change, r , the 

expectation of life at birth, e^ , the mean age of childbearing, k , 

and the net reproduction rate R , for five countries. The values differ 

from those presented in Keyfitz and Flieger (1971) since spline 

interpolation was used for both the net maternity function and survivor 



function data. Spline interpolation is used in order to solve the 

integral equation numerically where the method is dependent, amongst 

other conditions, on the integrands being continuous. The modified 

block-by-block method as described by Campbell and Day (1971) is used to 

solve the integral equation. The method is further discussed in Chapter 

2. 

The asymptotic, total birth rate and total numbers, under the 

assumption of replacement level age-specific birth rates, are presented 

for five countries in Table 4.2. We observe that countries of highest 

present growth have the greatest ability to grow further. The tendency 

to remain on the present path of growth occurs, as noted by Keyfitz 

(1971b), because a history of high fertility has brought about a high 

proportion of women in the reproductive ages. High crude birth rates 

result long after the age-specific birth rates have dropped to replacement 

level. We see, from Tables 4.1 and 4.2, that the total birth rate 

decreases most for Honduras and, for Trinidad and Tobago, that is, for 

countries of highest present age-specific birth rates, as examplified 

by the intrinsic rate of change r and the net reproductive rate R . 

The decrease to replacement level fertility, naturally, has the least 

impact on those countries which are closest to a stationary state, for 

example, England and Wales. The greatest potential for growth comes 

from the size of the intrinsic birth rate b , as governed by the intrinsic 

rate of change r (since the survivor function is not assumed to change). 

From equation (4.6) we see that as r increases so does b and hence 

so does the asymptotic numbers in the population. 

Since the pioneer work of Keyfitz (1971b) a number of extensions 

and generalisations have appeared in the literature. 



bxio^ r 
0 
e 0 K R 

AUST-67 2.05177 1, .09537x10" 
-2 

71.1806 27.256 1 .3451 

E § W-67 1.85845 8, .11145x10" 
-3 

71.7249 27.029 1 .2437 

HOND-66 4.42545 3. .57580x10' 
-2 

59.7896 29.558 2 .7698 

T § T-67 1.84109 2. .14292x10" 
•2 

66.3965 27.450 1 .7821 

U.S.-67 2.93059 7. .40129x10" 
•3 

70.5488 26.273 1 .2134 

TABLE 4.1 

Intrinsic birth rate, b , intrinsic rate of change, r , 

expectation of life at birth, e^ , mean age of childbearing, K and 

net reproduction rate, R , for five countries. The discrete data 

from Keyfitz and Flieger (1971) together with cubic spline interpolation 

was used for both the net maternity function and the survivor function 

for the determination of the tabulated values. The countries are 

respectively; Australia, England and Wales, Honduras, Trinidad and 

Tobago, and. The United States. 

S b 

Q2/Q P2/P Q2/Q = 

AUST-67 0 .859355 1.25505 0.862225 1.25924 

E § W-67 0 .893781 1.19138 0.896685 1.19525 

HOND-66 0 .604553 1.59962 0.600858 1.58985 

T § T-67 0 .746053 1.45168 0.749095 1.45760 

U.S.-67 0 .904495 1.17482 0.907807 1.17912 

TABLE 4.2 

Asymptotic total birth rate Q2 and asymptotic total number > 

as given by (4.5) and (4.6), resulting from an abupt Keyfitz change. 

The last two columns give Frauenthal's approximation, (4.11). The 

values from Table 4.1 are used as data. The countries are respectively; 

Australia, England and Wales, Honduras, Trinidad and Tobago, and. 

The United States. 



Frauenthal (1975) produces a gradual change to a stationary level 

by using a technique also noted by Keyfitz (1971b). That is, 

Frauenthal allows only the females bom since time t = 0 to be 

subjected to the new regime of fertility and those already alive at 

the origin (the parent population) to continue with the initial stable 

regime. It is the age structure of the population which produces the 

gradual change from one net reproductive rate to another since 

individuals of the parent population age out of, and those bom after 

the origin age into, the reproductive period. 

The effect of Frauenthal's assumptions is that, for t > 0 , the 

total birth rate B(t) is now given by 

B(t) = Q 
fOO ft Kx) e~̂ *(i>(x+t)dx + 
•'o 

B(t-x) ̂  dx , (4.9) 
o 

which, unlike the Keyfitz model, is continuous at the origin. Following 

the analysis performed for the Keyfitz model we obtain the asymptotic 

total birth rate 

Q2 = Q . ̂  . (4.10) 

We note that the asymptotic total birth rate and hence the 

asymptotic numbers obtained for the Frauenthal model is R times the 

results obtained using the Keyfitz model. Hence since R > 1 the 

ratio of subsequent to initial births seems to be greater than one 

although this has not been shown analytically. Thus there is an 

increase, rather than a decrease as with the Keyfitz model, from the 

initial to the asymptotic total birth rate. This serves to accentuate 

the effects of the age redistribution on the momentum of population 

growth demonstrated for the Keyfitz model. 

Frauenthal obtains an approximation to the Keyfitz formula (4.5) 



(and hence his own (4.10)] by assuming that all births occur at the 

mean age of childbearing. That is, he assumes that (in our notation) 

(i)(x) = R5(X-k) , 

where, 6(u) is the Dirac delta function defined in (3.33). With this 

net maternity function, making the further assumption that ric is 

small, Frauenthal obtains 

Q2 « Q . r"" . (4.11) 

The values using Frauenthal's approximation for the Keyfitz problem 

are also presented in Table 4.2, and agreement is quite good (within 

0.4% relative error for Q^/Q) compared with the simplicity of the 

calculation of (4.11). 

o 
Frauenthal also obtains an approximation for be^ as 

, (4.12) 

and notes it to be accurate within 7%. The combined effect of 

Frauenthal's approximations is to produce a relative error, for the 

asymptotic numbers, in the range of 4 to 8% for the 5 populations 

examined. Such approximations, in particular (4.12), are not 

satisfactory since results for a gradual exponential change (to be 

outlined presently) can differ by a comparable amount. The 

approximations do however illustrate the relative contribution towards 

the momentum of the population due to a shift to bare replacement 

reproductive behaviour - which was the foremost intention of 

Frauenthal. 



4.1.2 The Asyi!g)totic Effects of a Gradual Time Dependent 
Scaling to Replacement Fertility. 

The momentum of population growth problem of Keyfitz will be 

generalised to include an exponential time dependent change from the 

initial age-specific birth rate to replacement level fertility. Thus 

the model will constitute a gradual Keyfitz change resulting in an 

eventual stationary population. 

Let the time dependent net maternity function $(x,t) be 

separable such that 

$(x,t) = ii;(t)(i)(x) = M(x,t)il(x) , (4.13) 

where i|;(0) = 1 and Jlim iĵ Ct) = 4 , 
t ^ 

which implies that all age-groups have the same time dependence. It is 

assumed, as may be seen from (4.13), that the change occurs only in 

the age-specific birth rate. Hence only the total birth rate will be 

directly affected while the total number and age density function will 

be affected indirectly and will tend asymptotically to 

P2 = PbS„Q2 and 

respectively. From (4.13) and (2.28) we see that 

R(t) = Ri|/(t) , 

which is continuous, unlike the Keyfitz model. 

Hence with $(x,t) given by (4.13), we have the generalised 

renewal equation for B(t) , the total birth rate, as 

B(t) = i|̂ (t){Qf e"^*^(x+t)dx + B(t-x)<i)(x)dx| , (4.14) 
^ •'o •'o ^ 

where the population is assumed to be initially stable and growing, so 

that r > 0 . In particular we will consider 



e'^^ , X > 0 . (4.15) 

Then, instead of a discontinuity as with the Keyfitz model (4.2), we 

have from (4.13) and (4.15), a gradual change in the time dependent 

net maternity function from <(>(x) at t = 0 , decreasing exponentially 

to . The model (4.14) - (4.15) was first presented in Cerone and 

Keane (1978a). We note that, if X = 0 in (4.15) then from (4.13) 

there would be no change and the population would continue with its 

initial parameters. 

We now consider some values of X that describe realistic changes 

in the net maternity function. Let the population have a doubling time 

T^ , then e ° = 2 . Further let us assume that the effectiveness of 

the contraception method is such that the total birth rate will be 

within 0.1% of the stationary level in the time t^ . Then e^^^ « 

Thus X « lOr . A reduction to only 1% of the desired total birth rate 

in the same time would give X ̂  7r . One would expect such reductions 

to occur over one or two generations. 

Figure 4.1 shows the behaviour of (4.15) for X = 0,r,4r,7r,lOr 

and the abrupt Keyfitz change corresponding to letting X «» is 

represented by the broken line. The values of r and R are those 

of the 1967 Australian females given in Table 4.1. 

Now, we have already obtained an analytic solution to (4.14) for 

<t>M = ye'^^ - the Malthusian initial net maternity function - as given 

by (3.2). Thus with the particular time dependence (4.15), we have 
r -Xt. 
X ^ (4.16) B(t) = I [l + (R-l)e"^^Jexp 

where we have used the fact that r = Y - P and Prom (4.16) 

or directly from (3.6), the asymptotic total birth rate is given by 



100. 

FIGURE 4.1 
Diagram showing iKt) as given by (4.15), versus time. 

From top to bottom the graphs represent tl;(t) for 
A = 0,r,4r,7r,lOr, and the broken line is the abrupt Keyfitz 
change to replacement level (corresponding to allowing A °° in 
(4.15)). R and r are the values for the Australian Female's 
data of Table 4.1. 

Q^ = U m B(t) = 1 
t-x» 

(4.17) 

Letting A ̂  «> in (4.17) we obtain the asymptotic value, as given by 

(4.8), for the Keyfitz change and Malthusian net maternity function. 

We note that our gradual change to replacement level with an initial 

Malthusian net maternity function results in asymptotic total birth 
r/A 

rate and numbers, e times those obtained under an abrupt Keyfitz 

change. 

Now, to obtain the asymptotic total birth rate for the model 

(4.14)-(4.15) with general (i)(x) , we proceed in the following manner, 

Taking Laplace transforms of (4.14), with equation (4.15), and 

using the results of Section [2.1], we obtain 



B*(p) = I IQ IZTIEL + QCR.N 

+ (R-l)(i) (p+X)B*(p+X) (4.18) 

where we have, further, used (4.1). 

If we let p 0 in (4.18) and recall the Tauberian result that 

ilim pB (p) = Q- , the asymptotic value, 
p-K) 

we obtain 

Q = Q Bli 
• TRK RK 

. 1 4 1 a . 
^ X-r 

(i>*(X)B*(X) (4.19) 

where < = - "B" 
K dp -lp=0 

, the mean age of childbearing. 

Expanding the square bracket in (4.19) we obtain three terms 

which are the contributions to the asymptotic total birth rate from an 

abrupt change, and, from a gradual changc relating to the parent and 

subsequent populations respectively. 

In equation (4.19) we have two unknowns, Q2 and B (X) . 

Although we have no specific knowledge of the form of B(t) , and hence 

B (X) , we do know that 

rt 
B(t) < Qe 

since ii;(t) < 1 for all t > 0 . Hence for X > r we have that 

(4.20) 

Substituting (4.20) into (4.19), we have an upper bound for Q^ given 

by 
D 1 \ 

(4.21) 

We note that for X = lOr and X = 7r , likely values as discussed 

earlier, the asymptotic value Q2 under a gradual exponential change 



can differ at most by and j (11.11% and 14.28%) relative error 

respectively from that obtained as a result of the abrupt Keyfitz change 

Further, a lower bound is, of course, given by (4.5), the value 

obtained by Keyfitz under the assumption of an instantaneous change in 

the age-specific birth rate at t = 0 . 

Calculation of Q2 . 

It would be possible to find the asymptotic total birth rate Q2> 

from (4.19), if we knew B*(X) . To this end let p = nX , n ^ 0 in 

equation (4.18), thus obtaining the following backward recurrence 

relation 

B*(nX) = + e^ B*((n+l)x) , (4.22) 

where. 

6 = 
n R-(i)*(nX) nX-r • (n+l)X-r J ' 

and 

, - rR-n 
^n ' ^ ^ R-<i)*(nX) ' 

Now, the error Eĵ ^̂  in B*(NX) produced from assuming that 

B*(NX) = 0 , with X > r , is such that 

^N NX-r ' 

and from equation (4.22) the resulting error Eĵ "̂  in B*(nX) is 

given by 

rM^ N-1 pj N-1 
H ^ = n - < n e, . (4.23) 

i=n i=n 

However, (i)*(qX) , q > 0 , decreases as q increases, so that 

g(^) < gW for z < m . Hence, E^^^ , the error in B*(X) when 
N N 

we assume B*(NX) = 0 , can be made as small as we wish by taking N 



large enough. In fact, Eĵ ^̂  decreases so rapidly as N increases 

that small values of N lead to very accurate results for B*(X) and, 

hence, Q2 • 

The absolute error ê ^ in Q^ produced by assuming that 

B*(NX) = 0 can be seen, on using (4.19) and (4.23) (with n = 1), to 

satisfy the inequality 

e < fR_n E^^^ = fR-i) lliAl Yf e = b . (4.24) ^^ ^̂  Rk ^N NX-r ^^ ^^ RK i N 
1-1 

An algorithm to calculate B*(X) and hence Q2 , follows. 

Calculate 

1 + (4.25) r X-r 

Evaluate the upper bound, bĵ  , on the absolute error ê ^ , as given by 

(4.24) for N = 2,3,..., until bĵ  is considered small enough. Note 

that the magnitude of Q2 must be taken into consideration in order to 

obtain a bound on the relative error. 

Then, with B*(NX) = 0 for some N found above, we can calculate 

from (4.22) 

B*(nX) for n = N-1,...,2,1 , 

and hence, from (4.19), 

Q2 = Q2 * ̂  <i>*(̂ )B*(X) , (4.26) 

with an upper bound on the absolute error bĵ  given by (4.24). 

We note that Q2 is the approximation to Q2 in assuming 

B*(X) = 0 , with absolute error 

where X > r . 



For 0 < X i: r , N must be chosen so that NX > r in order that 

the bound, on the absolute error, bĵ  , as given by (4.24), is defined 

and decreases with increasing N . 

If r < 0 , so that 0 < R < 1 , then we have from (4.14), and 

(4.15), a gradual change in the time dependent net maternity function 

from (i>(x) at t = 0 , increasing exponentially at a rate X > 0 , to 

. The above algorithm cannot be used since we do not have an upper 

bound on B(t) and hence on B*(X) . We can however take successive 

approximations to Q2 and compare, stopping when the relative error is 

considered small enough. 

In order to observe the operation of the numerical method it is 

instructive to consider a number of examples of <|)(x) for which we have 

already obtained analytic results. 

Firstly consider (})(x) = for which we have already obtained 

the asymptotic value analytically as given by (4.17). With y = 2y , 

y = 1 and X = lOr we have the analytic asymptotic total birth rate 

Q2 = 0.552585Q , which is to be compared with numerical values of Q2 

given in Table 4.3. It is obvious from the table-that six decimal place 

accuracy is obtained from assuming that B*(4X) = 0 in the algorithm. 

N Q2/Q bN 

1 0.545455 1.010x10"^ 

2 0.552381 2.506x10"^ 
-6 

3 0.552581 5.562x10 

4 0.552585 1.042x10"^ 

5 0.552585 1.667x10"^ 

TABLE 4.3 

Approximations to the asymptotic value Q2 of (4.14)-(4.15) where; 

<l)(x) = ye 

error, (4.24), from assuming B*(NX) = 0 . 

* * * * 

Y = 2 y , iJ = l , X = lOr . bĵ  is the bound on the 



It is also of interest to evaluate the upper bound given by 

equation (4.21) as Q2 < 0-5Q and the value Q^ = 0'5Q , given by (4.8), 

resulting from the abrupt Keyfitz change. There is a 10-5% relative 

difference between the Keyfitz value for Q^ and that resulting from 

a gradual change at a rate A = lOr . 

From (4.16) - the analytic solution for the problem with a 

Malthusian (})(x) - if we evaluate B*(X) and substitute into (4.19) we 

correctly obtain, after some algebra, the asymptotic value (4.17) which 

was obtained directly from the solution. 

Secondly we have already obtained in Subsection [3.2.1] the 

average asymptotic total birth rate for the problem (4.14)-(4.15), with 

(i)(x) = R6(x-k) , 

as given by (3.42). With R = 2, k = 27, r = - An R and A = lOr 
IN 

we have, from (3.42), Q2 = 0.801456Q , which is to be compared with 

numerical values of Q2 , (obtained from using the algorithm) given in 

Table 4.4. 

N Q2/Q bN 

1 

2 

0.801341 

0.801456 

1.565x10"'^ 

7.079x10"^^ 

TABLE 4.4 

Approximations to the asymptotic value Q2 of (4.14)-(4.15) where, 

(|)(x) = R 6 ( x - k ) , R = 2 , K = 27 , r = i iin R , X = lOr . b^ is 

the bound on the error, (4.24), from assuming B*(NX) = 0 . 
* * * * 

The upper bound from (4.21), and the asymptotic value, as given 

in (4.8), resulting from an abrupt change to replacement fertility, are 

given by 0.801497Q and 0.721347Q respectively. Hence there is a 

relative difference of 11-1% between, the asymptotic total birth rate 

resulting from an abrupt Keyfitz change to that due to a gradual change 



at a rate X = lOr . 

It may be seen from (4.22) and (4.24) that, the speed of 

convergence of the above nimerical method, depends mainly on how fast 

({>*(nA) decreases for increasing n . For the Malthusian (})(x) , 

(j)*(nX) decreases like ^ while with the delta function formulation 

the decrease, for increasing n , is like e^^ nX)K ^ with a more 

realistic representation of <i)(x) , that is one which is bounded and 
* -nX(a+l) of compact support, (j) (nX) would behave like — — > Ae 

where A = max {<j)(x)} , and, a and 3 are the minimum and maximum 
a<x<3 

age of childbearing, respectively. Hence we expect the convergence, to 

the asymptotic total birth rate Q2 , with a realistic initial net 

maternity function (j>(x) to be faster than that with the Malthusian 

function, and slower than that with the delta function since K > a + 1. 

We note that the magnitude of X plays an important role in the speed 

of convergence of the method. The larger X becomes, and hence the 

more abrupt the change, the more the error decreases and; from (4.19), 

the asymptotic value Q2 , tends towards the Keyfitz value, (4.5). 

In order that we may appreciate the convergence of the numerical 

method with a more realistic initial net maternity function we will 

consider mainly the data of 1967 Australian Females obtained from 

Keyfitz and Flieger (1971). That is the initial and final net maternity 

functions are as given by Figure 4.2 where interpolation has been 

necessary so that (4.14) could be solved numerically. In what follows, 

unless specifically stated otherwise, the interpolated Australian data 

will be used. 

The convergence of the numerical method to the stationary 

asymptotic total birth rate Q2 is demonstrated in Table 4.5 with 

varying rates of decrease, X . For X = lOr and X = 7r , which are 
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c 

FIGURE 4.2 
Diagram of ( p ( x ) / C where (p (x) is the net maternity 

function of 1967 Australian females. From top to bottom, 
C = 0.75, 1.0, R . 



(a) X = lOr 

(b) X = 7r 

(c) X = 4r 

(d) X = r 

N Q2/Q "N 

1 0.947003 7.836X10"^ 

2 0.953705 6.871x10"^ 

3 0.953712 8.072x10"^^ 

1 0.976359 2.622x10"^ 

2 0.998282 1.055x10"^ 

3 0.998378 9.618x10"® 

4 0.998378 1.983x10"^^ 

1 1.025257 1.205x10"^ 

2 1.117392 2.694x10'^ 

3 1.119781 2.395x10"^ 

4 1.119804 8.338x10"® 

5 1.119804 1.160x10"^® 

1 1.112364 9 

2 2.063362 6.415x10"^ 

3 2.416502 1.034x10"^ 

4 2.492048 1.275x10"^ 

5 2.502471 1.134x10"^ 

6 2.503456 7.340x10"^ 

7 2.503522 3.499x10"^ 

8 2.503525 1.244x10"^ 

9 2.503525 3.332x10"^ 

TABLE 4.5 

Results for the asymptotic value Q2 of (4.14)-(4.15) and the 

bound on the error bĵ  , (4.21), in taking B*(NX) = 0 for varying X. 

As X decreases it may be seen that the number of iterations increases 

to obtain the same accuracy. Also, Q^ increases with decreasing X. 



realistic values of transition rates as discussed earlier, 10 and 7 

decimal place accuracy is obtained from assuming B (3X) = 0 . As A 

increases it should be discernable that the value obtained by assuming 

B*(A) = 0 is closest to the "true" asymptotic value. In general, as 

A increases the less gradual is the change and the faster is the method. 

Note that for X = r we do not have an upper bound, on the error, b^ 

caused by taking B*(X) = 0 since, as stated earlier, we need NX to 

be greater than r in order that an upper bound on B*(NX) exist. 

The upper bounds on Q2 , as given by (4.21), for X = lOr , 7r and 

4r are 0.954839Q, 1.002581Q and 1.145807Q respectively. The asymptotic 

values of Table 4.5 are compared, in Table 4.6, with the asymptotic 

total birth rates obtained as a result of an abrupt Keyfitz change. The 

asymptotic total number, > given for the various X values 

X Q2/Q P2/P Relative % Difference 
From the Keyfitz Values 

cx> 0.859355 1.25505 0 
lOr 0.953712 1.39286 10.98 
7r 0.998378 1.45809 16.18 
4r 1.119800 1.63543 30.31 
r 2.503525 3.65630 191.54 

TABLE 4.6 

Asymptotic total birth rates Q2 for the model (4.14)-(4.15). 
The asymptotic total number is also given, and the values are 
compared to those of Table 4.2 resulting from an abrupt Keyfitz change 
(X 0°) . * * * * 

We note here, that, the asymptotic values, with X = lOr , for 

the countries whose essential data is presented in Table 4.1, are all 

approximately 11% different from the values obtained in Table 4.2 

resulting from the abrupt Keyfitz change. 
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FIGURE 4.3 
B(t) resulting from an exponential change of the net maternity function from •i'(x) to 

(j)(x)/R at a rate A = lOr. <Kx) is given in Figure 4.2 with C = 1. The graph is that of 
B(t)/Q versus time t. The straight line represents the asymptotic value Q2/Q as determined 
using the algorithm and as given in Table 4.5. 
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FIGURE 4.4 
BCt) resulting from an exponential change of the net maternity function from <i)(x) to 

(j)(x)/R at a rate X = 4r. (j)(x) is given in Figure 4.2 with C = 1. B(t) approaches 
the asymptotic value Q2/Q (the straight line). Q2 is obtained using the algorithm and is given 
in Table 4.5. 



The approach of the total birth rate to the asymptotic value is 

demonstrated in Figures 4.3 and 4.4 for X = lOr and 4r respectively. 

From Figure 4.4 it may be seen that the transition to replacement X = 4r 

is not large enough to immediately check the momentum of the total birth 

rate let alone that of the numbers. 

The modified block-by-block method, as described by Campbell and 

Day (1971) is used to solve the Volterra integral equation (4.14)-(4.15) 

for the total birth rate given in Figures 4.3 and 4.4. 

4.1.3 The Asymptotic Effects of a Differential, Gradual Time 

Dependent Scaling Towards Replacement Level Fertility Rates. 

The potential growth, due to those already alive at the origin 

compared with that of those b o m after, will be demonstrated by taking 

various transition rates v and X . A separable time dependent net 

maternity function will be considered where the time dependence lî ĵ (t) 

differs between the parent and subsequent populations. That is, 

assuming an initially stable population then, the model to be 

considered for the total birth rate B(t) is 

B(t) = Qil̂ Ĉt) 

eoo /»t 
— TX 

e (i)(x+t)dx + lî (̂t) B(t-x)(j)(x)dx , (4.27) 

where. 

e"^^ , k > 0 . (4.28) 

The above model has already been examined for v = X and is given by 

(4.14)-(4.15). 

It can be seen that by taking various values of v and X we 

may obtain the previous models. For example if we let v and X <» 

we obtain the abrupt Keyfitz model. If v = 0 and we let X ^ «> then 

we obtain Frauenthal's model. The model (4.27) with (4.28) permits 

differential fertility schedules for those b o m before the origin to 

those b o m after, and, represents a single exponential time dependent 

generalisation, to its fullest extent, of Frauenthal's model. 



From (4.28) we can see that k = 0 represents no change in the 

original net maternity function, while taking the limit as k « 

gives an abrupt change from <}>(x) to ())(x)/R . For 0 < k < » there 

is a gradual change to replacement level fertility. 

The asymptotic behaviour of (4.27)-(4.28) may be ascertained by 

again using Laplace transform techniques. If X = 0 then there is no 

change in the net maternity function of the new-born population and 

hence the population will continue to grow at the same initial 

exponential rate r with the initial stable equivalent births only 

changing if v is not also zero. 

Taking Laplace transforms of (4.27) and using (4.28) we obtain 

upon isolating B (P) 

, ilMlB^Cp) ^ § ^ Q ̂  (4.29) _ R ^̂ ^ R p-r ^ R p+v-r '' 

+ ^ 4>*(P+A)B*(P+A) . 

With A ̂  0 , the real root of the characteristic equation occurs at 

p = 0 so that we have the asymptotic value Q2 , using the Tauberian 

result, being given by 

Q, = Q " • * rRK RK v-r (4.30) 

where = " r , the mean age of childbearing. We note 
P=:0 LdP 

that (4.30) is exactly the same as (4.19) with X replaced by v for 

the terms arising from the parent population. Table 4.7 shows the 

asymptotic total birth rate, given by (4.30), for X and v taking 

in turn the values lOr , 7r and 4r . The values for X = v , 

presented also in Table 4.5, have been included for completeness. 

B*(X) in (4.30) is obtained by putting p = nX in (4.29) and thus 

setting up a recurrence relation as in the previous section. 



v/r X/r Q2/Q 

10 10 0.953712 
7 0.968411 
4 1.034882 

7 10 0.983249 
7 0.998378 
4 1.066869 

4 10 1.032397 
7 1.048167 
4 1.119804 

TABLE 4.7 

Values of Q^ as a result of the generalised time dependent 
counterpart of the differential fertility model of Frauenthal, as given 
by (4.27)-(4.28). v and X are transition rates belonging to the 
parent and subsequent populations respectively. The data used is that 
of the Australian females of 1967. 

Perhaps the most realistic model as represented by (4.27)-(4.28) 

would be a gradual change, with the change for the initial population 

being slower than that for the subsequent population. Therefore, the 

model with v = 7r and X = lOr would not be unreasonable. The 

extreme situation representing a realistic model would be a gradual 

change for those born before the origin with an abrupt change for the 

others, since, those born after the origin would have had a (the 

minimum age of childbearing) years to become accustomed to the new 

regime of fertility. The asymptotic total birth rate Q2 , for this 

latter situation, is obtained, from (4.30) by taking the limit as 

A «> , giving 

^ = BJL + ^ 

Q rR< R K • v-r 

where the first term is that obtained by Keyfitz under an abrupt change 

to bare replacement. We note that the above expression for Q^ is the 



same as (4.25) and hence the asymptotic values obtained are the values 

for the first approximations in Table 4.5. The contribution from the 

gradual change at a rate v , the second term in the above expression, 

can be determined by comparing the first values of Table 4.5 with the 

asymptotic values, for the Australian females, obtained under an abrupt 

change to bare replacement (Table 4.2). It can be seen, after a small 

calculation, that the contribution to Q2 , from the gradual component, 

is 10-2% and 29-4% for v = lOr and v = r respectively. 

For extreme (X = 0 and A «>) values of X , when ip^it) does 

not explicitly involve time, the convolution in (4.27) is not violated 

and hence there is no need to use the algorithm described in [4.1.2]. 

Further generalisations capitalising on this fact will be presented in 

Chapter 5. 

4.1.4 The Asymptotic Effects of a Gradual Time Dependent General 
Scaling of the Age-Specific Birth Rate. 

Tognetti (1976b) extended the Keyfitz (1971b) momentum problem by 

considering an abrupt constant scaling of the age-specific birth rate 

so that the population would eventually become stable rather than 

stationary. Keyfitz (1975) examined the model where the age-specific 

birth rate is abruptly scaled down and thus resulting in a population 

with a lower intrinsic rate of change. 

By allowing the age-specific birth rate to change abruptly from 

m(x) to m(x)/C , ^ = Tognetti (1976b) obtains, assuming an 

initially stable population, 

R-R 

where. 



K = i X dx , the expected age of giving birth for the 

stable population after the change. 

Then, the total birth rate will asymptotically approach B(t) = • 

To allow for a gradual time dependent change we will take 

-Xt X > 0 (4.32) 

in (4.14) and thus the stable equivalent births Q2 may be obtained in 

a fashion similar to that of Subsection [4.1.2]. The Laplace transform 

of (4.14), with (4.32), yields on rearrangement 

[C-<i>*(p)]B*(p) = Q ^ Q(C-l) ^"plx^r^^ ^ (C-l)(i.*(p+A)B*(p+X). (4.33) 

Hence with the real root of <i)*(p) = C , r^ , having the greatest real 

part we have, from (4.33), using the Tauberian result, that 

Q2 = ¿im (p-r2)B (p) 
p->r2 

= Q 
C-1 C-1 

(r-r2)CK CK (4.34) 

where 

Ldp p=r. 

and Q2 is such that the total birth rate will asymptotically approach 

B(t) = Q2e 
r2t 

It would be possible to evaluate Q2 from (4.34), and hence the 

asymptotic behaviour of the resulting population could be determined if, 

B*(r2+X) were known. In order to obtain B*(r2+X) we proceed as in 

Subsection [4.1.2] and set up a recurrence relation from (4.33). Thus 

putting p = r2 + nX into (4.33) results in a recurrence relation from 

which we may obtain approximations to the stable equivalent births Q2 

by determining approximations to B*(r2+X) , obtained from assuming 



B*(r2+NX) = 0 for successive values of integer N . If r^ = 0 we 

have C = R and thus we obtain the model treated in Subsection 14,1.2 1. 

If 0 < C < 1 then ijj(t) , as given by (4.32), is a monotonically 

increasing function of time approaching ^ . Thus the error analysis, 

and hence the algorithm of Subsection [4.1.2], cannot be used since we 

do not have an obvious upper bound on B(t) . Hence, comparison of 

successive approximations of Q2 will have to be made stopping when 

the relative error is considered small enough. We note that the present 

model need no longer be one of contraception depending on C relative 

to R since if C < R we have r^ > r . 

The effect of C on the stable equivalent births Q2 is shown 

in Table 4.8 with the intrinsic rates of change and the net reproduction 

rates of (i)(x)/C given in Table 4.7. For C = 0.75 we do not have an 

upper bound on the absolute error since i|;(t) , as given by (4.32), is 

now monotonically increasing. The approach to Q2 for C = 0.75 is 

demonstrated in Figure 4.4 with X = lOr . 

c r R 

1.0 1.09537x10" 
•2 

1 .3451 

c R2 

1.50 -3.98839x10" 
•3 0 .89674 

1.25 2.69517x10' 
•2 

1 .07609 

R 0.0 1 .0 

0.75 2.17295x10' 
•2 

1 .79348 

TABLE 4.7 

Intrinsic rates of change r and net reproduction rates R of 

the net maternity functions 4>M/C for varying C . (i)(x) is the 

net maternity function for the Australian females (1967). 

* * * * 



C = 1.50 

C = 1.25 

C = 0.75 

N Q2/Q 

1 0.931268 1.115x10"^ 
2 0.940661 1.384x10"^ 
3 0.940673 2.287x10"^ 

1 0.958691 5.746x10"^ 
2 0.963661 3.707x10"^ 
3 0.963664 3.217x10"^^ 

N Q2/Q RELATIVE ERROR 

1 1.067154 
2 1.061161 5.648x10"^ 
3 1.061165 4.240x10'^ 

TABLE 4.8 

Approach to the stable equivalent births Q2 of (4.14) with 
(4.32) for varying C, at a rate A = lOr . Approximations to Q2 in 
taking B*(r2+NX)= 0 with bound on the error, b̂ ^ , are presented. 
There is no known bound on the error for C < 1 ; hence the relative 
error is computed. The total birth rate will asymptotically behave 
like 

B(t) = . 



B(t) 
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FIGURE 4.5 
Scaled total birth rate resulting from an exponential change of the net maternity function 

from (}>(x) to (i)(x)/C, C = 0.75, at a rate X = lOr. The diagram shows the approach of 
towards the asymptotic value Q^/Q given in Table 4.8. B(t) is the solution to (4.14) with 
(4.32). 



4.2 A Non-Separable Time Dependent Net Maternity Function and Its 
Effect on the Momentum of Population Growth. 

A number of authors have stated that a uniform scaling of the age-

specific birth rate is difficult to rationalize. Keyfitz (1971b) himself 

noted that "the fall in the birth rate is likely to be more rapid for 

older women than for younger", later reiterating this in Keyfitz (1975), 

noting that the drop is related to the method of contraception used. 

Ryder (1975) indirectly obtains a gradual change to replacement including 

a change in the age structure of the net maternity function, by allowing 

the intrinsic rate of natural increase to change. Ryder notes "it seems 

plausible that reductions in fertility will tend to appear dispropor-

tionately in births of higher order, which generally occur at higher 

ages". Potter et al. (1977) analyse the impact of certain sterilisation 

policies on the momentum which affects certain older age-groups and 

postulate a gradual coverage of the population. 

To allow women of older ages to be more affected by a fall in the 

age-specific birth rates. Mitra (1976) abruptly changes m^(x) to 

so that the population would eventually become stationary. 

Mitra states as a "final observation", what I consider to be the more 

important result (although suffering from lack of analytic investigation), 

that we can change from ai^ age-specific birth rate m^(x) to any other 

m2(x) . Thus with «ÍÍ̂ Ô) = 1 , in our notation, Mitra obtains, the 

asymptotic total birth rate 

= ' 

fCO 

where K = X(i)2(x)dx , the average age of childbearing in the 

subsequent stationary population 



Again, it is unrealistic that such a change can occur abruptly. 

Thus in Cerone and Keane (1978b) the non-separable time dependent net 

maternity functions 

$(x,t) = + J , A > 0 , (4.36) 

was presented, incorporating both a change with time and age. As 

discussed in Chapter 2, <|)j(x) and <1)2 (x) are the initial and the 

eventual net maternity functions, respectively. 

It should be noted that a subscript of 1 refers to population 

parameters of the initial population while a subscript of 2 refers 

to the ultimate value of a parameter after the change. 

We will assume that the initial and final net maternity functions 

to be such that 

(i)*(r.) = 1 and <i.*(0) = R^ , i = 1,2, , (4.37) 

and hence the population will, in general, eventually become stable with 

the stationary state being a special case (r^ = 0 and R2 = 1). Thus 

from (2.28), (4.36) and (4.37) we have the time dependent net 

reproduction rate 

R(t) = R2 • 

Inserting (4.36) into the generalised renewal equation 

B(t) = Q^e"*!^ e"^l*<f(x,t)dx + B(t-x)$(x,t)dx , (4.38) 

where B(t) is the total birth rate, gives the model to be solved. We 

have further assumed, for simplicity, that the population is initially 

stable. 

Now, to obtain the asymptotic behaviour of (4.38) with (4.36) we 

proceed in a similar manner as in Section [4.2]. Taking Laplace 



transforms of (4.38) and using (4.36) gives on rearrangement 

l)2(r̂ )-(î)*(p) l-c|)*(p+X) (|)2(rp-(i)*(p+X)' 
[1-4)2(p)]B (p) = Qj p-r. p+X-r. p+X-r. 

+ B (p+X)[(i)*(p+X) - (j)*(p+X)3 (4.39) 

We obtain the asymptotic behaviour by letting p r^ , in (4.39) 

where r^ is given by (4.37)^ , and using the Tauberian result 

ilim (p-r2)B*(p) = Q^ , the stable equivalent births. 

Hence on using L'Hôpital's rule 

Urn e = K (4.40) 

the average age of childbearing, we have 

V ^ l X.r^-r^ X.r^-r^ 

where the ultimate total birth rate will be of the form B(t) = Q2e 

(4.41) 

r2t 

If we let X » in (4.41) so that, using (4.36), the change in 

the net maternity function occurs instantaneously at t = 0 , we obtain 

a generalisation of equation (4.35) as 

= • 

which is now the stable equivalent births rather than the asymptotic 

stationary value. 

In order to find the stable equivalent births Q2 from (4.41), 

we need to know B*(r2+X) . B*(r2+X) can be found by using the 

technique developed in Section [4.1], with the separable time 

dependent net maternity function, which involves setting up a backward 



recurrence relation by putting p = r2 + nX in (4.39). 

The error analysis and hence the algorithm developed in Subsection 

[4.1.2] may not readily be used, since, a meaningful upper bound on 

B(t) is not at all obvious for the non-separable model. If, for 

example, < (p̂ Cx) for all values of x , then (4.36) is a 

monotonically decreasing function of time, t . Hence, now, B(t) < Q^e^^^ 

and thus the algorithm of [4.1.2] may be used. In general, however, 

comparison of successive approximations of Q^ will have to be made, 

stopping when the relative error is considered small enough. 

Consider a numerical example where <i>j(x) and 

given by Figure 4.6. The convergence of the numerical method, for 

A = lOr , to the stable equivalent births is demonstrated in Table 4.9. 

The approach of the scaled total birth rate to Q2/Q1 ^^ shown in Figure 

4.7. * * * * 

r^ = 1.095374x10"^ , 

r^ = 1.210951x10'^ , 

R^ = 1.345111 

R^ = 1.372250 

N Q2/Q1 RELATIVE ERROR 

1 1.006630 ___ 

2 1.005075 1.547x10"^ 

3 1.005075 1.580x10"^ 

TABLE 4.9 

Approach to the stable equivalent births Q2 for the model (4.38) 

with (4.36) at transition rate X = lOr . Approximations, to Q2 , are 

given from assuming B*(r2+NX) = 0 . The time dependent net maternity 

function varies exponentially from <|)̂ (x) to (i>2(x) which are given 

in Figure 4.6. The total birth rate will asymptotically behave like 

B(t) = Q2e 
r2t 



FIGURE 4.6 
Extreme net maternity functions (|)i(x), <i)2(x) where 

(|)l(x) is the net maternity function of 1967 Australian females. 
The graph of (i>i(x) is that with the lower peak. 
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FIGURE 4.7 
Scaled total birth rate resulting from a non-separable time dependent net maternity function 

with A = lOrj and (i)i(x) and (f)2(x) as given by Figure 4.6. The diagram shows the approach 
of e~^2t B(t)/Qi towards the asymptotic value Q /Q, given in Table 4.9. B(t) is the solution of 
(4.38) with (4.36). 



A model for the total birth rate B(t) ; which allows for 

differential rates between the parent and subsequent population, with 

exponential time dependence from one net maternity function towards 

another, is given by 

B(t) = Qj 
r<x> r t 

B(t-x)4>^(x,t)dx , (4.42) 

where 

$j^(x,t) = 4'2(x) + e"̂ [̂({)j(x)-(i)2(x)] , k > 0. (4.43) 

Here the population is still assumed to be initially stable. 

Equation (4.42) allows the females born before the origin to adopt a 

transition rate v and those after, a rate A . Thus the total birth 

rate B(t) will eventually be of the form B(t) = ' where Q2 

is given by (4.41) with X replaced by v in the terms arising from 

the initial population. 

While particular choices of v and X will reproduce the models 

previously discussed, the above extension (4.42) provides for a further 

variety of possibilities. Also if <}>2(x) is a constant multiple of 

(j)̂ (x) then we will obtain the models discussed in Section [4.1]. 

If 0 < X < <» then the numerical method of setting up a 

recurrence relation to obtain B*(r2+X), and hence Q2, will have to 

be used. Comparison of successive approximations to Q2 will have to 

be made stopping when the relative error is deemed small enough. 



4.3 The Transition Rate Needed to Approach a Given Asymptotic 
Behaviour - The Converse Problem. 

In Sections C4.1] and C4.2] we have been concerned with obtaining 

the asymptotic behaviour of a population resulting from the net maternity 

function, in particular the age-specific birth rate, changing with time. 

A question of both theoretical and practical importance asks what changes, 

in the age-specific birth rate, are needed in order to approach a given 

asymptotic behaviour? In other words we have the converse problem. 

Nortman and Bongaarts (1975) determine the total annual number of 

contraceptive acceptors required to achieve a prescribed crude birth 

rate target path. Although our aims here are not as ambitious, we are 

able to find, using the results and models of Sections [4.1] and [4.2], 

the transition rate X , given the stable equivalent births Q^ . 

We will assume that the age-specific birth rate changes at a rate 

A according to the model (4.13) and (4.15). Then, given the 

asymptotic total birth rate Q2 , (4.19) results in an equation in X , 

where B*(X) is found in a similar manner to that indicated in 

Subsection [4.1.2], using the backward recurrence relation. We can 

find X by using any of a number of root finding procedures such as 

the Newton-Raphson method and the secant method (see for example 

Keyfitz (1968b)]. The author has used the Modified Muller method, as 

presented in Blatt (1975), which is both rapid and stable. The method 

involves giving an estimate of an upper and lower bound on X as initial 

values. Care must be taken in determining whether such a X does exist. 

For example, if the asymptotic total birth rate Q^ is less than that 

obtained under an abrupt Keyfitz change to bare replacement, then no 

such X exists. 



We can also determine a transition rate A that will 

asymptotically result in a certain total number P2 , in the population 

For, given P^ = ^ ^ » (4.18) and (4.19), 

with which the total birth rate, of (4.14)-(4.15), will asymptotically 

tend to 

Po 
Qo = 
2 o K e b 

and hence the total number will tend to P^ • 

Table 4.10 presents values of X given Q2 and/or ?2 

Australian data. We note that we can obtain a X so that Q2 = Q 

asymptotically but no X exists which will result in P^ -

since, we see from Table 4.2 that under an abrupt Keyfitz change 

(corresponding to X -> ®) P2 > P . 

Q2/Q P2/P X X 10^ 

1.0 

1.027074 

1.369432 

2.054147 

1.369432 

1.5 

2.0 

3.0 

7.587028 

6.468735 

2.502898 

1.343036 

TABLE 4.10 

The transition rates X are obtained for the model (4.14) with 

(4.15) for given asymptotic total birth rates Q2 or equivalently for 

given asymptotic numbers P2 . The data of the Australian females of 

1967 is used (Table 4.1). 
* * * * 

The converse problem can also be solved for the models of 

Subsection [4.1.4]and Section [4.2] in a similar manner. However, given 

the desired asymptotic behaviour under the differential fertility models 

of Subsection [4.1.5], and also of [4.2], one of the transition rates 

must be specified, either in terms of the other or explicitly, in order 

that the other may be obtained. 



4.4 The Transient Solution Resulting From an Exponential Time 
Dependent Change of the Age-Specific Birth Rate. 

in the present chapter we have been conccrned with obtaining the 

asymptotic behaviour of a population under various time dependent 

fertility behaviour. We will now consider obtaining the transient 

behaviour of the solution resulting from the time dependent net 

maternity function as given by (4.36) - the non-separable model. The 

asymptotic behaviour was determined in Section [4.2] by obtaining the 

contribution from the real root of the characteristic equation 

^ L I V ) = 1 . ( 4 . 4 4 ) 

Using residue theory, we can develop the transient solution of ( 4 . 3 8 ) 

with (4.36) by obtaining the contribution from the complex roots of 

( 4 . 4 4 ) . 

Let p^ be a complex root of ( 4 . 4 4 ) which is assumed to be simple. 

Then proceeding in a formal manner, using the residue theorem, letting 

p p^ in ( 4 . 3 9 ) gives 

k . Q . = F * ( p . ) + B * ( p . + X ) [ ( i , * ( p . + X ) - ( | ) * ( p . + A ) ] , ( 4 . 4 5 ) 

where 

Q^ = lim (p-Pj)B*(p) , 

P^Pj 

F*(p^) is the contribution from the parent population. 

K . = -
3 dp 

P^P, 

and B.(t) = Q.e^J^ is the contribution, to the total birth rate B(t) 

from p. a root of (4.44). Equating real and imaginary parts of (4.45) 

we obtain 

K^q^ = f(Pj) + C(p^+X)b(pj+X) , (4.46) 



where. 

K. = J 
Re K. -Im K. J J 
Jm K. Rc K. J J 

aj = 
Rc Q. J 
Im Q. 

J J 
f ( s ) = 

Re F (s) 

Im r*(s) 

b(s) = 
Re B (s) 

[Im B*(s)J 
C(s) = 

Re <p (s) -Im (l)*(s) 

Im i*(s) Re 

and TCs) = (t.*(s) - (i)*(s) 

We do not know b(Pj+X) which is needed to obtain q^ . Hence 

proceeding as we did previously in similar circumstances, we let 

p = p^ + nX in (4.39), and equating real and imaginary parts we obtain 

the recurrence relation 

where, 

fe(Pj^n^) = ¿n ^ ^n feiPj^^"*!)^) > 

d^ = A"^p.+nX)f(p.+nA) , 

E^ = A'^(p.+nX)C(p.+(n+l)x} , 

(4.47) 

A (S) = |A1 

1 - Re (i>2(s) Im (i>2(s) 

- Im (P*(s) 1 - Re (P*Cs) 

and |A| = [1 - Re (l>*(s)]̂  •»• [Im (P*(s)]̂  . 

We let b(p.+NX) = 0 for some N chosen so that each of the 

entries of the matrix C(p^+NX) is numerically less than 1 . That is, 

we choose N so that 

Re(Pj) + NX > max{r^,r2} , 

where r^ and r2 are given by (4.37). Such a choice of N is 

necessary to enable the method to converge and thus obtain a reasonably 

accurate approximation to B*(Pj+X) . 



The numerical method, to obtain the contribution from the complex 

roots of the characteristic equation, is slower than that described 

earlier to obtain the asymptotic behaviour which results from the 

contribution from the real root. Thus the method is less efficient 

the more Re(p^) becomes negative. We can however obtain the solution 

resulting from a "few" of the right-most roots, which will be sufficient 

to characterise the solution for large time t , and use the methods of 

Chapter 3 to obtain the total birth rate for smaller values of time. 

In any event, the above procedure is still more efficient than a 

detailed projection obtained by solving the integral equation 

numerically. 

It should be noted that the population need not be initially stable 

for the methods of the present chapter to be used. This assumption is 

only made for simplicity and invaluable only in obtaining the error 

analysis of Subsection [4.1.2]. If the assumption of initial stability 

is not made then, as in other sections, comparison of successive 

approximations to the stable equivalent would have to be made. 



5. The Asymptotic Behaviour Resulting From a General Time 

Dependent Net Maternity Function. 

In the present chapter the methods developed in Chapter 4 to 

obtain the asymptotic behaviour of a population, will be extended to 

include more general time dependent changes of the initial age-specific 

birth rate. 

The time dependence is firstly extended to a sum of exponentials 

which provides scope for a great variety of paths of change from the 

single exponential of Chapter 4. Using the extension of Section [5.1] 

to the recurrence relation method developed in the previous chapter, 

we present a model in Section [5.2] which allows the various age groups 

of the initial net maternity function to change at different transition 

rates of time, towards the eventual net maternity function. Keyfitz 

(1975) notes that the dissemination of birth control information and 

materials strikes the various age-groups unequally and hence the model 

of Section [5.2] would amply cover this situation. 

One could postulate that the effects of policies aimed at changing 

the age-specific birth rate are slow at first, then accelerate only to 

slow down as a set target is approached. A model which allows for a 

more gradual change with time than the exponential, is presented in 

Section [5.3]. The general sum of exponentials of Section [5.1] 

may also represent this type of a more gradual change. 

Realistic net maternity functions are positive for age x such 

that a < X < 3 and zero elsewhere. Thus if the initial net maternity 

function is allowed to change with time over an interval less than or 

equal to the lowest age of childbearing a then, the convolution is not 

disrupted. In Section [5.4] the asymptotic effects of a general time 



dependent scaling of the initial net maternity function for 

0 < t < T ^ a is examined. A non-separable model which allows for 

the age structure of the initial net maternity function to differ from 

that at t = T , is also presented and the asymptotic behaviour is 

obtained. 

A change of the age-specific birth rate with time is likely 

however, especially in the less developed countries, to occur over a 

period of more than a = 10 or 15 years. Frejka (1973) allows for a 

linear change to replacement level fertility over 0, 10, 30, 50, 70 

years and Keyfitz (1971b) states that at best, such a change would occur 

over 30 or more years. Appreciating the need for the time dependence 

to occur over a larger period than a , and utilising the fact that we 

can now handle problems with exponential time dependence, we present 

models in Section [5.5] which take these points into consideration. 

The time dependence for 0 < t a can be general whereas for t > a 

any of the exponential-based models presented previously may be used 

to find the asymptotic behaviour of the population where the recurrence 

relation method will have to be utilised. 

Only the asymptotic behaviour of the total birth rate is 

considered since that of the total number and the age density, 

information which is usually wanted, follow without too much 

difficulty. 



5.1 The Time Dependence as a Sum of Exponentials. 

We have discussed, in the previous chapter, the asymptotic 

behaviour of a population subjected to an exponential time dependent 

change of a general, initial age-specific birth rate. We will now 

consider the time dependence to be a sum of exponentials and thus allow 

a more general time path. The methods of the previous chapter can again 

be used here but require some modification. The non-separable model 

will be examined since the separable model is a special case. However, 

it is more enlightening to determine the time path for a separable net 

maternity function since the effect on the initial age structure is 

more obvious because the time dependence merely provides a scaling 

factor. 

Let the time dependent net maternity function be given by 

<i>(x,t) = <i)2(x) + C(t)C())j(x) - (|)2(x>] , (5.1) 

where C(t) is a continuous non-negative function satisfying 

^(0) = 1 and ilim ^(t) = 0 , (5.2) 

t-X» 

and, <i> (x) and i|)~(x) are the initial and the final net maternity 

functions, respectively. The time dependence, in (5.1), is assumed 

only to affect the age-specific birth rate and n ^ the survivor function 

(and hence, not the age-specific death rate). Then, with $(x,t) as 

given by (5.1), we have, assuming an initially stable population, the 

total birth rate B(t) being given by 

B(t) = Qj + B(t-x)(|)2(x)dx 
• o ° (5.3) 

•»• C(t){Qi e'^l*[(i)j(x+t)-(()2(x+t)]dx + B(t-x)[(l)j(x)-(l)2(x)]dx| . 



Let = {1,2,3,... ,M} and, 

U t ) = I Y^e-^ni^ , (5.4) 
m=l 

where the conditions, on C(t) , (5.2) imply that; ^ ^ unless 

Yjjj = 0 and hence, without loss of generality, 

A > 0 for all m e L , 
m M 

M 
and y Y = 1 

in=l 

(5.5) 

The above time dependence, (5.4), while including the model of 

Chapter 4 as a special case (viz. M = 1), provides scope for a further 

variety of paths from the initial, to the eventual net maternity 

function. The above sum for C(t) , in (5.4), allows for 2M degrees 

of freedom in determining the {YĴ }̂ and {X^} . However, finding these 

values is a very difficult problem. A variety of shapes can be obtained 

even if we take M = 2 . For example. Figures 5.1 and 5.2 show the 

types of time variations that can be obtained from (5.4) with (5.5), 

where M = 2 and X^ = = 2 \ . Figure 5.1 shows the effect of 

changes in A by fixing Yj = Y = 2.0, and thus having ^'(0) = 0 . 

The response to variations in Y is demonstrated in Figure 5.2 with 

A = 0.05. 

To obtain the asymptotic behaviour of the total birth rate, for 

the model given by (5.3) with (5.4), we proceed in a formal fashion 

similar to that of the previous chapter viz. by Laplace transform 

techniques. 

Taking the Laplace transform of (5.3) and using (5.4) we obtain, 

on rearrangement 
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FIGURE 5.2 
Diagram showing 5(t) = ye + (l-y)e' , (m = 2 and 

\2 - 2\i = 2A in (5.4)) for A = 0.05 and varying y . From 
top to bottom y = 2.5, 2.0, 1.5, 1.0, 0.5. 



= Q^ ^ ^ ^ I YJ p-r. m=l (5:6) 
(|)*(r )-(j)*(p+X ) 

^ m 1 

We let p r2 , the real root of (|)*(p) = 1 , and using the Tauberian 

result 

Q2 = i-im (p-r2)B*(p) , the stable equivalent births, we obtain 

^-.CrJ-l M 
<Qo = Qi — ^ I y 1 r2-r^ m=l m m 2 1 

(5.7) 

where k is the expected age of childbearing in the eventual stable 

population and is given by (4.40). 

In order to obtain Q2 from (5.7) we need to evaluate 

B*(r.+X ) for m = 1,2,...,M . 

Then, the total birth rate would tend asymptotically to B(t) = . 

Obtaining B*(r2+X^) for arbitrary X^ , by setting up.a recurrence 

relation (as it was done in Chapter 4), does not seem possible. However, 

if {X } are commensurable, in particular if m 

X = k X , m m (5.8) 

where X is some constant and {k^} are positive integers then, the 

method is successful. Putting p = r2 + nX in (5.6) and using (5.8) 

produces a recurrence relation of the form 

B*(r2+nX) = + I ^^^ B*[r2+(n+kJX] , n = 1,2,... . 

m=l 

Choosing B*(r2+NX) = 0 for some N we acquire, using the backward 

recurrence relation above, successive approximations to the {B*(r2+k^X)} 



and hence to Q^ . 

When determining the unknown constants, in (5.4) with (5.8), a 

number of optimising conditions for the above process (using the 

recurrence relation) should be observed. Namely, 

(i) The smaller M is the better since M determines the number 

of unknown quantities in (5.7). 

(ii) The smaller {k^} are the better since they determine the 

relative size of N , in assuming B*(r2+NA) = 0 , for obtaining 

approximations to 

(iii) The convergence of the method is dependent on the speed with 

which the 

decrease as n increases. Hence the bigger A is 

the better; and, if l̂'n,! ^ ^ ^^^ » convergence of the 

numerical method is fastest. The effect of X on the convergence is 

greater than that of the {y^} , when the {<l)̂ (x)} are defined over a 

finite interval since, as demonstrated in Chapter 4, {<j>^(nX)} would then 

decrease exponentially with increasing n . 

Although it is difficult to determine the function (5.4) with 

(5.8), especially for "large" M , the above exercise does show that 

the recurrence relation method can still be applied if more than one 

exponential is present; provided, the exponents are integer multiples 

of some constant. This fact allows for a number of further generalities 

such as being able to allow the various age-groups, of the age-specific 

birth rate, to change at different rates of time. This model is 

presented in the next section. 



5.2 Differential Time Dependence For the Various Age-Groups. 

Problems in which the age-specific birth rate is scaled abruptly 

at the origin, by a constant, have been studied by Keyfitz (1971b) and, 

Tognetti (1976b). A gradual exponential time dependent scaling was 

developed and presented in Cerone and Keane (1978a). Mitra (1976) 

analysed the consequences of an abrupt change of the net maternity 

function to any other; and, hence allowing variation in the age 

structure of the maternity behaviour. A time dependent counterpart 

to Mitra's model was presented in Cerone and Keane (1978b). 

We shall, here, present a model in which not only does, the age-

specific birth rate change its age structure with time as in Cerone 

and Keane (1978b), but, the time dependence will differ with age. Thus 

we will have the various age-groups changing at different rates from one 

net maternity function to another. 

The initial and final net maternity functions will be assumed to 

be represented in a discrete fashion since even if they were continuous 

then, with differential time dependence over the age-groups, $(x,t) 

would in general be discontinuous. We will consider the time dependent 

net maternity function to be of the form (5.1) where {<i)̂ (x)} are 

represented by histograms with the discontinuities occurring at the 

same points {b^} . Hence, the model to be considered is 

M 
$(x,t) = I , (5.9) 

m=l 

where, 

and S^(x) = - x) . 

(5.10) 



The above model (5.9) was also presented in Chapter 2, and the 

transient solution was obtained, however the time dependence ĵ̂ (t) 

in (5.10) was the same for all age-groups. The model (5.9) not only 

allows for a change in the age structure but also for the rate at which 

the eventual net maternity function is achieved. 

The simplest example of (5.9)-(5.10) is when particular policies 

influence one age-group at a different rate to the rest. Thus the time 

dependence Cjĵ (t) for m = 1,2,...,M would be the same except for the 

one age-group. 

Hence, with $(x,t) as given by (5.9)-(5.10), and, assuming the 

population to be initially stable, the total birth rate B(t) is given 

by 
M r 

B(t) = I e"''l\(x+t)dx + 
m= 1 •'o 

B(t-x)S^(x)dx^ . (5.11) 

In order to obtain the asymptotic total birth rate we recall from 

Section [5.1] that the algorithm developed in Chapter 4 can be 

extended to handle problems where the time dependence is a sum of 

exponentials with commensurable exponents. Thus we will consider in 

particular 

-kjnXt = e (5.12) 

where {k } are positive integers and X is a constant. We obtain the m 
model of Section C4.2] if \ = for m = 1,2,...,M . 

The Laplace transform of (5.11) with (5.10) and (5.12) yields. 

M 
B*(P) = I 

m=l 
Q. a ^ m,2 p-^1 

+ Q- (a . -a o) m,l m,2^ 
S*(rJ-S*(p+k X) 

Hence, using the fact that 



Ill 

M 

m=l ' 

M 
(p) = ^ ^ Q , I 

ni= 1 ' ' p+k X-r. ^ m 1 

M 
(5.13) 

To obtain the stable equivalent births Q2 we proceed by using the 

Tauberian result and letting p r2 (the real root of (f)*(p) = l) 

then 

M 
r^+k X-r. 2 m 1 

M 
+ y (a ,-a ^)S*(r.+k X)B*(r^+k X) , 

where B(t) will asymptotically behave like B(t) = Q2e 

(5.14) 

r2t 

We need (B (r̂ +k̂ ^̂ X)} in order that the stable equivalent births 

Q2 may be evaluated using (5.14). To do this, we proceed in much the 

same manner as previously. Putting p = r2 + nX in (5.13) results in 

a recurrence relation of the form 

M , . 
B*(r^+nX) = 6 ^ + 5 ; ei"'^B*[r^+(n+kJX] , n = 1,2,... . (5.15) ^ XI 4 11 ^ IH 

m=l 

Successive approximations to {B*(r2+k^X)}, and hence from (5.14), to 

Q2 , are obtained by taking B*(r2+NX) = 0 for some N . We compare 

successive approximations to Q2 , stopping, when the relative error 

is considered small enough. It should be noted that N need not be 

taken as 1,2,3,... but a sequential advancement in equal steps is 

advisable for the comparison of successive approximations to Q2 , to 

be of value. 



5.3 Time Dependence as a Generalised Sech Function. 

In Chapter 4, a change in the age-specific birth rate was 

assumed to be either abrupt or exponential. However, one would postulate 

that the implementation of certain policies, which are to bring about a 

change in the age-specific birth rate, would at first be slow in their 

implementation, accelerating, then slowing down as the appropriate set 

target is approached. The model would also be able to represent an 

initial reluctance of a population to adopt the new policies. 

We will consider the time dependent net maternity function $(x,t) 

to be given by (5.1) where, 

= Xt ' , -At = ^ ' 
ye •»• (l-Y)e ^ 

When Y = 1 , (5.1) with (5.16) represents the model presented in 

Section [4.2] in which the change is exponential between two net 

maternity functions. If y = h in (5.16) then ^(t) = Sech Xt . 

Furthermore (5.16) can be looked upon as an exponentially scaled 

logistic, where ri(t) is an upside down logistic (Keyfitz (1968b)). 

The behaviour of (5.16), due to changes of A , is demonstrated 

(for fixed y) in Figure 5.3. The effect of y on ^(t) is shown in 

Figure 5.4. It can be shown, by differentiating (5.16), that ^(t) has 

no turning point t^ for y ^ 1 and ^o ^ depending on whether 

y \=\ h . Hence t is to the left of the vertical axis for h < y < \ [<J o 

and thus with such a y , C(t) would represent a function which 

decreases to zero monotonically for t > 0 . A possible way of 

determining the two unknowns y and X of (5.16) would be to specify 

the slope at the origin and the point of inflection (for 0 < y < 1). 
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100. 

FIGURE 5.3 
The effect of X on ^(t) as given by (5.16) with y = 0.5. 

The graphs represent C(t) from top to bottom with A = 0.0, 0.05, 
0.1, 0.5, 1.0. 
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FIGURE 5.4 
Diagram of the time dependence ^(t) given by (5.16) with 

A = 0.05 and varying values of y . From top to bottom 
y = 0.25, 0.5, 0.75, 1.0, 1.25. 



With i>(x,t) given by (5.1) and (5.16) we have, assuming an 

initially stable population, the total birth B(t) being given by 

(from (2.32)) 

n(t)B(t) = Qj e'^lNn(t)(j)2(x+t) + ^(x+t)-(()2(x+t) ][dx 
Jr» V J 0 

t 
B(t-x) 

0 

where we have multiplied throughout by the non-zero n(t) with 

n(t) = Y + (l-Y)e'^^^ . 

To obtain the asymptotic behaviour of B(t) we again use Laplace 

transform techniques. The Laplace transform of the above equation 

yields, upon rearrangement, 

Y[l-(i.2(p)]B*(p) = F*(p) + B*(p+X)[(i.*(p+X) - (i)2(p+A)] 

- (l-Y)B*(p+2A)[l-(i>*(p+2X)] , (5.17) 

where, 

1-4)*(p+A) (|)*(rp-(i.*(p) 

p+X-r^ p+X-r^ 

rot 

The total birth rate will asymptotically approach B(t) = Q2e ^ , 

where Q2 is obtained, from (5.17) by using the Tauberian theorem and 

letting p r2 . Thus we have 

YKQ2 = + B*(r2+A)[(i)*(r2+X) -

- (l-Y)B*(r2+2A)Cl - . (5.18) 

We need to find B*(r2+2A) and B*(r2+A) in order that the 

stable equivalent births Q2 may be evaluated from (5.18). Letting 

p = r2 + nA in (5.17) gives the following recurrence relation 



B*(r2+nX) = ^ B^fr^+Cn+l) X] + X], n=l,2,.., (5.19) 

where, 

6 = ^ n Yri-(t)*(r2+nX)] ' 

(1) 4>jCr2+(n+l)X] - (i)*[r2+(n+l)X] 

,(2) _ (1-Y) 

As we saw in Section [5.1] the recurrence relation, now given by 

(5.19), can be used to obtain successive approximations to B*(r2+2X) 

and B*(r2+X) and hencc, from (5.18), to Q2 by assuming B*(r2+NX) = 0 

for some N . 

We have stated previously that the speed of convergence of the 

method depends upon the coefficients ^̂ ^̂  "the present 

situation) of the B* terms on the right hand side of the recurrence 

relation. Hence, the method converges fastest if y is "close" to 1; 
1 3 

that is, for y ^ y ^ y . The method is slower than for the previous 

models since the error, produced in B*(r2+2X) and B*(r2+X) from 

assuming B*(r2+NX) = 0 , (for the separable model at least) is 

dependent ofi product of ê "̂  and g^^^ terms respectively. A 

product of e^^^ terms here decreases according to the coefficient 

in Y and not exponentially as would be the case for demographically 

realistic {4»ĵ (x)} . 

Comparable shapes (See Figures 5.1, 5.2, 5.3 and 5.4) to those of 

(5.16) can be obtained by representing C(t) , as in Section [5.1], by a 

sum of exponentials and thus the speed of convergence of the recurrence 

relation method would be faster if the latter were used. However the 



difficulty in determining the various parameters rises sharply as the 

number of exponentials in the sum increases. 

Various generalisations of (5.16) are possible, such as 

^^^^ " kiXt ~ , -k2At ' ye A + (l-Y)e ^ 

where k^ and k^ are positive integers and \ is a real 

constant. However these will not be pursued further here. 

As shown in Section [5.1] any non-negative function ^(t) 

satisfying conditions (5.2) can be used in (5.1) and, the recurrence 

relation method is appropriate; provided, ^(t) is a strict function 

of exponentials with commensurable exponents. Hence we may have a wide 

variety of functions as the time dependence, as long as, they consist 

of exponentials with the exponents being integer multiples of some 

A > 0 . 



5.4 General Time Dependence No Greater Than The Lowest Age of 
Childbearing, a. 

We noted in Subsection [4.1.3] that the convolution, for the 

total birth rate, is not violated for extreme values of the transition 

rate A . this is also the case if only the maternity behaviour of 

those already alive at the origin is allowed to change explicitly with 

time. Further, with a demographically realistic net maternity function 

- one that is non-zero on a finite interval (a,3) - the convolution 

is not violated if the time dependence is explicit only for 

0 < t < T ^ a . 

We present both separable and non-separable models for the 

time dependent net maternity function where the time dependence is 

explicit only for 0 < t < T $ a . 

It should be noted that the total number and age density are not 

affected explicitly if the time dependence, as here, refers only to 

the age-specific birth rate. A changing age-specific birth rate 

only affects the total birth rate explicitly and the change is 

transmitted to the total number and age density through its effect 

on the total birth rate. Hence we will only consider the effects of 

the time dependent net maternity function on B(t) . 

Consider the time dependent net maternity function given by 

X(t)^(x) , 0 < t < T ^ a , 

i>(x,t) = H 
M f , t > T 

which, on using the Heaviside unit function defined by (3.44), can 

be written conveniently as 



i>(x,t) = ";(t)H(T-t). i i M 
R 

(j)(x) , t > 0 , T ^ a . (5.20) 

Hence (5.20) is a separable time dependent net maternity function of 

the form (2.33) which provides a time dependent scaling of the initial 

net maternity function. Figure 5.5 gives a diagrammatic representation 

of the time dependence in (5.20) with linear and exponential x(t) . 

With $(x,t) from (5.20) we have, assuming an initially stable 

population, the total birth rate B(t) , from (4.13) with (4.14), given 

by 

B(t) = x(t)H(T-t) ^ i i i ^ e ^*(i)(x+t)dx + B(t-x)<i)(x)dxh , 

T $ a , (5.21) 

where (})(x) ^ 0 for a < x < 

We proceed to solve (5.21) in the usual manner using Laplace 

transform techniques. In particular we are interested in determining 

the asymptotic behaviour of B(t) . 

The Laplace transform of (5.21) yields 

B*(P) = F*(p) . ^ B*(p) , (5.22) 

with. 

Q •'a 
e'"^^(|)(x)dxdt 

R(p-r) 

where we have used, the fact that <i'*(r) = 1 and the definition (3.44) 

of the Heaviside unit function. 

Hence, rearranging (5.21) and substituting for F*(p) we obtain 



— T̂ T̂ Ti ^ F • (5.23) Q l - i l i E l . £ M 

Now p = r is not a pole, in the second expression of (5.23), but is 

merely a removable singularity. Further, the integral in (5.23) is an 

entire function for all positive functions x(t) so that it has no 

poles. Hence letting p 0 , the real root of = 1 which is 

greater than the real part of all the other roots, and using the 

Tauberian result, 

Q^ = £im pB*(p) , the asymptotic value, 
p^O 

we obtain the eventual stationary total birth rate, from (5.23), as 

e"x(t)dt + ^ [R-e"] , (5.24) 

where K is the average age of childbearing. 

Note that if we let T 0 in (5.20) then we obtain the abrupt 

change to replacement level fertility model of Keyfitz and hence from 

(5.23) we correctly obtain the asymptotic value found by Keyfitz as 

given by (4.5). The difference D of (4.5) from (5.24) gives a 

comparison, between the asymptotic total birth rate Q^ , resulting from 

an abrupt Keyfitz change to replacement level fertility with that from 

a gradual change depicted by (5.20), where 

e'^^(t)dt + Q ^ ^ . (5.25) D = a 
K 

Hence writing (5.24) as 

Q^ = Q2(Keyfitz) + D , 

we can say that if for all t , 0 < t < x , x(t) ^ ^ then D ^ 0 , 

and for 0 < x(t) ^ ^ then D ^ 0 . 



However if x ( t ) can take values on either side of i then we cannot 
K 

readily say whether, with the present model (5.20), we would have an 

asymptotic value higher or lower than that obtained by Keyfitz. 

We now consider a number of models for x(^) • 

X(T) = 1 then we obtain a model also discussed by Keyfitz 

(1971b) in that the abrupt change to replacement level fertility 

behaviour is adopted at time t = T and not necessarily at the origin. 

Hence from (5.24) we obtain the asymptotic value 

Q(R-l) 

^2 = ' C5.26) 

rx 

which is e times the value obtained under an abrupt change, to 

replacement level fertility, at the origin. Note that the time 

dependence affects the convolution if T > a . In particular, an abrupt 

change at some time T would have to be such that T ^ a , the minimum 

age of childbearing. 

Further models involve the separable time dependent net 

maternity function (5.20)with linear and exponential x(t) . Thus 

we can determine the asymptotic total birth rate due to the model (5.20) 

with 

X ( t ) = 1 - e t , 

and x(t) = e 

where, for continuity 6 = i 

(5.27) 

and ê "̂  = R . 

Figure 5.5 shows a diagram of x(t) given by (5.27) which make 

ij;(t) , the coefficient of <i)(x) in (5.20), continuous. A discontinuous 

i/;(t) at t = 0 and t = t is demonstrated in Figure 5.6 for linear and 

exponential x(t) viz.. 



X(t) = a. 1 - ^ 
T " % • 7 ^ 

and x(t) = a^c -At A T ^O 

respectively. The asymptotic total birth rate Q^ may be obtained 

from (5.24). 

* * * * 

FIGURE 5.5 
Linear and exponential time dependence over 0 < t < x $ a. 

This diagram represents the continuous time scaling models of the age-
specific birth rate to replacement level, as given by (5.20) with 
X(0) = 1 and x(t) = 1/R. 

T a ^ 

FIGURE 5.6 

Sketch of linear and exponential time dependence over 
0 < t < T ^ a with discontinuities at t = 0 and t = x . The 
above sketch represents the coefficient of (j)(x) in (5.20) with 
linear and exponential 



With the time dependence (5.27) we obtain, from (5.24), the asymptotic 

total birth rate as 

Q = q M L 
^2 ^ rRK 

r rx -
e - 1 

rt 

(5.28) 

respectively. 

Table 5.1 gives the asymptotic values Q^/Q > given by the 

formulae (5.26), (5.28)^ and (5.28)2 abrupt, linear and 

exponential change on 0 < t < T ^ a respectively, for, varying values 

of T . We see from the table that a delay of 10 years in changing 

abruptly to bare replacement fertility, results in an 11.58% relative 

increase in the asymptotic total birth rate, Q2 . 

The converse problem for an abrupt, linear or exponential change 

on 0 < t < T $ a can also be solved. Thus given an asymptotic total 

birth rate Q2 we can determine T (which characterises the particular 

time dependence x(t)) from (5.26), (5.28)^ and (5.28)2 depending on 

whether we assume an abrupt, linear or exponential change. Some root 

finding procedure would have to be used to find T from (5.28). 

However T can be obtained directly, in the case of an assumed abrupt 

change, from (5.26). No such T will exist if the given asymptotic 

value is outside the interval between the upper and lower bound which 

occurs, for x(t) monotonically decreasing, at T = a and T = 0 

respectively. The bounds are obtained from (5.26) or (5.28) depending 

on the type of time dependence, x(t) , that is assumed. 

It is of interest to note that a given asymptotic value Q2 may 

possibly be obtained as a result of more than one particular type of 

time dependence. For example, given a linear change to bare replacement 



Q2/Q 

T ABRUPT LINEAR EXPONENTIAL 

0 0.859355 0.859355 0.859355 

(0.0) (0.0) (0.0) 

2 0.878389 0.868837 0.868368 

(2.21) (1.10) (1.05) 

4 0.897845 0.878459 0.877510 

(4.48) (2.22) (2.11) 

6 0.917731 0.888224 0.886784 

(6.79) (3.36) (3.19) 

8 0.938058 0.898132 0.896192 

(9.16) (4.51) (4.29) 

10 0.958836 0.908188 0.905735 

(11.58) (5.68) (5.40) 

TABLE 5.1 

Asymptotic total birth rate Q2 resulting from an abrupt change 

at t = T , and, a linear and an exponential change over 0 < t < T ^ a 

Various values of T are taken and Q2 is given by (5.26), (5.28)^ 

and (5.28)2 respectively. The numbers in the brackets are the percent 

relative difference from the asymptotic value obtained under an abrupt 

change at the origin (t = T = 0) , to replacement level. The 

Australian 1967 female data is used. 



for 0 < t < T, then an abrupt change at 

ri -
e - 1 T ^ - in r 

ri 

obtained from equating (5.26) with (5.28)^, will produce the same 

asymptotic total birth rate Q2 . Care must be taken with such problems 

since we have the restriction on T that 0 < T < A , and, no such T 

may exist. For example, it can be easily seen from Table 5.1 that for 

T = T = 10 in the abrupt model, resulting in Q2 = 0.958836Q, then 

neither a linear nor an exponential change can produce the same 

asymptotic value Q^ . We need to check that Q2 is in the range of 

possible asymptotic values of the new model. 

Another example of the time dependence x(t) in equation (5.20) 

is 

N 
X(t) = I ^ ' ^o = ^ ' = ^ ^ « > ^5.29) 

n=l 

which represents a histogram and thus allows great flexibility in the 

type of change involved. The {o^} are all strictly positive since 

X(t) is positive. The expression (5.29) allows for variable width 

{h } of the rectangles, where 
n 

h = t - t„ 1 , n = 1,2,.. . , N , 
n n n -1 

and thus wider rectangles may be used where the change is gradual, while 

narrower rectangles are used when the change with time is rapid. The 

time dependence x(t) can thus be used when the change is expected to 

be irregular enough for a simple mathematical curve to be able to 

represent it. Figure 5.7 gives a diagrammatical demonstration of an 

approximation of some x(t) by (5.29). Keyfitz (1971b) used a two 

step time dependence. 



tN=T 

FIGURE 5.7 
Diagrammatic representation showing the approximation of an 

arbitrary curve by a histogram ((5.29)). The function of time 
varies for 0 < t < T ^ a until 1/R is reached at t=T. R is the 
net reproductive rate and a is the minimum age of childbearing. 

With the separable time dependent net maternity function (5.20) 

where x(t) is represented by the histogram (5.29) we obtain, from 

(5.24), the asymptotic total birth rate Q^, given by 

where. 

N 
= rK 

0 = -0 
0 

a = a 
n n 

= 
N N 

n=0 

n = 1,2,...,N-1 

(5.30) 

Consider now, a non-separable time dependent net maternity function, 

of the form (5.1), which allows the final net maternity function to be of 

a different age structure to that of the initial net maternity function. 

Let the time dependence only be explicitly stated for 0 < t ^ T ^ a 

and let the age structure of the time dependent net maternity function 

at t = T be (i)̂ (x) which is maintained for t ^ i . Thus we consider 

A 



a time dependent net maternity function of the form. 

$(x,t) = 
4(t)<()j(x) + [l-^(t)]<(>2(x) , 0 < t < T OT 

(5.31) 
t > T 

from which, insisting on continuity at t = T , we have 

<P2M = - aT)<i)j(x)]/(l-5(T)) . (5.32) 

Hence given <}>j(x) and <i)̂ (x) we can define the non-separable time 

dependent net maternity function $(x,t) , using Heaviside notation, by 

$(X,t) = {[Ut)-C(T)](i)j(x) + [l-at)]4)^(x)}H(T-t)/[l-UT)] 

+ <i.^(x)H(t-T) , T ^ a (5.33) 

With $(x,t) as given by (5.33) and assuming an initially stable 

population we have the total birth rate B(t) from (2.32), given by 

't 
B(t) = F(t) + 

where, 

B(t-x)4»^(x)dx , T ^ A 

F(t) = {[Ut)-C(T)]<j>*(rj) + Cl-^(t)](t)*(rp} 

•»• (i)*(rpH(t-T)H(a-t) + H(t-a) 

(5.34) 

Assume that <1)*(0) = 1 so that a stationary population results. 

We obtain the asymptotic stationary birth rate Q2 by the usual method 

of Laplace transforms. The Laplace transform of (5.34) yields, upon 

rearrangement and using the definition of the Heaviside unit function. 

[l-(i)*(p)]B*(p) = F*(p) = Cj 
5 Jo (5.35) 

* , 

a 3 -(p-ri)t 
e'̂ l̂ ci) (x)dx dt , 

where, using the fact that <i)j(rj) = 1 , 



and 

c^ = 

c^ = 
l - ^ T ) 

(5.36) 

From (5.35), evaluating the last three integral expressions and 

combining the result of the last two, yields 

B (P) = c^ + c. 

l_e-CP-ri)T 

(p-rp[l-(j,*(p)] 

(p-rpC !-(()* (p)] 
(5.37) 

Now, since <|)*(0) was assumed to be 1 , and using the fact (from 

Chapter 2) that the real root has the greatest real part we have the 

asymptotic value Q2 , using the Tauberian result, given by 

2̂ * "-1 
^ = £im pB (p) = — 

p->0 

c^ 
e^l^^(t)dt + — Ce^l"^-!] + 

r^K r^K 

or, on using (5.36)2 and combining the last two expressions we have. 

e 1 (t)dt + ^ ^ A ^ T j e 
r^K 

(5.38) 

K is the expected age of childbearing in the eventual stationary 

population and is given by. 

K = x(i>^(x)dx . 

We note that p = r^ is not a pole, in (5.37), and the 

numerator of the first term in (5.37) is an entire function and thus 

using residue theory there is no contribution from this term. 



Letting T 0 in (5.38) results in the asymptotic total birth 

rate obtained by Mitra (of the form (4.35)) under an abrupt change from 

any net maternity function <j)j(x) to any other . 

As an example, consider the time dependence ^(t) to be 

exponential so that, C(t) = in (5.38) gives the stationary 

asymptotic total birth rate, 

^T^ V 1-e ^ C(t) A 
= - ^ F ^ T - • l-s(T) • IT? ' ^ ^ 0 ' 

where we have used (5.36)^ 



5.5 General Time Dependence Defined in a Piecewise Fashion. 

The time dependent change to replacement level fertility over 

0 < t < T ^ a which was presented in the previous section, represents 

in many circumstances an unachievable goal. At best the change allowed 

is up to t = a (= 10 or 15 years) whereas a number of authors have 

indicated a longer period of time for the change of the age-specific 

birth rate to replacement level. 

Frejka (1973) allows for a linear change over 0, 10, 30, 50, 70 

years of the Gross Reproduction Rate to replacement level and thus 

presents a range of alternatives that would be meaningful for both the 

more and the less developed countries. Keyfitz (1971b) states 

"About the best any country can hope for is a gradual drop of 

fertility over 30 or more years." 

In Section [5.1] we considered the time dependence to be expressed 

as a sum of exponentials with commensurable exponents, but, determining 

the constants {y^} and {X^} is an extremely difficult problem. A 

model which allows for a more gradual (than exponential) change was 

presented in Section [5.2] but, the convergence of the backward 

recurrence relation method to obtain Q2 is slower than that for the 

models of Chapter 4. 

It is difficult to anticipate the effects of certain policies 

which would produce changes in the fertility behaviour of a population. 

However one can imagine that such a change would vary most in the 

short term before settling down. Thus, in the present section we 

introduce a time dependent net maternity function which is defined in a 

piecewise fashion. The model allows for a general time dependent change 

over 0 < t < T <: a with a simpler change (such as exponential) for 



t > ct . 

Consider the separable time dependent net maternity function given 

by 

where, 

<f(x,t) = {x(t)H(T-t) + e(t)H(t-T)}(l)(x) , T < a , 

X(0) = a^ , x(T) = a^ , 

(5.39) 

e(t ) 1 
^ - R 

Ut-T) , 

^(t) satisfies the conditions (5.2) and is strictly 

exponential, 

4)(x) 0 for a < X < 8 , 

and H is the Heaviside unit function. 

(5.40) 

With (5.39) and assuming an initially stable population the total 

birth rate B(t) , from (4.13) and (4.14), is given by 

•t 
B(t) = F(t) + 0(t)H(t-T) B(t-x) (j)(x)dx , T < a , (5.41) 

where, 

-rt 
F(t) = x(t)H(T-t) + e(t)^H(t-T)H(a-t) + H(t-a) e"^*(j)(x)dx 

and, we have used the fact that (J) (r) = 1 . 

We will examine in some detail the above model with 

a t ) = e-^^ , (5.42) 

but, any of the previous exponential representations of ^(t) , 

satisfying (5.2), could be taken. 

In order to find the asymptotic total birth rate Q2 we proceed 

in the usual manner using Laplace transform techniques. 

The Laplace transform of (5.41), with (5.40) and (5.42), yields 



B*(P) = F*(p) . ^ B*(p) . 
N - R 

e^''<i>*(p+X)B*(p+X) , (5.43) 

where. 

L i P l . 
Q 

fX a 

(t) 
r6 

•'a 
e ^^(j)(x)dx dt 

and 0^(t) = ± . 
\ - R 

-X(t-T) 

(5.44) 

Evaluating the integrals in (5.44)^, and using (5.44)2 we obtain, after 

some simplification. 

F*(p) _ 
S - R 

e^^f(p+X) , (5.45) 

where, 

f(p) = p-r 

Isolating B (p) in (5.43) and using the facts that 

¿ M - 1 
R ^ ' 

and iiim pB*(p) = Q2 , the asymptotic value, 
pH) 

we have, on letting p 0 , 

KQ2 = F*(0) + S - R 
e^''(i)*(X)B*(X) , 

where from (5.45) and using (1> (0) = R 

F*(0) _ 
Q 

e^\(t)dt 
S - R 

rx 
e - e (j) (X) 

X-r 

(5.46) 

(5.47) 

In order to obtain the asymptotic value Q2 from (5.46) we need 

to know B*(X) . Hence we proceed, as discussed on earlier occasions, 

by putting p = nX in (5.43) and using (5.45); thus resulting in a 

recurrence relation of the form 

*(nX) + B*((n+l)x) , n = 1,2,..., (5.48) 



where. 

n R-cpCnX) 

and e - (Ra -1) ^ 
n T ^ R-(i)*(nA) 

Successive approximations to B*(X) and hence Q^ are obtained 

from (5.48) and (5.46) respectively by assuming B*(NA) = 0 for some 

N . We note that 

Q = f ! l O i 
K 

is the approximation to Q2 in assuming B*(X) = 0 . Also, the error 

analysis of Subsection [4.1.2] may not readily be used here since a 

meaningful upper bound on B(t) , and hence B*(X) , is not at all 

obvious for general x(t) . However, comparison of successive 

approximations to Q2 can be made, stopping when the relative error is 

considered small enough. 

Frejka (1973) considers the problem of determining the transient 

effect on a population, of a 15% linear increase of the age-specific 

birth rate over 10 years followed by a decrease to replacement level, 

over a variety of time intervals. Keyfitz (1975) notes that; with an 

initially increasing population it is necessary, at first, to reduce the 

age-specific birth rate to well below replacement level in order that the 

population be kept at its present size. A time dependent net maternity 

function of the form (5.39) - (5.40) with (5.42) may be used to model the 

general initial increase followed by a decrease to replacement level 

fertility. The alternative problem of an initial gradual drop followed 

by an increase to replacement level fertility of Keyfitz may also be 

modelled in a similar fashion. Figures 5.8 and 5.9 represent general 

changes, of the age-specific birth rate, of the type described by 

Frejka (1973) and Keyfitz (1975). 



FIGURE 5.8 
Diagrammatical representation of an initial increase, followed 

by a decrease to replacement as envisaged by Frejka (1973). 

FIGURE 5.9 
An initial decrease in the age-specific birth rate is necessary 

(Keyfitz (1975)) if the present numbers are to be asymptotically 
maintained. The above sketch shows such a change. 



A non-separable timé dependent net maternity function of the form 

(5.3) with exponential time dependence for t greater than a can be 

handled in a similar manner. Thus, given <i>-i(x) , (p (x) the net 

maternity functions at t = 0 , t = t and, thè eventual net maternity 

function (})2(x) we can define 

<i>(X,t) = {[Ut)-C(T)](})j(x) + [l-C(t)]<j)^(x)}H(T-t)/[l-aT)] 



6. The Asymptotic Effects when a Time Dependent Net Maternity 

Function Includes Changes in the Survivor Function. 

In considering the asymptotic effects of a time dependent net 

maternity function, only the age-specific birth rate has so far been 

assumed to change. In the present chapter the time dependent net 

maternity function includes temporal changes in the survivor function 

and thus, in the age-specific death rate. 

The effect of abrupt changes in the vital rates on stable 

population parameters in general, have been extensively treated by 

Goale (1956), Goodman (1971), Keyfitz (1968a) and (1971b), Preston 

(1974) and Tognetti (1976b), to name a few. Goale (1956) also 

determines the effect on the age distribution for t < 2a (where a 

is the youngest age of childbearing) when the age-specific death 

rate, and hence the survivor function, changes with time. The 

transient behaviour of a population was determined by Frejka (1973) 

using projection techniques, where he assumed the age-specific death 

rate to change linearly with time. 

A non-separable time dependent survivor function is presented 

in Section [6.1] and the asymptotic behaviour is determined for the 

case of a simple exponential time dependence. This time dependent 

survivor function invokes a gradual change in the age-specific 

death rate. 

The eventual stable population parameters due to time dependent, 

age-specific birth rate and survivor function are examined in Section 

[6.2]. Both the time dependent survivor function and the time 

dependent age-specific birth rate are taken as being non-separable 

and hence the time dependent net maternity function is non-separable. 



The time dependence is taken for simplicity to be exponential, and 

thus, by taking extreme values of the exponent transition rates the 

results of previous models can be obtained. 

Given certain restrictions on changes of the net maternity 

function parameters, the achievement of a given goal may not be 

possible unless the age distribution is allowed to change (through 

migration for example). Abrupt changes of the initial age distribution 

are discussed in Section [6.3]. 



6.1 A Gradual Change in the Survivor Function. 

In the previous two chapters we have been concerned with finding 

the asymptotic behaviour of a population experiencing time dependent 

changes in the age-specific birth rate. We now consider the consequences 

of changes with time in the survivor function, and, hence of changes in 

the net maternity function. 

In this section we show that the time dependent survivor function 

must not be separable. Although we only examine single exponential 

changes in the survivor function, the extensions of Chapter 5 can 

equally well be applied. 

Theorem: Any time dependent function of the form 

L ( x , t ) = ^ ( t ) a j ( x ) + [ l - ^ ( t ) ] i l 2 ( x ) , (6 . 1 ) 

with L(x,t) for all x and t , can be a survivor function, 

given that and i^^x) are the initial and the eventual 

survivor functions respectively. 

Proof: For {ii^(x)} to be survivor functions we have, from (2.1) 

) 0̂0 
^^(x)dx = - vi.(x)jl.(x)dx = -1 , i = 1,2, (6.2) 

"'0 

where m^(x) and ^^^ initial and the eventual age-specific 

death rates respectively. 

D i f f e r e n t i a t i n g (6.1) with respect to x y i e l d s 

L (x.t) = Ut)A;(x) + [l-at)]il2(x) , (6.3) X 

where the subscript x denotes partial differentiation with respect to 

X . Thus, integrating (6.3) with respect to x from 0 to oo and 

using (6.2) gives 



L (x,t)dx = -1 , 
o 

and hence we conclude that (6.1) is a permissible survival behaviour. 

Corollary: Given that are survivor functions then, a function 

of the form 

I 
L(x,t) = I ^ A t y z A x ) , 

i=l ^ ^ 

is also a survivor function provided that 

I 

I = 1 . 
i=l 

The time dependent survivor function of the Corollary is at present 

mainly of theoretical, as opposed to practical, interest. Quite the 

opposite is true of (6.1), however. Coale (1972) states that 

"There is a remarkable similarity in the age schedules of mortality 

among today's highly industrialized countries" and hence, there is a 

similarity in the age-specific survivor functions. The time dependent 

survivor function, as given by (6.1), represents a smooth transition 

from some initial survivor function i-^(x) towards some eventual 

survival goal, * Hence, (6.1) may represent a temporal change 

of the mortality behaviour of a less developed country towards some 

standard mortality pattern of a more developed country. 

We will now consider the effects, in particular the asymptotic 

effects, of a time dependent survivor function of the form (6.1). The 

age-specific birth rate m(x) is assumed not to change with the passage 

of time. 

Assuming an initially stable population we have, from (2.32), 



B(t) = Q^e^l^ e"^l*m(x)L(x,t)dx + 

for the total birth rate, where t > 0 . 

t 
B(t-x)m(x)L(x,t)dx , (6.4) 

The asymptotic behaviour of the population will be discussed where, 

from (6.1) with C(t) = , L(x,t) is given by 

L(x,t) = + CI - e'^^D^^W , X > 0 . (6.5) 

It should be noted that; (6.1) in general and, (6.5) in particular, 

represent non-separable time dependent survivor functions. The question 

arises as to whether we can have L(x,t) separable. L(x,t), defined 

for all positive x and t , cannot be separable; for if " ^^jC*) 

where c is a constant and i.ĵ (x) is a survivor function then 

is necessarily not a survivor function except for the trivial case, 

c = 1 . 

It is of interest to find the asymptotic behaviour of (6.4), with 

(6.5). We do not have to proceed further however, if we note that the 

time dependent net maternity function from (2.26), (2.32), (6.4) and 

(6.5), is non-separable and is given by (4.36) where the initial and 

the eventual net maternity functions, and <|>2(x) , are now given 

by 

4..(x) = m(x)£.(x) , i = 1,2 . (6.6) 

Hence, the total birth rate B(t) will asymptotically behave like 

B(t) = q̂ e""̂ ^ , (6.7) 

where Q2 is obtained from (4.41) , using the recurrence relation 

method discussed in Section [4.2]; and, r2 is given by (4.37). 



Once the asymptotic behaviour for the total birth rate ((6.7)] 

is determined then the asymptotic behaviour of the total number and 

hence the asymptotic stable age density can be found. The total number 

will asymptotically approach 

N(t) = P̂ e'̂ ^̂  , (6.8) 

where. 

P2 = ̂  > the eventual stable equivalent. 

with b^ = , the eventual crude birth rate. 

•'0 

The asymptotic stable age density is given by 

= . (6.9) 

It should be noted that, if we let X » in (6.5) then we obtain 

an abrupt or step change in the survivor function at time t = 0 . Hence 

the stable equivalent births Q2 may be obtained from (4.41) by letting 

X 00 , where, the population is, of course, assumed to be initially 

stable. 

Given a survivor function of the form (6.5), one may ask the 

important question as to what change is needed in the age-specific birth ' 

rate so that an asymptotically stationary population results. If the 

change in the age-specific birth rate is assumed to be abrupt then a 

change from m(x) to any m2(x) so that (̂ (̂O) = 1 would suffice. 

In particular if we abruptly scaled m(x) to , in a manner R2 
similar to that of Keyfitz (1971b), then, a stationary population would 

eventuate. Temporal changes of the age-specific birth rate are discussed 

in the next section. 



The converse problem discussed in Section [4.3] can also be 

analysed here. Thus; given the stable equivalent births Q2 then, 

we can determine the transition rate X needed for the total birth 

rate to asymptotically behave like Q^e^^^ . Similarly, given P^ = P2 

we can find a X which will produce Q^ = ^^^ population 

would then asymptotically behave like P̂ ê "̂̂  ̂  

It is of interest to determine the required transition rate, X, 

for a population to have the eventual stable equivalent numbers equal 

to the initial. That is, we want to determine a X which will produce 

P2 b Q 

Hence we seek X , from (4.41) and using (4.39) with p = r^ + nX , 
b2 

which will give Q2 ~ ~ bj" ' ^^ course, such a X may not exist, 



6.2 Changes in Both the Survivor and the Age-Specific Birth Rate 
with Time. 

The problems of determining the asymptotic behaviour of a 

population resulting from time dependent changes in the age-specific 

birth rate and in the survivor function, have been discussed in Chapters 

4 and 5, and, in Section [6.1] respectively. We now consider the 

asymptotic effects of the more realistic situation in which both the 

age-specific birth rate and the survivor, and hence the age-specific 

death rate, change with time. However, the previous studies are 

necessary in evaluating the relative contribution between a change in 

the age-specific birth rate with time while keeping the age-specific 

death rate constant, and visa versa. 

Let the time dependent age-specific birth rate M(x,t) , and the 

time dependent survivor function L(x,t) , be given by 

(6.11) 

and L(x,t) = Cj(t))lj(x) + . 

The time dependent net maternity function $(x,t) is thus given, from 

(2.26), by 

2 2 
$(x,t) = I I i|̂ ..(t)(i. (X) , (6.12) 

i=l 3=1 ^^ ^^ 

where 

,/;..(t) = q(t)c^(t) , 

and (i)̂ j(x) = m^(x)il^(x) , 

with i^^^t) = l-Cj(t) so that L(x,t) in (6.11)2 satisfies the 

Theorem of [6.1]. Further, {^^(t)} and {^^(t)} are such that 

<5(x,0) = (i)jj(x) , 

(6.13) 

and i,im $(x,t) = ' 
t-x» 

(6.14) 



Thus 4»,, (x) and (x) are the initial and the eventual age-shapes 
11 fc^ 

of the time dependent net maternity function, (6.12). 

We extend the notation used previously so that population parameters 

relating to the inherent age structure {(i>^j(x)} of the time dependent 

net maternity function (6.12) will be denoted by using a double subscript 

of ij . For example, the intrinsic rates of change ^^^ 

reproduction rates î ĵ j ̂  relating to (6.13)2 given by 

<{>..*(r..) = 1 and .*(0) = R. . , i = 1,2; j = 1,2 . (6.15) 
ij ^ ij'̂  ^ij ^ ^ ij » » J 

Thus from (2.28), (6.12) and (6.15) we have the time dependent net 

reproduction rate 

2 2 

R(t) = y y R. .(t) . 
i=l j=l 

(6.16) 

Substituting (6.12) into (2.32) and making use of the notation just 

outlined, we have the total birth rate, in an initially stable population, 

represented by 

2 2 

B(t) = I I H;. .(t)C,.(t) , 
i=l j=l IJ IJ 

where, 

C,.(t) = rilt e'^l (x)dx + B(t-x)(i).^(x)dx. 

(6.17) 

Assuming that = 1 , we proceed to find the asymptotic 

total birth rate Q^^ , from (6.17) with (6.13), where 

C^Ct) = e"''^ , V > 0 , ^^(t) = l-^j(t) , 

and Cj(t) = e'""^ , a > 0 , ^^(t) = l-Cj(t) . 

(6.18) 

From the results of Section [5.1] we can anticipate that slight 

difficulties will be encountered in using the recurrence relation 



(6.19) 

method to obtain the asymptotic value. These minor difficulties may be 

overcome, as noticed in [5.1], by allowing v and a of (6.18) to be 

commensurable; viz. 

V = kX 

and a = KX , 

where k and K are positive integers and, 

X is a positive constant. 

We proceed to find the asymptotic value Q22 (for 0 < a, v < ®) 

of (6.17) with (6.13) and (6.18) in the usual manner, using Laplace 

transform techniques. The Laplace transform of (6.17) and using (6.13) 

with (6.18), yields 

[l-(i)22(p)]B*(p) = C*^(p+v+a) + C*2(P+v) - C*2(P+v+a) + C*j^(p+a) 

- C*^(p+v+a) + - C*2(P+v) - 0*2(P+a) + C22(p+v+a), 

(6.20) 

where we have isolated B*(p) , and, from (6.17)2 , 

C*.(p) = F*.(p) + <i>̂ .(p)B*(p) , 

(6.21) 

Hence letting p 0 , the real root of <I'22(P) = ^ > ^^^^ 

the greatest real part) and using the Tauberian result 

Q = Jlim pB*(p) , the asymptotic value, p-^ 

we obtain from (6.20), the eventual stationary total birth rate as 

K22Q22 = + C*2(v) - C*2(v+a) + cl^M - cl^iv^a) 

1 - * * * 

where 



» ^h® expected age of childbearing in the 

subsequent stationary population. 

The expression (6.22) with (6.21) for the asymptotic value Q22 , 
•k ic * 

contains the unknown quantities B (v) , B (a) and B (v+a) where 

V and a are given by (6.19). Since v and a are integer multiples 

of some constant X we may recover these unknown quantities by setting 

up a recurrence relation from (6.20) in the same manner as on previous 

occasions. Thus putting p = nX in (6.20) and, using (6.19) with (6.21) 

gives a recurrence relation of the form 

B*(nA) = + e^^^B*[(n+k)X] + e^^^B*[(n+K)X] 

+ e^^^B*[(n+k+K)X] , n = 1,2,... , (6.23) 

where k and K are fixed positive integers. 

Assuming B*(NX) = 0 for some N , successive approximations to 

B*(kX) , B*(KX) and B*[(k+K)X] may be obtained from (6.23), which 

in turn, from (6.22), give successive approximations to Q22 • As stated 

earlier on many other occassions, the speed of convergence of the 

backward recurrence relation method relies on how fast a product 

-> 0 as N increases. Since, as in all demographically I" Jn=l 
realistic situations {(i)̂ j(x)} have compact support, then {<|)̂ j(qX)} 

n decrease decrease exponentially for increasing q and hence -ji 

rapidly. The speed of convergence of the method was amply demonstrated 

in Chapter 4 and we will not do so here. 

The error analysis of [4.1.2] cannot be used here since we do 

not have a useful upper bound on B(t) , and hence, on the unknown 

quantities B*(v) , B*(a) and B*(v+a) of (6.22) with (6.21). 

However, successive approximations to (̂ 22 made, stopping when 



the relative error is considered small enough. 

For 0 < V, a < «> the time dependent net maternity function, 

(6.12) with (6.13) and (6.18), represents a gradual change in both the 

age-specific birth rate and the survivor function (and hence in the age-

specific death rate). It may be seen that by taking extreme values of 

V and a , not only can we reproduce the models of Chapter 4 and 

Section [6.1] but, we can also obtain a variety of further possibilities. 

The quantities v and a are known as transition parameters since they 

characterise a gradual exponential change from an initial to an eventual 

function. From (6.11), (6.13)^^ and (6.18) it can be seen that if we 

allow a transition parameter to tend to zero, there is no change from the 

initial data. Letting a transition parameter tend to infinity results 

in an abrupt change to a new schedule. There are eight various models 

possible if we allow v and/or o to tend to 0 and/or « . It is 

instructive to consider some examples. 

If we let v,a ->• » then we have a model in which both the initial 

age-specific birth rate and survivor, change abruptly to m2(x) and 

î Ĉx) respectively and hence, from (6.22), the asymptotic total birth 

rate Q22 is 

1 -

We note that the asymptotic, (6.22), only exists if eventually the time 

dependent net maternity function approaches 4 * 2 2 > otherwise, we 

would have to go back to (6.20) to determine the asymptotic behaviour. 

The simplest example of this occurs if we let v and a ^ 0 ; then 

there is no change, and, the population would continue on its initial 

trajectory. Letting a -> 0 results in the model of Section [4.2] and, 

from (6.20) and using (6.21), we get 



Cl-«D*j(p)]B*(p) = + C*j(p+v) - C2j(p+v) , 

and hence 

where 

with <21 

B(t) ~ , 

e (x)dx and we have used (6.15) 
21 •'0 

With the stationary total birth rate Q^^ given from (6.22), 

the asymptotic total number P^^ is given by 

N(t) - P22 = 5 
Q22 

22 

where 

b^^ = , the crude birth rate in the eventual 

•'0 

stationary population. 

The asymptotic stationary age density is given by 

The converse problem can be somewhat more difficult than in 

Section [4.3] since we now have 3 parameters of freedom namely; k, K 

and A . If either v or a were given then, only one transition rate 

would remain to be determined. For 0 < v, a < « where v and a 

satisfy (6.19) we need to specify two parameters and hence determine 

the third. 



6.3 A Time Dependent Net Maternity Function With Abrupt Changes of 
the Initial Age Distribution. 

The converse problem of determining changes of the initial 

population parameters which will produce a certain goal is a very 

important and worthwhile one. There are basically three parameters 

which are necessary to characterise or determine a particular population, 

namely, the initial age-specific birth and death rates, and, the initial 

age distribution, A(x,0) . Thus changes of a population are brought 

about or are due to, changes of these three parameters. The converse 

problem has already been examined in the present study where, given a 

particular asymptotic behaviour, the transition rate characterising 

the variation with time of the initial vital rates, has been sought. 

If the changes in the vital rates are restricted then, changing the 

initial age distribution through migration, for example, would have to 

be implemented if a certain goal is to be realised. 

Keyfitz (1971c) discusses the use of migration as a means of 

controlling a population. Preston (1970) states that the role of age-

composition, which is often ignored, is a major factor in the growth 

of many populations. Both Le Bras (1969) and Tognetti (1976^ discuss 

the effect of a catastrophe (an abrupt change of the age distribution) 

on the ensuing population. 

The age-specific birth and death rates alone determine the intrinsic 

rate of change of a population. Whereas, the stable equivalent births 

and numbers are a function of both vital rates and also the initial 

age distribution. Given (6.13)2 such that <̂ >22(̂ 0) = 1 then, 

the population resulting from the model (6.17)-(6.18) will eventually 

become stationary. Specifying a particular goal for the total number, 

then we may determine transition rates v and a that will achieve the 



set target. Such transition rates may not exist however, and to realise 

the goal, changes to the initial age distribution through migration 

would have to be imposed. The changes of the initial age distribution 

would have to be assumed to be abrupt since it is not known by the 

author how these changes can be implemented otherwise, unless, the change 

only related to those of the initial population. Allowing for changes 

of the age distribution with time for the continuous model is an area 

for further research. 



7. Conclusion 

In the present work, stable i)opulation theory has been extended 

to allow exponential-based time variation in the age-specific, vital 

rates of birth and death. Thus the analysis allows for the determination 

of the effect of a time dependent net maternity function on the ensuing 

population. 

Using Laplace transform techniques and residue theory, (reviewed 

in Chapter 2) a general method for finding the asymptotic total birth 

rate has been obtained where the time dependent net maternity function 

has been scaled exponentially to replacement level. The method, which 

involves setting up a recurrence relation, converges very rapidly and 

is dependent on how fast the replacement level rates are achieved. With 

such a model, a change at a rate of ten times the initial rate of 

increase of a population, gives of the order of 10% increase in the 

eventual total number, over the abrupt change of Keyfitz. A slower 

transition towards replacement level fertility rates produces a greater 

amount of impetus for further growth. The momentum or potential of a 

population is evaluated by comparing the asymptotic total number, 

obtained as a consequence of the recurrence relation method, with the 

initial total number. 

The transient behaviour of the population is obtained by three 

methods which are thought by the author to be novel to this thesis. 

Firstly, a strictly numerical quadrature method (the modified 

block-by-block method of Campbell and Day (1971)) is used to solve the 

Volterra integral equation of the second kind, which governs the total 

birth rate of the Sharpe-Lotka population model. To do this, spline 

interpolation of the discrete data was used to obtain continuous 



integrands. 

Secondly, with the net maternity function defined in a piecewise 

manner, a stepping procedure has been developed which may suffice to 

obtain a solution for simple time dependent changes in the net 

maternity function. However, this procedure does become less efficient 

the further away from the origin the solution is sought. 

Thirdly, the recurrence relation method used to obtain the stable 

equivalent, has been extended to obtain the contribution from some of the 

complex roots of the characteristic equation with greatest real part. 

A number of generalisations and extensions have been presented 

which allow the determination of the effect of various time paths of 

change of the initial net maternity function. A model which is of 

substantial importance is that which allows for various age-groups to 

change differently with time, thus depicting variations with age of the 

influence of certain policies which produce the change. Differential 

fertility models between the parent and subsequent populations have 

also been examined, and the effect on the momentum of population growth 

analysed. 

The problem of paramount importance in the management of 

populations is that of determining the time path of change in the net 

maternity function, given the desired asymptotic behaviour. This 

converse problem was analysed in Chapter 4 where the transition rate 

X (which characterises the assumed exponential change) was determined, 

given a desired asymptotic value. 
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APPENDIX A. Special Solutions of the System (3.29)-(3.31). 

(A) = y^ ( 6 = 0 ) . 

The solution to (3.29)-(3.31), with 6 = 0 (that is, when only 

the birth rate changes with time), is given by (3.20) and (3.19); with 

(3.24) and b ( t ) = e " ^ 2 t B ^^^^^ (3.25)). Thus, 

b(t) = — CY2 " as)ds 0) = Yi-Y 
1 ' 2 • 

(A.l) 

If lim 
t-x» 

^(s)ds = ^ < «> then b(t) , as defined in (A.l), 

admits an asymptotic value and, we have used the 

condition on ^(t) , (3.17)^. 

(B) r^ = r^ (6 = 0)). 

With 6 = 0 ) , namely when the initial and final rates of change 

are equal, the differential equation (3.29)-(3.30) is reduced to 

b"(t) + Cy2 + u(t) - u'(t)/u(t)]b»(t) 

where the initial conditions (3.31) become 

b(0) = Qj , 

and b'(0) = 0 . 

= 0 , (A.2) 

(A. 3) 

From (A.2), by reducing the order of the differential equation, 

we obtain 

b'(t) = Ae"^l^C(t)u(t)exp|6 C(s)ds 

where A is an arbitrary constant of integration. Upon using the 

initial condition (A.3)2 we obtain the rather surprising result that 

b(t) = Q^ , (A.4) 

for all t e and for arbitrary C(t) satisfying conditions (3.17)^ 



Thus from (3.25) B(t) continues with its initial trajectory of 

B(t) = Q^e^l^ , t > 0 , since = • 

(C) 19-0)1 = e « 1 . 

The solution of (3.29)-(3.31) with 0 = 0 ) , namely (A.4), suggests 

that we may formally seek a perturbation type solution of the form 

b(t) = Qj + eb^(t) , (A.5) 

where |9-a)| = e << 1 . 

Substitution of (A.5) into the system (3.29)-(3.31) and neglecting 

O(e^) terms results in the differential equation for bj(t) given by 

bj(t) + Cy2 + - u'(t)/u(t)] b|(t) = Ç(t) 
u'(t) _ g'(t) _ 
u(t) Ç(t) Q r 

(A.6) 

subject to the initial conditions 

and 

b^(0) = 0 

b|(0) Î 1 + Qi = 0 , ejjco , 
(A. 7) 

obtained from (3.31) and (A.5). Hence from (A.6), reduction of the 

order of integration results in 
't 

I(t)b^'(t) = Qj I(s)Ç(s) u(s) " C(s) ^2 ds + A 
(A. 8) 

where, 

Ç(s)ds|A(t)u(t) , I(t) = expjy^t - 6 

and upon using (A. 7)2 and assuming 6 > o) , 

A = 1 . 1 C'(0) 

d 1 
ds lu(s)J 

(A.9) 

(A.10) 

and integrating a portion 

of (A.8) by parts we obtain, after some algebra. 



I(t)[b|(t) + Q^C(t)] = QjV(t) + A , (A.ll) 

where. 

V(t) = I(s)?(s)[a3 - e^s) - C'(s)/C(s)]ds . (A.12) 

Rearranging and then integrating (A.ll) and using (A.12) yields 

bjCt) 
[V(v) - 5(v)]dv + 1 . 1 [I(v)]"^dv , (A.13) 

where I(v) and V(v) are defined by (A.9) and (A.12) respectively, 

and, use has been made of the initial condition (A.7)^ and of (A.10). 

In the above special cases (A), (B) and (C), conditions have been 

imposed on the vital parameters (birth and death rates) of the Malthusian 

extreme net maternity functions in order to obtain a solution in a 

closed form for (2.32), with <I>(x,t) given by (3.10) and in particular 

(3.10) with (3.24). 

Consider now, functions C(t) satisfying conditions (3.17)^ for 

which the differential equation (3.29)-(3.30) can be reduced to an 

equation which has a solution expressible in a closed form. 

(D) at) = U Ce -8t 
-1 

e < 0 (y^ < M^) . 

Consider the differential equation (3.29)-(3.30) with initial 

conditions (3.31) and let us seek ^(t) which makes u(t), the coefficient 

of the second derivative term, zero and also satisfies conditions (3.17)^. 

That is, we want C(t) such that u(t) = 0 , or 

e(l-at)) - r(t)/Ut) = 0 . (A.14) 

Upon dividing by 5(t) , equation (A.14) can be written as 

1 d 1 
dt + e = e , 

which has solution. 



L = 1 . ce-®^ , Kit) 

and hence. 
-etl-i C(t) = Ll + Ce \ (A. 15) 

with C an arbitrary constant, and on applying the conditions (3.17)̂ ,̂ 

we have the restriction 0 < 0 (ŷ^ < VI2) • 

With ^(t) as given by (A.15), then u(t) = 0 so that (3.29)-

(3.30) become, 

b'(t) + (e-a))̂ (t)b(t) = 0 , 

whose solution is given by. 

b(t) = Q̂ exp- (a)-e) 5(s)dsV , 
Jq ^ 

where we have used the initial conditions (3.31). 

(A.15) and integrating, (A.16) becomes 

(A.16) 

Thus, upon using 

-et b(t) = q^liUQe Ĉ(t)J 

et = QjL(l+C)/(e + C)J 

where 0 < 0 and C is arbitrary. 

-il - -^^ 0 (A. 17) 

The solution for b(t) , given by (A.17), has an asymptotic value, 

(A. 18). Q2 = Urn b(t) = Q^ 
t-x» 

1 - ^ ^ 0 

where, from (3.25) b(t) = e'^'^hit) and hence the total birth rate 

B(t) behaves asymptotically like Q2e 
r2t 

We note that with 0=0), (A.17) correctly agrees with (A.4). 

-1 
(E) Ut) = U * D J2t _ 

Let us now seek a function C(t) which will make q(t) (the 

coefficient of the b(t) term in (3.29)-(3.30)} vanish, and also such 



that 5(t) satisfies the conditions (3.17)^. If such a ^(t) exists 

then, the differential equation (3.29) will be reducible and we will be 

able to obtain the solution in a closed form. That is, we require 

a C(t) that satisfies 

u(t)[?'(t) + y^Ut)! - at)u»(t) = 0 , 

which becomes, upon substitution for u(t) from (3.30)^ , 
2 

C'(t) - 2 + (8-Y2)?'(t) + Y2e?(t)i:i-at)] = 0 , (A.19) 

with conditions (3.17)̂ ^ on 5(t) . 

Dividing (A.19) by K (t) and letting 

h(t) = at) ' 

we obtain a non-homogeneous second order linear differential equation 

with constant coefficients in h(t) , 

(A.20) 

h"(t) + (e-Y2)h»(t) - eY2h(t) = eY2 , 

with conditions from (3.17)^ and (A.20) 

h(0) = -1 and U m h(t) = -«> , 

(A. 21) 

which has solution 

h(t) = - 1 + D Y2t -0t ê "̂  - e (A. 22) 

with restrictions on D , so that h(t) and hence 5(t) will satisfy 

the second of the above conditions, 

D < 0 if 0 < Y 2 < ' 

and D > 0 if 0 < - 6 < Y2 or < 0 (p̂  > ^2) • J 
(A.23) 

Hence the equation (A.19) with (3.17)^ has solution, on using 

(A.20) and (A.22), 
Y2t -et e'^ - e 

-1 
C(t) = U + D 

where (A.23) gives the restrictions on D . 

(A. 24) 



Since ^(t) , as given by (A.24), was chosen so that q(t) = 0 

in (3.29), we have; from (3.29), upon dividing by u(t) 

b"(t) + [y2 + u(t) + (e-a))C(t) - u'(t)/u(t)]b'(t) = 0 , (A.25) 

and the associated initial conditions from (3.31), with 5(t) given by 

(A.24) and using (3.30)^, are 

b(0) = Qj , 

and b'(0) + (e-w) 1 - D b(0) = 0 . 
(A. 26) 

Reducing the order of the differential equation (A,25), integrating 

twice and using the conditions (A.26) we obtain 

b(t) = E 

where, 

t rrs 
u(s)C(s)exp'^ a)C(v)-r2-yj dv 'ds + Q^ , (A. 27) 

u(t) and C(t) are given by (3.30)^ and (A.24) respectively, 

1 1 
B = ^ = Ce-.) 

and D is given by (A.23). Thus, (A.27) becomes 

f^ 2 fr 
b(t) = E.D.(e+Y2) ^ (s)exp^ JQ 

where ^(t) is given by (A.24). 

(a)C(v)-e)dv ds + Qj , (A.28) 

We note that if 6 = w , with ^(t) as given by (A.24), then 

the solution (A.28)(or (A.27)) reduces to (A.4). 

(F) CCt) - e'^^ , X > 0 . 

The substitution; 

b(t) = n(0 , C(t) = e"^^ , X > 0 , 

transforms equation (3.29)-(3.30), after some algebra, into 

.2 

(A.29) 

n'(5) + n(e) = 0 , C € (0,1), 

(A. 30) 



a second order homogeneous linear differential equation with polynomial 

coefficients; where. 

a = X + e 
0 = y, - y. 

0) = Yi - Y2 

XTj = -aiM^+T^) 

AT2 = e(a+Yp + Xw 

XT^ = -6(1) 

r^ = Y^ - , i = 1,2 , X p^ = a(Y2-^)(r2-rp 

(A. 31) 

and X P2 = -eY2(r2-rj) 

with the initial conditions (3.31) now becoming, under the transformation 

(A.29), 

n(l) = Qj 

(6-0)) and n'(l) + 
(A. 32) 

The problem (A.30)-(A.31) has already been solved, indirectly, 
-Xt for 6 = 0 , in the form of (A.1) with ?(t) = e 

Qi 
n(0 = Yi L'2 Yo + exp f 

is the solution of 

+ + 6(l+a)n(0 = 0 , 

where, 
Y 

« = - x ' ® = I ' " = n - ' 

with initial condtions 

n(l) = Qj 

and n'(l) + ̂  (Yi-X)n(l) = 0 . 

X > 0 . That is, 

(A.33) 

(A. 34) 

We note that if y^ = Y2 (A.34), so that w = 0 (3 = 0), then 

0) = 6 = 0 and the solution (A.33) is in agreement with (A.4). 

-Xt 
The integral equation (3.12); with C(t) = e , X > 0 and 



C(t) = 1 - , defined for all positive t , has been transformed 

by (A.29) (with (3.25)) into the differential equation (A.30) defined 

for C £ (0,1) . Numerical procedures for solving (3.12) are dependent 

on advancing in small steps of time t , whereas, there are numerous 

methods such as the Runge-Kutta method, (see for example Froberg (1969)) 

for solving the differential equation (A.30) in which the step size can 

be varied. Thus we can take smaller steps near C = 1 , corresponding 

to t = 0 , where the solution varies the most. 

We may, however, proceed more directly, in solving the differential 

equation (A.30), by formally assuming a power series solution. We note 

that regular singular points exist at 5 = 0 and ^ - j (9 0) , the 

latter being outside the interval (0,1) when 6 > 0 . With 0 < 0 we 

may assume a formal Frobenius type solution (see for example Coddington 

(1961) or Boyce and Di Prima (1969)), about the regular singular point 

5 = ^ . That is there exists a solution of the form, 1 6 

n=0 

where k and {c } are determined by substitution into (A.30). n 

If however 6 > 0 , and hence is outside the interval (0,1), 

then a Taylor series expansion may be assumed about 5 = 1 and hence 

facilitate the use of the boundary conditions (A.32), which are given 

at C = 1 • Thus we have a formal solution of the form 

n(0 = i a ri-O" . (A-36) 
n=0 

For convenience we make the transformation 

n(0 = y(x) , 5 = e - X , (A.37) 

in (A.30) where e is arbitrary for the time being, and we obtain 



(e-x)(v+ex)y"(x) + y»(x) 

+ B2X y(x) = 0 , X € (e-l,e) , 

where, 

V a - 0e 
r a, = - Tj + T^t + Tje 

a« = * 2x38 , 6, = Pj + » 

a^ = -T, and Bo = -P 2 

(A. 38) 

(A. 39) 

With 6 > 0 and e = 1 we thus try, from (A.36) and (A. 37), a 

solution for (A.38) of the form 

= I » (A.40) 
n=0 

from which, after substitution into (A.38), we obtain a recurrence 

relation for the coefficients {a^} of the power series (A.40) by 

equating coefficients of successive powers of x . Namely we obtain 

2Aa2 + a^a^ + B^a^ = 0 , 

and (n+2)(n+l)Aa^^2 (n+1) (aj-na)a^^j 

+ jnCa^ + e(n-l)] + B̂ jâ ^ + [(11-1)03 + = 0, 
for n = 2,3,... , 

(A.41) 

where. 

{a } and {B } are given by (A.39) with e = 1 , n n 
and we have used a - 6 = X from (A.31)j . 

The solution to (A.38) may then be written as a sum of two linearly 

independent solutions y^ and y^ , that is 

y(x) =F.yj(x)+G.y2(x) , (A.42) 

where y^ and y^ can be obtained by taking, for example, a^ = 0, 



a^ = 1 and a^ = 1 , a^ = 0 respectively in (A.41). We note, from 

(A.41), that a^ for n ^ 2 is a function of arbitrary a^ and a^ , 

that is 

for n = 2,3, 

So that if we let 

A„ = a^(O.l) , 

and Cjj = a^^d.O) , n ~ 2,3,... , 

(A.43) 

(A.44) 

then. 

y (X) = X + I A x" , 
n=2 

and y (x) = 1 + I C x" . 
^ n=2 " 

(A.45) 

Hence from; (A.37), with e = 1 , (A.42) and (A.45), 

= F. 1 - i ^ I AAl'if 
n=2 " 

+ G. 1 + I C d - o " 
n=2 

, (A.46) 

where 

{Aĵ } and {Ĉ }̂ are given by (A.41) on noting (A.43) and (A.44). 

A l s o , using the boundary conditions (A.32), F and G are given by 

p = ("-^pQi G = Q j . 

We note that for 6 < 0 , from (A.35) and (A.37) with e = Cj , 

a formal Frobenius solution for (A.38) of the form 

y(x) = I c 
n+k 

n=0 
n 

where e = C, = x ^ ̂ ^Y readily obtained but will not be pursued 
1 0 

further here. 
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