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ABSTRACT 

T f e c p h j o b l m o i í>¿nd¿ng t t i z i o m o^ t h z o u t p u t 

o{) a q u t u z ^ t x a m l n t d I n th^U l é U c h 

d ¿ v ¿ d z d i n t o t w o ^ e c t í o t u . 

Thz l i n A t 4i^ctÁon dzaJ^Á w i t h t h t d i A t n Á h v J x o n 

o f , t k t ¿nteA'de.poAtu/LZ ¿ntoAvaU o f ¿ÁnQl^-^JS^KvzK 

qu^uQÁng I n CkaptzK 1 a m e t h o d o i 

d u p l w j l n g t h e i n v o l v e d i n 4>uch ¿y^tm^^ 

¿6 de^cAÁbed and heveKoZ o i t h e panmetznÁ t f i a t 

onÁJse i^jom t / i e a t m e n t o f ^ u d i q u e u e s oAe d e r i v e d 

i n t e m ¿ o^ t h U QKaphicxitJ. H,epn.QjbentCition, The 

a s s u m p t i o n s c o n c e r n i n g i n d e p e n d e n c e o f i n p u t and 

e q u i l i b r i u m oAe a l A o s t a t . e d ^ C h a p t e r 2 di&cu6ses 

t h r e e m e t h o d s f o r d e t e r m i n i n g t h e i n t e r - d e p a r t u r e 

d i s t r i b u t i o n , g i v i n g s i m p l e e x a m p l e s t o d i ó p l j a y 

c o m p u t a t i o n a l d i H i c u l t i e s i n v o l v e d . 

The s e c o n d s e c t i o n e x a m i n e s t h e s e r i a l , 

s t r u c t u r e t h e o u t p u t p r o c e s s , b a s i n g t f t e m r J z 

on V a l e y ^ s g e n e n j o l i s e d a u t o - c o r j i e l j o u t i o n f o r m u l a e 

f o r o u t p u t . The q u e u e s ansí t a k e n as a c a s e 

s t u d y and t h e a a t o c o r / L e l a t Á o n f u n c t i o n s o f t h e 

o u t p u t o f t h e s e q u e u e s a r e d e t e r m i n e d and 

e v a l u a t e d b y c o m p u t e r . C h e s t e r 5 d e s c r i b e s t h e 

f o r m u l a e d e v e l o p e d , t h e c o m p u t a t i o n a l p r o c e e d a r e 

u n d e r t a k e n , and t h e p r o b l e m s i n h e r e n t i n t h e 

e v a l u a t i o n . The f o r m u l a e a r e t h u s e v a l u a t e d and 

t h e r e s u l t s g i v e n i n t a b u l a r , and g r a p h i c a l f o r m . 
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NOTATION: 

T arrival epoch of nth customer 
n 

6 « T .,-T inter-arrival time betx^en nth and (n+l)th 
n n+1 n 

arrival 

s service time of nth customer 
n 

w waiting time of nth customer 
n 

idle time between (n-l)th departure and 

nth arrival 

d^ departure epoch of nth customer 

A « d .,-d inter-departure time between nth and (n+l)th 
n n+1 n 

departure 

X arrival rate 

y service rate 

T « X/y traffic intensity 

Y auto-covariance of lag n 
'n 

o auto-correlation of lag n 
n 

Several other variables will appear and be defined later. 

Probability density functions will generally be 

specified by the same letter, while distributions will be 

specified by the capital, i .e . variable x would have density 

x(t) and distribution X(t). 



i l . 

Exceptions: 

6 specified by a and A 

s specified by b and B 

Laplace transforms wil l be denoted by an asterisk. 

i . e . 



SECTION 1 

OUTPUT BISTEIBUTION 

CHAPTER ONE 

Graphical Representation 

Assumptions 

Preliminaries. 



1.1 GRAPHICAL REPRESENTATION] OF A QUEITE 
• 1 •• » 

Mathematically, a queue may be represented by tv70 
. - . ' 

sequences of poin ts on the r e a l l i n e . 

The two sequences - those of a r r i v a l times and 

departure times - may be described thus . 

Let tha po in t s of the f i r s t sequence occur at 

•••> T , T , , s u c h t h a t t h e s e q u e n c e {x } i s 
J. o 1 n 

monotonic non-decreasing. Let the po in t s of the second 

sequence occur a t d^^ ,̂ d^, d^, such, tha t 

{d^} i s a l so a monotonic non-decreasing sequence and t h a t 

d ^ T for a l l n , n n 

These two sequences may be regarded as point processes 

in continuous t ime, the t being a r r i v a l t imes and the d 
n n 

depart-ore -times. 

Other va r i ab l e s involved in the queue may be def ined 

from these sequences. 

The se rv ice time s i s defined as n 

s « n 

d - T T d -n n n 

d - d • T $ d , n n -1 n n -1 . 

(1-1) 

3 0009 02987 5528 



Thus 

s « d - max(T 
n n* n-1 

The number in the system at time t is defined as 

L(t) « n^(t) - n^(t) 

where n^(t) is the largest N such that ^ t and 

is the largest M such that d̂ ^ ^ t. 

The lunber in the waiting line is defined as 

L (t) = max(L(t)-l ,0) , 
\'7 

In the literature, L(t) is usually called the queue 

length and is made up of the number waiting plus the one 

being served, if any. 

In general, when investigating a queue, the sequences 

{6 } and {s } are known from which the sequence {x } can 
n n n 

he found^where Ta+i" • 

We define the cinrrent idle time x(t) as the time since 

the server was last busy. Thus 

X(t ) = (t-d^^)H(t-d^p (1-2) 

where N » n (t) now and throughout this section 
a 



Associated with each arrival is a discrete idle time 

X^ given by 

n n n n—i n n—i 

The total idle time I(t,tQ) between times t^ and t is 

given by 
N 

I(t.t^) . I x^ + x(t) - X V 

n-Np+l 

where Ng -

Hence Kt.t^) - f n-Np+l 

The waiting time w of a customer is defined as the time n 
from arrival to commencement of service 

w^ » departure time - arrival time - service time 

» d - T - s n n n 

n n n n n-i 
• max(T ,d ,)-T , n n-l n 

Thus 

w n 

d ,-T T ^ d -n-l n n n-l 

We define virtual waiting time v(t) as 

v(t) « total service presented - total busy time 

» (total service presented since t « t^) -

(total busy time since t » t^) + v(trt) 
N u 0 

n«NQ+l 



n-Ng+l 

which from (1-1) becomes 

Whenever the system Is idle, total service presented equals total 

busy time and hence v(t) « 0. 

Also djj ̂  t. 

Thus if t^ is chosen as a time when the system is idle, then 

and v{t) = (d^-t)H(dj^-t), t after any idle period. 

Since the abovedioice of t^ satisfies this last equation, it is true 

for all t, 

i.e. v(t) = (djj-t)H(d^-t) everywhere, 

an equation similar to (1-2) for x(t). 

Thus this function has a slope of -1 when the server is busy and 

has a \due of zero when the server is idle. 

n n-l n n—i n n 
v(t) can be regarded as the total service remaining for the server at 

any instant or as the waiting time if at that particular instant a new 

customer arrived. The value of v(t) jiinps up by the service time for 

each arrival and becomes zero whenever the queue is idle. 

A new function, u(t), called the service load can be defined by 

dropping the Heaviside function from v(t) thus 

u(t) = d^-t. 



t=t. 

L(tp=2 

FIG. THE SERVICE LOAD u(t) 



Thus if djj ̂  t, u(t) has the value of v(t) but if d^ 1 t, 

then -u(t) equals x(t). Thus 

u(t) « v(t) - x(t). 

Hence for u(t)» its slope is -1 everywhere except at arrivals at 

which u(t) changes from 

u ( T ~ ) » d - - T n n—1 n 

to u ( t ) " d - t n n n 
i.e. a ju!i5> of d^ - ^n-1' 

Alternatively 

u(Tj^) • SĴ  inax(u(T~),0). 

A typical u(t) is shown opposite. 

At any instant of time t^» u(t) gives (see figure) 

(i) virtual waiting time v(tj) « u(tĵ ), u(tĵ ) ̂  0 

(ii) current idle time x(tj) ® -u(tj), u(tj) ̂  0 

(iii) number in system L(tj) by counting number of 

lines (dotted and undotted) crossed by line t • t. 

(iv) how long each customer in system waits before 

departure time ( height of dotted line or 

undotted). 



Thus u(t) Is a uniqi^ representation of the queue 

frcwn which a l l queue parameters may be obtained direct ly . 

Later we wi l l use the discrete service load u defined n 
only at an arrival by 

n n 

1.2 ASSUMPTIONS 

The assijnptions made about the qtjeueing systems 

discussed in this thesis are those made by Ilndley (1952) 

(I ) the are independent random variables with 

identical probability density functions with 

f i n i t e mean 1/X; 

( I I ) the s are independent random variables vrith n 
identical p . d . f . ' s and f in i t e mean 1/y; 

( I I I ) the two sets {6 } and {s } n = . . . , - 2 , - 1 , 0 , 1 , 2 , n n 
are imdependent; 

(IV) A < y , i . e . T < 1 and the system is in equilibria©, 

(Lindley (1952) showed that i f X < y , the 

system tends to an equilibriisn state . ) 



Because of assimption (IV), equi lib ritim states only will 
be treated and distributions so obtained will be valid only in 
steady state conditions. 

Tbis first section will investigate several techniques for 

evaluating the distribution of inter-departure times and scane 

examples will illustrate each method's practicability. 

It has been shown (Daley (1968), Finch (1959)) that in 

equilibrium states, excepting the M/M/1 queue, the sequences of 

waiting times and inter-departure times are auto-correlated. This 

auto-correlation of the output process will be examined in Section 2 

The examples treated in this thesis are all M/Eĵ /1 and Eĵ /M/1 

queues (M/D/1 and D/M/1 queues being treated sometimes on their own 

or as a limiting case of M/Eĵ /1 and Ê /̂M/l queues as k ®) and 

serve to illustrate the difficulties which arise in each of the 
methods used. 

1.3 PRELIMINARY 
Each has p.d.f. a(x) 

and each s has p.d.f. b(x). n 
We define v = s - 6 . n n n 
Thus the v^ are independent random variables with identical p.d.f.'s 

given by 

v(x) 
CO 00 

/ 
b(y)a(y-x)dy b(y+x)a(y)dy. 



Thus 

v*(s) « a*(-s)b*(s). 

Care should be taken to ensure the validity of this 

equation as It holds. In .^neral, only for s pure lisaglnary and 

those points for Which the equation can be extended analytically, 

If in doubt, v*(s) can be found directly frcMa vOt), 

In the examples of the M/G/1 queues. It would be useful 

to know w*(s) and W^ « w(0). 

Firstly, WQ « Prob (server Is Idle) 

« 1 - T , 

It can be shown (Cox and Snlth (1961)) that 

w*(s) » , , 



CHAPTER TTO 

Transform Method 

Moment Generating Fmction Method 

Integral Eqijation Method 



In this chapter we treat three methods for finding 

the distribution cf inter-departure times in the equilibrium 

state. The three methods each utilise a different technique 

(1) Transform method (Chang (1963)), in vhich the 

basic defining equations for discrete service load u are n 
transformed using Laplace transforms and the resulting trans-

form equation solved 

(2) Moment generating function method (Makino (1966)), 

in which equations relating m.g.f, of output distribution and 

m.g.f. of input and service distributions are stated ̂ ^thout 

discussion as the method would reouire identification of anv 

resulting m.g.f. in order to utilise the results for evaluating 

output distributions. 

(3) Integral eauation method (based on Saaty (1959)), 

in which the solution of integral equations for discrete service 

load distribution are solved by various methods - not a general 

method such as in (1) 

In each case exataples show ease of manipulation of 

each method and problems likely to arise ̂ d.th usage. 



2.1 TRANSFORM METHOD 

This method is the work of Wei Chang (1963) 

It can be shown (Linr^ley (1952)) that 

w 

w , + V , 
n-1 n-1 

0 

w , + V > 0 
n-1 n-1 

(2-1) 
w , + V , $ 0. 
n-1 n-1 

is independent of by virtt^ of the assumptions 

The inter-departure tii!>es can be obtained thus 

A == 
n 

\-7 > 0 
n 

(2 -2 ) 
s 
n ^ n 

V7 $ 0 

where x^ ,̂ the idle time, is given by 

= ( ^ n - r V l ^ (2-3) 

I . e . Xjj can be only positive or zero. 

If x^ Is the positive value other than zero then (2-3) becomes 

+ 

Xn = 

Y = -W ,-V 

0 

, V , > 0 for w =0 
n-1 n-1 n 

(2-4) 

for w > 0 . 
n 

So (2-2) gives 

A = S + Y 
n n ^ 

(2-5) 



Thus 

Prob (x^=x)'«Prob (x^=x)+Prob 6 (x-0) 

=Prob (x^'=x)+Prob (w^>0) 6 (x-0) 
from (2-4). 

Using Cauchy's integral theorem, the transform 

X^(s) is given by 

X*(s) « E(e"®^) = ^ $ ^ — i dz+Pr(w^>0) 

C 
(2-6) 

with C the contour from - i » to i « in the right half plane. 

(2-6) is valid, even i f the variables are not independent. 

However, with w , and v , independent, then n-1 n-1 

z(w +v ) z^« 1 zv , 
E(e ) = E(e . (2-7) 

In the steady state, dropping subscripts and using 

(2-7) , (2-6) becomes, using transform notation 

- ^ I dz + (1-y^) (2-8) 

c 

where = W(0). 

Also (2-5) becomes 
A*(s) = b*(s)x*(s) . (2-9) 



12v 

Summarising, the technique is 

(i) calculate x*(s) from (2-8)^ and 

(ii) tise (2-9) to finé A*Cs) and then invert 

the transform 

Examples of Transform Method 

(a) M/M/1 queue 

a*(s) = ^ 

b.(s> = ^ 

Xv 
v*(s) » b*<s)a*(-s) 

(y+s)(X-s) 

= (l-T)s _ (l-T)(s+li) 

"o = 

xMs) = i f e I i ^ l L m a . . ci-w,) 

C 

Xy(l-T) i dz 
* 2iri J(z+X)(z-s)(z-(u-X)) 

C 

Ü3ing residue theorem at poles z = s and z = u-X 

N X(1-t) , X+Ts 

Thtjs 

AMs ) = b*(s)x*(s) 

X+s ' 



Thus 

A(t) = Xe'^^ 

i.e. the output of an M/M/1 queue (In the ecuilil rium state) is 

Poisson, the same as its input.- a well-known result (Burke (1956)) 

(b) D/M/1 queue 

a*(s) = 

b*(s) = 

v*(s) 

y+s 

s/X 

pe 
y+s 

^As+M} 

where U^ is defined and the derivation of v*(s) above can be 

found in 2.3 Example (b) Eqn.(2-28). 

== f (pU^-z)(p-z)(z-s) ^ 

C 

1 X ^ 
H i t (^-sXz-yU^)'^^-^ 

Using residue theorem at poles z = s and z - yU 
o 

UU -yU /X , 

U \ ( e ^ - u(l-D„) 

' V r _ J _ J L ) r . 
U- l-S-Utl. " R+llJ i.® ~ ® } * • 1+Ug S+U-' " -I " S+U 



Inverting we get 

A(x) 
yu, 

i m 

Splitting the range we get 

I 14.IT ^ l+Tl ® 1+Oq • 1+Un 

(c) M/D/1 qusue 

a*(s) 
X+s 

b*(s) = e"®^'' 

v*(s) 
Xe 

-s/u 

X-s 

w*(s) 
( I - T ) S 

8-X+Xe 
-s/v 

WQ = 1 - T 

Equation (2-8) gives 

X * « • ^ i 
z/p J 

ze dz 
+ T . 



Z / ti 

The expression z 4- X - Ae ^ is an exponential polynomial 

with no principal terra and hence has an unbounded number of zeros 

m t h arbitrary large positive part (BellBan and Cooke (1963)) . 

Consequently the evaluation of the contour integral is difficult. 

However, it may be shorn from later work (2 .3 Example 

( a ) ( i i ) ) that 

X(x) = 

A d - O e " ^ ' ' x > 0 

X < 0. 

Consequently, 

so (2-9) gives 

a./ N A+TS 
x*^®^ = ViT" 

A+S 

Inverting this, we get 

A(x) 

X > 1/ii 

T X = l/y 

0 X < l/]i. 

CONCLUSIONS 

Although the transform method can be used to evaluate 

the inter-departure distribution of any GI/G/1 queue, there 

are difficulties inherent in the evaluation of the contour 

integrals and transform inversions involved which limit the 

method's practical usage. 



2.2 MCMENT GENERATING FUNCTION METHOD 

This Is the work of Makino (1966). 
This nethoi^ gives as a result the moment generating function 

of the output process and as such cannot be directly used 

in the work of Section 2. For this reason i t is included here 

without discussion. 

If is the mcMiient generating function of the 

inter-arrival distribution; 

Mg(e) is the m.g.f .of the service time distribution; 

and M^(e) is the m.g.f .of the output distribution, i t has 
been shown that 

( i ) for the M/G/1 queue 

giving 
M/M/1 as My(6) = ^ 

H/E^/Ias V e ) = 

and M/D/1 as Mj,(e) = (H^) (^je®/»^ 

(±i) for the Eĵ /M/1 <|ueue 

1 - ( 1 -
. (l-v)+v 

T^ere v is a positive root iess than unity of 

k k-1 V + v + . . . + v - k T = 0 . 



Makino also treated the E^/E^/l and several tandem 

queueing systems of two and three stages. 

2.3 lOTEGRAL EQUATION METHOD 

The main work is from Saaty (1059). 

Using the variable v defined in 1.3, the discrete 
n 

service load u can be defined by the recurrence relation 
n 

u 

e - + v , 
n-1 n-1 

n-1 

u , > 0 
n-1 

V i ^ 

(2-10) 

As stated before for u(t), u contains the information 
n 

thijs 

if u ^ 0, 
n 

w = u 
n n 

if u $ 0, w = 0 
n ' n Xn 

= 0 

= -u 

Define u (x) as 
n 

Prob(u =x) 
n 

Prob(u =x,u .>0)+Prob(u =x,u ,$0) 
n n—1 n n—1 

Therefore 
0 

u^(x) u^_j(y)v(x-y)dy + v(x) (2-11) 



In a s t e a d y s t a t e , t h a t i s asn «>, u , (x) and u (x) 
both tend t o the e q u i l i b r i u m p . d . f . u(x) Tohich from (2-11) 
i s g iven by 

0 
u(x) = u (y )v (x -y )dy + v(x) 

0 
u(y)dy . (2-12) 

I n t e g r a t i n g (2-12) from t o x and i n t r o d u d a g 
d i s t r i b u t i o n n o t a t i o n 

X 0 
IJ(x) 

X oo / u (y )v (x -y )dy dx + v (x) u(y)dy dx. 
-co o —CO —CO 

Reversing t h e o rde r of i n t e g r a t i o n we ge t 
« X 

U(x) v(x--y)dx 
0 - » 

t i (y)dy + V(x)U(0). 

I n t e g r a t i n g t h e f i r s t p a r t by p a r t s wi th r e s p e c t to y g ives 
X 

U(x) = | v ( x - y ) d y | | u(y)dy 
J ) 

0 

CO X 

d f i - ^ v(x-y)<?x 
0 

} { J u(y)dy dy + V(x)U(0). 

S impl i fy ing t h i s , t h e equa t ion f i n a l l y becomes 

U(x) 

where -<» < x < » . 

U(y)v(x-y)dy (2-13) 



This is a homogeneous integral equation over„ the fixll 

plane5 but the integral involved is only over the half plane. 

This variation from the standard ¥einer-Hopf type results 

in solutions being more readily obtained by methods devised 

for each individual equation encountered. 

The above x-TOrk i s the essence of Saaty's technique. 

From the resulting U(x), the waitiTtg time distribution 

ifl given by 

W(x) 
U(x) X > 0 

X = 0 
(2-14) 

Tjhere Û  = IT(0) henceforth. 

From the definitions of w and d we find n n 

i = T + s + w n n n n 
T + s + u n n n 

T + s n n 

u > 0 n 

u ^ 0 n 
(2-15) 

Hence 

A = d n n+1 n 

u . , -u r n+1 n V l , u >0 n 
u $0 n 

= 5 +s , , - s + • n n+1 n -u u >0 n 

0 u $0. n 



Thus 

n n+1 n+1 

'n+1 
u . ,>0 
n+1 

n+1 n+1 n+1 

Finally we have 

n 

n+1 

®n+l V l 

u . ,>0 
n+1 

(2-16) 

and are independent and immediately assuming steady 

state conditions, all the A have density A(x) given by 
n 

A(x) b(y)u(y-x)dy + (l-U^)b(x). (2-17) 

0 

Note that only u(x) x $ 0 need be knovm to evaluate A(x). 

However, for completeness, in the following examples the full 

solution for u(x) v/ill be evaluated. 

Examples of the Integral Equation Method 

(a) M/G/1 queue 

a(x) { Xe 0 
-Xx x:̂ 0 

x<0 

v(x) 

oo 
; 

h(y)a(y-x) dy 

) 

x>0 

b(y)Xe ^^y'^^dy, xsO 



Xe 

» 

X 

CO 

x>0 

x$0. 

Using (2-13) 

U(x) « i u ( y ) v ( x - y ) d y 
0 

X ; 

U(y)e > X ( x - y ) b ( 2 ) e ^^dzdy 

0 

+X 

0 0 " C O 

X 0 

0 0 

X 

U(x) 

CO 

-Xy/ - X z U(y)e b ( z ) e '^"dzdy 

x-y. 

+b*(X) 
t 

U(y)e"^^dy x>0 

b*(X) 



The above i n t e g r a l equation i s so lved for x>0 i n a 

d i f f e r e n t way fo r each b ( x ) . 

However fo r x$0, U(x ) i s given by 
CO 

U(x) = Ae^V(A) |U (y )e ' "^ydy . 

0 

Put t ing Ab*(X) U(y)e ^^dy « A independent of x 

0 

U(x) » Ae^^ x̂ O 

At X = 0 U(0) = A = U, o 

Thus 

From 1 ,3 

Thus 

and 

U(x ) = U^e Xx 

" 

U(x ) = ( l -T )e^^, 

u ( x ) = 

x$0 

x$0 

x̂ O 

Thus (2-17) g ives 
X 

A(x ) b ( y )u ( y - x )dy + ( l -UQ)b(x) 

0 
X 

+ Tb ( x ) 
0 

X 

i . e . A ( x ) « X ( l - T ) e -Xx xy b ( y )e ^dy + Tb(x) . (2-18) 



F o r t h e f i r s t t w o M / G / 1 q u e t i e s U ( x ) , x > 0 w i l l b e 

e v a l u a t e d f o r c o m p l e t e n e s s . 

( i ) M / M / 1 q u e u e 

- X x 

a ( x ) 
A e 

0 x < 9 

b ( x ) 
x < 0 

v ( x ) = ^ X 
X + y 

- y x 

' X x 

X + y "" ^ 

- y x 

X / 

x > 0 

x $ 0 

U ( y ) e ^ ^ d y + e ' ^ " U ( y ) e ' ^ ^ d y 

b X 

X x 

CO 

f 

X x 
t 

0 

x > 0 

x̂ O 

F o r x $ 0 

I h u s 

U ( x ) = ( l - T ) e 
X x 

U ( y ) e - ^ ^ d y = 

0 

F o r x > 0 w e h a v e 

0(x) = ^ 
X + y 

- y x (2-19) 



llien 

and 

2A. 

Taking Laplace transforms of both sides, putting 

L(s) 

0 

X 
-yx 

0 
C O 

JC (e M f l z i i a . 
I J j A-S 

X 

then <2-19) becomes 

i(a\ - ^ / M B I . l i s i L(X)1 
~ X+y \s+u ^ X-s " X-s / 

Collecting terms in L(s) this becomes 

But 

so L(s) = - - -i—r- . 
s s+y-X 

Thus for x>0 

U(x) = 1 - xe 
-(y-X)x. 

Hence the full solution is 

C(x) = 

l(l-T)e Xx 

x>0 

xiO 



Thexfc^ore 

'X(l-T)e 
-(y-X)x x>0 

U<x) = 

X(l«T)e 
Xx x^O 

Using (2-14), the waiting time distribution is given by 

W(x) 

1-T 

l-xe 
-(U-X)x 

x=0 

x>0 

From (2-17) or (2-18) 

A(x) « Xe"^'' . 

Again the w e l l known result 

(ii) M/I>/1 queue 

-Xt 
a(t) 

Xe 
0 

t>.0 
t<0 

b(t) = 6(t -
y 

v(x) = b(y)a(y-x)dy 

0 
CO f 

6(y - ^)a(y-x)dy 



v ( x ) = 

0 

- x ) 
Xe y 

X' 

CO 

U(x ) 

X -1/ l i 

I 

u 

4 
1 

x>— 
y 

Thus i n t h i s case f o r , 

u(x) « 

Put A = 

00 
; 

-Xy 
TJ 
0 

U(y )e 
Xe 

Cons ider BOW t h e r e g i o n x>7- where 

U ( x ) = Xe^^"^ " 

x - l / y 

I n t o r d u c i n g A y i e l d s 

U ( x ) - Xe 
X ( x - i ) ^ 

A -

x - l / y 

U(y)e"^^dy (2-20) 

0 

De f i ne 

F ( x ) = e '^^'u ix) 



Then (2-10) becomes 

F(x) = Ae 
-X/Mf 

x-l/p 

A - F(y)dy (2-21) 

and A = F(y)dy. 

0 

Substituting X - ^ + ~ and then dropping the dashes 

(2-21) becomes 
x + 

F(x + î ) « 
y 

A -
u 

F(y)dy 

0 

x>-" 
n - 1 

(2-22) 

Now introduce subscripts on F thus 

Fq(x) = A 

and 

F^(x + = F(x + J) 

Then (2-22) becomes 

F (X + = Xe"^/^ 

X + 
n-1 

Therefore 

^ -

i+1 

V 

F(y)dy 

0 
3d 

n-1 

A / f n-2 n. , -X/yJ 
F (x + ") Xe A - I 

•iss'̂  
F^(y)dy - F^_j(y)dy 

n-1 

(2-23) 

for n:>2 and 0<x$-- . 



Redefining integral parameters (?-23) gives 

1/y X 

F (x 4-
n p 

Xe -\/M( 
n-2 

A - I n-1 y 

for m l . 

and 

> - Xe A - F^(y)dy 

(2-24) 

in the region 0<x$~ . 

The terns in x^ in F^(x + are obtained in (2-24) 

by integrating F over the region (0,x) . 

Since Fp(x) is a constant, + must be linear in 

X, and hence F^(x + must be an nth order polynomial. 

Put 

F (x + 
n^ y 

n 

3-0 «»J 

SO that f^Q ® 1. 

Substituting into (2-24) 

F (x + Ae 
-X/y 

A - I jMe 
i-0 i 

X 

A X V C l 



Thus 

AXe -X/y 

i«0 J«0 ^^^ ^ 

n 
j AXe I £ 

j - 0 ""J 

Comparing terms 

^nj j 
j>0 

nO 
1-Xe -X/u 

n-2 1 f . . , j+1 

I I l ^ i ^ ) 

n-'2 i f . . , . . I 
i + I I 

i»0 j - 0 
(2-25) 

n-1 i f 
i i 

y 

n-2 i f . . n-1 f , . 
I 

1=1 j - l y^ j ' l y^ 

n-1 f - . 
+ y ^"hi using (3-24)• 

Thus 
n-1 f , . 

nO j • j «0 y 



Siinmiar Ising 

F (x + = AXe"^^^ I f 

n 

n ]! 
i=0 

nj 
n = 0 , 1 , 2 , , 

v^ere f^^ = -Xe ^ — 

i-1 f 

and f , . = I (2-26) 

with f^Q = 1 

and taking ^gi*) = AXe 
•X/p 

for 
y 

Hence 
Un 

AXe 
x(x - r ) r - , Hvl n ^ . n-r 

n » 1 , 2 , 3 , . • • 

n+l 

so that 

U(x) = 

7 < ^ i — 

AXe 

n>0 

4 

So U^ 1 - T = AXe 
•X/y 

or 
1 - T 

Xe 



sad 

U(x) 
j-0 

( l-T)e 
Xx 

n>0 

4 

with f . as defined in (2-26). 
nj 

For the purposes of finding A(x) only u(x) for x$0 

is required which for all M/G/1 queues is 

u(x) = 

Hence from (2-17) or (2-18) 

A(x) 

X(l' 

0 

X) 

u 
1 

X<1 
y 

(iii) M/Ej^/1 queue 

-Xt 

a(t) 

Xe 

(Uk)^ 

b(t) 

r{k) 

t<0 

t^O 

t<0 



Xx x i O 

' — m — 

w h e r e Y { a , x ) i s t h e I n c o m p l e t e Ganana f v m c t i o n g i v e n b y 

Hence 

Y ( a , x ) 

U ( x ) 

e - V - ^ d t 

00 

U ( y ) v ( x - y ) d y 

1 
0 X 

r ( k ) j 
0 ( y ) ( r ( k > - Y ( k , a + k u ) ( x - y ) ) dy 

0 
x>0 

XiO, 

0 

F o r t h i s c a s e , o n l y U ( x ) f o r x^O w i l l b e d e t e r m i n e d . 

F o r x ^ O , 

and 

Hi us 

ACx) 
A ( y k ) 
r ( k ) 

U ( x ) - ( l - T ) e ^ ' ' 

u ( x ) = 

- X x 

( k y - X ) ^ ^ 



(b) D/M/1 queue 

a(t) 

b(t) 

ye 

0 

-ut 

v(x) 

ye A' 

U(x) 

0 

r 

ue 

0 

- y ( x + f ) 

t̂ O 

t < 0 

x< 

U(y)e ^^dy x>- f 

0 

Replacing x by x' - 7 and putting y* » x ' - y and finally 

dropping the dashes x 

U(x - p 

y 

0 

0 

x>0 

x$0. 

Try as solution 

U(x) = 1 - (1 -
cx x> 

Stibstituting we have 
X 



Equating coefficients 

{l-Uo)e 
-c/X i l l ^ 

as I • • 

C+M 

or 

and 

-c/X 

cfM 

1 -
c+y 

or c - -uUq. 

Thus 

U(x) 

x> - rr 

where U^ is the non-zero root̂  of 

1-U 
0 

(compare this with expression for 9 in (4-?)) 

and 

u(x) 
0 

X> - T 

x$ - r 

(2-27) 

Thus 

w{x) 

x>0 

x=0 (2-28) 



Itetti=e w*(s) « U^ + 0 s-HiU s-HiU. o 0 

Substituting (2-27) into gives 

2A SUMMARY 

In this section, the inter-departure distributions of 

several simple queusing systems have been investigated using 

a variety of techniques so as to illustrate the structure 

associated with the system. 

The same techniques may be used for more complex systems 

and will be of theoretical value in the investigation of any 

GI/G/1 system. However in most of these complex systems, the 

techniques are unsuitable for computational purposes. 

The output of the M/G/« queue has been shown to be 

Poisson (Mirasol (1963)). 

Joint distributions of output parameters with other 

parameters of the queue have been obtained such as that of the 

number of departures in a time interval (0,t] and the queue 

length at t for the M/G/1 queueing system (Shanbhag (1966)) 

and for the M/M/1 quetie in particular (Greenberg and Greenberg 

(1966)). 



It shotild be emphasised that even if a complete 

descri|>tion of the inter-departure distribution were 

available this would be inadequate as, except for the 

M/M/1 queue, the inter-departure process is auto-correlated 

and this is the subject of the next section. 



SECTION 2 

SERIAL STRUCTURE 

CHAPTER THREE 

Auto-COvariance and Auto-correlation 

The Correlation Structure of the Output Process 



3.1 AUTO-CX)VARIANCE AND AUTO-CORP.ELATION 

Consider a general sequence 

* * ^3 * • • • > J • • • 

which has been generated by some stochastic process. Thus 

the elements constiLtute a time series. Generally the process 

can be described by the joint probability density function 

For any fixed k we can find simple moments 
00 
e 

i 

<~00 

Therefore there exist a mean function y^ and a variance function 

a^ which generally vary with k. 

Similarly bivariate moments can be evaluated 

E(x^ Xj) 
a b 

x^ Xj f(x^, x^)dx^dx^ 

mmOO ' » O O 

to describe the dependence of the values of the time series 

at two neighboiiring points i and j . 

The prime bivariate moment (which will be treated later) 

is the auto-covariance function (a .c .v . f . ) 

with Y ( i , i ) 

This 

can be i^ormalised by dividing by the product of 

the standard deviation a^ and a^ to give the auto-correlation 

function (a .c . f . ) 



which H e « ' - I and +1. 

A stochastic process is said to be stationary if for all 

k , n , all sets of i ' s that 

That is, that the joint p.d.f . of any n elements of the time 

series is the same as the joint p.d.f . of a set of n elements 

k elements distant respectively of the first set for any n* and 

any k. 

Consequently, 

y^ = y for all i 

and since E(x^,xj) = ^^^i-fk'̂ j-fk^ only the difference j-i 

is required. 

Y ( i , j ) = Covariance (x^, x^^J 

where u « j-i is called the lag. Thus the auto-covariance 

function is a function of the lag u only, stated as 

Ŷ ^ = Y ( i , j ) u = j-i. 

Thus the auto-correlation function is also a ftanction of 

u only and is defined 

Y Y 

U Y q O ^ 



In this section, only stationary processes are considered. 

In the case of queueing systans, the correlation structure 

of waiting times (Daley (1968)) and of inter-departure intervals 

(next chapter) have been examined. 

3.2 THE CORRELATION STRUCTURE OF THE OUTPUT PROCESS 

In the case of output, it has been shown (Daley (1968) , 

Burke (1956)) that the inter-departure intervals are not in-

dependent of each other, except in the case of the M/M/1 queue. 

Thus work on tandem queues must take into account any correlation 

in the input to the second ( and any subsequent) service points. 

It is assumed in the following T̂ork that the system is 

already in operation at the time 0 i .e . there exists a sequence 

• • « , « . » J S q , 6 2 9 « « « 

and similarly for the other sequences. 

Jenkins (1966) calculated the auto-correlations p^ and 

p^ of the output of the M/E^/1 queue by finding the joint 

p.d .f . of A A and A . , A , A , , . This work yielded the 
n-i n n-l n n+i 

formulae. 



" T^(l-k)+k 
(k-l )T-k . .J^^ k̂  

T+k 

. ( l -T)k i(k-l)T--k . T^k r k ^^ (k+D-H-k fJLl^^l 
T+k T S k F ^ r W T+k / ' ' T^(l"-k)+k 

However, because of the complexity o f the evaluation of 

the j o i n t distributions, this technique cannot be pract ical ly 

applied to higher lags. 

Daley (1968) developed a quite general approach and revealed 

equations for the evaluation of auto-covariances of GI/M/1 and 

M/G/1 queue outputs. 

For the GI/M/1 queue 

where 8 i s the uniqtie root in 0 < 6 < 1 of 

- y ( l - e ) x 9 dA(x) . (3-2) 
0 

For the M/G/1 queue, the equation linked the ŷ ^ in the expression 

X2(l-T)'"^y Y « (w-z)(l-z)"^(l-a))' 'V(2u)'-a))«l-z)a3a)) ".i n 
- 1 

n«l 
(|z < 1) (3-3) 

dw where = — , uj = luiz) i s the root of smallest modulus of dz 

a> = z (3-4) 



As a consequence, Daley showed that in a stationary 

M/G/1 queueing system, the maximum auto-correlation of lag 1 

occurred in the queue M/D/1 and that its value is given by 

e 4-t-I 
P 1 T+1 

The use of eqns. (3-1) and (3-2) to evaluate the auto-

correlation is described in the next chapter for the example 

of the E^/M/1 queue. 

The use of equations (3-3) and <3«»4) requires a little 

more work. We require w either in closed form or as a series. 

Equation (3-4) yields an expression for w not directly 

expressable as required. For example, the M/E^/1 queue yields 

(3-4) as 

0) k /T 
t(l-l/T)-a)/ 

and the M/D/1 queue gives 

-Td-w) <0 « ze 

putting y « 1 and t = A. 

One possible way of expressing u) as a series is by 

using Lagrange*s theorem. (Whittaker and Watson (1902)). 

Then evaluate the right-hand side of (3-3) as a series in z 

and finally compare terms with the left-^hand side. 



CHAPTER FOUR 

Preliminary 
Ê /M/l 
D/M/1 
Suanary 



4.1 PRELIMINARY 

Equation (3-1) states that for the GI/M/1 queue 

with e the unique root in 0 < 6 < 1 of (3-2) which is 

Another result (Daley (1968)) states that 

Var(A) « Var(6) - (T"^-e"b26(E(s))^(1-6)""^ . (4-1) 

Equation (2-17) states that 
X 

A(x) = 
b 

Thus 

E(A) = 

b(y)u(y-x)dy + (l-UQ)b(x) . 

xA (x)dx 

can be expressed as 
0 
xu(x)dx , (4-2) E(A) = ^ 

—CO 

In the following work all densities will be 

conditional upon w^ = 0 if they are dashed 

ie. u^(x) - p.d.f. of u^ conditional on WQ = 0. 



The requirement w^ « 0 is obviously equivalent to the 

condition u^ $ 0. 

From 

u 
n 

n-1 n 

n 

"n-l ° 

V l ^ 0 

If Ug i 0 

and further u can be evalviated as before 
n 

uj^(x) = v^(x) « v(x) 
00 0 

and u' (x) = 
n 

u^.l(y)v(x-y)dy + v(x) u^^^(y)dy (4-3) 

0 

X 

b(y)u^(y-x)dy + (l-UQ)b(x) . 

0 

(4-4) 

The rest of this chapter will describe the evaluation 

of the required expressions for the determination of y^ and 

pĵ  for the E^/M/1 queue. 

In Chapter 5, numerical results for this queue will be 

given and interpreted. 

4.2 

For the Ej^/M/1 queue 

a(t) 
r(k) 

b(t) « pe"^^ 

(kX)^ t̂ - ê--^̂ ^ 
t ^ 0 

t ^ 0 



Equation for 6 is 

e 

0 
00 

e X e dx 

0 

fMiHzli®) 
^ kX J 

-k 

or 

e(i (1-6)) (4-5) 

Var(6) = E((6 - i)^) » 
' -ux e • 

X 4 

r(k) 

(4-6) 
X ^ 0 

k-1 - y , ^ ^ y e "̂ dy x < 0 

-(kA+M)x 

kX-Hi' 

-yx X ̂  0 

-MX 
I f ^ r(k,-(kX+y)x> X ^ 0 

Now r(k,y) = r(k)(l-P(k,y)) (incomplete F-function) 

where k-1 k-1 i 



T h u s 
r̂ -yx 

kXx 

X 0 

i - O 

Then 

v ( x ) 

A e 
- y x 

A kXx r ( " ( k X - h i H ) ^ ' ^ 
^ r ( i ) 

X 0 

X < 0 

F i r s t l y , c o n s i d e r x ^ 0 , 

By i n s p e c t i o n o f t h e e q u a t i o n f o r u ' ( x ) , s e t 
n 

u* ( x ) = A e " ^ * I a . x ^ " ^ 

w i t h u j ^ ( x ) = v ( x ) = A e 
- y x 

E q u a t i o n ( 4 - 3 ) s t a t e s 

xdiere 
u;(o) 

u ^ ( y ) v ( x - y ) d y + U ^ ( 0 ) v < x ) 

0 
0 

u ; ( y ) d y . 

—oo 
X 

0 
00 

k 

I 
i = l 

^ U ' ( 0 ) A c 
n 

- y x 



o n k 2 -uxr r a 
i = i r ( i ) 

Putting 

then 

- (kX+y) (x -y ) = t 

y = + X ^ kX+y 

J r i 
and y^"^ = + x}^ ^ = r (£+ l ) r ( j - i l ) ^kX^^ 

Then 

u- j D ' i O H A l f n ^ + A l f ^ f f 
1 « . , j j = i 1=1 i=o r ( m ) r ( j - £ ) r •i.)r(i) 

{kX+y)'''^^^ 

Putting m = j - this becomes 

e t dt 

-ux x^" ? c i a . r ( j ) r ( i+ j -m)x°"^ 

Changing the order of sunmation we get 

3-1 5 

r a - j + i ) ( k x + u ) « . - j+ i 

I r d + i t - i ) ' ' 

i= i r ( i ) 



Thus 

Aa 
J = 2 « 

A a -
n n 

n+1 ,n+l n 

with 

F 
n 

(3) y ^ 

Now, consider x < 0. 

Substituting in (4-3) the form of u*(x), x ^ 0 yields n 

0 

^L^ r(i) 

i-1 Z i-£-l 

Putting " ^ Q ^ ^ r o + i m f a y " ^ ^ Integrating 

the Integral tens becomes 

,2 kAx? \ rd-l-il) 

Putting m « i - £ and changing order of summation this becomes 

r k , n a_„r(£+i-j)^ 
• 2^kXxr (-(kX-Hi)x)-' ^ 'r' 
^ ® ¿- i rii-i+n i. 

i-1 

nJl 

(n-Hi) ̂  



Thus in full, for X < 0 

- Ae 
kXx 

(kX-Hi) 

(-(kX+p)x) j-1 

r(j ) 

i .e . 

° j-1 
r(j) 

with 
n a_,r(Jl+l-j) f- < " r%i J/ 

V i ^ " + AZ rTT-HTT I — 1 • 

n+l,J n (IcX-Hi)'' 

To use the above as a recurrence relation the value of U' (0) Is reqtiired and can be expressed as 

° 0 

u; (0 ) 

From (4-4) 

u'(x)dx 
n 

•oo 

A I h^Mtal^'^ 

j=l (kX) 

0 

J 

- - - xu' (x)dx 
n 

1 ^ A V ^ .OcX-fM)̂  = -¡r + A i id^ j-i-i J • 

j«i (kxr 

As k " the E^/M/1 queue tends to the D/M/1 queue. 

Results for the Ej^/M/1 queue could be used to find the results 

for the D/M/1 but a special treatoent of the D/M/1 is somewhat 

simpler. 



4.3 D/M/1 

For the D/M/1 queue 

a(t) « 6(t -

b(t) » ye t ^ 0 

Equation for 9 is 

e 6(x - Y^dx 

-ii(i-e)/x 

or ee « 1 (4-7) 

Var(6) = 0 

v(x) = 

0 

(4-8) 

From (4-3) and the form of v(x) it can be shown that 

u' (x) « 0 X < - -r for all n. 
n ^ 

for X ^ - try the form 

with a-, » M (from ul(x) « v(x)). 11 



Equation (4-3)then becomes 
x+lA fl/A 1 1 n 1 

4 i®l 
t(;hich on integration becomes 

I / \ -u(x+r) - e X 
i«l i i«=l 1 

Thus n -y/X 

i«i i ^ 

n+l,i - y / x ye a 
i-l 

i = 2,... ,n+l 

and hence â ^̂  ̂  can be re-written as 

n n.i 
i=l 

Thus 

i=l 
iB the solution for D/M/1 with 

11 

n̂i 

y 

ye a , . i i - 2,... ,n n-i»i-i 

i-1 

i«2 Now define 0 

- l A 



T h e n 

I \i 

- n u A k - 1 . ^ k - 1 _ n 

U s i n g t h e a b o v e e x p r e s s i o n s 
0 

u;(o) 

S - Z a 
1 - 1 ^ 

a n d 
0 

x u ' ( x ) d x 
n 

1 r n - t t v 

7 " J j ^ i " i + i - X 

A . 4 SOMMARY 

4.4.1 

F o r t h e E j ^ / M / 1 q u e u e w e h a v e 

e( i + = 1 

V a r ( 6 ) 

u;(x) 

ÍAe-̂ '̂  I a . X j - 1 

j -1 
X 5 0 

X < 0 



with 
A r kX 'ík 

p nt - - 1 — Y r q ) r r(i+it-
'n"^ - r(j) r(i) 

n k r(1+^-1) 

and a^j = 1 

A a 

•Aa 
a n+1 ,n+l m 

V - n a 
1 = + A I j j L . ^ I J M o + i z i i 

n+1,3 n (fex+u)̂  

(0) . A I ^ " (kAT (0) - v(0) = 1 - ^ 

j-i (kX) 

From the above, along with (3-1) and (4-1) the values of 

^k pk 
can be found for the Ê /̂M/l queue. 

4.4.2 

Fór the D/M/1 queue t-̂e have 
g^uAd-e) , J 

Var(«) = 0 



with 

u;(x) 

0 X < -

(x + 
Ix n 

i-1 
1 « 2, •.. ,n 

If 

n 

0 

then Ij « ~(1 - e ) 

and 

-n e - u A /l.k-lf, ,,k-l v/x k-ll. k-1 ^n 
(3̂ ) (n-l) e -n — I^.i • 

n 
Thus U' (0) - I a . T 

n iti i 

From the above, along with (3-1) and (4-1) the values of 

Yfc and p^ 

can be found for the P/M/1 oueue. 

4,4.3 ADDendix 

An alternative expression for u^ix) for the P/M/1 can 

be found by trying 



X - Y 

i . e . 

T h e n 

a 
n i 

a . e 
n i 

n y / X 

« 1 1 " 
a 

n i " i - 1 

' n l 
y n ; - ( 0 ) e 

n — 1 

( n - l ) y / X 
n 
r / n - l v i - 1 

r t e f i n e 

T h e n 

= 
n . 

A 

r t i e 

I 

X 

- n y / X 

- n y / X 

k V 

i « l 

V J - J n l ^ 1 + 1 X " i 



CRAPTER FIVE 
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5,1 METHOD 

The work in this chapter centres around the evaluation 

of the auto-correlation function p^ for the Ej^/M/1 and D/Tl/1 

queues and the interpretation of the values obtained. 

In this investigation y = 1 and hence T « X. Thus the 

expressions obtained in Chapter 4 may be rei-rritten more simply. 

5 .1 .1 The E^/M/1 queue 

The equation for 0 becomes 

e (1 + ¿^(i-e)')'' = 1 

Var(6) 

and hence 

Var(A) 
k F - fre 

0 

•1 .-Is 29 

= - ^ - fxu;(x)<lx) (5-4) 

(5-1) 

(5-2) 

(5-3) 

and thus 

^n 28 , -1 -U 1 

0 
xu*(x)dx + 1 

n T 
(5-5) 

A 
^kx+r 

(5-6) 

Aa 

n+l,j 
H ^ - ^ A F ^ ( J ) j = 2 , . . . , n (5-7) 

Aa 

a 
n+1 ,n-M 

nn 

n 



n a 
with - f ( JT j^ra .3+ l ) (kT+ l ) ' i - J+ i i , - r ( i ) 

1=1 

and 

I, - TT' ín^ + A Y _ i ? ^Pi^roi+i-i) V l . j (kT+1)» 

u- ( 0 ) . A y b , 

with 

and 

U|(0) « 1 - A 

0 

5.1.2 The D/M/1 Queue (First Method) 

The equation for 8 becomes 

(i -e) /T 

j • 

ee 

Var{6) 

and hence 

Var(A) 

1 

0 

-(T-i-e-i)^® 
1-9 

0 

n̂ " - 7 - xu^(x)dx) 

and thus 0 
1-e ' 

n 26 xu'(x)dx + - -1 n T 
—00 

-1/T V 1.1-1 
1-1 

n 
a , - n' , (0 ) - y.a .(2:^) nl n-1 •f 

1 " 2 n 

n - K l - l 

(5-8) 

(5-9) 

(5-10) 

(5-11) 

(5-12) 

(5-13) 

(5-14) 

(5-15) 

(5-16) 

(5-17) 



_n - - -1/T a 1 - e 

- I / t / l v k - 1 . , 1/ t k- ln . ,, /C Q̂\ « e {(n-1) e -n (5-18) 

(5-19) and U'(0) « y a 

0 

(5-20) 

For the case of auto-correlatlon of lag 1, (5-16) gives 
0 

1-9 xui(x)dx + 1 
1 T 29 

Using the fact that u^(x) = v(x) we finally get 

1,1-9. -l/x n = - "r-f )e 2^ 9 

Because of the programming problems described in the 

next section, the limit of p̂ ^ as t tended to zero was required. 

That is 
1 (1-9) -1/t 

^ ^ - 2 — ^ 
T-H) 

which can be shown to be ecual to -1/2. Thus 

ilim p. 
t-K) 

1 
2 • 

5.2 PROGPi^miNG 

The equations given in 5.1 were the basis of several 

computer nrograns used to evaluate the p^ for the E^/i4/l and 

D/M/1 queue. 



In both cases, there T^re programming problems inherent 

In the equations. 

(i) As T->0 the value of e-̂-O even faster thus underflowing the 

computer for x < 0.05 in the case of the D/M/1. 

(li) i as n-^ 
n u T 

and hence 

E(A /w.=0) - 0 
n u T 

(111) Terms in the calculation of E(A /w-=0) 0 as the series 
n u 

subscript n. 

That is, earlier terms required more significant figures 

so that significance to later terms was not lost 

(iv) U' (0) ^ 1 as T 0 n 

and hence small variations in t failed to change 

U^(0) (to the accuracy used). 

In an effort to eliminate, or at least to ease some of 

these difficulties all programs were run on an 1620 with 16 

significant figure accuracy. The results of these programs appear in 

this chapter. 

5.3 RESULTS 

The auto-correlation function (a.c.f.) for the E^/M/1 

queue (with certain values of k) was evaluated and graphed to 

determine the basic shape and relative magnitude. These graphs 

are shown on the following pages. 

As can be seen from the graphs, all the a .c .f 's . have a 



MINBíA OF AlJTO-CORRELATION FITNCTION 
k = 2 3 4 5 6 7 c» 

Lag 1 T 0 . 4 5 0 . 4 1 0 . 3 8 0 . 3 7 0 . 3 5 0 . 3 4 1 1 0 . 0 Lag 
1 P - 0 . 0 5 6 8 - 0 . 0 9 9 2 - 0 . 1 3 1 7 - 0 . 1 5 7 6 - 0 . 1 7 8 9 - 0 . 1 9 6 8 i - 0 . 5 

f 

Lag 2 ! ' ' 
0 . 5 6 0 . 5 5 i 0 . 5 4 0 . 5 3 0 . 5 3 0 . 5 2 0 . 5 0 Lag 

- 0 . 0 2 8 8 - 0 . 0 4 5 6 j - 0 . 0 5 6 5 - 0 . 0 6 4 2 - 0 . 0 7 0 0 - 0 . 0 7 4 2 - 0 . 1 0 7 7 

Lag 3 1 T 1 0 . 6 3 
i p - 0 . 0 1 9 0 

0 . 6 2 
- 0 . 0 2 9 1 ! 1 

1 0 . 6 1 
1 - 0 . 0 3 5 2 

0 . 6 1 ( 

- 0 . 0 3 9 2 
0 . 6 1 

- 0 . 0 4 2 2 
0 . 6 1 

- 0 . 0 4 4 4 1 
0 . 6 0 

í - 0 . 0 5 9 7 
; 

Lag 4 
i 1 T I 0 . 6 7 0 . 6 6 j 0 . 6 6 0 . 6 6 0 . 6 6 0 . 6 6 1 0 . 6 6 Lag 

P i - 0 . 0 1 4 2 ; L - ' - 0 . 0 2 1 2 1 - 0 . 0 2 5 3 - 0 , 0 2 8 0 - 0 . 0 3 0 0 1 - 0 . 0 3 1 3 1 - 0 . 0 4 0 7 

Lag 5 T 0 . 7 0 0 . 7 0 1 1 0 . 7 0 1 1 0 . 7 0 . 1 0 . 7 0 0 . 7 0 0 . 7 0 Lag 
P - 0 . 0 1 1 3 - 0 . 0 1 6 6 - 0 . 0 1 9 6 i i - 0 . 0 2 1 6 1 - 0 . 0 2 3 0 - 0 . 0 2 4 0 - 0 . 0 3 0 7 



mtnisaxm point occurring at varying positions in the region 0<T<1. 

(In the case of the D/M/l queue, the a.c.f. tends to a minimum as 

T-K), this minimum having a value of -0.5 ). 

From the table {opposite) of positions of this minimun 

it can be seen that, for fixed lag, the value of T at which the 

minimun auto-correlation occurs decreases with k, tending to the 

value of T at which the D/M/l queue a.c.f. of that lag has its 

minimum. 

From the graphs, it can be seen that all the a.c.f's 

(except that of lag 1 for the D/M/l) tend to zero as T-K) and 

as T-*-!, and all are negative in the region 0<T<1. 



Autocorrelation function of lag | versus traffic 

intensity for the queues Ej^/M/1 , k»2 ,3 , 4 , 5 , 6 , 7 , « 

(k=<» being the D/M/1 queue) proceeding from upper 

to lower curve. 
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Autocorrelation function of lag 2 versus t ra f f i c 
intensity for the queues E^/M/1 , k=2,3,4,5,637,® 

being the D/M/1 queue) proceeding from upper 
to lower curve. 
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Autocorrelation function of lag 3 versus traffic 

intensity for the queues E^/M/1 , k »2 , 3 , 4 , 5 , 6 , 7 , » 

(k=<» being the D/M/1 queue) proceeding from upper 

to lower curve« 
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Autocorrelation function of lag ^ versus t ra f f i c 
intensity for the queues E^/M/1 , k=2,3,4,5,6,7,«' 
(k=oo being the D/M/1 queue) proceeding from upper 
to lower curveo 
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Autocorrelation function of lag versus t ra f f i c 
intensity for the queues Eĵ /M/1 , k=»2,3,4,5,6,7,® 
(k=soo being the D/M/1 queue) proceeding from upper 
to lower curve. 
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Autocorrelation function of the D/M/1 queue versus 

traffic intensity for lags 1,2,3,495, proceeding 

from loi\7er to upper curve. 





Autocorrelation ftinction of the Eĝ /M/l queue versus 
traffic intensity for lags 1,2,3,4,5, proceeding 
from lower to upper curve. 
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Autocorrelation function of ttie E3̂ /M/1 queue versus 
traffic intensity for lags 1,2,3,4,5, proceeding 
from lower to upper curve. 
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Autocorrelation function of the Etĵ /H/l queue versus 
t ra f f i c intensity for lags 1,2,3,4,5, proceeding 
from lower to upper curve. 
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Autocorrelation function of the E^/M/1 queue versus 
traffic intensity for lags 1,2,3,4,5, proceeding 
from lower to upper curve. 
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Autocorrelation function of the Eg/M/1 queue versus 
traffic intensity for lags 1,2,3,4,5, proceeding 
from lower to upper curve. 



O 

- 0 . 0 5 - -

- 0 . 1 -

- 0 . 1 5 - ' 



Autocorrelation function of the Ey/M/1 queue versus 
traffic intensity for lags 1,2,3,4,5, proceeding 
from lower to upper curve. 
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CONCLUSIONS 

In this thesis, we have investigated methods of 

determining the output process - distribution and auto-

correlation. We have demonstrated the methods through various 

examples. These examples were relatively simple compared to 

the complexity of the calculations involved in more general 

queueing systems. 

The problems involved in GI/G/1 queues are compounded 

in the systems in which arrivals are autocorrelated. Some 

work has been done (Chaudhry (1965), Tuteja (1966)) on M/M/s 

queues with autocorrelated arrival patterns but this is a 

rather simple case of the more general problem. The work of 

Lloyd (1963) and Odoom and Lloyd (1965) on reservoirs may be 

useful in this area. Simulation perhaps might yield 

information about G/G/^ queues. However the generation of 

sample correlated input directly is generally an Impossible 

task. 

The investigation of tandem queueing systems has 

been generally in the field of systems with finite waiting room. 

If the work mentioned in the last paragraph were available, 

a more direct solution of tandem systems with infinite waiting 

area could possibly be found. 

The work of this thesis was originally designed as 

preliminary to an investigation of traffic control systems 

where the general assumption that arrival patterns are random 

is not made. The work herein may be used to find better 



traffic synchronisation techniques, perhaps utilising some 

adaptive forecasting. Reduction of idle time in general 

auto-correlated input cueues may result fro® using fore-

casting • 
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