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Abstract 

Diversity-oriented synthesis based on the cascade allylation chemistry of indigo, with its 

2,2'-bisindolic system, has resulted in rapid access to new examples of the hydroxy-

8a,13-dihydroazepino[1,2-a:3,4-b']diindol-14(8H)-one (248-250) skeleton in up to 51% 

yield. Additionally the presence of the terminal substituent on the allylic substrates 

provided selectivity in production of 1-allyl-5'-allyloxy-3',4'-dihydrospiroindoline-

pyrido[1,2-a]indol-ones systems (227-231) in up to 69%, where as the absence of the 

substituent on the terminal position of the allylic systems resulted in production of 

pyridoindolo-azepino[1,2-a]indol-11(7H)-ones heterocycles (232-236) in up to 72% 

yield. Quantitative generation of N-substituted indigo provided the mechanistic insights 

and preliminary measures to control the outcome of the cascade reactions. The base-

induced propargylation of indigo resulted in the rapid one-pot synthesis of three 

different classes of heterocycles. The pyrazinodiindole 264 in 14%, pyridodiindole 265 

in 17% yield and benzoindolonaphthyridinone 266 in 31% yield. The compounds 

265 and 266 are possess the same framework of fascaplycin and ring B homologue, 

respectively. Further optimisation via alteration of the leaving group of the propargylic 

system from bromine to mesylate resulted in synthesis of the 265 and 266 with higher 

yields, 28% and 52% respectively. The presence of a phenyl substituent on the terminal 

alkynic position of the propargyl unit resulted in formation of oxadiazocinodiindole 271 

in 62%. Initial biological activity studies with these new heterocyclic derivatives 

indicated promising in vitro antiplasmodial activity as well as good anticancer activity. 

The chemistry described is new for the indigo moiety and cascade reactions from this 

readily available and cheap starting material should be more broadly applicable in the 

synthesis of additional new heterocyclic systems, difficult to access by other means.  
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1 Chapter 1: Introduction 

1 Chapter 1: Introduction 

 

Biologically active small molecules represent the basis for chemical biology 

applications in which they are used as chemical tools to probe biological processes.1 As 

an example, the isolation of morphine, and its confirmed biological activity as the key 

component of opium, attracted the attention of chemists to the synthesis of analogous 

small molecules with modified biological activity. Drug discovery in its conventional 

form was based mainly on trial and error, as the principles of drug action were not 

known.1 It was only during the second half of the 20th century that the evolution of 

structural biology and a better understanding of drug-protein interactions delivered a 

concept of advanced drug discovery.1  

 

1.1 Concepts for small molecule synthesis 

To define the characteristics and specification of compounds to be synthesized and 

employed in biochemical or biological screenings is one of the fundamental concerns of 

chemical biology. Chemical biologists and medicinal chemists have been directed to the 

synthesis of compound collections or libraries to provide a defined set of compounds for 

initial screening of various targets, However, the enormous range of plausible chemical 

substances impedes this approach.2 Based on calculations, up to 1063 different 

compounds with drug-like properties could exist in chemical space,3, 4 and therefore a 

systematic and comprehensive synthesis of this number of compounds is not amenable.1 

In order to address this issue several approaches have been prompted to cover the 

extended regions of chemical space, or at least estimate the likelihood of the chemical 

space regions, with suitable biological activity. There are two mainstream approaches 

for the generation of a chemical library: i.e., biology-oriented synthesis (BIOS) and 
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diversity-oriented synthesis (DOS). The main concern in BIOS is the production of 

small molecule compounds based on biologically proved scaffolds, while in DOS the 

focus is about the generation of libraries of structurally diverse and complex 

architectures. These approaches rely on individual and specific concepts of design, 

however the outcome of methods is not exclusive, and identical libraries can be 

achieved by either of DOS or BIOS methods.1 Produced scaffold libraries from each 

method undergo different screenings to evaluate their propensity as a source of 

biologically active small molecules.5-7 Other approaches like fragment-based design and 

computational methods are well-validated and have their own applications. 

1.1.1 Biology-oriented synthesis (BIOS) 

The long history of natural products in drug discovery and their significant role for 

synthesis of drug type compounds is undeniable.8 BIOS focuses mainly on the 

generation of libraries inspired by natural products compounds. Most of these libraries 

consist of large molecules while only a tiny portion of nature’s small molecules have 

been disclosed and investigated. Moreover, covering the entire molecular space by 

organic synthesis is not accessible due to time and matter limitations.9 Considering the 

minute knowledge about nature’s molecular space and conserved biological function of 

large molecules, complementary drug discovery methods needed to cover this gap.  

1.1.2 Diversity-oriented synthesis (DOS) 

Traditionally the synthesis of a defined and particular complex structure involves a 

multistep and often lengthy, sequential synthesis. This approach was coined target-

oriented synthesis (TOS).10 The generation of compound libraries form TOS is a 

gradual process, and mostly delivers a series of compounds such as natural products and 

structurally-similar derivatives, with limited structural diversity. An alternative 
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perspective is the preparation of a diverse series of structurally complex compounds by 

facile means from simple and available precursors. This approach is termed diversity-

oriented synthesis (DOS).10 In TOS, a retrosynthetic approach of the target molecule is 

employed to drive the step-wise process of chemical transformations required to 

produce the desired compound. In contrast, DOS strategy requires a “forward synthetic 

plan”11, 12 to convey simple and similar starting materials to structurally complex and 

diverse molecules (Figure 1).13, 14  

  

Figure 1: Comparison between TOS and DOS approaches in organic synthesis.1 

 
Diversity of a library refers to the variety and differential classes of compounds 

present15 and can be established by; (a) synthesis of different architectures, (b) 

positioning different functional groups on the skeleton of the structures and (c) 

generating different stereoisomers to maintain diversity of the binding pattern.1  

To achieve the ultimate efficiency in production of these advances, the synthesis of 

DOS library members is best not to exceed more than three to five steps reactions.16 

There are three concurrent aims to be considered: complexity, choice of functional 

groups including correct positioning and three-dimensional stereochemical diversity. 

Retro-synthetic approaches could not be applied in the production of diverse and 
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various classes of compounds. A good example of a complexity-generating strategy has 

been introduced by Ugi in which different combinations of components, involving 

aldehydes, ketones or carboxylic acids, amines and isocyanides, furnish a large 

collection of complex structures.17  

Cascade reactions are the most common shortcuts that can be implemented when the 

synthesis of complex structures is desired. The ability to design a tandem or domino 

sequence, in a way that yields the desired compounds with suitable functionality 

positioning and advanced complexity, is not an easy task and requires significantly 

more attention.18 Though part of the knowledge in this field originated from 

serendipitous discoveries,19 such designs, yielding novel architectures, are of particular 

interest for the investigation of new bioactive agents with possible new modes of action, 

which could be subsequently elaborated in medicinal chemistry projects.20  

 

1.2 Cascade reactions 

One of the current goals in organic synthesis is the controlled construction of complex 

molecules, in particular, through the use of cascade reaction sequences.21, 22 The 

formation of multiple bonds in a one-pot system without the need to isolate the 

intermediates, changing conditions or adding various reagents is a suitable pathway to 

establish complex structures.23 More than one reaction occurs chronologically in a one-

pot process24- this means that the product of each sequence is the next step’s starting 

material, resulting in multiple bond breakage with consecutive new bond formation. As 

a result, molecular complexity builds up quickly.25 This can dramatically boost the 

efficiency of synthetic procedures by starting from cheap and ample starting materials 

and circumventing purification and isolation steps. Due to the application of one 

solvent, one separation and purification procedure during the cascade synthesis, this 
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platform is economical and can also be environmental friendly. In contrast, classical 

methods for the syntheses of complex natural products require multistep pathways, 

alteration of reaction conditions, multiple reagents different solvents, isolation of 

intermediates and purification of the isolates with the result of extensive consumption of 

resources and labour.26-28 Cascade reactions have been attractive for the organic chemist 

ever since the formative attempt of a one-pot synthesis of tropinone 4 in 1917.29 In the 

original plan, succindialdehyde, methylamine, and acetone were reacted by means of 

double Mannich reaction to form tropinone in one step, but the yield was too low due to 

the low acidity of acetone. The application of calcium acetonedicarboxylate 2, or ethyl 

acetonedicarboxylate, improved the yield up to 40 % (Scheme 1). 

 

Scheme 1: Robinson’s influential total synthesis of tropinone 4.29 

 
The other decisive approach in this field was the synthesis of progesterone 7 by 

polyolefin cyclization based on the alkyne’s utility in exo cyclizations resulting in vinyl 

cations. The stereospecific cyclization of the trienynol 5 gives rise to intermediate 6 

which in turn is readily converted into dl-progesterone (Scheme 2).30 

 

Scheme 2: Synthesis of (±)-progesterone 5 via polyolefin cyclisation cascade. 
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These cascade sequences were sufficiently influential to pioneer various, and well-

designed tandem reactions toward the synthesis of complex structures. To date various 

applications and different methods of cascade reactions have been reported.20 

Implementation of cascade sequences had a significant impact on synthesis of various 

natural products (Figure 2). 

 

Figure 2: Examples of natural products, synthesised by different cascade reactions 
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These natural products have been synthesised using cascade reactions and varying key 

steps such as; 

• Nucleophilic cyclisation in the synthesis of harziphilone 8,31 and tetronasin 9.32 

• Oxidative coupling/Michael reaction in the preparation of (+)-rugulosin 10.33 

• Brook rearrangement in the total synthesis of poison frog alkaloid (-)-205 B 

11.34 

• Epoxy olefin cyclisation cascade for the synthesis of (+)-α-onocerin 12.35 

• Electrophilic cascade in the formation of sclerophytin A 13, synthesis of (+)-

bisorbibutenolide 14,36 pentacyclic trichodimerol 15,37 hirsutine 16,38 

heterocyclisation of stenine 17,39 and total synthesis of (-)-spinosyn A 18.40 

• Transannular cyclisation in the production of antitumor polyketide (-)-FR182877 

19.41  

• Electrocylisation in the formation of (-)-colombiasin 20,42 and oxidative 

cyclisation in (+)-elisapterosin B 21 formation.43 

• Pericyclic and Michael reaction cascades in the total synthesis of epoxyquinols 

A 22.44 

• Palladium-catalysed multicomponent coupling approach to benzo[b]furan 

structures in the synthesis of (+)-frondosin B 23.45 

• Stille “stitching cyclisation” cascade in the total synthesis of (+)-mycotrienin I 

24.46 

Electrophile Induced Branching Cascade (EIBC), was introduced as a new technique to 

produce a variety of biologically important molecular scaffolds. The assumption was the 

reaction of a common precursor would proceed with scaffold building agents, (SBAs) 

under the action of a suitable electrophile (E+). Reaction of 2-(alkynyl)benzaldehydes 

25 in the presence 2-aminobenzamides 26, 1,2-diamino benzene 27, 2-
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(aminophenyl)benzimdazoles 28, 2-aminobenzenesulphonamide 29, 2-

(aminophenyl)imadazole 30, 2-(aminophenyl)-dihydroquinazolinone 31, 2-

(aminophenyl)pyrrole 32, aminophenyl indoles 33-34, 2-aminobenzylalcohols 35 and 5-

(2-aminophenyl)-tetrazole 36 as scaffold building agents (SBA) resulted in production 

of various derivatives of the isoquinoline architecture 37-47 (Figure 3).47  

 
Figure 3: Structure of common types of starting materials 25 a-d and SBAs 26-36. 

 

As shown in Fig. 4, the common starting material 25 reacted with SBAs 26-36 under 

certain reaction conditions.47 Alkyne cyclisation was facilitated through the 

electrophilicity of the iodonium ions. The iodinated intermediate cross-couples with the 

nucleophiles in a straightforward manner (Figure 4).47 
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Figure 4: Series of isoquinolines synthesised by electrophilic cascade sequences under the particular 

reaction conditions; (a) I2, DCE, rt, 3 hours (N1, N2, N4, N6), (b) I2, CH3CN, rt, 8 hours (N9), (c) I2, 

K2CO3, CH3CN, rt, 5 hours (N10), (d) I2, K2CO3, DCE, 75 ºC, 5 hours (N8), (e) p-TSA, DCE, rt, 3 hours 

then K2CO3, I2, rt, 2 hours (N7) and (f) p-TSA, DCE, rt, 6 hours then ICl, 0 ºC, 2 hours (N3, N5, N11). 

 
One of the notable features of a cascade sequence to deliver a diversity-oriented library 

is an ambient common precursor that positions suitable functionalities. In this research 

our focus is towards the application of indigo as a cheap, readily available starting 

material with close functionalities positioned in a conjugated and electronically potent 

structure. 
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1.3 The chemistry of indigo  

Indigo 98, an ancient dark blue powder, has been used in dyeing cotton yarn since the 

7th century B.C. Traces of this pigment were also identified in cave patterns and old 

paintings.48 The original source of the pigment is the plant Indigofera tinctoria and 

related species from which indigo has been extracted through the fermentation of leaves 

by soaking them in alkaline solution where the structural glycoside indican in the plant 

hydrolyses to D-glucose and indoxyl; final exposure to air oxidizes indoxyl to indigo.  

Understanding the mechanism of this ancient process is of interest. In the first instance, 

3-oxindole 91 in the presence of a base and suitable oxidant (e.g. PbO2, FeCl3), will 

result in the  formation of radical 93 and subsequent dimerisation gives the biindoline 

94 in high yield, which readily oxidised to indigo by exposure to air (Scheme 3).49 

 
Scheme 3: Mechanism for conversion of oxindole to indigo 98.49 

 

The absorption wavelength for indigo is in the region of 420 and 450 nm of the 

electromagnetic spectrum, placing it between blue and violet.50 Indigo refers to the 

substance which is constructed by two indoxyl unit and named as 2-(3-oxo-1,3-dihydro-

2H-indol-2-ylidene)-1,2-dihydro-3H-indol-3-one or [2,2'-biindolinylidene]-3,3'-dione. It 

has two isomers; the E (trans) isomer 98a is energetically stabilised due to the 

possibility of hydrogen bonding whereas the Z (cis) isomer 98b is less stable as the 

repulsion of the lone pairs of the carbonyl groups destabilise the structure (Figure 5).51  
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Figure 5: Indigo’s two possible isomers. 

 

Indigo is insoluble in water and organic solvents with a few exceptions including hot 

chloroform, DMF and DMSO.52 The poor solubility was traced to the H-bonded 

network, in which each indigo molecule is surrounded by four neighbours where the NH 

groups are involved in bifurcated intra- and intermolecular H-bond to the O-atoms of 

carbonyl (Figure 6, a).52 The blue colour of indigo arises from the extended conjugated 

system around the central double bond and is independent of the phenyl rings (Figure 6, 

b).53 The internal hydrogen bonding between the carbonyl-amine lowers the 

HOMO/LUMO energy gap and their excited state; therefore it absorbs the higher 

wavelength of the visible spectrum. The internal hydrogen bonding of indigo is also 

strong as it forms two 6-membered rings that assist in the overlapping of the orbitals 

(Figure 6, c).54  

 
Figure 6: Crystal structure of indigo (a)52, formation of two six-membered rings around the central 

double bond due to H-bond (b)53, HOMO/LUMO orbitals of the indigo (c).54 

 
Indigo dissolves in non-polar solvents with range of 10-5-10-6 M and the colour of the 

solution is red to violet. In polar solvents, dissociation of the internal hydrogen bonding 
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between the carbonyl-amine occurs and the colour is blue.55 The solubility issue is the 

instinctive obstacle of any process that involves indigo. As a cheap and available 

pigment, indigo has captured attention of the textile industry for many centuries and 

several procedures have been developed to combat the poor solubility of indigo, such as 

reduction of indigo in alkaline solution, which is normally carried out by treatment of 

the vat dye with base. More recently, modern applications utilise sodium dithionate as 

the reducing agent. The result is the generation of the water-soluble indigo-white (leuco 

indigo) that is able to be applied to textile or yarns and subsequent aerobic oxidation 

during the drying process restores the characteristic blue colour. 

Despite the vast knowledge about dyeing processes with indigo and the significant 

advantage in starting with a readily available advanced precursor like indigo, its 

reported chemistry is very limited. The presence of an array of closely positioned 

functionalities and highly conjugated system make indigo a suitable starting material in 

synthesis of complex heterocycles carrying a 2,2'-bis-indolic system. Moreover, the 

presence of this system has been shown to be important and appears in several 

biologically active natural products including the fascaplysins 99-100,56-59 iheyamines 

101,60 rebeccamycin 102,61-63 staurosporine 103,64 and tjipanazoles 104 (Figure 7).65 

 
Figure 7: Biologically active natural products carrying 2,2'-bis-indolic system. 
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Tyriverdin 105, with its high antibacterial activity,66 and the akashins 106-108, as potent 

anti-cancer glycosides,67 are also promoting the plausible conversion of indigo to 

versatile and biologically active molecules (Figure 8). 

 
Figure 8: Structure of tyriverdin and akashin A-C.  

 

1.3.1 The synthesis of indigo 

Indigo is a unique pigment as it made the transition from natural dye to a high demand 

industrial pigment.68 Its first synthetic production was carried out by Adolf von Baeyer 

from the chlorination of isatin 109 and subsequent acidic-reductive dimerisation.69 He 

determined indigo’s structure and researched alternative methods for its synthesis.69* As 

isatin was expensive and scarcely available, he developed an alternative method through 

the nitration of cinnamic acid to afford 113 followed by cyclisation to indoxyl and 

oxidation to indigo.70 Both of the procedures failed to accomplish an economical large 

scale production. A Baeyer and Drewson collaboration led to a new strategy in which 

the aldol condensation of o-nitrobenzaldehyde 114 and acetone resulted in the formation 

of intermediate 116 followed by formation of 118 which then expelled one molecule of 

acetic acid after hydrolysis forming the 2-hydroxyindoxyl 119 that was readily 

converted to indigo (Scheme 4).71  

                                                
* Baeyer was awarded the Nobel Prize in Chemistry 1905 in recognition of his advancement through his 
work on organic dyes. 
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Scheme 4: Baeyer’s three different methods of synthesis of indigo 98.69-69 

  

Even the procedure’s yield (67%) was gratifying but it did not become an attractive 

means of mass production due to the expensive synthesis of 114 at that time.71 

An alternative and also more practical route was carried out by Pfleger in which N-

phenylglycine 120 was treated with a molten mixture of sodium hydroxide, potassium 

hydroxide, and sodamide to give indoxyl 121 and subsequent air oxidation formed 

indigo (Scheme 5).72  

 

Scheme 5: Synthesis of indigo from N-phenylglycine.72 

 

A breakthrough in the synthesis of indigo was made by Karl Heumann who oxidised o-

toluidine 122 to form anthranilic acid 123 and subsequent treatment with chloroacetic 

acid formed 2-(carboxymethylamino)benzoic acid 124 which was dimerised to indigo 

under the action of alkaline solution.73 The procedure was utilised by both BASF and 
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Hoechst fine chemicals in the production of indigo on an industrial scale. Later, Pfleger 

discovered that the addition of NaNH2 to the alkaline solution in the last step of the 

synthesis can dramatically improve the yield (Scheme 6). 

 
Scheme 6: Heumann method in production of indigo from o-toluidine.73 

 

A modification by Lucius and Brunning led to invention of a more practical and 

economical process for synthesis of the dye. The condensation of formaldehyde and 

hydrogen cyanide generated the imine to react with aniline and formed the 

corresponding aminophenyl acetonitrile 126. Hydrolysis of the cyano group delivered 

the amino acid 120 and subsequent fusion led to the formation of the indoxylate 

followed by oxidation to furnish indigo. This procedure is the current industrial method 

for the production of indigo and has been since 1925 (Scheme 7).74  

 
Scheme 7: Synthesis of indigo from aniline.74 

 

Recently indigo was obtained from a one-pot synthesis with selective oxidation and 

dimerization of indole 128 by using a catalytic molybdenum hexacarbonyl complex in 

the presence of cumene hydroperoxide in tert-butyl alcohol at reflux. The procedure 

deposits pure indigo in high yield and in a practical manner even for large scale 

production (Scheme 8).75  
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Scheme 8: Metal catalysed oxidation of indole in the synthesis of indigo.75 

 

1.4 Reactions of indigo 

Records of reactions in which indigo is a starting material are limited. Considerable 

numbers of these reactions were performed in early decades of the 20th century without 

access to advanced spectroscopic techniques. Elemental analysis was the only method 

of structural elucidation and for some of the reactions, percentage yield has not been 

reported. However, it is essential to review and investigate these records in order to 

understand its chemistry and behaviour. 

1.4.1 Oxidation 

The outcomes of the oxidation of indigo depend on the reaction conditions and the type 

of oxidant. Oxidation with strong mineral acids in the presence of water results in the 

cleavage of the central double bond and formation of isatin 109. Oxidation of indigo 

with different oxidants such as KMnO4 in anhydrous medium generates dehydroindigo 

129 (Figure 9).  

 
Figure 9: Structure of 109 resulted from oxidation in the presence of water and dehydroindigo produced 

from oxidation of indigo under anhydrous condition. 

 

Oxidation of the indigo with nitric acid or chromic acid forms 109 as orange-red 

crystals. This synthesis was performed by Erdman in 1981 and is the current industrial 

method (Scheme 9).76 Isatin and its derivatives play a significant role in the synthesis of 
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various heterocycles such as indoles, indigoids, and quinolones, and have gained recent 

attention in the cascade synthesis of new heterocycles. Halogenated derivatives of isatin 

were synthesised by treatment of indigo with bromine or chlorine water.77 

 
Scheme 9: Oxidative cleavage of indigo to isatin.76 

 

Compound 109 also can be produced by the ozonolysis of indigo. The process starts by 

formation of indigo ozonide 130 and then treatment with water precipitates the product 

(Scheme 10).78 

 
Scheme 10: Ozonolysis of indigo.78 

 

Oxidation by chlorine of a suspension of indigo in carbon tetrachloride and subsequent 

treatment with calcium hydroxide produces dehydroindigo.79 An alternative method 

uses a suspension of indigo in dry, boiling benzene oxidised under the action of lead 

oxide in presence calcium chloride and addition of glacial acetic acid (Scheme 11).79  

 
Scheme 11: Kalb’s procedure in formation of dehydroindigo.79 

 

Reaction of indigo in acetic acid with KMnO4 at 20 ˚C forms the diacetylindigo 131 

which is converted to dehydroindigo by elimination of acetic acid under basic 

conditions (Scheme 12).79 
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Scheme 12: Oxidative conversion of indigo to dehydroindigo in the presence of KMnO4.79 

 

Dehydroindigo appears as yellowish-red crystals†79 with increased water solubility 

compared to indigo. It can be readily reduced to indigo and acts as an oxidizing agent in 

the conversion of hydroquinone to quinone, and liberates iodine from potassium 

iodide.80 Indigo oxidation proceeds analogous to the electrochemical oxidation of indigo 

carmine, which has been shown to result in the formation of dehydroindigo.81 

1.4.2 Reduction of indigo 

The reduction of indigo is a key feature in the textile industry, especially in the 

production of jeans. Indigo is reduced by mediation of various reducing agents; methods 

date back to 10th century Japan where indigo was heated in a culture of anaerobic 

bacteria. The reduction of indigo by urine, zinc dust, thiourea and arsenic trisulfate has 

also been recorded. Berzelius used the basic solution of iron sulphate aiming to 

postpone the reverse oxidation of indigo in presence of Fe2+ ions.82 Treatment of indigo 

by sodium dithionite (Na2S2O4) is the most common method of production of 

leucoindigo (indigo white), which has been used mostly in the textile industry (Scheme 

13).83 A considerable disadvantage for sodium dithionite is not being recyclable and 

washing the dyeing bath consumes huge quantities of water and also contaminates water 

sources.  

 
Scheme 13: Reduction of indigo under alkaline condition to leuco indigo.83 

 

                                                
† A purple solid was obtained after recrystallization from benzene.  
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Leucoindigo has also been obtained from the electrochemical reduction of a 5x10-5 M 

solution of indigo in water while the supporting electrolyte was a mixture of KNO3 and 

NaOH 0.7 M and 10−2 M respectively. The system is based on a three-electrode system 

by using Ag | AgCl || 3 M KCl as the reference electrode (green), platinum as auxiliary 

(blue) and dropping mercury as the working electrode (red) (Figure 10).84 In an 

alternative experiment, immobilized microcrystals of indigo on pyrolytic graphite were 

reduced to leucoindigo in a buffer solution containing NH4
+ or Na+ in an Oxford 

electrodes potentiostat with agency of a thin, gold mini-grid electrode.85 

 
Figure 10: Three-electrode method set up.84 

 

Indigo white 132, under the effects of acetic anhydride, gave diacetylindigo white, 133. 

Oxidation of 133 with nitrous acid evidently involved the migration of the acetyl groups 

to form diacetylindigo (Scheme 14).86 

 
Scheme 14: Diacetylation of indigo white.86 

 

Treatment of 132 with zinc dust and barium hydroxide resulted in cleavage to isatic acid 

134 and oxindole 91, followed by condensation and decarboxylation to furnish 

quindoline 135 (Scheme 15).87  

 
Scheme 15: Formation of quindoline 135 from indigo white. 
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1.4.3 Formation of salts 

Indigo reacts with mineral acids to give indigo salts. Reacting indigo with concentrated 

sulfuric acid in acetic acid (1:5 V/V), followed by the addition of anhydrous ether, 

resulted in indigo monosulphate C16H10O2N2.H2SO4 136 while the prolonged digestion 

of indigo by sulfuric acid (13.5 M) under the same conditions gave the disulphate salt 

137 of indigo.88-90 Notably, indigo becomes soluble in acetic acid, benzene and 

chloroform when dry HCl gas passes through the suspension. Addition of ether to the 

solution precipitates the hydrochloride salt C16H10O2N2.HCl 138 (Figure 11).89 

Dissolving these salts in water releases indigo and the corresponding acid.90 

 
Figure 11: Salts of indigo; monosulphate 136, disulphate 137 and hydrochloride 138.88-90 

 

When indigo is stirred in a solution of NaOH and ethanol, it gives a green powder with 

composition of C16H10O2N2.NaOH 139.88 Heating indigo in concentrated NaOH in 145-

150 ºC will result in dissociation to indoxyl aldehyde 140 and anthranilic acid 123 

(Scheme 16)91, whereas fusion of indigo with KOH results in oxindole 91.  

 
Scheme 16: Sodium salt of indigo 139 and its decomposition to 140 and 123. 

 

1.4.4 Imines and oximes of indigo 

The reaction of the sodium salt of indigo 139 with zinc chloride and ammonia resulted 

in indigo monoimine 141 while treatment of indigo under the same conditions provided 

di-imine of indigo 142 as blue needles after recrystallisation from benzene (Figure 12).  
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Figure 12: Mono and di-imine of indigo. 

 

Heating indigo in an alkaline alcoholic solution of phenylhydrazine resulted in the 

Wolff-Kishner product, yielding mono- desoxyindigo 144 (Scheme 17).92 

 
Scheme 17: Desoxyindigo 144 from the heating of indigo with phenylhydrazine.92 

 

Indigo oximine 145 is obtained from the reaction of basic solution of indigo with 

hydroxylamine.93 Boiling the alkaline solution of 98 in alcoholic mixture of 

hydroxylamine hydrochloride resulted in the dioxime94 146 (Figure 13). 

 
Figure 13: Oxime 145 and dioxime of indigo 146 

 

1.4.5 Electrophilic substitution of aromatic rings 

Electrophilic substitution of indigo, indigo white or dehydroindigo affords sulphonated, 

halogenated or nitro derivatives. The substituents order is C5 followed by C7 and then 

C4. Halogenated derivatives of indigo demonstrate a variety of colours mostly based on 

the number and position of the halogen on the aromatic rings. Ciba blue B (5,5',7,7'-

tetrabromo-indigo) 147 is bright blue, 6-bromoindigo 148 is a vibrant violet colour and 

6,6′-dibromoindigo 149 is a sharp purple colour (Figure 15).  
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Figure 14: Three different halogenated derivatives of indigo known as ancient pigments. 

 

This was enough to dazzle ancient peoples to apply such pigments to decorate their 

pottery, clothing and used for cave drawings. Tyrian purple (6,6'-dibromoindigo), also 

known as Royal Purple, is an ancient pigment believed by some to be the oldest dye, 

which has been used since the Iron Age by Phoenicians95, Chinese and Peruvians as a 

sacred pigment.96 The roman emperor Nero decreed the exclusive right for the emperor 

to wear the purple robes.97 Based on biblical notes, the vestments of high ranked priests 

are dyed in royal purple. The pigment could only be obtained from exposure of 

hyperbroncial extract of certain kind of marine murex to light.98 Several mechanisms 

were proposed to explain the biosynthesis of this pigment (Scheme 18).  

 
Scheme 18: Biochemical pathway in generation of 149. 

 

The immediate precursor for Tyrian purple is shown to be photolabile tyriverdin 153.99 

The process begins from hydrolysis of the sulphate group of tyrindoxyl sulphate 150 

under the action of an enzyme – either purpurase or arylsulfatase. The result is 
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formation of tyrindoxyl 151 which is oxidised to tyrindoleninone 152, which dimerises 

to form the green tyriverdin 153. Photolysis of tyriverdin gives rise to dibromoindigo 

along with the elimination of odorous dimethyl disulfide.100 Alternatively, tyriverdin is 

also able to undergo homolysis to 6-bromoisatin which reacts with 151 to form 6,6'-

dibromindirubin 155.101 

The scarcity of Tyrian purple (secretion of 10,000 marine murexes are required to 

produce a gram of the pigment), combined with its political and religious significance, 

its value has historically been 10-20 times higher than gold during different periods of 

time.102 Since the early 1900s, chemists sought to establish a process of synthesising 

royal purple. A wide variety of synthetic strategies and pathways were reported towards 

the synthesis of 6,6'-dibromoindigo such as treatment of 4-bromo-2-nitrobenzaldehyde 

the 156 in alkaline acetone (Scheme 19, blue).103 One of the alternative methods was 

starting from p-toluidine 159 involved a tandem nitration-diazotization strategy, 

followed by diazotization then oxidation in the presence of CrO3 and subsequent aldol 

condensation to afford 149 (Scheme 19, red).104 Several modifications have been 

utilised in order to improve the production of the key intermediate 4-bromo-2-

nitrobenzaldehyde 157.105-107 Conversion of 2-amino-4-bromobenzoic acid 163 towards 

the diacetylindoxyl 164 and hydrolysis and oxidation furnished 149. This method 

introduced by Friedländer according to Baeyer’s method for production of indigo 

(Scheme 19, purple).108 Alternative methods were introduced for the synthesis of 163 in 

a more economical manner such as starting from 4-bromo-2-nitrotoluene 160,109 4-

bromo-2-nitroaniline 161,110 and phthalic anhydride 162 (Scheme 19).111 The other 

procedure based on the Sandmeyer reaction, involved conversion of dinitroindigo 

obtained from 1,3-diacetyl-6-nitroindoxyl (Scheme 19, green).112 In a different 

approach, Majima and Kotake introduced the halogen by bromination of indole-3-
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carboxylate 170, which synthesised by the treatment of indole Grignard with 

ethylchloroformate. Subsequent saponification and oxidation with ozonised air 

furnished 149 (Scheme 19, brown).113 The most recent strategy to the royal purple 

begins from 6-bromoindole 172 and proceeds 3-acetoxy-6-bromoindole 173, which can 

be hydrolysed to deposit 149 (Scheme 19, orange).114  

 
Scheme 19: Major procedures in the synthetic production of 6,6'-dibromoindigo 149. 
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These are the six major pathways to produce 6,6'-dibromoindigo. Taking into account 

the modified procedures toward the facile or high yield synthesis of the key 

intermediates, there have been forty reports towards the synthesis of 149, however, 

there have been no reported syntheses of 6,6'-dibromoindigo directly from indigo. 

5,5'-Dibromoindigo was obtained from the dropwise addition of bromine to a solution 

of indigo in nitrobenzene, under microwave-aided condition.115 The preparation of 5-

chloroindigo has been reported by direct halogenation of indigo in glacial acetic acid; 

this procedure was also found to be amenable to the synthesis of 5,5'- dichloroindigo.116 

5,5',7,7'-Tetraiodoindigo was prepared from dehydroindigo by the action of iodine 

monochloride in presence of sodium bisulphate.117 A quantitative preparation of 

5,5',7,7'-tetrabromoindigo from the reaction of indigo with bromine and sodium nitrite 

in sulfuric acid has also been reported.118 Direct halogenation of indigo in the presence 

of water, generally gives the halogenated isatin while halogenation in glacial acetic acid 

affords mono or di-halogenated indigo.119 Direct nitration of indigo produces 5,5'-

dinitroindigo while other nitrated derivatives of indigo such as 4,4' or 6,6' were 

synthesised through the conventional methods.145 Treatment of indigo by concentrated 

sulfuric acid gives a blue-green compound, named indigo carmine or indigo-5,5'-

disulfonic acid. Indigo carmine has various applications as an acid base or redox 

indicator and also as food colourant.120, 121 Application of fuming sulfuric acid produces 

tri or tetra-sulfonic acid indigo as indigo-5,5',7,7'-tetrasulfonic acid.122 All of these 

halogenated derivatives of indigo mentioned in this paragraph were reported based on 

the elemental analysis and with few exceptions, there has been little structural 

elucidation or no percentage yields reported. 



 

  

26 Chapter 1: Introduction 

1.4.6 Reaction with Lewis acids 

Reaction of the indigo carbonyl moieties with Lewis acids is one of the least explored 

areas in the chemistry of indigo. Opportunities such as Wittig or other olefination 

reaction of the carbonyl groups is not yet reported. The only reported example of Lewis 

acids involved in reactions with indigo was the formation of N,N'-diaryldiimines 

towards the synthesis two β-diketimate fused units. In this context indigo reacts with 

arylamine in presence of TiCl4 and DABCO to yield indigo bis(arylamine) 174-177 

known as the Nindigo (Scheme 20).123  

 
Scheme 20: Reaction of indigo and arylamines in presence of TiCl4. 

 

1.4.7 Nucleophilic substitution 

Reaction of indigo with the Grignard reagent (CH3MgI) in diethyl ether was reported124 

to obtain 3-hydroxy-3-methyl-3'-oxo-2,2'-diindolydene 178. The yield for this 

compound was not reported (Figure 15).  

 
Figure 15: 3-hydroxy-3-methyl indigo 178. 

 

Early reports for the N- and N,N'-alkylation of indigo gave the impression that indigo 

could not be alkylated in such reactions; the given explanations mostly focused on the 

poor solubility of indigo. This was altered when Kuhn and Trischmann successfully 

synthesised N,N'-dimethylindigo 179 in near to quantitative yield, using iodomethane in 
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DMF-water with vigorous stirring in the presence of barium oxide as base and under 

nitrogen for 18 hours at room temperature. Extraction with chloroform upon workup 

resulted in the isolation of a green precipitate of the product (Scheme 21).125  

 
Scheme 21: N-Methylation of indigo under action of barium oxide.125 

 

Another approach for the production of N,N'-dimethylindigo was the reaction of indigo 

or 6,6'-di-tert-butylindigo 180 with methyl iodide in presence of sodium hydride.126 cis-

N,N'-Bridged indigo derivatives, such as 1,2-ethano and 1,3-propano and 1,4-butane 

systems, were synthesized by base-induced (NaH) N-alkylation reactions in the 

presence of  various di-chloroalkanes or 2,3-dichloronaphthoquinone (Scheme 22).126  

Scheme 22: N-Methylation of indigo derivatives in the presence of NaH as base.126 

cis-N,N'-Bridged oxalyl 187 or malonyl indigoids 188 were synthesised by reaction of 

indigo with oxalyl and malonyl dichlorides in nitrobenzene at reflux.126 Slightly 

different conditions were utilised for the reaction of substituted indigos 189-190 for the 

production of 191-193, where 2,6-lutidine used as base and the solvent was benzene 

(Scheme 23).126 



 

  

28 Chapter 1: Introduction 

 
Scheme 23: Reaction of indigoids with oxalyl or malonyl chlorides.126 

 

N-Aryl indigoids 194-7 (a-b) were obtained from the reaction of 98 and aryl halides in 

o-chlorobenzene at reflux, containing K2CO3 and catalytic copper powder.127 The 

reaction was also carried with naphthalene iodide in excess and only afforded a mono 

N-substituted product 198 (Scheme 24).127 

 
Scheme 24: Reaction of 98 and various aryl halides for production N-aryl indigoids.127 

 

N,N'-Diacetylindigo 199 was obtained by treatment of indigo with excess acetyl 

chloride in acetic anhydride at reflux (Scheme 25).128 The procedure was first reported 

by Liebermann and Dickhuth in 1891 when they treated indigo with appropriate acyl 

chlorides in butyl acetate at 100 °C.129 
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Scheme 25: Formation of N,N'-diacetylindigo 199.152 

 

 

O-Alkylation of indigo white 132 by the addition of ethoxycarbonylacetyl chloride in 

the presence of zinc furnished cis-O,O'-di(ethoxycarbonylacetyl)indigo-white 200, 

which underwent the oxidative rearrangement under the effect of DDQ in DMSO and 

resulted in the production of trans-O,O'-di(ethoxycarbonylacetyl)indigo 201 (Scheme 

26).130 

 

 
Scheme 26: Preparation of cis-O,O'-di(ethoxycarbonylacetyl)indigo-white 200 and its oxidative 

rearrangement to form 201. 

 

cis-trans Isomerisation of different N,N'-diacylindigoids was observed by Kitao using 

solutions of trans-N,N'-diacylindigoids in benzene, acetonitrile or cyclohexane, and 

visible light irradiation (>500 nm) resulted in reversible conversion to the cis-isomer 

(Scheme 27). The half-life and the heat released from conversion of thermally unstable 

cis isomer to trans were observed and recorded (Table 1).130  
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Scheme 27: Photochromic isomerisation of trans-N,N'-diacylindigoids to the corresponding cis isomer.130 
 

Table 1: Half-life of the cis N,N'-diacylindigoids and the heat released from its conversion to the trans 

isomer.130 

R λmax/nm t1/2 /min -ΔH/kcal mol-1 
Me cis 438 trans 565 186 7.3 
Et cis 440 trans 573 642 6.6 
Pr cis 477 trans 581 413 9.8 

-CH2CO2Et cis 424 trans 556 471 12.2 
CH2Ph cis 441 trans 575 1264 29.9 

 

Smith and his group investigated the photooxidation of N,N'-diacylindigoids. A solution 

of 201a-f in toluene at reflux was irradiated with visible light selective and was for 

photochromic cis/trans isomerisation (λ > 530 nm) while under an oxygen atmosphere, 

lead to the formation of compounds 207a-f (Scheme 28).131  

 
Scheme 28: Photooxidation of N,N'-diacylindigoids. 

 

The proposed mechanism suggested the 201 reacted with triplet oxygen to form a 

peroxy biradical 202, which was trapped by hydrogen or benzyl to form the peroxide 

radical 202. Fission and subsequent rearrangement gives diradical 207, which undergoes 

an N to O acyl transfer to provide 207 as stable product (Scheme 29).131 
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Scheme 29: Photooxidation of N,N'-diacylindigoids 201a-f and tentative mechanism for formation of 

photoxygenated product 207a-f.131 

 

When dehydroindigo and methylpropionate were stirred in anhydrous benzene, a blue 

crystalline solid was formed, identified as N,N'- vinylidene indigo (Scheme 30).132 A 

similar product can be obtained by the slow addition of dehydroindigo to a melt of 

maleic anhydride followed by extraction with dichloroethane.133 

 
Scheme 30: N,N'-Vinylidigo from reaction of the dehydroindigo and methylpropionate.132 

 
Heating indigo in the presence of benzoyl chloride in pyridine resulted in the formation 

of a crystalline violet compound as N,N'-dibenzoylindigo 209 (Scheme 31).134 

 
Scheme 31: N,N'-Dibenzoylindigo 209 from heating indigo in pyridine in presence of benzoylchloride. 
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The reaction of indigo in hot benzoylchloride caused one of the long-term disputes in 

the chemistry of indigo. The synthesis was originally conducted by Schwartz in 1863. 

He reported a brown amorphous isolate and claimed it as N,N'-dibenzoylindigo 209.135 

Prior to this, acid hydrolysis of 209 was reported to give indigo whereas the same 

reaction using the product from Schwartz produced different outcomes.136 Further 

examination and repetitions revealed that the empirical formula contained chlorine and 

was assigned as C30H17O3N2Cl, identical with another reported structure known as 

Dessoulavy compound 210, originally synthesised from indigo in excess 

benzoylchloride at reflux (Scheme 32).137 

 

Scheme 32: Synthesis of Dessoulavy compound 210137and its conversion to Ciba Yellow G 211.138 

 

 Treatment of 98 with copper or sodium nitrate in benzoylchloride at reflux or reaction 

of 98 and benzoylchloride in nitrobenzene resulted in production of Ciba Yellow 3G 

211 (Scheme 48)138; it dyes cotton and wool in a yellowish green colour. Heating (300-

380 °C) of Dessoulavy’s compound led to the expulsion of benzoylchloride and 

formation of 211. Structure elucidation of 211 attracted the attention of organic 

chemists for decades and during this time a number of structures were proposed, and 

altered. A preliminary structure suggested by Hofmister in 1926 postulated that the 

compound was a result of aromatic substitution of benzoyl into one of the benzene rings 

of indigo 212, followed by ring closure and rearrangement to give the anthraquinone 

type structure 214 as proposed structure for Ciba Yellow G (Scheme 33).139  
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Scheme 33: Proposed mechanism for the formation of anthraquinone structure 214. 

 

Structure 214 was rejected by Hope and Richter after they heated Ciba Yellow G in 

15% NaOH solution and formed a bright yellow precipitate as which they assigned as 

216‡. In this regard they proposed 215 structure as the structure of Ciba Yellow G 

(Scheme 34).136 

 
Scheme 34: Proposed structure 215 for Ciba Yellow G by Hope and Richter based on the result from 

boiling in 15% NaOH solution. 

 

Structure 211 proposed by de Diesbach,140 was finalised 34 years later by X-ray 

crystallography (Figure 16).141  

   
Figure 16: Structure of Ciba Yellow G and its X-ray ORTEP image.140,141 

 

                                                
‡ Yield was not reported.  
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Boiling indigo with zinc chloride in benzoyl chloride yielded Höchst Yellow R 217. 

Heating of 217 with sulphuric acid resulted Höchst Yellow U 218, an additional isomer 

of 211 (Scheme 35).142  

 
Scheme 35: Formation of Höchst Yellow R 217 and Höchst Yellow U 218.142 

 

Heating of 210 with ammonia in methanol reported to produce a yellow substance 

bearing the formula C27H21N3O (m.p. 247 °C) having structure 219.134 However when 

the reaction was repeated, a mixture of four different products, 220-223 was produced 

and none of them had the structure similar to 219 (Scheme 36).143 

 
Scheme 36: Treatment of 210 and ammonia and its controversial products.143 

 
Reaction of 210 with aniline produced a grey substance, which was believed to have an 

empirical formula of C27H21N3O. However, according to subsequent repetition and 

supporting experiments, the formula changed to C28H21N3O and the structure 224 was 

suggested (Scheme 37).143 There is no substantial information to confirm the proposed 

structures for 220-223. 
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Scheme 37: Reaction of 210 with aniline and the supposed structure of the product 224.143 

 

Heating indigo with an excess of phenylacetyl chloride either alone or in nitrobenzene 

or neat resulted in the generation of the bright red, crystalline pigment 226, containing a 

bay annulated system144 commonly known as Ciba Lake Red B (Scheme 38).145 

 
Scheme 38: Formation of Ciba Lake Red B 226 from reaction of 98 and phenylacetyl chloride.145  

 

1.4.8 Cascade reactions of indigo 

Recent results from Keller research group (KRG) lab revealed that indigo undergoes 

cascade reactions in the presence of allylic halides.146 Immediate results of these tandem 

reactions were rapid, one-pot production of two complex heterocycles; a spiroindoline–

pyridoindolone (Type A, Scheme 39) arising from the addition of three allylic units, 

and a fused pyridoindoloazepinoindolone (Type B, Scheme 39), generated from the 

addition and subsequent cyclisation of two allylic moieties. These novel architectures 

were fully characterised and their structure were assigned by extensive 2D NMR 

experiments and by X-ray crystallographic techniques (Scheme 39). 
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Scheme 39: Formation of two new classes of heterocycles from one-pot cascade reaction of indigo and 

allylic systems.146 

 

Formation of two structurally-diverse heterocycles in a one-pot synthesis gave rise to 

the possibility of using the structure of indigo scaffold as a suitable platform for further 

elaboration through cascade reactions.  

 

1.5 Aims 

This work designed to explore the cascade reactions of indigo with different π systems 

in order to produce complex and annulated structure in a short and economic manner.  

 

Therefore the aims of the projects are: 

 

• To improve the yield of the cascade reactions of indigo with allylic systems and the 

exploration of controlling the cascade process (Chapter 2). 

• To explore the effect of the π systems and comparison of the reaction outcome for 

alkynic and allylic systems (Chapter 3). 

• To investigate the impact of the reaction conditions, sequence of the reaction, 

leaving groups and substituents on the outcome of the reaction (Chapter 2 & 3).  

• Mechanistic studies to improve the yield and ability to predict of the outcome of 

theses cascade reactions. 
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• To examine indigo as a suitable building block in the generation of the DOS 

compounds library. 
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2 Chapter 2 : Cascade Reactions of Indigo and Allylic Halides 

 
2.1 Screening the reaction of allylic halides and indigo 

As it demonstrated in Scheme 39, preliminary results from the reaction of indigo 98 

with a series of allylic bromides at 70 °C in the presence of base in dimethyl formamide 

revealed significant potential for the rapid generation of novel 1-allyl-5'-allyloxy-3',4'-

dihydrospiroindoline-pyrido[1,2-a]indol-ones (Type A up to 32%) and pyridoindolo-

azepino[1,2-a]indol-11(7H)-ones (Type B up to 38%) systems, together with isatin-

based products (Type C up to 25%) resulting from oxidative cleavage process, as well 

as unreacted indigo 98 (Table 2).146  

 

R1 R2 R3  A %  B %  C % (98) % 
H H H 227 32 232 11 237 25 23 

Me H H 228 36 233 9 238 22 18 
H Me H 229 42 234 - 239 14 6 
H Me Me 230 - 235 - 240 14 63 
H Ph H 231 12 236 - 241 - 21 

 
Scheme 40: Products from the reaction of indigo and various allyl bromides.146 

 

It was also observed from these early studies that terminal substitutions of the allylic 

electrophile dramatically reduced the yield of products to the point whereby the use of 

the disubstituted terminal 3-methyl-1-bromobut-3-ene (R2 = R3 = -CH3) appeared to 

hamper the generation of spiro-bonded or multi-cyclic products. A proposed mechanism 

for the formation of type A and B is outlined in Scheme 41. After the initial formation of 

the monoallylated indigo, intermediate V formed by tautomerisation and subsequent 
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allylation. This intermediate is a divergence point of the proposed mechanism in which 

quaternisation of the imine nitrogen is set up for internal nucleophilic attack by the 

electron-rich alkene on the electron-deficient iminium ion to afford the spiro system VI 

and then type A (Path A). Alternatively, V could form the stabilised allylic zwitterion 

VII followed by intramolecular nucleophilic addition on the indolone carbonyl. 

Subsequent loss of water and final cyclisation would realise the azepino-indolone of the 

type B. In alternative route, after formation of monoallylated indigo anion II, 

deprotonation with subsequent enolisation allows for further O-allylation (Path C). A 

third allylation on the imine nitrogen in II might then take place providing a powerful 

electrophilic site for internal double bond attack and subsequent proton loss to give the 

spirocyclic derivative (Type A). Formation of the N-allylisatin type C presumably arises 

from oxidative cleavage of the N-allylindigo intermediate and/or from N,N'-

diallylindigo which could be readily formed from the former under basic conditions 

with allyl bromide.146 

The outcomes were limited with significant quantities of starting material and oxidative 

degradation products accounting for the majority of the products, despite the interesting 

spiro and polycyclic structures produced as minor products. These early studies 

provided a curious insight into the possibilities associated with using indigo as a starting 

point for chemical synthesis towards the production of more complex architectures in an 

economical manner, however the consistent high return of unreacted starting material 

suggested that further optimisation was required to ensure its synthetic utility. 

Therefore, there was significant motivation to further investigate these cascade reactions 

with an aim to gain control over reaction pathways, such that these one-pot reactions led 

to practical yields while minimising the return of unreacted starting material and 

oxidative products. 
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Scheme 41: Proposed mechanism for the formation of type A and B heterocycles.146 

 

Considering the proposed mechanism of the allylation reaction of indigo (Scheme 41), it 

was reasoned that the water elimination step (VIII→Type B) could be assisted by the 

application of a static dehydration agent such as molecular sieves to promote better 

productivity. Furthermore, caesium carbonate is an extremely hygroscopic base, and 

demands special handling and application techniques. To increase its solubility in DMF 

and allow for greater solid-liquid phase interaction, ground caesium carbonate in a 

sealed flask containing 4 Å molecular sieves was heated in vacuo to remove the excess 

moisture. Moreover, in order to minimise exposure of the base to atmospheric moisture, 



 

  

41 Chapter 2 : Cascade Reactions of Indigo and Allylic Halides 

the reaction sequence was altered such that a sonicated suspension of indigo was 

transferred by cannula into a septum equipped flask containing the pre-dried caesium 

carbonate and molecular sieves with a stirrer bar under an inert atmosphere of nitrogen. 

Increasing the reaction temperature was reasoned to increase the solubility of indigo, 

though this represented a potential issue as the allyl halides each had boiling points 

within the range of 70-92 ºC, and the use of a flowing inert gas (N2) would likely 

diminish the electrophile concentration. To negotiate this incongruity, the mixture of 

indigo and Cs2CO3 mixture was stirred under N2 for 30 min to stimulate the formation of 

anion. Then the N2 gas flow was stopped and the allylic halides were injected into the 

reaction mixture under a static N2 blanket. Further an additional 2 eq. of allylic halide 

were added after 1 hour to ensure the presence of ample allylic halide substrate in the 

reaction mixture. 

The reaction was conducted at different temperatures and the outcomes analysed. It was 

found that with the modified reaction procedure, there were no significant changes in 

outcome for the reaction performed at 70-75 ºC compared to the original reaction. 

Prolonged reaction (14 h) at this temperature resulted in the formation of N-allylisatin 

237 and N-allyanthranilic acid 242 as major products, while remaining unreacted indigo 

(32%) was recovered from the filtration of the hot reaction mixture. The reaction was 

investigated at elevated temperature (90-100 ºC), which similarly resulted in formation 

of 237 and 242, though trace quantities of spiroindoline 227 and pyridoindolo-

azepinoindolone 232 were found to be present in the crude mixture as detected by TLC 

analysis (Scheme 42). 
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Temp. (ºC) Time (h) (237)% (242)% (98)% 

70-75 14 39 27 32 
90-100 5 48 43 - 

Scheme 42: Reaction of indigo and allylbromide at different temperatures 

 

It was found that by moderating the reaction temperature to 85-88 ºC, 5 h after addition 

of allylbromide, improved yields in particular for the 7-membered heterocycle 232 

could be obtained (65%), with little or no unreacted indigo remaining. The reaction was 

later amended to 3 h, and under these new conditions, the reaction of indigo and 

allylbromide resulted in 72% isolated yield of compound 232 by recrystallisation, and 

that subjecting the mother liquor to flash column chromatography furnished 227 in 15% 

yield. Comprehensive analysis of the mixture revealed the presence of allylic isatin 

derivatives in only trace amounts (Scheme 43).  

 
Scheme 43: Modified allylation of indigo. 

 

Furthermore, contrary to the time consuming process for isolation of the products of the 

original reaction, compound 232 could be isolated by fractional recrystallisation with a 

higher yield under these new conditions (Figure 17). The experiment was also repeated 

at 105-110 ºC and the result was an inseparable mixture (Table 2). 
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Table 2: Variation of temperature and its effect on the outcome of the allylation reaction 

Temp. oC Reaction outcome 

75-80 No significant changes compare to the original reaction 

85-87 The best result, there was no unreacted indigo, combined isolated 
yield of 87% for heterocycles 227 and 232  

90-100 Mostly anthranilic acid and allylisatin 

105-110 Black tar 

 

 
Figure 17: Comparison of purification process of the original reaction and the optimised condition. A: 

Montage of 4 days column chromatography for isolation of the major products formed under the original 

reaction condition. B: Column chromatography of the crude mixture, obtained from the optimised 

reaction. C: Crystals obtained from recrystallisation of the optimised reaction crude to yield compound 

232  

 

The optimised conditions were applied as a generic reaction for the allylation of indigo 

in presence of different carbonates (Na, K and Cs). The colour change of the reaction 

mixture from dark navy to amber yellow was considered as a distinctive signature of 

indigo’s consumption. The required reaction times were found to be longer for sodium 

and potassium carbonate (5 and 7 h respectively), due to the poor solubility of these 

inorganic bases in DMF. Furthermore, the increasing size of the metal cation is likely to 
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be involved in destabilising the indigotinide N-anion, leading to more reactive anion. 

Distribution of the products was similar to the reaction with Cs2CO3 (Table 3).  

 

Table 3: Effect of different carbonates on the reaction of allylbromide and indigo 

Carbonates Time h (227)% 

% 

(232)% (98)% 

Na 7 9 62 15 
K 5 12 65 13 
Cs 3 15 72 - 

 

2.2 Variation of time 

These modified conditions were used as a new platform from which the effect of longer 

or shorter reaction times was assessed. The scope of the product outcomes for the 

cascade process by the addition of different allylic bromides to indigo was investigated 

at three different reactions times after allylic bromide injection: 5 sec, 1 h and 3 h. 

2.2.1 Reaction of indigo and allylic bromides; Five (5) second reaction 

When the suspension of indigo in the presence of the base and molecular sieves was 

heated and stirred under N2 atmosphere, the colour of the mixture turned to green 

yellow due to the formation of the anion. It was noted that the colour of the solution was 

changed instantaneously (from green-yellow to royal blue) with the addition of 

allylbromides. At this point the reaction was quenched after 5 sec by pouring the 

mixture into an ice bath. Workup and subsequent recrystallisation of the crude mixture 

yielded the monoallylated indigos (Type D) 243-247 in yields of 37-62% as papery blue 

solids (Scheme 44), however significant quantities of indigo starting material remained 

at this time. A minor red by-product was also observed (7-10%) in this reaction (see 

Scheme 46). The mono-allylated compounds are a result of the nucleophilic addition of 

one allyl unit on one of the nitrogen atoms of indigo.  
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R1 

 
R2 R3  (D) % (98) % 

H H H 243 54 36 
Me H H 244 62 29 
H Me H 245 57 30 
H Me Me 246 37 41 
H Ph H 247 48 38 

 

 Scheme 44: The synthesis of mono-substituted allylindigo derivatives in 5 seconds reactions. 

 

In the case of N-allylindigo 243, a signal at m/z 303 in MS (EI) spectrum was assigned 

to the molecular ion, confirming the addition of one allylic unit. Analysis of the 1H-

NMR spectra showed a peak at 10.71 ppm assigned to the free indolic NH group, as 

well as two notably deshielded aromatic doublets at 7.64 and 7.72 ppm, assigned to the 

non-identical H4 and H4' protons, due to the ortho-para deshielding effect of the 

oxoindoline carbonyl moiety. Additionally, analysis of the 13C spectrum confirmed the 

presence of two carbonyls in the structure assigned, to the peaks at 187.1 and 189.7 

ppm. The absence of NOESY correlation between the H1'' and NH (H1) along with the 

X-ray crystallography result confirmed the trans conformation of the 243 (Figure 18).  

    
Figure 18: ORTEP file of the compound 243 and its trans conformation. 

 

The product trend seen with allyl bromide was evident for most of the substituted allyl 

bromides used after the 5 sec reaction time with a maximal yield of the monoallylated 

product and remaining indigo starting material. Allowing the reaction to proceed for 
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longer in an attempt to increase the yield of mono-allylindigo instead led to the 

immediate formation of multiple products. An alternate optimisation strategy attempted 

was to firstly generate the indigo anion by heating the mixture of indigo suspension in 

DMF at 85 ºC with caesium carbonate and then cooling the flask to 40 ºC, and allowing 

the mixture to equilibrate in the range of 45-50 ºC, prior to the injection of allylbromide. 

However, when the reaction was quenched after 30 minutes, it was determined that a 

large quantity of indigo (more than 50%) failed to react and remained unchanged.  

Finally, it was found that by increasing the time to one hour to allow a longer period of 

time for initial deprotonation prior to the addition of electrophile, mono-allylindigo 

products could be isolated after 5 sec in substantially higher yields (Scheme 45).  

 
R1 R2 R3  (D) % 
H H H 243 83 

Me H H 244 81 
H Me H 245 89 

 
Scheme 45: Optimised reaction for production of mono-allylated indigo. 

 

Compared to the characteristically poor solubility of indigo, these mono-allylated 

derivatives are highly soluble in dichloromethane, DMF and DMSO, and moderately 

soluble in THF, chloroform and ethyl acetate, due to the disruption of intramolecular 

hydrogen bonding between the adjacent indole and carbonyl groups. This, in turn, 

allows for simpler manipulation of the scaffold in low boiling point solvents at lower 

temperatures for further elaboration, quickly providing a solution to the issue of 

indigo’s characteristically poor solubility.  
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2.2.2 Reaction of indigo and allylic bromides; One (1) hour reaction 

These reactions were undertaken using identical conditions to those reported in the 

previous section, with the exception of a 1 hour reaction time after addition of allyl 

bromide. In the instance of entry 1 (Scheme 46), one hour after the addition of 

allylbromide the reaction mixture turned a dark red solution. TLC analysis showed the 

presence of a polar compound with a red colour close to the base line (CH2Cl2 eluent) as 

the major product. After extraction of the crude reaction mixture with CH2Cl2, silica gel 

as stationary binder was added to the solution to absorb the red compound. The mixture 

then was filtered and washed with cold CH2Cl2 which left the red compound absorbed 

on silica, and washing the silica with EtOAc furnished 13-allyl-8a-hydroxy-8,13a-

dihydroazepino[1,2-a:3,4-b']diindol-14(8H)-one 248 as a dark red solid. (Type E, 

Scheme 46).  

 
entry R1 

 
R2 R3  (E) % (98) % 

1 H H H 248 41 36 
2 Me H H 249 51 29 
3 H Me H 250 14 30 
4 H Me Me 251 21 41 
5 H Ph H 252 - 38 

Scheme 46: The synthesis of azepinodiindolo systems by treating indigo with allyl bromides with a 1 

hour reaction time. 

 

Mass spectroscopy examination indicated a signal at m/z 330 (M+) in the EI spectrum, 

assigned to the molecular weight having the addition of two allylic units to indigo. 

Analysis of the 1H NMR spectrum of 248 revealed a set of peaks at δ 4.94-5.03 and δ 

5.12 ppm assigned as the terminal alkene with an integration of two protons, implying 

the other allyl unit has been cyclised. The methylene group at position 8 (Figure 19) was 
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assigned to the doublet at δ 2.46 ppm and the doublet of doublets centered at δ 2.97 

ppm.  

 
Figure 19:1H NMR spectrum of 248 and the expansion of the aromatic region 

 

This confirms the existence of a ring as only one of the protons of this methylene can 

correlate with the olefinic proton of position 7 (Figure 19). This sole correlation was 

confirmed by analysis of the gCOSY spectrum (Figure 20).  

 
Figure 20: gCOSY spectrum for compound 248. 
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A broad singlet at 4.73 ppm was assigned to the alcoholic proton - this peak disappeared 

upon treatment of the sample with D2O. The aromatic region was found to contain nine 

protons, compared to the expected eight aryl protons. The additional doublet 

corresponded to H6, which was due to the deshielding effects of both the olefin and the 

adjacent indole nitrogen. (Figure 20, See Appendix 1 for full set of spectra).  

The quaternary benzylic C8a was assigned to the peak at 81.3 ppm in the 13C NMR 

spectrum, and found to be shifted downfield due to the effects of the attached alcohol 

substituent and its benzylic nature. Additionally the presence of one signal at 178.5 ppm 

in the carbon spectrum confirmed that the structure contained only one carbonyl group. 

Analysis of the HMBC spectra revealed strong correlations between H9 and C8a 

(magenta), H8 and C8a, and a weaker correlation between H6 and C4a (green). Also the 

other key correlation in HMBC was the three bond correlation between the H1' 

methylene and quaternary C13a confirmed the position of the uncyclised N-allyl unit 

(Figure 21, red).  

 
Figure 21: HMBC spectrum for compound 248. 
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Interestingly, when 2-methyl-3-bromo propene was used as the allylic substrate, the 

yield for compound 249 increased to 51%, isolated from two fractional 

recrystallisations. Conversely, the use of crotyl bromide yielded 14% of the structure 

250, indicating the steric hindrance from the terminal methyl group had hampered the 

cyclisation to form the dihydro-hydroxyazepine ring. All of these heterocycles exhibited 

a red colour and formed monoclinic crystals from pet. spirit/EtOAc (9:1). 

The structure of compounds 248-250 (Type E) were characterised by extensive 2D-

NMR analysis. Elucidated structures were confirmed by X-ray crystallography analysis 

(Figure 21).  

  
rel-248 

  
rel-249 

  
rel-250 

Figure 22: The X-ray crystal structure of 249-251. 
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In the case of use of dimethylallyl bromide, a bright orange compound was isolated 251 

(21%) with the structure lacking the N-allyl substituent. An additional novel 

heterocyclic derivative 253 was isolated in 26% (Scheme 47). 

 
Scheme 47: The synthesis of the bridged tetrahydrofuran heterocycle 253 from indigo and 4-bromo-3-
methylbut-2-ene. 
 

Compound 251 was isolated as an orange-red powder with strong fluorescence under 

the UV light (365 nm). The peak at m/z 330 (M+) in the MS (EI) was assigned to the 

molecular ion which indicated the addition of one dimethyl allyl unit to the indigo core. 

The 1H NMR spectrum contained one signal for the two CH3 groups with an integration 

of 6 protons at 0.80 ppm. The absence of the corresponding signal for N-CH2 and 

presence of the typical shifts of H6 at δ 6.83 ppm (doublet) and H7 at δ 4.84 ppm 

(doublet) indicated the cyclisation of the dimethyl allyl moiety. (See appendix 1 for the 

full set of spectra). Slow recrystallisation of 251 from pet. spirit/EtOAc (9:1) deposited 

X-ray quality crystals. The X-ray structure of compound 251 is shown in Figure 23 (see 

Appendix 2 for X-ray crystallographic data). 

 
Figure 23: The crystal structure of the dihydroazepinodiindole 251. 
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The epoxyazepinodiindole 253 was obtained in 26% yield as a red powder. The peak at 

m/z 398 (M+) in the MS (EI) spectra was assigned to the molecular ion and indicated 

the addition of two dimethylallyl systems to the indigo scaffold. IR spectrum revealed 

that the structure lacked OH or free NH groups. The intense colour suggested that the 

central double bond was intact with the extended conjugation, giving rise to the intense 

colour. 1H NMR analysis showed a signal at 6.02 ppm which was assigned to the 

deshielded proton of H6. The 1H spectrum also revealed a total of eight proton signals in 

the aromatic region. A doublet at 2.07 ppm and the doublet of doublet at 2.36 ppm were 

assigned to H7a and H7b respectively. From gCOSY spectrum, correlation of H6 with 

one of the protons of the H7 (annotated in blue) was attributed to the restricted ring 

system (Figure 25).  

The 13C NMR spectrum contained one peak in the region at 177.5 ppm, corresponding 

to the presence of one carbonyl functionality. Key to the structural elucidation were 

NOESY experiments which showed correlations between the aromatic H4 proton and 

the H6 bridgehead proton (Figure 25 and 26, magenta) - the same H6 proton correlated 

strongly with one H7 and weakly with the second H7 proton suggesting a -CH2-CH- 

arrangement in a conformationally restricted ring, with the weak correlation assigned to 

the transoid arrangement of protons and the strong correlation to the cisoid 

configuration (Figure 25 and 26, blue). The other significant NOESY correlation was 

assigned between H1 and H9 of the benzene ring (Figure 25 and 26, green). In addition, 

significant 3-bond correlations in the HMBC spectrum were observed between H6 and 

the quaternary C8 and H7 and the benzylic C8a. The downfield shift of the peak at 92.7 

ppm, assigned to C8a, is consistent with the benzylic carbon being also attached to an 

oxygen atom (See appendix 1). 
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Figure 24: gCOSY spectrum for compound 253. 

 

 
Figure 25: NOESY spectrum for compound 253. 
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Figure 26: A-C: Expansion of the NOESY spectrum and D: demonstration of the key correlations. 

 

To predict the three-dimensional structure of 253, the structure was modelled with the 

aid of Spartan 10, (v1.1.0, Wavefunction Inc software) and the geometry optimisation 

was performed using Hartree Fock theory at the 6-31G* level. The modelled 3D 

structure for 253 (Figure 27) showed the two indolic units to be in a slightly bent 

orientation to each other, with the 7-membered ring in the same curved line. The 5-

membered tetrahydrofuryl ring lies in a perpendicular fashion to the curved backbone 

and is in a puckered conformation, typical of 5-membered aliphatic rings. The 

heterocycle is stable at room temperature and to air and moisture. This is the first 

example of the synthesis of such a bridged heterocyclic skeleton. 
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Figure 27: Modelled structure (Spartan 10, v1.1.0, Wavefunction Inc) of bridged indigo-tetrahydrofuran 

product 253; Left: top view showing the tetrahydrofuran ring sitting directly over the indigo skeleton 

(vertical), which is itself twisted from planarity; Right: Front view.  

 

The formation of 253 is an excellent example of the ‘gem-dimethyl effect’147 whereby 

the presence of that moiety enhances cyclisation.148 This explains the formation of 253 

and the absence of additional examples of such bridged derivatives when using other 

allyl reagents, as evidenced by the absence of a distinctive red-coloured product by TLC 

analysis. Interesting in this particular reaction is the induction of the gem-dimethyl 

effect in producing a bridged product from a cyclic starting material. Further evidence 

in support of the gem-dimethyl effect in the cyclisation to the bicyclic heterocycle 252 

comes from analysis of computational models of the proposed starting materials to 

cyclisation (i.e. compounds 248-250 structures) and the bridged product 253 (Table 5). 

The ΔHf of the gem-dimethyl substrate 251 (262.7 kJ/mol) is remarkably similar to the 

product bicycle 253 (263.0 kJ/mol) whereas the ΔHf for the corresponding theoretical 

Type F product (253) (295.3 kJ/mol and 351.2 kJ/mol) arising from cyclisation of 

monomethyl (250; 289.2 kJ/mol) and 8-methylene (248; 338.3 kJ/mol) Type D starting 

materials respectively, are of higher energy. Further, the distance between the proposed 

O-nucleophile and C6-imine electrophile in the proposed intermediates to cyclisation 

(Compound Z, see Scheme 53) is least for the gem dimethyl compound 253 (3.042 Å) 
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and larger for the monomethyl compound 250 (3.056 Å) and 248 (3.180 Å). Each of 

these values indicates the O-cyclisation to be most favourable in the case where the allyl 

unit is terminally-substituted with a pair of methyl groups. 

 

 

Table 4: Calculated values of ΔHf of Type E (248,250-1) substrate and Type F (253) products; the 

distance between nucleophile (O) and electrophile (C) in the proposed key intermediate of the reaction, 

structure Z. 

C8 substitution  
pattern 

ΔHf Substrate  
(Type E) kJ/mol 

ΔHf cyclic aminals  
(Type F) kJ/mol 

Distance between (C8a) O 
and C6: (Structure Z) (Å) 

2 x Me (251)  262.715 263.010 (253)  3.042 

1 x Me, 1 x H (250)  289.247 295.266 3.056 

2 x H (248)  338.331 351.245 3.180 
 

With cinnamyl bromide, an additional deviation in the product outcome (Type G) was 

observed in 16% yield, identified as 254 (Scheme 48) and is a new variation on the 

spiroheterocycle of Type A.  

 
Scheme 48: Reaction of indigo with cinnamyl bromide yielding two spiro-based derivatives. 

 

A signal at m/z 494 (M+) in MS (EI) was assigned to the molecular ion, confirming this 

yellow compound corresponded to the addition of two cinnamyl units. 1H NMR analysis 

revealed a total of 19 proton signals in the aromatic region whereas the expected 

number of aromatic protons from this alkylation was 18; eight aromatic protons from 



 

  

57 Chapter 2 : Cascade Reactions of Indigo and Allylic Halides 

the starting material indigo (98), and ten protons from the addition of two cinnamyl 

moieties. The additional proton signal with a chemical shift of δ 7.42 ppm was assigned 

to the H6', deshielded due to the quaternary amine. A sharp singlet at 7.86 ppm was 

assigned to the free NH. A distinctive singlet at 4.12 ppm and a doublet at 4.98 ppm 

both with an integration of one proton were assigned to H8' and H7' respectively. This 

splitting pattern suggested the presence of a CH-CH-CH unit with restricted rotation 

across the carbon-carbon bonds. This confirmed the cyclisation of a cinnamyl unit on 

C2'. The upfield multiplet at 2.98-3.10 ppm was assigned to the H1' methylene. The 

chemical shift of this methylene group showed a shift around 2.1 ppm compared to the 

O-CH2 protons in the spiro product (Figure 28, See appendix 1 for full 1H NMR 

spectrum and the full set of spectra for compound 254). This, and the absence of the 

gCOSY correlation to this methylene group, suggested the position of the other 

cinnamyl unit on a quaternary carbon (Figure 29).  

 

 
Figure 28: Expansion of 1HNMR for compound 254. 

 

Analysis of the 13C NMR spectrum showed the appearance of a signal at 68.9 ppm 

corresponding to the C2 quaternary carbon. Signals at 122.5 ppm and 164.1 ppm were 

assigned to the C4a and C7a quaternary carbons. Also revealed was the presence of two 
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peaks at 197.5 and 197.8 ppm, assigned to two carbonyl groups. This eliminated the 

substituent pattern as defined by Type A spiro compounds. 

 

 
Figure 29: gCOSY spectrum for compound 254. 

 

Analysis of the HMBC spectrum of the C-allylated product 254 revealed a strong 3-

bond correlation (Figure 30/A, annotated with red) between the C2 spiro carbon at 68.9 

ppm and the cinnamyl methylene H1''. The proton of the free NH showed a strong 

correlation through the three bonds (annotated with blue) with C3 of the carbonyl group 

and the C7 of the aromatic ring (Figure 30/B). A correlation (annotated with green) 

between the quaternary carbon C7a and H4 (Figure 30/C) and the strong signal for the 

correlation (annotated with magenta) of the C4'a and H6' (Figure 30/C) were amongst 

the information observed from the gHMBC spectrum.  
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Figure 30: Structural analysis of compound 254; Key HMBC correlations in support of the proposed 

structure. A: Three bond correlation of C2 and H1. B: gHMBC correlations of NH and C3 carbonyl and 

C7 of the aromatic ring. C: Correlation between H6 - C4'a and three bond correlation of the quaternary 

C7a and H4. D: Compound 254 and selected gHMBC correlations with colour coded arrows. 

 

The presence of one set of peaks in the 13C NMR spectrum indicated the presence of a 

single enantiomeric pair of isomers, and analysis of the X-ray crystal structure (Figure 

31) showed that the relative stereochemistry was either all R or all S.  

    
 

Figure 31: Left: Modelled structure of 254 showing cisoid configuration of the NH and the cinnamyl 

substituents; Right: X-ray crystal structure of 254 showing the transoid NH/C8'-phenyl substituent 

disposition. 
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This places the cinnamyl substituent in a cisoid orientation to the isooxindolic N-H and 

a transoid configuration with the C8' phenyl substituent. This configuration allows for 

the bulky cinnamyl substituent to swing away and be on top of the concave structure. 

 

2.2.3 Reaction of indigo and allylic bromides; Three (3) hour reaction 

Analysis of the product outcomes of the corresponding 3 hour reactions of indigo with 

different allyl bromides (Scheme 48) showed the synthesis of the known 8H,16H-

pyrido[1,2,3-s,t]indolo[1,2-a]azepino[3,4-b]indol-17-one heterocycles, which arise from 

the addition of two allyl units with one cyclising to form a 6-membered ring and the 

other to form a 7-membered ring. By this methodology however, it was possible to 

enhance the yield for the production of these reasonably complex heterocycles to a 

consistently repeatable with the approximate yield of 70% for azepinodiindolone 232 

and 233. Notably, the olefinic terminal position remains unsubstituted to achieve these 

outcomes. The addition of substituents to the terminal positions of the allyl reagents 

(e.g. crotyl, 1,1-dimethylallyl, cinnamyl) results in an inversion in the major product to 

the known spiro heterocycles 227, 228 and 229, albeit with a decreasing absolute yield 

(65% to 37%) with increasing steric presence. The yield of 37% for the cinnamyl 

derivative 231 is a significant improvement on that previously reported of 12%, whereas 

the corresponding derivative 230 was previously unknown (not synthesised) but in this 

study, produced a yield of 42% (Scheme 49). The previously reported low yields of 

these spiro-based heterocycles were accompanied by significant quantities of indigo 

starting material. Analysis of the mixture also confirmed the new conditions are optimal 

for complete consumption of indigo as no starting material was recovered. 
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R1 R2 R3  A %  B % 
H H H 227 15 232 72 

Me H H 228 15 233 69 
H Me H 229 65 234 - 
H Me Me 230 42 235 - 
H Ph H 231 37 236 - 

Scheme 49: Distribution of the products of the reaction of indigo and allylic bromides under the modified 

reaction condition. 

 

2.3 Mechanistic discussion 

The proposed mechanism for the formation of Type A spiro derivatives is outlined in 

Scheme 50 using allyl bromide as the allylic reagent. After initial N-allylation of indigo 

98 to give Type D compounds, two possible pathways can be devised to the spiro Type 

A compound. Path A illustrates a proton shift from the indigo N-atom to the indolic C2 

position – this structure is stabilised by enolisation to the 3-hydroxyindole moiety. N-

Allylation of the keto tautomer gives rise to T, which undergoes an ene-type reaction 

producing the spiro unit. The relatively weak nucleophile in this reaction (the alkene) is 

heavily compensated by the electrophilic carbon which is activated by the iminium 

cation (red), and additionally by the adjacent carbonyl (red), inducing a highly reactive 

electrophilic carbon. Final allylation of the 3-hydroxyindole under basic conditions 

produces the final spiro compound. Path B starts from the N-allylindigo and following 

deprotonation produces the O-allylated derivative after electron delocalisation. Ene 

cyclisation onto the doubly activated (red) C2 position produces the final spiro 

heterocycle (Scheme 50). 
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Scheme 50: Proposed mechanism for the synthesis of Type D and Type A spiro heterocycles. 

 

In the case of the spiro products, an exception is the spirocycle 254 derived from 

cinnamyl bromide reaction with the intermediate R. At the O-cinnamyl stage, the 

formation of two highly stabilised radicals could provide a driving force for thermally-

induced homolytic cleavage of the cinnamyl unit and a 1,3-shift leading to the Type G 

structure (Scheme 51). 

 

 
Scheme 51: Proposed mechanism for the formation of 254 from intermediate R. 
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While direct anionic C-allylation may also occur (at Step 1 of Path B, Scheme 49), 

steric considerations and the non-observance of this product with other allylic bromides 

points to a later intervention of a 1,3-rearrangement process. 

Interestingly, it is noted that the C2 proton (green) in T should be highly acidic, being 

flanked by a carbonyl and the iminium moiety – although this acidity plays no role in 

our proposed mechanism, we might expect H+ loss to occur – this is not apparent unless 

the resulting N,N'-disubstituted indigo undergoes re-protonation by HCO3
- to give T 

(Scheme 50). 

Scheme 52 illustrates a tentative proposed mechanism for the synthesis of the 

heterocycles 233 (Type B) and 249 (Type E). Starting from the intermediate T, 

deprotonation produces an ylid, which stabilises the intermediate and provides a formal 

negative charge for subsequent cyclisation onto the carbonyl forming the 7-membered 

ring. Path C illustrates dehydration and cyclisation onto the activated iminium cation to 

form the heterocycle 233, supported by a separate experiment (See Scheme 54). Path D 

describes the base-induced deprotonation to form the neutral product 249 (Scheme 52). 

 
Scheme 52: Proposed mechanism for the synthesis of Types B and E heterocycles. 
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In the instance of the dimethyl allyl analogue 251, reversible protonation (HCO3
-) of the 

enamine (Z, Scheme 52) and deprotonation could occur, leading to intramolecular 

cyclisation to produce the novel bridged heterocycle 253 with this reaction promoted by 

the gem-dimethyl effect (Scheme 52).  

Scheme 53: Proposed mechanism for the formation of 254 (Type F). The order of protonation and 

allylation is undetermined and the cyclisation is promoted by the gem-dimethyl effect of gem-dimethyl 

substituted substrates. 

 
While dehydration of 248 could conceivably also occur, no evidence for the expected 

azepine product was seen. An attempt to separately dehydrate 248, by reaction with 

P2O5 resulted in an inseparable mixture. However, the same compound under basic 

conditions (Cs2CO3) in DMF at 85-87 °C (3 h) produced 232 in 89% yield (Scheme 54), 

thereby providing evidence that 248 and analogues could also be intermediates in the 

synthesis of Type B compounds as proposed in Scheme 52 (Path E).  

 
Scheme 54: Conversion of 248 to 232 under the effect of base in DMF. 

 

Additionally, in support of the pathways proposed, the reaction of N-allylindigo 243 

(Type D) under the typical cascade reaction conditions for these compounds gave 232 in 

59% yield and the spirocycle 227 in 8% yield (Scheme 55).  
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Scheme 55: Supportive reaction to validate the path D of the proposed mechanism. 

 

2.3.1 Impact of steric constraints on the product distribution 

Considering T (Schemes 50 and 52) as key intermediate, there are two possibilities of 

cyclisation; a nucleophilic addition of alkene to the carbonyl (a) or cyclisation of alkene 

to the iminium ion (b). According to the Bürgi–Dunitz modelling,149 the attack of a 

nucleophile on a carbonyl group is defined by the Nu-C-O bond angle, and is optimum 

when the angle of attack is 107º.149 Facile rotation across the central single bond of T 

provides an arrangement aiding this attack. The presence of the methyl or phenyl 

substituents hinders the attack on carbonyl group and cyclisation of alkene to the 

iminium ion becomes more favoured (Scheme 56). Conversely free rotation across the 

C2-C2' bond (T) positions the two indole units in a perpendicular angle which provides 

enough space for the attack of the nucleophile on the iminium ion with little steric 

hindrance. 

 
Scheme 56: Qualitative demonstration for two possible cyclisation. 

 

This can be observed by the lower yields in formation of Type E products for crotyl and 

dimethyl and its absence for cinnamyl bromide. In a comparative experiment, 
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compounds 248 and 250 were reacted with Cs2CO3 in DMF for 30 min. Analysis of the 

reaction mixture for compound 248 yielded yellow crystals of 232 while the reaction 

mixture for 250 showed no change (Scheme 56).  

 
Scheme 57: Comparison of the possibility of the cyclisation of 249 and 251 in order to examine the steric 

hindrance effect on conversion of Type E compounds to Type B. 
 

This experiment demonstrated the limitations that exist in Type E compounds to 

undergo the final cyclisation to realise the azepino-indolone system (Type B). After the 

first intramolecular nucleophilic attack on the indolone carbonyl and formation of the 

seven-membered ring that bridges the two indole units, there is limited space for the 

second allylic unit to attack to the iminium ion. To estimate the distance between the 

terminal alkene and the carbon of the iminium ion of intermediate W, calculations were 

performed using Spartan software, at the molecular mechanics level. By analysing 

diverse conformations of intermediate W, the distance range between the terminal 

carbons of the allyl group and iminium carbon (C1'' and C2) was determined as 1.23 -

1.82 Å (Figure 32, W). This modelling revealed that the presence of any terminal 

substituent on C1'' hinders the attack and clashes with carbonyl C3 (Figure 32). This 

further supports the result of the reaction of 250 and base which failed to produce 

azepino-indolone (Type B) product. As illustrated in Figure 32, modeling of the diverse 

conformers of the spiro cycle showed the angle between the planes of the two indole 

units to be 79-85°. This also supports the predominate formation of spiro product in the 

instance of the reaction with crotyl bromide. 
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Figure 32: Computer aided modelling for intermediate U and W to compare the effect of the steric 

hindrance after formation of the spiro cyclic system or the seven membered rings.  

 

In order to further investigate the effect of steric hindrance on the type of the 

cyclisation, the indigo substrate was changed to N-methylindigo. It was speculated that 

the limited reaction sites would result in selective formation of a spiro (Type A) or a 

seven membered ring (Type B), if the steric hindrance played a substantial role. N-

Methylindigo was synthesised under analogous conditions as the synthesis of mono 

allylated indigo. Therefore, a sonicated solution of indigo was added to pre-dried 

Cs2CO3 and molecular sieves. The resulting mixture was stirred at 85-87 °C for 30 min 

under an atmosphere of N2. After deprotonation, 1.5 equivalents of methyl iodide were 

added and after 5 sec the reaction was quenched over ice. TLC analysis showed the 

formation of two products with no starting material remaining. Fractional 

recrystallisation of the crude resulted in isolation of (E)-1-methyl-[2,2'-

biindolinylidene]-3,3'-dione (N-methylindigo) 255 (77%) as a blue precipitate. Also 
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isolated was (E)-1,1'-dimethyl-[2,2'-biindolinylidene]-3,3'-dione (N,N'-dimethylindigo) 

179 in a 12% yield as a dark green precipitate (Scheme 58). 

Scheme 58: The synthesis of N-methylindigo 255. 
 

In two different experiments, a solution of N-methylindigo was treated with allyl 

bromide under the identical reaction condition as described above. Purification of the 

reaction mixture resulted in isolation of 256 whereas the reaction with crotyl bromide 

yielded spiro type compound 257 as major product (Scheme 59).  

 
Scheme 59: Comparative experiments to investigate the effect of steric hindrance on the type of 

cyclisation in reaction of N-methylindigo and allyl and crotyl bromides. 

 

Analysis of the mass spectrum of compound 257 showed a signal at m/z 316 which was 

assigned to the molecular ion. A sharp singlet at 3.37 ppm with an integration of three 

protons was assigned to the methyl group of the N-methyl indigo. A set of two doublets 

at 2.43 and 2.97 ppm were assigned to the H8 methylene group. Analysis of the gHSQC 

confirms that the both of these signals are attached to one carbon (See appendix 1). The 

aromatic region of the spectrum showed the presence of nine protons, with eight 
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assigned to the aromatic protons of the indigo core. The additional signal with the 

chemical shift of 6.84 ppm, deshielded by the adjacent tertiary nitrogen atom, was 

assigned as H6. This signal showed a gCOSY correlation to the multiplet at 4.90-4.95 

ppm, assigned to H7 (Figure 31, annotated with blue). Interestingly, H7 has a single 

correlation with one of the H8 methylenes at 2.43 ppm (Figure 33, annotated in green). 

This proved the restricted rotation as the result of cyclisation of the allyl unit. The 13C 

NMR showed a signal at 178.0 ppm, indicating the presence of only one carbonyl 

group.  

 
Figure 33: gCOSY spectrum for compound 256. 

 

In the case of compound 257 a peak at m/z 384 in the EI mass spectrum was assigned to 

the molecular ion which evidenced the addition of two crotyl units to the initial N-

methyl indigo. Analysis of 1H NMR spectrum showed two doublets at 0.99-1.01 ppm 

and 1.53-1.54 ppm with an integration of three protons assigned to the methyl groups 

from the addition of two crotyl units. A doublet at 5.14-5.15 ppm was assigned as the 

H7' proton. This signal showed a correlation with a proton in the aromatic zone at 7.06 



 

  

70 Chapter 2 : Cascade Reactions of Indigo and Allylic Halides 

ppm which was assigned to the H6'. Correlation between these two protons in the 

gCOSY spectrum was noticed whereas there was no signal for the correlation between 

H7' and H8' suggesting that restriction of rotation as result of being in a ring system. 

This and the signal at 69.2 ppm for C2 in the 13C NMR spectrum confirmed the typical 

spiro cyclisation (Figure 34). 

 
Figure 34: gCOSY spectrum for compound 257. 

 

To explore the effect of constraining the allylic substituents in a ring, an additional 

allylation was attempted with 3-bromocyclohexene under typical conditions with a 5 sec 

reaction time. The major product isolated was the mono-substituted Type E derivative 

258 in 51% yield (Scheme 60). Only trace amounts of other products were evident from 

TLC analysis. The peaks at m/z 422 and m/z 502 in the EI mass spectrum of the crude 

were assigned to the azepinodiindole and spiroindole products, respectively, however 

due to the minute quantities (less than 0.5 mg) structural elucidation were not pursued 
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further. Longer reaction times failed to produce isolable quantities of these additional 

products and instead formed base line material.  

 
Scheme 60: The reaction of indigo in the presence of base and 3-bromocyclohexene. 

 

2.3.2 Inductive effect of the substituents 

Formation of the iminium ions T and W (Schemes 50 and 52) appeared to be the key 

steps in generation of the 7-membered and spiro products from the allylation reaction of 

indigo. To validate this assumption, allyl chloroformate used as the allylic substrate to 

react with indigo 98. The reaction was carried under the similar conditions to that 

described in the 3 hour allylation reactions. The reaction was monitored by TLC 

analysis which revealed the complete consumption of indigo after 3 mins. Then the 

reaction was quenched and purified by fractional recrystallisation to afford the dark 

magenta crystals of N,N'-diallocindigo (71%) 259. In order to investigate the outcome 

of the reaction in longer times, in a separate attempt the reaction mixture was heated and 

stirred for 3 h after the addition of allyl chloroformate which yielded 259 (87%) with no 

cyclised products isolated (Scheme 61) 

 
Scheme 61: Reaction of indigo 98 and allyl chloroformate. 
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The peak at m/z 430 (M+H+) in the MS (ESI) spectra was assigned to the molecular ion 

and confirmed the addition of two allylformates units. 1H NMR analysis revealed four 

peaks in the aromatic region, with a total integration of eighteen protons. 13C NMR also 

showed twelve signals. This was compatible with the symmetrical structure of N,N'-

diallocindigo 259. From the analysis of the 1H NMR spectrum, the singlet at 4.95 ppm 

was assigned to the two methylene groups, H3'' and H3'''. The two doublets at 5.19-5.21 

ppm and 5.27-5.29 ppm were assigned to the terminal olefinic protons H5'', H5''' and the 

multiplet at 5.95-6.01 ppm was assigned to the protons of the alkenes H4'' and H4'''. A 

doublet at 8.16-8.18 ppm, deshielded because of the neighbouring effect of the carbonyl 

groups, was assigned to the H4 and H4'. From the 13C NMR spectrum the signal at 

181.9 ppm was assigned to the carbonyl groups C3 and C3'. 

The result of the experiment confirms the effect of the electron lone pair of the nitrogen 

and their role in these cascades. The presence of the formate group between the tertiary 

nitrogen and the methylene of hampered the alkene nucleophile from attacking to the 

activated iminium. Therefore no cyclisation occurred onto the C2 position or the 

carbonyl group of the indigo. 

 
Figure 35: The impact of the electron withdrawing groups on the nucleophilicity of the allylic alkene. 
 

The possibility of production of N,N'-diallylindigo from the catalytic decarboxylation of 

259 was of interest. This will help to study the suggested divergence point in the 

suggested mechanisms (Schemes 50 and 52). Therefore, in a separate experiment, 259 
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was dissolved in dry CH2Cl2 and added to a flask containing Pd(PPh3)4 under an inert 

atmosphere of N2. The reaction was carried at room temperature (27 ºC) and completed 

in 10 mins followed by the standard protocols for quenching and subsequent workout. A 

signal at m/z 342 EI mass spectroscopy assigned to N,N'-diallylindigo. The TLC 

analysis showed only one product which was a teal-blue colour. The solution was then 

concentrated under the reduced pressure; surprisingly, the colour of the solution turned 

to red after being plunged into the rotovap water bath. The filtrate colour was now red 

with an Rf value of 0.05 (CH2Cl2) which was significantly lower than the teal-blue 

compound (Rf=0.65, CH2Cl2). This conversion was quantitative and spectroscopic 

comparison confirmed the formation of compound 248 (Scheme 62). In an identical 

separate reaction the solvent removal during the workup was attempted using an inert 

gas flow to avoid any additional heat, however, under these conditions the colour of the 

extract turned to red after 2 hours and analysis of the solution confirmed the same 

conversion. 

Scheme 62: The catalytic decarboxylation of the 259 and quantitative formation of 248. 
 

Formation of the azepinodiindole 248 from 259 in the absence of a base and additional 

heat highlighted the role of the highly acidic methylene of the N-allyl. This experiment 

also confirms the supportive contribution of the lone of the nitrogen in order to increase 

the nucleophilicity of the alkene to trigger the cyclisations. 

The other advantage of this reaction was to introduce a facile and high yielding 

procedure towards the formation of azepinodiindolo systems. 
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2.3.3 The effect of the terminal electron withdrawing substituent 

The presence of terminal substituent on the alkene substrate played a significant role by 

determination of the outcome of the reaction. Until now, these substituents were 

electron donating groups (Me or Ph, See Scheme 44, 46 and 49). To investigate the 

effect of an electron withdrawing group at the terminal position of the allyl substrate, 

the use of methyl 4-bromocrotonate was investigated. The reaction condition was 

similar to the standard procedure of allylic cascade reactions (3 hours reactions) and 

resulted in formation of the tetrahydropyrazine 261 in 62% as a dark purple solid 

(Scheme 63). The pathway suggested by the rearrangement of the N-substituted moiety 

and formation of intermediate P which then underwent a Michael conjugate addition Q 

to form compound 261. 

 
Scheme 63: The reaction of indigo with methyl 4-bromocrotonate and formation of 261. 

 

Analysis of the 1H NMR spectrum revealed a total of eight proton signals in the 

aromatic region. A multiplet at 4.83 ppm, deshielded by the adjacent tertiary nitrogen 

atom, was assigned to proton H6. The gCOSY spectrum revealed the correlation of the 



 

  

75 Chapter 2 : Cascade Reactions of Indigo and Allylic Halides 

proton H6 to the other deshielded proton H7 as well as to the adjacent methylene 

substituent (H1') (Figure 36). 

 

 
Figure 36: The gCOSY spectrum for 261 with annotated correlation of H7a and H6 in blue. 

 

2.4 Comparative product outcomes 

Overall, short reaction times suggest the initial formation of monoallylated products 

followed by a second N-allylation in most cases and cyclisation, although the exact 

order of these two steps is not apparent. Some evidence for the formation of the N,N-

diallylated products has been seen (e.g. by mass spectral analysis of reaction mixtures), 

however, such products have never been isolated. After a 5 second reaction time, 

heterocycles of the Type D system were already produced an indication of the ease of 

the cascade processes. After 1 hour reaction time, there was no evidence for the 

presence of the Type B compounds and the spiro compounds (Type A) were present in 

minor quantities. Instead, a greater proportion of the red Type D compounds were 

produced. It is only after the 3 hour reaction time that types A and B predominate with a 
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corresponding loss of formation of the Type D and E systems – this includes with the 

use of the more sterically demanding cinnamyl bromide and 1-bromo-2-butene which 

also gave rise to the Type A spiro heterocycles, with the latter reported here for the first 

time. The products arising from oxidative cleavage, the N-allylisatins (Type C) are 

minimised in these optimised conditions, and appear to arise only after longer reaction 

times. Scheme 64 demonstrates the outcome of the reaction of indigo with allylic 

bromides in different times and the detailed analysis of each of the reaction mixtures. 

 

Scheme 64: The outcomes of the cascade reactions of indigo with allyl bromides at three different 

reaction times. 
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3 Chapter 3: Cascade Reactions of Indigo and Propargylic Halides 

 

3.1 Reaction of indigo and propargyl bromide 

Complexity and novelty in compound structure is a significant advantage for any drug-

like molecule as it therefore has substantial potential to be elaborated in a drug design 

platform. Therefore the expansion of structural diversity in combination with the 

economical production of complex architectures is of enormous interest. Facile 

formation of relatively complex structures from indigo with allylic bromides in a one-

pot reaction revealed that indigo is susceptible to cascade reactions. These compounds 

represent new ring systems with functionalities that are suitable for further elaboration 

of molecular complexity. In order to expand the mechanistic insight, specifically for 

reaction directing factors, particularly those modulating nucleophilic-electrophilic 

reactivities, the base-induced reactions of indigo with the simple alkyne analogue, 

propargyl bromide were investigated. Previous experience in the allylation of indigo 

revealed that relatively small changes to reaction conditions could have major impact on 

the product outcome. Therefore, our attempts at the propargylation of indigo paid 

particular attention to stringent and repeatable reactions conditions. In this context, all 

the measures were kept identical to the conditions of allylation reaction. Initially, the 

propargylation reaction of indigo 98 was performed according to the optimised 

procedure previously described in allylation section. Thereby, indigo in DMF was 

sonicated for 30 mins to maximise the solubility and subsequently transferred to a 

septum equipped flask containing pre-dried caesium carbonate and activated molecular 

sieves under an inert N2 atmosphere. The flask was then plunged into a preheated oil-

bath (strictly 85-87°C) and stirred for 30 min. At this point the N2 flow was stopped and 

propargyl bromide was added under the static inert atmosphere and the mixture was 
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stirred for 3 h. TLC analysis revealed the formation of two products along with a 

distinctive base-line residue. Separation by silica gel flash column chromatography 

afforded an anthranilic acid derivative, as very thick oil with light amber colour 262 

(35%) as the major products and pyridodiindole 265 (8%). This was along with a brown 

polymeric base-line material (42% of the mass of the dry crude filtrate) (Scheme 65).  

 

 

 
Scheme 65: Preliminary outcome of the propargylation of indigo. 

 

 

Formation of 262 suggested that the reaction must be altered in order to prevent 

disintegration of indigo to anthranilic acid. Therefore shorter reaction time was 

investigated. Reducing the reaction time resulted in a substantial decline in production 

of the baseline material. Separate reactions were carried with random reaction times; 1.5 

h, 30 min and 10 min and 5 min. The optimum result was observed when the solution 

was heated and stirred for 5 min after the addition of propargyl bromide. Following 

quenching, a sequence of separations yielded the five new products 263−267 in a 

combined yield of 81% (Scheme 66).  
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Scheme 66: Base-mediated propargylation of indigo to produce the heterocyclic compounds 263-267. 
 

The reaction mixture was dark brown and initial TLC analysis revealed the presence of 

4 distinctive sections (Figure 37/A). Separation attempts including the silica gel column 

chromatography or Centrifugal Thin-Layer Chromatograph (Chromatotron) were not 

able to fulfil a reasonable mass return. Therefore a strategy of separation was employed 

that subjected the crude reaction mixture to a short plug of silica gel, collecting four 

fractions by utilising different solvent mixtures. Fraction (I) was isolated by elution 

with 70:30 CH2Cl2/petroleum spirit (250 mL); Fractions (II, collected in 3 separate 

flask), obtained by elution with CH2Cl2; Fraction (III) was collected from the elution 

with 50:50 CH2Cl2/EtOAc; and Fraction (IV) was isolated by the elution with 95:5 

EtOAc/MeOH. (See Chapter 7 for the detailed experimental procedure).  
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Figure 37: A: TLC of the crude mixture of the reaction of 98 with propargyl bromide (95:5, 

CH2Cl2/MeOH). The numbered sections are representing the fractions isolated from the elution of the 

crude through the short plug of silica by different solvent mixtures. B: TLC analysis of the isolated 

fractions (95:5, CH2Cl2/EtOAc). 

 

Concentration of the first fraction (I) afforded mono N-substituted indigo derivative 263 

as a deep blue, papery solid in 11% yield after recrystallisation. The peak at m/z 300 

(M+H+) in the MS (ESI) spectra was assigned to the molecular ion and was indicative of 

the addition of one propargyl unit. Analysis of the 1H NMR spectrum revealed a signal 

at δ 2.17 ppm, assigned to the alkynic proton H3'' (Figure 38). The presence of a total of 

eight proton signals in the aromatic region was compatible with number of the aromatic 

protons of indigo core. A singlet at δ 10.60 ppm was assigned to the NH proton. This 

was also confirmed by analysis of the IR spectrum which showed the presence of a 

broad signal at υmax 3278 (m). A strong NOESY correlation between H7 of the aromatic 

ring at 7.22 ppm and the methylene group of the propargyl unit H1'' confirmed the trans 

configuration for 263 (Figure 37, annotated in blue). This was also validated by the 

absence of any NOESY correlation between H1'' and the free NH. 
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Figure 38: The NOESY spectrum for the compound 263 and the key correlation between H7 and H1''. 

 

The pyrazinodiindole 264 was isolated in 21% yield as a dark eggplant coloured solid 

from the last fraction (IV) after concentration and purification with preparative TLC. Its 

solution in EtOAc is red-burgundy. A signal at m/z 300 (M+H+) in the MS (ESI) spectra 

was assigned to the molecular ion. Data from the HRESI mass spectrum was supportive 

of the molecular formula of 264 and was indicative of the addition of one propargyl 

unit. The 1H NMR spectrum lacked a signal corresponding terminal alkynic proton at δ 

2.17 ppm. The presence of the eight aromatic protons in the range 6.92-7.84 ppm 

suggested a cyclised alkyne without any extended conjugation.§ Singlets at δ 5.04 ppm 

and δ 5.38 ppm were assigned to the exocyclic methylene protons (H1'a,b). A sharp 

singlet at δ 4.41 ppm was assigned to H7, and showed no correlation in the gCOSY 

spectrum, indicating the neighbouring atom should be a quaternary carbon or a hetero 

atom (Figure 39). Analysis of the gHSQC spectrum showed signals with positive 

phasing (highlighted in blue) corresponding to two methylene groups (Figure 40). The 
                                                
§ The N-CH of the six-membered pyridine ring in 227 or 232 shifted downfield to the aromatic region 
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13C NMR spectrum showed 2 peaks at 179.7 and 180.8 ppm, assigned to two non-

equivalent carbonyls (See appendix 1 for the full set of spectra).  

 
Figure 39: The gCOSY spectrum for the compound 264, H7 highlighted showing no correlation with any 

other proton.  

 
Figure 40: The gHSQC spectrum for the compound 264. 
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Furthermore, analysis of the gHMBC spectrum (Figure 41) revealed a strong three 

bonds correlation of C7 at 45.9 ppm to H1'a,b confirming the pyrazine ring with an 

exocyclic methylene group (blue). This was also supported by the strong three bond 

correlation of C1' at 97.9 ppm and H7 (green). The other key correlation observed 

between the C13a at 121.4 ppm with H7 (red). The three bond correlation between the 

deshielded H1 at δ 7.82 ppm and the quaternary carbon C4a at 147.0 ppm was also 

observed from this spectrum. The same holds between H12 at δ 7.73 ppm and C8a at 

150.0 ppm (magenta).  

 
Figure 41: The gHMBC spectrum for 264. Correlations correspond to the annotation with similar colour. 
 

The UV-vis spectrum of 264 had a strong adsorption band with a maximum at 324 nm 

(ε = 13,088). The burgundy colour suggested that the central double bond of indigo 

remained intact, with all other indigo derivatives in which this bond had been converted 

to a single bond appearing as yellow compounds. Simple modelling studies (Spartan, 

Wavefunction) indicated that compound 264, while planar through the indigo moiety, 
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positioned the hydrogen atoms of the endocyclic methylene group above and below the 

plane of the molecule with the exocyclic methylene twisted out of the molecule plane. 

This modelling was performed by using Hartree Fock theory after optimisation at the 6-

31G level (Figure 42). 

 
Figure 42: Modelling for the position of the hydrogen atoms of the cyclic methylene and the exocyclic 
methylene in 264.  
 

The mother liquors from fraction I were combined with fraction II and then subjected to 

a silica gel column and elution with 7:3 CH2Cl2/pet. spirit gave the previously 

mentioned pyridodiindole 265 in 17% yield as yellow-orange crystals. The peak at m/z 

376 (M+) in the MS (EI) spectra was assigned to the molecular ion. This was consistent 

with a molecular formula of C25H16N2O2 which was a result of the addition of three 

propargyl units. Analysis of the 1H NMR indicated a peak at 9.62 ppm assigned to the 

aldehyde proton H1'''. A triplet at 5.42 ppm assigned to the H1'' proton of the allene 

moiety and a singlet at 2.33 ppm assigned to the terminal alkyne proton H3'. Analysis of 

the 1H NMR revealed a total of nine proton signals in the aromatic region. In 

comparison to the starting material indigo 98 (eight aromatic protons), the additional 

proton signal with a chemical shift of δ 7.65 ppm, deshielded by the extended 

conjugation of the pyrido ring and the aldehyde group, was assigned as H7. The gCOSY 

spectrum revealed that the H7 has no correlation with any other proton (Figure 43). The 

presence of a doublet at 4.79 ppm and an AB quartet between 5.15-5.56 ppm were 

assigned respectively to the terminal methylene of the allene group H3'' and the 

methylene of the propargyl unit H1'. This was confirmed by analysis of the gHSQC 
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spectrum where the presence of the two positively phased signals (shown in blue) 

correlate H3'' and H1' to their corresponding carbon (Figure 44).  

 
Figure 43: The gCOSY spectrum of pyridodiindole 265. 

 
Figure 44: The gHSQC spectrum of pyridodiindole 265 with the CH2 groups highlighted in blue. 
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The 13C NMR spectrum showed peaks at 90.4, 208.4 and 80.4 ppm, assigned 

sequentially to the three allene carbons from the C1''. A peak at 195.7 ppm was 

assigned to the carbonyl. 

From the HMBC spectrum (Figure 44), a key correlation between the H7 and C1''' at 

185.3 ppm of the aldehyde further supported the formation of cyclised structure with the 

formyl pendant (A, annotated in blue). Evidence for presence of C-allene was found 

from the strong signal for three bond correlation of H3'' and C1'' (B, annotated in 

brown). This was also confirmed by the two bonds correlation between allenic 

quaternary C2'' at 208.4 ppm and H1'' (C, annotated in brown). A three bond correlation 

between the H1'' and the carbonyl at 195.7 was further evidence to confirm the position 

of the allenic moiety (C, annotated in magenta). The other key evidence was the three 

bond correlation between the quaternary carbon of the aromatic ring C4a at 158.6 ppm 

and H3 at 7.36 ppm and H1 at 7.64 ppm (A, annotated in black). The C4a also showed a 

correlation through four bonds with H7 proton (A, black). A complementary three bond 

correlation was noted between the C13 of the carbonyl and H1 and H4 protons of the 

aromatic ring (A, annotated in magenta). The quaternary carbon C11a at 138.2 ppm 

showed a three bond correlation with the protons of the methylene H1' (D, annotated in 

red). Other significant correlations were observed between the H8 at 7.48 and the C7a at 

124.5 ppm (E, annotated in orange). Moreover the quaternary carbon was assigned as 

C7b at 137.7 ppm showed a three bond correlation with the H7 proton (E, annotated in 

green). All the arrows on the structure (F) are related to the similar colour of the 

annotations on spectrum (See Appendix 1 for expansions and detailed spectra)  
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Figure 45: The gHMBC spectrum of pyridodiindole 265. 

 
 

Slow recrystallisation of the 265 from a mixture of ethyl acetate and petroleum 

spirit yielded X-ray quality crystals, analysis of which confirmed the molecular 

structure together with the disposition of the allene group over the pyrido ring 

rather than pointing away from it (Figure 45).  
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Figure 46: The crystal structure of the pyridodiindole 265. 

 

There is one stereogenic carbon present at C12a, but in the absence of any chiral 

element during the reaction, the stereochemical outcome was a racemic mixture, 

as confirmed by optical rotation analysis of zero. The structure of 265 poses 

interesting mechanistic questions. The addition of three propargyl units is 

evidenced by the presence of the allene, the N-propargyl unit and the three carbon 

moiety encompassing the aldehyde, and C6 and C7. Interestingly, this three 

carbon unit is attached to the indigoyl N at the propargyl C2 carbon, and not 

through the terminal methylene or the terminal alkynic positions. 

The major product of the reaction was the benzoindolonaphthyridinone 266 

which was isolated by the fractional recrystallisation of the fraction III from 

CH2Cl2/petroleum spirit (1:9). This heterocycle was obtained in 31% yield as a 

yellow solid which was highly fluorescent in CH2Cl2 solution with a brilliant 

yellow colour under UV light (365 nm). The peak at m/z 376 (M+) in the MS (EI) 

spectra was assigned to the molecular ion. This was indicative for the addition of 

three propargyl units to the indigo core. The base peak at 337 is a loss of 39 Da from 

the molecular ion, which could correspond to the loss of a one propargyl unit. In 

addition the base peak at 298 Da corresponds to the loss of the second propargyl unit, 

suggesting that the structure possessed two propargylic pendants. Moreover from the 1H 
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NMR spectrum the signals at 2.14 ppm and 2.30 ppm were assigned to the 

terminal acetylenic protons, H3' and H3'' respectively. The doublets at 4.74 ppm 

was assigned to the methylene of O-propargyl (H1') and the other doublet at and 

5.49 ppm (J = 2.4 Hz) was identified as methylene of the N-propargyl (H1'') 

protons (Figure 47). The aromatic region of the 1H spectrum of the naphthyridine 

266 showed the total of ten protons, in comparison with the eight protons of the 

indigo core, the additional two aromatic protons were identified as two pairs of 

doublets at 8.01 and 7.33 ppm (J = 7.4 Hz) assigned to H6 and H7 respectively. 

The chemical shift for these two protons was suggesting the possibility of the 

incorporation of the third propargyl unit to a ring system in a manner which 

forms an aromatic ring current. This was also supported the fluorescent property 

of 266 suggesting the cyclised unit with extended conjugation (Scheme 66, blue). 

A doublet at 8.48 ppm was assigned to H9 deshielded due to the adjacent 

carbonyl group C8. Analysis of the 13C spectrum revealed a signal at 175.8 ppm 

which was assigned to the C8 carbon. The presence of this sole signal at the 

carbonyl region validated the presence of one carbonyl group in the structure. 

The gCOSY spectrum showed the correlation between H6 and H7 proton (Figure 

47). These two protons did not show any correlation with any other proton, which 

suggested a positioning between a quaternary carbon and a tertiary amine with an 

extended conjugation (Figure 47, annotated in blue). The analysis of the gHSQC 

spectrum confirmed the presence of two signals with positive phasing (blue) 

correlating the protons of the methylene groups of propargyl pendants (H1' and 

H1'') to their corresponding carbons C1' and C1'' at 63.7 and 44.0 ppm 

respectively (Figure 48, green). The other significant correlations observed from 
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gHSQC were between the H6 - C6 at 110.9 ppm and between H7 - C7 at 104.0 

ppm (Figure 48, magenta).  

 
Figure 47: The gCOSY spectrum for compound 266, correlation of the H6 and H7 annotated with blue 

pointers. 

 
Figure 48: The expanded gHSQC spectrum for compound 266. 
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Analysis of the HMBC spectrum indicated a strong three bonds correlation between H7 

and the quaternary carbon C13a at 139.1 ppm and a three bond correlation between H7 

and C8 (Figure 49, blue pointer). The other key three bond correlation was between the 

quaternary C13b at 118.9 ppm and H6. This was stronger in comparison to the signal 

from the four bond correlation between the quaternary C14a at 129.3 ppm and H6 

(Figure 49, orange pointer). The H1'' protons of the methylene showed three bond 

correlation with C12a at 143.5 ppm and C13a at 139.1 ppm (Figure 49, green pointer). 

The correlation of the H1' and C14 at 133.2 ppm (brown) and also between the H9 at 

8.71 ppm and C8 were also observed from the gHMBC spectrum (Figure 49, magenta). 

See the appendix 1 for 1H and 13C NMR spectra and detailed gCOSY, gHSQC and 

gHMBC NMR spectra.  

 
Figure 49: HMBC spectrum expansion for compound 266. 

 

Slow recrystallisation of compound 266 from a mixture of ethyl acetate and petroleum 

spirit yielded crystals from which an X-ray crystallographic structure could be solved. 
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Figure 50: The crystal structure of the pyridodiindole 266. 

 
The ring expansion of the indigo 5-membered ring into a 6-membered ring is new 

chemistry, with the three additional carbons of the indolo[1,2-h][1,7]naphthyridine 

parent structure being sourced from the additional propargyl unit. Retrosynthetically, 

sourcing the C6-C7-C7a moiety of 266 from a propargyl unit with the remaining 

skeleton from indigo is not intuitive and highlights the novelty of this new chemistry of 

indigo.  

The final product, isolated in very low yield (1%), was the yellow propargyl ester 

benzoindolonaphthyridinone 267. Analysis of the mass spectrum (EI+) indicated a peak 

at m/z 458 assigned to the M+H+ ion, and fragment ions at m/z 419 and m/z 375, 

corresponding to the loss of a HC≡C-CH2, and then CO2 fragments, respectively. 1H 

NMR spectrum showed three singlets at 2.14 (H3''), 2.30 (H3''') and 2.53 (H3') ppm, 

assigned to the three terminal acetylenic protons, with the corresponding propargyl 

methylene moieties assigned to the three pairs of doublets at 4.76 (H1''), 5.06 (H1'''), 

and 5.43 (H1'') ppm. Expansion of the aromatic region showed the presence of nine 

aromatic protons, of which the additional proton was assigned as the deshielded singlet 

H6 at 8.19 ppm due to the adjacent tertiary nitrogen. The comparison with the spectrum 

of 266 showed the spectrum for 267 lacked one aromatic proton, relative to the ten 

aromatic protons of 266. The 13C NMR spectrum revealed a peak at 174.5 ppm, 
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assigned to the C8 carbonyl and a peak at 167.1 ppm assigned as belonging to the 

propargyl ester carbonyl (C1'''). The ring-expanded structure was confirmed by single-

crystal X-ray analysis as the indigo-ring-expanded product 267 (Figure 51). 

  
Figure 51: The crystal structure of the pyridodiindole 267. 

 

3.1.1 Optimisation for the synthesis of N-propargyl indigo 263 and 

pyrazinodiindole 264 

In a separate reaction, under analogous conditions but with a very short reaction time 

(<1 min) and a stoichiometric quantity of propargyl bromide, compound 263 could be 

isolated in a much improved 93% yield (Scheme 67, Step A). The increased solubility in 

a range of organic solvents (e.g. THF, CH2Cl2) enabled this mono-propargylated 

scaffold to be used as a starting material for subsequent reactions, including cyclisation. 

This increased flexibility in the use of solvents allowed for a greater variation in 

reaction conditions to be used. Compound 264 could be synthesized in high yield (98%) 

by a 6-exo-dig hydroamination of 263 in DMF, in the presence of Cs2CO3 (Scheme 67, 

Step B). 

 
Scheme 67: Synthesis of 263 and subsequent conversion to 264. 
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3.2 Reaction of indigo and 1-bromo-2-butyne 

In order to understand the mechanism of the reaction of indigo and alkyne moieties and 

explore the effect of terminal substituents on the outcome of the reaction, indigo and 1-

bromo-2-butyne were reacted under the identical conditions to those described earlier. 

The reaction was monitored by TLC analysis, which demonstrated the complete 

consumption of indigo after 30 min from the addition of the alkyne. After the 

purification by silica gel column chromatography The N-alkylated derivative of indigo 

268 (62%) and the ring-expanded methylbenzonaphthyridine 269 (31%) were isolated 

(Scheme 68)  

Scheme 68: The reaction of 98 and 1-bromo-2-butyne and formation of 268 and 269 compounds. 
 

Compound 268 appeared as a fluffy solid with navy colour after recrystallisation from 

methanol/CH2Cl2. The peak at m/z 314 (M +) in the MS (EI+) spectra was assigned to 

the molecular ion, confirming the addition of one methylpropargyl unit. Analysis of the 

1H NMR data confirmed the absence of the terminal alkyne at 2.17 ppm in comparison 

with the 1H NMR spectrum of the 263. A triplet at 1.69 ppm with integration of three 

protons was assigned to H4'', the terminal methyl substituent. A doublet at 5.32 ppm 

was assigned to H1'' of the methylene and a sharp downfield singlet at 10.60 ppm was 

assigned to the free NH proton. From the 13C NMR two signals at 187.3 and 189.5 ppm 

were assigned to the carbonyl groups as C3 and C3' (Figure 52). 
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Figure 52: Structure of compound 268  

 

Methylbenzonaphthyridine 269 was obtained as dark red powder. The peak at m/z 366 

(M +) in the MS (EI+) spectra was assigned to the molecular ion, indicating the addition 

of two methyl-propargyl units to the original structure of indigo. Analysis of the 1H 

NMR spectrum showed two singlets with an integration of three protons. The first 

signal at 1.65 ppm was assigned to the H1'' and the second at 1.74 ppm was assigned to 

the terminal of the butyne H1' (Figure 53). A doublet at 4.67-5.01 ppm was assigned to 

the methylene of the butyne pendant. The aromatic region revealed the presence of nine 

protons, of which the additional proton was assigned as the deshielded H6 at 6.82 ppm 

due to the neighbouring effect of the tertiary amine. The gCOSY spectrum showed a 

correlation between H6 and a doublet at 5.44 ppm, which was assigned as H7 (Figure 

53). It was also observed both H6 and H7 moved more upfield compared to the 

chemical shift of the equivalent protons in compound 266 (8.01 and 7.33 ppm). This 

was suggested that the cyclised section lacked the conjugation previously observed with 

compound 266. This was attributed to the presence of the terminal methyl group, which 

prevents proton abstraction (See mechanistic discussion, Scheme 74). Analysis of the 

gHSQC spectrum revealed a signal with positive phasing (annotated in blue) assigned to 

the protons of the methylene and their correlation with the corresponding carbon (C1') 

at 44.0 ppm (Figure 54). 



 

  

96 Chapter 3: Cascade Reactions of Indigo and Propargylic Halides 

Figure 53: gCOSY spectrum for compound 269 and key correlation between H7and H6. 

 
Figure 54: The gHSQC spectrum for 270 illustrated the presence of one CH2 (red) and correlations of H6 

and H7 with their corresponding carbons (green). 
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Analysis of the 13C NMR spectrum confirmed the presence of two carbonyl groups as 

C14 and C8 (178.4 and 193.6 ppm respectively). Figure 55 illustrates the gHMBC 

spectrum for compound 269 which revealed a key correlation between H6 and the 

quaternary carbon C7a at 48.2 ppm through three bonds (green). Another important 

correlation was observed between C13a at 138.4 ppm and H7 (orange). A three bond 

correlation between C14 (178.4 ppm) and the aromatic proton H1 (7.71 ppm), as well as 

a signal assigned to the correlation between H9 (7.94 ppm) and C8 (193.6 ppm) were 

observed from the analysis of this spectrum (magenta).  

 
Figure 55: The gHSQC spectrum for 269, arrows on structure are representing the same colour pointers 

on the spectrum. 

 

Slow recrystallisation of compound 269 from a mixture of ethyl acetate and petroleum 

spirit yielded crystals from which an X-ray crystallographic structure could be solved 

(Figure 55, see Appendix 2 for X-ray crystallographic data). 
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Figure 56: Crystal structure for compound 269. 

 

3.3 Reaction of indigo and 3-chloro-1-phenyl-1-propyne 

To further explore the effect of a larger terminal substituent, indigo was reacted with 3-

chloro-1-phenyl-1-propyne under the identical reaction conditions as explained for 

propargylation reaction. The reaction mixture was stirred and heated at 85 °C under the 

static inert atmosphere for one hour, and then the reaction mixture was filtered hot in to 

an ice bath. Upon leaving to stand overnight, the colloidal lumps of the products sank to 

the bottom of the flask. The clear aqueous layer was decanted out and the remaining 

crude mixture was partitioned between water and CH2Cl2. After the extraction the 

organic layer was dried and concentrated under the vacuo. The remaining filtrate was 

subjected to a 10 cm plug of silica and celite (50:50 W/W) and eluted with a mixture 

CH2Cl2 and petroleum spirit (70:30) to afforded a fraction with dark amber colour 

(Fraction 1). The plug was eluted for the second round but this time with a mixture of 

CH2Cl2 and EtOAc (50:50) and afforded a fraction with dark purple colour (Fraction 2). 

Column chromatography of fraction 1 was resulted in the isolation of compound 270 

(27%) as an orange-yellow solid. Fraction 2 was also subjected to flash column 

chromatography which afforded 271 (35%) as a dark blue powder (Scheme 69). 
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Scheme 69: Reaction of indigo and 3-chloro-1-phenyl-1-propyne. 

 

The phenylazepino diindole 270 was assigned as a result of the addition one phenyl 

propargyl unit. Analysis of the EI+ mass spectrum revealed a peak at m/z 376 

corresponding to the molecular ion. Furthermore the 1H NMR spectrum revealed the 

presence of ten signals in the aromatic region with an integration of fourteen protons in 

comparison with the expected thirteen protons (eight from indigo core and five from the 

phenyl ring). The additional proton was assigned to the H6 at 6.90 ppm which is 

deshielded because of the extended conjugation and adjacent tertiary amine. The 

doublet at 8.72 ppm was assigned to an aromatic proton H9 moved further downfield 

due to the shielding effect of the phenyl ring (Ar') hanging over the top. The two 

doublets at 8.22 ppm and 8.09 ppm were assigned to H12 and H4 respectively. This 

suggested the presence of an extended resonance in this structure. A doublet at 8.03 

ppm was assigned to H1 (Figure 57).  

 
Figure 57: The expansion of the 1H NMR spectrum for the phenylazepino diindole 270. 
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The gCOSY spectrum showed that the H6 has no coupling with any other spin and 

confirmed the position of this proton between a heteroatom and a quaternary olefinic 

carbon (Figure 58). 

 
Figure 58: The gCOSY spectrum for 270. 

 

Analysis of the NOESY spectrum showed weak signals which were assigned to the 

correlation between the H6 and H4 and also correlation through the space between H9 

and one of the aromatic protons of the phenyl pendant HAr' (Figure 59). The gHSQC 

spectrum revealed that there is no signal with positive phasing indicating the structure 

has no methylene group. The attached proton test (APT) NMR spectrum showed the 

presence of twenty five carbons, of which fourteen peaks assigned to the methine 

signals and eleven negative signals for the quaternary carbons. A peak at 184.6 ppm was 

assigned to C14 of the carbonyl group. The 13C NMR spectrum revealed a shift for the 

quaternary carbon C7 at 159.30 ppm.  
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Figure 59: The NOESY spectrum for compound 270 and annotated correlations for H9 and HAr' as well 

as NOE between H4 and H6. 

 

The correlations in the gHMBC spectrum of H6 to carbon C8 at 135.7 ppm (Figure 60, 

green) and C13b at 121.8 ppm (Figure 60, orange) further supported the presence of a 

cyclised structure. The weaker coupling of H6 to carbon C8a at 137.8 ppm (Figure 60, 

blue) and C4 at 123.1 ppm (Figure 60, black) suggested a four-bond proton to carbon 

coupling distance. Evidence for the presence of the phenyl group was found through the 

strong three bonds correlation peaks of ArH2' and ArH6' to C8. The other 

complementary couplings between C8a and H12 (Figure 60, aqua) and C14 and H1 

(Figure 60, magenta) are illustrated on the spectrum.  
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Figure 60: The gHMBC spectrum for the phenylazepinodiindole 270. 

 

In the case of oxadiazocinodiindole 271, analysis of the sample with EI-MS showed a 

m/z 506 which was unexpected and was 16 units higher than the expected mass from the 

addition of the two phenylpropargyl units to the deprotonated indigo skeleton. This was 

likely to be the result of oxygen insertion. To ascertain the degree of alkylation 

molecular mass ESI-MS was employed with the same sample and a strong [M+H]+ peak 

at 507 was observed. Doping the sample with sodium acetate revealed a signal at 529 

[M+Na+]+. Replacing the MeOH solvent with MeOD confirmed that the structure has 

no exchangeable protons. The analysis of the HRMS (ESI) mass spectrum showed a 

signal at 507.5154 [M+H]+ which was confirmed the molecular formula as C34H22N2O3. 

Analysis of the 1H NMR spectrum showed an AB quartet (ABq) peak at 4.75-4.86 ppm 

with an integration of two protons which was assigned to the H9 methylene. A singlet at 

5.67 ppm was assigned to the H6 of the oxadiazocin ring system. The more downfield 

singlet at 6.72 ppm was assigned to the H1'' proton (Figure 59). 
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Figure 61: Expansion of the 1H NMR spectrum for 271 and the elucidated structure. 

 

The 13C NMR spectrum confirmed the presence of two peaks in the carbonyl region 

which were assigned to C15 at 180.9 ppm and C16 at 180.2 ppm confirming the 

carbonyl groups of indigo core remained unsubstituted. Analysis of the gCOSY 

spectrum revealed that the H9 has no correlation with any other proton. Therefore 

splitting of this signal to an AB quartet was attributed to a conformationally restricted 

ring system. It was also observed that the H6 and H1'' protons were not illustrating a 

correlation with any other protons, suggesting H6 to be an aliphatic proton, deshielded 

due to the neighbouring effects of the oxygen and tertiary amine. The other downfield 

singlet (H1'') was assigned as styrenic proton (Figure 62). Analysis of the gHSQC 

spectrum showed one signal with positive phasing (blue) and confirmed the presence of 

the H9 as protons of a methylene group. This showed the direct correlation of H9 and 

C9 at 61.2 ppm. From this spectrum, C6 at 56.9 ppm and C1'' at 134.5 ppm were 

assigned as corresponding carbons of H6 and H1'' respectively (Figure 63).  
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Figure 62: The gCOSY spectrum for the compound 271. 

 

 
Figure 63: The gHSQC spectrum for compound 271. 
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According to the rotating frame NOE (ROESY) spectrum, H6 proton correlates with 

H1'' through the space (Figure 64, red). This suggested the trans isomer for the 

benzylidene pendant. The other noteworthy ROESY correlation was observed between 

H6 and H4 proton of the aromatic ring of indigo core (Figure 64, blue). The correlation 

between the H1'' and H9 was also observed in this spectrum (Figure 64, green). 

 

Figure 64: The ROESY spectrum for oxadiazocinodiindole 271 and annotated correlations between H6 

and H4, H9 and H1'' and H6 and H1''. 

 
The gHMBC spectra showed a three bond correlation between the H9 and C1''. This 

was confirmed further by the correlation of H1'' and C9 (Figure 65, blue). The weaker 

signal was observed which was assigned to the correlation of H9 and C1' at 83.0 ppm 

through the five bonds (red). The other key correlation was noted between the H6 and 

quaternary 15b at 125.5 ppm which was stronger compare to the signal assigned to the 

four bond correlation of H6 and C15a at 133.7 ppm (green). The H6 proton showed 

another weak correlation with the aromatic quaternary Ar'C (orange). The other 
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noteworthy three bond correlations were observed between H1 at 7.76 ppm and C4a at 

148.2 ppm and H14 at 7.82 ppm and C10a at 149.4 ppm (brown). The strong correlation 

between H1 and the carbonyl group C16, and correlation between H14 and C15 of the 

other carbonyl indicated that the distance between the coupling proton and carbon 

nuclei was not further than three bonds (magenta). The three-bond correlation between 

C2' at 89.0 ppm and the ortho proton of the aromatic ring Ar'H was observed and illustrated 

in Figure 65 (black). 

 
Figure 65: The gHMBC spectrum of 271 and its structure with colour coordinated arrows corresponding 

to the colour of the pointers on the spectrum. 
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Long-range or non-standard HMBC correlations, nJC,H n>3: were observed between H9 and 

C1' (five bonds) and H6 and C15a (four bonds). This could arise from the relaxation delay 

which is a factor of molecular structure. It is commonly believed that HMBC is only useful 

to observe short-range correlations between two- or three bonds and observation of long-

range HMBC correlations are rather uncommon, without attenuation of the instrument 

tuning to observe such correlations, and depends to the shape of the scaffold and bond 

angles. There are a number of reports in which long-range HMBC correlations were 

observed and considered in characterisation of complex molecules.150, 151 For example, four-

bond correlations are noted in the structural elucidation of distamycin A,152 or five-bond 

HMBC correlations have been observed for quinones.153 The intensity of the HMBC signal 

is not necessarily dependant to the range of the correlation154 therefore discrimination of the 

normal and long-range HMBC signal is not feasible. It is necessary to supplement this 

HMBC spectrum with more exclusive and restricted experiment such as Heteronuclear 2-

Bond Correlation (H2BC) which correlates proton and carbon spins separated by two 

covalent bonds. Further information could be obtained from 1H-15N HMBC and inadequate 

NMR experiments.  

This ambiguity also emphasises the impact of X-ray crystallography analysis in structural 

elucidation of the products from these cascade reactions. Attempts to grow X-ray quality 

crystals from oxadiazocinodiindole 271 and phenylazepinodiindole 270 failed using 

various solvent systems and techniques. 

In another attempt, the above reaction was carried under slightly different conditions in 

which the reaction mixture was stirred and heated for one hour after the addition of the 

base, before phenylpropargyl chloride was injected into the reaction mixture. After 10 

min, TLC analysis of the reaction showed the complete consumption of the indigo. The 

reaction mixture was poured into an ice bath and extracted with EtOAc. The organic 

layer was collected and concentrated under vacuo. Fractional recrystallisation of the 
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filtrate resulted in the isolation of compound 271 in 62% yield with no indication of the 

formation of 270. 

 

3.4 Reaction of indigo and propargyl mesylate 

In order to investigate the effect of the leaving group on the outcome of the 

propargylation reaction, indigo was reacted with propargyl mesylate under the standard 

conditions. The reaction mixture turned to a dark brown solution after 3 min and TLC 

analysis showed the complete consumption of indigo. The reaction was quenched and 

extracted by the same protocol and fractional recrystallisation from dichloromethane 

and pet. spirit yielded 51% of 266. The mother liquor was concentrated and subjected to 

preparative plate chromatography which isolated 266 (8%) and 265 (28%) were 

isolated. In this attempt, compound 263 and 264 were present in the mixture in trace 

quantities as detected by TLC analysis but were not been isolated (Scheme 70). 

Scheme 70: Reaction of 98 and propargyl mesylate and formation of 265 and 266 with higher yields. 

 

3.5 Reaction of indigo and bromoacetonitrile 

To investigate the effect of the polarity of the triple bond on the outcome of the 

reaction, bromoacetonitrile was reacted with indigo under an identical reaction 

conditions as used for propargylation reaction. The contents of the flask were poured 

into ice-water after 5 minutes, and gravity filtered to remove the crushed molecular 

sieves. The products gradually accumulated on the wall and the bottom of the flask and 
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the clear liquid layer was decanted a day after. The remaining lumps and amorphous 

solid were dissolved in CH2Cl2 and partitioned in water. After extraction, the organic 

layer was dried and concentrated to afford shiny brown flakes. Attempts to separate the 

residue failed and 1H NMR analysis revealed that the brown residue was likely 

polymeric baseline material. In a separate attempt the reaction was quenched 5 sec after 

the injection of bromoacetonitrile which was resulted in formation of the navy coloured 

compound 273, with a higher Rf value in comparison to indigo (Scheme 71).  

 
Scheme 71: Reaction of indigo and bromoacetonitrile and formation of 273. 

 

The peak at m/z 301 (M+H+) in the MS (ESI) spectra was assigned to the molecular ion, 

with the peak at m/z 261 assigned to the loss of the acetonitrile unit. The 1H NMR 

spectrum was lacking the signal at 2.17 ppm of the alkynic proton. The presence of the 

methylene group of the other propargylic pendant was confirmed by the peak at 5.64 

ppm. Additionally there were eight aromatic proton signals, and a singlet at 10.54 ppm, 

which was assigned to the free NH group. The 13C NMR spectrum lacked a signal at 

72.5 ppm corresponding to the terminal carbon of the propargyl pendant. There were 

eighteen carbon signals present in this spectrum of which the pair at 188.7 and 190.0 

were assigned to the carbonyl groups of the structure.  

 

3.6 Mechanistic and reaction discussion 

The proposed mechanisms for the propargylation of indigo are summarised in Schemes 

77-79 and involve five key pathways. 

The pyrazinodiindole 264 is derived from the monopropargylated indigo 263 (blue, 
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Path I, Scheme 72) after N-deprotonation, followed by delocalisation which allows 

rotation around the central bond to the cisoid conformation. A subsequent 

intramolecular 6-exo-dig hydroamination of the propargyl C2 position yields 264. 

 
Scheme 72: Proposed mechanism for formation of 263 and 264. Structures that are coloured indicate 

common intermediates in the overall mechanism and are the same within Schemes 73 and 74. 

 

Path II starts with the identical key intermediate 263 (blue, Scheme 72) undergoing 

prototropic tautomerism (A) which subsequently N-alkylates (B) (Scheme 73). 

Deprotonation of the N-methylene generates a stabilised ylid, which allows cyclisation 

onto the carbonyl, generating an activated cyclic allene intermediate (C). Under 

standard conditions, an ‘alkyne nucleophile’ is insufficiently strong to attack an 

electrophilic carbonyl in the absence of a metal (e.g. Au, Ru) or an activating influence, 

however in this instance, the anion from the ylid serves as a formal negative charge, 

allowing this cyclisation to the 7-ring allene to occur. A comprehensive review on 

allenes from 1989155 reported the isolation of an eight-membered carbocyclic allene; 

however, the corresponding six-membered rings have been plausibly demonstrated as 

reactive intermediates.156 Further, with the seven-membered carbocyclic allene, 

isodesmic reaction energy calculations indicate157 an allene strain component of 13.5 - 

14.3 kcal/mol, consistent with its ready preparation and trapping. Heterocyclic allenes 

have also been isolated as small as eight-membered rings, with a mixed ‘P’ and ‘B’ 
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heteroatom ylid.158 Therefore the postulated cyclic allene intermediate C (Scheme 73) is 

reasonable. The cyclic allene could then undergo a ring-expansion reaction, to produce 

the benzo[b]indolo[1,2-h][1,7]naphthyridin-8-(13H)-one ring structure D (Scheme 73). 

The proposed driving force behind this ring-expansion is relief of ring strain of the 7-

membered allenic ring - therefore, there is a favourable energy balance between the 7-

membered allenic ring formation, and its subsequent role in providing a driving force 

for ring expansion. An additional crucial component of this step is the presence of an 

electrophile (E) - the major product arising from the reaction, 266, requires E = H+, 

whereas the minor product 267 requires E = CO2. This, probably generated on the basis 

of the results noted in Table 1, from carbonic acid decomposition, the acid in turn 

resulting ultimately from the Cs2CO3 base via bicarbonate (see below for a greater 

discussion).  

 
Scheme 73: Proposed mechanism for formation of 266 and 267  

 

Once the carboxylate unit is incorporated, a further propargyl moiety could be added via 

nucleophilic displacement to produce the ester substituent of 267. Subsequent 
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deprotonation, followed by base-induced aromatisation allows for O-propargylation in a 

cascade process, yielding the final products 266 (Path III) and 267 (Path IV) (Scheme 

73).  

The addition of a 1-carbon unit is novel and imposes the question as to the origin of this 

carbon, even though compound 267 is isolated in very low yield. Two possibilities arise 

and involve either the well-known degradation of DMF15 to produce a “C=O” fragment 

that could be incorporated, or it could arise from the generated bicarbonate anion that is 

present in the solution. Table 1 summarizes experiments to determine the source of the 

additional carbon atom in 267. Entry 1 is the standard reaction as previously outlined, 

whereas entry 2 describes replacing the DMF solvent with DMSO - this resulted in an 

increase from <1% to a 5% yield suggesting that DMF was not the source of the 

carboxylate of 267. Bubbling CO2 gas through a standard reaction (entry 3) resulted in a 

6% yield of 267, however, the most significant outcome from this reaction is the notably 

reduced yields of 263, 264, 265 and 266, and a dramatic increase in the production of 

non-characterisable baseline material. This suggests that the presence of significant 

quantities of electrophiles could be reacting with different indigo-based nucleophiles as 

they are being generated resulting in mixtures of products. Entry 4 describes the 

experiment replacing the Cs2CO3 with K3PO4 as base, to eliminate the presence of a 

bicarbonate source. However, the lack of solubility of this base in DMF is the likely 

reason for the outcome of mostly unreacted indigo being isolated from the reaction. 

 

Table 5: Experiments to probe the source of the ester moiety 267 

 Solvent Condition 263 264 265 266 267 BM% RI% 
1 DMF Cs2CO3, N2 11 21 17 31 1 11 - 
2 DMSO Cs2CO3, N2 - - 12 13 5 65 - 
3 DMF Cs2CO3, CO2 13 - 7 10 6 61 - 
4 DMF K3PO4, N2 21 - - - - - 60 
5 DMF Cs2CO3, Ar 10 15 14 28 1 * - 

* not isolated, BM = Baseline Material and RI = Recovered Indigo 
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Path V (Scheme 74) describes a possible mechanism to the allene 265 and diverges 

from the same intermediate B (red, Scheme 73). In this instance it is the iminium indigo 

moiety that activates the adjacent carbonyl, allowing sufficient electrophilicity to attract 

the relatively weak nucleophilic alkyne to undergo a cyclisation reaction, promoted by 

the initial attack of the other indigo nitrogen lone electron pair onto the propargyl C2 in 

a concerted process yielding the strained fused-aziridine E. Carbonate could then act as 

a nucleophile in a ring-opening of the aziridine and subsequent aromatisation of the 

central pyridinyl ring to give F. O-Propargylation of F could then afford intermediate 

G. The acidic proton in the CH2OH group α to the iminium ion in G may then be 

removed under the influence of base and further OH proton loss would yield the 

aldehyde moiety in the intermediate H. A Claisen rearrangement of the propargyloxy 

with the indolic C2-C3 bond could then give rise to product 265. 

 
Scheme 74: Proposed mechanism for formation of 265. 

 

In the case of the reaction of indigo and 4-bromo-2-butyne the mechanism path is 
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identical with the previously mentioned route in Scheme 72 up to the formation of 

intermediate D'. The presence of methyl group hinders the aromatisation of the ring and 

subsequently stops enolate formation. The iminium ion is then quenched by the 

abstraction of the acidic α-proton to furnish 269 (Scheme 75). 

 
Scheme 75: The proposed mechanism for the formation of 269.  

 
The reaction of indigo and 3-chloro-1-phenyl-propyne resulted in the formation of two 

novel structures. A tentative mechanism for the formation of 270 is illustrated in 

Scheme 76. This starts from deprotonation of the methylene of the phenyl propargyl 

pendant. Due to the presence of phenyl group and its electron donating nature, the 

electron-rich alkyne cyclises onto the carbonyl and forms intermediate C''. This 

intermediate rearranges to form D'' in order to relieve the ring strain of the 7-membered 

allene ring. The resulting stable enolate is then protonated upon workup, to give 270.  

 
Scheme 76: Proposed mechanism for the formation of 271 form the reaction of indigo and 

phenylpropargyl chloride. 

 

The presence of the hydroxy group was evidenced by the broad signal at 3282 cm-1 in 
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the IR spectrum. The extended conjugation of the azepine ring prevents tautomerisation 

and the enol is the preferred form. According to the geometrical and energetic DFT 

calculations the anti-aromatic azepine ring is planar and stable.159 Proof of the existence 

of 1H-azepine as a planar seven-membered ring has previously been reported based on 

the analysis of the 1H and 13C NMR spectroscopy, in which stable N-acetyl and N-

methansulfonyl-1H-azepines were synthesised and isolated as pale yellow solids.160 

Computer aided modelling of the 270, performed with the Wavefunction (Spartan TM) 

software by optimising the geometry of the molecule using Hartree-Fock theory and the 

6-31G level revealed that the azepino diindole unit is planar and the phenyl substituent 

positioned perpendicularly on the C8 carbon (Figure 66).  

 
Figure 66: The computer aided model for 270. 

 

The proposed mechanism for the synthesis of oxadiazocinodiindole 271 includes the 

generation of phenylpropargyl and aldehyde E''. There is no precedent report of this 

transformation and procedure of this oxidation is under investigation and requires 

further explanation.** Nucleophilic attack from the N-phenylpropargyl indigo generates 

the intermediate G''. Concerted addition to the alkynic carbon of the phenylpropargyl 

pendant forms H'' and subsequent protonation furnishes 271 (Scheme 77).  

Computer aided modelling of the 271 is illustrating the indigo core in a planar position 

with the eight-membered oxadiazocin ring in a boat-chair conformation. Calculation of 

                                                
** One option could be the addition of catalytic amount of water to the reaction mixture and monitor the 
yield for 271. 
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the bond angle was performed by using the Hartree-Fock theory with optimised 

geometry and the results are summarised in Figure 67.  

 

Scheme 77: Proposed mechanism for the generation of oxadiazocinodiindole 271 from the reaction of 

indigo and phenylpropargyl chloride.  

 

 

  Bond angle (°) 

Structure # α β γ γ θ 

 

271 127.4 124.4 112.3 115.5 126.4 

Figure 67: Computer aided modelling of structure 271 and the bond angles of the table for oxadiazocin 

ring bond angles. 
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The outcomes from these propargylation reactions are repeatable and preliminary 

investigations also indicate reliable scalability up to at least double quantities. Further, 

our mechanistic proposals for the formation of 265-267 all start from N,N'-

dipropargylated intermediates, rather than an intermediate that had cyclised initially 

from a N-monopropargylated molecule. In support of this proposal were the outcomes 

from an experiment where a DMF solution of 263 was dripped into a mixture of Cs2CO3 

and propargyl bromide in DMF over 3 mins before quenching after 2 mins. The result 

was formation 264 (<3%), 265 (11%), 266 (25%) and 267 (<1%) with complete 

consumption of the starting material. The poor return of 264 with respect to 265-267 

suggests that the second N-propargylation is a more competitive reaction than 

cyclisation, and lends support to our proposed dipropargylated compounds as 

intermediates. This was also confirmed when the propargyl moiety accompanied with a 

better leaving group such as mesylate, resulted in the formation of 265 (28%) and 266 

(59%) (Scheme 70). 

It is also relevant to compare the mechanistic outcomes of this propargylation reaction 

with the outcomes of the corresponding allylation reaction (Scheme 49). Although 

cyclisation onto the indigo carbonyl of the unsaturated moiety occurred in both 

instances, reaction onto the indigo C2 position to form a spiro compound only occurs in 

the case of the alkene. There was no evidence suggesting an equivalent mechanism 

pathway in the presence of the alkyne. Presumably, the linear alkyne is not able to 

approach the indigo C2 position whereas the ‘bent’ nature of the alkene makes this 

cyclisation reasonable. Further, a significant by-product of the allylation reaction 

(Scheme 40) was N-allylisatin, derived by oxidative cleavage of the central indigo 

double bond over prolonged reactions. The propargylation reaction went to completion 

much more rapidly, and as such, under the tested conditions, there was no N-
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propargylisatin 272 present, as evidenced by TLC analysis, of the reaction mixture 

against an authentic sample. 

A series of simple experiments were undertaken to ascertain whether the reactions are 

likely to proceed through nucleophilic mechanisms rather than through radical-based 

sequences. Previous studies have shown that radical reactions with indigo will proceed 

exceptionally slowly at room temperature and in 4 hours at 100 °C in the presence of 

oxygen and with irradiation.131 In contrast, we have repeated our propargylation 

reaction (as shown in Scheme 65) in the absence of oxygen and light (under argon) with 

these conditions realizing the same product outcome after 5 mins of reaction at 86 °C. 

Radical reactions are unlikely to proceed under these conditions, let alone to produce a 

total yield of 84% of products in 5 mins of reaction time. 

Colour is an important qualitative element in the structural elucidation of these 

polycyclic compounds. The disappearance of the blue and emergence of yellow appears 

to indicate the loss of H-bonding between the indigo carbonyl and the NH, along with 

loss of unsaturation in the indigo central bond and the presence of sp3 hybridised carbon 

atoms, e.g. heterocycles 265, 266 and 267. The mono-N-propargylated 263, with both 

structural elements still present, maintains the deep blue intensity whereas the cyclised 

structure 264, which still contains the central double bond but has lost the H-bonding, is 

a burgundy colour (Scheme 66). 

In summary, here we have presented a series of efficient optimised procedures for the 

synthesis of heterocycles from the reactions of indigo with propargyl halides. Further, it 

is demonstrated that the presence of terminal substituents not only affects the propensity 

for the propargylated indigos to undergo one-pot cascade reactions but also in several 

instances the outcome of these reactions.  
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4 Chapter 4: Further Derivatisation Reactions of Cascade Products 

 
Reactions of indigo 98 with allylic and propargylic systems resulted in the formation of 

a variety of compounds. Amongst these products, some have complex structures such as 

the spiroindoline-pyridoindolone 227, fused pyridoindolone 232, epoxyazepino diindole 

253, pyridodiindole 266 and indolonaphthyridine 267. A common product between the 

allylation and propargylation reaction was the variety of N-substituted indigos. To 

expand the scope of generating additional annulated complex systems, candidates of 

complex and simpler structures were selected to undergo further explorations to probe 

their synthetic utility. 

 

4.1 Ring-Closing Metathesis of the spiroindoline-pyridoindolone (227) 

The previously reported spiro heterocycle 227, with its pendant allyl substituents, 

provided an ideal substrate for a metathesis reaction. Therefore, treatment of 227 with 

Grubbs' 2nd generation catalyst at reflux in CH2Cl2 produced not the speculated 9-

membered ring 273, but rather the novel fused heterocycle 274 in 70% isolated yield 

(Scheme 78).  

 
Scheme 78: Reaction of the spiro heterocycle 227 with Grubbs' II ruthenium reagent 

 

The peak at m/z 354 in the MS (EI) spectrum was assigned to the molecular ion 

confirming that a metathesis had taken place with the elimination of an ethylene unit. 

Both compounds 273 and 274 have three methylene groups. The predicted pattern of 



 

  

120 Chapter 4: Further Derivatisation Reactions of Cascade Products 

splitting for these methylene groups in 273 consist of three aliphatic methylenes 

whereas pyrolizino-pyridoindolone 274 has two aliphatic and one terminal olefinic 

methylene. Analysis of 1H NMR revealed the presence of a multiplet at 4.93 ppm 

corresponding to the H2'a and 5.10 ppm corresponding to the H2'b. The multiplet at 

2.53-2.56 ppm was assigned to the H9a,b and triplet at 3.80 ppm and the multiplet at 

3.88 ppm were assigned to the H2a and H2b. From the gHSQC spectrum, the presence 

of the three positively phased signals (blue) corresponding to the carbons of these 

methylenes were assigned as C2 at 29.0 ppm, C9 at 49.4 ppm and C2' at 120.2 ppm 

(Figure 68). 

 

 
Figure 68: The gHSQC spectrum for 274 

 

The 13C NMR spectrum showed two signals at 197.9 ppm and 201.0 ppm which were 

assigned to the C17 and C8 respectively. These two signals confirmed the presence of 

two unsubstituted carbonyl groups which further confirmed the formation of 274. The 
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gHMBC spectrum showed a signal which correlated C8 and C17 to a multiplet between 

7.36-7.50 ppm. Two of the protons in this range were assigned to H7 and H16. A three-

bond correlation was observed between the C8 and H9 methylene. A strong signal for 

the protons of the H2 methylene and C8a was suggested that the distance between these 

two nuclei no further than three bonds. This suggested the formation of the five-

membered pyrolizine ring, further confirmed by the observed coupling between the H2 

and quaternary C17a at 71.8 ppm. The presence of nine aromatic protons in the 1H 

NMR spectrum and observed coupling between the C9 nuclei and H11 at 6.96 ppm and 

correlation of H10 and C8a was confirmed that the spiro six-membered ring is still 

intact and remained unchanged (Figure 69). 

 

 
Figure 69: gHMBC spectrum for 274 and the illustration for the key correlations. 

 

X-ray quality crystals were obtained by recrystallisation from a mixture of 

dichloromethane and petroleum spirit. The X-ray structure of compound 274, including 
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relative stereochemistry, is shown in Figure 70 (see Appendix 2 for X-ray 

crystallographic data).  

 
Figure 70 : X-ray crystal structure of the novel product 274. 

 

The 13C NMR spectrum of 274 showed only one set of peaks for the molecule 

indicating that only one pair of enantiomers was present, despite the presence of three 

stereogenic atoms. This is likely to arise from the spiro starting material being racemic, 

and the subsequent Claisen rearrangement being stereospecific. This structure was 

formed presumably after initial 9-membered ring production in a typical ring-closing 

metathesis reaction, followed by an intramolecular Claisen [3,3] rearrangement 

(Scheme 78).  

 
Scheme 79: Tentative mechanism for the RCM of spiroindoline 227 and formation of pyrolizino 

pyridoindolone 274. 
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Attempts to induce a similar Claisen rearrangement starting from the original spiro 

compound 227 by heating a DMF solution from 40 °C to 110 °C failed, with only 

decomposition being observed at the higher temperatures. This suggests that the Claisen 

rearrangement is being catalysed by the Ru present from the Grubbs' reagent. This is not 

unexpected as there are reports of ruthenium-based species catalysing Claisen 

rearrangements161 including a similar RCM/Claisen sequence in 2,2'-bis(allyloxy)-1,1'-

binaphthyls and O,O'-(but-2-en-1,4-diyl) binaphthols.162, 163 Additionally, examples of 

C2 to C3 Claisen rearrangement of 2-allyloxyindoles have been reported by related Pd 

catalysis.164 

 

4.2 Desymmetrisation of bis-indolic system from N,N'-dialloc indigo 

As explained and illustrated on page 73, Scheme 62, the reaction of the N,N'-dialloc 

indigo with Pd (0) resulted in formation of the N,N'-diallyl indigo which was readily 

converted to 248.  

Immediate protection of the amine groups after abstraction of the allylformates was 

envisaged as a plausible path in order to activate the central double bond of the bis-

indolic system to become engaged in nucleophilic addition. Considering the Pd-

catalysed C3-selective allylation of indoles165, 166 and decarboxylative rearrangement of 

N-alloc indoles,167 Et3B was supposed to be a suitable promoting agent to hinder the N-

allylation. In the case of the reaction of N,N'-dialloc indigo and Pd (0) in presence of 

Et3B, the reaction progressed much slower than the borane free decarboxylative 

rearrangements reaction. To circumvent this issue the reaction temperature was boosted 

to 50 °C and an extra 1% mol of the catalyst was added to the reaction mixture. These 

changes led to faster progression of the reaction and isolation of the bright yellow solid 

which was assigned as 2-allyl-2'-ethyl-[2,2'-biindoline]-3,3'-dione (Scheme 79). 
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Scheme 80: Decarboxylative rearrangement of 258 and formation of desymmetrised bis-indolic system. 

 

The signal at m/z 332 in MS (EI) was assigned as the molecular ion. This was not 

compatible with our speculated mass of m/z 344 corresponding to the sum of the indigo 

core unit and two allyl groups. The two singlets at 6.02 and 6.07 ppm with the 

integration of one proton for each were assigned to the two free amine groups, 

confirmed by the observation that these signals disappeared upon treating the sample 

with D2O. This was strong evidence that the core unit of indigo had no substituent on 

the nitrogens. The 1H NMR spectrum was also lacking of any deshielded methylene in 

the range of 4.5-5.5 ppm as it was common for the N or O-alkylated indigo. A triplet at 

0.52 ppm was assigned to the methyl group of the ethyl pendant. A pair of multiplets at 

1.34 and 1.37 ppm was assigned to the protons of the H1''' of the ethyl substituent. The 

other pair of downfield multiplets at 2.10 and 2.60 ppm was assigned to H1'' of the allyl 

unit. The two doublets at 4.80 and 4.89 ppm were assigned to H3''a and H3''b of the 

terminal alkene. The gCOSY spectrum showed a correlation between the protons of the 

methyl (H2''') and H1'''. The spectrum revealed that the H1''' protons have no other 

correlation and therefore the ethyl pendant has to be positioned on a quaternary carbon. 

The methylene of the allyl substituent showed a sole gCOSY correlation with the 

olefinic proton H2''. Considering the chemical shift for H1'' (2.10 – 2.60 ppm), it was 

concluded that the allylic pendant should be positioned on a quaternary carbon (Figure 

71). The gHSQC spectrum revealed three methylene groups (shown in blue) including 
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one terminal alkene group. The corresponding carbons to these methylene groups were 

assigned as C1''' (25.1 ppm), C1'' (36.7 ppm) and C3'' (119.3 ppm) (Figure 72).  

 Figure 71: gCOSY spectrum for compound 275. 
 

 
Figure 72: The gHSQC spectrum for biindoline 275 with the CH2 groups highlighted in blue. 
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The 13C NMR spectrum showed two peaks at 203.8 and 204.1 ppm which were 

assigned to C3' and C3 respectively. 

Key correlations from the gHMBC spectrum included the three bond correlation 

between the C3' carbonyl group and H1''. The same holds for C3 and H1''', confirming 

the distance between these two nuclei to be no further three bonds (Figure 73, blue). 

The strong correlation of the quaternary C2' at 71.9 ppm to H1''' and coupling between 

the H1'' and C2 at 72.7 ppm further confirmed the position of the ethyl and allyl 

pendants on indigo core (Figure 73, orange). A pair of downfield quaternary carbons at 

161.8 and 162.1 ppm were assigned to C7a and C7'a showed strong coupling with H6 

(7.47 ppm) and H6' (7.56 ppm) (Figure 73, magenta). The other noteworthy correlation 

was observed between C3 and H4 at 7.47 ppm (Figure 73, green).  

 
Figure 73: The gHSQC spectrum for biindoline 275. 

 

Scheme 81 illustrates the tentative mechanism of the formation of 275 from the 

decarboxylation of 279. The reaction began with the deallylation and decarboxylation of 
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the dialloc indigo and then the amine protected by the electrophilic Et3B. At this point 

formation of the imine N induced the central double bond for a nucleophilic attack on 

the allyl-Pd complex. Nucleophilic attack of the ethyl group to the other side of the 

central bond resulted in production of P. Protonation of the P during the workup 

furnished 275.  

 
Scheme 81: Proposed mechanism for the formation of 275 from catalytic decarboxylation of 259. 

 

4.3 Gold-catalysed cyclisation of mono N-propargylated indigo 

Direct nucleophilic addition of amines onto alkynes is only possible with activated i.e. 

electron-deficient alkenes or alkynes through the aza-Michael addition or conjugate 

addition (Figure 74a).168 In the case of compound 263, the electron donating effect of 

the lone pair of the amine deactivates the alkyne and hampers the direct nucleophilic 

addition (Figure 74b).  

 
Figure 74: Hydroamination of activated alkyne (a) and deactivated propargyl pendant of 263 due to the 

lone pairs of amine (b).  
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As discussed earlier (Chapter 3, Page 93), base catalysed cyclisation of N-propargyl 

indigo resulted in the formation of 264 in quantitative yield. In a separate attempt and in 

order to explore the effect of the metal catalysis on the outcome of the intramolecular 

hydroamination, compound 263 was reacted with gold (I). The reaction was carried in 

CH2Cl2 under the inert atmosphere at room temperature (Scheme 82).  

Scheme 82: Gold (I) catalysed intramolecular hydroamination of 263. 
 

The reaction was monitored by TLC analysis and quenched after 90 mins. At this point 

the starting material was fully consumed and there were two new spots evident by TLC 

analysis. The purple spot close to base line corresponded to 264 and the other dark blue 

spot was a new compound which was elucidated as 276. N-Formylindigo 276 was 

obtained in 32% as a dark navy solid. The peak at m/z 290 (M+) in the MS (EI) spectra 

was assigned to the molecular ion. This was 10 AMU less than the 263 molecular mass. 

Analysis of the 1H NMR spectrum showed the absence of the corresponding peak for 

the alkynic proton at 2.17 ppm. A sharp singlet at 9.98 ppm with the integration of one 

proton was assigned to H1'' proton of the formyl substituent. The aromatic region of the 

proton NMR revealed the presence of eight aromatic protons and the deshielded doublet 

at 8.51 ppm was assigned to the H7 proton. The downfield singlet at 10.67 ppm was 

assigned to the NH (Figure 75). The gCOSY spectrum revealed that the H1'' has no 

correlation with another proton. The gHSQC spectrum lacked any signal with positive 

phasing and confirmed that there is no methylene group present in the structure. The 13C 

NMR spectrum showed a peak at 185.8 ppm which was assigned to C1'' of the 
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aldehyde. There were two signals at 188.7 and 189.3 ppm assigned to the C3 and C3' 

carbonyls. 

 
Figure 75: The expansion of the 1H NMR for 276. 

 

A four bond correlation in the gHMBC spectrum of the quaternary C7'a at 147.0 ppm to 

proton H1'' of the aldehyde further supported the presence of the formyl pendant (Figure 

76, green). This quaternary carbon showed strong coupling with H4 and H7 protons of 

the aromatic ring (Figure 76, orange). The three bond correlation of the carbonyl groups 

and the aromatic protons H4 and H4 were also noted in the gHMBC spectrum (Figure 

76, magenta).  

 
Figure 76: The gHMBC spectrum for 276 and the key correlations with colour coded annotations. 
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The formation of 276 could be attributed to the oxidative cleavage of alkynyl amine in 

the presence of molecular oxygen. The precedent for a simultaneous oxidative cleavage 

of single and triple carbon–carbon bonds using oxygen was reported with aryl-

substituted alkynyl ethers using molecular oxygen.169 The proposed mechanism 

involves the formation of an allenic intermediate after the interaction of the gold (I) 

catalyst with the triple bond. Then, formation of the cyclic peroxide lead to the carbon-

carbon bond cleavage forming the formyl and ketene gold intermediate which 

subsequently expels carbon monoxide followed by hydrodeauration (Scheme 83).  

 

 

Scheme 83: Possible mechanism for the formation of biindolinylidene carbaldehyde 276. 
 

As the entire steps of this reaction were carried under the inert atmosphere with the aid 

of the Schlenk system, the origin of the molecular oxygen could be the dissolved 

oxygen in the solvent. Therefore, in a separate attempt under similar conditions, the 

reaction used degassed CH2Cl2. TLC analysis of the crude sample along with the 1H 

NMR and MS analysis showed the absence of 276 and the isolated yield for 264 

increased to 79%.  
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4.4 Click reaction with N-propargyl indigo 

The presence of the alkynic pendant in N-propargyl structure suggested the reaction of 

the triple bond with an azide under the standard “click reaction” conditions. Benzyl 

azide and 263 were reacted in the presence of copper acetate and ascorbic acid in tert-

butanol and water at room temperature. The mixture was stirred for 21 h, and analysis 

of the reaction showed no progress and the starting material was recovered. Then, the 

reaction mixture was heated up to 60 ºC but with still no sign of progress (Scheme 84).  

 
Scheme 84: Reaction of 263 and benzyl azide in tert-butanol and water mixture. 

 

The investigation towards the reason of this failure, suggested the lack of solubility of 

263 in the mixture of t-BuOH and water. Therefore a mixture of DMF and water was 

selected to repeat the reaction. The reaction carried at the room temperature and showed 

a slow progress after 5 h. In a separate attempt under the identical conditions, when the 

reaction was heated up to 40 ºC the reaction was completed in 10 min. Slow 

recrystallisation of the crude material resulted in isolation of 277 as dark navy solid 

(Scheme 85).  

 
Scheme 85: The formation of the benzyl triazole biindolinylidene 277 from 263. 
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A signal at m/z 433 MS (EI) assigned to the molecular ion confirmed the addition the 

benzyl azide to the propargyl indigo. Analysis of the 1H NMR spectrum showed a 

distinctive singlet at 7.63 ppm, assigned to H3'' which was characteristic evidence for 

formation of the triazole ring. A singlet at 5.62 ppm was assigned to the benzylic proton 

H1'''. The set of two multiplets from 7.23-7.33 ppm with the integration of 5 protons 

was assigned to the benzene ring of the benzyl azide. From the 13C NMR spectrum the 

two signals at 185.9 and 190.1 ppm respectively were assigned to C3 and C3′, 

confirming the presence of the two carbonyl groups.  

In another attempt glycosyl azide 278 was reacted with 263 under the similar reaction 

condition for the reaction of benzyl azide. The reaction was accomplished after 15 min 

and compound 279 was isolated with the yield of 83% as dark navy flakes from the 

slow recrystallisation of the crude material from CH2Cl2/MeOH (Scheme 86). 

  

Scheme 86: The Click reaction of 263 and glycosyl azide 279. 
 

The peak at m/z 673 MS (EI) was assigned to the molecular ion from the addition of the 

glycosyl azide to the 264. The 1H NMR spectrum showed a singlet at 7.59 ppm 

corresponding to the H3'' of the triazole ring. A singlet at 6.59 ppm was assigned to the 

H1''' of the glycosyl ring. There were two singlets at 2.02 and 2.18 ppm with the 

integration of six protons assigned to the methyl groups of the acetate groups. Four 

triplets at 4.32 – 4.76 ppm were assigned to the methines of the sugar ring. Analysis of 

the 13C NMR spectrum confirmed the presence of one set of enantiomers and signals at 
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184.7 and 188.3 ppm confirmed that the carbonyl groups of the indigo core were still 

intact. 
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5 Chapter 5: Biological Activity Testing 

 
5.1 General remarks  

While indigo is one of the oldest chemicals, there is no reported biological activity for 

this heterocycle, however its other isomer, indirubin, is well known for its anticancer 

activity back to the traditional Chinese medication.170 Indirubin acts as ATP-

competitive inhibitors of the enzyme CDK2.171-173  

A selection of compounds obtained from the indigo core  were assessed for in vitro anti-

plasmodial (Plasmodium falciparum; drug resistant K1 strain) activity,174 cell-based 

anti-cancer activity (cell lines: NCI-H187 small cell lung cancer, KB oral cavity cancer, 

and MCF-7 breast cancer),175 and in vitro anti-tubercular activity (Mycobacterium 

tuberculosis).  

5.2 Anti-cancer, anti-malaria and anti-tuberculosis testing  

5.2.1 Anti-cancer testing results  

The indigo derived compounds were tested against the three cell lines NCI-H187 (small 

cell lung cancer), KB (oral cavity cancer) and MCF-7 (breast cancer). All derivatives 

showed cell growth inhibition in micromolar concentrations of at least one cell line. The 

testing results are summarised in Table 6.  

 

Table 6: In vitro anticancer activity of candidate heterocycles derived from indigo 

E
ntry 

Compound # NCI-H187 
IC50 µg/mL (µM)♠ 

KB 
IC50 µg/mL (µM)♣ 

MCF-7  
IC50 µg/mL (µM)♦ 

1 

 

227 9.45 (24.7) -● - 
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E
ntry 

Compound # NCI-H187 
IC50 µg/mL (µM)♠ 

KB 
IC50 µg/mL (µM)♣ 

MCF-7  
IC50 µg/mL (µM)♦ 

2 

 

228 - - - 

3 

 

229 10.8 (25.5) 11.3 (26.7) - 

4 

 

232 3.35 (10.3) 9.71 (30.0) - 

5 

 

233 - - - 

6 

 

248 13.1 (35.3) 15.0 (40.6) 5.79 (15.6) 

7 

 

249 - 24.9 (62.3) 34.7 (93.7) 

8 

 

274 - - - 

9 

 

237 5.45 (29.1) - - 

10 

 

238 3.23 (16.1) 22.4 (96.4) - 
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11 

 

239 4.83 (24.0) - - 

12 

 

240 - - - 

13 

 

263 4.79 (15.9) 8.95 (29.8) 16.49 (43.8) 

14 

 

264 1.88 (6.24) 1.31 (4.36) - 

15 

 

265 4.79 (12.7) 7.81 (20.7) 12.51 (33.2) 

16 

 

266 17.3 (46.0) 8.44 (22.34) 35.22 (93.7) 

17 

 

269 16.7 (45.6) 9.25 (25.3) 3.01 (8.21) 

● - not active up to 50 µg/mL. 

♠ The IC50 values of the positive controls ellipticine and doxorubicin are 1.47 µg/mL and 0.077 

µg/mL respectively. 

♣ The IC50 values of the positive controls ellipticine and doxorubicin are 0.737 µg/mL and 0.504 

µg/mL respectively. 

♦ The IC50 values of the positive controls tamoxifen and doxorubicin are 9.47 µg/mL and 8.57 µg/mL 

respectively. 

E
ntry 

Compound # NCI-H187 
IC50 µg/mL (µM)♠ 

KB 
IC50 µg/mL (µM)♣ 

MCF-7  
IC50 µg/mL (µM)♦ 
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Modest cytotoxicity against all three cancer cell lines tested was seen with the 

hydroxyazepino diindole 248 (IC50 5.79-15.6 µg/mL, 15.6-40.6 µM). Similarly 232 

showed some activity against the small cell lung and oral cavity cancer cell lines (IC50 

3.35 and 9.71 µg/mL, 10.3 and 30.0 µM respectively), but not against the more 

refractory MCF-7 breast cancer cell line.164 IC50 values of 9.45 and 10.08 µg/mL were 

obtained against NCI-H187 lung cancer for allylic and crotyl spiroindoline-

pyridoindoles 227 and 229 (Entries 1 and 3) while in the case of 228 the presence of 

methyl substituent at C2 position of the allyl pendant was not tolerated and did not show 

any activity. Compounds containing a spiro-oxindole core were reported as potent small 

molecules inhibitor of MDM2 protein which is responsible for tumour regression.176, 177 

As an example MI-17 was found to be active against the LNCaP prostate cancer cell 

line in a cell growth inhibition assay with IC50 = 830 nM (Figure 77).178 Recently a 

modified MDM2 inhibitor MI-888 had a Ki value of 0.44 nM with excellent oral 

bioavailability as highly potent and selective tumour cell growth suppressor (Figure 

73).179 Comparison of these results with the observed biological activity of the indigo 

derived spiro indoles is not convenient due to the absence of in-vivo results for 

compound 227-229. However this emphasis the necessity of structure-activity 

relationship (SAR) studies on spiroindolinepyridoindoles derivatives. 

 

Figure 77: Two examples of MDM2 inhibitors, MI-17 as a potent candidate against LNCaP prostate 

cancer cell lines (left) and MI-888 a modified version with high tumour cell apoptosis activity  
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Patchy cytotoxicity was seen with the N-substituted isatins 237, 238, and 239. 

Compounds of this general type, but incorporating N-arylmethyl as well as 5,7-dibromo 

substituents, have given rise to potent anti-cancer compounds with activity probably 

being mediated, at least in some cases, via microtubule destabilisation and inhibition of 

tubulin polymerisation.180-185  

Compounds 263-266 and 269 (Entries 13-17) showed notable activity against the KB-

oral cavity cell lines. In particular, pyrazinodiindole 264 was equipotent with the 

positive control ellipticine (Figure 78). 

 
Figure 78: The structure 264 and ellipticine as a positive control for NCI-H187 lung cancer cell line test 

 

The IC50 value for compound 263 against NCI-H187 lung cancer, in comparison with 

N-propargyl indirubin (inactive),186 showed a significant increase to 4.79 µg/mL (Table 

6, Entry 11). 

Cytotoxicity174, 180, 181 studies were particularly interesting for 264 and 265, with the 

latter being noncytotoxic to normal mammalian cells but the former being toxic to these 

cells. The other noncytotoxic compound was 269 which showed a selective activity 

against MCF-7 cell lines (Table 7).  

 

Table 7: Cytotoxicity of compound 264-65 and 269 to normal mammalian cells 

Entry Compound Cytotoxicity vero cell 
IC50 µg/mL (µM) 

15 264 - 
16 265 16.4 (43.6) 
17 269 - 
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The core unit of compound 265 (Figure 75, highlighted in red) is analogous to the 

sponge-derived bis-indole alkaloid fascaplysin. The naphthyridine based heterocycles 

266-267 and 269 are also bearing the core unit of homofascaplysin B (Figure 79, 

highlighted in orange). 

 
Figure 79: The similarity of the core skeleton of 265 and fascaplysin and comparison of 266 and 269 

structure with homofascaplysin 

 

Fascaplysin showed selective cyclin-dependent kinase-4.187 It had also demonstrated 

antimicrobial activity against the growth of Staphylococcus aureus, Escherichia coli, 

Candida albicans and Saccharomyces cerevisiae.188 Fascaplysin exhibited anti-

proliferation against cervical cancer HeLa cells.189 Fascaplysins have not been 

administrated as an anti-cancer drug as its flat structure makes it a DNA intercalator 

with high toxicity. Both 265 and 269 showed that the slight distortion of this planarity 

results in significant change and makes these compounds noncytotoxic.  

5.2.2 Anti-malaria and anti-tuberculosis testing results  

Promising anti-plasmodial activity was seen with the spirocyclic compound 227 (IC50 

2.65 µg/mL, 6.25 µM) and with the compound 232 in which the allylic substituents are 

effectively merged (minus the ether oxygen) and embedded in the 7-membered ring 
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(IC50 3.06 µg/mL, 9.44 µM). While the introduction of methyl substituents in the allylic 

moieties (228 and 233) was detrimental to this activity, other possibilities exist for 

substituent variation at other sites, for example in the aromatic rings and at the carbonyl 

group, for future SAR studies. In addition, with compounds in the non-spirocyclic (248 

and 249) good anti-plasmodial activity was also seen, with 248 the most potent (IC50 

1.94 µg/mL, 5.20 µM) of the compounds tested here. 

Additionally, 232 exhibited some anti-tubercular activity (MIC 12.5 µg/mL, 38.6 µM), 

providing a basis for further structural novel lead development of anti-TB compounds. 

The need for such compounds is a pressing one with the development of major 

mycobacterial resistance.180 

Table 8: The IC50 values of the indirubin derivatives, tested against tuberculosis (microbacterium 

tuberculosis, H37Ra strain) and malaria (plasmodium falciparum, K1 strain) 

E
ntry 

Compound # TB (tuberculosis, 
H37Ra strain)  

IC50 µg/mL (µM) 

Plasmodium falciparum 
(malaria, K1 Strain) 

IC50 µg/mL (µM) 

1 

 

227 50.0 (131) 2.65 (6.25) 

2 

 

228 - - 

3 

 

229 - - 

4 

 

232 12.5 (38.6) 3.06 (9.44) 



 

  

141 Chapter 5: Biological Activity Testing 

5 

 

233 - - 

6 

 

248 - 1.94 (5.20) 

7 

 

249 - 2.97 (8.31) 

8 

 

274 - - 

9 

 

237 nt nt 

10 

 

238 50 (248) - 

11 

 

239 nt - 

12 

 

240 nt nt 

E
ntry 

Compound # TB (tuberculosis, 
H37Ra strain)  

IC50 µg/mL (µM) 

Plasmodium falciparum 
(malaria, K1 Strain) 

IC50 µg/mL (µM) 



 

  

142 Chapter 5: Biological Activity Testing 

E
ntry 

Compound # TB (tuberculosis, 
H37Ra strain)  

IC50 µg/mL (µM) 

Plasmodium falciparum 
(malaria, K1 Strain) 

IC50 µg/mL (µM) 

13 

 

263 - 0.33 (1.1) 

14 

 

264 - 0.26 (0.85) 

15 

 

265 - 3.34 (8.9) 

16 

 

266 - 3.75 (9.9) 

17 

 

269 - 2.5 (6.83) 

The IC50 values of the positive controls rifampicin and streptomycin are 0.0250 µg/mL and 0.625 µg/mL 

respectively 

The IC50 values of the positive controls dihydroartemisinine and mefloquine are 0.751 µg/mL and 11.5 

µg/mL respectively 

 

In order to further assess selective cytotoxicity, the toxicity of 248 towards Vero cells175 

was attempted but the autofluorescence of 248 precluded a result being obtained. 

Compounds 227, 232, 248, 249, 263-266 and 269 constitute notable antiplasmodial181 

activity against a drug-resistant strain in the micromolar range, sufficient for all to be 

considered lead compounds for further development with potentially new modes of 

action. 
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Clearly, significant medicinal chemistry studies would need to be undertaken to 

decrease the toxicity to normal mammalian cells and increase the required selectivity. 

However, as a random screening process, all these compounds showed activity 

confirming that they could be considered as new lead compounds for a variety of 

targets. 
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6 Chapter 6: Conclusions and Future Outlook 

 

The search for diversity in new heterocyclic chemical space is increasingly important in 

areas such as medicinal chemistry and nanotechnology, where novel heterocyclic 

starting points are urgently required. The newly established cascade chemistry of indigo 

provides a fertile ground for the discovery of such heterocycles, not readily available by 

other means and key to this is the ability to produce novel heterocyclic structures in 

one-pot in reasonable yield.  

6.1 The allylation reactions of indigo 

6.1.1 Selective synthesis of spiro and fused seven-membered ring products 

We report here the optimisation of the synthesis of two heterocycles, the spiro 

compound 227 (65%) and the fused 7-membered ring product 232 (72%) - both these 

heterocycles are synthesised in one-pot from a cheap and readily available starting 

material and represent an exceptionally efficient synthesis of novel polycyclic 

compounds. Further, we report for the first time the synthesis of derivatives of these 

heterocycles, including those using the sterically hindered allyl reagents with terminal 

methyl substituents. The position of the substituents on the allylic bromides appeared to 

play a role in these syntheses (Scheme 87). When the allylic bromide with no terminal 

substituent reacted with indigo the major product was the formation of the seven-

membered fused ring systems (232-233) whereas the presence of any terminal 

substituent resulted in formation of the spiro system (227-231). The reaction of N-

methyl indigo with allyl bromide and crotyl bromide resulted in the formation of the 

seven membered and spiro structures respectively, confirming the observed trend 

further more. 
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Scheme 87: Controlled allylation of indigo based on the position of substituents on the allylic system 

 

Anti-cancer testing of these compounds revealed inhibitory activity of the 

spiroindoline–pyridoindolone 227 and 229 with IC50 values of 9.45 µg/mL and 10.8 

µg/mL against the cell line NCI-H187. Promising in vitro anti-plasmodial activity was 

indicated with a number of the spiro, indoloazepinoindol-17-one while the in vitro anti-

TB activity of one indoloazepinoindol-17-one compound, 232, was also of interest. 

Enhancement of the synthetic scope of the tandem RCM-Claisen chemistry has been 

established with the production of the new heterocyclic system 274 from the spiro 

compound 227. Further application of this tandem methodology offers significant 

potential in heterocyclic synthesis. 

 

6.1.2 Synthesis of hydroxylated azepino-diindole derivatives  

The allylation reaction also provides access to new hydroxylated heterocyclic 

derivatives of the azepinodiindolo type. These intensely red compounds (248-250) can 

be synthesised in one-pot in yields of up to 51% and are presumably also intermediates 
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in the synthesis the indoloazepinoindol-17-ones. The hydroxy azepino indole 248 

inhibited the growth for cell line MCF-7 with an IC50 value of 5.79 µg/mL. This 

compound showed a promising activity against malaria (Plasmodium falciparum, K1 

Strain) with IC50 value of 1.94 µg/mL. One of the more interesting outcomes is the first 

synthesis of the bridged compound 253, with a heterocyclic skeleton not likely to be 

readily accessible by other means. As with all these reactions, the synthesis of 253 is 

repeatable, and given the reliability of outcome and complexity of structure, a 26% 

yield is a reasonable achievement.  

6.1.3 Alternative pathway for the synthesis of hydroxyazepino diindolones  

In order to obtain anti-malaria agents 248-253 in higher yields the future exploration 

may be to alter the synthesis procedure from direct reaction of indigo with allylic 

bromides in 1 hour time reaction to an alternative pathway of starting from N,N'-dialloc 

derivatives of indigo. This could be achieved by preparing the range of N,N'-dialloc 

derivatives 259' of indigo and subsequent catalytic decarboxylation (Scheme 88). The 

procedure resulted in quantitative production of 248 form N,N'-dialloc indigo 259 (See 

Chapter 2 pages 70-71). 

 

Scheme 88: The proposed synthesis of the hydroxyazepino diindolones via catalytic decarboxylation of 

N,N'-dialloc derivatives of indigo. 
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6.1.4 Desymmetrisation of the bis-indole system 

Reaction of N,N'-dialloc indigo and its catalytic decarboxylation in the presence of Et3B 

resulted in formation of 275 which revealed the possibility of desymmetrisation of the 

bis-indolic system of indigo. To expand of the scope of this chemistry application of the 

range of alloc systems and alternate boranes (eg. allyl 9-BBN) to transfer other groups 

in place of the ethyl could be of interest for future research (Scheme 89).  

 
Scheme 89: The possibibities to expand the scope of the catalytic decarboxyaltion of N,N'-dialloc indigo. 
 

The cascade reactions of indigo with allylic bromides resulted in formation of novel 

derivatives of indigo and seven types of fused heterocycles (Figure 80). This was a solid 

proof to show the potential of the application of indigo as an abundant and cheap canvas 

in the production of diverse and complex heterocycles. However the chemistry and 

reactivity of this compound still remains widely unexplored. 
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Figure 80: The range of derivatives and fused heterocycles arising from cascade reactions of indigo with 

allylic bromides. 

 

6.2 The propargylation reaction of indigo 

6.2.1 Synthesis of pyridodiindole and benzoindolonaphthyridinone derivatives 

The heterocycle 265 is an analogue of the marine natural product fascaplysin, initially 

isolated from the sponge Fascaplysinopsis reticulata and noted for its ATP-competitive 

inhibitor of Cdk4/D1 (IC50 = 0.35 µM)23,190 activity. As it described earlier (Chapter 5, 

page 131) compound 265 showed a modest activity against NCH-H187, KB and MCF-7 

cell lines. In contrast with fascaplysin, 265 was found as noncytotoxic. The heterocycles 

266-267 and 269 represent the naphthyridine core of the B-ring homolog of fascaplysin. 

The reaction of indigo and propargyl mesylate yielded 266 in 59% in a one-pot reaction. 
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This heterocycle showed IC50 value of 8.44 µg/mL against KB oral cancer cell lines. 

There have been reported syntheses of these natural products including the silver 

catalysed cascade synthesis of their parent compound and analogs, with this approach 

involving the initial intermolecular reaction of two components of similar molecular 

complexity, however, this necessitated the prior synthesis of these two components.191 

Fascaplysin has also been synthesised starting from 4-(1H-indol-1-yl)butanoic acid in a 

2 step synthesis in a best yield of 42%.192 Facile synthesis of the benzoindolo[1,2-

h][1,7]naphthyridine (fascaplysin) heterocyclic skeleton from indigo in the presence of 

propargylic systems and base provides direct access to this skeleton from exceptionally 

cheap starting materials and reagents, and provides a convenient access to this system 

for further elaboration in structure-activity studies. The noncytotoxic 

methylbenzoindolonaphthyridinedione 267 inhibited the cell line MCF-7 with an IC50 

value of 3.94 µg/mL.  

Considering these results, the SAR studies are desirable for future research to identify 

the suitable naphthyridine derivatives with distorted planarity. It is also necessary to 

optimise the yield and selectivity of the reaction. This could be obtained by reaction of 

N-substituted or N-Boc protected indigo and propargylic systems (Scheme 90). 

 

 
Scheme 90: The proposed method to improve the yield and selectivity of the propargylation cascade 

reactions in production of naphthyridine based heterocycles. 
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6.2.2 Synthesis of N-propargyl indigo and pyrazinodiindole  

In addition to the heterocycles 265-267, the reaction of indigo with propargyl bromide 

in the presence of base afforded two other derivatives as N-propargyl indigo 263 (11%) 

and pyrazinodiindole 264 (21%). Further elaboration by short time (5 sec) reaction of 

indigo and propargyl bromide resulted in isolation of 263 (93%). The subsequent base 

catalysed hydroamination of 263 afforded the pyrazinodiindole 264 quantitatively. 

These two compound exhibited antiplasmodial IC50 0.33 µg/mL, 1.1 µM and IC50 0.256 

µg/mL, 0.85 µM values respectively. The click reaction of 263 and glycosyl azide 278 

resulted in formation of the 279 in 83% yields. This reaction in particular suggests the 

possibility of mounting these highly colourful and fluorescent heterocycles on peptide 

and sugars for live cell imaging applications. 

 

6.2.3 Suggested application of N-propargyl indigo in three component coupling 

reactions with aldehyde and amine 

The catalytic coupling of alkyne, aldehyde and amine via C-H activation (A3 

coupling)193 was introduced as an alternative procedure for the synthesis of 

propargylamines instead of the moisture sensitive nucleophilic attack of Grignard194 or 

lithium acetylides195 on imines. N-Propargylindigo could be used in order to produce a 

variety of propargylamine derivatives of indigo 288-9 by the reaction of amines and 

aldehyde in presence of Au(I ), Au(III) or Cu(I) salts. This proposed procedure could be 

involved with the protection of the free amine group of the 263 prior to the coupling 

reaction (Scheme 91).  
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Scheme 91: Proposed procedure for production of propargylamine derivatives of indigo 288-289. 

 

Deprotonation of the 289 and subsequent isomerisation could provide a possibility of 

base or metal catalysed hydroamination of the amine group of indigo core and the 

alkyne unit of the propargylamine pendant. This could be implied in generation of 

pyrazinodiindole derivatives, such as the exocyclic ethylene amine 291 (Scheme 92).  

 

Scheme 92: The proposed base or metal catalysed hydroamination of 289. 
 

6.2.4 Formation of phenylazepino diindole and oxadiazocino diindole systems 

from the reaction of indigo and phenylpropargyl chloride 

Formation of oxadiazocino diindole 271 was another interesting outcome from the 

cascade reactions of indigo with propargylic systems. This compound was isolated as a 

dark navy solid in 35%. The other heterocycle isolated from this reaction mixture was 
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the phenylazepino diindole 270 as an orange yellow solid in 27%. The optimised 

condition by extending the time for generation of the indigo anion, resulted in the 

isolation of 271 in 69%. The structural elucidation for these two heterocycles relies on 

IR, HRMS and extensive 2D NMR spectroscopy. However attempts for growing 

crystals suitable for X-ray crystallography failed. This could be done in the future by 

trying different solvent systems.  

Figure 81 illustrates the various product achieved from propargylation reactions of 

indigo or manipulation of the propargylation products with different chemical means. 

 
Figure 81: The derivatives and fused heterocycles from cascade reactions of indigo with propargylic 

halides and their subsequent reactions. 
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6.3 Suggestions to target the carbonyl of indigo 

The nucleophilic cascade reactions of indigo revealed a broad scope in production of 

complex and annulated structures from this functionalised starting material. The 

electrophilic sites of indigo i.e. carbonyl groups are less explored in comparison with 

the nucleophilic sites. Generation of redox complexes by the application of N,N'-

diaryldiimines (Nindigo)123 is one of the few examples in which carbonyls of indigo 

were converted into imines.  

6.3.1 Wittig olefination 

Wittig olefination†† is one of the plausible procedures to generate methylene site(s). The 

major drawback with this olefination is the basicity of the Wittig reaction which could 

result in the generation of the dianion 293 and recovery of the starting material during 

the work up. 

 

Scheme 93: The Wittig olefination of indigo and expected outcomes. 
 

6.3.2 Methylene indigo from the reaction of 98 and MeMgBr with subsequent 

dehydration 

An alternative procedure could be the treatment of indigo 98 with methyl Grignard and 

dehydration of the produced 3-hydroxy-3-methyl indigo 178 to afford 3-methylene 

indigo 292. The proposed pathway starts with the deprotonation of indigo by the 
                                                
†† The procedure was proposed by Mr. Nicholas M. Butler and he is currently investigating this chemistry 
as part of his Honours and subsequent PhD project. 
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Grignard reagent and results in the dianion 293 which then would lead to the 

intermediate 294 by resonance. Oxide anion could be stabilised by the cationic effect of 

the BrMg+ ion and blocks the site from nucleophilic attack. This will force nucleophilic 

addition to occur on the opposite side and result is the selective formation of the tertiary 

alcohol 178. The dehydration of the alcohol will produce the 3-methyleneindigo 292 

(Scheme 94). This exocyclic methylene site would be susceptible for further 

elaborations such as 1,6-conjugate addition. 

 

Scheme 94: Proposed pathway for the synthesis of the 3-methylene indigo 292 from the reaction of 

indigo and methyl Grignard. 

 

6.4 Indigo and its derivatives as processable conjugated polymers 

Conjugated polymers are capable of unique physical properties such as high 

conductivity.196 Recently bay-annulated197‡‡ indigo 296 polymers were reported as 

electron receptors (Figure 82).198 

 

Figure 82: Thiophene Bay-Annulated Indigo (TBIT) as an electron receptor.  

                                                
‡‡ A bay region occurs in a complex ring structure when an angular fused benzene ring is adjacent to an 
aromatic ring. 
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The indigo structure with, an extended conjugation and small HOMO-LUMO gap, 

suggests further exploration in this field. As an example, synthesis of polymeric indigo 

could be achieved by the formation of Tyrian purple from 6-bromoindole, then through 

the Ullmann coupling199 to afford the polymeric indigo 297 (Scheme 95).  

 

Scheme 95: Proposed procedure for the synthesis of polymeric indigo 297. 
 

The future research in this area could be involved with the synthesis of the various 

derivatives of bay-annulated indigo and mounting these derivatives on an amino acid 

backbone. Photophysical analysis and conductivity evaluation will afford information to 

narrow the domain of investigation. 

 

6.5 Conclusion 

The reaction of indigo with allylic and propargylic systems resulted in the formation of 

complex heterocycles in one-pot synthesis. This is new science for the indigo moiety 

and represents an exciting untapped area of heterocyclic chemistry. Our proposed 

mechanisms (Schemes 49-52 and 72-77) reveal that at different stages of the cascade 

reaction, the reactivity of different sites on the indigo moiety changes, and additionally, 

different types of reactivity can occur at different times, including sites acting as 

nucleophiles or electrophiles, with bond breakage leading to ring expansion and 

dehydration (Figure 83). A key element to the reactivity is the ability of the indigo 

heterocycle to tautomerise under different circumstances (e.g. upon generation of the N-
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centered anion with base) to shift reactivity to a different site. This constantly changing 

reactivity leads to the variety of outcomes as demonstrated. Further, this range of 

different chemistry all occurs in a tight cluster in the centre of the indigo structure and 

this combination of properties is the key to the variety of unusual heterocycles that 

arises. Further, the unexpected outcomes of this initial study not only shows us that 

there is highly unusual and significant chemistry of indigo, but that there is much yet to 

be explored in this area. 

 
Figure 83: Graphical representation of the changing reactivity of the indigo skeleton with sites of 

nucleophilicity, electrophilicity, dehydration and bond breakage illustrated. The degree of reactivity at 

each of these points changes as the molecule(s) progress through the cascade reaction.  
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7 Chapter 7: Experimental 

 
7.1 Synthesis  

7.1.1 General procedure 

7.1.1.1 Reagents and solvents 

Anhydrous DMF and DMSO were purchased and used without further purification. 

CH2Cl2 for dry reactions were obtained from a solvent purification system or 

alternatively HPLC grade CH2Cl2 was dried over the activated molecular sieves (4 Å) 

and kept under the N2 atmosphere. HPLC grade CH2Cl2 was used for extractions and 

column chromatography, while other solvents were purchased reagent grade and used 

without further purification unless otherwise stated. Indigo (dye content 95%) was used 

without further purification. Petroleum spirit (pet. spirit) had a bp range of 40−60 °C. 

Water for extractions and work-up was obtained from a Millipore purification system. 

Reactions were carried out under nitrogen which was dried by passing through a 20 cm 

tube filled with CaCl2 and silica-based drying agent (50:50 W/W%), unless otherwise 

stated. Solutions such as brine, saturated NH4Cl, and NaHCO3 were made from the 

commercial salt. All reagents stated in percentage are dissolved in water and refer to 

g/100 mL. All other reagents were purchased from commercial sources and used 

without any further treatment unless otherwise stated.  

7.1.1.2 Reactions and purification  

All reactions were carried out in standard glassware that was cleaned with domestic 

detergents, washed with acetone and oven-dried (100 °C), with magnetic stirring in a 

nitrogen or argon atmosphere unless it was specified that the reaction was performed in the 

air. Anhydrous and/or air sensitive liquids were added through a rubber septum with a 
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syringe. Liquid reagents were weighed if stated in g or mg and mixed with the appropriate 

solvent before being added to the reaction vessel. Air sensitive and/or hygroscopic solid 

reagents were handled under nitrogen and weighed either directly into the reaction vessel or 

transferred as a solution in the appropriate solvent. Thermal heating of reactions was carried 

out with paraffin oil baths. All reactions were quenched immediately by adding water or 

being poured to an ice bath before work-up. Freezer storage was at -20 °C and fridge 

recrystallisation at 5 °C. Extracted organic phases were dried over magnesium sulfate or 

sodium sulfate and gravity filtered. Solvents were removed in vacuo on a rotary 

evaporator and products dried under high vacuum (~1 mbar) at room temperature unless 

otherwise stated. 

Purification by column chromatography was performed using Merck Flash Silica Gel 60 

(63-200 mesh) under a positive pressure of air, and, where deactivated silica gel was 

required, 10% Et3N was added to the eluting solvent. Preparative TLC was performed 

using Merck Silica Gel F254 pre-coated glass plates (20 x 20 cm) with a layer thickness 

of 500, 1000, 1500 or 2000 µm. Eluents are in volume to volume (v:v) proportions.  

 

7.1.1.3 Analysis and characterisation 

Thin Layer chromatography (TLC) was performed using Merck Silica Gel F254 pre-

coated aluminium plates. Visualisation was accomplished using UV light and/or a 

phosphomolybdic acid or ninhydrin stain.  

 
Melting points measured on a Buchi Melting Point M-560 apparatus are expressed in 

degrees Celsius (°C) and are uncorrected.  

 
UV/Vis spectra were obtained using a double beam Cary 100 Bio UV-Vis 

spectrophotometer, operating between 300 – 1400 nm. All solutions were appropriately 
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diluted in CH2Cl2 prior to analysis to fit within the absorbance limits of the detector, 

and placed into 1 cm path-length quartz cuvettes. All spectra were collected at room 

temperature. Sample sizes were between 1.000-2.000 mg, weighted with an accuracy to 

6 decimal places using a seven figure balance CAHN C-35. Mono-substituted indigo 

derivatives were diluted to 50.0 mL, all other derivatives to 25.0 mL and the ε values 

reported in M-1cm-1. 

 
Infrared (IR) spectra were recorded on KBr diluted samples by the Diffuse Reflection 

Method on a Shimadzu IR Affinity 1 instrument. Neat samples were recorded with the 

Single Reflection Horizontal Attenuated Total Reflectance (HATR) accessory MIRacle 

10, fitted with a 1.5 mm round diamond crystal. IR data were recorded as number of 

wavelength per unit distance (𝑣 or !
!
) in cm-1 with peak intensity assigned as weak (w), 

medium (m) or strong (s). 

 
Electron impact (EI) mass spectra were performed using a Shimadzu QP-5050 

spectrometer with compounds dissolved in CH2Cl2. Low resolution mass spectra were 

obtained by electrospray ionisation (ESI) mass spectrometry on a Micromass Platform 

LCZ spectrometer by injecting the samples as a solution in MeOH. In some cases 1% 

formic acid was added to suppress dimerization and or aid in protonation. High 

resolution mass spectrometry (HRMS) was performed using either electrospray 

ionisation (ESI) technique on a Waters QTOF Xevo spectrometer or electron impact 

technique (EI) on a Micromass Autospec Premier spectrometer. Ion mass to charge 

(m/z) values are stated with their relative abundances as a percentage in parentheses. 

Peaks assigned to the molecular ion are denoted by M+ or [M + H]+. 

 
Proton (1H) and carbon (13C) nuclear magnetic resonance (NMR) spectra were recorded 

at 500 and 125 MHz respectively on a Varian Inova 500 MHz spectrometer or a 
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VNMRS PS54 500 MHz spectrometer. Alternatively, 1H and 13C NMR spectra were 

recorded at 300 and 75 MHz respectively on a Varian Mercury 300 MHz spectrometer. 

The NMR spectra were acquired in CDCl3 with chemical shifts (δ) reported in parts per 

million (ppm) relative to TMS (1H: δ = 0 ppm) and CDCl3, 13C: δ = 77.0 ppm). 

Alternatively, spectra were acquired in (CD3)2SO with δ values relative to DMSO (1H: δ 

= 2.50 ppm) and (CD3)2SO (13C: δ = 39.5 ppm). Coupling constants (J) are reported in 

Hertz (Hz) and refer to the coupling between hydrogen nuclei unless otherwise stated. 

Multiplicities are reported as singlet (s), broad singlet (bs), doublet (d), doublet of 

doublet (dd), triplet of doublets (td), triplet (t), doublet of triplet (dt), quartet (q), 

multiplet (m) or apparent triplet (appt t). The processing of 1H NMR, 13C NMR and two 

dimensional NMR spectra shown in this work were displayed using MestReNova 

software (version 8.1.2). 

 
X-ray diffraction data sets were collected on a Nonius Kappa-CCD area-detector 

diffractometer equipped with IFG capillary X-ray focusing collimators and an Oxford 

Cryosystems crystal cooling device. Calculations were performed using maXus, 

Crystals and Reals software packages. 

 
Images from crystals were captured using a Leica MZ 16 A stereo microscope. All the 

images were obtained from X-ray quality single crystals.  

 

Optical rotations were measured on a Jasco p-2000 polarimeter in CH2Cl2 solution at 25 

°C. All the compounds with stereogenic centre were characterised as racemates and 

used with no further isolation of the enantiomers. 
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7.1.2 Reaction of indigo with allylic bromides 

7.1.2.1 Reaction of indigo with allyl bromide 

Method A: 5 sec reaction 

(E)-1-Allyl-[2,2'-biindolinylidene]-3,3'-dione (243)  

A suspension of indigo (262 mg 1.00 mmol) in anhydrous DMF 

(40 mL) was sonicated for 30 min and the resulting suspension 

was transferred to a septum equipped round bottom flask carrying 

pre-dried Cs2CO3 (1.303 g, 4.00 mmol) under N2 flow. The flask 

was plunged into a preheated oil bath at 85-88 °C and stirred for 30 min. The N2 flow 

was stopped and allyl bromide (605 mg, 5.00 mmol) was added rapidly in one portion 

by syringe, and after 5 sec, the reaction mixture was poured into an ice bath. The blue-

black precipitate was filtered and dissolved in hot CH2Cl2 and cooled at 5 °C overnight. 

The mixture was then filtered to remove the unreacted indigo (36%). The filtrate was 

concentrated under reduced pressure then recrystallised from pet. spirit/EtOAc (90:10) 

to furnish 243 (163 mg, 54%) as a dark navy crystalline solid; Rf = 0.68 (CH2Cl2/pet. 

spirit; 7:3), m.p: 170-171 ºC. X-ray quality crystals were obtained by slow 

recrystallisation from CHCl3 in a small tube while it was placed in another sample tube 

containing pet. spirit (10 mL). UV-Vis (CH2Cl2) λmax/nm (ε, M−1cm−1) 289 (22571), 614 

(11924). IR (neat) υmax 3290 (m), 1635 (s), 1608 (s), 1462 (s), 1384 (m), 1064 (m), 

1027 (s), 921 (m), 748 (m) cm-1. 1H NMR (CDCl3) δ 5.09-5.16 (3H, m, H2'', H3''a, 

H3''b), 5.90-5.94 (2H, s, H1''), 6.92 (1H, t, J = 7.5 Hz, H5'), 6.97 (1H, d, J = 8.3 Hz, 

H7), 7.00 (1H, t, J = 7.9 Hz, H5), 7.07 (1H, d, J = 7.5 Hz, H7'), 7.44 (1H, t, J = 7.5 Hz, 

H6'), 7.50 (1H, t, J = 7.9 Hz, H6), 7.65 (1H, d, J = 8.3 Hz, H4), 7.73 (1H, d, J = 7.5 Hz, 

H4'), 10.71 (1H, s, NH). 13C NMR (CDCl3) δ 49.7 (C1''), 111.0 (C7), 111.8 (C5'), 116.8 

(C3''), 120.2 (C3'a), 120.6 (C7'), 120.7 (C5), 120.9 (C3a), 122.8 (C2), 124.0 (C4'), 124.7 
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(C4), 125.6 (C2'), 133.1 (C2''), 135.7 (C6), 136.0 (C6'), 151.4 (C7a), 152.7 (C7'a), 187.1 

(C3'), 189.7 (C3). MS (EI): m/z = 302 (66%, M+), 273 (27), 233 (24), 98 (100). HRMS 

(ESI): calcd for C19H14N2O2 [M+H]+ 303.1134; found 303.1143. 

13-Allyl-8a-hydroxy-8,13a-dihydroazepino[1,2-a:3,4-b']diindol-14(8H)-one (248) 

The mother liquor from the recrystallisation above was then dried 

(Na2SO4), concentrated and subjected to PTLC and developed with 

CH2Cl2/EtOAc; 9.5:0.5. The selected band was collected and 

soaked in EtOAc and filtered. The filtrate was concentrated to 

afford 5 (30.8 mg, 9%) as a red solid; mp. 163-165 ºC. Rf = 0.20 (CH2Cl2/EtOAc; 

9.5:0.5). UV-Vis (CH2Cl2) λmax/nm (ε, M−1cm−1) 306 (14496), 363 (16077), 370 

(10096), 498 (11840). IR (neat) υmax 3275 (b), 1608 (m), 1535 (s), 1465 (s), 1419 (m), 

1319 (m), 1180 (m), 1111 (m), 748 (s) cm-1. 1H NMR (CDCl3) δ 2.46 (1H, d, J = 17.1 

Hz, H8a), 2.97 (1H, dd, J = 12.2, 17.3 Hz, H8b), 4.57 (1H, d, J = 15.3 Hz, 1'a), 4.73 

(1H, s, OH), 4.94-5.03 (3H, m, H1'b, H7, H3'a), 5.14 (1H, d, J = 17.3 Hz, H3'b), 5.80-

5.85 (1H, m, H2'), 6.85-6.91 (2H, m, H11, H2), 6.98 (1H, d, J = 8.0 Hz, H4), 7.00 (1H, 

d, J = 8.2 Hz, H12), 7.11 (1H, t, J = 7.5 Hz, H10), 7.32 (1H, t, J = 7.5 Hz, H3), 7.49 

(1H, d, J = 7.2 Hz, H9), 7.61 (1H, d, J = 7.6 Hz, H1). 13C NMR (CDCl3) δ 38.9 (C8), 

52.6 (C1'), 81.3 (C8a), 101.9 (C7), 109.4 (C4), 111.1 (C12), 115.7 (C13b), 117.7 (C3'), 

120.2 (C6), 122.6 (C14a), 123.2 (C12), 123.6 (C10), 123.7 (C9), 124.2 (C1), 129.7 

(C2'), 133.0 (C11), 134.5 (C3), 136.0 (C8b), 145.1 (C13a), 147.6 (C12a), 156.0 (C4a), 

178.5 (C14). MS (EI): m/z = 342 (91%, M+), 324 (100). HRMS (ESI): calcd. for 

C22H18N2O2 [M+H]+ 343.1447; found 343.1440. 
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Method B: 1 h reaction 

13-Allyl-8a-hydroxy-8,13a-dihydroazepino[1,2-a:3,4-b']diindol-14(8H)-one (248) 

A mixture of indigo (262 mg, 1.00 mmol) in anhydrous DMF (40.0 mL) was sonicated 

for 30 min and the resulting suspension was added dropwise into a flask containing 4 Å 

molecular sieves and pre-dried anhydrous Cs2CO3 (1.303 g, 4.00 mmol). The flask was 

plunged into a pre-heated oil bath at 85-88 °C and the mixture stirred for 30 min under a 

N2 flow. The flow was then cut and allyl bromide (600 mg, 5.00 mmol) was added 

using a syringe and the mixture was stirred and heated at 85-88 ºC for 1 h under a static 

inert atmosphere (N2). The crude mixture was then filtered hot (to remove the molecular 

sieves) into an ice bath. The aqueous mixture was transferred to a conical flask and 

partitioned in CH2Cl2 and washed with brine (2 × 30 mL) and water (5 × 50 mL). The 

combined organic layers were concentrated under reduced pressure. The residue from 

the ice bath (thick oily red-orange drops) was dissolved in CH2Cl2. This solution was 

dried over Na2SO4 and combined with the collected organic phase from extraction of 

the aqueous mixture from the ice bath. The filtrate was then concentrated under reduced 

pressure and adsorbed onto silica (1:1 CH2Cl2 : pet. spirit). The silica was then washed 

and filtered through a sinter with CH2Cl2/pet. spirit (9:1) until the filtrate became 

colourless (filtrate A). The silica was then soaked in EtOAc and filtered. The filtrate 

was concentrated and the resulting red powder was recrystallised from CH2Cl2 giving 

248 (140 mg, 41%) as red crystalline flakes. 

Filtrate A was concentrated under reduced pressure and subjected to silica gel column 

chromatography. Elution with 7:3 CH2Cl2/pet. spirit resulted in isolation of compound 

243 (27.2 mg, 9%) and compound 227 (11.5 mg, 3%).  
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Method C: 3 h reaction 

8H,16H-Pyrido[1,2,3-s,t]-indolo[1,2-a]azepino[3,4b]indol-17-one (232) 

 A suspension of indigo (262 mg, 1.00 mmol) in DMF was 

sonicated for 30 min at room temperature and transferred to a 

septum equipped round bottom flask containing pre-dried and 

ground Cs2CO3 (1.303 g, 4.00 mmol) and molecular sieves under 

an inert atmosphere. The flask was plunged to a pre-heated oil bath at 85-88 °C and 

stirred for 30 min. The inert atmosphere flow was then cut and allyl bromide (600 mg, 

5.00 mmol) was added, and the mixture was stirred and heated for 1 h under a static 

inert atmosphere (N2). Another portion of allyl bromide (2.00 mmol) was added to the 

mixture and it was stirred for a further 2 h. The colour of solution turned brown-yellow 

and TLC analysis indicated the complete consumption of indigo. Molecular sieves were 

filtered from the hot reaction mixture and the filtrate poured into an ice bath and then 

partitioned between water and CH2Cl2, washed with brine (2 × 30 mL) and water (5 × 

50 mL) and the combined organic phase were dried (Na2SO4) and concentrated under 

reduced pressure. The residue was subjected to flash silica gel column chromatography 

and elution with pet. spirit/CH2Cl2 (1:3) yielded 232 (221 mg, 72%) as a yellow-brown 

powder; mp 143-144 °C. X-ray quality crystals were grown through slow crystallization 

from pet. spirit:CH2Cl2 (5:3). Rf = 0.61; IR (neat) υmax 1698 (s), 1614 (s), 1463 (m), 

1363 (m), 1020 (m) cm-1. 1H NMR (CDCl3) δ 2.45 (1H, dd, J = 6.5, 6.0 Hz, H16a), 2.75 

(1H, dd, J = 4.5, 4.5 Hz, H16b), 3.25 (2H, m, H8), 5.31 (1H, m, H13), 6.34-6.36 (2H, 

m, H6, H7), 6.85 (1H, appt t, J = 7.5, 7.5 Hz, H2), 6.91 (1H, d, J = 8.5 Hz, H4), 7.13 

(1H, dd, J = 7.5, 7.5 Hz, H10), 7.21-7.27 (2H, m, H14, H11), 7.42 (1H, d, J = 8.0 Hz, 

H9), 7.47 (1H, d, J = 7.5 Hz, H12), 7.52 (1H, dd, J = 7.5, 8.0 Hz, H3), 7.65 (1H, d, J = 

8.0 Hz, H1). 13C NMR (CDCl3) δ 20.3 (C8), 29.9 (C16), 67.8 (C16a), 104.3 (C15), 
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109.7 (C9), 109.8 (C4), 112.6 (C8a), 117.9 (C8b), 118.5 (C12), 119.0 (C2), 120.7 

(C10), 123.0 (C14), 124.0 (C11), 125.9 (C1), 127.0 (C7), 128.0 (C4a), 128.6 (C12a), 

135.9 (C16b), 136.3 (C6), 137.6 (C3), 150.0 (C17a), 197.5 (C17). MS (EI), m/z 324 

(100%, M+), HRMS (EI, M+) calcd for C22H16N2O 324.1263, found 324.1261. 

1-Allyl-10'-allyloxy-2'H-spiro(indoline-2,1'-pyrido[1,2-a]indol)-3-one (227) 

 Further elution of the SiO2 flash column using petroleum spirit : 

CH2Cl2 (3:1) yielded a fraction that was further subjected to 

gravity column chromatography (pet. spirit : EtOAc, 3:1) 

followed by PTLC (pet. spirit: EtOAc, 3:2) to yield two 

products, one of which was 1-allyl-10'-allyloxy-2'H-spiro(indoline-2,1'-pyrido[1,2-

a]indol)-3-one 227 (115 mg, 32%) as an orange solid; mp. 121-122 ºC. Rf = 0.51; IR 

(neat) υmax 1696 (s), 1609 (s), 1481 (s), 1317 (m) cm-1. 1H NMR (CDCl3) δ 2.38 (1H, 

dd, J = 5.7, 17.6 Hz H2'a), 2.80 (1H, dd, J = 2.9, 17.6 Hz H2'b), 3.71-3.82 (2H, m, 

H3'''), 4.11-4.21 (2H, m, H3''), 4.85-4.92 (2H, m, H1'''), 5.04-5.10 (2H, m, H1''), 5.31-

5.38 (1H, m, H3'), 5.52-5.63 (2H, m, H2'', H2'''), 6.62 (1H, d, J = 7.8 Hz, H7), 6.70 (1H, 

dd, J = 7.2, 7.2 Hz, H6), 7.12-7.18 (2H, m, H8', H4'), 7.32 (1H, d, J = 8.1 Hz, H6'), 

7.39-7.41 (1H, m, H5), 7.45 (1H, d, J = 7.8 Hz, H9'), 7.58 (d, J = 7.8 Hz, H4). 13C NMR 

(CDCl3) δ 31.6 (C2'), 46.8 (C3'''), 66.2 (C1), 74.6 (C3''), 104.6 (C3'), 108.91 (C7), 

108.93 (C6'), 116.0 (C1'''), 117.4 (C6), 117.6 (C1''), 118.8 (C9'), 118.9 (C7a), 119.0 

(C10a), 120.4 (C7'), 121.3 (C5'a), 121.5 (C4'), 123.1 (C8'), 125.0 (C4), 132.1 (C9'a), 

133.5 (C2'''), 133.8 (C2''), 135.9 (C10'), 137.6 (C5), 159.3 (C7a), 200.6 (C3). MS (EI), 

m/z 382 (10%, M+), 341 (100%, M-41). HRMS (EI, M+) calcd for C25H22N2O2 

382.1681, found 382.1681. 

 

 



  

  

166 Chapter 7: Experimental 

N-Allylisatin (237) 

The third product separated from the above column chromatography 

procedure was crystallised from CDCl3/EtO2 to give N-allyisatin§§ 237 

(11.2 mg, 6%) as orange crystals; mp. 87-88 ºC (Lit mp 88-89 °C200). Rf 

= 0.51; IR (neat) υmax 1727 (s), 1604 (s), 1469 (s), 1354 (m), 760 (s) 

cm-1. 1H NMR (CDCl3) δ 4.38 (2H, d, J = 6.0 Hz, H3'), 5.32 (2H, dd, J = 10.5, 10.5 Hz, 

H1'), 5.57-5.59 (1H, m, H2'), 6.89 (1H, d, J = 8.0 Hz, H7), 7.12 (1H, dd, J = 7.5, 7.5 Hz, 

H5), 7.58 (1H, dd, J = 8.0, 8.0 Hz, H6), 7.61-7.63 (1H, d, J = 7.5 Hz, H4). 13C NMR 

(CDCl3) δ 42.5 (C3'), 110. 9 (C7), 117.6 (C3a), 118.7 (C1'), 123.8 (C5), 125.4 (C4), 

130.3 (C2'), 138.3 (C6), 150.8 (C7a), 157.9 (C2), 183.2 (C3). MS (ESI) m/z 188 (100%, 

M+H). HRMS (EI, M+) calcd for C11H9NO2 187.0633, found 187.0634 

 

 

7.1.2.2 Reaction of indigo with 3-bromo-2-methylpropene 

Method A: 5 sec reaction 

(E)-1-(2-Methylallyl)-[2,2'-biindolinylidene]-3,3'-dione (244) 

Using Method A, indigo (262 mg, 1.00 mmol) and 3-bromo-2-

methylpropene (670 mg, 5.00 mmol) was reacted at 85-88 ºC. The 

reaction mixture was poured onto an ice bath and the dark navy or 

black precipitate was collected and dissolved in hot CH2Cl2 and 

cooled at 5 °C overnight. The mixture was then filtered to remove the unreacted indigo 

(29%). The filtrate was concentrated under reduced pressure then dissolved in hot 

MeOH/H2O (1:3) then cooled to afford 244 (196 mg, 62%) as a dark navy powder mp. 

                                                
§§ N-Allylisatin was not isolated from the reaction when additional measures for drying of solvents and 
reagents was applied.  
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150-152 °C, Rf = 0.72 (CH2Cl2/pet. spirit; 7:3). UV−Vis (CH2Cl2) λmax/nm (ε, M−1cm−1) 

291 (21876), 628 (11669). IR υmax 3271 (m), 1608 (s), 1462 (s), 1388 (m), 1296 (s), 

1172 (m), 1072 (s) 1037 (s), 918 (w), 748 (m), 698 (m) cm-1. 1H NMR ((CD3)2SO) δ 

1.76 (3H, s, CH3), 4.62 (1H, s, H3''a), 4.83 (1H, d, J = 6.9 Hz, H3''b), 5.11 (2H, s, H1''), 

6.93 (1H, t, J = 7.3 Hz, H5'), 6.97-7.04 (3H, m, H7, H7', H5), 7.45 (1H, t, J = 7.7 Hz, 

H6'), 7.51 (1H, t, J = 7.7 Hz, H6), 7.65 (1H, d, J = 7.7 Hz, H4), 7.58 (1H, d, J = 7.3 Hz, 

H4'), 10.60 (1H, s, NH). 13C NMR ((CD3)2SO) δ 20.5 (CH3), 52.6 (C1'), 112.1 (C3''), 

112.8 (C7), 114.1 (C5'), 120.0 (C3'a), 120.9 (C3a), 121.3 (C7'), 121.8 (C5), 123.4 (C2), 

124.3 (C4), 124.8 (C4'), 125.2 (C2'), 136.8 (C6), 136.9 (C6'), 141.3 (C2''), 152.8 (C7a), 

153.7 (C7'a), 187.4 (C3'), 189.0 (C3). MS (EI): m/z = 316 (81%), 299 (22), 195 (100). 

HRMS (ESI): calcd for C20H17N2O2 [M+H]+ 317.1290; found 371.1298.  

8a-Hydroxy-7-methyl-13-(2-methylallyl)-8,13a-dihydroazepino[1,2-a:3,4-

b']diindol-14(8H)-one (249) 

 The mother liquor was dried (Na2SO4), concentrated and then 

subjected to PTLC and developed with CH2Cl2/EtOAc; 9.5:0.5. 

The selected band was collected and soaked in EtOAc and 

filtered. The filtrate was concentrated to afford 7 (25.9 mg, 7%) as 

a red powder; mp. 172-174 ºC. Rf = 0.19 (CH2Cl2/EtOAc; 9.5:0.5). UV−Vis (CH2Cl2) 

λmax/nm (ε, M−1cm−1) 306 (14007), 377 (10809), 511 (10483). IR υmax 3143 (b), 1651 

(s), 1608 (s), 1543 (s), 1465 (s), 1377 (m), 1315 (s), 1192 (m), 1118 (s), 1087 (m), 894 

(w), 740 (s) cm-1. 1H NMR (CDCl3) δ 1.50 (3H, s, H1''), 1.90 (3H, s, H1'''), 2.47 (1H, d, 

J = 17.5 Hz, H8a), 2.90 (1H, d, J = 17.6 Hz, H8b), 4.07 (1H, d, J = 16.8 Hz, H3'a), 4.61 

(1H, s, H1'a), 4.75 (1H, s, H1'b), 5.33 (1H, d, J = 15.0 Hz, H3'b), 5.51 (1H, bs, OH), 

6.66-6.70 (2H, m, H6, H2), 6.82 (1H, d, J = 7.9 Hz, H12), 7.04 (1H, d, J = 8.3 Hz, H4), 

7.11 (2H, t, J = 7.4 Hz, H10), 7.24 (1H, t, J = 8.1 Hz, H3), 7.31 (1H, t, J = 7.9 Hz, H11), 
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7.38 (1H, d, J = 7.8 Hz, H1), 7.58 (1H, d, J = 7.5 Hz, H9). 13C NMR (CDCl3) δ 19.9 

(C1''), 24.8 (C1'''), 43.9 (C8), 54.1 (C3'), 80.6 (C8a), 109.8 (C4), 110.9 (C12), 111.4 

(C7), 112.8 (C1'), 116.6 (C13b), 120.1 (C2), 120.9 (C6), 123.0 (C14a), 123.3 (C9,C10), 

123.7 (C1), 129.6 (C11), 133.1 (C3), 135.6 (C8b), 139.5 (C2'), 144.8 (C12a), 148.3 

(C4a), 154.9 (C13a), 178.4 (C14). MS (EI): m/z = 370 (82%, M+), 353 (30), 315 (71), 

299 (32), 195 (100). HRMS (ESI): calcd for C24H23N2O2 [M+H]+ 371.1760; found 

371.1760.  

 

Method B: 1 h reaction 

8a-Hydroxy-7-methyl-13-(2-methylallyl)-8,13a-dihydroazepino[1,2-a:3,4-

b']diindol-14(8H)-one (249) 

Using Method B, indigo (262 mg, 1.00 mmol) and 3-bromo-2-methylpropene (670 mg, 

5.00 mmol) was reacted at 85 ºC for 1 h. Upon workup, the filtrate was concentrated 

under reduced pressure and subjected to a 20 × 1.5 cm silica gel column 

chromatography. Elution with CH2Cl2 (300 mL) flushed the by-products through 

(compound 244, 22.1 mg, 7% and compound 228, 29.7 mg, 7%), before elution with 

CH2Cl2/EtOAc (95:5, 300 mL) yielded a red powder which was recrystallized from pet. 

spirit/EtOAc (9:1) to yield 249 (204 mg, 51%) as shiny ruby crystals with identical 

spectral characteristics as reported above. 

 

Method C: 3 h reaction 

7,15-Dimethyl-8H,16H-pyrido[1,2,3-s,t]-indolo[1,2-a]azepino[3,4-b]indol-17-one 

(233) 

Using Method C, indigo (262 mg, 1.00 mmol) was reacted with 3-bromo-2-

methylpropene (680 mg, 5.00 mmol). Upon workup, the residue was dissolved in 
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CH2Cl2 (10 mL) and pet. spirit was added gradually while the 

dark brown mixture turned cloudy. The mixture was heated 

until it become clear. Crystallisation on cooling overnight 

deposited the luminescent yellow grains of 233 (183 mg, 52%) 

mp. 123-124 ºC, Rf = 0.58 (CH2Cl2/pet. spirit; 7:3); IR (neat) 

υmax 1700 (m), 1606 (s), 1451 (s), 1361 (m), 1310 (m), 742 (m) cm-1. 1H NMR (CDCl3) 

δ 1.90 (3H, s, H''), 1.91 (3H, s, H'), 2.23 (2H, d, J = 16.0 Hz, H16a), 2.74 (1H, d, J = 

16.0 Hz, H16b), 2.95 (1H, d, J = 15.0 Hz, H8a), 3.35 (1H, d, J = 15.0 Hz, H8b), 6.03 

(1H, s, H6), 6.82 (1H, dd, J = 7.5, 7.5 Hz, H2), 6.91 (1H, d, J = 8.5 Hz, H4), 7.01 (1H, 

s, H14), 7.10 (1H, dd, J = 7.5, 7.5 Hz, H10), 7.21 (1H, dd, J = 7.8, 7.8 Hz H11), 7.41 

(1H, d, J = 8.0 Hz, H9), 7.46-7.51 (2H, m, H6, H12), 7.62 (1H, d, J = 8.0 Hz, H1). 13C 

NMR (CDCl3) δ 20.1 (C'), 20.6 (C''), 26.3 (C6), 34.7 (C16), 67.8 (C16a), 109.6 (C9), 

109.9 (C4), 111.3 (C8a), 114.6 (C15), 118.1 (C8b), 118.2 (C12), 118.3 (C14), 118.7 

(C2), 120.0 (C8), 120.2 (C10), 122.5 (C11), 125.8 (C1), 127.1 (C12a), 128.5 (C4a), 

135.3 (C13a), 137.6 (C3), 149.1 (C7), 159.9 (C17a), 198.0 (C17). MS (EI), m/z 352 

(100%, M+), HRMS (EI, M+) calcd for C24H20N2O 352.1576, found 352.1573. 

3'-Methyl-1-[3-(2-methyl)prop-1-enyl]-10'-[3-(2-methyl)prop-1-enyl]oxy-2'H-

spiro(indoline-2,1'-pyrido[1,2-a]indol)-3-one (228) 

The mother liquor from recrystallisation was concentrated and 

subjected to flash column chromatography. Elution with 

CH2Cl2/pet. spirit (70:30) yielded 7,15-dimethyl-8H,16H-

pyrido[1,2,3-s,t]-indolo[1,2-a]azepino[3,4-b]indol-17-one 233 

(68.0 mg, 17%). Further elution afforded 228 (63.0 mg, 15%) as a yellow powder; mp. 

118-120 ºC, Rf = 0.46 (CH2Cl2/pet. spirit; 7:3); IR (neat) υmax 1704 (s), 1613 (m), 1488 

(s), 1463 (m), 1320 (m), 710 (m) cm-1. 1H NMR (CDCl3) δ 1.58 (3H, s, C2'''-CH3), 1.63 
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(3H, s, C2''-CH3), 1.90 (3H, s, C3'-CH3), 2.32 (1H, d, J = 17.0 Hz, H2'a), 2.84 (1H, d, J 

= 17.0 Hz, H2'b), 3.56 (1H, d, J = 18.0 Hz, H3''a), 3.69 (1H, d, J = 18.0 Hz, H3''b), 4.07 

(1H, d, J = 11.5 Hz, H3'''a), 4.16 (1H, d, J = 11.5 Hz, H'''b), 4.73 (2H, d, J = 5.0 Hz, 

H1''), 4.81 (2H, d, J = 5.0 Hz, H1'''), 6.67 (1H, d, J = 8.0 Hz, H7), 6.75 (1H, dd, J = 7.5, 

7.5 Hz, H5), 6.98 (1H, s, H4'), 7.06 (1H, dd, J = 7.5, 7.5 Hz, H8'), 7.22 (1H, dd, J = 8.0, 

8.0 Hz, H7'), 7.37 (1H, d, J = 8.5 Hz, H6'), 7.45 (1H, dd, J = 7.5, 8.0 Hz, H6), 7.53 (1H, 

d, J = 8.5 Hz, H9'), 7.63 (1H, d, J = 7.5 Hz, H4). 13C NMR (CDCl3) δ 19.6 (C2'''-CH3), 

20.2 (C2''-CH3), 20.3 (C3'-CH3), 37.6 (C2''), 50.5 (C3''), 67.2 (C2), 77.6 (C3'''), 109.1 

(C6'), 109.6 (C7), 110.7 (C1'''), 112.7 (C1''), 114.9 (C3'), 116.5 (C4'), 117.7 (C5), 118.3 

(C9'a), 119.0 (C9'), 119.2 (C10'a), 120.1 (C8'), 121.3 (C5’a), 123.0 (C7'), 125.2 (C4), 

131.9 (C10'), 135.7 (C3a), 137.9 (C6), 141.5 (C2''), 141.7 (C2'''), 160.2 (C1a), 201.0 

(C3). MS (EI), m/z 424 (22%, M+), 369 (100%). HRMS (EI, M+) calcd for C28H28N2O2 

424.2151, found 424.2146. 

 

7.1.2.3 Reaction of Indigo with 1-bromo-2-butene 

Method A: 5 sec reaction 

(E)-1-((E)-But-2-en-1-yl)-[2,2'-biindolinylidene]-3,3'-dione (245) 

Using Method A, indigo (262 mg, 1.00 mmol) and (E)-1-

bromobut-2-ene (670 mg, 5 mmol) were reacted at 85-88 ºC for 5 

sec. The reaction mix was poured into an ice bath and the dark 

navy or black precipitate was collected and dissolved in hot 

CH2Cl2 and cooled at 5 °C overnight. The mixture was then filtered to remove the 

unreacted indigo (30%). The filtrate was concentrated under reduced pressure then 

dissolved in hot MeOH/H2O (1:3) and cooled to precipitate 245 (180 mg, 57%) as a 

dark navy powder, mp. 161-163 ºC. Rf = 0.70 (CH2Cl2:pet. spirit; 7:3). UV−Vis 
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(CH2Cl2) λmax/nm (ε, M−1cm−1) 291 (28583), 632 (16946). IR υmax 3244 (m), 1631(s), 

1608 (s), 1465 (s), 1446 (m), 1330 (s), 1180 (s), 1111 (s), 964 (m), 748 (s) cm-1. 1H 

NMR (CDCl3) δ 1.62 (3H, d, J = 6.1 Hz, C4'-CH3), 5.06 (2H, d, J = 5.0 Hz, H1''), 5.53-

5.58 (1H, m, H2'') 5.62-5.65 (1H, m, H3''), 6.97 (1H, t, J = 7.5, Hz, H5'), 7.01-7.05 (2H, 

m, H7, H5), 7.13 (1H, d, J = 8.0 Hz, H7'), 7.48 (1H, t, J = 7.6 Hz, H6'), 7.54 (1H, t, J = 

7.7 Hz, H6), 7.70 (1H, d, J = 7.7 Hz, H4), 7.75 (1H, d, J = 7.6 Hz, H4'), 10.57 (1H, s, 

NH). 13C NMR ((CD3)2SO) δ 18.3 (C4''), 49.2 (C1''), 113.0 (C7), 114.1 (C5'), 120.1 

(C3'a), 120.6 (C7'), 121.7 (C3a), 121.9 (C5), 123.4 (C2), 124.3 (C4), 124.8 (C4'), 125.2 

(C2'), 126.8 (C2''), 129.3 (C3''), 136.8 (C6), 136.9 (C6'), 152.8 (C7a), 153.7 (C7'a), 

187.3 (C3'), 189.6 (C3). MS (EI): m/z = 316 (70%, M+), 301 (52), 261 (24), 233 (72), 

195 (100), HRMS (ESI): calcd. for C20H17N2O2 [M+H]+ 317.1290; found 317.1301. 

(E)-13-(But-2-en-1-yl)-8a-hydroxy-8-methyl-8,13a-dihydroazepino[1,2-a:3,4-

b']diindol-14(8H)one (250) 

The mother liquor was dried (Na2SO4), concentrated and then 

subjected to a PTLC plate and developed with CH2Cl2/EtOAc; 

9.5:0.5. The selected band was collected and soaked in EtOAc and 

filtered. The filtrate was concentrated to afford 250 as a red 

powder (37.0 mg, 10%); mp. 148-150 ºC, Rf = 0.15 

(CH2Cl2/EtOAc; 9.5:0.5). UV−Vis (CH2Cl2) λmax/nm (ε, M−1cm−1) 306 (13821), 367 

(11872), 494 (14637). IR υmax 3278 (b), 1643 (s), 1608 (s), 1465 (s), 1388 (m), 1296 

(m), 1168 (m), 1056 (m), 1018 (s), 918 (w), 752 (m) cm-1. 1H NMR (CDCl3) δ 0.67 

(3H, d, J = 7.1 Hz, H1''), 1.61 (3H, d, J = 6.1 Hz, H4'), 3.07 (1H, p, J = 7.1 Hz, H8), 

3.85 (1H, s, OH), 4.54 (1H, dd, J = 7.7, 5.0 Hz, H1'a), 5.02 (1H, d, J = 7.7 Hz, H1'b), 

5.06-5.09 (1H, m, H7), 5.54-5.59 (1H, m, H2'), 5.67-5.74 (1H, m, H3'), 6.87 (1H, d, J = 

10.2 Hz, H6), 6.93 (1H, t, J = 7.6 Hz, H2), 7.00 (1H, d, J = 7.6 Hz, H12), 7.10 (1H, t, J 
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= 7.5 Hz, H4) 7.14 (1H, d, J = 8.1 Hz, H10), 7.30-7.40 (1H, t, J = 7.7 Hz, H3), 7.38 

(2H, m, H1, H11), 7.62 (1H, d, J = 7.5 Hz, H9). 13C NMR (CDCl3) δ 17.6 (C1''), 18.7 

(C4'), 43.9 (C8), 51.7 (C1'), 84.3 (C8a), 109.4 (C4), 110.0 (C7), 110.1 (C12), 117.4 

(C13b), 120.1 (C2), 122.1 (C6) 122.2 (C14a), 122.6 (C9), 123.0 (C10), 123.7 (C1), 

123.8 (C13a), 126.3 (C2'), 129.8 (C11), 130.2 (C3'), 133.0 (C3), 133.3 (C8b), 146.1 

(C12a), 152.3 (C4a), 178.7 (C14). MS (EI): m/z = 370 (48%, M+), 327 (100), 315 (47), 

299 (78), 285 (75), 272 (68). HRMS (ESI): calcd for C24H23N2O2 [M+H]+ 371.1760; 

found 371.1747. 

 

 

Method B: 1 h reaction 

 (E)-13-(But-2-en-1-yl)-8a-hydroxy-8-methyl-8,13a-dihydroazepino[1,2-a:3,4-

b']diindol-14(8H)-one (250) 

Using Method B, indigo (262 mg, 1.00 mmol) and (E)-1-bromobut-2-ene (670 mg, 5 

mmol) were reacted at 85 ºC. Upon workup, the filtrate was concentrated affording a 

red powder, which was recrystallized from CH2Cl2 to give 250 as red needle crystals 

(51.8 mg, 14%).  

Two other products were isolated by treatment of the silica washings (see method B), as 

compound 245 (31.6 mg, 10%) and compound 229 (135.7 mg, 32%) with identical 

spectral characteristics as reported above. 

 

 

Method C: 3 h reaction 

2'-Methyl-1-[1-(but-2-enyl)]-10'-[1-(but-2-enyl)]oxy-2'H-spiro(indoline-2,1'-

pyrido[1,2-a]indol)-3-one (229) 
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Using Method C, indigo (262 mg, 1.00 mmol) and (E)-1-bromobut-2-ene (670 mg, 5 

mmol) were reacted at 85-88 ºC. The resulting brown orange 

residue was recrystallised from CH2Cl2/pet. spirit to give 2'-methyl-

1-[1-(but-2-enyl)]-10'-[1-(but-2-enyl)]oxy-2'H-spiro(indoline-2,1'-

pyrido[1,2-a]indol)-3-one 229 (169 mg, 40%) as yellow crystals, 

mp. 147-148 ºC. Rf = 0.51 (CH2Cl2/pet. spirit; 7:3). The X-ray quality crystals were 

grown through slow crystallization from pet. spirit : EtOAc (8:2). The mother liquor 

was concentrated and subjected to a 30×1.5 cm column of silica gel chromatography 

and resulted in separation of an additional 106 mg of 229 (25%); total yield = 65%. IR 

(neat) υmax 1689 (m), 1608 (m), 1485 (s), 1468 (m), 1250 (m), 1055 (m) cm-1. 1H NMR 

(CDCl3) δ 1.07 (3H, d, J = 7.5 Hz, C2'-CH3), 1.55 (3H, d, J = 6.5 Hz, H4'''), 1.70 (3H, 

d, J = 6.0 Hz, H4''), 3.12-3.15 (1H, m, H2'), 3.67 (1H, m, J = 7.0, 7.0 Hz, H1''a), 3.94 

(1H, dd, J = 5.0, 4.5 Hz, H1'''a), 4.10-4.17 (2H, m, H1'''b, H1''b), 5.08-5.12 (1H, m, 

H3'''), 5.16 (1H, dd, J = 1.5, 2.0 Hz, H3'), 5.27-5.35 (1H, m, H2'''), 5.52-5.58 (1H, m, 

H2''), 5.72-5.78 (1H, m, H3''), 6.72 (1H, appt t, J = 7.5, 7.5 Hz, H5), 6.87 (1H, d, J = 8.5 

Hz, H9'), 7.04-7.07 (2H, m, H4', H7), 7.20 (1H, m, H7'), 7.34 (1H, d, J = 8.5 Hz, H8'), 

7.45-7.50 (2H, m, H8', H6), 7.52 (1H, d, J = 7.5, H4). 13C NMR (CDCl3) δ 14.1 (C2'-

CH3), 17.9 (C4'''), 18.0 (C4''), 33.6 (C5'), 46.2 (C1''), 72.8 (C2), 75.1 (C1'''), 109.2 (C9'), 

109.3 (C8'), 110.1 (C3'), 117.3 (C5), 118.1 (C9'a), 118.7 (C8'), 119.4 (C10'a), 120.4 

(C4'), 120.5 (C7), 122.2 (C5'a), 123.5 (C7'), 125.1 (C4), 126.6 (C3'''), 127.85 (C3''), 

127.90 (C2''), 130.9 (C2''), 133.0 (C10'), 136.7 (C3a), 137.5 (C6), 162.2 (C1a), 197.9 

(C3). MS (EI), m/z 424 (20%, M+), HRMS (ESI, M+) calcd for C28H29N2O2 425.2231, 

found 425.2229. 
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7.1.2.4 Reaction of Indigo with 1-bromo-3-methyl-2-butene 

Method A: 5 sec reaction 

 (E)-1-(3-Methylbut-2-en-1-yl)-[2,2'-biindolinylidene]-3,3'-dione (246) 

Using Method A, indigo (262 mg, 1.00 mmol) and 1-bromo-3-

methylbut-2-ene (810 mg, 5 mmol) were reacted at 85 ºC. The 

reaction mix was poured into an ice bath and the dark navy or 

black precipitate were collected and dissolved in hot CH2Cl2 and 

cooled at 5 °C overnight. The mixture was then filtered to remove 

the unreacted indigo (41%). The filtrate was concentrated under reduced pressure then 

dissolved in hot MeOH/H2O (1:3) and cooled to precipitate 246 (122 mg, 37%) as a 

dark navy powder, mp. 98-101 ºC, Rf = 0.72 (CH2Cl2/pet. spirit; 7:3). UV-Vis (CH2Cl2) 

λmax/nm (ε, M−1cm−1) 292 (27415), 639 (16308), 494 (14637). IR υmax 3267 (s), 1627 

(s), 1612 (s), 1481 (s), 1462 (s), 1392 (m), 1171 (m), 1130 (m), 1072 (s), 752 (m) cm-1. 

1H NMR (CDCl3) δ 1.68 (3H, s, H4''), 1.78 (3H, s, H1'''), 5.12 (2H, bs, H1''), 5.16 (1H, 

d, J = 4.0 Hz, H2''), 6.94 (1H, t, J = 7.3 Hz, H5'), 6.99-7.02 (2H, m, H7, H7') 7.04 (1H, 

d, J = 7.9 Hz, H5), 7.45 (1H, t, J = 6.5 Hz, H6'), 7.52 (1H, t, J = 6.5 Hz, H6), 7.68 (1H, 

d, J = 7.3 Hz, H4), 7.72 (1H, d, J = 7.3 Hz, H4') 10.82 (1H, s, NH). 13C NMR (CDCl3) δ 

18.4 (C1'''), 18.9 (C4''), 45.6 (C1''), 112.6 (C7), 113.6 (C5'), 116.4 (C3'a), 119.7 (C7'), 

120.3 (C3a), 120.9 (C5), 121.5 (C2), 121.6 (C4), 123.3 (C4'), 123.8 (C2'), 124.3 (C2''), 

124.6 (C3''), 136.4 (C6), 136.5 (C6'), 152.4 (C7a), 153.6 (C7'a), 186.6 (C3'), 189.0 (C3). 

MS (EI): m/z = 330 (20%, M+), 315 (35), 262 (100). HRMS (ESI): calcd for 

C21H19N2O2 [M+H]+ 331.1447; found 331.1453. The mother liquor was then dried 

(Na2SO4), concentrated under reduced pressure and subjected to silica gel column 

chromatography.  
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8,8-Dimethyl-13-(3-methylbut-2-en-1-yl)-7,8-dihydro-6H-6,13a-

epoxyazepino[1,2-a:3,4-b']diindol-14(8H)-one (253) 

Elution with CH2Cl2/EtOAc; 9.5:0.5 afforded 253 (83.6 mg, 

21%) as a red powder; mp. 74-76 ºC, Rf = 0.66 (CH2Cl2/EtOAc 

(9.5:0.5). UV-Vis (CH2Cl2) λmax/nm (ε, M−1cm−1) 261 (14848), 

311 (7945), 364 (9730), 497 (9114), 528 (12003). IR (neat) υmax 

3282 (bm), 1662 (s), 1616 (s), 1562 (s), 1404 (m), 1107 (s), 744 (s) cm-1. 1H NMR 

(CDCl3) δ 1.08 (3H, s, H1'''b), 1.15 (3H,s, H1'''a), 1.71 (3H, s, H1''), 1.85 (s, 3H, H4'), 

2.07 (1H, d, J = 12.7 Hz, H7a), 2.36 (1H, dd, J = 12.6, 5.9 Hz, H7b), 4.94 (1H, dd, J = 

15.7, 5.5 Hz, H1'a), 5.28 (1H, bt, J = 5.4 Hz***, H2'), 5.80 (1H, dd, J = 15.7, 6.7 Hz, 

H1'a), 6.02 (1H, d, J = 5.7 Hz, H6), 6.79-6.82 (2H, m, H12, H2), 6.87 (1H, d, J = 8.3 

Hz, H4), 6.98 (1H, t, J = 7.5 Hz, H10), 7.29-7.39 (3H, m, H9, H11, H3), 7.73 (1H, d, J 

= 7.7 Hz, H1). 13C NMR (CDCl3) δ 18.3 (C4'-CH3), 23.6 (C1'''b), 25.7 (C1''), 29.2 

(C1'''a), 46.4 (C1'), 49.7 (C8), 49.9 (C7), 83.0 (C6), 92.7 (C8a), 108.2 (C4), 109.9 

(C12), 111.2 (C13b), 117.4 (C2), 119.9 (C2'), 121.1 (C10), 122.1 (C14a), 124.4 (C1), 

125.4 (C8b), 126.3 (C11), 130.4 (C9), 133.3 (C3), 135.3 (C3'), 145.8 (C4a), 147.3 

(C12a), 149.3 (C13a), 177.5 (C14). MS (EI): m/z = 398 (100% M+), 342 (63), 329 (50), 

274 (78). HRMS (ESI): calcd for C26H27N2O2 [M+H]+ 399.2073; found 399.2085.  

 

Method B: 1 h reaction 

8a-Hydroxy-8,8-dimethyl-8,13a-dihydroazepino[1,2-a:3,4-b']diindol-

14(8H)one (251) 

Using Method B, indigo (262 mg, 1.00 mmol) and 1-bromo-3-methylbut-2-ene (810 

mg, 5 mmol) were reacted at 85 ºC. Upon workup, the filtrate was concentrated 

                                                
*** gCOSY and HMBC confirms the assignment. 
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affording a red powder which was recrystallized from pet. 

spirit/EtOAc (9:1) to deposit orange red crystals of 251 (105 

mg, 32%); mp 190-192 ºC, Rf = 0.44 (CH2Cl2/EtOAc; 9.5:0.5). 

X-ray quality crystals were grown through slow crystallization 

from pet. spirit/EtOAc (9:1). UV-Vis (CH2Cl2) λmax/nm (ε, M−1cm−1) 288 (16535), 301 

(16077), 371 (13040), 490 (15245). IR υmax 3282 (bs), 1662 (s), 1616 (s), 1562 (s), 1404 

(m), 1107 (s), 744 (s) cm-1. 1H NMR (CDCl3) δ 0.80 (3H, s, H1'), 1.63 (3H, s, H1''), 

4.82 (1H, d, J = 10.1 Hz, H7), 6.83 (1H, d, J = 10.1 Hz, H6), 6.96 (1H, d, J = 7.9 Hz, 

H12), 7.01 (2H, t, J = 7.2 Hz, H2, H10), 7.20 (1H, d, J = 8.3 Hz, H4), 7.30 (1H, t, J = 

7.9 Hz, H11), 7.40 (1H, t, J = 8.3, H3), 7.60 (1H, d, J = 7.5 Hz, H9), 7.77 (1H, d, J = 

7.5 Hz, H1). 13C NMR (CDCl3) δ 26.7 (C1'b), 27.3 (C1'a), 44.3 (C8), 85.8 (C8a), 109.5 

(C4), 110.9 (C12), 111.5 (C7), 114.1 (C13b), 120.6 (C6), 120.8 (C2), 121.7 (C10), 

122.8 (C14a), 123.7 (C1), 126.6 (C9), 129.6 (C8b), 130.4 (C11), 133.8 (C3), 144.2 

(C12a), 146.0 (C4a), 149.5 (C13a), 182.1 (C14). MS (EI): m/z = 330 (75%, M+), 315 

(100), 262 (93), HRMS (ESI): calcd for C21H19N2O2 [M+H]+ 331.1447; found 

331.1438. 

2',2'-Dimethyl-1-(3-methylbut-2-en-1-yl)-10'-((3-methylbut-2-en-1-yl)oxy)-2'H-

spiro[indoline-2,1'-pyrido[1,2-a]indol]-3-one (230) 

The mother liquor and filtrate from the elution of the silica with 

CH2Cl2 were combined and subjected to 40 × 1.5 cm silica gel 

column chromatography. Elution with CH2Cl2/pet. spirit; 9:1, 

yielded 230 (56 mg, 21%) as a yellow amorphous solid; Rf = 0.96 

(CH2Cl2 : pet. spirit; 9:1). IR υmax 1701 (m), 1612 (m), 1465 (m), 1261 (m), 1095 (s), 

802 (s), 742 (m) cm-1. 1H NMR (CDCl3) δ 1.14 (3H, s, C3''-CH3), 1.22 (3H, s, CH''), 

1.42 (3H, s, C3'''-CH3), 1.50 (3H, s, C2'-(CH3)), 1.52 (3H, s, C2'-(CH3)), 1.63 (3H, s, 
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H4'''), 3.87-3.90 (1H, m, H1''a), 4.06-4.15 (2H, m, H1''b, H1'''a), 4.30-4.33 (1H, m, 

H1'''b), 5.02 (1H, bs, H2''), 5.08 (1H, t, J = 7.1 Hz, H2'''), 5.21 (1H, d, J = 7.7 Hz, H3'), 

6.72 (2H, m, H5, H7), 7.00 (1H, d, J = 7.7 Hz, H4'), 7.06 (1H, t, J = 7.4 Hz, H8'), 7.20 

(1H, t, J = 8.2 Hz, H7'), 7.33 (1H, d, J = 8.3 Hz, H6'), 7.40 (1H, t, J = 7.4 Hz, H6), 7.51 

(1H, d, J = 7.8 Hz, H9'), 7.58 (1H, d, J = 7.7 Hz, H4). 13C NMR (CDCl3) δ 18.1 (C2'-

CH3a), 18.2 (C2'-CH3b), 23.8 (C4'''), 24.2 (C3'''), 25.5 (C4''), 26.0 (C3''), 39.4 (C2'), 

44.2 (C1''), 71.0 (C1'''), 72.4 (C2), 108.6 (C6'), 109.2 (C5), 117.2 (C7), 117.9 (C2'''), 

118.9 (C9'), 119.3 (C3'), 119.4 (C10'), 120.3 (C8'), 120.8 (C4'), 120.9 (C3a), 121.7 

(C2''), 122.4 (C10'a), 123.2 (C7'), 124.7 (C4), 132.1 (C9'a), 133.2 (C5'a), 137.3 (C3'''), 

137.4 (C6), 137.9 (C3''), 161.3 (C7a), 199.1 (C3). MS (EI): m/z = 466 (12%, M+), 397 

(79), 329 (100), HRMS (ESI): calcd for C31H35N2O2 [M+H]+ 467.2699; found 

467.2708. 

Further elution with CH2Cl2/EtOAc (95:5) gave 253 (103 mg, 26%). 

 

 

Method C: 3 h reaction 

8',8'-Dimethyl-1-(3-methylbut-2-en-1-yl)-10'-((3-methylbut-2-en-1-yl)oxy)-

8'H-spiro[indoline-2,9'-pyrido[1,2-a]indol]-3-one (230) 

Using Method C, indigo (262 mg, 1.00 mmol) and 1-bromo-3-methylbut-2-ene 

(810 mg, 5 mmol) were reacted at 85 ºC for 3 h. The filtrate was subjected to 

flash silica gel column chromatography and elution with CH2Cl2/pet. spirit (9:1) 

yielded 230 (195 mg, 42%) as a yellow amorphous solid. Further elution with 

CH2Cl2/EtOAc (95:5) gave 253 (103 mg, 26%). 
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7.1.2.5 Reaction of indigo with 3-bromo-1-phenyl-1-propene 

Method A: 5 sec reaction 

 (2E)-1-(3-Phenylallyl)-[2,2'-biindolinylidene]-3,3'-dione (247) 

Using Method A, indigo (262 mg, 1.00 mmol) and cinnamyl 

bromide (980 mg, 5 mmol) were reacted at 85 ºC for 5 sec. The 

reaction was poured into an ice bath and the black precipitate 

was collected and dissolved in hot CH2Cl2 and was cooled at 5 

°C overnight. The mixture was then filtered to remove the 

unreacted indigo (38%). The filtrate was concentrated under reduced pressure and 

recrystallised from pet. spirit/CH2Cl2 (90:10) to furnish 247 (181 mg, 48%) as a navy 

powder, mp. 192-194 ºC, Rf = 0.72 (CH2Cl2/pet. spirit; 7:3). UV-Vis (CH2Cl2) λmax/nm 

(ε, M−1cm−1) 291 (28197), 628 (15596). IR υmax 3259 (m), 1685 (w), 1639 (s), 1608 (s), 

1465 (s), 1388 (s), 1296 (m), 1068 (s), 1018 (s), 918 (m), 748 (s) cm-1. 1H NMR 

(CDCl3) δ 5.28 (2H, t, J = 5.3 Hz, H1''), 6.24-6.30 (1H, m, H2''), 6.48 (1H, d, J = 16.1 

Hz, H3''), 6.91 (1H, t, J = 7.4 Hz, H5), 6.96 (1H, d, J = 8.0 Hz, H7),  7.00 (1H, d, J = 

7.9 Hz, H6), 7.15 (2H, appt t, J = 8.2, 7.5 Hz, H7', ArH), 7.21-7.29 (4H, m, ArH), 7.42 

(1H, t, J = 7.4 Hz, H5'), 7.50 (1H, t, J = 7.5 Hz, H6'), 7.65 (1H, d, J = 7.7 Hz, H4), 7.73 

(1H, d, J = 7.7 Hz, H4') 10.70 (1H, s, NH). 13C NMR (CDCl3) δ 49.4 (C1''), 111.2 (C7), 

111.9 (C5'), 120.1 (C2), 120.7 (C3''), 120.9 (C7'), 121.1 (C2'), 122.8 (C3a), (ArC), 

124.1 (C4'), 124.6 (C5), 124.8 (C4), 125.8 (C3'a), 126.45 (2 × ArC), 127.7 (ArC), 128.5 

(2 × ArC), 132.4 (C2''), 135.9 (C6), 136.1 (C6'), 136.4 (ArC), 151.5 (C7a), 152.8 (C7'a), 

193.1 (C3'), 196.4 (C3). MS (EI): m/z = 378 (100%, M+), HRMS (ESI): calcd for 

C25H19N2O2 [M+H]+ 379.1447; found 379.1444.  
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Method B: 1 h reaction 

(8'R)-9a'-Cinnamyl-8'-phenyl-8'H-spiro[indoline-2,9'-pyrido[1,2-a]indole]-

3,10'(9a'H)-dione (254) 

Using Method B, indigo (262 mg, 1.00 mmol) and cinnamyl 

bromide (980 mg, 5.00 mmol) were reacted at 85 ºC for 1 h. Upon 

workup, the residue was subjected to a silica gel column 

chromatography. Elution with CH2Cl2/pet. spirit (9:1) yielded a 

yellow fraction which was concentrated. The residue was dissolved in a minimum 

volume of CH2Cl2 (5-6 mL) and pet. spirit (5-7 mL) was then added dropwise until the 

solution turned cloudy. The solution was heated in a water-bath and when it became 

clear, was cooled down to precipitate 254 (79.4 mg, 16%) as a luminous yellow powder, 

mp. 269-271 ºC, Rf = 0.37 (CH2Cl2). X-ray quality crystals were obtained from a 

DMSO solution by evaporation under stream of N2. UV−Vis (CH2Cl2) λmax/nm (ε, 

M−1cm−1) 285 (15395), 392 (3647). IR (neat) υmax 3356 (m), 3232 (m), 1693 (s), 1662 

(s), 1612 (s), 1473 (s), 1233 (m), 752 (s) cm-1. 1H NMR ((CD3)2SO) δ 2.98-3.10 (2H, m, 

H1''), 4.12 (1H, s, H8'), 4.98 (1H, d, J = 7.7 Hz, H7'), 5.70-5.76 (1H, m, H2''), 6.31 (1H, 

t, J = 7.2 Hz, H5), 6.43 (1H, d, J = 15.7 Hz, H3''), 6.73-6.76 (3H, m, H3', H6, H7), 6.99-

7.07 (5H, m, Ar''H), 7.13 (1H, d, J = 6.9 Hz, H4), 7.02-7.23 (5H, m, Ar'H), 7.26 (1H, d, 

J = 7.7 Hz, H4'), 7.42 (2H, appt t, J = 6.4, 8.0 Hz, H6', H1'), 7.52 (1H, t, J = 7.4 Hz, 

H2'), 7.87 (1H, s, NH). 13C NMR ((CD3)2SO) δ 37.1 (C1'), 44.8 (C8'), 68.9 (C2), 69.9 

(C9'a), 104.8 (C7'), 110.5 (C1'), 111.5 (C5), 117.0 (C3'), 119.6 (C7), 120.6 (C3a), 122.5 

(C4'a), 122.7 (C6), 123.3 (C2'), 123.9 (C4'), 124.7 (C6'), 126.3 (3 × Ar''C), 127.3 

(Ar''C), 127.7 (Ar''C), 128.0 (Ar'C), 129.0 (3 × Ar'C), 130.1 (Ar'C), 134.3 (C3''), 136.9 

(C4), 137.2 (Ar'C), 137.7 (Ar''C), 138.1 (C2'), 157.2 (C10'a), 161.4 (C7a), 197.5 (C3), 
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197.8 (C10). MS (EI): m/z = 494 (22%, M+), 377 (100). HRMS (ESI): calcd for 

C34H27N2O2 [M+H]+ 495.2073; found 495.2054. 

2'-Phenyl-1-(3-phenylallyl)-10'-((3-phenylallyl)oxy)-2'H-spiro[indoline-2,1'-

pyrido[1,2-a]indol]-3-one (231) 

Further elution, yielded 231 (165 mg, 37%) as a yellow crystalline solid mp. 92-93 ºC 

Rf = 0.64; IR (neat) υmax 1699 (m), 1613 (m), 1464 (s), 

1349 (m), 1320 (m), 740 (m) cm-1. 1H NMR (CDCl3) δ 

3.86 (1H, dd, J = 6.5, 6.5 Hz, H1'''a), 4.33-4.47 (4H, m, 

H1'''b, H2', H1''a, H1''b), 5.44 (1H, dd, J = 2.0, 2.0 Hz, 

H3'), 5.81-5.87 (1H, m, H2'''), 6.21 (1H, d, J = 15.5 Hz, 

H3'''), 6.55-6.59 (1H, m, H2''), 6.81 (1H, d, J = 15.4 Hz, H3''), 7.10-7.16 (4H, m, H8', 

H9', H5, H6), 7.21-7.32 (12H, m, H7', H4', 5 × ArH''', 5 × ArH''), 7.38 (1H, d, J = 7.5 

Hz, H7), 7.44 (1H, d, J = 8.5 Hz, H6'), 7.56 (1H, d, J = 7.5 Hz, H4). 13C NMR (CDCl3) 

δ 45.4 (C2'), 47.2 (C3''), 73.5 (C2), 74.7 (C6), 108.9 (ArC), 109.2 (C3'), 109.4 (C6'), 

117.6 (C2''), 118.6 (C4), 119.5 and 120.6 (ArC), 121.3 (C4'), 122.0 and 123.6 (ArC), 

124.5 (C2'''), 124.8, 126.3, 126.62, 126.64, 127.3, 127.6, 127.71, 127.77, 127.84, 128.2, 

128.37, 128.41 and 128.44 (ArC), 128.6 (C1''), 129.0, 130.2, 130.38, 130.43 (H7), 

131.6, 132.1, 132.9 (ArC), 133.2 (C1'''), 136.4, 136.6 and 137.2 (ArC), 137.7 (C3a), 

161.6 (C7a), 197.5 (C3). MS (EI), m/z 310 (12%, M+), 493 (100%, M -117). 

 

Method C: 3 h reaction 

8'-Phenyl-1-(3-phenylallyl)-10'-((3-phenylallyl)oxy)-8'H-spiro[indoline-2,9'-

pyrido[1,2-a]indol]-3-one (231) 

Using Method C, indigo (262 mg, 1.00 mmol) and 3-bromo-1-phenyl-1-propene 

(cinnamyl bromide) (980 mg, 5.00 mmol) were reacted at 85 ºC for 3 h The 
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concentrated filtrate was subjected to a flash silica gel column chromatography and 

elution with CH2Cl2/pet. spirit (9:1) yielded 231 (226 mg, 37%) as a yellow crystalline 

solid, with spectral values similar to those reported above.  

 

7.1.2.6 Reaction of indigo with 3-bromocyclohexene 

(E)-1-(Cyclohex-2-en-1-yl)-[2,2'-biindolinylidene]-3,3'-dione (258) 

Using Method A, indigo (262 mg, 1.00 mmol) and 3-

bromocyclohexene (795 mg, 5.00 mmol) were reacted at 85 ºC 

for 5 sec. The reaction was poured into an ice bath and the dark 

navy precipitate were collected and dissolved in hot CH2Cl2 and 

cooled at 5 °C overnight. The mixture was then filtered to 

remove the unreacted indigo (38%). The filtrate was concentrated under reduced 

pressure then dissolved in hot MeOH/H2O (1:3) and cooled to precipitate 255 (174 mg, 

51%) as a dark navy powder, mp. 149-151 ºC, Rf = 0.74 (CH2Cl2 : pet. spirit; 7:3). 

UV−Vis (CH2Cl2) λmax/nm (ε, M−1cm−1) 249 (135732), 368 (58341). IR (neat) υmax 3278 

(bm), 1643 (s), 1462 (s), 1319 (m), 1068 (s), 1045 (s), 748 (s) cm-1. 1H NMR (CDCl3) δ 

1.60-2.17 (6H, m, H4'', H5'', H6''), 5.84 (1H, d, J = 5.9 Hz, H1''), 5.96 (1H, bs, H2''), 

6.91-7.01 (3H, m, H3'', H7, H5), 7.33 (1H, d, J = 7.4 Hz, H7'), 7.41-7.48 (3H, m, H6', 

H6, H4), 7.70 (2H, d, J = 7.5 Hz, H4', H5'), 10.73 (1H, s, NH). 13C NMR (CDCl3) δ 

22.3 (C4''), 24.9 (C5''), 27.8 (C6''), 57.5 (C1''), 112.0 (C7), 112.1 (C5'), 114.8 (C2''), 

120.7 (C3'a), 120.8 (C7'), 120.9 (C5), 124.1 (C3a), 124.4 (C2), 124.8 (C4'), 125.1 (C4), 

130.1 (C2'), 135.4 (C2''), 136.0 (C6), 136.3 (C6'), 151.5 (C7a), 151.9 (C7'a), 187.3 

(C3'), 190.3 (C3). MS (EI): m/z = 342 (43%, M+), 262 (100). HRMS (ESI): calcd for 

C22H19N2O2 [M+H]+ 343.1465; found 343.1462. 
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Optimised procedure of production of monoallylated indigos (243–245) 

A suspension of indigo (262 mg 1.00 mmol) in anhydrous DMF (40 mL) was sonicated 

for 30 min and the resulting suspension was transferred to a septum equipped round 

bottom flask carrying pre-dried Cs2CO3 (1.303 g, 4.00 mmol) under a N2 flow. The 

flask was plunged into a preheated oil bath at 85–88 °C and stirred for 1 h. The N2 flow 

was stopped and allylic bromide (5.00 mmol) was added rapidly in one portion by 

syringe, and after 5 s, the reaction mixture was poured into an ice bath. The blue-black 

precipitate was filtered and dissolved in hot CH2Cl2 and cooled at 5 °C overnight. The 

mixture was then filtered to remove the unreacted indigo (10% >). The filtrate was 

concentrated under reduced pressure then recrystallised from pet. spirit/EtOAc (90:10) 

to furnish the monoallylated indigos 243–245 in 83%, 81% and 89% yields, 

respectively. 

 

 

Reaction of 13-allyl-8a-hydroxy-8,13a-dihydroazepino[1,2-a:3,4-b']diindol-

14(8H)-one (248) with Cs2CO3 

A solution of 248 (34.2 mg, 0.100 mmol) in DMF (8 mL) was transferred to a septum-

equipped round-bottom flask containing pre-dried Cs2CO3 (0.200 mmol) under an inert 

atmosphere. The mixture was heated and stirred for 20 min and then was poured into an 

ice bath. The cloudy solution was partitioned in CH2Cl2 and the combined organic 

layers were washed with brine (2 × 30 mL) and water (5 × 50 mL), dried (Na2SO4) and 

concentrated under reduced pressure. The residue was subjected to PTLC and elution 

with pet. spirit/CH2Cl2 (1:3) yielded 8H,16H-pyrido[1,2,3-s,t]-indolo[1,2-

a]azepino[3,4-b]indol-17-one 232 (28.6 mg, 89%) as a yellow-brown powder; mp 143-

144 °C. 
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Allylation of (E)-1-allyl-[2,2'-biindolinylidene]-3,3'-dione (243) 

A solution of 243 (30.2 mg, 0.100 mmol) in DMF (8 mL) was transferred to a septum-

equipped round flask containing 4 Å molecular sieves, pre-dried Cs2CO3 (0.200 mmol) 

and allyl bromide (53.6 mg, 0.400 mmol) in DMF (2 mL) under an inert atmosphere. 

The mixture was heated and stirred for 3 h. The reaction mixture was then filtered into 

an ice bath. The cloudy solution was partitioned in CH2Cl2 (ca 10 mL) and the 

combined organic layers washed with brine (2 × 30 mL) and water (5 × 50 mL), dried 

(Na2SO4) and concentrated under the reduced pressure. The filtrate was subjected to 

PTLC and elution with pet. spirit/CH2Cl2 (1:3) yielded 8H,16H-pyrido[1,2,3-s,t]-

indolo[1,2-a]azepino[3,4-b]indol-17-one 232 (19.1 mg, 59%) as a yellow-brown 

powder; mp 143-144 °C. X-ray quality crystals were grown through the slow 

crystallisation from pet. spirit : CH2Cl2 (5:3). Rf = 0.61. Results from spectral analysis 

of the purified compound were compatible with the reported literature values.146 The 

other distinctive band was collected and soaked in EtOAc and yielded 1-allyl-10'-

allyloxy-2'H-spiro(indoline-2,1'-pyrido[1,2-a]indol)-3-one 227 (2.30 mg, 8%) as an 

orange yellow solid; mp. 121-122 ºC. Rf = 0.51. The spectral information was 

compatible with literature reported values.146 

 

(E)-1-Methyl-[2,2'-biindolinylidene]-3,3'-dione (255) 

Using Method A, indigo (262 mg, 1.00 mmol) and methyl iodide 

(709 mg, 5 mmol) were reacted at 85 ºC for 5 sec. The reaction 

was poured into an ice bath and the black precipitate was collected 

and dissolved in hot CH2Cl2 and was cooled at 5 °C overnight. The mixture was then 

filtered to remove the unreacted indigo (8%). The filtrate was concentrated under 
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reduced pressure and recrystallised from pet. spirit/CH2Cl2 (90:10) to furnish 255 (213 

mg, 77%) as a navy powder, mp. 167-169 ºC, Rf = 0.76 (CH2Cl2/pet. spirit; 7:3). IR υmax 

3260 (m), 1682 (w), 1641 (s), 1611 (s), 1473 (s), 1393 (s), 1295 (m), 1066 (s), 1013 (s), 

923 (m), 737 (s) cm-1. 1H NMR (CDCl3) δ 3.47 (3H, s, H1''), 6.78 (1H, t, J = 7.2 Hz, 

H5'), 6.82 (1H, d, J = 8.2 Hz, H7), 6.98 (1H, t, J = 7.2 Hz, H5), 7.18 (1H, d, J = 8.2 Hz, 

H7'), 7.28 (1H, t, J = 7.5 Hz, H6'), 7.38 (1H, t, J = 7.5 Hz, H6), 7.68 (1H, d, J = 7.3 Hz, 

H4), 7.79 (1H, d, J = 7.3 Hz, H4'), 9.47 (1H, s, NH). 13C NMR (CDCl3) δ 34.3 (C1''), 

109.9 (C7), 113.6 (C7'), 122.6 (C5), 122.8 (C3'a), 124.4 (C3a), 124.8 (C4'), 125.1 (C5'), 

127.7 (C4), 130.9 (C2), 131.0 (C6'), 132.5 (C6), 134.3 (C2'), 152.5 (C7a), 152.7 (C7'a), 

186.3 (C3'), 188.6 (C3). MS (EI): m/z = 276 (78%, M+), 261 (100). HRMS (ESI): calcd 

for C17H12N2O2 [M+H]+ 277.0899; found 277.0911. 

 

8a-Hydroxy-13-methyl-8a,13-dihydroazepino[1,2-a:3,4-b']diindol-14(8H)-one (256) 

A solution of 255 (55.2 mg, 0.200 mmol) in DMF (10 mL) was 

transferred to a septum-equipped round flask containing 4 Å 

molecular sieves, pre-dried Cs2CO3 (0.400 mmol) and allyl 

bromide (107.2 mg, 0.800 mmol) in DMF (2 mL) under an inert atmosphere. The 

mixture was heated and stirred for 3 h. The reaction mixture was then filtered into an ice 

bath. The cloudy solution was partitioned in EtOAc (ca 10 mL) and the combined 

organic layers washed with brine (2 × 30 mL) and water (5 × 50 mL), dried (Na2SO4) 

and concentrated under the reduced pressure. The filtrate was dissolved in CH2Cl2 (2-3 

mL). Dropwise addition of pet. spirit was continued to the stage in which the solution 

started to became cloudy. The solution was heated in water bath to achieve a clear 

solution. Then slow recrystallisation of this solution afforded the 8a-hydroxy-13-

methyl-8a,13-dihydroazepino[1,2-a:3,4-b']diindol-14(8H)-one 257 (49.9 mg, 79%) as a 
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ruby-red crystals; mp 143-145 °C. Rf = 0.19 (CH2Cl2/EtOAc; 9.5:0.5). IR (neat) υmax 

3277 (bm), 1611 (m), 1528 (s), 1476 (s), 1412 (m), 1310 (m), 1179 (m), 1101 (m), 743 

(s) cm-1. 1H NMR (CDCl3) δ 2.43 (1H, d, J = 2.8 Hz, H8a), 2.97 (1H, dd, J = 2.6, 17.3 

Hz, H8b), 3.38 (s, 3H, H1'), 4.90-4.95 (1H, m, H7), 5.67 (1H, bs, OH), 6.76-6.85 (3H, 

m, H4, H6, H10), 7.01 (1H, t, J = 7.0 Hz, H11), 7.11 (1H, d, J = 7.1 Hz, H12), 7.22 (1H, 

t, J = 7.2 Hz, H3), 7.35 (1H, t, J = 7.4 Hz, H2), 7.43 (1H, d, J = 7.4 Hz, H9), 7.50 (1H, 

d, J = 7.5 Hz, H1). 13C NMR (CDCl3) δ 37.2 (C1'), 38.9 (C8), 81.1 (C8a), 101.5 (C7), 

109.4 (C4), 114.6 (C7), 117.5 (C13b), 120.1 (C6), 122.6 (C14a), 123.0 (C12), 123.3 

(C10), 123.4 (C9), 123.9 (C1), 130.8 (C11), 132.6 (C3), 133.4 (C8b), 135.3 (C13a), 

145.7 (C12a), 156.2 (C4a), 178.1 (C14). MS (EI): m/z = 316 (89%, M+), 301 (100), 284 

(63). HRMS (ESI): calcd. for C20H16N2O2 [M+H]+ 317.1212; found 317.1207. 

 

 

(E)-10'-(But-2-en-1-yloxy)-1,8'-dimethyl-8'H-spiro[indoline-2,9'-pyrido[1,2-

a]indole]-3-one (257) 

A solution of 255 (50 mg, 0.180 mmol) in DMF (10 mL) was 

transferred to a septum-equipped round flask containing 4 Å 

molecular sieves, pre-dried Cs2CO3 (0.400 mmol) and allyl 

bromide (107.0 mg, 0.800 mmol) in DMF (2 mL) under an inert 

atmosphere. The mixture was heated and stirred for 3 h. The reaction mixture was then 

filtered into an ice bath. The cloudy solution was partitioned in CH2Cl2 (ca 10 mL) and 

the combined organic layers washed with brine (2 × 30 mL) and water (5 × 50 mL), 

dried (Na2SO4) and concentrated under the reduced pressure. The filtrate was dissolved 

in CH2Cl2 (2-3 ml). Dropwise addition of pet. spirit was continued to the stage in which 

the solution started to became cloudy. The solution was heated in a water bath to 
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achieve a clear solution. Then slow recrystallisation of the solution yielded (E)-10'-(but-

2-en-1-yloxy)-1,8'-dimethyl-8'H-spiro[indoline-2,9'-pyrido[1,2-a]indole]-3-one 257 

(60.0 mg, 78%) as a yellow-brown powder; mp 127-129 °C Rf = 0.53 (CH2Cl2/pet. 

spirit; 7:3). The X-ray quality crystals were grown through slow crystallization from 

pet. spirit : EtOAc (8:2). IR (neat) υmax 1689 (m), 1608 (s), 1485 (s), 1468 (s), 1250 (m), 

1055 (m) cm-1. 1H NMR (CDCl3) δ 0.99 (3H, d, J = 7.4 Hz, C8'-CH3), 1.53 (3H, d, J = 

6.5 Hz, H4'''), 3.01 (3H, s, H1''), 3.11-3.14 (1H, m, H2'), 3.67 (1H, dd, J = 10.7, 6.9 Hz, 

H1'''a), 4.16 (1H, dd, J = 10.8, 6.7, H1'''b), 5.07-5.13 (1H, m, H3'''), 5.15 (1H, dd, J = 

1.8, 7.0 Hz, H7'), 5.27-5.34 (1H, m, H2'''), 6.66 (1H, t, J = 7.4 Hz, H5), 6.81 (1H, d, J = 

8.3 Hz H1'), 7.03-7.08 (2H, m, H6',H7), 7.18 (1H, t, J = 7.6 Hz, H6), 7.33 (1H, d, J = 

8.3 Hz, H3'), 7.45-7.52 (2H, m, H4', H4). 13C NMR (CDCl3) δ 13.7 (C8'-CH3), 17.7 

(C4'''), 28.4 (C1a), 32.7 (C8'), 69.6 (C2), 74.9 (C1'''), 108.1 (C4'), 109.0 (C2'), 109.7 

(C7'), 116.9 (C5), 117.5 (C9'a), 118.4 (C1'), 119.1 (C10'a), 120.2 (C6'), 120.7 (C7), 

122.1 (C4'a), 123.2 (C4), 124.9 (C3'''), 127.5 (C6), 130.5 (C2'''), 133.0 (C10'), 137.5 

(C6), 137.7 (C3'a) 161.9 (C7a), 197.7 (C3). MS (EI), m/z 384 (28%, M+), 329 (100), 

HRMS (ESI, M+) calcd for C25H24N2O2 385.1916, found 385.1904. 

 

Diallyl (E)-3,3'-dioxo-[2,2'-biindolinylidene]-1,1'-dicarboxylate 

A suspension of indigo (262 mg, 1.00 mmol) in DMF was 

sonicated for 30 min at room temperature and transferred to a 

septum equipped round bottom flask containing pre-dried and 

ground Cs2CO3 (1.303 g, 4.00 mmol) and molecular sieves under 

an inert atmosphere. The flask was plunged to a pre-heated oil 

bath at 85-88 °C and stirred for 30 min. The inert atmosphere 

flow was then cut and allyl chloroformate (600 mg, 5.00 mmol) was added, which 
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turned the colour of the mixture from green blue to dark purple immediately after the 

addition. The mixture was stirred and heated for 3 h under a static inert atmosphere (N2) 

and TLC analysis indicated the complete consumption of indigo. Molecular sieves were 

filtered from the hot reaction mixture and the filtrate poured into an ice bath and then 

partitioned in water and CH2Cl2 and washed with brine (2 × 30 mL) and water (5 × 50 

mL) and the combined organic phases were dried (Na2SO4) and concentrated under 

reduced pressure. The residue was recrystallised from the mixture of pet. spirit/CH2Cl2 

(8.5:1.5) and yielded 259 (374 mg, 87%) as a dark magenta crystals; mp 188-190 °C. X-

ray quality crystals were grown through slow crystallization from pet. spirit : CH2Cl2 

(5:3). Rf = 0.61; IR (neat) υmax 1752 (s), 1639 (s), 1615 (s), 1457 (s), 1380 (m), 1059 

(m), 1031 (s), 925 (m), 743 (m) cm-1. 1H NMR (CDCl3) δ 4.86 (4H, s, H2'', H2'''), 5.19 

(2H, d, J = 10.4 Hz, H5''a, H5'''a), 5.30 (2H, d, J = 10.4 Hz, H5''b, H5'''b), 5.89-5.97 

(2H, m, H4'', H4'''), 7.18 (2H, t, J = 8.2 Hz, H5, H5'), 6.85 (2H, t, J = 7.8 Hz, H6, H6'), 

7.71 (2H, d, J = 7.6 Hz, H7, H7'), 8.03 (2H, d, J = 8.2, H4, H4'). 13C NMR (CDCl3) δ 

68.4 (2C, C2'', C2'''), 116.5 (2C, C5'', C5'''), 119.1 (2C, C2, C2'), 122.7 (2C, C3a, C3'a), 

124.4 (2C, C4, C4'), 124.8 (2C, C5, C5'), 131.6 (2C, C4'', C4'''), 136.5 (2C, C6, C6'), 

148.8 (2C, C7a, C7'a), 151.7 (2C, C1', C1'') 183.7 (2C, C2, C2'). MS (EI), m/z 430 

(89%, M+), 345 (100) 301 (97), 273(80), HRMS (EI, M+) calcd for C24H18N2O 

430.1160, found 430.1169. 

 

Optimised procedure for the synthesis of 13-allyl-8a-hydroxy-8,13a-

dihydroazepino[1,2-a:3,4-b']diindol-14(8H)-one (248) from (259) 

A solution of 259 (45.0 mg, 0.100 mmol) in anhydrous CH2Cl2 (10 mL) was stirred 

under the N2. The solution was transferred to a septum equipped round bottom flask 

containing Pd(PPh3)4 and stirred at room temperature (27 ºC) for 10 min. The magenta 



  

  

188 Chapter 7: Experimental 

colour of the solution turned to dark blue and complete conversion of the 259 to a blue 

compound (Rf = 0.61) was confirmed via TLC analysis. The reaction was quenched by 

addition of the saturated solution of NaHCO3 (5 mL). The solution was partitioned in 

CH2Cl2 (ca 10 mL) and washed with brine (2 × 30 mL) and water (5 × 50 mL). The 

combined organic layers were dried (Na2SO4) and mass spectroscopy analysis of the 

crude was confirmed the mass the presence of a product with mass unit of 342 Da which 

was assigned to the N,N'-diallylindigo. The filtrate was concentrated under reduced 

pressure. During the concentration of the solution its colour turned to bright red. The 

filtrate was recrystallised from the mixture of pet. spirit/CH2Cl2 (9:1) yielding 13-allyl-

8a-hydroxy-8,13a-dihydroazepino[1,2-a:3,4-b']diindol-14(8H)-one 248 (335 mg, 98%) 

as dark red crystals.  

In a separate attempt the combined organic layers from the extraction were combined in 

to a flask and plunged to an ice bath and concentrated under the nitrogen. The colour of 

the solution turned to red after 2 h. Analysis of the solution was confirmed the 

conversion of the product to 248.  

 

Methyl-2-(13,14-dioxo-6,7,13,14-tetrahydropyrazino[1,2-a:4,3-a']diindol-6-

yl)acetate (261) 

 A suspension of indigo (262 mg, 1.00 mmol) in DMF was 

sonicated for 30 min at room temperature and transferred to a 

septum equipped round bottom flask containing pre-dried and 

ground Cs2CO3 (1.303 g, 4.00 mmol) and molecular sieves 

under an inert atmosphere. The flask was plunged to a pre-heated oil bath at 85-88 °C 

and stirred for 30 min. The inert atmosphere flow was then cut and methyl 4-

bromocrotonate (900 mg, 5.00 mmol) was added and the mixture was stirred and heated 
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for 3 h under a static inert atmosphere (N2). Molecular sieves were filtered from the hot 

reaction mixture and the filtrate poured into an ice bath and then partitioned in water 

and CH2Cl2 and washed with brine (2 × 30 mL) and water (5 × 50 mL). The combined 

organic phases were dried (Na2SO4) and concentrated under reduced pressure. The 

residue was recrystallised from pet. spirit/CH2Cl2 (9:1) yielding 261 (223 mg, 62%) as a 

dark purple solid; Rf = 0.51, mp 267−269 °C. IR (neat) υmax 1761 (s), 1709 (m), 1615 

(m), 1467 (m), 1292 (m), 1184 (m), 1121 (s), 740 (s) cm−1. 1H NMR (CDCl3) δ 1.61 

(1H, s, H1′a), 2.62 (1H, s, H1′b), 3.61 (3H, s, H4), 3.92 (1H, dd, J = 12.4, 3.3 Hz, H7a), 

4.17 (1H, d, J = 12.3, H7b), 5.03−5.11 (1H, m, H6), 6.79-6.85 (2H, m, H2, H11), 6.89-

6.93 (2H, m, H4, H9), 7.56-7.60 (2H, m, H3, H10), 7.67-7.73 (2H, m, H1, H12). 13C 

NMR (CDCl3) δ 43.4 (C1'), 50.4 (C7), 50.9 (C6), 51.9 (C4'), 105.0 (C9), 111.2 (C4), 

121.8 (C14a), 122.7 (C12a), 124.0 (C2), 124.1 (C11), 127.4 (C1), 128.7 (C12), 133.9 

(C10), 133.6 (C13a), 133.8 (C3), 134.25 (C13b), 146.3 (C4a), 148.0 (C8a), 170.3 (C2'), 

179.7 (C13), 180.6 (C14). MS (EI), m/z 360 (23%, M+), 287 (100%). HRMS (ESI) [M + 

H]+ calcd for C19H13N2O2, 361.8962; found, 361.8971. 

 

7.1.3 Products from the propargylation of indigo  

7.1.3.1 Reaction of indigo and propargyl bromide 

A suspension of powdered indigo (262 mg, 1.00 mmol) in anhydrous DMF (40 mL) 

was sonicated for 30 min and stirred vigorously under N2 overnight. The resulting 

suspension was added to pre-dried anhydrous caesium carbonate (1.20 g, 3.40 mmol) 

and molecular sieves (4 Å) while being stirred and heated to 80−85 °C under a N2 

atmosphere. After 30 min propargyl bromide (595 mg, 5.00 mol) was added and the 

reaction mixture was heated at 82−85 °C for 5 min. The mixture was filtered hot and 
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then the solution was concentrated by rotary evaporation and the residue applied to a 

short plug of silica gel/celite (1:1) and washed consecutively with 4 different solvent 

mixtures: 1: 70:30 CH2Cl2/petroleum spirit (250 mL); 2: CH2Cl2; 3: 50:50 

CH2Cl2/EtOAc and 4: 95:5 EtOAc/MeOH (250 mL). Four fractions were collected from 

the four different elutions.  

(E)1-(Prop-2-yn-1-yl)-[2,2′-biindolinylidene]-3,3′-dione 

Fraction 1 was concentrated and slowly recrystallised in 9:1 

petroleum spirit/EtOAc then filtered to yield 1-(prop-2-yn-1-yl)-

[2,2′-biindolinylidene]-3,3′-dione 263 (33.0, mg 11%) as a blue, 

papery solid. Rf (7:3 CH2Cl2/petroleum spirit) = 0.53, mp 

267−269 °C; λmax/nm (ε, M−1cm−1) 291 (10447), 634 (6381). IR (neat) υmax 3278 (m), 

1605 (s), 1463 (s), 1297 (s), 1066 (s), 1027 (s), 927 (m), 743 (m) cm−1. 1H NMR 

(CDCl3) δ 2.17 (1H, s, H3''), 5.41 (2H, s, H1''), 6.96 (1H, t, J = 7.1 Hz, H5'), 6.99 (1H, 

d, J = 8.1 Hz, H7'), 7.09 (1H, t, J = 7.1 Hz, H5), 7.22 (1H, d, J = 8.1 Hz, H7), 7.48 (1H, 

t, J = 7.5 Hz, H6), 7.60 (1H, t, J = 7.5 Hz, H6'), 7.69 (1H, d, J = 7.5 Hz, H4'), 7.77 (1H, 

d, J = 7.5 Hz, H4) 10.60 (1H, s, H1). 13C NMR (CDCl3) δ 37.1 (C1''), 72.5 (C3''), 78.4 

(C2''), 111.5 (C7'), 111.9 (C7), 120.4 (C3'a), 120.9 (C5'), 121.5 (C5), 122.0 (C2'), 122.4 

(C2), 125.0 (C4'), 125.1 (C4), 126.2 (C3a), 135.9 (C6), 136.4 (C6), 151.8 (C7'a), 152.6 

(C7a), 187.6 (C3), 189.6 (C3'). MS (EI) m/z: 300 (100%, M+), 271 (53), 262 (32). 

HRMS (ESI) [M + H]+ calcd for C19H13N2O2, 301.0977; found, 301.0964. 

6-Methylene-6,7-dihydropyrazino[1,2-a:4,3-a′]diindole-13,14-dione (264) 

Fraction 4 was purified by preparative TLC using 

CH2Cl2/EtOAc (88:12) as the developing solvent and gave 6-

methylene-6,7-dihydropyrazino[1,2-a:4,3-a′]diindole-13,14-

dione 264 was isolated as a dark burgundy powder (63 mg, 21%). Rf (8.5:1.5, 
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CH2Cl2/EtOAc)= 0.51, mp 280−284 °C. UV−vis (CH2Cl2) λmax/nm (ε, M−1cm−1) 324 

(13088), 573 (6430). IR (neat) υmax 1701 (m), 1604 (m), 1470 (m), 1298 (m), 1185 (m), 

1122 (s), 742 (s) cm−1. 1H NMR (CDCl3) δ 4.41 (2H, s, H7), 5.04 (1H, s, H1'a), 5.38 

(1H, s, H1'b), 6.95−7.00 (2H, m, H9, H11), 7.09 (1H, t, J = 7.4 Hz, H2), 7.48−7.55 (3H, 

m, H3, H4,H10), 7.73 (1H, d, J = 7.5 Hz, H12), 7.82 (1H, d, J = 7.5 Hz, H1). 13C NMR 

(CDCl3) δ 45.9 (C7), 97.9 (C1'), 109.5 (C9), 112.7 (C4), 121.4 (C13a), 121.8 (C11), 

122.7 (C2), 123.0 (C12a), 124.6 (C14a), 125.3 (C1), 125.5 (C12), 125.6 (C6), 131.6 

(C13b), 135.1 (C10), 135.5 (C3), 147.0 (C4a), 150.0 (C8a), 179.7 (C14), 180.8 (C13). 

MS (EI), m/z 300 (14), 207 (100%). HRMS (ESI) [M + H]+ calcd for C19H13N2O2, 

301.0972; found, 301.0960. 

13-Oxo-12-(prop-2-yn-1-yl)-12b(propa-1,2-dien-1-yl)-12b,13-dihydro-12H-

pyrido[1,2-a:3,4-b′]diindole-6-carbaldehyde (265) 

The mother liquors from fraction 1 were combined with fraction 

2 and then subjected to a silica gel column and elution with 7:3 

CH2Cl2/pet. spirit gave 13-oxo-12-(prop-2-yn-1-yl)-12b(propa-

1,2-dien-1-yl)-12b,13-dihydro-12H-pyrido[1,2-a:3,4-b′]diindole-

6-carbaldehyde 265 as yellow−orange crystals (63.92 mg, 17%). 

X-ray quality crystals were grown through slow crystallization from pet. spirit/EtOAc 

(5:3). Rf (CH2Cl2) = 0.26, mp 229−231 °C; UV−vis (CH2Cl2) λmax/nm (ε, M−1cm−1) 386 

(12825), 244 (34151). IR (neat) υmax 3278 (m), 1604 (s), 1463 (s), 1297 (m), 1065 (s), 

1027 (s), 1015 (s), 743 (s) cm−1. 1H NMR (CDCl3) δ 2.33 (1H, s, H3'), 4.79 (2H, d, J = 

6.5 Hz, H3''), 5.42 (1H, t, J = 6.5 Hz, H1''), 5.51−5.66 (2H, m, H1'), 6.82 (1H, d, J = 8.4 

Hz, H11), 6.94 (1H, t, J = 7.2 Hz, H3), 7.27 (1H, t, J = 7.6 Hz, H2), 7.35 (1H, t, J = 8.0 

Hz, H9), 7.49 (1H, t, J = 8.0 Hz, H8), 7.54 (1H, d, J = 8.4 Hz, H10), 7.64−7.68 (2H, m, 

H1, H4), 7.65 (1H, s, H7), 9.62 (1H, s, H1'''). 13C NMR (CDCl3) δ 36.2 (C1′), 71.3 
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(C12b), 73.6 (C3'), 77.8 (C2'), 80.4 (C3''), 90.4 (C1''), 110.7 (C7a), 111.1 (C13a), 111.5 

(C9), 113.6 (C1), 117.2 (C12a), 118.6 (C11), 121.1 (C3), 122.6 (C8), 124.1 (C10), 

124.5 (C11a), 124.9 (C4), 131.8 (C7), 137.7 (C7b), 138.2 (C4a), 138.5 (C2), 158.6 

(C6), 185.3 (C1'''), 195.7 (C13), 208.4 (C2''). MS (EI) m/z 376 (5%, M+), 371 (100), 298 

(24). HRMS (ESI) [M + H]+ calcd for C25H17N2O2, 377.1298; found, 377.1285. 

13-(Prop-2-yn-1-yl)-14-(prop-2-yn-1-yloxy)benzo[b]indolo-[1,2-h][1,7] 

naphthyridine-8-(13H)-one (266) 

Fraction 3 was recrystallized from CH2Cl2/petroleum spirit (1:9) giving 13-(prop-2-yn-

1-yl)-14-(prop-2-yn-1-yloxy)benzo[b]indolo-[1,2-h][1,7]naphthyridin-8-(13H)-one 266 

(116.6 mg, 31%) as orange crystals. X-ray quality crystals were 

grown through slow crystallization from petroleum spirit/ethyl 

acetate (4:3). Rf (9:1 CH2Cl2/EtOAc) = 0.52, mp 218−220 °C; 

UV−vis (CH2Cl2) λmax/nm (ε, M−1cm−1) 324 (27663), 441 

(10360). IR (neat) υmax 3205 (w), 1588 (m), 1485 (m), 1349 (m), 1260 (m), 1059 (m), 

725 (s) cm−1. 1H NMR (CDCl3) δ 2.14 (1H, s, J = 2.4 Hz, H3′), 2.30 (1H, s, J = 2.4 Hz, 

H3''), 4.74 (2H, d, J = 2.4 Hz, H1'), 5.49 (2H, d, J = 2.4 Hz, H1''), 7.33 (1H, d, J = 7.2 

Hz, H7), 7.40-7.47 (3H, m, H1, H2, H3), 7.74−7.77 (1H, m, H11), 7.85−7.90 (3H, m, 

H4, H10, H12), 8.01 (1H, d, J = 7.3 Hz, H6), 8.71 (1H, dd, J = 8.0, 1.3 Hz, H9). 13C 

NMR (CDCl3) δ 44.0 (C1″), 63.7 (C1′), 74.5 (C3′), 76.5 (C3″), 78.5 (C2″), 78.6 (C2′), 

104.0 (C7), 110.9 (C3), 117.9 (C7a), 118.6 (C12), 118.9 (C13b), 119.1 (C10), 119.9 

(C6), 121.6 (C4a), 123.3 (C2), 123.9 (C1, C4), 126.4 (C8a), 126.9 (C9), 129.3 (C14a), 

132.6 (C11), 133.2 (C14), 139.1 (C13a), 143.5 (C12a), 91.8 (C8). MS (EI), m/z 376 (6, 

M+), 337 (100%), 309 (20), 298 (75). HRMS (ESI) [M + H]+ calcd for C25H17N2O2, 

377.1285; found, 377.1302. 
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Prop-2-yn-1-yl 8-oxo-13-(prop-2-yn-1-yl)-14-(prop-2-yn-1-yloxy)-8,13-

dihydrobenzo[b]-indolo[1,2-h][1,7]naphthyridine-7-carboxylate (267) 

The mother liquor from the recrystallisation of 267 was concentrated and then subjected 

to silica gel column chromatography, and elution with 

CH2Cl2/EtOAc (92:8) resulted in prop-2-yn-1-yl 8-oxo-13-

(prop-2-yn-1-yl)-14-(prop-2-yn-1-yloxy)-8,13-

dihydrobenzo[b]-indolo[1,2-h][1,7]naphthyridine-7-carboxylate 

267 (2 mg, <1%) as bright orange crystals. X-ray quality 

crystals were grown through slow crystallization from chloroform. Rf (9:1, 

CH2Cl2/EtOAc) = 0.59, mp 258−260 °C; IR (neat) υmax 3278 (m), 2925 (m), 1718 (s), 

1595 (s), 1482 (m), 1237 (m), 1062 (m), 964 (m), 749 (s), 643 (s) cm−1. 1H NMR 

(CDCl3) δ 2.14 (1H, bs, H3″), 2.30 (1H, bs, H5′″), 2.53 (1H, bs, H3′), 4.76 (2H, d, J = 

2.0 Hz, H1″), 5.06 (2H, d, J = 1.7 Hz, H1′″), 5.43 (2H, d, J = 1.7 Hz, H1′), 7.43−7.50 

(3H, m, H1, H2, H3), 7.75 (1H, t, J = 7.8 Hz, H11), 7.82−7.90 (3H, m, H4, H10, H12), 

8.01 (1H, s, H6), 8.48−8.50 (1H, d, J = 7.8, H9). 13C NMR (CDCl3) δ 44.1 (C1′″), 53.4 

(C1′), 63.5 (C1″), 74.7 (C3′″), 75.1 (C3′), 76.5 (C3″), 77.9 (C2″), 78.1 (C2′), 78.2 

(C2′″), 110.7 (C7a), 110.8 (C7), 112.2 (C3), 115.1 (C13b), 118.1 (C12), 118.7 (C10), 

118.8 (C6), 122.0 (C4a), 123.8 (C2), 124.1 (C1), 124.7 (C4), 126.7 (C8a), 126.8 (C9), 

130.0 (C14a), 133.6 (C11), 134.5 (C14), 139.2 (C13a), 142.9 (C12a), 167.1 (ester C-O) 

174.5 (C8). MS (EI), m/z 458 (5, M+), 419 (100%), 380 (10), 375 (5), 337 (20), 298 

(45). HRMS (ESI) [M +H]+ calcd for C29H19N2O4, 459.1345; found, 459.1363. 
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Optimisation of the synthesis of (E)-1-(prop-2-yn-1-yl)-[2,2′-biindolinylidene]-3,3′-

dione (263) 

A suspension of powdered indigo (262 mg, 1.0 mmol) in anhydrous DMF (50 mL) was 

sonicated for 60 min and stirred vigorously under N2 overnight. The resulting 

suspension was added to pre-dried anhydrous caesium carbonate (2.4 g, 7.42 mmol) and 

the mixture was stirred and warmed to 80−85 °C under a N2 atmosphere. After 30 min 

propargyl bromide (1.90 mg 10.0 mmol) was added and the reaction mixture was heated 

at 82−85 °C for 5 s. The mixture was then poured into ice water and the resulting 

precipitate was filtered and recrystallized from pet. spirit/EtOAc (90:10) to furnish (E)-

1-(prop-2-yn-1-yl)-[2,2′-biindolinylidene]-3,3′-dione 263 (279.00 mg 93%) as a blue, 

fluffy solid.  

 

Optimisation of the synthesis of 6-methylene-6,7-dihydropyrazino[1,2-a:4,3-

a′]diindole-13,14-dione (264).  

A solution of 263 (100 mg, 0.33 mmol) in anhydrous DMF (20 mL) was stirred and 

warmed to 80−85 °C under a N2 atmosphere for 20 min. The solution was then added to 

pre-dried anhydrous caesium carbonate (107 mg, 0.33 mmol) and was stirred and 

warmed at 80−85 °C under a N2 atmosphere for 10 min. The mixture was then poured 

into ice water and the resulting precipitate was separated and subjected to silica gel 

short column chromatography and eluted with CH2Cl2/EtOAc (85:15) to give 6-

methylene-6,7-dihydropyrazino[1,2-a:4,3-a′]diindole-13,14-dione 264 as a dark 

burgundy powder (98 mg, 98%). 
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7.1.3.2 Reaction of indigo and propargyl mesylate 

A suspension of powdered indigo (262 mg, 1.00 mmol) in anhydrous DMF (40 mL) 

was sonicated for 30 min and stirred vigorously under N2 overnight. The resulting 

suspension was added to pre-dried anhydrous caesium carbonate (1.20 g, 3.4 mmol) and 

molecular sieves (4 Å) while being stirred and warmed to 80−85 °C under a N2 

atmosphere. After 1 h, propargyl bromide (0.595 mg 5.00 mol) was added and the 

reaction mixture was heated at 82−85 °C for 5 min. The reaction mixture was filtered 

hot into an ice bath. Upon leaving to stand overnight, the colloid lumps of the products 

sank to the bottom of the flask. The clear aqueous layer was decanted out and the 

remaining crude mixture was partitioned between water and EtOAc and washed with 

brine (2 × 20 mL) and distilled water (5 × 20 mL). The organic layer was collected and 

dried and concentrated in the vacuo. The residue was recrystallised from CH2Cl2/ pet. 

spirit (1:9) and yielded 266 (51%). The mother liquor was concentrated and subjected to 

preparative TLC. The two distinctive band were scraped which resulted in the isolation 

of 266 (8%) and 265 (28%), with spectral values similar to those reported above. 

 

7.1.3.3 Reaction of indigo and bromoacetonitrile 

(E)-2-(3,3-Dioxo-[2,2′-biindolinylidene]-1yl)acetonitirile 

 
A suspension of indigo (262 mg 1.00 mmol) in anhydrous DMF 

(40 mL) was sonicated for 30 min and the resulting suspension 

was transferred to a septum equipped round bottom flask 

carrying pre-dried Cs2CO3 (1.303 g, 4.00 mmol) under N2 flow. 

The flask was plunged into a preheated oil bath at 85-88 °C and stirred for 30 min. The 

N2 flow was stopped and bromoacetonitrile (600 mg, 5.00 mmol) was added rapidly in 
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one portion by syringe, and after 5 sec, the reaction mixture was poured into an ice bath. 

The blue-black precipitate was filtered and dissolved in hot CH2Cl2 and cooled at 5 °C 

overnight. The mixture was then filtered to remove the unreacted indigo (21%). The 

filtrate was concentrated under reduced pressure then recrystallised from pet. 

spirit/EtOAc (90:10) to furnish 272 (163.6 mg, 54%) as a dark navy crystalline solid; Rf 

= 0.63 (CH2Cl2/pet. spirit; 7:3), m.p: 201-203 ºC. IR (neat) υmax 3265 (m), 2198 (m), 

1601 (s), 1459 (s), 1299 (s), 1062 (s), 1025 (s), 928 (m), 741 (m) cm−1. 1H NMR 

(CDCl3) δ 5.64 (2H, s, H1″), 7.00 (1H, t, J = 7.5 Hz, H5′), 7.07 (1H, d, J = 8.3 Hz, H7′), 

7.20-7.26 (2H, H5, H7), 7.54 (1H, t, J = 7.5 Hz, H6), 7.69-7.73 (2H, m, H6′, H4′), 7.82 

(1H, d, J = 7.6 Hz, H4) 10.54 (1H, s, H1). 13C NMR (CDCl3) δ 38.1 (C1″), 111.6 (C7′), 

113.0 (C7), 116.0 (C2″), 121.7 (C3′a), 123.8 (C5′), 124.4 (C3a), 124.8 (C4′), 125.1 

(C5), 128.1 (C4) 130.6 (C2), 131.0 (C6′), 132.7 (C6), 133.9 (C2′), 144.5 (C7′a), 145.5 

(C7a), 181.2 (C3), 184.0 (C3′). MS (EI) m/z: 301 (100%, M+), 262 (56). HRMS (ESI) 

[M + H]+ calcd for C18H12N2O2, 302.1013; found, 302.1018. 

 

 

7.1.3.4 Reaction of indigo and 1-bromo-2-butyne 

A suspension of indigo (262 mg, 1.00 mmol) in DMF (40 mL) in a 100 mL round 

bottom flask fitted with a septum was sonicated for 30 minutes. The suspension was 

transferred by a cannula to a septum equipped round bottom flask containing pre-dried 

caesium carbonate (2.00 g, 6.14 mmol) and activated 4 Å molecular sieves and a stirring 

bar under a nitrogen atmosphere. The reaction vessel was suspended in an oil bath 

preheated at 85-87 ºC and allowed to react under nitrogen for 30 min, after which the 

nitrogen input was removed and 1-bromo-2-butyne (665 mg, 5.00 mmol) was injected. 

After 30 minutes, the content of the vessel was filtered into an ice bath. The mixture 
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was extracted with CH2Cl2 (5 × 20 mL), and the combined organic layers concentrated. 

The residue was then repeatedly washed with water (10 × 20 mL) and brine (3 × 20 

mL), the combined organic layers were dried (Na2SO4), and concentrated under the 

reduced pressure. 

(E)-1-(But-2-yn-1-yl)-[2,2'-biindolinylidene]-3,3'-dione (268) 

The residue was subjected to a flash silica gel column 

chromatography and elution with pet. spirit : CH2Cl2 (3:7) 

yielded the (E)-1-(but-2-yn-1-yl)-[2,2'-biindolinylidene]-3,3'-

dione 268 (192 mg 62%) as a blue, papery solid. Rf (7:3 

CH2Cl2/pet. spirit) = 0.58, mp 279-281 °C; IR (neat) υmax 3278 (m), 1608 (s), 1465 (s), 

1292 (s), 1061 (s), 1032 (s), 922 (m), 747 (m) cm−1. 1H NMR (CDCl3) δ 1.72 (3H, s, 

H4″), 5.14 (2H, s, H1″), 6.77 (1H, dd, J = 7.5, 1.6 Hz, H7′†††), 6.80 (1H, t, J = 7.5 Hz, 

H5), 6.90 (1H, dd, J = 7.5, 1.4 Hz, H7), 7.00 (1H, t, J = 7.5 Hz, H5′), 7.30 (1H, t, J = 

7.5 Hz, H6′), 7.57 (1H, t, J = 7.5 Hz, H6), 7.68 (1H, d, J = 7.5 Hz, H4′), 8.27 (1H, d, J = 

7.4 Hz, H4) 10.49 (1H, s, H1′). 13C NMR (CDCl3) δ 6.9 (C4″), 37.4 (C1″), 73.6 (C3″), 

74.3 (C2″), 111.6 (C7), 113.0 (C7′), 121.7 (C3a), 123.8 (C5), 124.4 (C3′a), 124.8 (C4′), 

125.1 (C5′), 128.1 (C4), 130.6 (C2), 131.0 (C6′), 132.6 (C6), 133.9 (C2′), 144.5 (C7′a), 

152.3 (C7a), 181.6 (C3), 184.0 (C3′). MS (EI) m/z: 314 (100%, M+), 300 (18), 261 (29). 

HRMS (ESI) [M + H]+ calcd for C20H15N2O2, 315.1055; found, 315.1063. 

13-(But-2-yn-1-yl)-7a-methylbenzo[b]indolo[1,2-h][1,7]naphthyridine-

8,14(7aH,13H)-dione (269) 

Furthur elution afforded a fraction which recrystallized from 

EtOAc/pet. spirit (1:9) giving 13-(but-2-yn-1-yl)-7a-

methylbenzo[b]indolo[1,2-h][1,7]naphthyridine-8,14(7aH,13H)-

                                                
††† Meta coupling. 
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dione 269 (117 mg, 31%) as dark red crystals. X-ray quality crystals were grown 

through slow crystallization from pet. spirit/ethyl acetate (4:3). Rf (9:1 CH2Cl2/EtOAc) 

= 0.53, mp 243−245 °C; IR (neat) υmax 1684 (m), 1599 (m), 1570 (m), 1465 (s), 1329 

(s), 1146 (m), 1003 (m), 740 (s) cm−1. 1H NMR (CDCl3) δ 1.65 (3H, s, H1'), 1.74 (3H, 

s, H4''), 4.66 (1H, d, J = 18.3, Hz, H1''a‡‡‡), 4.99 (1H, d, J = 18.3 Hz, H1''b***), 5.44 

(1H, d, J = 7.9 Hz, H7), 6.81 (1H, d, J = 7.9 Hz, H6), 6.97 (1H, t, J = 7.9 Hz, H10), 

7.09-7.15 (2H, m, H2, H12), 7.49-7.57 (2H, m, Hz, H4, H11), 7.71 (1H, d, J = 7.6 Hz, 

H9), 7.94 (1H, J = 7.7, H1). 13C NMR (CDCl3) δ 3.5 (C4''), 29.3 (C1'), 43.9 (C1''), 48.2 

(C7a), 73.7 (C3''), 81.7 (C2''), 103.5 (C7), 108.7 (C3), 116.0 (C12), 119.5 (C13b), 119.8 

(C10), 120.5 (C6), 120.7 (C2), 121.4 (C4a), 122.4 (C8a), 124.5 (C1), 128.5 (C4), 130.0 

(C9), 135.5 (C11), 138.4 (C14a), 144.2 (C13a), 146.8 (C12a), 178.4 (C14), 193.6 (C8). 

MS (EI), m/z 366 (23%, M+), 313 (100), 285 (25). HRMS (ESI) [M + H]+ calcd for 

C24H19N2O2, 367.1367; found, 367.1382. 

7.1.3.5 Reaction of indigo and 3-chloro-1-phenyl-1-propyne (270) 

A suspension of indigo (262 mg, 1.00 mmol) in DMF (40 mL) in a 100 mL round 

bottom flask fitted with a septum was sonicated for 30 minutes. The suspension was 

transferred by a cannula to a septum equipped round bottom flask containing pre-dried 

caesium carbonate (2.00 g, 6.14 mmol) and activated 4 Å molecular sieves and a stirring 

bar under a nitrogen atmosphere. The reaction vessel was suspended in an oil bath 

preheated at 85-87 ºC and allowed to react under nitrogen for 30 min, after which the 

nitrogen input was removed and 3-chloro-1-phenyl-1-propyne (753 mg, 5.00 mmol) was 

injected. After 30 minutes, the content of the vessel was filtered into an ice bath. The 

mixture was extracted with CH2Cl2 (5 × 20 mL), and the combined organic layers 

                                                
‡‡‡ CH2(H1''), splits as the presence of terminal alkynic methyl hinders the free rotation across the C-N 
bond, however the alkynic pendant in naphthyridine 266 rotates freely and CH2 appears as a singlet. 
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concentrated. The residue was then repeatedly washed with water (10 × 20 mL) and 

brine (3 × 20 mL) the combined organic layers were dried (Na2SO4), and concentrated 

under the reduce pressure. 

 

7-Hydroxy-8-phenylazepino[1,2-a:3,4-b']diindol-14(13H)-one (270) 

The residue was subjected to a flash silica gel column 

chromatography and elution with pet. spirit : CH2Cl2 (3:7) 

yielded the 7-hydroxy-8-phenylazepino[1,2-a:3,4-b']diindol-

14(13H)-one (101 mg, 27%) mp 148-150 ºC, Rf = 0.71 

(CH2Cl2/ pet. spirit; 7:3). IR υmax 3282 (bm), 1656 (s), 1601 (s), 1585 (s), 1394 (m), 

1119 (s), 734 (s) cm-1. 1H NMR (CDCl3) δ = 6.91 (1H, s, H6), 7.37 (3H, m, ArH), 7.46-

7.53 (2H, m, ArH), 7.50 (1H, t, J = 7.5 Hz, H11), 7.66-7.73 (2H, m, H2, H10), 7.82-

7.85 (1H, t, J = 7.9 Hz, H3), 8.03 (1H, dd, J = 7.9, 1.4, Hz, H1), 7.60 (1H, d, J = 8.0 Hz, 

H4), 8.22 (1H, d, J = 7.6 Hz, H9). 13C NMR (CDCl3) δ = 118.0 (C9), 121.8 (13b), 123.2 

(C12), 127.0 (C13b), 127.1 (C11), 127.4 (2×ArC), 128.5 (ArC), 128.8 (ArC), 129.0 

(CAr), 129.7 (C1), 130.9 (C2), 133.0 (C3), 133.5 (C4), 133.8 (C10), 135.1 (C13a), 

135.7 (C8), 137.8 (C8a), 143.0 (C14a), 144.5 (C8b), 152.2 (C12a), 159.3 (C7), 184.6 

(C14). MS (EI): m/z = 376 (10%, M+), 373 (100), HRMS (ESI): calcd for C25H17N2O2 

[M+H]+ 377.1291; found 377.1290. 

(Z)-9-((E)-Benzylidene)-6-(phenylethynyl)-8,9-dihydro-6H-[1,3,6]oxadiazocino[3,4-

a:6,5-a']diindole-15,16-dione (271) 

Furthure elution afforded a fraction which recrystallized 

from EtOAc/petroleum spirit (1:9) giving (Z)-9-((E)-

benzylidene)-6-(phenylethynyl)-8,9-dihydro-6H-

[1,3,6]oxadiazocino[3,4-a:6,5-a']diindole-15,16-dione (177 



  

  

200 Chapter 7: Experimental 

mg, 35%) as dark navy powder. Rf (9:1, CH2Cl2/EtOAc) = 0.51, mp 295-297 °C. IR 

(neat) υmax 3076 (m), 1735 (m), 1689 (m), 1459 (m), 1243 (m), 1162 (m), 1102 (s), 761 

(s) cm−1. 1H NMR (CDCl3) δ 4.75 (2H, ABq, J = 36.9, 16.0, H8), 5.67 (1H, s, H6), 6.72 

(1H, s, H1''), 6.86 (1H, d, J = 8.1 Hz, H4), 6.98-7.17 (10H, m, H2, 4 × Ar'H, 5 × Ar''H), 

7.33-7.45 (4H, m, H3, H12, H13, HAr'), 7.46 (1H, d, J = 7.3 Hz, H11), 7.75 (1H, d, J = 

7.6 Hz, H1), 7.81 (1H, d, J = 7.5 Hz, H1). 13C NMR (CDCl3) δ 56.8 (C6), 61.2 (C8), 

83.0 (C1'), 89.0 (C2'), 109.6 (C4), 114.6 (C2), 117.5 (C9), 121.5 (Ar'C), 121.7 (Ar'C), 

122.9 (15a), 123.4 (C14a), 124.4 (C1), 125.6 (C14), 125.9 (3C, 2 × Ar'C, 1 × Ar''C), 

128.0 (C16a), 128.5 (Ar''C), 128.7 (Ar'C), 128.95 (C3'), 129.0 (C14a), 129.3 (3 × 

Ar''C), 129.4 (C12), 132.0 (C11), 134.1 (C15b), 134.5 (C1''), 135.4 (C13), 148.24 

(C10a), 149.4 (C4a), 180.2 (C16), 180.9 (C15). MS (EI), m/z 506 (M+, 11%), 478 (26), 

376 (89), 362 (100). HRMS (ESI) [M + H]+ calcd for C34H23N2O3, 507.1714; found, 

507.1709. 

 

Preparation of 1-(prop-2-yn-1-yl)indoline-2,3-dione (N-propargyl isatin) (272) 

To a solution of isatin (147mg, 1.00 mmol) in dry DMF (40 mL) was 

added caesium carbonate (650 mg, 2.00 mmol). The resulting brown 

suspension was stirred at 80−85 °C for 30 min and then propargyl 

bromide (119 mg, 1.00 mmol) was added under a N2 atmosphere. The 

resulting mixture was stirred at 80−85 °C for 30 min, poured into ice 

water, and the suspension was partitioned between CH2Cl2 (20 mL) and water (20 mL). 

The aqueous layer was washed with CH2Cl2 (4 × 5 mL), and the combined organic 

layers were washed with water (3 × 10 mL), dried (MgSO4), and concentrated. The 

residue was recrystallized from chloroform/hexane (1:6) to give N-propargylisatin (133 

mg, 91%) as an orange solid. 1H NMR (CDCl3) δ 2.32 (2H, d, J = 1.7 Hz, H3′), 4.54 
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(2H, d, J = 1.9, H1′), 7.16 (2H, m, H5, H7), 7.66 (2H, m, H4, H6). 13C NMR (CDCl3) δ 

29.8 (C3′), 73.7 (C2′), 76.0 (C1′), 111.4 (C7), 118.0 (C3a), 124.5 (C5), 125.8 (C4), 

138.8 (C6), 149.9 (C7a), 157.5 (C2), 182.9 (C3). MS (EI) m/z 185 (85%, M+), 129 

(100%) consistent with literature values.201 

7.1.4 Elaboration of the products 

Ring closing metathesis of 1-allyl-10'-allyloxy-2'H-spiro(indoline-2,1'-

pyrido[1,2-a]indol)-3-one (227) 

A mixture of the spiro derivative 227 (40.0 mg, 0.95 mmol) and 

Grubbs' II catalyst (5.00 mg, 10% mmol) in CH2Cl2 (40 mL) was 

heated at reflux for 1 h. The reaction mixture was then filtered and 

the filtrate was subjected to flash silica gel column 

chromatography and elution with pet. spirit/CH2Cl2 (1:9) yielded 1,2-dihydro-1-vinyl-

8H,9H,17H-benz[2',3']pyrrolizino-[1',7'a:2,3]pyrido[1,2-a]indole-8,17-dione 274 as a 

yellow powder (26.0 mg, 70%); mp 229-231 °C, Rf = 0.81 (CH2Cl2 : pet. spirit; 9:1). X-

ray quality crystals were grown through slow crystallization from pet. spirit : CH2Cl2 

(5:3). UV-Vis (CH2Cl2) λmax/nm (ε, M−1cm−1) 286 (8458), 401 (3888). IR (neat) υmax 

1685 (s), 1603 (s), 1473 (s), 1318 (m), 1147 (m) cm-1. 1H NMR (CDCl3) δ 2.53-2.65 

(2H, m, H9a,b), 3.55-3.58 (1H, m, H1), 3.80 (1H, t, J = 9.6 Hz, H2a), 3.88-3.94 (1H, m, 

H2b), 4.93 (1H, dd, J = 1.2, 10.0 Hz, H2'a), 5.10 (½H, bs, H2'b†††), 5.15-5.16 (½H, m, 

H2'b§§§), 5.17-5.21 (1H, m, H10), 5.45-5.56 (1H, m, H1'), 6.79-6.85 (2H, m, H5, H15), 

6.86-6.92 (2H, m, H4, H13), 7.08 (1H, d, J = 8.4 Hz, H11), 7.36-7.50 (3H, m, H6, H7, 

H16), 7.54-7.60 (1H, m, H14). 13C NMR (CDCl3) δ 29.1 (C9), 49.5 (C2), 54.7 (C1), 

71.3 (C8a), 71.8 (C17a), 101.5 (C10), 110.8 (C11), 112.1 (C13), 120.2 (C5), 120.3 

(C2'), 120.6 (C15), 122.2 (C16a), 123.1 (C4), 123.7 (C7a), 124.5 (C7), 124.7 (C16), 

                                                
§§§ H2'b appears as doublet, half of the signal is merged with the multiplet from H10. 
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131.7 (C1'), 137.5 (C6), 137.7 (C14), 158.0 (C12a), 164.4 (C3a), 197.9 (C17), 201.0 

(C8). MS (EI): m/z = 354 (100%, M+), HRMS (ESI): calcd for C23H19N2O2 [M+H]+ 

355.1447; found 355.1434. 

 

2-Allyl-2'-ethyl-[2,2'-biindole]-3,3'-dione (275) 

An oven dried round bottom flask equipped with a reflux 

condenser and magnetic stirrer was purged by dry N2. A solution 

of N,N'-diallocindigo 259 (43.0 mg 0.1 mmol), Et3B (19.6 mg, 

0.2 mmol) and Pd(PPh3)4 (10% mmol) in dry CH2Cl2 (10 mL) 

was then added and the reaction mixture was heated and stirred at 50 ºC for 1 h. The 

mixture was diluted with EtOAc and washed by NaHCO3 (2×10 mL), brine (10 mL) 

and water (3×10 mL). The organic layers were combined and dried (MgSO4). The 

mixture was concentrated and the residue was subjected to a flash silica gel column 

chromatography. Elution with a mixture of pet. spirit /CH2Cl2 (1:9) yielded bright 

yellow fractions. The fractions were collected and combined. After evaporation of the 

solvent, recrystallisation of the mixture from pet. spirit : EtOAc (9:1) afforded 2-allyl-

2'-ethyl-[2,2'-biindole]-3,3'-dione 275 as a bright yellow crystals (23.5 mg, 62%); mp 

154-156 °C, Rf = 0.72 (CH2Cl2 : pet. spirit; 9:1). IR (neat) υmax 3253 (b), 1696 (s), 1621 

(s), 1463 (s), 1319 (m), 1135 (m), 948 (m), 714 (m) cm-1. 1H NMR (CDCl3) δ 0.53 (1H, 

t, J = 7.2, H2'''), 1.32 (1H, td, J = 14.3, 7.2, H1'''a), 1.95 (1H, td, J = 14.1, 7.1, H1'''b), 

2.11 (1H, dt, J = 13.5, 6.7 Hz, H1''a), 2.61 (1H, dt, J = 13.8, 7.0 Hz, H1''b), 4.79 (2H, 

dd, J = 44.8, 13.4 Hz, H3''a,b), 5.29-5.36 (1H, m, H2''), 6.03 (1H, s, H1, NH), 6.09 (1H, 

s, H1', NH), 6.72-6.85 (2H, m, H5, H5'), 6.93-6.98 (2H, m, H7, H7'), 7.48 (2H, q, H6, 

H6'), 7.54 (2H, t, J = 8.0 Hz, H4, H4'). 13C NMR (CDCl3) δ 7.26 (C2'''), 25.1 (C1'''), 

36.7 (C1''), 71.9 (C2), 72.6 (C2'), 112.0 (C7), 112.1 (C7'), 118.4 (C5), 118.5 (C5'), 
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119.3 (C3''), 119.4 (C3'a), 124.1 (C7), 124.2 (C7'), 124.3 (C3a), 130.9 (C3''), 138.1 

(C6), 138.2 (C6'), 161.7 (C7a), 162.0 (C7'a), 203.1 (C3'), 204.1 (C3). MS (EI): m/z = 

332 (37%, M+), 262 (100%), HRMS (ESI): calcd for C21H21N2O2 [M+H]+ 333.1527; 

found 333.1534. 

 
 
(E)-3,3'-Dioxo-[2,2'-biindolinylidene]-1-carbaldehyde (276) 

An oven dried Schlenk flask equipped with a magnetic stirrer 

was purged by dry N2. A solution of N-propargyl indigo 263 

(30.0 mg 0.1 mmol) and Ph3PAuNTf2 (5% mol) in dry CH2Cl2 

(10 mL) was then added and the reaction mixture was stirred at 

room temperature (25 ºC) for 90 min. Extra Ph3PAuNTf2 (2% mol) was added and the 

mixture stirred for a further 90 min. The mixture was diluted with EtOAc and washed 

with NaHCO3 (2×10 mL), brine (10 mL) and water (3×10 mL). The organic layers were 

combined and dried (MgSO4). The mixture was concentrated and the residue was 

dissolved in CH2Cl2 (2 mL) and loaded on a preparative layer chromatography (PLC) 

plate. The plate was placed in a chamber containing (CH2Cl2 / EtOAc 9:1) and two 

distinctive bands were scraped and soaked in separate flasks of EtOAc (20 mL). The 

first band had a dark purple colour which yielded biindolinylidene carbaldehyde 276 

(9.00 mg, 32%); mp 261-263 °C, Rf = 0.49 (CH2Cl2 : pet. spirit; 9:1). IR (neat) υmax 

3271 (bw), 1723 (s), 1674 (s), 1665 (s), 1482 (s), 1335 (m), 1183 (m), 918 (m), 746 (m) 

cm-1. 1H NMR (CDCl3) δ 6.99-7.08 (2H, m, H7′, H5), 7.33 (1H, t, J = 7.5 Hz, H5'), 7.53 

(1H, t, J = 7.7 Hz, H6), 7.69-7.73 (2H, m, H4, H6), 7.86 (1H, d, J = 7.6 Hz, H4'), 8.51 

(1H, d, J = 8.3 Hz, H7), 9.98 (1H, s, H1'', CHO), 10.67 (1H, s, H1', NH). 13C NMR 

(CDCl3) δ 112.2 (C7), 118.6 (C7'), 119.6 (C3a), 122.1 (C4'), 123.4 (C4), 124.1 (C3'a), 

125.3 (C5'), 125.7 (C6'), 129.9 (C2'), 130.7 (C2), 136.1 (C5), 137.4 (C6'), 147.1 (C7a), 
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155.8 (C7'a), 185.8 (C1''), 188.7 (C3), 189.3 (C3'). MS (EI): m/z = 290 (7%, M+), 262 

(100%), HRMS (ESI): calcd for C21H21N2O2 [M+H]+ 291.1692; found 291.1703. 

 
 
(E)-1-((1-Benzyl-1H-1,2,3-triazol-5-yl)methyl)-[2,2'-biindolinylidene]-3,3'-dione 

(277) 

An oven dried round bottom flask equipped with magnetic 

stirrer was purged by dry N2. A solution of N-propargyl indigo 

263 (30.0 mg 0.1 mmol), Cu(OAc)2 (1 mol%), sodium 

ascorbate (4 mol%) in DMF/water (8:2) was then added. 

Benzyl azide (20.0 mg, 0.15 mmol) was injected by a syringe 

and the reaction mixture was heated and stirred at 40 ºC for 10 min. The mixture was 

quenched with saturated solution of NH4Cl. The mixture was then extracted with 

CH2Cl2 (2 × 10 mL) and washed with NaHCO3 (2×10 mL), brine (10 mL) and water 

(3×10 mL). The organic layers were combined and dried (Na2SO4). The mixture was 

concentrated and the residue was dissolved in hot MeOH/ CH2Cl2 (1:3) and cooled to 

precipitate (E)-1-((1-benzyl-1H-1,2,3-triazol-5-yl)methyl)-[2,2'-biindolinylidene]-3,3'-

dione (40.7 mg, 94%) as dark navy powder; mp 235-236 °C, Rf = 0.11 (CH2Cl2). IR 

(neat) υmax 3278 (m), 1605 (s), 1463 (s), 1297 (s), 1066 (s), 1027 (s), 927 (m), 743 (m) 

cm−1. 1H NMR ((CD3)2SO) δ 5.24 (1H, s, H6''a), 5.43 (2H, d, J = 7.3, H1'''), 5.79 (1H, s, 

H6''b), 6.91 (1H, t, J = 8.0 Hz, H5), 6.96 (1H, d, J = 7.8 Hz, H7'), 7.13 (1H, t, J = 7.7 

Hz, H5'), 7.16 (1H, m, Ar'''H), 7.25-7.31 (2H, m, 2 × Ar'''H), 7.35 (1H, d, J = 6.3, 

Ar'''H), 7.46 (1H, t, J = 7.7 Hz, H6'), 7.53 (1H, d, J = 6.4, Ar'''H), 7.63 (1H, s, H4''), 

7.69 (1H, d, J = 8.0 Hz, H7), 7.76 (1H, t, J = 8.2 Hz, H6), 7.83 (1H, d, J = 8.1 Hz, H4), 

8.13 (1H, d, J = 7.5 Hz, H4'). 13C NMR ((CD3)2SO) δ 38.3 (C6''), 47.9 (C1'''), 111.6 

(C7), 113.0 (C7'), 121.7 (C3a), 123.8 (C5), 124.4 (C3'a), 124.8 (C4'), 125.1 (C5'), 126.8 
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(C5''), 128.1 (C4), 128.2 (2 Ar'''C), 128.4 (Ar'''C), 128.8 (Ar'''C), 130.7 (C6'), 131.2 

(C4''), 131.5 (C2), 132.6 (C6), 134.6 (C2'), 135.5 (Ar'''C), 144.5 (C7'a ), 145.5 (C7a), 

181.3 (C3'), 184.0 (C3). MS (EI): m/z = 433 (63%, M+), 314 (100), 262 (81), HRMS 

(ESI): calcd for C26H20N2O2 [M+H]+ 434.1359; found 434.1367. 

 

(2R,4R,5R,6S)-2-(Acetoxymethyl)-6-(4-(((E)-3,3'-dioxo-[2,2'-biindolinylidene]-1-

yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (279) 

To an oven dried round bottom flask equipped with magnetic 

stirrer and purged by dry N2, a solution of N-propargyl indigo 

263 (30.0 mg 0.1 mmol), Cu(OAc)2 (1 mol%), sodium 

ascorbate (4 mol%) and the glycol azide 277 (56 mg, 0.15 

mmol) in DMF/water (8:2) was added and the reaction 

mixture was heated and stirred at 40 ºC for 10 min. The mixture was quenched with 

saturated solution of NH4Cl. The mixture was then extracted with CH2Cl2 (2 × 10 mL) 

and washed by NaHCO3 (2×10 mL), brine (10 mL) and water (3×10 mL). The organic 

layers were combined and dried (Na2SO4). The mixture was concentrated and the 

residue was dissolved in hot MeOH/CH2Cl2 (1:3) and cooled to precipitate 

(2R,4R,5R,6S)-2-(acetoxymethyl)-6-(4-(((E)-3,3'-dioxo-[2,2'-biindolinylidene]-1-

yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-2H-pyran-3,4,5-triyl triacetate 279 as a 

papery flakes (56.0 mg, 83%); mp 229-232 °C, Rf = 0.10 (CH2Cl2). 1H NMR 

((CD3)2SO) δ 1.51 (3H, CH3, Ac1), 1.91 (3H, CH3, Ac2) 1.94 (3H, CH3, Ac3), 1.99 (3H, 

CH3, Ac4) 3.94-4.08 (2H, m, H1''''), 4.23-4.29 (1H, m, H2'''), 5.07 (1H, t, J = 9.7 Hz, 

H4'''), 5.41 (1H, t, J = 9.5 Hz, H5'''), 5.50 (1H, t, J = 9.4 Hz, H3'''), 5.81 (1H, s, H6''), 

6.19 (1H, d, J = 9.2 Hz, H6'''), 6.94 (1H, t, J = 7.4 Hz, H5), 7.05 (1H, t, J = 7.3 Hz, H6'), 

7.36 (1H, d, J = 7.7 Hz H7'), 7.46-7.55 (2H, m, H5', H6), 7.58-7.63 (2H, m, H4, H7), 
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7.64 (1H, d, J = 7.5 Hz, H4'), 8.17 (1H, s, H5''), 10.90 (1H, s, NH). 13C NMR δ 

((CD3)2SO) = 19.9 (CH3, Ac1), 20.7 (CH3, Ac4), 20.8 (CH3, Ac2), 20.9 (CH3, Ac3), 42.2 

(C6''), 62.2 (C1''''), 62.8 (C2'''), 70.3 (C4'''), 72.5 (C3'''), 73.7 (C5'''), 84.1 (C6'''), 112.8 

(C6), 113.7 (C5'), 119.6 (C3a), 120.9 (C7), 121.5 (C3'a), 121.7 (C7'), 122.9 (C5''), 123.7 

(C4'), 124.5 (C4), 125.2 (2 × C, C2,C2'), 136.3 (C6), 136.6 (C6'), 144.0 (C4''), 152.6 

(C7a), 153.1 (C7'a), 168.5 (C=O Ac1), 169.8 (C=O Ac3), 169.9 (C=O Ac4), 170.4 (C=O 

Ac2), 187.4 (C3'), 188.5 (C3). MS (EI): m/z = 673 (39%, M+), 342 (100), HRMS (ESI): 

calcd for C33H32N5O11 [M+H]+ 674.2029; found 674.2052. 

 

7.2 Biological testing 

The biological testing was conducted by Rachada Haritakun at the National Center for 

Genetic Engineering and Biotechnology (BIOTEC), 113 Phaholyothin Road, Klong 1, 

Klong Luang in Pathumthani 12120, Thailand. 

7.2.1 Cancer growth inhibition and vero cell toxicity assay. 

Cancer growth inhibition assay and the Vero cell assay were performed using the 

Resazurin microplate assay (REMA) method as described by O’Brien et al.181 In brief, 

cells at a logarithmic growth phase were harvested and diluted to 2.2 × 104 cells/mL for 

KB and 3.3 × 104 cells/mL for NCI-H187, in fresh medium. Successively, 5 µL of test 

sample diluted in 5% DMSO, and 45 µL of cell suspension were added to 384-well 

plates, incubated at 37 °C in 5% CO2 incubator. After the incubation period (3 days for 

KB, and 5 days for NCI-H187), 12.5 µL of 62.5 µg/mL resazurin solution was added to 

each and the plates were then incubated at 37 °C for 4 h. Fluorescence signal was 

measured using SpectraMax M5 multidetection microplate reader (Molecular Devices, 

USA) at the excitation and emission wavelengths of 530 and 590 nm. Percent inhibition 

of cell growth was calculated by the following equation: 
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%  Inhibition = 1−
𝐹𝑈!
𝐹𝑈!

×100 

Where FUt and FUc are the mean fluorescent unit from treated and untreated conditions, 

respectively. Dose−response curves were plotted from 6 concentrations of 3-fold 

serially diluted test compounds. Sample concentrations that inhibited cell growth by 

50% (IC50) were derived using the SOFTMax Pro software (Molecular Devices, USA). 

Ellipticine and doxorubicin were used as a positive control, and 0.5% DMSO and water 

were used as a negative control.174 

 

7.2.2 Antiplasmodial assay  

The compounds and extracts were tested in vitro against Plasmodium falciparum, 

K1CB1 (K1), which is a multidrug resistant (chloroquine and antifolate resistant) strain, 

received as a generous gift from Professor Sodsri Thaithong, Chulalongkorn University, 

Bangkok, Thailand. The parasites were maintained in human red-blood cells in RPMI 

1640 medium supplemented with 25 mM HEPES, 0.2% sodium bicarbonate, and 8% 

human serum at 37 °C in a 3% carbon dioxide gas incubator.202 Samples were made up 

in DMSO solution and the in vitro antimalarial activity testing was carried out using the 

microdilution radioisotope technique. The test sample (25 µL, in the culture medium) 

was placed in triplicate in a 96-well plate where parasitised erythrocytes (200 µL) with a 

cell suspension (1.5%) of parasitemia (0.5−1%) were then added to the wells. The 

ranges of the final concentrations of the samples were varied from 2 × 10−5 to 1 × 10−7 

M with 0.1% of the organic solvent. The plates were then cultured under standard 

conditions for 24 h after which 3H-hypoxanthine (25 µL, 0.5 mCi) was added. The 

culture was incubated for 18-20 h after which the DNA from the parasite was harvested 

from the culture onto glass fiber filters and a liquid scintillation counter used to 
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determine the amount of 3H-hypoxanthine incorporation.173 The inhibitory 

concentration of the sample was determined from its dose−response curves or by 

calculation. 

7.2.3 Anti-mycobacterial assay  

The anti-mycobacterial activity was assessed against M. tuberculosis H37Ra using the 

green fluorescent protein microplate assay (GFPMA). Standard drugs, isoniazid (MIC = 

0.094 µg/mL), ofloxacin (MIC = 0.391 µg/mL) and ethambutol (MIC = 0.469 µg/mL) were 

used as reference compounds for the anti-mycobacterial assay. Rifampicin (MIC = 0.0250 

µg/mL) and streptomycin (MIC = 0.625 µg/mL) were used as positive controls, while 0.5% 

DMSO was the negative control. The samples were tested in a final concentration of 50.0 

µg/mL. 

 

7.3 Crystallographic studies 

X-ray Structure Determination - images were measured on a Nonius Kappa CCD 

diffractometer (MoKα, graphite monochromator, λ = 0.71073 Å) and data extracted 

using the DENZO package.203 Structure solution was by direct methods (SIR92).204 The 

structures were refined using the CRYSTALS program package.205 Atomic coordinates, 

bond lengths and angles, and displacement parameters for compounds 243, 248, 249, 

250, 251, 254, 274, 265, 266 and 267 have been deposited at the Cambridge 

Crystallographic Data Centre (CCDC nos. 986247 – 986253, respectively). These data 

can be obtained free-of-charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing 

data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data 

Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. The entire 

X-ray crystallography analysis was performed by Dr. Anthony C. Willis at Australian 

National University Canberra, ACT, Australia. 
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7.3.1 Crystallographic data for compounds 243, 248, 249, 250, 251, 254, 274, 265, 

266 and 267 

Compound 243: C22H18N2O2, M = 342.40, T = 200 K, monoclinic, space group P21/n, Z 

= 4, a = 11.888(2), b = 11.667(2), c = 12.5729(17) Å, β = 107.386(11) °; V = 1664.1(5) 

Å3, Dx = 1.367 g cm–3, 2915 unique data (2θmax = 50 °), R = 0.095 [for 1849 

reflections with I > 2.0σ(I)]; Rw = 0.273 (all data), S = 1.03. 

 

Compound 248: C19H14N2O2, M = 302.33, T = 200 K, orthorhombic, space group 

Pna21, Z = 4, a = 10.0417(3), b = 24.1863(5), c = 5.9097(2) Å; V = 1435.30(7) Å3, Dx 

= 1.399 g cm–3, 1799 unique data (2θmax = 55 °), R = 0.040 [for 1359 reflections with I 

> 2.0σ(I)]; Rw = 0.088 (all data), S = 1.01. 

 

Compound 249: C24H22N2O2, M = 370.45, T = 200 K, monoclinic, space group C2/c, Z 

= 8, a = 45.0292(8), b = 11.1720(3), c = 7.4857(1) Å, β = 99.4875(12) °; V = 

3714.29(13) Å3, Dx = 1.325 g cm–3, 4264 unique data (2θmax = 55 °), R = 0.042 [for 

3279 reflections with I > 2.0σ(I)]; Rw = 0.099 (all data), S = 0.98. 

 

Compound 250: C24H22N2O2, M = 370.44, T = 200 K, monoclinic, space group P21/n, Z 

= 4, a = 12.3025(3), b = 10.3191(3), c = 15.2106(3) Å, β = 104.3577(14) °; V = 

1870.68(8) Å3, Dx = 1.315 g cm–3, 4271 unique data (2θmax = 55 °), R = 0.054 [for 

3245 reflections with I > 2.0σ(I)]; Rw = 0.141 (all data), S = 0.96. 

 

Compound 251: C21H18N2O2, M = 330.39, T = 200 K, monoclinic, space group P21/c, Z 

= 4, a = 6.2304(2), b = 17.3681(6), c = 14.6545(5) Å, β = 95.602(2) °; V = 1578.19(9) 
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Å3, Dx = 1.390 g cm–3, 2787 unique data (2θmax = 50 °), R = 0.043 [for 2321 

reflections with I > 2.0σ(I)]; Rw = 0.114 (all data), S = 1.00. 

 

Compound 254: 2(C34H26N2O2)•C2H6OS, M = 1067.32, T = 200 K, triclinic, space 

group P-1, Z = 2, a = 10.5227(3), b = 12.2715(5), c = 22.4496(9) Å, β = 87.0834(19), β 

= 88.275(2), ϒ = 75.022(2) °; V = 2796.35(18) Å3, Dx = 1.268 g cm–3, 7798 unique data 

(2θmax = 46 °), R = 0.059 [for 4931 reflections with I > 2.0σ(I)]; Rw = 0.157 (all data), 

S = 0.94. 

 

Compound 274: C23H18N2O2, M = 354.41, T = 200 K, orthorhombic, space group 

Pna21, Z = 8, a = 12.3861(4), b = 10.4051(3), c = 27.6772(2) Å; V = 3567.00(19) Å3, 

Dx = 1.320 g cm–3, 3221 unique data (2θmax = 50 °), R = 0.056 [for 2316 reflections 

with I > 2.0σ(I)]; Rw = 0.140 (all data), S = 1.02. 

 

Compound 265: C25H16N2O2, M = 376.41, T = 200 K, monoclinic, space group P21/n, Z 

= 4, a = 8.4251(2), b = 10.9245(3), c = 20.7242(4) Å, β = 100.7475(15) °; V = 

1874.00(8) Å3, Dx = 1.334 gcm–3, 4284 unique data (2θmax = 50 °), R = 0.039 [for 

3584 reflections with I > 2.0σ(I)]; Rw = 0.104 (all data), S = 0.99. 

 

Compound 266: C25H16N2O2, M = 376.41, T = 200 K, monoclinic, space group P21/n, 

Z = 4, a = 8.8893(2), b = 21.6743(3), c = 10.0894(4) Å, β = 106.0180(9) °; V = 

1868.45(7) Å3, Dx = 1.338 gcm–3, 4287 unique data (2θmax = 50 °), R = 0.040 [for 

3143 reflections with I > 2.0σ(I)]; Rw = 0.098 (all data), S = 0.96. 
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Compound 267: C29H18N2O2, M = 458.47, T = 200 K, triclinic, space group P-1, Z = 2, 

a = 7.5927(2), b = 9.4172(3), c = 16.2992(4) Å, α = 76.3835(14), β = 88.6282(18), γ = 

78.0391(19) °; V = 1107.70(6) Å3, Dx = 1.375 g cm–3, 5070 unique data (2θmax = 50 

°), R = 0.046 [for 4074 reflections with I > 2.0σ(I)]; Rw = 0.125 (all data), S = 0.99. 

 

7.4 Computational methods  

For all calculations, the Spartan package 2010 (version 1.1.0) was the calculation tool. 

Geometry Calculations were performed by optimising the geometry of the molecule at 

the ground state using Hartree-Fock theory and the base 6-31G* were performed by 

calculate the equilibrium geometry of the molecule at the ground state using density 

functional theory and the hybrid functional B3LYP with the base 6-31G*. Calculations 

were performed in vacuo unless otherwise stated. 
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9 Appendices 

9.1 Appendix 1: 1H NMR, 13C NMR and selected 2D NMR  

Compound 230 

 
Figure 84: 1H NMR spectrum for compound 230. 
 
 
 

 
Figure 85: 13C NMR spectrum for compound 230. 
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Figure 86: The gCOSY and its expansions for compound 230. 
 

 
Figure 87 The NOSEY and its expansions for compound 230. 
  



  

  

227 Appendices 

 

 
Figure 88: The gHSQC for compound 230. 
 

 
Figure 89: The gHMBC for compound 230. 
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Compound 243 

 
Figure 90: 1H NMR spectrum for compound 243. 
 
 

 
Figure 91: 13C NMR spectrum for compound 243. 
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Compound 248 
 
 
 

 
Figure 92: 1H NMR spectrum for compound 248. 
 

 
Figure 93: 13C NMR spectrum for compound 248. 
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Figure 94: The gCOSY and its expansions for compound 248. 
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Figure 95: The gHSQC for compound 248. 
 

 
Figure 96: The gHMBC for compound 248. 
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Compound 249 

 
Figure 97: 1H NMR spectrum for compound 249. 
 
 
 
 
 
 
 

 
Figure 98: 13C NMR spectrum for compound 249. 
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Figure 99: The gCOSY and its expansions for compound 249. 
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Figure 100: The NOESY for compound 249. 
 
 

 
Figure 101: The gHSQC for compound 249. 
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Figure 102: The gHMBC and its expansions for compound 249. 
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Compound 250 

 
Figure 103: 1H NMR spectrum for compound 250. 

 
Figure 104: 13C NMR spectrum for compound 250. 

 
Figure 105: The gCOSY and its expansions for compound 250. 
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Compound 251 
 
 

 
Figure 106: 1H NMR spectrum for compound 251. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 107: 13C NMR spectrum for compound 251. 
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Figure 108: The gCOSY and its expansions for compound 251. 
 
  



  

  

239 Appendices 

 

 
Figure 109: The NOESY for compound 251. 
 
 

 
Figure 110: The gHSQC for compound 251. 
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Figure 111: The gHMBC and its expansions for compound 251. 
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Compound 253 

 
Figure 112: 1H NMR spectrum for compound 253. 
 
 
 
 

 
Figure 113: 13C NMR spectrum for compound 253. 
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Figure 114: The gCOSY for compound 253. 
 
 
 

 
Figure 115: The NOESY for compound 253. 
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Figure 116: The gHMBC and its expansions for compound 253. 
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Compound 254 

 
 

 
Figure 117: 1H NMR spectrum for compound 254. 
 

 
Figure 118: 13C NMR spectrum for compound 254. 
  



  

  

245 Appendices 

 

 
Figure 119: The gCOSY for compound 254. 
 
 

 
Figure 120: The gHSQC for compound 254. 
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Figure 121: The gHMBC and its expansions for compound 254. 
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Compound 256 

 
Figure 122: 1H NMR spectrum for compound 256. 

 
Figure 123: 13C NMR spectrum for compound 256. 

 
Figure 124: The gHSQC for compound 256. 



  

  

248 Appendices 

Compound 257 

 
Figure 125: 1H NMR spectrum for compound 257. 
 
 
 

 
Figure 126: 13C NMR spectrum for compound 257. 
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Compound 263 

 
Figure 127: 1H NMR spectrum for compound 263. 
 

 
Figure 128: 13C NMR spectrum for compound 263. 

 
Figure 129: The NOESY for compound 263. 
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Compound 264 
 
 
 

 
Figure 130: 1H NMR spectrum for compound 264. 
 
 
 

 
Figure 131: 13C NMR spectrum for compound 264. 
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Figure 132: : The gCOSY for compound 264. 
 
 

 
Figure 133: The gHSQC for compound 264. 
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Figure 134: The gHMBC and its expansions for compound 264. 
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Compound 265 

 
Figure 135: 1H NMR spectrum for compound 265. 
 
 
 
 

 
Figure 136: 13C NMR spectrum for compound 265. 
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Figure 137: The gCOSY for compound 254. 
 
 

 
Figure 138: The gHSQC for compound 265. 
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Figure 139: The gHMBC and its expansions for compound 265. 
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Compound 266 
 

 
Figure 140: 1H NMR spectrum for compound 266. 
 
 
 
 
 
 
 

 
Figure 141: 13C NMR spectrum for compound 266. 
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Figure 142: The gCOSY for compound 266. 
 
 
 

 
Figure 143: The gHSQC for compound 266. 
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Figure 144: The gHMBC and its expansions for compound 266. 
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Compound 269 
 
 
 

 
Figure 145: 1H NMR spectrum for compound 269. 
 
 
 
 

 
Figure 146: 13C NMR spectrum for compound 269. 
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Figure 147: The gCOSY for compound 269. 
 
 
 

 
Figure 148: The gHSQC for compound 269. 
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Figure 149: The gHMBC and its expansions for compound 269. 
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Compound 270 

 
Figure 150: 1H NMR spectrum for compound 270.

 
Figure 151: 13C NMR spectrum for compound 270. 
 

 
Figure 152 The gCOSY and expansions for compound 270. 
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Figure 153: The gHSQC for compound 270. 
 
 
 
 

 
Figure 154: The gHMBC and its expansions for compound 270. 
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Compound 271 

 
Figure 155: 1H NMR spectrum for compound 271. 
 
 
 
 

 
Figure 156: 13C NMR spectrum for compound 271. 
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Figure 157: The gCOSY and expansions for compound 271. 
 

 
Figure 158: The ROSEY and expansions for compound 271. 
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Figure 159: The gHSQC for compound 271. 
 
 

 
Figure 160: The gHMBC for compound 271. 
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Compound 274 

 
Figure 161: 1H NMR spectrum for compound 274. 
 
 
 

 
Figure 162: 13C NMR spectrum for compound 274. 
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Figure 163: The gCOSY and expansions for compound 274. 
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Figure 164: The NOESY for compound 274. 
 
 

 
Figure 165: The gHSQC for compound 274. 
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Figure 166: The gHMBC and its expansions for compound 274. 
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Compound 275 
 

 
Figure 167: 1H NMR spectrum for compound 275. 
 
 

 
Figure 168: 13C NMR spectrum for compound 275. 
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Compound 276 

 
Figure 169: 1H NMR spectrum for compound 276. 
 

 
Figure 170: 13C NMR spectrum for compound 276. 
 

 
Figure 171: The gCOSY and expansions for compound 276. 
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Figure 172: The gHSQC for compound 276. 
 

 
Figure 173: The gHMBC for compound 276. 
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9.2 Appendix2: X-Ray Crystallography Data 

Compound 243 
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Compound 248 

 
  



  

  

279 Appendices 

 
  



  

  

280 Appendices 

 
  



  

  

281 Appendices 

 
  



  

  

282 Appendices 

Compound 249 

 
  



  

  

283 Appendices 

 
  



  

  

284 Appendices 

 
  



  

  

285 Appendices 

 
  



  

  

286 Appendices 

 
  



  

  

287 Appendices 

Compound 250 
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Compound 251 
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Compound 267 
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Compound 269 
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9.3 Appendix 3: Images  

 
Figure 174: Microscopic photos of the X-ray crystals captured by Leica MZ 16 A stereo microscope. 
 

 
Figure 175: Hydroxyazepino 252, crystals (A), solution in CH2Cl2 under the visible light (B) and the UV 
light (C). 
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Figure 176: Fluorescent emission of naphtiridine 266 (left) and 267 (right). 
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