
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
1954-2016 University of Wollongong Thesis Collections

2001

Aspects of micropayments Aspects of micropayments

Terje Tollisen
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Tollisen, Terje, Aspects of micropayments, Master of Science (Hons.) thesis, School of Information
Technology and Computer Science, University of Wollongong, 2001. https://ro.uow.edu.au/theses/2902

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F2902&utm_medium=PDF&utm_campaign=PDFCoverPages

Aspects of Micropayments
A thesis submitted in the fulfilment of the requirements for the award of the degree

Master of Science (Honours)

from

University of Wollongong

by

Terje Tollisen

Faculty of Informatics,

School of Information Technology and Computer Science,

University of Wollongong,

Wollongong, NSW 2522,

Australia.

August 2001

Certification of Originality
I herby declare that this submission is my own work, and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for the

award of any other degree or diploma of a university or other institute of higher

learning, except where due acknowledgment is made in the text.

[Terje TolHsen]

Acknowledgments
I would like to thank Professor Josef Pieprzyk who was my supervisor during the first

half of this degree. He was the one who got me interested in cryptography and got me

started on the topic of this thesis.

I Would like to thank Professor Jennifer Seberry who was my supervisor during the

second and mot important part of this degree. She helped me realise the concepts in

this thesis and getting the final version written

I would also like to thank the members of the Cryptography research group at the

University of Wollongong for inspiration and team spirit.

I also would also like to thank the Internet community and the people in it for all the

information, ideas and advice shared within that community.

Finally, I would like to thank my parents for all the support they have given me

during my studies.

ni

Abstract
There are many challenges to make micropayment systems on the Internet work as

reliably, safely and efficiently as they need to. I have studied many of these problems,

and seen how different researchers have tried to solve the challenges. A summary of

many of these problems and suggested solutions are presented in this thesis.

A new micropayments system is presented, based on Merkle's authentication tree and

Wintemitz's one-time signatures. The scheme can add efficiency and flexibility to a

range of existing micropayment schemes based on hash chains. Unlike earlier system,

hash chains can be made relatively short, since the computational cost of

authenticating a new hash chain is made small.

An implementation of suggested micropayment system has been done; this is new. An

implementation of the Wintemitz signature scheme has also been made. This

signature scheme is mostly discussed only in theory in the literature, and only a few

implementations exist. Both the Wintemitz signature scheme and the new payment

system have been tested for time and space requirements and compared favourably to

well known signature systems like DSA and RSA. With optimal settings, a Wintemitz

signature can be done 14 times as fast as DSA (1024) and 28 times as fast as RSA

(1024).

Storage requirements are a problem for the Wintemitz signatures. A second

implementation was therefore made, focusing on this problem. The storage required

by the signer was thus reduced by a factor of about 28 by sacrificing some signature

speed.

Contents
Aspects of Micropayments

Master of Science (Honours)
University of Wollongong
Terje Tollisen

Certification of Originality i
Acknowledgments ii
Abstract iv
Contents v
Chapter 1; Introduction 1

1.1 Contributions made in this thesis 2
1.2 Outline of this thesis 2

Chapter 2; Background 5
2.1 Technical background 5

2.1.1 Cryptographic functions 5
2.1.2 Notation 6

2.2 Introduction to electronic payment systems 7
2.3 The entities in an electronic payment system 7

2.3.1 A payments scenario 9
2.4 Classifications of payment systems 9

2.4.1 On-line or off-line 10
2.4.2 Hardware or software based 10
2.4.3 Value of payments 11
2.4.4 Payment types 11

2.5 Properties of an electronic payment system 12
Chapter 3; Aspects of micropayments 15

3.1 Desired properties for micropayment systems 15
3.1.1 Other properties wanted in both macro- and micropayment schemes: 16

3.2 Setting for micropayment schemes 17
3.2.1 The broker 17

3.3 Anonymity 18
3.3.1 Properties of anonymous schemes 19
3.3.2 Batch signatures 20
3.3.3 Pseudonyms 21

3.4 On-line and off-line systems 21
3.5 Probabilistic payment systems 22

3.5.1 On-line verification 23
3.5.2 Probability of payments 24

3.6 Money production 25
3.6.1 Hash chains 26
3.6.2 Hash collisions 27
3.6.3 Scrip 27
3.7.1 Fraud detection/prevention 28

3.8 Authentication 29
3.9 Protecting the customers rights 29

3.9.1 Certified delivery 30
Chapter 4; One-time signature schemes with an infinite authentication tree 31

4.1 The Lamport-Diffie one-time signature 32
4.2 Merkle's one-time signatures 32

Example 4.2.1 33

4.3 Wintemitz's one-time signatures 34
Example 4.3.1 35

4.4 Merkle's authentication tree 36
Chapter 5; New improvements for micropayment schemes based on hash chains39

5.1 Introduction to the scheme 39
5.2 Related work 40

5.2.1 Hash chains 40
5.2.2 A short simimary of PayWord 40

5.3 The new payment scheme 41
5.3.1 Using a chain rather than a tree structure 41
5.3.2 Further size improvement on the signature nodes 42
5.3.3 Assumptions 43
5.3.4 Payment 44
5.3.5 A payment example 45
5.3.6 Redemption 46
5.3.6 A problem with size 47
5.3.7 Further possible improvements 48

5.4 Properties of the payment scheme 48
5.5 Further work and open questions 49

5.5.1 Anonymity 49
5.5.2 Overspending 50
5.5.3 Other signature schemes 51
5.5.4 Further areas for study 51

Chapter 6; Implementation of the proposed improvements to hash chain based
payment systems 53

6.1 Outline of the programs 54
6.2 class Wintemitz 55

6.2.1 Global values 55
6.2.2 Private members 56
6.2.3 Constructors 57
6.2.4 Private functions 58
6.2.5 Public functions 63

6.3 class Node 64
6.3.1 Private members 65
6.3.2 Constructors 66
6.3.3 Private functions 66
6.3.4 Public functions 68

6.4 class Tree 69
6.4.1 Private members 69
6.4.2 Constructors 69
6.4.3 Public functions 69

6.5 The test programs 72
6.6 Time requirements and signature sizes 73

6.6.1 Timing 73
6.6.2 Size 76
6.6.3 Using different hashing algorithms 78
6.6.4 A conclusion 79

Bibliography 81
Appendix A 87
Appendix B I l l

Appendix C 113
class Wintemitz 113
class WintemitzShort 121
class Node 129
class Tree 132
Test program 134

Vll

vili

Chapter 1
Introduction
The introduction of the web browsers in 1993 changed the Internet considerably. All

of a sudden everybody with a computer could navigate the World Wide Web, and it

was no longer an exclusive club for computer people. It didn't take long before

businesses started to use the Internet to promote themselves, and to sell goods and

services. This development has exploded in the last few years, and will keep on going

at an accelerated speed for years to come.

Being able to perform payments and trust them to be secure is a vital part of a

business infrastructure. A lot of research has been undertaken into making payments

secure on the Internet. Computationally demanding cryptography, and especially

public key cryptography are means by which security is achieved, but there are still a

lot of challenges ahead.

One particular category of electronic payments is called micropayments. These are

payments with a very small value, typically from less than a cent to a few dollars. A

large number of transactions are expected to be made since each payment is worth so

little. This means that a higher level of efficiency is required than for other (macro-)

payment systems. It is a major challenge to make the micropayment systems

computationally efficient enough while keeping the appropriate level of security. It

seems to be the view of the crypto-community that public-key signatures are too

computationally expensive, and other methods must be found instead. Several

schemes use one-way hash functions to obtain the desired speed and efficiency. Both

Rivest and Shamir [Ri,Sh'96], and Anderson, Manifavas and Sutheriand [An, Ma,

Su'97] use hashing to produce the actual tokens. Glassman, Manasse, Abadi, Gauthier

and Sobalvarro [Milli'95], use hashing to authenticate the payments by utilising

Message Authentication Codes (MACs).

1.1 Contributions made in this thesis

Many papers have been written on micropayments (most of them after 1996). I have

studied a variety of these and collected the different problems, concerns and

suggested solutions to given problems discussed in different systems. Naturally,

several researchers address the same issues, but they address them in different ways

with different perspectives. It can be difficult to get a full overview of what has and

what has not been done. A summary of how some of these papers intend to solve

various problems can therefore be very useful for people intending to study the field

of micropayments.

Possible improvements to micropayments based on hash chains are suggested. A

framework for a payment system is given, where the Wintemitz one-time signatures

are used. The system offers flexibility to existing payment systems.

I have made an implementation of the Wintemitz one-time signature as a part of the

suggested payment system. This signature scheme is often considered to be only of

theoretical value, but modifications have been done to make it's use feasible. With the

right conditions, a signature can be made about 28 times as fast as an RSA (1024)

signature [Ri, Sh, Ad78], and 14 times as fast as a DSA (1024) signature. DSA

(Digital Signature Algorithm) is a defined in the U.S. Federal Information Processing

Standard FIPS 186, named the Digital Signature Standard (DSS).

1.2 Outline of this thesis

Chapter 2 discusses the background material. A few of the cryptographic primitives

and functions used in this thesis are described. Background on conventional (macro-)

payment systems is also provided.

Chapter 3 is the summary of micropayment systems mentioned in Section 1.1. Some

of the major issues and their suggested solutions are described and discussed.

Chapter 4 is a description of the Merkle one-time signature, the Wintemitz one-time

signature and the Merkle authentication tree. These structures are used in the

suggested payment system.

Chapter 5 describes the suggested payment system mentioned in Section 1.1.

Modifications are done to the Merkle authentication tree and the Wintemitz signature

scheme. Properties that can be gained by using the suggested improvements are listed.

Chapter 6 describes the details of the implementation mentioned in Section 1.1. Data

for signature sizes and operation time are presented.

The material in Chapters 5 and 6 in new and it is intended to be written up for

publication.

Chapter 2
Background

2.1 Technical background

2.1.1 Cryptographic functions

One-way functions

A one-way function (Diffie and Hellman, [Di, He76]) is informally a function that is

easy to compute, but hard to invert. If F is a one-way function, then it is easy to

oom^uiQ y=F(x). However, given and F, it is difficult to compute x.

One-way hash functions

One-way hash functions, OWHF are a special family of one-way functions. A hash

function produces a finite length digest of an arbitrarily long message, Merkle

[Me'89]. A OWHF is often called a weak one-way hash function in cryptographic

literature, Menezes, van Oorschot and Vanstone [Me, Oo, Va'97]. Hash flmctions are

often written with a script font, and ^T/'will be used throughout this thesis.

Collision resistance

Hash functions that are used in cryptography often needs to be collision resistant.

Collision resistance can be defined as ([Me, Oo, Va'97]):

"Collision resistance - it is computationally infeasible to find any two distinct inputs x

and x' which hash to the same output, i.e., such that H(x) = Hfx'):'

Collision-resistant hash functions (CRHF) are often called strong one-way hash

functions in cryptographic literature [Me, Oo, Va'97].

Digital signatures

Digital signatures (public key) was first suggested by Diffie and Helman, [Di, He76],

and later explored by Rivest, Shamir and Adleman in [Ri, Sh, Ad78]. Much research

has been done in this area. Look in the [Me, Oo, Va'97], for a good covering of the

topic.

A signature scheme consists of two algorithms: signing algorithm and verification

algorithm. Each participant has a secret and a public key. Using the signature

algorithm, user A can use its secret key to sign a message. Anyone can use A's public

key and the verification algorithm to verify that the signature was produced by A.

Without the knowledge of A's secret key it is infeasible to make a signature that

appears to be made by A.

2.1.2 Notation

Binarv concatenation

Binary concatenation is represented with 11. Given two bit strings A and B, the

resulting bit string C that is produced by appending BtoA is: C =A 11

A=JOJO 3=1100 C=A\\B=10101100

Public key functions

There are two or more players in a signature scheme. Let them be the signer^, and

the verifier B. They have a set of keys each containing a secret and a public key. The

secret key of A is named SKA, and the corresponding public key is PKA. A message M

signed by party A is written as <M>SKA, and a message M' encrypted by B for A's

eyes only is written <M'>PKA.

IF A sends <M>SKA to B, it is assumed that B also receives M, unless otherwise noted

(this is not true i f B sends <M'>PKA to A).

It is common practice to sign a digest of a message rather then the whole message, to

save space. Let HHQ2I hash function. If the texts says that A sends <M>SKA to B,

then it implies that^ actually sends <H(M)>SKA.

2.2 Introduction to electronic payment systems

There has been a lot of research in the area of electronic payments during the last

twenty years or so. Some of the first research and discoveries in this field was done by

David Chaum [Ch'82].

Electronic payments can be defined in several ways. In general, an electronic payment

protocol aims at making it convenient, safe and cheap to make payments over a

network. Damgard , in [Da'88], use a very general, yet fitting definition:" Payment

systems and credential mechanisms are protocols that allow individuals to conduct a

wide range of financial and social activities while preventing even infinitely powerful

and cooperating organizations from monitoring these activities".

Other definitions have been and will be used by other people. In this thesis I will use a

very wide definition: any payment made over a computer network will fall into the

category of electronic payments. This definition includes all types of computer

networks, but the focus in this thesis will be on Internet payment systems (IPS) [Sh,

Sw'98].

Several electronic payment schemes have been made; some just as theoretical papers,

some with trail implementations, and some that are actually being used in the market

today. According to [Milli'95], some of these are: DigiCash, Open Market,

CyberCash, First Virtual, NetBill.

2.3 The entities in an electronic payment system

When we focus on the Internet in specific, we talk about an Internet payment system

(IPS). Several parties are involved in an IPS, and these will vary depending on the

scheme. A Delphi survey done by Shon and Swatman in [Sh, Sw'98] showed six

important players. These were financial institutions, IPS providers, merchants,

customers, regulators and network providers.

Different schemes focus on different parties, and most schemes do not consider all of

these. A trusted third party (TTP) is needed in addition to the six mentioned above, to

distribute verified public keys.

Financial institutions. Their main function is to handle the real money transactions. It

might be a bank that does money transfers between accounts, or a credit card

company that can bill a cardholder.

IPS providers. These are the manufacturer and provider of IPS services. They will

most likely work closely with one or more financial institutions, or they might

actually be the same entity.

Several IPS systems use on-line verification of payments. In these cases the IPS might

work as a clearing server that must approve each payment.

Vendors. These are the merchants that do business on the Internet. It might be a small

one-man business, or it might be a large electronic department store. The vendor

might sell services, electronic goods that can be transferred over the network, or

physical goods that must be sent by normal mail.

Customers. These are the general users of the IPS system that will use the scheme to

pay for merchandise. It might be an individual sitting at home at a PC, or it might be a

large cooperation. As long as the entity is paying someone it will be identified as a

user. Customer and user will be used as the same entities in this thesis.

Regulators. This refers to the legal authority. Their concerns might be the impact of

the IPS on the financial system, if it allows payments to be tracked, the protection of

users etc. They might establish an entity that will help settle disputes between parties

Network providers. These parties supply the actual network facilities, such as

telecommunication capabilities and other necessities to make the Internet work.

Trusted Third Partv (TTP). The TTP lets entities look up and verify other entities'

public keys.

Broker. Brokers were first introduced in MilliCent [Milli'95], and are mostly used

with micropayment systems. The broker is a link between users, financial institutions

and vendors. The broker will produce and/or sell valid money, and/or issue

certificates to authorise customers as rightful users of the system. Depending on the

scheme in question, the broker might do other tasks like account handling and

reimbursement.

2.3.1 A payments scenario

A small example of how a payment scheme is provided to give the reader an idea of

how it can work. The scenario given is not taken from a particular scheme. Details

about cryptographic techniques have been left out for the sake of simplicity and

generality.

Alice has a bank account with Bank One. She wants to withdraw $40 worth of

electronic money from that account, and contacts Bank One online. Bank One

provides her with the $40, and deducts that amount from her account. Each piece of

money has been signed with the bank's digital signature, using the bank's private key.

Alice can verify this signature by using the bank's public key. This key can be

provided and verified by a Trusted Third Party.

Later, Alice finds some music she wants to buy on the site of the music store Tunes.

She pays them the $5 required to buy the two songs she wants. Tunes controls the

structure of the money and Bank One's signature to make sure the money is authentic.

Then they give Alice the passwords to download the music she has bought.

At some point during the day, Tunes contacts Bank One to get redeemed for the

payment Alice made. (Any other payments made to Tunes by Bank One customers

are settled at the same time.) A record of the transaction between Alice and Tunes is

sent to Bank One, who controls the electronic money. Tunes get their $5, and Bank

One keeps a record of the payment for future reference.

2.4 Classifications of payment systems.

There are several ways to identify and classify payment systems. Ferrira and Dahab

[Fe, Da'98] have written a paper that focuses on this particular issue. Some of the

major classifications will be mentioned here.

2.4.1 On-line or off-line

Systems that are on-line differ fundamentally from those that are off-line. Normally, it

is the financial institution's on-line status we are referring to, but it could also be a

broker, or the IPS provider and its payment server (the entity in question will be

referred to as a payment authority in this section).

If the system is on-line, the vendor will contact a payment authority in real time while

a transaction is being done. The payment authority will check if the payment is valid,

if the user has tried to spend this money before, if the user has enough funds to make

the payment and so on. Only after the payment authority has accepted the payment

will the vendor go through with the transaction.

In an off-line scheme the contact between the vendor and the payment authority is

much less frequent. The vendor will normally contact the payment authority at regular

interval (e.g. once a day) to clear the payments he has received and to get reimbursed

for them.

An on-line scheme has the advantage of increased security, as the payment authority

approves every transaction before it is made. The drawback is that it increases

communication costs, system costs (systems must be available at all times) transaction

times etc. The off-line schemes do not need all this, but more complex (and more

expensive) computations will normally be involved to preserve the required level of

security.

2.4.2 Hardware or software based

Several systems have been proposed that take the advantage of using a piece of

specialized hardware. This might be a PCMCIA (Personal Computer Memory Card

International Association) card to a PC, a smart card or other devices. Dedicated

hardware is often referred to as an electronic wallet. The wallet might consist of

several parts, and one of these must be tamper resistant to safeguard against backward

engineering and other attacks.

An early electronic wallet was proposed by Even and Goldreich in [Ev, Go'83;.

Further work has been done in several papers by Chaum , Pedersen, Brands and

others. Some of the most current and detailed work can bee seen in the ESPRIT

project CAFE [CAFE]. Mondex (www.mondex.com) is an up and running service

that uses smart cards to store information, and special devices (including phones) to

make transfers between cards.

Hardware based systems have several advantages over software based ones. It is

assumed that the hardware in question is tamper resistant, and thus it is infeasible for

the user to change the data in it by physically opening the device. This makes it easier

to control things like double spending, as the device will prevent a user spending the

same money twice or tampering with the registers that hold the monetary values.

The main drawback with a hardware based system is increased costs. Every user and

point of sale (POS) must have one or more pieces of specialised hardware (both the

wallet and a device to read the data). Also, if the user does not have access to his

device, then he cannot perform and transaction.

2.4.3 Value of payments

The security of the payment system needs to be better when the vale of each payment

gets increases. Ferreira and Dahab, [Fe, Da'98], defines three broad size groups as

large, medium to small and micro. Large payments are those of several hundred

dollars, and such payments will be on-line for many years to come to make fraud very

difficult. Medium to small payments range from a few dollars up to a few hundred.

This is the type of payments that most of the research is being focused around.

Micropayments does not really have a defined lower threshold, but the upper limit is

normally set to a few dollars. More details of micropayments are given in Chapter 3.

2.4.4 Payment types

Two major groups of payments are token based and notational systems, [Fe, Da'98].

Token-based systems operate with specific pieces of digital information often referred

to as tokens or electronic coins. These will often have a set face value, and the user

3 0 0 0 9 0 3 2 8 7 0 2 8 4 ^̂

will have to pay the vendor with several coins to get the exact amount due. Token-

based systems are often called cash like systems.

Most notational payment systems are either cheque based or account based. The user

will sign an electronic "cheque" or an account transfer authorisation with a digital

signature, and the vendor will show this to the right payment authority to get

redeemed.

We also make a distinction between pre-paid and credit based systems. This is tightly

linked with the above-mentioned grouping. A pre paid system will normally be token

based. A user buys tokens from a payment authority, and these tokens will be

presented to a vendor as payments. Most systems use tokens that can only be showed

once, but some schemes have proposed tokens that can be used multiple times [Fe'93].

A notational system with normally be credit or debit based.

2.5 Properties of an electronic payment system

Depending on the scheme and the authors behind it, different properties will be

considered important. It would be very difficult to make a payment scheme that

satisfies every possible need, so choices and priorities must be made. The most

common properties found in systems are listed below.

• Anonymity. Several systems focus on the protection of the identity of the user.

The idea is that no entity A in the system should be able to track how another entity B

spends his or her money. Even a bank should not be able to make a connection

between a customer and the money that has been issued to that customer. A possible

exception from this might be regulators, to make it possible to track and stop online

criminal activity.

The earliest mechanism for providing anonymity was blind signatures, invented by

David Chaum [Ch'82]. These signatures allow a financial institution to sign electronic

money without being able to make a connection between the user and the serial

numbers on that money.

Ivan Damgard introduced a system using pseudonyms in [Da'88]. This allowed a

single user to identify him or her self as different entities to different organizations. A

TTP is needed to keep track of use different pseudonyms. A similar approach is used

in the NetBill protocol [Co, Ty, Si'95].

• System security. Security is a very wide term, and could be sub divided into

several different properties like integrity and robustness [Fe, Da'98], privacy,

confidentiality and non-repudiation.

This is the most important property of any payment scheme.

System security makes it intractable for any entity to do anything that entity is not

authorized to do. No entity should be able to spend more funds than it is allowed to.

No entity should be able to unlawfully assume a different identity than its own. No

entity should be able to manipulate another entity's data. It should be possible to

detect, prevent and punish unauthorized use.

Encryption and signatures with public keys are two of the major tools for achieving

this. Symmetric encryption and one-way functions are also used.

• Cost. The cost of doing a transaction should be low compared to the value of the

actual transaction. The system must be cheap for a customer to use, but it must also be

profitable for the IPS provider.

• Prevent double spending. This goes hand in hand with system security, but it is so

important that it deserves special mentioning.

It is very easy to copy electronic data, and thus electronic money. This is a major

disadvantage electronic money has compared to normal cash, which is considered to

be intractable to copy.

Double spending is also tightly linked to anonymity. If the system has perfect

anonymity, it is difficult and/or expensive to prevent and detect double spending; and

double spending is easy to handle if there is no anonymity.

A system was introduced by Chaum, Fiat and Naor in [Ch, Fi, Na'88], which allow

double spenders to be caught. The user's identity is protected as long as no double

spending is done. But it is possible for the bank to find the user's identity if the user

spends the same electronic coin more then once.

Other ways to prevent double spending are used in different schemes.

• Divisibility. It must be easy to pay a vendor the exact amount that he asks for.

This is not a problem in a notational system, but a token based system must have

mechanisms for dealing with this.

Chapter 3
Aspects of micropayments

3.1 Desired properties for mieropayment systems

The major differences between properties for macro- and mieropayment systems

evolve around the value of each individual payment. A lot of work has gone into

making the systems faster and more efficient, and thus computationally cheaper. A

long list of different properties required or desired can be composed, and it would be

favourable to have as many of them in both macro- and mieropayment systems.

However, some of them need special consideration to make mieropayment systems

work:

• Minimization of computational requirements for the system. Since each payment

is so small, it should not require much use of expensive hardware to make it. This

goes for both the creation, verification and depositing of the electronic money. One of

the key methods used is to minimize the use of public key operations. Macropayment

schemes often use public key signatures to bind a payment to an entity, but this is

deemed too expensive for micropayments.

Common techniques are the use of efficient one-way hashing schemes and private key

cryptography.

• Minimization of the communication costs. Communications between the parties

involved costs both time and money. See Section 3.4 on on-line vs. off-line payments

for details.

• Certified delivery. This is a guarantee for both parties involved in a transaction to

ensure they both will get what they want. For the customer this means that he or she

will have to pay if and only if the goods are delivered. For vendors it means that the

customer will only get the goods if the payment is made. This is possible with

micropayments, since the goods often will be delivered over the same network as the

payments.

• Micromerchants support. Micromerchant is a name used for entities selling only

small amounts of electronic goods. They will most likely be individuals without a

large support system, but who have goods that people are willing to pay for. Examples

might be freelance reporters or artists.

• Handling streaming. Micropayments can be used to pay for media and other

services where a payment is good for a time period. This can for example be

telephone calls or pay per view movies. The payment system must handle streaming

of media and other time dependant service like these.

3.1.1 Other properties wanted in both macro- and micropayment schemes:

• Offer strong security for all parties.

• Minimize the need for special hardware.

• Minimize fraud in the system. Special consideration should be given to double

spending.

• All parties must be able to authenticate themselves as valid entities to other parties

they are dealing with.

• Fairness.

• Provide users with anonymity, privacy and untraceability.

• Scalability. There should not be any bottlenecks in the system.

• It should be easy to pay any arbitrary value in a transaction.

• Transferability. It should be possible for several parties to make payments with

the same piece of electronic money before cashing it with a financial institution

• Interoperability. The system should support multiple currencies. It should also be

possible to deposit a piece of electronic money with another financial institution than

the one that originally made or issued it.

• Non-repudiation. An entity should not be able to go back on a deal that has been

agreed upon through the participation in a transaction.

3.2 Setting for micropayment schemes

The entities in a micropayment scheme are mostly the same as in a macropayment

system. However, there are a few differences, and some of the entities can perform

different tasks. The main difference probably is the broker.

3.2.1 The broker

The broker was introduced in the Millicent scheme presented in [Milli'95], and is used

in many other papers since. It acts as a link between the customers, vendors and

financial institutions, and can handle the customers' and vendors' accounts.

The broker will sell or issue electronic money to customers, and will redeem vendors

when they contact the broker to return the money. Another option is to let the broker

certify the customers to produce electronic money for themselves. This saves

communication cost between brokers and customers, and computation costs for the

broker. By letting customers create their own payments we move towards a more

distributed system, and the chances of bottlenecks become fewer.

If the broker creates the payments, then these will be sold in bulk to the customers.

The customer will pay the broker through a macropayment system or with a credit

card. If the customer pays the broker with an anonymous macropayment system, then

the micropayment system in question can qualify for anonymity.

If the customer creates the payments, then the system cannot be anonymous. The

customer will pay the vendor, and the vendor will accept the payments because the

customer has a certificate from a trusted broker. To receive redemption, the vendor

sends this broker the money received from the customer. The broker checks the

payments, and if they are valid the vendor is paid and the customer is billed for the

purchase.

A third option is that the vendors produce the payments. This can be done in certain

systems where the payments are vendor specific, and was proposed in the Millicent

system [Milli'95]. The brokers will buy the payments from the vendors in large bulk

to get a good price, and sell them is smaller quantities to customers for a higher price.

The benefit of this system is that the vendor does not need to contact the broker for

redemption. But the downside is that the vendors need large hardware capacity to

produce the payments. The communication during the bulk purchases will be

relatively intensive, but no extra communication is produced. The payments will have

to go from the vendor to the broker either way, be it before or after the customer has

spent them.

3.3 Anonymity

In electronic payment systems anonymity refer to the property of protecting the actual

identity of the entities in the system. The main focus is to protect the identity of the

customers.

There are several motivations to protect the customers' anonymity, but they all evolve

around the ability to hide the customers' spending patterns. If these are not hidden,

data can be collected and profiles can be made to match each individual user's habits

in the digital environment. This can easily lead to what is called intrusive profiling

[Br'99]. The most obvious aspect of intrusive profiling is directed advertising, where

the user is 'bombarded' with ads and offers that have been custom made to his or her

interests and shopping routines. But more serious consequences like discrimination

and political assault are also quite likely

But it is not enough to protect the identity of each individual. We also need to make it

difficult to see of two payments have been made by the same entity or not. This

property is called unlinkability, and is tightly bound to anonymity.

Strong anonymity can be a problem in macropayment systems due to the potential of

criminal use. Authorities are not interested in creating new payment systems that are

attractive to criminals. If the anonymity is too strong, it will be impossible to trace

illegal transactions to either of the parties involved. This can be used for blackmail,

money laundering and other unlawful actions.

Criminal usage is much less of a problem with micropayment systems, as the values

are so low. After all, it will be somewhat difficult making much money with illegal

use of payments worth only a few cents each. This would lead one to think that

micropayment systems could have stronger, and perhaps absolute, anonymity

implemented. However, there are technical problems doing this:

As was mentioned in Chapter 2, one of the main ways of achieving anonymity is

using one-show blind signatures, first introduced in [Ch, Fi, Na'88]: These are a

special type of public key signatures that lets the signer sign a blinded message. Thus,

a customer can get a signature of the bank on electronic money, and the bank will not

be able to link that money (through its serial number) to that particular customer. This

scheme can work well for macropayments, but becomes too expensive for

micropayments. In general, the number of public key operations should be minimized

in a micropayment system, and one public key signature on each payment seems to be

too computationally expensive.

3.3.1 Properties of anonymous schemes

If a payment scheme is anonymous, it is infeasible to make the connection between a

user and a payment that have been made. That is, it should not be possible to find out

who was the paying party in a given transaction.

A consequence of anonymity is that the payment system must be pre-paid. If it is not

pre paid, then the customer must be sent a bill after the electronic money has been

spent. To do this, the bank must be able to make a connection between money spent

and the user that spent them.

3.3.2 Batch signatures

An option to validate electronic payments is to use batch signatures. This way, one

public key signature can be used to authenticate several payments, and the

computational cost can be spread out amongst them.

This method is used with several proposed systems based on chain and tree structures.

The names of some of there schemes (and the papers they are described in) are

PayWord[Ri, Sh'96], NetCard [An, Ma, Su'97], Pedersen's proposal [Pe'96], ^iKP[Ha,

St, Wa'96] and PayTree [Ju, Yu'96]. A series of payments are made from a single tree

or chain, and the root of the tree or chain is authenticated through a signature. Each

payment can be linked back to the signed root, and thus be verified as authentic.

A problem with batch signatures is the innate linkability between each single

payment. An aspect of the anonymity property is that it should not be possible to

identify two payments as coming form the same entity. This property is naturally

violated if each payment is verified by linking it back to another payment. However,

this can be acceptable for some payments, and can thus be used in certain

micropayment systems. Examples are phone calls or pay per view movies, where

several payments are made to pay for the same product (e.g. a payment every minute

for the duration of the movie). We still want to protect the customer's anonymity, but

it is acceptable that the vendor knows that each payment comes form the same

customer.

Another problem with batch signatures is how to handle partially spent batches. Since

anonymous schemes must be pre-paid, the money in a signed batch has already been

debited from the customer's account. Then the question arises what to do about the

money that is left in a partially used batch. Theoretically the vendor can give back

change, but this will violate the customer's anonymity. Another way to handle this is

by the bank refunding the customer at a later time, but this involves a fairly long

delay.

3.3.3 Pseudonyms

A non-cryptographic technique used to protect the anonymity of the customers is to

let them use pseudonyms instead of their real identity. This can be done in different

ways, but it will normally involve some type of anonymity server.

A user can register with an organization, and this will issue a public/private key pair,

not giving away the anonymity of the user. When the user deals with a vendor,

remailers and other services can be used to deliver the electronic goods to the

customer without revealing the identity. A problem with this type of anonymity is that

the financial institutions in the system might be unwilling to let anonymous customers

establish accounts. This can also interfere with tax laws and other regulations.

The payment service provider might also offer pseudonyms. This way, the customers

can identify themselves with different names to different vendors, and their spending

patterns will thus be hard to map. Banks can offer similar services, and some of the

above-mentioned problems can be avoided.

Using pseudonyms, every payment can be traced back to an identity. The security lies

in the infeasibility of linking that identity to an actual customer. However, if this can

be done once, than all other payments done by that customer using that pseudonym

can also be traced. This is a general problem with systems using pseudonyms.

Allowing customers to use several pseudonyms helps, but the linkability between

payments is still a problem.

Another problem with pseudonyms is that the anonymity is protected by trust rather

than the computational infeasibility of revealing the customer's identity. This can

prove to be a problem, but it can also fit nicely into the existing trust model. For

example, we already assume there exists a trusted party to issue public/private key

pairs.

3.4 On-line and off-line systems

Some macropayment systems use on-line verification of payments to strengthen the

security of the transactions. This is a useful technique to prevent fraud like double

spending and counterfeit money, but comes at a cost; namely the communication
overhead required. The vendor will contact the bank to make sure a payment is
authentic and in order before the transaction with the customer is executed.

This type of on-line verification (also called on-line payment) is considered to be too
expensive for micropayment schemes. However, several micropayment systems
propose to use of communications with the bank on other occasions than for
withdrawal and deposit. This will be discussed Section 3.5 about probabilistic
payments.

There are several drawbacks with on-line verification, besides the fact that it produces
time-delays due to communications. The overall cost of the systems also increases, as
does the chance for bottlenecks to occur.

If a vendor is to contact a payment authority for every payment, then that authority
must be on-line at all times. The cost for being able to handle high traffic even at peak
times will be considerable for the payment authority and thus for the system as a
whole. This might be bearable for a macropayment system, but may be too expensive
for a micropayment scheme. However, there are the cases where a payment system is
hybrid, handling both macro- and micropayments. The cost of the on-line system will
be spread out over a larger user and payment group, and this might make the system
economically feasible.

Related to the financial cost of the on-line system is the number of available on-line
payment authority servers. These servers can easily form bottlenecks in the system,
making delays too long. A network of servers is needed to handle the load, pushing
the price up further.

3.5 Probabilistic payment systems
Some of the problems with micropayments have tried to be addressed by adding the
property of chance to the system.

3.5.1 On-line verification
As mentioned, on-line verification of payments is considered too expensive for
micropayment systems. But what happens if only a few of the payments are verified
on-line and the rest are verified in batches at a later time (i.e. off-line verification).

The main reason for using on-line verification is to prevent double spending by users,
and also to make sure a customer does not overspend.

A vendor can accept most payments off-line to save communication costs and time
delays. However a small number of the payments picked at random will be checked
on-line before the transaction is completed. This will allow a few illegal payments to
be stopped before they are made, but more importantly it will discourage customers
from making fraudulent payments. If a user knows there is a chance of being caught,
this might stop him or her from cheating.

The probability for doing an on-line check should be proportional with the value of
the payment made. The greater the value, the bigger the chance that the payment will
be checked. This ensures that cheating becomes increasingly harder and more risky as
the intended fraud gets bigger.

However, it is not only cheating and fraud that can be controlled with probabilistic
on-line verification. It is also possible to monitor and to a certain degree control the
customers credit limit.

When a customer makes a payment to a vendor, this payment is checked on-line no
matter what. The bank will then know that the given customer is active with the
vendor, and will keep an eye on the credit limit of the customer. Whenever the vendor
sends a new payment for verification, the customer's usage is updated at the bank. If
the customer spends more then his or her limit, or shows signs of doing so, the bank
can contact all vendors dealing with that customer to stop all transactions. This
effectively stops the customer fi-om overspending any further.

The cost of such a system grows with the values of the transactions done. If the
scheme is used with relatively high valued payment, then the cost will get closer to

that of an on-line payment system. If all or most transactions stay small, then the
system will be closer to the cost of an off-line payment system: The vendor in every
payment systems needs to contact the bank at least once to deposit the electronic
money received from customers. With probabilistic verification the vendor will have
to contact the bank at least once per customer it deals with in addition to the
communication needed for deposit.

3.5.2 Probability of payments
A technique for cutting down on both communication- and computational costs is to
not pay every vendor every time a service is bought. It sounds a bit odd, but we can
add a probabilistic chance to see if a vendor will be paid or not. It can be seen as using
a specialized type of lottery tickets rather than electronic money as payments.

The idea is that it costs less to pay a few vendors than paying many. The few vendors
that gets paid will be paid a lot more than what a normal micropayment is worth, and
the law of large numbers will make sure the values evens out.

Normally, if a given vendors deals with a thousand customers in a day, it will receive
several payments from each of them and several thousand payments must be
processed. With this type of probability added only a handful of customers will
actually make a payment to the vendor in question. Both the communication costs for
deposit, and the bank's computational costs for checking the payments can thus be
greatly reduced.

There are several ways of achieving this type of probabilistic payments. The customer
can issue a 'payment' where the chance for getting paid is described. This chance can
be based on a number of things, and the question if an actual payment will be made or
not can be resolved instantaneous or there might be a delay.

For delayed decisions on who will and who will not get paid, an external source can
be used. Examples mentioned can be numbers form the state lottery.

Protocols that settled the question of payment in real time can make use of the

knowledge of the pre-images of one-way hash functions. The customer will choose

random winning numbers, and commit to these with a 'payment'. The vendor will

generate random numbers, trying to match the numbers of the customer. If the vendor

guess right it gets paid, otherwise the vendor provides the service for free.

In an example described in [Ri'97], the vendor generates a random 30-digit decimal

number w, and send the customer the hash value 0-C(w) . The customer will send a

'payment' committing to ^ w j a n d a winning condition. The winning condition is that

the last three digits of w must match a random number generated by the customer. The

vendor can easily check if it wins, and will send w to the customer if it does win.

Several problems arise with these types of probabilistic payments. One is that users of

the system might not feel comfortable with the uncertainty of payment. The vendors

never know exactly when and how much they will get paid, and the customers does

not know exactly how much they spend. Even though this will even out, many people

might object to the idea.

Another problem mentioned is that a system like this can conflict with the regulations

for lotteries. Even this is not a lottery authorities might see it differently. Also, since

lottery laws vary in individual countries, a probabilistic payment system will have to

be evaluated but local authorities. There is a danger that an otherwise good payment

system will not be accepted in a series of countries, and this will weaken the overall

acceptability and usefulness of the payment system.

3.6 Money production

Both macro- and micropayment systems have different types of money. They can be

divided into two main groups, namely token based and notational.

In token-based systems the electronic money is represented by specific digital patterns

with predetermined values. Tokens are similar to conventional coins and notes, and

several tokens might have to be used to pay a particular amount. Token-based systems

are often called cash like, and the tokens are often referred to as coins.

Several parties in the system can do the actual production of electronic money. An

issuing authority like a bank or a broker will often do it, but the customers can also do

it. Either way the vendor receiving the money must be able to verify the authenticity

of the payments.

3.6.1 Hash chains

Repeated hashing of a number is a much-used technique to produce the payments.

Each link in the hash chain will be a separate payment often referred to as a tick, a

coupon or a payword.

Some of the payment systems (and the papers describing them) using hash chains are

PayWord (in [Ri, Sh'96]), NetCard (in [An, Ma, Su'97]), Pedersen's proposal (in

[Pe'96]) and i^iKP (in [Ha, St, Wa'96]).

A hash chain is formed by repeatedly applying a one-way hash function on a

randomly generated number. Each link w/ in the chain is the hash value of the next

link Wi+i.

To make a chain of length «+7, a random number must be generated. This will be

the last link in the chain.

Let HhQ a strong one-way hash function. The hash chain can then be generated in the

following manner:

Wi= H(wi+i)

Wo is called the root of the chain.

A chain like this has the nice property that, if w/ is made public, only the person who

generated the chain will know the value of Any other entity must break the one-

way function be able to find

3.6.2 Hash collisions
Let HhQ a strong one-way hash function. It is easy to find = H(x), given x and K It
is considered infeasible to find x given y and ^ and it is also infeasible to find two
values xi and X2 so that H(xi)= H(x2) and xi X2. The first problem is called reversing
the hash function, while the later is called finding a collision. However, given enough
time and computing power both of these tasks can be done.

In Micromint, [Ri, Sh'96], a system was presented where a broker with specialized
hardware can produce special electronic coins that consist of a k-way hash collision.

That is, a series of numbers xi, X2, ...,Xk are found such that
!Hlx])= J{(x2)= = The verification of such a coin is easy for anyone to do
given the numbers and the hash function K but it is infeasible to produce counterfeit
coins.

3.6.3 Scrip
The Millicent protocol, [Milli'95], presents a token based system, introducing scrip.
Scrip represents an account that a customer has with a given vendor. This way, the
money is both vendor and customer specific. A piece of scrip contains several data
items, including the identity of the vendor and customer and the monetary value of the
scrip. A secret key is adde to the scrip and a hash value produced, giving a certificate
in the form of a MAC.

3.7 Fraud and loss of money
Some micropayment schemes are not as concerned about absolute security against
loss or fraud as other payment systems with higher values per payment [Milli'95], [Ri,
Sh'96], [Mu, Va, Li'97]. Micropayments can be seen as pocket change, and it is no big
deal if a few micropayments get lost now and then. Likewise, a few occurrences of
fraud are accepted, but it must be possible to detect and stop large-scale frauds.

It is simply too expensive to have the necessary mechanisms to make sure every

single micropayment is protected and accounted for at every step of the protocol It is

enough to make fraud hard and detectable, [St, Va'97].

3.7.1 Fraud detection/prevention

The main device for preventing loss in the system is by secure production of the

electronic money. Some of these are described in Section 3.6.

The NetBill system [Si, Ty95] uses digital signatures for the transaction, which of

course is a very effective weapon against fraud. However, as mentioned earlier,

digital signatures are considered to be too computationally expensive for

micropayments.

The market forces are considered to have a large influence in many papers. It is often

assumed that customers and the market in general will shun vendors that cheat,

forcing them out of business. Some of the papers discussing this are SVP in [St,

Va'97], MicroPayments based on iKP in [Ha, St, Wa'96], Micro-Payments via

Efficient Coin-Flipping in [Li, Os'97] and PayWord in [Ri, Sh'96].

If the payment scheme is not anonymous, then the chance of fraud goes down. A

person is less likely to cheat if his or her identity is known to the parties he or she is

cheating. The problem of fraud then becomes tightly linked to the authentication of

the entities in the system, and whether or not a person can manage to get a fake

identity and thus avoid paying their debts.

Overspending is an issue that may or may not be actual fraud, depending on the

system. In a credit based system, an over spender who pays his or her bills has only

committed a minor offence against the financial institution in question, and might

have to pay an additional fee. If the system is pre paid, overspending will most likely

be considered fraud, as the person is spending funds he or she should not have access

to.

Some of the most effective methods to prevent fraud and overspending are on-line

verification, one-show blind signatures and tamper resistant hardware devices.

3.8 Authentication

In a computer environment where all entities have public/private key pairs, we can

use the public key to identify individual, for example through X.509 certificates [Cho,

Na, Pu, Un'98].

Macropayment systems often rely on public key signatures to authenticate users, as

does some micropayment systems. However, several micropayment systems do not

use public key signatures at all, to save costs, and need other ways to identify users of

the system.

If public key signatures are used, then this will normally just be used for one payment,

or a commitment for the payments to come. Micropayment systems don't use a public

key signature on each individual payment, so all systems need other measures to

identify separate payments.

3.9 Protecting the customers rights

Customers want to be sure they get what they pay for, and vendors wants to be sure

they get paid. This property is easy to fulfil with conventional purchases, as the

customer and vendor are in the same room, exchanging goods for money.

It is difficult, and often impossible to get this property working in macropayment

systems, as goods often are physical. If they are, then the vendor will ship the ordered

goods after the payment is cleared, and the customer will have to wait and hope that

he or she receives the merchandise. Macropayment systems must have a mechanism

for receipts, since there are room for both fraud by the vendor and difficulties during

shipments. Receipts can be handled quite easily with a public key signature on a

message containing the purchase details.

Again we run into the problem with public key cryptography and micropayments. It

will be too expensive to issue a receipt for each micropayment if a public key

signature is needed on each receipt. Receipts are also hard to handle if we want to

preserve anonymity in a payment system. After all, the vendor will have to make the

receipt out to someone, and that is hard to do if the customer is anonymous. It can be

done through pseudonym schemes, but can easily be complicated.

Another problem with receipt is that they are only good for proving that a payment

was done for a given product or service. A customer that did not receive what he or

she paid for will have a hard time proving this to an arbiter or even the vendor to

whom the payment was made.

Quite often, it will not be practical to use receipts in a micropayment system. This is

especially true for streamed products like movies and phone calls. In such cases it will

be more practical to use one receipt for the whole product, not for each payment.

Most proposed micropayment system does not have mechanisms for receipts or

similar safe guards. They assume that vendors that do not deliver will be shunned and

go out of business. An option is to have the brokers or banks, or a central authority

handle complaint about bad deliveries. If a vendor gets enough complaints, it might

be forced out of business by revoking its certificates or through other means.

3.9.1 Certified delivery

A system for certified delivery was presented in the NetBill system, [Si, Ty'95]. This

ensures that the payment only goes through if the customer gets the information he or

she paid for. NetBill is an on-line system, and any payment system that wants to use

this type of certified delivery needs to be on-line as well.

With NetBill's certified delivery, the vendor encrypts the information goods before it

is sent to customer. The customer sends the payment to the vendor, and the vendor

sends both the decryption key and the payment to the NetBill server. If the payment is

approved, the NetBill server keeps a copy of the key, and instructs the vendor to give

the key to the customer. If a problem arises with the decryption, then the customer can

go directly to the NetBill server to get the key.

Chapter 4
One-time signature schemes with an infinite

authentication tree

Merkle [Me'87], [Me'89] proposed a scheme where one-time signatures are used in

conjunction with an authentication tree. The one-time signature is based on a system

proposed by Lamport and Diffie, and improved by Wintemitz and Merkle [Me'87],

[Me'89].

The following description is a summary taken mainly from [Me'87], and some from

[Me'89]. The reader is referred to [Me'87], [Me'89] and Menezes et al [Me, Oo,

Va'97] for more detailed descriptions. Ove Heigre has written about the Merkle-,

Wintemitz and other one-time signature schemes in his thesis, [He'OO;.

4.1 The Lamport-Diffie one-time signature

The Lamport-Diffie one-time signature uses one-way functions as the base for their

one-time signatures. The signature is first described in [Di, He76], and later

referenced to in [Me'87] as the "Lamport-Diffie one-time signature".

If a signer wants to sign a one-bit message m={0,l}, this can be done in the following

way: The signer selects two values xj andjc^, and computQS yj=!H(xi) dxvdy2=0i(x2),

where ^ i s a one-way hash function, yi is made public. The message m is signed with

x; if m = 7, and with X2\im = 0. The verifier can easily check the signature by

computing 0-C(Xi) =yi.

If many Xi and yi are made, a longer message can be signed. To sign an n bit message,

2n XiS and 2n yts must be made. The 2n yis must be public, or the receiver must

previously have received them from the signer in an authenticated manner. The 2n XiS

are used to sign the message.

4.2 Merkle*s one-time signatures

Merkle improved the Lamport-Diffie scheme by cutting down the size of the

signature. Rather than creating 2n XiS (and 2n only n+log2n needs to be made.

This almost halves the size of the signature.

Instead of making two x's and two for each bit, only one is made per bit. Let the

message be M=mi m2 ...nin, mi={0,l}. If m/=7, thenXi is released, and if then x/

is not released.

This would enable the receiver to cheat, by pretending not to receive certain x'5.

To avoid cheating, a check sum must be added to M, where the number of O's'mM is

noted. The message to sign i sM ' = M \ \ C , where 11 is concatenation and Cis the binary

representation of the number of O's in M.

Let's say M i s an 8 bit message. The length of the check sum C will be log28 = 3, so

the length of the message to be signed, M\ is 8+3=11.

To sign a message of length 11, Alice will need a vector X == x;, X2, xy; and the
corresponding vector Y. 7 must be known to the verifier Bob.

Let M = "1001 1101The number of is 3, which is " 11" in binary. Thus C =
"01 r\ andM' = "10011101 Oil".

Alice sends the message M' along with xj, X4, X5, xe, xg, xjo and xjj to Bob. Bob cannot
modify M - M | |C if he wants to have a valid signature on M'. He cannot change a 0 in
M into a 1, since he cannot create any XiS that he has not received from Alice. He can
change a 1 in M into a 0, but that is going to make the count C wrong. He would have
to change C too, but again he cannot produce the needed x/.

Example 4.2.1

Alice wants to send the 8 bit message M to Bob:

M= 1001 0101

The number of O's in M is 4, which is 100 in binary. This is the check sum for M.

C= 100

Append C to M to produce M'

M' = M\\C = 1001 0101 100

Alice must produce Xand 7, with length 11 (8 for M and 3 for Q .
X= X], X2, X]]
Y = yi,y2, ..-^yii

7 is made public, so Bob can verify that Ahce produced it.

The signature on M' is

Xj, X4, X6, Xs, Xg

Alice sends the message M' along with the signature to Bob. Bob cannot modify
M | C if he wants to have a valid signature on M'.
He cannot change a 0 in M into a 1, since he cannot create any XiS that he has not
received from Alice.

If he tried to modify M to 1001 1101, then he will needxj to produce a valid
signature.

Bob can change a 1 in M into a 0, but that is going to make the count in C wrong. He
would have to change C too, but again he cannot produce the needed xu
He can modify M to 1001 0001, since he can pretend he did not receive X6. However,
this would change C from 100 to 011. Bob would need to produce xio and Xn to make
a valid signature on M'.

4.3 Winternitz*s one-time signatures
Wintemitz proposed a variant to Merkle's signature that reduces the signature size, but
it requires more computations [Me'87].

The idea is to reduce the number of x and j values needed to sign a message. Rather
than mdkmgy=9{(x), Tfis applied repeatedly to Repeated applications of HWiW
have this notation: H(7{(7{(9{(x)))) is written as !H^(x), H(H(H(x))) is written as

etc., and thus :}f(x) is equal to x.

This way, a single ;c and;; value can be used to sign several bits. Let M=m/, be a 2
bit message and n=4 be the message space (4 possible messages with a 2 bit
message). The public y is equal to !H^(x); y= !H^(x). The signature on M is ^{^(x) and
TT'^^ix). The signature can be verified be applying repeated hash functions to reach;;.

The Wintemitz scheme can be used to sign longer messages as well. To do this, the
message is split into t sub elements of equal length k, and each of these elements will
be signed with an a: and pair.

M=mi\\m2\\...\\mt

A checksum C must be added to the message in a similar fashion as in Merkle's
scheme (Section 4.2). The checksum is the sum of each sub elements minus n.

C = - m ,) <12" [Me, Oo, Va'97] /=i

Example 4.3.1
Alice wants to sign an 8 bit message M.

M=mi 1712 ^ ¿ ^ Om (9 and 5 in decimal)
mi 1712

Alice will use one jc and pair to sign four bits, making
k=4

and

C = (n-mi) + (n-m2) = (16-9) + (16-5) = 18

C = cic2 = 00^00j^

C] C2

The message w to sign is then

w=M\\C = mi\\m2\\ ci ||

mi m2 C; C2

The signature S consists of four hash values as follows

^ = H-'^fxJ = H'(xJ H'(x,) H'(x,) H'(x,)

Given the public Y

Y = yxyiy^yA ^ ^"(xj ^""(x,) H "(X,) ^^(xj

Signature S can easily be verified by checking each Sj:

4.4 Merkle^s authentication tree

A problem with one-time signatures is that each signature requires a new entry in a

public record. This amounts to a large exchange of information that might be work if

only two parties are involved, but it becomes unwieldy as a general signature scheme.

Merkle proposed a scheme where one-time signatures form a tree structure. The root

of the tree is entered into a public record, held by a TTP. Each node in the tree is used

to sign a message, but also to verify the authenticity of its children.

When a one-time signature is used, it must be authenticated. This is done by

recursively showing the ancestors of the node to the verifier, all the way up to the

root.

Each signature still has a private array x, and a public array;; which is a function ofx.

A binary tree is used as an example for simplicity, but in theory any K-array tree can

be used.

Each node in the tree has three functions:

1) sign off the left child,

2) sign off the right child and

3) sign off a message.

Thus, each node contains three separate signatures.

Two three-dimensional arrays, x and> ,̂ are needed to form the tree. The three fields in
each index of the arrays are:

x[<node number>,<left, right or message>,<index within the one-time signature>].

<node number> is simply the node's index within the tree structure. <left, right or

message> indicates if this signature is used to sign off the left child, the right child or

a message. <index within the one-time signature> is the index of the bit this particular

;c-values is going to sign.

Assumepx's are needed to make a child signature and qx's needed to make a

message signature. The private part of the signature in node i would then look like

this:

x[i, left, 1], x[i, left, 2],, x[i, left, p]

x[i, right,l], x[i, right, 2],, x[i, right, p]

x[i, message,!], x[i, message, 2], .,.., x[i, message, q] [4.1]

Let x[i, message, *J be all needed to sign a message (and the same for left and

right children) using the signature in node i. Let also xfi, *J be all jc'i- for both left,

right and the message in node i.

The public part i has exactly the same structure.

The public part;; of the root must be authenticated by a TTP, much like a public

signature. To sign a message m, the signer uses the one-time signature described

above, with the secret parameters xfi, message, */. All public parameters _y/y,

message, *7 are given to the verifier. Then certain x's in x[i, message, */ are shown to

the verifier as well, who can now see that the signature is indeed made by the right

person.

The verifier must then make sure>'//, message, are actually a valid set of

parameters. This can be done with the parameters y[j, left or right, *], where j is the

index of parent node to node i (j=li/2 J. Verification for can be done

recursively up to the root, which in turn has been authenticated by a TTP. The signer
must keep sending the parent n o d e s l e f t or right, 0<=k<j\ and some other
information to the verifier until the root is reached. This is often referred to as the
authentication path.

If we use Merkle's signature scheme (see Section 4.2), QSLch y[r,s,tj {r,s and t are the
indexes as indicated in [4.1]) is computed from the corresponding x/'v,)^:

y[iJ,k]=H(x[ij,k])

Each node / has a unique identifying number called HASH(i), which is a collection of
all the public parameters for node i.

HASH(i) = Hmy[i, left, *]) 11 H(y[i, right, *]) 11 H(y[i, message, *]))

Chapter 5
New improvements for micropayment schemes
based on hash chains
5.1 Introduction to the scheme
A payment scheme based on hash chains is presented in this chapter. These are
suggestions for new extensions and improvements to existing micropayment systems
based on hash chains.

The payments are structured in a Merkle authentication tree, and any one-time
signature scheme can be used, although Merkle's and Wintemitz's schemes have been
the main focus during this research.

The new improvements offer more flexibihty and opens up for time saving for both
payment and verifications of already executed transactions. These properties are
discussed in Section 5.5.

5.2 Related work
5.2.1 Hash chains
Diffie and Helman used repeated one-way functions in a password authentication
scheme, [Di, He'76], and Wintemitz used repeated hash functions to design the one-
time signature scheme described in Section 3.3. [Me'87].

Several micropayment schemes use hash chains to make payments. The idea is that a
chain is created be applying repeated hash functions, and the security is based on the
difficulty of reversing a cryptographic hash function. Some of the first to use hash
chains for payment systems were Rivest and Shamir in their PayWord system,
[Ri,Sh'96], Anderson, Manifavas and Sutherland in the NetCard scheme, [An, Ma,
Su'97], and Pedersen's proposal in [Pe'96].

A short description of PayWord is provided here to illustrate how a hash chain can be
used for micropayments.

5.2.2 A short summary of PayWord
Let J-ChQ a secure one-way hash function.
n is the length of the hash chain that will be made.
The user selects a random number
A chain of values is then produced in the following manner:

The user ends up with a chain

So> Sj, Sn-h S„

where

So = H(Si), Si = 3<(S2), ,Sn.l = H(Sr), S„

Each link 5, in the chain is a payment token, so is considered the root of the chain, and
the user must authenticate the root so the vendor knows he will get paid for tokens
related to so- The user authenticates So by signing a certificate issued by a broker or

bank.

Each payment consists of the next token from the chain, and the token's index thus

the payment is (5,, i). The vendor have received the previous token 5,./ before, and can

thus verify this payment by checking that Si.i = !H(si) (unless i=0, in which case it is

the root which is signed with a pubHc signature).

5.3 The new payment scheme

The system is built around an authentication tree with one-time signatures that is

reduced to a chain structure. Each node in the tree will contain signatures to

authenticate its child, and a hash chain will be attached to the node. The hash chain

will be authenticated through the one-time signatures.

5.3.1 Using a chain rather than a tree structure

An authentication tree can be arbitrarily large (or small), and only the root needs to be

created initially; any other node can be made later on. The user will create a new tree

for every vendor he does business with. Making a new tree is not more computation

ally expensive the making a node in an exciting tree. Thus making a new tree for each

vendor does not produce any extra work.

Normally a tree structure is used in order to need as few recursive calls as possible to

get up to the root to authenticate a signature. This makes each signature cheap, since

only log n signature authentications are needed, where n is the tree depth of the

signature to authenticate. But we can shorten the authentication path to only one step

here, since a new tree is made for each vendor. A child can be authenticated by its

parent, and the parent has already been authenticated by the vendor in question.

Therefore, a chain will be used rather than a tree. This saves space, since each node

only have to contain two signatures; one for the child and one for the message, rather

than one signature for each of its k children plus one for the message. An

authentication tree reduced to a chain will be referred to as a signature chain.

The message signature in a node i can be used to authenticate a hash chain and the

monetary value pf each link in that chain like this:

Hash chain authentication = <so,o, i, value>Message signaturei

Where so,o is the root of the hash chain, i is the node depth and value is the value of

each link in the chain.

5.3.2 Further size improvement on the signature nodes

A node in an authentication tree (or a signature chain) normally contains signatures to

authenticate its children or child, and also a signature to authenticate a message. With

this structure, the identification of node i is based on the public values of all the

signatures (that is, all the y matricis). With a signature chain, each node will need two

signatures, and the node identification HASH(i) is:

HASH(i) = !H'(!Hly[i, child, V) || H(y[i, message^]))

The idea behind this is to make sure an attacker or fraudulent user cannot insert false

signature node, since each node is identified with public values that in turn is

authenticated with a signature of a parent.

However, rather than using a message signature to sign the root of a hash chain, we

can use the root to as an integral part of the node identification. This is done by

including the hash chain root in the identic fiction HASH(i). The value of each link in

the hash chain must also be included, since we no longer have a message signature to

authenticate the value.

Each node will always be associated with only one hash chain with one value, and this

connection does not need to be made until a payment from that hash chain is needed.

Therefore, we don not lose any flexibility by dropping the message signature from the

signature node. The new identification for a signature node will now be:

HASH(i) = H(H(y[i, child, *7; 11 Hash Chain Root \ \ Value per link)

All three components are public values just like in the original Merkle tree. None of

these values can be replaced by a fraudulent user, since the vendor will detect this

when computing HASH(i). The vendor cannot replace any of these values either, since

the bank will detect this. Therefore, we do not compromise security with this new

structure.

We have now gone from 2 to just 1 Wintemitz signatures per node, so the size of each

signature node is reduced to almost half (on top of the reduction achieved by going

from a tree to a chain structure as described in Section 5.3.1).

5.3.3 Assumptions

The scheme is credit based. A discussion about adding hardware to allow for a pre

paid version is provided later.

The bank is off-line.

Multiple currencies are supported.

Divisibility is not a problem since denominations are chosen on demand.

No anonymity is provided, unless some kind of anonymity server is used. Again,

hardware can help solve this.

Three parties are involved: user U, bank B and vendor V. The user has an account

with the bank. It might be useful to have a broker that acts as an intermediary between

users, vendors and banks, but it does not make a difference for the principle of the

scheme.

Í/establishes an account with B, and B issues U with a certificate. It might look

something like this:

Certu = <IDu, IDB, PKU, Epx, Stat, Info>SKB [Ri, Sh'96]

The certificate might contain a number of things, but above are listed: user's and

bank's ID, users public key, expiration date, credit status or limitation, and other

information. The Info field might contain maximum spending limits per vendor per

day for the user. The certificate is signed by the banks secret key.

The certificate authorizes the user to produce micropayments. A vendor can verify a

certificate through the bank's signature, and can thus trust to be redeemed by the

bank. The certificate needs to be reissued with certain (fairly frequent) intervals.

The user contacts the vendor to make a purchase. The vendor sends purchase

information back, including pricing and currency. The user will send a commitment to

the vendor:

Commitment = <IDv, Certjj, Time, Curr, Root>SKu

Commitment
Signature verifying
the root of thie
signature-chain

The commitment contains:

vendor's ID, the user's

certificate (including user ID),

a timestamp, the currency for

the payments and the public

parts of the root of a signature

chain. Root refers to the

identification of the root of the

signature chain:

HASH(i) = H(J{(y[i, child, *])

So,Q 11 valueo)

The commitment is signed by

the user's secret key.

5.3.4 Payment

After the commitment has

been given to the vendor, the

user is ready to start sending payments. The public in node 0 in the signature chain

Figure 5.1:
Each signature node has a hash chain attached to it.
The node is identified by its public values, the public
part of the child signature, y[i, child, the root of the
hash chain, So.o, and monetary the value per link value{.

is sent to the vendor, along with the root of the hash chain attached to that signature
node.

The vendor can verify these vales computing HASH(O) can compare this to the value

Root in the Commitment.

A new signature node with a corresponding hash chain can easily be created if a hash

chain runs out, or the user needs to change denomination per payment.

The signature nodes are easy to make (and can be pre made, if this suits the particular

application). This allows the user to produce many hash chains of different

denominations and lengths as needed. Each link in a specific hash chain will have the

same value, but each chain can have different values per link. Thus the user can send

links from different hash chains depending on the payment that is to be made.

Each hash chain has the same index as the signature node it belongs to, and each link

in the hash chain will have a second index, internal to the hash chain.

Signature node / will be used to sign the root 0 of the hash chain Su, -p. i is the

depth of the node in the signature chain, and p is the length of the hash chain attached

to node /.

5.3.5 A payment example

User U contacts vendor Fto purchase information on web pages. The user needs to

produce a hash chain to make payments. This chain can be made in advance, before U

contacts V, since the hash chain is independent of the vendor and the token values in

question. Let the chain of length p be so,o, so,i, , so^p. so,o is the root of the hash

chain and is authenticated through the commitment

F wants payment in US$, and each web page costs $0.05. U sends the public parts of

the signatures in the root node: y[0, child, *7, so,o and valueo=0.05. Uthen sends a

commitment:

Commitment = <IDv, Certu, Time, US$, HASH(0)>SKu

HASH(O) is the identifying number for the root of the signature chain. Fcan verify the
commitment with ITs signature SKu, and the bank's signature SKB on the certificate
Certu.

U can now do a series of payments worth five cents each. This is done by sending the
next hnk in the hash chain, together with that Unk's index to V.

Payment = (soJ, 0, j) J ^

V can verify this payment by checking that soj = H(soj+i) , j<p.

If U then wants to buy a piece of information goods worth 2 cents, he can easily make
a new hash chain worth two cents per Hnk. A new node in the signature chain must be
made, and this node must be authenticated by its parent, namely node O.U SQnásy[l,
child, *] , and value\=0.02 to V. V can verify the authenticity of node 1 by
checking child, *] up against HASH(l).

A hash chain must be made with a finite length. This is one of the common criticisms
used against hash chains: A user must make a chain of a chosen length, and if he does
not use the whole hash chain he will have done unnecessary computations. On the
other hand, if the hash chain proves to be too short, another hash chain must be made,
and another public signature used to sign a new commitment containing the new
chain. This problem will not occur with this scheme. Each hash chain can be made
relatively short. If a hash chain of a certain denomination is exhausted, the user can
just make a new hash chain signed by the next node in the signature chain.

5.3.6 Redemption
The vendor contacts the bank and sends the following data: The commitment, the
public part of each signature child, *J, all hash chain roots si,0 and every link
value valuci. The bank can verify the authenticity of each payment in the same way
the vendor did upon payment. The vendor will be redeemed if the bank finds the

payments to be authentic, and the user's account will be charged for the same amount.

5.3.6 A problem with size
A problem with this scheme is that the one-time signatures can be relatively large. As
will be shown in Section 6.6.2, the public;; of a typical Wintemitz signature will be
880 bytes long, as will the signature. This can prove a problem, as the vendors will
have to store a lot of information.

Adding a closing protocol
A step to end a series of payments can be added to reduce the size of the data stored
by the vendor.

Whenever a user is finished dealing with a vendor he will make a new commitment,
signing off the amount he as actually spent with the vendor. This commitment will be
very much like the starting commitment:

Commitment = <IDv, Certu, Time, Curr, Root, Value>SKu

The only difference is that a last data field, Value, has been added to the end of the
commitment. It will be impossible for the vendor to cash in both the opening- and the
ending commitment, since both of them contain the same Root.

If the user tries to cheat by making the value in the closing commitment smaller than
the amount he has spent, the vendor can choose to ignore the closing commitment and
show the individual payments to the bank. The same will be done if the user for some
reason does not send a closing commitment at all. If the vendor finds the closing
commitment to contain the right amount and to be authentic, he can delete the
opening commitment and all individual payments, using only the closing commitment
to be redeemed by the bank.

5.3.7 Further possible improvements

Security improvement.

Each one time signature can sign the number of links released in the hash chain

belonging to its parent node.

Bootstrapping

This payment system can be boot strapped to a full-blown macropayment system,

much like jiiKP, [Ha, St, Wa'96]. The commitment will then be replaced with a

regular payment in the macropayment system, except the value of the macropayment

will contain the root of the signature chain rather than just a monetary value.

Probabilistic poling

Probabilistic polling as in [Ja, Od'97] can be used to discourage overspending. This

way, the bank can keep better control of the users potential overspending.

5.4 Properties of the payment scheme

These are properties any hash chain based payment system canl gain by using the

scheme described in this chapter. The main improvement is flexibility in several

areas.

• The payment scheme trades time saving and flexibility in several areas for signature

sizes.

• It becomes easier and quicker to change denomination per payment. In most

payment systems based on hash chains, the user can simply skip several links to

make a larger payment. However, this technique cannot be used to make a smaller

payment. The system presented here makes it easy to change denomination due to

quick Wintemitz signatures.

This type of down grading of link values can be useful if the customer starts buying

information that costs less, for example cheaper articles, or the cost of a phone call

changes from peak to off-peak price.

• It is very easy to handle multiple currencies. Each commitment can have a different

currency, as is the case with most payment systems. Additionally, each separate

hash chain can actually have a new currency, although this might not have an

immediate real world use at the moment.

• The same signature chain can be used within the same electronic warehouse, where

there is a degree of trust amongst the vendors, much like described in Pay Tree, [Ju,

Yu'96]. A party trusted by all vendors (this might be any vendor in the warehouse)

verify the commitment, and a new hash chain is made for each vendor in the

warehouse. The vendors contact each other to verify separate nodes in the signature

chain.

• More flexibility is offered with regards to the length of the hash chains. A new

chain can be made more often, since the computational cost of making a new hash

chain is cheaper.

• The system is flexible with regards to the available hardware. Computations can be

done ahead of time, or during run time, depending on memory and processor power.

All the links in a hash chain can be stored, or each link can be computed from the

secret s„ each time a payment is made.

Signature nodes can be made and sorted for later, since no part of the one-time

signature is revealed before it is used, and a node in a signature chain is completely

independent of its parent until it is used.

5.5 Further work and open questions

5.5.1 Anonymity

Anonymity is a general problem in micropayment schemes, and the system described

above does not solve this problem. The two most obvious solutions to anonymity is

making the system on-line, of use special hardware, both of which are quite

expensive. The reader is referred to Chapter 3 for a more thorough discussion on

anonymity in micropayment schemes.

Providing anonymity with hardware

With the use of hardware, this system can provide anonymity with a few extensions,

much like described in Brands' paper on Electronic Cash, [Br'99]. First of all, each

user must have a piece of hardware that they use when they make payments.

The user will withdraw money from his bank account, and this cash value will be

stored in the tamper resistant piece of hardware. The payment system has thus

changed from being credit based to being pre paid.

The bank will issue blank cheques that are signed with one-show blind signatures.

Each cheque will contain the root of a signature chain, and a maximum spending limit

for that cheque. When a user contacts a vendor, he will send a cheque rather than a

commitment.

The rest of the payment protocol proceeds as described above, except that the

hardware device keeps track of the user's spending. This prevents the user from

spending more money than what was withdrawn from the account.

During redemption, the bank needs to verify its own signature on the cheques sent in

by the vendor.

5.5.2 Overspending

Users have the opportunity to overspend in this system. That is, they may spend more

money than their credit limit or account balance. However, they will find it difficult

escaping the bill since the bank knows the identity of the user. We can assume that the

situation will be similar to when people overspend their credit card limits today.

Unless the scheme makes use of special hardware, or the scheme is on-li-e, it is very

difficult (or impossible?) to prevent this kind of behaviour. Penalties can be used

against overspenders, but they cannot be stopped altogether. Again, this is a general

problem for software based and off-line schemes. Over- and double spending is

possible, but the person doing so will be caught, and most likely made to pay by a

bank or other financial institution.

5.5.3 Other signature schemes

There is no reason why this scheme can't be used with another one-time signature

scheme. The more efficient and secure the signature scheme is, the more efficient and

secure the payment scheme will be. This is particularly true with regards to the size of

the signature scheme.

5.5.4 Further areas for study

-Wenbo Mao describes a system using Schnorr signatures described in [Mao'96]. This

system lets the bank reveal the user's secret key SKu after double spending. This

might be a good way to improve security for the scheme described here.

-Transferability between users should be made possible. In theory, this can be done by

letting the payee act as a vendor and receive payments as per the normal protocol.

Alternatively, as long as the system is off-line and credit based it might be sufficient

with a digitally signed commitment. lOU.

Chapter 6
Implementation of the proposed improvements to hash

chain based payment systems

The implementation has been done in C++, using the Microsoft Visual Studio

development environment. Crypto++, a library provided by Wei Dai, [Dai'Ol], has

been included to provide the cryptographic functions.

The implementations could have been done in either C++ or Java. There are two main

reasons why C++ was chosen.

First, the cryptographic libraries available for Java are still a bit limited, even after the

US export laws on cryptography have changed. The standard JCA and JCE provided

by SUN seemed a bit limiting, even though the implementation does not use a lot of

cryptographic functions.

Second, C++ it is the preferred language of the author.

Notation in this chapter

Until now, symbols and letters have been written in italic; for example the x matrix of

a Wintemitz signature. It is common to use courier when writing source code, as it

makes it easier to read. All letters and symbols referring directly to a variable in the

code will now be written in courier as well; for example the private member x of class

Wintemitz. However, when referring to general concepts like "the public ;; values"

italic will still be used.

6.1 Outline of the programs

An implementation has been done to get hands on experience with the micropayment

system described in Chapter 5.

Three classes have been implemented. They are:
class Winternitz
class WinternitzShort
class Node
class Tree

class Winternitz is an implementation of Wintermitz's improvement on Merkle's

signature scheme. It takes a SHA digest as an argument, and makes a Winternitz

signature on it.

class WinternitzShort is a re-make of class Winternitz Optimised for

producing smaller signatures. The main change is the most of the private members are

re-computed every time they are needed rather than stored. Some of the functions

have been modified for this purpose, and there are several variations of some of the

functions in order to avoid unnecessary computations. Due to the class's similarity to

calss Winternitz, the source code will not be discussed in detail below. See

Appendix C for the source.

class Node is the implementation of the signature node described in Chapter 5. Its

main contents are the root of a hash chain, the face value of each link in the hash

chain, and a Winternitz signature to authenticate it's child node.

class Tree is the Specialized version of the Merkle authentication tree, called a

signature chain in Chapter 5. It is a "tree" structure build up of instances of class

Node, but each node has only one child, making it into a chain.

6.2 class Winternitz

The author has implemented the Winternitz signature scheme described in Chapter 4.

This scheme (as well as the original Merkle scheme) is often considered a theoretical

signature system, due to the size of the authentication path involved in verifying a

signature. However, with the custom application and modifications done in Chapter 5,

it can become useful in practice. This prospect needs to be explored, and this

implementation has become a significant part of this thesis.

The Winternitz improvement to the Merkle one-time signature scheme can reduce the

signature size with a factor of about 4 to 8 [Me'89]. It can be used to reduce the size

more, but this will make the scheme too computationally expensive.

This implementation makes it possible to choose if that factor should be 4 or 8 (see

next Section: 6.2.1). That way, signature size or computation speed can be chosen as

first priority, depending on the situation.

class winternitz makes a Winternitz signature on a message of length 160 bits. It

is assumed that this is a SHA-1 digest of the message to be signed. What is described

in Section 4.3 as the message, is thus always expected to be a digest of the message.

The actual information to sign is of no interest to class winternitz, only a digest of

that information. In this chapter, "message" literally means "digest of the message".

6.2.1 Global values

These constants are defined at the beginning of wintemitz.h.

As mentioned above, the size saving factor of the Winternitz scheme can be chosen.

Setting the value of these two global constants before compilation does this:

const short unsigned int elementLen=4;

const short unsigned int elementPerByte=2;

elementLen describes how many bits will be signed by each jv value. This
corresponds to the value k in Section 4.3.
elementPerByte says how many sub elements there will be in each byte. The
signatures will be smaller and slower if elementLen is set to 8 and elementPerByte
to 1.

const short unsigned int digestLen=SHA::DIGESTSIZE;

digestLen is simply the length of the message to sign, which is the length of a
SHA-1 digest. At the time of implementation this is 160 bits.

A checksum is appended to the message to sign, as described in Section 4.3. The
length of this checksum is described by

const short unsigned int checkLen=sizeof(short unsigned);

t
The value of the check sum is set by C = ^^^^^ - w j < . /=i
t is the number of sub elements of the message.
^2elementLen elementPerByte * digestLen

C gets the largest value if each mrO, so C gets a maximum value:
= 160 = 40960.

A variable of length 16 bits is needed to hold this number, so the checksum can be
represented by a short unsigned int.

6.2.2 Private members
The data type byte is used for several of the members. Byte is defined as unsigned
char in the crypto++ library.

byte **x
These are the secret values of the signature. They are generated at random.

byte **y

Generated from x by applying multiple hash functions. This matrix is public.

short unsigned int xyLen

The number of x's and y's that is needed for the signature. xyLen will normally be set
equal to (digestLen+checkLen) *elementPerByte. This will be 22 or 44, depending
on the value chosen for elementPerByte.

byte *subVal

These are the sub elements described in Section 4.3.

short unsigned int subLen

This is the number of sub elements in subvai. If subLen is set to a value, it will be
the same as xyLen.
byte *m
The message to be signed. Again, this is assumed to be a SHA-1 digest of length 160
bits.

short unsigned int mLen

The length of m. It is assumed to be 160 bits (since a SHA-1 digest is 160 bits).

short unsigned int n
This is the maximum value of a sub element. In Section 4.2 this is described as 2 \
which is equal to in this implementation.

byte **signature

This is the signature matrix described as S in Section 4.3.

6.2.3 Constructors
Winternitz(); The default constructor calls initialise (), and makes the x and y matrices.

Winternitz(byte messDigest[], short unsigned int messDigestLen);

Makes a signature object, and creates a signature on the message messDigest.

messDigest is assumed to be a SHA-1 digest, and messDigestLen is thus assumed to

be 20, since a SHA-1 digest is 20 bytes.

winternitz(byte messDigest[], short unsigned int messDigestLen, byte

**yTest);

This constructor does not make the x matrix, and the y matrix is sent to it as an

argument. The subval matrix is made, and a signature can later be sent to the

Winternitz object to see if it the signature corresponds with messDigest and yTest.

'-WinternitzQ;

Standard destructor that deletes the arrays made by calls to new.

6.2.4 Private functions

void initialize 0 ;

Creates the secret x matrix and the corresponding public y matrix. A few other data

members are also given proper values.

void winternitz::computeSubVal()

{
if(elementPerByte==l)

for(short unsigned int i=0; i<mLen; i++)
subVal[i]=m[i];

else
for(short unsigned int i=0; i<mLen; i++)

splitByte (m [i] , ScSubVal [i*elementPerByte]) ;

}
Makes the matrix subval. If each sub element is 1 byte long, then subVal will be

equal to the message m. Otherwise, each byte in m must be split into two bytes,

padding the high order bits with 0.

void winternitz: : splitByte (const byte vai, byte * splitArray)

{
byte mask = 128;

for(short unsigned int i=0; i<elementPerByte; i++)

splitArray[i]=0 ;
for(short unsigned int j=0; j<elementLen; j++)
{

}
}

s p l i t A r r a y [i] < < = 1 ;

if (val Sc m a s k) / / P u s h 1, e l s e p u s h 0

s p l i t A r r a y [i] = s p l i t A r r a y [i] |l;

m a s k > > = l ;

} ^
This function takes a byte val, and splits it into several bytes that are put into the

array splitArray. The functionality is easiest explained with an example.

L e t e l e m e n t P e r B y t e b e 2 a n d elementLen b e 4 .

v a l = 1 0 0 1 0110

m a s k = 1 0 0 0 0 0 0 0

s p l i t A r r a y [0] = 0 0 0 0 0 0 0 0

s p l i t A r r a y [1] = 0 0 0 0 0 0 0 0

The inner for-loop tests if a 1 or a 0 should be pushed into s p l i t A r r a y [o]. The four

rounds in this for loop will produce these value (after the if-statement, but before

raask>>=l):

m a s k =1000 0000 (i

s p l i t A r r a y [0] = 0 0 0 0 0001

m a s k =0100 0000 (ii

s p l i t A r r a y [0] = 0 0 0 0 0010

m a s k =0010 0000 (iii

s p l i t A r r a y [0] = 0 0 0 0 0100

m a s k =0001 0000 (iv

s p l i t A r r a y [0] = 0 0 0 0 1001

The next four rounds will produce splitArray [i] in a similar fashion:

m a s k =0000 1000 (v

splitArray[1] =0000 0000

m a s k =0100 0010 (vi

splitArray[1] =0000 0001

m a s k =0010 0100 (vii

s p l i t A r r a y [1] = 0 0 0 0 0011

m a s k =0001 0001 (viii

s p l i t A r r a y [1]=0000 0110

The byte val has thus been split in two, in the same way as described in Section 4.3.

This corresponds to the message Mbeing split into mj and m2 in example 4.3.1:

v a l = 1 0 0 1 0110

s p l i t A r r a y [0] = 0 0 0 0 1001

s p l i t A r r a y [1] = 0 0 0 0 0110

v o i d w i n t e r n i t z : i m a k e C h e c k S u m O

{
short u n s i g n e d c=0;//the integer v a l u e of the c h e c k s u m

short u n s i g n e d int i=0;//loop counter

int j = 0 ; / / l o o p counter
short u n s i g n e d cLen=checkLen;

byte * cVal = new byte[checkLen];//Binary representation of c

//Compute the check sum
for(i=0; i<subLen-(checkLen*elementPerByte); i++)

c+=(n-subVal[i]);

for(i=0; i<cLen; i++)
cVal[i]=0;

cVal=(byte*)&c;

int tempVal=subLen-checkLen*elementPerByte;
short unsigned int k=cLen-l;//Last index of cVal
if(elementPerByte==l)//cVal can be copied straight into subVal

for(j=tempVal; j<subLen; j++)
subVal[j]=cVal[k--]/

else
for(j=tempVal; j<subLen; j+=2)

^ splitByte(cVal[k--], &subVal[j])/

This makes the checksum of the message m. The equation of the check sum is found in

Section 4.3, and the first for-loop does this calculation. The next for-loop just

initialises the elements in cVal to zero.

The line cvai= (byte*) &c; casts c to the byte array cvai. (At first it can seem like

the casting "reverses" the two bytes in c when they are put into cVai, so a small

example is in order).

A quick example:
c = 374 = 00000001 01110110
cVal[0] = 01110110
cVal[l] = 00000001

In the last if-statement the checksum cVai is appended to the array subVal. This is

done in a similar fashion to what is done in computeSubvai. If element PerByte is 1,

then a simple copy can be used. Otherwise, spiitByte must be used.

As is shown in the example above, the copying from cVai to subvai must be done

from the highest index of cval.

If spiitByte is used, then the address to the right index in subVal is sent as the

destination of the split. Here is a small example where spiitByte is used to append the

checksum above into the last four elements in subvai.

subVal[40]= 0000.0000
cVai[o] = _subVal [41]=00.Qi]^0001

subVal [42] = 0000^0111

cVal[l] =(00^(000^ subVal[43]= 0000 0110

"Padding"

void Winternitz::produceX0 {
short unsigned i;
X = new byte * [xyLen];
for(i =0; i < xyLen; i++)

x[i] = new byte[SHA::DIGESTSIZE];

AutoSeededRandomPool rng;
long seed=rng.GetLong();

RandomPool randPool;
randPool. Put ((byte*) Scseed, sizeof (seed)) ;
for(i=0; i<xyLen; i++)

randPool.GenerateBlock(x[i] , SHA: :DIGESTSIZE)/
}
The values in the x matrix are secret, and created at random. Creating a secret, secure

and random seed is a research area in itself, and not a focus of this thesis. A function

in the crypto++ library is used to create a seed, and the rest of the x matrix is

generated from this seed using a pseudorandom function. If we can assume the seed is

secure, then the rest of the matrix will be secure as well.

void Winternitz::produceY() {

short unsigned i, j;
y = new byte *[xyLen];
ford = 0; i < xyLen; i++)

y[i] = new byte[SHA::DIGESTSIZE];
SHA hash;
for(i=0; i<xyLen; i++)

^ hash.CalculateDigest(y[i] , x[i], SHA: :DIGESTSIZE) ;
for(j=l; j<n; j++)

hash.CalculateDigest(y[i] , y[i], SHA::DIGESTSIZE);

}

As shown in Section A3:yk=^(xk). This means that each element in x must be

hashed n number of times to get the corresponding element in y. The SHA object

hash is used for all the hashing operations. Inside the second for-loop, y [i] is set

equal to the digest of x [i] . This is the first hashing.

Then, in the inner for-loop, y [i] is set equal to the digest of itself This is done n -1
times, giving n hashes of x [i] to produce y [i].

void Winternitz::produceSignature() {
short unsigned i, j, k;
signature = new byte * [subLen];
for(i = 0 ; i < subLen; i++)

signature[i] = new byte[SHA::DIGESTSIZE];

SHA hash;
for(i=0; i<subLen; i++) {

if(subVal[i]>0) {
hash.CalculateDigest(signature[i], x[i],

SHA::DIGESTSIZE);
for(j=l; j<subVal[i]; j++)

hash.CalculateDigest(signature[i],
signature[i], SHA::DIGESTSIZE);

}
else

for(k=0; k<SHA::DIGESTSIZE; k++)
signature [i] [k]=x[i] [k] ;

}
}

The signature is produced by hashing the x values a given number of times. The

number of hashes being done is set by the value in the corresponding value in subvai.

SHAO .CalculateDigest (signature [i] , x[i] , SHA: :DIGESTSIZE) ; makes

signature [i] into a hash value of x [i], and then

SHAO.CalculateDigest(signature [i], signature[i], SHA::DIGESTSIZE);

hashes signature [i] subVal [i] -1 times more.

If subval [i] is zero, then no hashing is done, and the x value can just be copied into

signature.

6.2.5 Public functions

bool getSignature(byte **sign, byte **yTemp);

If either of the two private members signature or y are not initialised, the function

returns false. Otherwise it returns true.

The argument sign is set equal to the private signature, and yTemp is set equal to

the private y.

int getxyLenO {return xyLen;}

Returns the length of the x and y matrices; the number of x's and y's needed in this

signature object.

bool getY(byte ** yTemp);

If the private member y is not initialised, the function returns false. Otherwise it

returns true.

The argument yTemp is set equal to the private y.

short verifySignature0;

This is a test function that lets a signature object test it's signature on its own message.

The function returns -1 if the private member signature is not initialised. It returns 0

if signature is not a valid Wintemitz signature on the private member m. Otherwise

it returns 1.

The code is very similar to verifySignature (byte **testSign), SO see the

description of this function for details.

short Winternitz::verifySignature(byte **testSign)
{

if(! subVal)
return -1;

if (!y)
return -1;

byte tempCheck[SHA:rDIGESTSIZE] ;
unsigned short i, j, k, t;
SHA hash;
for(i=0; i<subLen; i++) {

for(k=0; k<SHA:iDIGESTSIZE; k++)
tempCheck [k]=testSign[i] [k] ;

for(j=subVal[i]; j<n; j++)
hash.CalculateDigest(tempCheck, tempCheck,

SHA::DIGESTSIZE);

for(t=0; t<SHA::DIGESTSIZE; t++)
if(y[i][t]!=tempCheck[t])

^ return 0;
return 1;

This fiinction tests if testsign is a valid signature on the message in the signature

object. The fiinction returns -1 if any of the private members signature or y are not

initiaHsed. It returns 0 if testsign is not a vaHd Wintemitz signature on the private

member m. Otherwise it returns 1.

Normally, this fiinction will be called on an object that have been created with the

constructor that takes a y-matrix as an argument, since such an object does not have a

signature on it's own.

Each line in testsign is copied into tempCheck for verification up against the

corresponding line in y. Then, tempCheck is hashed a number of time equal n-
subvai [i]. Each element in tempCheck should now be the same as the corresponding

value in y. This is controlled in the last for-loop and if-statement.

void update(byte messDigest[], short unsigned int messDigestLen);

Called on signature objects to update the message the object should make a signature

on. The object's x and y are not changed, so update should (out of security reasons)

only be called once on each object, and only on objects created with the default

constructor.

6.3 class Node

This class represents signature nodes in the signature chain described in Section 5.3.

The main content of each are: the root of a hash chain, a face value per link in that

chain, and a Wintemitz signature used to authenticate the child of the node.

class Node is intended to be used in conjunction with class Tree, class Tree
needs access to a few of class Node's private members, and is therefore a friend of

class Node.

6.3.1 Private members

int depth;

A node-object is assumed to be in a tree, and this is the node's depth in that tree,

float face;

This is the face value of each Hnk in the node's hash chain, face is used to make the

node's identification number id.

byte chainRoot[SHA::DIGESTSIZE];

This is the root of the hash chain attached to the node. This value is considered to be

public, and is used to make the node's identification number id.

byte chainEnd[SHA::DIGESTSIZE];

This is the secret base number for the hash chain attached to the node. It is generated

at random, and chainRoot can be derived from it.

int chainLen;

The length of the local hash chain.

byte id[SHA::DIGESTSIZE];

This is the identification number of the node. It is made from the member variables

ChainRoot, face, and the public y-matrix from the Wintemitz signature wchild.

int index;

Current index of the local hash chain,

wintemitz wChild;

Signature object for the node's child. This is used to make to node's identification

number id.
Node * child;

Pointer to the node's child node.

6.3.2 Constructors

Node::Node(int d, float f , int n. Node* c)

This constructor is the only one implemented, and will often take only the first three

arguments. As can be seen in node. h, the argument c has a default value of NULL, as

it will normally be set at a later time. The hash chain for the node is generated, and the

node's id is calculated.

6.3.3 Private functions

void Node::computeId()

{
byte ** childY=new byte *[wChild.getxyLen()];
for(int i=0; i<wChiId.getxyLen0; i++)

childY[i] = new byte[SHA::DIGESTSIZE] /

wChild.getY(childY)/
SHA hash;
byte childTemp[SHA:rDIGESTSIZE];
byte chainTemp[SHA:rDIGESTSIZE];
byte faceTemp[SHA::DIGESTSIZE];
int j=0;

for(j=0; j<wChiId.getxyLen0; j++)
hash.Update(childY[j], SHA::DIGESTSIZE);

hash.Final(childTemp);

hash.Update(chainRoot, SHA::DIGESTSIZE);
hash.Final(chainTemp);

hash.Update((unsigned char*)&face, sizeof(float));
hash,Final(faceTemp);

hash.Update(childTemp, SHA::DIGESTSIZE);
hash.Update(chainTemp, SHA::DIGESTSIZE);
hash.Update(faceTemp, SHA::DIGESTSIZE);

hash.Final(id);
}
The identification number for the signature nodes have been modified a bit from the

original Wintemitz scheme. See Section 4.3 for details on this.

The id consists of three digests that are hashed together. The three digests are:

• A digest of all the values in the Wintemitz signature wchi id.
• A digest of the root of the hash chain in the node.

• A digest of the face value in the node.

The SHA object hash is used for all the hashing operations. In the first for-loop, each

line in chiidY is added to hash, and the resulting digest is stored in chiidTemp.

After the call to hash. Final (chiidTemp), the SHA object hash is reset and ready to

start receiving new arguments.

A digest of chainRoot is stored in the variable chainTemp, and a digest of face is

stored in f aceTemp.

Then all three temporary digests are added to hash, producing the last digest id.

void Node::generateChain() {
AutoSeededRandomPool rng;
rng.GenerateBlock(chainEnd, SHA::DIGESTSIZE);
SHA hash;
hash.CalculateDigest(chainRoot, chainEnd, SHA::DIGESTSIZE);
for(int j=l; j<chainLen-l/ j++)

hash.CalculateDigest(chainRoot, chainRoot,
^ SHA::DIGESTSIZE);

The hash chain is generated from a random base number. This number is the private

member chainEnd, generated by the random function rng.GrerateBlock. The rest of

the chain is generated in the for-loop, ending with chainRoot.

It may seem odd that the last value created is called chainRoot, and not the other way

around. This is because chainRoot is the first element to be sent to a vendor when

transaction commences [Ri, Sh'96].

void Node::getChainEnd(byte ce[]) {
for(short unsigned int i=0; i<SHA::DIGESTSIZE; i++)

ce [i] =chainEnd ["i] ; }
This ñinction is not strictly necessary, but implemented to keep things tidy. It is

intended for friends of class Node. The argument ce is set to the same value as the

private member chainEnd.

Node * Node::getchild();

This function is not strictly necessary, but implemented to keep things tidy. It is

intended for friends of class Node. The node's pointer to its child is returned.

6.3.4 Public functions

void Node:rsetChild(Node * c);

The node's child is set to the node pointed to by c.

void Node::getld(byte ID[]);

The nodes private member id is copied into the argument ID.

int Node::getDepth(){return depth;}

Returns the depth of the node.

float Node::getFace0{return face;}

Returns the face value, face, of each link in the node's hash chain.

int Node::getChainLen(){return chainLen;}

Returns the length of the node's hash chain.

bool Node::getChildSignature(byte **sign, byte **yTemp)
{return wChild.getSignature(sign, yTemp);}

The two public parts of the child signature wchild are given, through the

getSignature - funct ion in class Winternitz.

void Node::getChainRoot(byte cr[]);

The node's private member chainRoot is copied into the argument cr.

int Node::getLink(byte link[]);

The current link in the hash chain is copied into the argument link. This is the hash

value indexed by the private member index. Note that index is not updated by this

function.

int Node::getLinkNext(byte link[]);

The current link in the hash chain is copied into the argument link. This is the hash

value indexed by the private member index, index is incremented one step towards

chainEnd.

6.4 class Tree

class Tree is the signature chain described in Section 5.3. It consists of nodes of the

type class Node. Most of the functions in class Tree simply call the corresponding

function in class Node.

6.4.1 Private members

Node * rootPtr;

A pointer to the root node of the tree. This is the first node, and is not the child of any

other node in the tree.

Node * endPtr;

A pointer to the last node of the tree. This is the last node, and does not have any

child.

Node * currentPtr;

This pointer points to the current node in the tree. currentPtr can be moved up and

down in the structure between rootPtr and endPtr. The current node represents the

node from which the user is spending links (making payments).

6.4.2 Constructors

Tree::Tree()

Sets all three private members to NULL.

6.4.3 Public functions

Most of the public functions are inline, and quite self-explanatory.

void insertNode(float face, int n);

Creates a new node in the tree. Both currentPtr and endPtr is set to this new node.

int getDepthO {return endPtr->getDepth (); }

Returns the depth of the tree.

void getRootId(byte ID []){rootPtr->getId(ID);}

Returns the identification number id of the tree's root node.

bool up 0 ;

Moves the current pointer, currnetPtr, up one level. That is, the currentPtr will

point to the parent of the node it just pointed to. If the currentPtr is already at the

top of the tree, the function returns false. Otherwise it returns true.

bool down();

Moves the current pointer, currnetPtr, down one level. That is, the currentPtr will

point to the child of the node it just pointed to. If the currentPtr is already at the

bottom of the tree, the function returns false. Otherwise it returns true.

void start 0 ;

Sets the current pointer, currentPtr, to point to the root node of the tree (same as

rootPtr).

void end 0 ;

Sets the current pointer, currentPtr, to point to the last node in the tree (same as

endPtr).

int getSignatureSize 0 {return currentPtr->wChild.getxyLen () ; }

Returns the size of the Wintemitz signatures used in the tree.

float getCurrentFace0{return currentPtr->getFace(); }

Returns the face value, face, of the node pointed to by currentPtr.

int getCurrentDepthO{return currentPtr->getDepth() ; }

Returns the depth (in the tree structure) of the node pointed to by currentPtr.

int getCurrentChainLenO {return currentPtr->getChainLen() ; }

Returns the length of the hash chain attached to the node pointed to by currentPtr.

int getCurrentlndexO{return currentPtr->getIndex();}

Returns the index of the current Hnk in the hash chain attached to the node pointed to

by currentPtr.

void getCurrentId(byte ID[]){currentPtr->getld(ID);}

The identification number id in the node pointed to by currentPtr is copied into the

argument ID.

void getCurrentChainRoot(byte cr []){currentPtr->getChainRoot(cr);}

The root of the hash chain attached to the node pointed to by currentPtr is copied

into the argument cr.

int getCurrentLink(byte link[]){return currentPtr->getLink(link);}

The current link in the hash chain attached to the node pointed to by currentPtr is

copied into the argument link. Note that the index in the hash chain is not updated by

this function.

int getCurrentLinkNext(byte link[]){return currentPtr-
>getLinkNext(link);}

The current link in the hash chain attached to the node pointed to by currentPtr is

copied into the argument link. The hash chain index is incremented one step towards

chainEnd.

bool getCurrentSignature (byte **sign, byte **yTeinp)
{return currentPtr->getChildSignature(sign, yTemp);}

The signature-matrix and the y-matrix in the Wintemitz signature in the node

pointed to by currentPtr are copied into the arguments sign and yTemp.

bool getCurrentY(byte **yTeinp)
{return currentPtr->wChild.getY(yTemp) ;}

The y-matrix in the Wintemitz signature in the node pointed to by currentPtr is

copied into the argument yTemp.

bool currentEmptyO {return currentPtr->index==currentPtr->chainLen; }
Returns false if the hash chain attached to the node pointed to by current Pt r is

excused. Returns true otherwise.

6.5 The test programs

A series of tests have been run to find how long some of the key operations for

signatures take. These include

Hashing

DSA signatures

RSA signatures

Random number

Wintemitz signatures

WintemitzShort signatures

The source code for these tests will not be described in detail here. The reader is

referred to the end of Appendix C for the code. The results of some of these tests are

discussed in Section 6.6.

Most of the tests for timing have been done on the author's personal computer:

ADM K7

600 MHz

128 MB RAM

Running Windows 2000

The same tests have also been run on different computers to provide more thorough

information on the performance. These times are provided in Appendix A.

It would valuable to test the implementations on other operating systems; especially

different UNIX flavours. However, this has been left out due to limited access to such

systems with the appropriate cryptographic libraries.

6.6 Time requirements and signature sizes
Two different implementations of the Wintemitz signature have been done. One is
optimised for speed, and the other for minimizing memory requirements for the
signer.

Each Wintemitz signature has three major components:
The secret matrix x.
The public matrix y.
The signature matrix signature.

In addition, a few other private members are needed to support the classes, the most
important being the sub elements that are stored in the matrix subvai.

6.6.1 Timing
class Wintemitz as described above is optimised for quick signing, but can
produce rather large signatures. With this implementation a Wintemitz signature can
be signed about 14 times as fast as a DSA signature and 28 times as fast as an RSA
signature. This is after a more complex and time consuming set up of the signature
object has already been made, but this set up does not need to be done in real time. If
the set up is included, the Wintemitz signature is about 4 times as fast as DSA and 7
times as fast an RSA signature.

The verification speeds are the same for both the standard and the short Wintemitz
signature. Verifying a signature takes about 1.5 longer than an RSA (1024) signature,
but it is about 16 faster than the DSA (1024) signature verification.

As mentioned in Section 6.2, the Wintemitz size improvement to the Merkle scheme
can be adjusted. According to [ME'87], the size can be reduced by a factor between 4
and 8. This can be done in the implementation by changing the value of elementLen
i n wintemitz .h.

elementLen = 8

correspond to a size reduction factor of 8, using one hash sum to sign 8 bits.

elementLen = 4
correspond to a size reduction factor of 4, using one hash sum to sign 4 bits.

In the following tables, figures for both of these size factors are given. It is quite clear

that a reduction factor of 8 is too much, since the computational times become too

large. Using elementLen=8 with class winternitz, the signature initiation takes

about as long as a DSA signature, and the actual signing is only about twice as fast as

the DSA signing. Signature verification is also slowed down, but is still to about twice

as fast as a DSA signature verification. The figures given where elementLen=8 are

provided to show that larger size reduction factors cannot be used.

The table below show how long it takes to produce each of the private members. Each

member takes the same amount of time in the standard and the short version of

Winternitz, but the size reduction factor makes a difference. The global constant

elementLen decides the reduction factor, and times for both 4 and 8 are provided.

elementLen
Number of operations needed

Time taken for all
operations

elementLen 4 8 4 8
Initiate x takes 1 random seeding 1 random seeding 0.71 0.71 ms
Produce x takes 44 random gen. 22 random gen. 1.06 0.53 ms
Produce y takes 704 hash sums 5632 hash sums 4.81 39.5 ms
Produce signature takes 352 hash sums 2816 hash sums 2.41 19.25 ms
Produce subVal bit shift operations bit shift operations 0.01 0.01 ms
able 6.1

The number of operations needed and required time to make the private data
members in class winternitz and class WinternitzShort.

Table 6.2 shows how long each of the major operations in generating a Wintemitz

signature takes. The signature objects can be made at any point in time, and even

stored for later use if this is convenient. This is the case in the payment system

described in Chapter 5. Naturally, both the signing and the signature verifications will

be done in real time, as a payee confirms payments from a payer.

Standard Wintemitz Short Wintemitz
elementLen 4 8 4 8
Make signature object Initiate x 0.71 0.71 0.71 0.71 ms

Produce x 1.06 0.53 ms
Produce y 4.81 38.5 ms
Produce subVai 0.01 0.01 0.01 0.01 ms
Total 6.59 39.75 0.72 0.72 ms

Make a signature Produce x 1.06 0.53 ms
Produce y 4.81 38.5 ms
Produce signature 2.41 19.25 2.41 19.25 ms
Total 2.41 19.25 8.28 58.28 ms

Verify a signature Produce subVai 0.01 0.01 0.01 0.01 ms
Produce signature 2.41 19.25 2.41 19.25 ms
Total 2.42 19.26 2.42 19.26 ms

Table 6.2
Time required to do the three main operations in class wintemitz and class
wintemitzshort, broken down into each sub operation.

Table 6.3 shows how long it takes to do signing and verification with class

wintemitz, class WinternitzShort, DSA and RSA. A 1024 bit key is used for

both DSA and RSA.

elementLen 4 8
Initialise Wintemitz object 6.59 39.75 ms
Make Wintemitz signature 2.41 19.25 ms
Verify Wintemitz signature 2.42 19.26 ms
Initialise WinternitzShort object 0.72 0.72 ms
Make WinternitzShort signature 8.28 58.28 ms
Verify WinternitzShort signature 2.42 19.26 ms

Make DSA signature 34.18 ms

Verify DSA signature 40.36 ms

Make RSA signature 67.8 ms
Vfirifv RSA slanature 1.64 ms

Table 6.3
Time required making and verifying different signatures.

Given the numbers in Table 6.2 and 6.3, we can find a relationship between the key

times for the four types of signatures. These are given in Table 6.4.

elementLen
Winternitz initiate + sign
Winternitz initiate + sign
Winternitz sign
Wintemitz sign
Wintemitz verification
Winternitz verification
WinternitzShort initiate + sign
WinternitzShort initiate + sign
WinternitzShort sign
WinternitzShort sign
WinternitzShort verification
WinternitzShort verification

8
3.8

7.53
14.18
28.13
16.68
0.68

3.8
7.53
4.13
8.19

16.68
0.68

0.58 times
1.15 times
1.78 times
3.52

2.1
times
times

0.09 times
0.58 times
1.15 times
0.59 times
1.16 times
2.1 times

0.09 times

faster then
faster then
faster then
faster then
faster then
faster then
faster then
faster then
faster then
faster then
faster then
faster then

DSA signing
RSA signing
DSA signing
RSA signing
DSA verification
RSA verification
DSA signing
RSA signing
DSA signing
RSA signing
DSA verification
RSA verification

Table 6.4
Relative numbers are given between the times required for signing and verification
with class Winternitz, class WinternitzShort, DSA and RSA.

Lines 3 through 6 in Table 6.4 are of special interest. We can see that a Wintemitz

signature can be done 14 times faster than a DSA signature and 28 times faster than

an RSA signature. Wintemitz verification is about 16 times faster than DSA

verification, and even though it is slower than the RSA verification, it only takes

about 50% longer.

6.6.2 Size

The size of the signatures depends not only on the size reduction factor represented by

elementLen, but also on the size of the hash digests used, as each sub element is

signed with one hash digest. This implementation uses SHA-1 which has digests of

size 20 bytes.

Below is a summary of the sizes of the variables used. The data types may vary with
the platform and compiler used. The given sizes are for Windows 2000, Microsoft
Visual C++.

Data type Size

byte* 1 bytes
short unsigned int 2 bytes
long int 4 bytes

*byte is defined as unsigned char
Table 6.5.
Size of used data types on a PC running Windows
2000, using Microsoft Visual C++.

The value of the global constants listed in Table 6.6 decide the size of the private data
members:

Data member value
elementLen 4 8
SHA::DIGERSTSIZE 20 20
elementLen 4 8
elementPerByte 2 1
checkLen 2 2

Table 6.6
The values of the global constants, deciding the
size of the private arrays and matrices

The tree major matrices (x, y and signature) all has the same size:

{(SHA::DIGESTSIZE +checkLen)*elementPerByte)*SHA::DIGESTSIZE

= ((20+2) * 2) * 20 = 880 bytes, for elementPerByte = 2
= ((20+2) * 1) * 20 = 440 bytes, for elementPerByte = 1

The matrix subvai's size:

sizeof(short unsigned)*((SHA::DIGESTSIZE+checkLen)^elementPerByte)

= 2 * ((20+2) * 2) = 8 8 bytes, for elementPerByte = 2
= 2 * ((20+2) * 1) = 4 4 bytes, for elementPerByte = 1

Given the data in Table 6.5 and 6.6 as well as the two formulas given above, we get

the following memory requirements for the class winternitz and class

win te rn i t z shor t , for both the signer and the verifier, with either 4 or 8 as the size

reduction factor.

Bytes stored by the signer Bytes stored by the verifier

Standard Short Standard Short
elementLen 4 8 4 8 4 8 4 8
byte **x 880 440
byte **y 880 440 880 440 880 440
short unsigned int xyLen 2 2 2 2
byte *subVal 88 44 88 44 88 44
short unsigned int subLen 2 2 2 2
byte *m 20 20 20 20 20 20
short unsigned int mLen 2 2 2 2 2 2 2 2
short unsigned int n 2 2 2 2
byte **signature 880 440 880 440 880 440
long seed 4 4
Total size 2756 1392 94 50 1876 952 1782 902
Table 6.7:
The number of bytes stored in the private members in class Wintemitz and class
Winternitzshort.

class Winternitzshort reduces the memory requirements while sacrificing

computational time. It is a modified version of class winternitz, where most of the

private data members are recomputed every time they are needed. The result is quite

beneficial for the signer, as the storage requirements are reduced by a factor of about

29. The verifier's storage requirements are reduced only marginally.

6.6.3 Using different hashing algorithms

Hashing is the operation that is done the most in the Wintemitz signature. SHA-1 has

been chosen simply because it is the standard.

Using MD5 for all hash operations offers advantages regarding both time and space.

Depending on what operation we look at, using MD5 cuts down the required time to

between 38% and 54% of what is needed while using SHA-1. The signing and

verification speeds with class Winternitz and class WinternitzShort can thus

be more then doubled.

MD5 offers smaller signatures as well, since the digests are only 16 bytes as opposed

to the 20 bytes digests of SHA-l. Signature sizes can be cut down to about 65% of the

size while using SHA-l.

6.6.4 A conclusion

The relative times given in Table 6.4 has a good potential for time saving in payment

systems with hash chains.

Since class WinternitzShort offers virtually no size gain for the verifier, it is clear that

only the signer should use this class. The signatures produces by the two classes are

fully interchangeable, so the signer can use class WinternitzShort to sign, and the

verifier can use class winternitz for verification. This allows for small storage

requirements in small devices like smart cards, while the vendors with larger memory

hardware can store more data.

Both classes are optimised to the extreme, one for speed and the other for size. It is

quite easy to make a combination, where the required storage will be less than for

class Winternitz, and the speed will be faster than class WinternitzShort.

Bibliography
[An, Be'96]
Anderson, R., Bezuidenhoudt, S., On the Reliability of Electronic Payment Systems.
IEEE Transactions on Software Engineering, volume 22 number 5, May 1996, pages
294-301.

Available at http://wv^.cl.cam.ac.uk/~rjal4/

[An, Ma, Su'97]
Anderson, R., Manifavas, H., Sutherland, C., NetCard - A practical electronic
payment system. In Lomas, M. (ed.), Proceedings of1996 International Workshop on
Security Protocols, LNCS, Vol.1189, Springer-Verlag, 1997, Berlin, pages 49-57.
Available at http://wwv^.cl.cam.ac.uk/users/rjal4/
[Az'97]
Azbel, I., PayWord Micro-Payment Scheme. Strengths, Weaknesses and Proposed
Improvements. BSc (Hons) Thesis, Department of Computer Science, University of
Cape Town, South Africa, 1997.

Available at http://www.cs.uct.ac.za/courses/CS400W/NIS/resources.html

:B1,IO'01]
Blaze, M., loannidis, J., Keromytis, A., Offline Micropayments without Trusted
Hardware. In Proceedings of Financial Cryptography, 2001. To appear.
Available at http://wvvw.crypto.com/papers/
[Bl, Ma'94]
Bleichenbacher, D., Maurer, U., Directed acyclic graphs, one-way functions and
digital signatures. In Desmedt, Y. (ed.). Advances in Cryptology - Proceedings of
CRYPTO '94, LNCS Vol. 839, Springer-Veriag, 1994, Berlin, pages 75-82.
Available at http://www.bell-labs.com/user/bleichen/bib.html

[Br'99]
Brands, S., Electronic Cash. In Atallah, M. (ed.). Algorithms and Theory of
Computation Handbook, CRC Press LLC, New York, 1999, pages 44.1-44.40.

[CAFE]
Boly, J., Bosselaers, A., Cramer, R., Michelsen, R., Mjolnse, S., Muller, F., Pedersen,
T., Pfitzmann, B., de Rooij, P., Schonmaker, B., Schunter, M., Vallée, L. and
Waidner, M., The ESPRIT Project CAFÉ - High security digital payment systems.
In Computer Security - Proceedings ofESORICS '94, LNCS Vol. 875, Springer-
Veriag, 1994, Berlin, pages 217-230.

[Ch'82]
Chaum, D., Blind signatures for untraceable payments. In Beth, T. (ed.),
Cryptography, Proceedings 1982, LNCS, Vol.149, Springer-Verlag, 1983, Berlin,
pages 199-203.

[Ch, Fi, Na'88]
Chaum, D., Fiat, A. and Naor, M., Untraceable electronic cash, In Goldwasser, S.
(ed.). Advances in Cryptology - Proceedings of CRYPTO '88, LNCS, Vol.403,
Springer-Verlag, 1990, Berlin, pages 320-327.

[Chi'97]
Chi, E., Evaluation of Micropayment Schemes. Hewlett Packard Technical Report
HPL-97-14, 1997.

Available at http://www.hpl.hp.com/techreports/97/HPL-97-14.html

[Cho, Na, Pu, Un'98]
Chomicki, J., Naqvi, S., Pucci, M., Underwood, R., Decentralised Micropayment
Consolidation. In Proceedings of the 18th International Conference on Distributed
Computing Systems, IEEE, 1998, pages. 332-341.
[Co, Ty, Si'95]
Cox, B., Tygar, J., and Sirbu, M., NetBill security and transaction protocol. In
Proceedings of the First USENIX workshop on electronic commerce. New York,
1995,pages77-88.

Available from http://www.ini.cmu.edu/NETBILL

[Da'88]
Damgard, I., Payment systems and credential mechanisms with provable security
against abuse by individuals. In Goldwasser, S. (ed.), Advances in Cryptology -
Proceedings of CRYPTO '88, LNCS, Vol.403, Springer-Verlag, 1990, Berlin, pages
328-335.
[Dai'Ol]
Dai, W., Crypto++ 4.1, a free C++ class library of cryptographic schemes.
Available at http://www.eskimo.com/~weidai/cryptlib.html

[Di, He76]
Diffie, W., Hellman, M., New Directions in Cryptography. IEEE Transactions on
Information Theory, IEEE, volume IT-22, number 6, 1976, pages 644-654.
Available at http://www.cs.mtgers.edu/~tdnguyen/classes/cs67 l/local_papers/diffie-
hellman.pdf

[Ev, Go'83]
Even, S., Goldreich, O., Electronic wallet, In McCurley, K. and Ziegler, C. (eds.),
Advances in Cryptology - Proceedings of CRYPTO '83, LNCS, Vol.1440, Springer-
Verlag, 1997, Berlin, pages 383-386

[Fe'93]
Ferguson, N., Extensions of single-term coins. In Stinson, D. (ed.), Advances in
Cryptology - Proceedings of CRYPTO '93, LNCS, Vol.773, Springer-Verlag, 1994,
Berlin, pages 292-301.

[Fe, Da'98]
Ferreira, L., Dahab, R., A scheme for analysing electronic payment schemes. In
Proceedings of the 14th annual Computer Security Applications Conference, IEEE,
1998, pages 137-146.

[Fi, Od, Si'97]
Fishbum, P., Odlyzko, A., Siders, R., Fixed fee versus unit pricing for information
goods: competition, equilibria, and price wars. First Monday, volume 2, number 7,
July 1997.

Available at http://wv^.firstmonday.dk/issues/issue2_7/index.html

:Ha, St, Wa'96]
Hauser, R., Steiner, M., Waidner, M., MicroPaymenrs based on iKP. In Proceedings
of the Nth Worldwide Congress on Computer and Communications Security
Protection - SECURICOM 96, 1996, SEDEP, Paris, pages 67-82.
Available at http://www.semper.org/sirene/lit/sirene.lit.html
[He'OO]
Heigre, O., One-Time Digital Signatures with Emphasis on Merkle's Authentication
Tree. MSc Thesis, Department of Informatics, Faculty of Mathematics and Natural
Sciences, University of Bergen, Norway, 2000.

[Ho, Pr'98]
Horn, G., Preneel, B., Authentication and Payment in Future Mobile Systems. In
Computer Security - Proceedings ofESORICS '98, LNCS Vol. 1485, Springer-Veriag,
1998, Berlin, pages 277-293.

Available at http://www.esat.kuleuven.ac.be/cosic/aspect/

[Ja, Od'97]
Jarecki, S., Odylzko A., An efficient micropayment system based on probabilistic
polling. In Hirschfeld, R. (ed.), Proceedings of Financial Cryptography '97, LNCS,
Vol.1318, Springer-Verlag, 1997, Berlin, pages 173-191.
[Ju, Yu'96]
Jutla, C., Yung, M., PayTree: "Amortized-Signature" for Flexible MicroPayments. In
Proceedings of the Second USENIX workshop on electronic commerce, USENIX,
1996, pages 213-221.

[Ke, Sc'99]
Kelsey, J., Schneier, B., Authenticating Secure Tokens Using Slow Memory Access.
USENIX Workshop on Smart Card Technology, USENIX Press, 1999, pages 101-
106.
Available at http://www.counterpane.com/slow-memory.html

[Le, Ki'98]
Lee, H., Kim, T., Smart Card Based Off-line Micropayment Framework Using
Mutual Authentication Scheme. In the Global Telecommunications Conference -
GLOBECOM '98, The Bridge to Global Integration, IEEE, volume 4, 1998, pages
2514-2519.

[Li, Os'97]
Lipton, R., Ostrosky, R., Micro-Payments via Efficient Coin-Flipping. In Hirschfeld,
R., (ed.), Proceedings of the 2nd Financial Cryptography Conference - -FC'98, LNCS
Vol. 1465, Springer-Verlag, 1998, Berlin, pages 1-15.
Available at http://www.cl.cam.ac.uk/users/cm213/Project/project_publ.html

[Ma'95]
Manasse, M., The MilliCent Protocols for Electronic Commerce. In Proceedings of
the First USENIX Workshop on Electronic Commerce, USENIX, 1995, pages Ul-
123.

Available from http://www.millicent.com/works/details/papers/mcentny.htm

[Mao'96]
Map, W., Lightweight Micro-cash for the Internet. In Bertino, E., Kurth, H., Martella,
G., Montolivo, E., (eds.). Computer Security - Proceedings ofESORICS '96, LNCS
Vol. 1146, Springer-Verlag, 1996, Berlin, pages 15-32.
[Me'87]
Merkle, R., A digital signature based on a conventional encryption function. In
Pomerance, C. (ed.). Advances in Cryptology - Proceedings of CRYPTO '87,
LNCS, Vol.293, Springer-Verlag, 1988, Berlin, pages 369-378.

[Me'89]
Merkle, R., A certified digital signature. In Brassard, G. (ed.). Advances in Cryptology
- Proceedings of CRYPTO '89, LNCS, Vol.435, Springer-Verlag, 1990, Berlin, pages
218-238.

[Me, Oo, Va'97]
Menezes, A., van Oorschot, P. and Vanstone A., Handbook Of Applied Cryptography.
CRC Press LLC, 1997.

[Milli'95]
Glassman, S., Manasse, M., Abadi, M., Gauthier, P., Sobalvarro, P.,
The MilliCent Protocol for Inexpensive Electronic Commerce. In Proceedings of the
4th International World Wide Web Conference, 1995.
Available at http://www.w3.org/Conferences/WWW4/Papers/246/
http://www.millicent.com/works/details/papers/millicent-w3c4/millicent.html

[Mu, Va, Li'97]
Mu, Y., Varadharajan, V., Lin, Y., New Micropayment Schemes Based on PayWords.
In Proceedings of 2nd Australasian Conference on Information Security and Privacy -
ACISP '97, LNCS, Vol. 1270, Springer-Verlag, 1997, Berlin, pp283-293.
Available at http://www.ics.mq.edu.au/~ymu/pubs.html

[Na, Yu'89]
Naor, M., Yung, M., Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21st ACM Symposium on Theory of Computing,
ACM Press, 1989, New York, pages 33-43.
Available at http://www.wisdom.weizmann.ac.il/~naor/onpub.html

[Ng, Mu, Va'97]
Nguyen, K., Mu, Y., Varadharajan, V., Micro-Digital Money for Electronic
Commerce. In Proceedings of the Annual Computer Security Applications
Conference, IEEE, 1997, pages 2-7.

[Pe'96]
Pedersen, T., Electronic Payments of Small Amounts. In Lomas, M. (ed.),
Proceedings of1996 International Workshop on Security Protocols, LNCS, Vol.1189,
Springer-Verlag, 1997, Berlin, pages 59-68.

[Po, Hi, St'98]
Poutanene, T., Hinton, H.,Stumm, M., NetCents: A lightweight protocol for secure
micropayments. In Proceedings of the Third USENIX Workshop on Electronic
Commerce, USENIX Association, September 1998, pages 25-36.
Available at

http://www.usenix.org/publications/library/proceedings/ec98/poutanen.html

[Ri'97]
Rivest, R., Electronic Lottery Tickets as Micropayments. In Hirschfeld, R. (ed.).
Proceedings of Financial Cryptography '97, LNCS, Vol.1318, Springer-Verlag, 1997,
Berlin, pages 307-314.
[Ri, Sh'96]
Rivest, R., Shamir, A., PayWord and MicroMint.Two simple micropayment schemes.
In Lomas, M. (ed.), Proceedings of1996 International Workshop on Security
Protocols, LNCS, Vo l l 189, Springer-Verlag, 1997, Berlin, pages 69-87.
Available from http://theory.lcs.mit.edu/~rivest/publications.html

[Ri, Sh, Ad78]
Rivest, R., Shamir, A., Adleman, L., A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM, volume 21, number 2,
February 1978, pages 120-126.

Available at http://theory.lcs.mit.edU/~cis/cis-publications.html#1978-1985

[Sc, Mü'97] Schmidt, C., Müller, R., A Framework for Micropayment Evaluation. First Berlin Internet Economics Workshop, October 1997.
Available at http://mmm.wiwi.hu-berlin.de/~rmueller/paper/

Skbu,^M,Vygar, J., NetBill: An Internet Commerce System Optimized for Network
Delivered SQVWICQS. Compcon '95. 'Technologies for the Information Superhighway',
Digest of Papers, 1995, pages 20-25.
and

IEEE Personal Communications , IEEE, volume: 2 issue: 4 , Aug. 1995, pages 34-39.
Available at http://www.ini.cmu.edu/netbill/CompCon.html.
http://www.ini.cmu.edu/NETBILL/pubs.html

[Sh, Sw'98]
Shon, T., Swatman, M., Identifying effectiveness criteria for Internet payment
systems, Internet Research: Electronic Networking Applications and Policy, Vol. 8,
nr. 3, MCB University Press, Bradford, 1998, pages 202-218.

[St, Va'97]
Stem, J., Vaudenay, S., SVP: A Flexible Micropayment System. In Hirschfeld, R.
(ed.). Proceedings of Financial Cryptography '97, LNCS, Vol.1318, Springer-Verlag,
1997, Berlin, pages 161-171.

Appendix A
A series of time-data have been collected for operations relevant to the system in
Chapter 5, Wintemitz signatures and implementations. Most of the work has been
done on the authors MDA K-7, 600 MHz, but these tests have also been done on two
more computers. The three hardware platforms the tests have been done on are:

ADM K-7 Pentium 3 Laptop Celeron
600 MHz 450 MHz 500 MHz
128 MB RAM 128 MB RAM 60 MB RAM
Running Windows 2000 Running Windows NT 4.0 Running Windows 98

ADM K-7
Rounds Time (ms) Op. per sec.

Make SHA-1 digest 10000 70 142857.14
Make SHA-1 digest 10000 70 142857.14
Make SHA-1 digest 10000 60 166666.67
Make SHA-1 digest 100000 691 144717.8
Make SHA-1 digest 100000 691 144717.8

Make SHA-1 digest 100000 691 144717.8

Make SHA-1 digest 1000000 6950 143884.89

Make SHA-1 digest 1000000 6920 144508.67

Make SHA-1 digest 1000000 6910 144717.8

Make SHA-1 digest 10000000 68829 145287.6

Make SHA-1 digest 10000000 68799 145350.95

Make SHA-1 digest 10000000 68869 145203.21

Average 146290.62

Make MD5 digest 10000 20 500000

Make MD5 digest 10000 30 333333.33

Make MD5 digest 10000 30 333333.33

Make MD5 digest 100000 260 384615.38

Make MD5 digest 100000 270 370370.37

Make MD5 digest 100000 260 384615.38

Make MD5 digest 1000000 2613 382701.88

Make MD5 digest 1000000 2633 379794.91

Make MD5 digest 1000000 2643 378357.93

Make MD5 digest 10000000 26327 379838.19

Make MD5 digest 10000000 26377 379118.17

Make MD5 digest 10000000 26267 380705.83

Average
382232.06

SHA-1 verification 10000 100 100000

SHA-1 verification 10000 100 100000

SHA-1 verification 10000 100 100000

SHA-1 verification
SHA-1 verification
SHA-1 verification
SHA-1 verification
SHA-1 verification
SHA-1 verification
Average
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
Average
Make DSA (1024) key pair
Make DSA (1024) key pair
Make DSA (1024) key pair
Make DSA (1024) key pair
Make DSA (1024) key pair
Average
Make RSA (1024) key pair
Make RSA (1024) key pair
Make RSA (1024) key pair
Make RSA (1024) key pair
Make RSA (1024) key pair
Average
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Average
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest

100000
100000
100000

1000000
1000000
1000000

100000
100000
100000

1000000
1000000
1000000

10000000
10000000
10000000

10
10
10

100
100
100

1000
1000
1000

1
1
1

10
10
10

100
100
100

991
1011
1031

10015
9975
9965

20
20
20

171
161
161

1592
1582
1587

9343
9343
9343
9353
9644

1011
1121
1011
1011
1001

30
40
30

350
350
340

3475
3475
3465

34680
34630
34710

40
40
40

411
401
401

4026
4076
4046

100908.17
98911.97
96993.21
99850.22

100250.63
100351.23
99696.16
5000000
5000000
5000000

5847953.22
6211180.12
6211180.12
6281407.04
6321112.52
6301197.23
5797114.47

0.107
0.107
0.107
0.107
0.104
0.106
0.989
0.892
0.989
0.989
0.999
0.972
33.33

25
33.33
28.57
28.57
29.41
28.78
28.78
28.86
28.84
28.88
28.81
29.26

25
25
25

24.33
24.94
24.94
24.84
24.53
24.72

Verify DSA siganture on a SHA-1 digest 1000 40348 24.78
Verify DSA siganture on a SHA-1 digest 1000 40237 24.85
Verify DSA siganture on a SHA-1 digest 1000 40848 24.48
Average 24.78
Make RSA siganture on a SHA-1 digest 1 70 14.29
Make RSA siganture on a SHA-1 digest 1 70 14.29
Make RSA siganture on a SHA-1 digest 1 70 14.29
Make RSA siganture on a SHA-1 digest 10 671 14.9
Make RSA siganture on a SHA-1 digest 10 661 15.13
Make RSA siganture on a SHA-1 digest 10 701 14.27
Make RSA siganture on a SHA-1 digest 100 6689 14.95
Make RSA siganture on a SHA-1 digest 100 6679 14.97
Make RSA siganture on a SHA-1 digest 100 6669 14.99
Make RSA siganture on a SHA-1 digest 1000 66696 14.99
Make RSA siganture on a SHA-1 digest 1000 66746 14.98
Make RSA siganture on a SHA-1 digest 1000 66756 14.98
Average 14.75
Verify RSA siganture on a SHA-1 digest 100 160 625
Verify RSA siganture on a SHA-1 digest 100 160 625
Verify RSA siganture on a SHA-1 digest 100 170 588.24

Verify RSA siganture on a SHA-1 digest 1000 1652 605.33
Verify RSA siganture on a SHA-1 digest 1000 1643 608.64

Verify RSA siganture on a SHA-1 digest 1000 1653 604.96

Average 609.53

Seed a random pool 1000 310 3225.81

Seed a random pool 1000 310 3225.81

Seed a random pool 1000 290 3448.28

Seed a random pool 10000 3014 3317.85

Seed a random pool 10000 3014 3317.85

Seed a random pool 10000 3034 3295.98

Seed a random pool 100000 31154 3209.86

Seed a random pool 100000 30463 3282.67

Seed a random pool 100000 29893 3345.26

Average 3296.6

Seed a random pool and get a long seed 1000 694 1440.92

Seed a random pool and get a long seed 1000 703 1422.48

Seed a random pool and get a long seed 1000 721 1386.96

Seed a random pool and get a long seed 10000 7030 1422.48

Seed a random pool and get a long seed 10000 7057 1417.03

Seed a random pool and get a long seed 10000 6986 1431.43

Seed a random pool and get a long seed 100000 71230 1403.9

Seed a random pool and get a long seed 100000 70491 1418.62

Seed a random pool and get a long seed 100000 73363 1363.08
1411.88

Average
Make random SHASIZE blocks= 1000 30 33333.33

Make random SHASIZE blocks= 1000 20 50000

Make random SHASIZE blocks= 1000 30 33333.33

Make random SHASIZE biocks= 10000 230 43478.26

Make random SHASIZE blocks= 10000 240 41666.67

Make random SHASIZE blocks=
Make random SHASIZE blocks=

10000
100000

230
2344

43478.26
42662.12

Make random SHASIZE blocks=
Make random SHASIZE blocks=
Average

Make subLen
Make subLen
Make subLen
Make subLen
Make subLen
Make subLen
Average

and checksum
and checksum
and checksum
and checksum
and checksum
and checksum

Make subLen and checksum
Make subLen and checksum
Make subLen and checksum
Make subLen and checksum
Make subLen and checksum
Make subLen and checksum
Average
elementLen=4
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Average
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Average
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Average
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)

100000
100000

10000
10000
10000

100000
100000
100000

10000
10000
10000

100000
100000
100000

2344
2343

elementLen=4
110
100
101

1131
1002
991

elementLen=8
60
40
50

561
501
511

42662.12
42680.32
41477.16

90909.09
100000

99009.9
88417.33

99800.4
100908.17
96507.48

166666.67
250000
200000

178253.12
199600.8

195694.72
198369.22

1000 20 50000
1000 30 33333.33
1000 30 33333.33

10000 221 45248.87
10000 221 45248.87
10000 220 45454.55

42103.16
1000 10 100000
1000 10 100000
1000 10 100000

10000 120 83333.33
10000 120 83333.33
10000 120 83333.33

91666.67
10 70 142.86
10 70 142.86
10 60 166.67

100 691 144.72

100 691 144.72

100 691 144.72

1000 6869 145.58

1000 6879 145.37

1000 6869 145.58

10000 68418 146.16

10000 68418 146.16

10000 68578 145.82
146.77

10 100 100

10 90 111.11

10 90 111.11

100 931 107.41

Make Winternitz object (inc. signature) 100 981 101.94
Make Winternitz object (inc. signature) 100 1001 99.9
Make Winternitz object (inc. signature) 1000 9243 108.19
Make Winternitz object (inc. signature) 1000 9343 107.03
Make Winternitz object (inc. signature) 1000 9223 108.42
Make Winternitz object (inc. signature) 10000 92192 108.47
Make Winternitz object (inc. signature) 10000 97350 102.72
Make Winternitz object (inc. signature) 10000 96388 103.75
Average 105.84
Make Winternitz test object 1000 120 8333.33
Make Winternitz test object 1000 110 9090.91
Make Winternitz test object 1000 110 9090.91
Make Winternitz test object 10000 1742 5740.53
Make Winternitz test object 10000 1742 5740.53
Make Winternitz test object 10000 1733 5770.34
Average 7294.43
Make/self verity Winternitz signature 10 120 83.33
Make/self verity Winternitz signature 10 120 83.33
Make/self verity Winternitz signature 10 120 83.33
Make/self verity Winternitz signature 100 1182 84.6
Make/self verity Winternitz signature 100 1182 84.6
Make/self verity Winternitz signature 100 1232 81.17

Make/self verity Winternitz signature 1000 11867 84.27

Make/self verity Winternitz signature 1000 11878 84.19

Make/self verity Winternitz signature 1000 11867 84.27

Make/self verity Winternitz signature 10000 131139 76.25

Make/self verity Winternitz signature 10000 120864 82.74

Make/self verity Winternitz signature 10000 120974 82.66

Average 82.9

Update empty Winternitz signature 10 30 333.33

Update empty Winternitz signature 10 20 500

Update empty Winternitz signature 10 20 500

Update empty Winternitz signature 100 250 400

Update empty Winternitz signature 100 300 333.33

Update empty Winternitz signature 100 300 333.33

Update empty Winternitz signature 1000 2334 428.45

Update empty Winternitz signature 1000 2444 409.17

Update empty Winternitz signature 1000 2344 426.62

Update empty Winternitz signature 10000 21351 468.36

Update empty Winternitz signature 10000 26478 377.67

Update empty Winternitz signature 10000 25437 393.13
408.62

Average
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature

10
10
10

100
100
100

1000
1000
1000

20
20
30

230
260
191

2634
2533
2644

500
500

333.33
434.78
384.62
523.56
379.65
394.79
378.21

Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature

10
10
10

100
100
100

1000
1000
1000

20
20
30

230
260
191

2634
2533
2644

500
500

333.33
434.78
384.62
523.56
379.65
394.79
378.21

Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Average
element Len=4
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Average
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Average
Mai<e empty WinternitzShort object
IVIake empty WinternitzShort object
Make empty WinternitzShort object
IVIake empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Average
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Average
Update empty WinternitzShort object
Update empty WinternitzShort object
Update empty WinternitzShort object
Update empty WinternitzShort object
Update empty WinternitzShort object
Update empty WinternitzShort object

10000 28461 351.36
10000 23303 429.13
10000 24335 410.93

418.36

100 821 121.8
100 861 116.14
100 841 118.91

1000 8813 113.47
1000 8723 114.64
1000 8603 116.24

10000 84932 117.74
10000 85874 116.45
10000 86885 115.09

116.72
100 611 163.67
100 621 161.03
100 611 163.67

1000 6138 162.92
1000 6138 162.92
1000 6148 162.65

10000 61879 161.61
10000 61728 162
10000 61789 161.84

162.48
100 70 1428.57
100 70 1428.57
100 70 1428.57

1000 701 1426.53
1000 701 1426.53
1000 701 1426.53

10000 7020 1424.5
10000 7010 1426.53
10000 7060 1416.43

1425.86
100 70 1428.57
100 70 1428.57
100 80 1250

1000 711 1406.47
1000 711 1406.47
1000 701 1426.53

10000 7130 1402.52
10000 7161 1396.45
10000 7190 1390.82

1392.93
10000 90 111111.11
10000 80 125000
10000 90 111111.11

100000 905 110497.24
100000 910 109890.11
100000 101 990099.01

Average
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Average
elementLen=8
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Average
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Average
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Average
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Average
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object

259618.1
100 290 344.83
100 240 416.67
100 260 384.62

1000 2273 439.95
1000 2373 421.41
1000 2483 402.74

10000 25807 387.49
10000 24765 403.8
10000 23704 421.87

402.6

10000 130 76923.08
10000 130 76923.08
10000 120 83333.33

100000 1252 79872.2
100000 1252 79872.2
100000 1252 79872.2

79466.02
10000 70 142857.14
10000 70 142857.14
10000 70 142857.14

100000 701 142653.35
100000 701 142653.35
100000 691 144717.8

143099.32
10 410 24.39
10 400 25
10 400 25

100 4065 24.6
100 4045 24.72
100 4045 24.72

1000 40488 24.7
1000 40468 24.71
1000 40388 24.76

24.73
10 630 15.87
10 591 16.92
10 581 17.21

100 6049 16.53

100 6409 15.6

100 5869 17.04

1000 62119 16.1
1000 60347 16.57

1000 56752 17.62
16.61

1000 60 16666.67

1000 60 16666.67

1000 61 16393.44

10000 615 16260.16

10000 608 16447.37

Make Winternitz test object
Average
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Average
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Average
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Average
element Len=8
Get (produce) WinternitzSiiort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Average
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix

10000 610 16393.44
16471.29

10 802 12.47
10 801 12.48
10 811 12.33

100 8022 12.47
100 7972 12.54
100 7961 12.56

1000 79905 12.51
1000 79825 12.53
1000 79764 12.54

12.49
10 211 47.39
10 180 55.56
10 180 55.56

100 2003 49.93
100 2374 42.12
100 1833 54.56

1000 21591 46.32
1000 19888 50.28
1000 16233 61.6

51.48
10 170 58.82
10 210 47.62
10 220 45.45

100 1953 51.2
100 1602 62.42
100 2113 47.33

1000 17716 56.45
1000 19548 51.16
1000 23003 43.47

51.55

10 581 17.21
10 591 16.92
10 601 16.64

100 5998 16.67
100 6179 16.18
100 6359 15.73

1000 59846 16.71
1000 56431 17.72
1000 56251 17.78

16.84
10 400 25
10 400 25
10 400 25

100 4056 24.65
100 4036 24.78
100 4066 24.59

1000 40468 24.71
1000 40468 24.71

Get (produce) y matrix 100(40488 24.7
Average 24.79
Make empty WinternitzShort object 10C 70 1428.57
Make empty WinternitzShort object 10C 70 1428.57
Make empty WinternitzShort object 10C 60 1666.67
Make empty WinternitzShort object 100C 701 1426.53
Make empty WinternitzShort object 100C 701 1426.53
Make empty WinternitzShort object 100C 691 1447.18
Make empty WinternitzShort object 1000C) 7108 1406.87
Make empty WinternitzShort object 1000C 6911 1446.97
Make empty WinternitzShort object 1000C 1 7058 1416.83
Average 1454.97
Make WinternitzShort signature object 100 80 1250
Make WinternitzShort signature object 100 70 1428.57
Make WinternitzShort signature object 100 70 1428.57
Make WinternitzShort signature object 1000 711 1406.47
Make WinternitzShort signature object 1000 711 1406.47
Make WinternitzShort signature object 1000 701 1426.53
Make WinternitzShort signature object 10000 7014 1425.72
Make WinternitzShort signature object 10000 7119 1404.69
Make WinternitzShort signature object 10000 7102 1408.05
Average 1398.34
Update empty WinternitzShort object 10000 40 250000
Update empty WinternitzShort object 10000 40 250000
Update empty WinternitzShort object 10000 40 250000
Update empty WinternitzShort object 100000 421 237529.69
Update empty WinternitzShort object 100000 440 227272.73
Update empty WinternitzShort object 100000 401 249376.56
Average 244029.83
Verity WinternitzShort signature 10 220 45.45
Verity WinternitzShort signature 10 210 47.62
Verity WinternitzShort signature 10 200 50
Verity WinternitzShort signature 100 1963 50.94
Verity WinternitzShort signature 100 1792 55.8
Verity WinternitzShort signature 100 1602 62.42
Verity WinternitzShort signature 1000 19678 50.82
Verity WinternitzShort signature 1000 23213 43.08
Verity WinternitzShort signature 1000 23263 42.99
Average 49.9

Pentium 3
Rounds Time (ms) Op. per sec.

Make SHA-1 digest 10000 90 111111.11

Make SHA-1 digest 10000 90 111111.11

Make SHA-1 digest 10000 80 125000

Make SHA-1 digest 100000 901 110987.79

Make SHA-1 digest 100000 901 110987.79

Make SHA-1 digest 100000 901 110987.79

Make SHA-1 digest 1000000 8952 111706.88

Make SHA-1 digest 1000000 8942 111831.8
Make SHA-1 digest 1000000 8942 111831.8
Make SHA-1 digest 10000000 89338 111934.45
Make SHA-1 digest 10000000 89298 111984.59
Make SHA-1 digest 10000000 89298 111984.59
Average 112621.64
Make MD5 digest 10000 30 333333.33
Make MD5 digest 10000 30 333333.33
Make MD5 digest 10000 40 250000
Make MD5 digest 100000 310 322580.65
Make MD5 digest 100000 310 322580.65
Make MD5 digest 100000 310 322580.65
Make MD5 digest 1000000 3105 322061.19
Make MD5 digest 1000000 3105 322061.19
Make MD5 digest 1000000 3105 322061.19
Make MD5 digest 10000000 31025 322320.71
Make MD5 digest 10000000 31035 322216.85
Make MD5 digest 10000000 31025 322320.71
Average 318120.87
SHA-1 verification 10000 160 62500
SHA-1 verification 10000 160 62500
SHA-1 verification 10000 160 62500
SHA-1 verification 100000 1633 61236.99
SHA-1 verification 100000 1643 60864.27

SHA-1 verification 100000 1633 61236.99

SHA-1 verification 1000000 16323 61263.25

SHA-1 verification 1000000 16323 61263.25

SHA-1 verification 1000000 16323 61263.25

Average 61625.33

SHA "manual" verification 100000 20 5000000

SHA "manual" verification 100000 20 5000000

SHA "manual" verification 100000 10 10000000

SHA "manual" verification 1000000 130 7692307.69

SHA "manual" verification 1000000 130 7692307.69

SHA "manual" verification 1000000 140 7142857.14

SHA "manual" verification 10000000 1362 7342143.91

SHA "manual" verification 10000000 1352 7396449.7

SHA "manual" verification 10000000 1362 7342143.91

Average 7178690

Make DSA(1024) key pair 1 10.936 91.441

Make DSA(1024) key pair 1 10.926 91.525

Make DSA(1024) key pair
Make DSA(1024) key pair
Make DSA(1024) key pair

1
1
1

10.926
10.929
10.936

91.525
91.5

91.441
91.486

Average
Make RSA(1024) key pair 1

Jk

1211
1205
1201
1202
1211

0.826
0.83

0.833
0.832
0.826
0.829

Make RSA (1024) key pair
Make RSA (1024) key pair
Make RSA (1024) key pair
Make RSA (1024) key pair

1
1
1
1

1211
1205
1201
1202
1211

0.826
0.83

0.833
0.832
0.826
0.829

Average

0.826
0.83

0.833
0.832
0.826
0.829

Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Make DSA siganture on a SHA-1 digest
Average
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Average
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Average
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Average
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Average
Seed a random pool and get a long seed

10 420 23.81
10 410 24.39
10 410 24.39

100 4136 24.18
100 4126 24.24
100 4146 24.12

1000 41219 24.26
1000 41299 24.21
1000 41700 23.98

24.18
10 471 21.23
10 481 20.79
10 481 20.79

100 4817 20.76
100 4837 20.67
100 4746 21.07

1000 48500 20.62
1000 46657 21.43
1000 48299 20.7

20.9
10 811 12.33
10 821 12.18
10 821 12.18

100 8181 12.22
100 8181 12.22
100 8172 12.24

1000 81657 12.25
1000 81668 12.24
1000 81668 12.24

12.23
10 20 500
10 20 500
10 20 500

100 201 497.51
100 201 497.51
100 211 473.93

1000 1993 501.76
1000 1992 502.01
1000 1992 502.01

497.19
1000 22030 45.39
1000 22030 45.39
1000 21930 45.6

10000 222310 44.98
10000 222320 44.98
10000 222720 44.9

100000 2228500 44.87
100000 2223790 44.97
100000 2225800 44.93

45.11
1000 22730 43.99

Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Average
Make random SHASIZE biocks=
Make random SHASIZE blocks=
Make random SHASIZE blocks=
Make random SHASIZE blocks=
Make random SHASIZE blocks=
Make random SHASIZE blocks=
Average
elementLen=4
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Get (copy) the Winternitz signatures
Average
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Get (copy) the y matrixes
Average
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Average
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)

1000 22730 43.99
1000 22830 43.8

10000 227430 43.97
10000 227920 43.88
10000 227820 43.89

100000 2278380 43.89
100000 2274270 43.97
100000 2276170 43.93

43.92
10000 300 33333.33
10000 200 50000
10000 300 33333.33

100000 2800 35714.29
100000 2910 34364.26
100000 2900 34482.76

24580.89

1000 30 33333.33
1000 30 33333.33
1000 40 25000

10000 260 38461.54
10000 260 38461.54
10000 270 37037.04

100000 2673 37411.15
100000 2673 37411.15
100000 2673 37411.15

35317.8
1000 20 50000
1000 20 50000
1000 10 100000

10000 150 66666.67
10000 150 66666.67
10000 140 71428.57

67460.32
10 310 32.26
10 300 33.33
10 310 32.26

100 3054 32.74
100 3054 32.74
100 3054 32.74

1000 30694 32.58
1000 30674 32.6
1000 30714 32.56

32.65
10 331 30.21
10 331 30.21
10 331 30.21

100 3355 29.81
100 3375 29.63
100 3425 29.2

1000 33439 29.91

Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Average
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Average
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Average
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Average
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Average
element Len=4
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature

1000 33969 29.44
1000 33849 29.54

29.8
1000 140 7142.86
1000 140 7142.86
1000 140 7142.86

10000 1392 7183.91
10000 1392 7183.91
10000 1392 7183.91

100000 15032 6652.47
100000 15052 6643.64
100000 15062 6639.22

6990.63
10 370 27.03
10 370 27.03
10 370 27.03

100 3726 26.84
100 3726 26.84
100 3726 26.84

1000 37173 26.9
1000 37183 26.89
1000 37403 26.74

26.9
10 30 333.33
10 30 333.33
10 30 333.33

100 300 333.33
100 300 333.33
100 340 294.12

1000 2603 384.17
1000 3124 320.1
1000 2994 334

333.23
10 40 250
10 40 250
10 40 250

100 350 285.71
100 340 294.12
100 310 322.58

1000 3806 262.74
1000 3275 305.34
1000 3675 272.11

276.96

10 111 90.09
10 111 90.09
10 111 90.09

100 1041 96.06
100 1061 94.25
100 1061 94.25

1000 10405 96.11

Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Average
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Average
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Average
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Average
Update empty WinternitzShort object
Update empty WinternitzShort object
Update empty WinternitzShort object
Update empty WinternitzShort object
Update empty WinternitzShort object
Update empty WinternitzShort object
Average
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Average
elementLen=8

1000 10135 98.67
1000 10546 94.82

93.83
10 80 125
10 80 125
10 80 125

100 771 129.7
100 781 128.04
100 781 128.04

1000 7781 128.52
1000 7791 128.35
1000 7781 128.52

127.35
10 220 45.45
10 220 45.45
10 220 45.45

100 2263 44.19
100 2263 44.19
100 2263 44.19

1000 22782 43.89
1000 22772 43.91
1000 22822 43.82

44.5
10 230 43.48
10 220 45.45
10 230 43.48

100 2253 44.39
100 2263 44.19
100 2263 44.19

1000 22853 43.76
1000 22863 43.74
1000 22863 43.74

44.05
1000 10 100000
1000 10 100000
1000 10 100000

10000 100 100000
10000 90 111111.11
10000 100 100000

101851.85
10 30 333.33
10 30 333.33
10 30 333.33

100 381 262.47
100 341 293.26
100 351 284.9

1000 3676 272.03
1000 3946 253.42
1000 3535 282.89

294.33

Get (copy) the Winternitz signatures 10000 130 76923.08
Get (copy) the Winternitz signatures 10000 130 76923.08
Get (copy) the Winternitz signatures 10000 140 71428.57
Get (copy) the Winternitz signatures 100000 1342 74515.65
Get (copy) the Winternitz signatures 100000 1342 74515.65
Get (copy) the Winternitz signatures 100000 1342 74515.65
Average 74803.61
Get (copy) the y matrixes 10000 80 125000
Get (copy) the y matrixes 10000 80 125000
Get (copy) the y matrixes 10000 70 142857.14
Get (copy) the y matrixes 100000 751 133155.79
Get (copy) the y matrixes 100000 751 133155.79
Get (copy) the y matrixes 100000 761 131406.04
Average 131762.46
Make empty Winternitz object 10 781 12.8
Make empty Winternitz object 10 741 13.5
Make empty Winternitz object 10 751 13.32
Make empty Winternitz object 100 7430 13.46
Make empty Winternitz object 100 7420 13.48
Make empty Winternitz object 100 7400 13.51
Make empty Winternitz object 1000 75037 13.33
Make empty Winternitz object 1000 73896 13.53

Make empty Winternitz object 1000 74598 13.41
Average 13.37

Make Winternitz object (inc. signature) 10 1022 9.78

Make Winternitz object (inc. signature) 10 971 10.3

Make Winternitz object (inc. signature) 10 1032 9.69

Make Winternitz object (inc. signature) 100 9734 10.27

Make Winternitz object (inc. signature) 100 10255 9.75

Make Winternitz object (inc. signature) 100 10876 9.19

Make Winternitz object (inc. signature) 1000 97089 10.3

Make Winternitz object (inc. signature) 1000 99332 10.07

Make Winternitz object (inc. signature) 1000 98254 10.18
9.95 Average

10.18
9.95

Make Winternitz test object 1000 70 14285.71

Make Winternitz test object 1000 80 12500

Make Winternitz test object 1000 70 14285.71

Make Winternitz test object 10000 721 13869.63

Make Winternitz test object 10000 721 13869.63

Make Winternitz test object 10000 731 13679.89

Make Winternitz test object 100000 7821 12786.09

Make Winternitz test object 100000 7791 12835.32

Make Winternitz test object 100000 7781 12851.82
13440.42

7.99
8.05
8.06
8.01
7.78
8.03
8.03

Average
Make/self verity Winternitz signature 10 1251

1242
1241

12478
12859
12458

124589

12851.82
13440.42

7.99
8.05
8.06
8.01
7.78
8.03
8.03

Make/self verity Winternitz signature 10
1251
1242
1241

12478
12859
12458

124589

12851.82
13440.42

7.99
8.05
8.06
8.01
7.78
8.03
8.03

Make/self verity Winternitz signature 10

1251
1242
1241

12478
12859
12458

124589

12851.82
13440.42

7.99
8.05
8.06
8.01
7.78
8.03
8.03

Make/self verity Winternitz signature
Make/self verity Winternitz signature

100
100
100

1000

1251
1242
1241

12478
12859
12458

124589

12851.82
13440.42

7.99
8.05
8.06
8.01
7.78
8.03
8.03 Make/self verity Winternitz signature

Make/self verity Winternitz signature

100
100
100

1000

1251
1242
1241

12478
12859
12458

124589

12851.82
13440.42

7.99
8.05
8.06
8.01
7.78
8.03
8.03

Make/self verity Winternitz signature
Make/self verity Winternitz signature
Average
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Average
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Average
element Len=8
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Average
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Average
iVIake empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object

1000
1000

10
10
10

100
100
100

1000
1000
1000

10
10
10

100
100
100

1000
1000
1000

10
10
10

100
100
100

1000
1000
1000

10
10
10

100
100
100

1000
1000
1000

100
100
100

1000
1000
1000

10000

124459
124487

230
230
280

2073
2774
2534

23083
25497
24587

280
271
220

2955
2273
2503

27169
24926
24587

711
781
741

7371
7821
7601

71853
78223
73686

511
511
521

5117
5117
5117

51044
51043
51023

230
230
230

2283
2293
2283

22882

8.03
8.03

8
43.48
43.48
35.71
48.24
36.05
39.46
43.32
39.22
40.67
41.07
35.71

36.9
45.45
33.84
43.99
39.95
36.81
40.12
40.67
39.27

14.06
12.8
13.5

13.57
12.79
13.16
13.92
12.78
13.57
13.35
19.57
19.57
19.19
19.54
19.54
19.54
19.59
19.59

19.6
19.53

434.78
434.78
434.78
438.02
436.11
438.02
437.02

Make empty WinternitzShort object 1000C 1 22872 437.22
Make empty WinternitzShort object 10000 1 22862 437.41
Average 436.46
Make WinternitzShort signature object 100 1 230 434.78
Make WinternitzShort signature object 100 230 434.78
Make WinternitzShort signature object 100 230 434.78
Make WinternitzShort signature object 1000 2303 434.22
Make WinternitzShort signature object 1000 2293 436.11
Make WinternitzShort signature object 1000 2293 436.11
Make WinternitzShort signature object 10000 22903 436.62
Make WinternitzShort signature object 10000 22913 436.43
Make WinternitzShort signature object 10000 22913 436.43
Average 435.58
Update empty WinternitzShort object 10000 40 250000
Update empty WinternitzShort object 10000 50 200000
Update empty WinternitzShort object 10000 40 250000
Update empty WinternitzShort object 100000 480 208333.33
Update empty WinternitzShort object 100000 520 192307.69
Update empty WinternitzShort object 100000 490 204081.63
Average 217453.78
Verity WinternitzShort signature 10 301 33.22
Verity WinternitzShort signature 10 231 43.29
Verity WinternitzShort signature 10 271 36.9
Verity WinternitzShort signature 100 2704 36.98
Verity WinternitzShort signature 100 2264 44.17
Verity WinternitzShort signature 100 2484 40.26
Verity WinternitzShort signature 1000 29372 34.05
Verity WinternitzShort signature 1000 22612 44.22
Verity WinternitzShort signature 1000 27129 36.86
Average 38.88

Celeron
Rounds Time (ms) Op. per sec.

Make SHA-1 digest 10000 160 62500
Make SHA-1 digest 10000 170 58823.53

Make SHA-1 digest 10000 110 90909.09

Make SHA-1 digest 100000 1320 75757.58

Make SHA-1 digest 100000 1320 75757.58

Make SHA-1 digest 100000 1370 72992.7

Make SHA-1 digest 1000000 9170 109051.25

Make SHA-1 digest 1000000 9220 108459.87

Make SHA-1 digest 1000000 9230 108342.36

Make SHA-1 digest 10000000 87770 113934.15

Make SHA-1 digest 10000000 87780 113921.17

Make SHA-1 digest 10000000 87770 113934.15

Average 92031.95

Make MD5 digest 10000 60 166666.67

Make MD5 digest 10000 50 200000

Make MD5 digest 10000 60 166666.67

Make MD5 digest 100000 270 370370.37

Make MD5 digest
Make MD5 digest
Make MD5 digest
Make MD5 digest
Make MD5 digest
Make MD5 digest
Make MD5 digest
Make MD5 digest
Average

SHA-1 verification
SHA-1 verification
SHA-1 verification
SHA-1 verification
SHA-1 verification
SHA-1 verification
SHA-1 verification
SHA-1 verification
SHA-1 verification
Average
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
SHA "manual" verification
Average
Make DSA (1024) key pair
Make DSA (1024) key pair
Make DSA (1024) key pair
Make DSA (1024) key pair
Make DSA (1024) key pair
Average
Make RSA (1024) key pair
Make RSA (1024) key pair
Make RSA (1024) key pair
Make RSA (1024) key pair
Make RSA (1024) key pair
Average
Make DSA siganture on a SHA-1
Make DSA siganture on a SHA-1
Make DSA siganture on a SHA-1
Make DSA siganture on a SHA-1
Make DSA siganture on a SHA-1
Make DSA siganture on a SHA-1
Make DSA siganture on a SHA-1
Make DSA siganture on a SHA-1
Make DSA siganture on a SHA-1
Average

digest
digest
digest
digest
digest
digest
digest
digest
digest

100000 270 370370.37

100000 330 303030.3

1000000 3020 331125.83
1000000 3020 331125.83
1000000 3020 331125.83

10000000 30100 332225.91
10000000 30100 332225.91
10000000 30100 332225.91

297263.3
100000 1430 69930.07
100000 1430 69930.07
100000 1370 72992.7

1000000 14010 71377.59
1000000 14010 71377.59
1000000 13950 71684.59

10000000 139900 71479.63
10000000 139840 71510.3
10000000 139780 71540.99

71313.73
100000 110 909090.91
100000 110 909090.91

100000 170 588235.29

1000000 1370 729927.01

1000000 1370 729927.01

1000000 1320 757575.76

10000000 13290 752445.45

10000000 13230 755857.9

10000000 13240 755287.01
765270.81

10.65 93.897
10.65 93.897
10.65 93.897
10.71 93.371
11.15 89.686

92.95
1.65 606.061
1.65 606.061
2.03 492.611
2.03 492.611
2.15 465.116

532.492

10 770 12.99

10 770 12.99

10 770 12.99

100 4390 22.78

100 4450 22.47

100 4450 22.47

1000 40650 24.6

1000 40700 24.57

1000 40700 24.57
20.05

Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Verify DSA siganture on a SHA-1 digest
Average
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Make RSA siganture on a SHA-1 digest
Average
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Verify RSA siganture on a SHA-1 digest
Average
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Seed a random pool
Average
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Seed a random pool and get a long seed
Average
Make random SHASIZE blocks=
Make random SHASIZE blocks=
Make random SHASIZE bIocks=
Make random SHASIZE blocks=

10
10
10

100
100
100

1000
1000
1000

10
10
10

100
100
100

1000
1000
1000

100
100
100

1000
1000
1000

10
10
10

100
100
100

1000
1000
1000

10
10
10

100
100
100

1000
1000
1000

1000
1000
1000

10000

440
490
500

4620
4670
4670

46460
46520
46900

760
820
830

7790
7800
7800

78160
78160
78220

170
220
220

1920
1980
1980

550
710
610

4230
4230
4230

40200
39490
39710

610
500
600

3850
3900
3850

43170
42570
42460

60
50
60

610

22.73
20.41

20
21.65
21.41
21.41
21.52

21.5
21.32
21.33
13.16

12.2
12.05
12.84
12.82
12.82
12.79
12.79
12.78
12.69

588.24
454.55
454.55
520.83
505.05
505.05
504.71

18.18
14.08
16.39
23.64
23.64
23.64
24.88
25.32
25.18
21.66
16.39

20
16.67
25.97
25.64
25.97
23.16
23.49
23.55
22.32

16666.67
20000

16666.67
16393.44

Make random SHASIZE blocks= 10000 589 16977.93
Make random SHASIZE blocks= 10000 573 17452.01
Average 11572.97
elementLen=4
Make empty Winternitz object 10 820 12.2
Make empty Winternitz object 10 770 12.99
Make empty Winternitz object 10 820 12.2
Make empty Winternitz object 100 5110 19.57
Make empty Winternitz object 100 5170 19.34
Make empty Winternitz object 100 5110 19.57
Make empty Winternitz object 1000 48770 20.5
Make empty Winternitz object 1000 48770 20.5
Make empty Winternitz object 1000 48660 20.55
Average 17.49
Make Winternitz object (inc. signature) 10 490 20.41
Make Winternitz object (inc. signature) 10 610 16.39
Make Winternitz object (inc. signature) 10 550 18.18
Make Winternitz object (inc. signature) 100 5000 20
Make Winternitz object (inc. signature) 100 5050 19.8
Make Winternitz object (inc. signature) 100 4940 20.24
Make Winternitz object (inc. signature) 1000 55420 18.04
Make Winternitz object (inc. signature) 1000 54810 18.24

Make Winternitz object (inc. signature) 1000 55200 18.12

Average 18.82

Make Winternitz test object 100 50 2000

Make Winternitz test object 100 60 1666.67

Make Winternitz test object 100 50 2000

Make Winternitz test object 1000 170 5882.35

Make Winternitz test object 1000 110 9090.91

Make Winternitz test object 1000 110 9090.91

Average
550

4955.14

Make/self verity Winternitz signature 10 550 18.18

Make/self verity Winternitz signature 10 550 18.18

Make/self verity Winternitz signature 10 550 18.18

Make/self verity Winternitz signature 100 5380 18.59

Make/self verity Winternitz signature 100 5390 18.55

Make/self verity Winternitz signature 100 5380 18.59

Make/self verity Winternitz signature 1000 60970 16.4

Make/self verity Winternitz signature 1000 61020 16.39

Make/self verity Winternitz signature 1000 60970 16.4
17.72 Average

Update empty Winternitz signature 10 60
50
60

270
330
280

3180
2690
2850

166.67
200

166.67
370.37
303.03
357.14
314.47
371.75
350.88

289

Update empty Winternitz signature 10
60
50
60

270
330
280

3180
2690
2850

166.67
200

166.67
370.37
303.03
357.14
314.47
371.75
350.88

289

Update empty Winternitz signature 10

60
50
60

270
330
280

3180
2690
2850

166.67
200

166.67
370.37
303.03
357.14
314.47
371.75
350.88

289

Update empty Winternitz signature 100
100
100

1000
1000
1000

60
50
60

270
330
280

3180
2690
2850

166.67
200

166.67
370.37
303.03
357.14
314.47
371.75
350.88

289

Update empty Winternitz signature

100
100
100

1000
1000
1000

60
50
60

270
330
280

3180
2690
2850

166.67
200

166.67
370.37
303.03
357.14
314.47
371.75
350.88

289

Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature

100
100
100

1000
1000
1000

60
50
60

270
330
280

3180
2690
2850

166.67
200

166.67
370.37
303.03
357.14
314.47
371.75
350.88

289
Average

166.67
200

166.67
370.37
303.03
357.14
314.47
371.75
350.88

289

Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Average
element Len=4
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Average
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Average
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Average
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Make WinternitzShort signature object
Average

10 40 250
10 50 200
10 30 333.33

100 330 303.03
100 270 370.37
100 390 256.41

1000 3080 324.68
1000 3570 280.11
1000 3520 284.09

289.11

10 110 90.91
10 60 166.67
10 110 90.91

100 1040 96.15
100 1050 95.24
100 1050 95.24

1000 11370 87.95
1000 10380 96.34
1000 10490 95.33

101.64
10 50 200
10 110 90.91
10 110 90.91

100 770 129.87
100 770 129.87
100 770 129.87

1000 7800 128.21
1000 7690 130.04
1000 7640 130.89

128.95
10 660 15.15
10 600 16.67
10 610 16.39

100 4340 23.04
100 4290 23.31
100 4290 23.31

1000 40750 24.54
1000 40100 24.94
1000 40150 24.91

21.36
10 550 18.18
10 600 16.67
10 550 18.18

100 3850 25.97
100 3840 26.04
100 3850 25.97

1000 43440 23.02
1000 42790 23.37
1000 42730 23.4

22.31

Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Verity WinternitzShort signature
Average
elementLen=8
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Make empty Winternitz object
Average
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Make Winternitz object (inc. signature)
Average
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Make Winternitz test object
Average
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Make/self verity Winternitz signature
Average
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature

100
100
100

1000
1000
1000

10
10
10

100
100
100

1000
1000
1000

10
10
10

100
100
100

1000
1000
1000

1000
1000
1000

10000
10000
10000

10
10
10

100
100
100

1000
1000
1000

10
10
10

100
100
100

330
330
330

3080
3460
3350

1370
1320
1370
9390
9400
9450

92940
90290
90850

1150
1210
1150

11210
11200
11480

122260
120400
113150

60
50
60

637
619
532

1370
1370
1430

13950
13950
13890

687230
147690
145440

280
280
220

2300
2310
2470

303.03
303.03
303.03
324.68
289.02
298.51
303.55

7.3
7.58

7.3
10.65
10.64
10.58
10.76
11.08
11.01
9.66

8.7
8.26
8.7

8.92
8.93
8.71
8.18
8.31
8.84
8.62

16666.67
20000

16666.67
15698.59
16155.09
18796.99
17330.67

7.3
7.3

6.99
7.17
7.17
7.2

1.46
6.77
6.88
6.47

35.71
35.71
45.45
43.48
43.29
40.49

Update empty Winternitz signature
Update empty Winternitz signature
Update empty Winternitz signature
Average
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Verity Winternitz signature
Average
element Len=8
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Get (produce) WinternitzShort signature
Average
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Get (produce) y matrix
Average
iVIake empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Make empty WinternitzShort object
Average
Make WinternitzShort signature object
Make WintemitzShort signature object
Make WintemitzShort signature object
Make WintemitzShort signature object
Make WintemitzShort signature object
Make WintemitzShort signature object

1000 27020 37.01
1000 26970 37.08
1000 20320 49.21

40.83
10 280 35.71
10 170 58.82
10 270 37.04

100 2690 37.17
100 2630 38.02
100 2410 41.49

1000 22130 45.19
1000 28780 34.75
1000 26854 37.24

40.6

10 720 13.89
10 720 13.89
10 770 12.99

100 7420 13.48
100 7640 13.09
100 7250 13.79

1000 74860 13.36
1000 74430 13.44
1000 74970 13.34

13.47
10 490 20.41
10 490 20.41
10 490 20.41

100 4990 20.04
100 5000 20
100 4990 20.04

1000 49930 20.03
1000 49870 20.05
1000 49870 20.05

20.16
100 770 129.87
100 600 166.67
100 720 138.89

1000 4340 230.41
1000 4280 233.64
1000 4400 227.27

10000 40320 248.02
10000 40210 248.69
10000 40150 249.07

208.06
100 490 204.08
100 600 166.67
100 550 181.82

1000 3900 256.41
1000 3900 256.41
1000 3890 257.07

Make WinternitzShort signature object 10000 42890 233.15
Make WinternitzShort signature object 10000 42460 235.52
Make WinternitzShort signature object 10000 42790 233.7
Average 224.98
Verity WinternitzShort signature 10 270 37.04
Verity WinternitzShort signature 10 270 37.04
Verity WinternitzShort signature 10 220 45.45
Verity WinternitzShort signature 100 2420 41.32
Verity WinternitzShort signature 100 2250 44.44
Verity WinternitzShort signature 100 2640 37.88
Verity WinternitzShort signature 1000 24280 41.19
Verity WinternitzShort signature 1000 24220 41.29
Verity WinternitzShort signature 1000 24280 41.19
Average 40.76

Appendix B
Table 6.2 presented times for how long it takes to do some of the operations involved

with making winternitz and winternitzshort signatures. Those times, as well as

the ones on the left hand side of these tables were taken from individual smaller tests.

They are based on timing for producing hash chains (simply repeated hashing),

generate random numbers and do a few other calculations. This was done to see

where the most time was spent, and thus provide more detailed and vital data.

The values on the right hand side in these two tables are taken from tests run on the

winternitz and winternitzShort classes. They are all fraction slower then the ones

on the left hand side, as would be expected for an object oriented implementation.

elementLen
Standard

4 8
Winternitz

4 8

Make signature object Initiate x
Produce x
Produce y
Produce subVal
Total

0.71 0.71
1.06 0.53
4.81 38.5
0.01 0.01
6.59 39.75 6.81 40.44

ms
ms
ms
ms
ms

Make a signature Produce x
Produce y
Produce signature
Total

2.41 19.25
2.41 19.25 2.45 19.43

ms
ms
ms
ms

Verify a siganture Produce subVal
Produce signature
Total

0.01 0.01
2.41 19.25
2.42 19.26 2.39 19.4

ms
ms
ms

Table B.l ^ ^ ,
Detailed time for each sub operation done m class winternitz versus the actual
times required to do the actual class winternitz operations

I l l

elementLen
Short Winternitz

elementLen 4 8 4 8
Make signature object Initiate x

Produce x
Produce y
Produce subVal
Total

0.71 0.71

0.01 0.01
0.72 0.72 0.72 0.72

8.57 59.38

ms
ms
ms
ms
ms

Make a signature Produce x
Produce y
Produce signature
Total

1.06 0.53
4.81 38.5
2.41 19.25
8.28 58.28

0.72 0.72

8.57 59.38

ms
ms
ms
ms

Verify a siganture Produce subVal
Produce signature
Total

0.01 0.01
2.41 19.25
2.42 19.26 2.48 20.04

ms
ms
ms

Table B.l
Detailed time for each sub operation done in class winternitzshort versus the
actual times required to do the actual class winternitzshort operations

Appendix C

class Winternitz

/ *

*winternitz.h
*Done as a part of the thesis: "Aspects of Micropayments" by Terje
*Tollisen for his Master of Science (Honours) at University of
*Wollongong.
* /

#ifndef winterntitz_h
#define winterntitz_h
#include <time.h>
#include "sha.h"

USING_NAMESPACE(CryptoPP)

/*Each element to be signed with a hash value. 4 means that each byte
will be divivde into 2*/.
const short unsigned int elementLen=4;
//Nubmer og elements per byte that must be signed with a hash value
cons't short unsigned int elementPerByte=2 ;
/•Maximum number of bytes needed for the checksum =
2^elementLen*elementPerByte*digestLen
=2^8*1*160=40960 and takes less then 16 bits
(in binary= 10100000 00000000)
=2^4*2*160=5120 and takes less then 16 bits
(in binary= 00010100 00000000)
*/
const short unsigned int checkLen=sizeof(short unsigned);
const short unsigned int digestLen=SHA::DIGESTSIZE;

class Winternitz {
public:

//Makes a signature object with the x and y values.
Winternitz();
-Winternitz();
//Makes a signature object, and creates a signature on

the
//message messDigest
Winternitz(byte messDigest[], short unsigned int

messDigestLen);
//Produce a signature object used for tesing a signature
Winternitz(byte messDigest[], short unsigned int

messDigestLen, byte **yTest);

//Assigns a message to a defined Winternitz object
bool update(byte messDigest[], short unsigned int

messDigestLen);
//Returns the length of the x and y matrices

short unsigned getxyLen(){return xyLen;}
//Returns the object's public y matrix

bool getY(byte ** yTemp);
//Returns the public parts of the signature

bool getSignature(byte **sign, byte **yTemp);
//Test function. Verifying the objects own signature
short verifySignature();
//Tests if the given signature is valid on the object's
message
short verifySignature(byte ** testSign);

private:
//Creates the x and y matrices
void initialize 0;
void computeSubVal()/
//Make the checksum for the siganture
void makeCheckSum();
//Splits a byte into wo bytes, adding 0's as padding
void splitByte(const byte val, byte * splitArray)/
void produceXO ;
void produceYO ;

//Makes the signature
void produceSignature() ;
byte **x;
byte **y/
short unsigned int xyLen;
byte *subVal;
short unsigned int subLen;
byte *m;
short unsigned int mLen;
short unsigned int n;
byte **signature/

#endif

/** *winternitz.cpp
*Done as a part of the thesis: "Aspects of Micropayments" by Terje
*Tollisen for his Master of Science (Honours) at University of
*Wollongong.

#include "winternitz.h"
#include <iostream.h>
#include <math,h>
#include <time.h>
#include "osrng.h"

Winternitz::Winternitz() {
initialize ();

}

Winternitz::-Winternitz() {
short unsigned i=0;//counter
if(x!=NULL) {

for(i=0; i<xyLen; i++)
delete [] x[i];

delete [] x; }
if{yl=NULL) {

for(i=0; i<xyLen; i++)
delete [] y[i];

delete [] y;
}
if(subVal!=NULL)

delete [] subVal;
if (signature!=NULL) {

for(i=0; i<subLen; i++)
delete [] signature[i];

delete [] signature;
} }

//messDigest is assumed to be a SHA digest
Winternitz::Winternitz(byte messDigest[], short unsigned
messDigestLen) {

//Initialize m
mLen=messDigestLen;
m=new byte[mLen];
for(short unsigned int i=0; i<mLen; i++)

m[i]=messDigest[i];

n = pow(2,elementLen)///A sub element has a values less then n.

//Split the bytes in m into shorter elements. Used to find
//number of hashes needed for signing
subLen=(digestLen+checkLen)*elementPerByte;
xyLen=subLen;
//Long enough to hold the digest plus checksum
subVal = new byte [subLen]; computeSubValO///Computes the sub elements in the digest.
makeCheckSum();
produceX();
produceY();
producesignature();

}
//Produce a signature object used for tesing a signature
//No X and y matrices are made. ^ . ̂
Winternitz::Winternitz (byte messDigest[], short unsigned int
messDigestLen, byte **yTest) {

//Initialize m
mLen=messDigestLen;
m=new byte[mLen]; _
for(short unsigned int i=0; i<mLen; i++)

m[i]=messDigest[i];

n = pow(2,elementLen)///A sub element has a values less then n
subLen=(mLen+checkLen)*elementPerByte/
xyLen=subLen;
//Long enough to hold the digest plus checksum
subVal = new byte [subLen];
computeSubVal0///Computes the sub elements in the digest,
makeChecksum();
x=NULL///x is not used in a test object
signature=NULL;//signature is not used in a test object

//Allocate memory for y
y = new byte *[xyLen];
for(short unsigned int k=0; k<subLen; k++)
{

y[k] = new byte[SHA:iDIGESTSIZE] ;
forishort unsigned int j=0; j<SHA:rDIGESTSIZE; j++)

y[k] [j]=yTest [k] [j] ;

}
}

/////////////Private functions////////////////////

void Winternitz::initialize{)
{

n = pow(2,elementLen);//A sub element has a values less then n.
xyLen=(digestLen+checkLen)*elementPerByte;
subVal=NULL;//The message to sign has not been given yet
signature=NULL;//The message to sign has not been given yet
produceX();
produceY();

}
//Makes the sub elements in subVal. See Witnernitz descriptions in
//chapter 4 for details
void Winternitz::computeSubVal()
{

short unsigned i///loop counter
if(elementPerByte==l)

for(i=0; i<mLen; i++)
subVal[i]=m[i];

else
for(i=0; i<mLen; i++)

splitByte(m[i],SsubVal[i*elementPerByte]);

}
//Creates the check sum for the siganture. See Chapter 4 for details
//This check sum will be appended to subVal
void Winternitz:rmakeCheckSum()

short unsigned c=0;//the integer value of the checksum
short unsigned int i=0;//loop counter
int j=0;//loop counter
short unsigned cLen=checkLen;
//The binary representation of the check sum c
byte * cVal = new byte[checkLen]/

//Compute the check sum
for(i=0; i<subLen-(checkLen*elementPerByte); i++)

c+=(n-subVal[i]);
for(i=0/ i<cLen; i++)

cVal[i]=0;
//casts the integer check sum, c, into a byte array, cVal.
cVal=(byte*)&c;

int tempVal=subLen-checkLen*elementPerByte/
short unsigned int k=cLen-l;//Last index of cVal
if(elementPerByte==l)//cVal can be copied straight into subVal
//Put cVal into the last indexes of subVal

for(j=tempVal; j<subLen; j++)
subVal[j]=cVal[k--] ;

else//byte's in check sura must split like the elements in
subVal

//Put cVal into the last indexes of subVal
for(j=tempVal; j<subLen; j+=2)

splitByte(cVal[k--], &subVal[j]);
}
//Splits a byte into an array of bytes, padding the high order bits
//with 0
void Winternitz::splitByte(const byte val, byte * splitArray)
(//The mask starts out with one 1, and seven O's: mask=1000000

byte mask = 12 8;
//Once for each element in splitArray
for(short unsigned int i=0; i<elementPerByte; i++) {

splitArray[i]=0;
for(short unsigned int j=0; j<elementLen; j++) {

splitArray[i]<<=1;
if(val & mask)//Push 1, else push 0

splitArray[i]=splitArray[i] |l;
mask>>=l; } } }

//Generates a matrix of ramdom numbers.
//These are the secret x values.
//Each X is set to the same length as a SHA digest,
void Winternitz::produceX0

short unsigned i;//loop counter

//Allocate memory for the x matrix
X = new byte *[xyLen];
for(i = 0; i < xyLen; i++)

x[i] = new byte[SHA::DIGESTSIZE];

//Create a secret seed
AutoSeededRandomPool rng/
long seed=rng.GetLong();

//Create the x matrix from the seed
//using a pseudorandom function
RandomPool randPool;
randPool.Put((byte*)&seed, sizeof(seed));
for(i=0; i<xyLen; i++) randPool.GenerateBlock(X[i], SHA::DIGESTSIZE);

//Generates a matrix with public y values.
//Each y is a SHA (multiple) digest of the corresponding x.
void Winternitz::produceY() {

short unsigned i, j;//loop counters
//Allocate memory for the y matrix
y = new byte *[xyLen];
for(i = 0 ; i < xyLen; i++)

y[i] = new byte[SHA::DIGESTSIZE] ;

//Each x[i] is hashed n times to produce y[i]
SHA hash;
for(i=0; i<xyLen; i++) {

hash.CalculateDigest (y [i] , x[i], SHA: :DIGESTSIZE) ,•
for(j=l; j<n; j++)

hash.CalculateDigest(y[i], y[i], SHA::DIGESTSIZE);

})
//Creating the signature involves hashing each x[i]
//as many times as the value in subVal[i].
//The result is stored in signature[i]
void Winternitz::produceSignature() {

short unsigned i, j, k;//loop conters
//Allocate memory for the signature matrix
signature = new byte *[subLen];
for(i =0; i < subLen; i++)

signature [i] = new byte[SHA::DIGESTSIZE] ;

//Create the signature
SHA hash;
for(i=0; i<subLen; i++)//Once for each x (and y and subVal)

^ //The x[i] is hashed subVal[i] times and
//put into signature[i]

if(subVal[i]>0)
^ hash.CalculateDigest(signature[i] , x[i],

SHA::DIGESTSIZE);
//j=0 have been done on the line above
for(j=l; j<subVal[i]; j++) hash.CalculateDigest(signature[i],

signature [i], SHA: :DIGESTSIZE) ;

//subVal[i] can be 0 in the check sum. x[i] is just
//copied into signature[i]

else
for(k=0; k<SHA::DIGESTSIZE; k++)

signature [i] [k]=x[i] [k] ; } }

///////////tMnctions//////////////////////

//Assigns a message to sign to an object. This should only be
//done with an object made with the default constructor. It should
//also only be done once per object for security reasons,
bool Winternitz::update(byte messDigest[], short unsigned int
messDigestLen) {

//Security check
//Comment out if several updates must be called to

// time the operations
i f(s igantuer!=NULL)

return false;

//Initialize m
mLen=messDigestLen;
m=new byte[mLen];
for(short unsigned int i=0; i<mLen; i++)

m[i]=messDigest[i] ;
//Split the bytes in m into shorter elements.

// Used to find number of hashes needed for signing
subLen=(digestLen+checkLen)*elementPerByte;
xyLen=subLen;
//Long enough to hold the digest pluss checksum
subVal = new byte [subLen];
computeSubVal0///Computes the sub values in the digest.
makeCheckSum();
producesignature();
return true; }

//Copies the private y-matrix into the argument yTemp
bool Winternitz::getY(byte ** yTemp) {

if(!y)
return false;

short unsigned i, j;//loop counters
for(i=0; i<xyLen; i++)

for(j=0; j<SHA::DIGESTSIZE; j++)
yTemp [i] [j] =y[i] [j] ;

return true;
}
//The public parts of the siganture (the y and signature matrices)
//are copied into the argumnts.
//Returns false if no siganture exits, and true otherwise
bool Winternitz: :getSignature (byte -sign, byte -yTemp)

if(!signature)
return false;

if (!y)
return false;

short unsigned i, j;//loop counters
for(i=0; i<subLen; i++) _ for(j =0; j<SHA::DIGESTSIZE;]++)

^ sign[i][j]=signature[i][j];

yTemp[iJ [j]=y[i] [j 1 ; } ^ return true;

//A test function that tests the signature of the signtureobject
//Returns -1 if no siganture exits, 0 if the test fails and 1
//otherwise
short Winternitz::verifySignature()

if(signature==NULL)
return -1/

byte tempCheck[SHA::DIGESTSIZE];
unsigned short i, j, k, t;//loop counters
SHA hash;
for(i=0; i<subLen; i++)//Once for each hash value {

for(k=0; k<SHA:rDIGESTSIZE; k++)//Copy the siganture to
test

}

tempCheck[k]=signature[i] [k]/
//Hash the test siganture as many times as subVal[i]
for(j=subVal[i]; j<n; j++)

hash.CalculateDigest(tempCheck, tempCheck,
SHA::DIGESTSIZE);

//It is faster to check the digest "manually" rather
//then calling hash.VerifyDigest()
//Test is the test signature is equal to y

for(t=0; t<SHA:iDIGESTSIZE; t++)
if(y[i] [t] !=tempCheck [t])

return 0;
}
return 1;

//Tests if the recieved signature is a valid one for the
//signatureobject. Returns -1 if the test cannot be done,
//O if the test fails and 1 otherwise
short Winternitz::verifySignature(byte **testSign) {

if(IsubVal)
return -1;

if (!y)
return -1;

byte tempCheck[SHA:rDIGESTSIZE] ;
unsigned short i, j, k, t;//loop counters
SHA hash;

for(i=0; i<subLen; i++)//Once for each hash value

^ for(k=0; k<SHA::DIGESTSIZE; k++)//Copy the siganture to test tempCheck[k]=testSign[i][k];
//Hash the test siganture as many times as subVal[i]
for(j=subVal[i]; j<n; j++)

hash.CalculateDigest(tempCheck, tempCheck,
SHA::DIGESTSIZE);

//It is fater to check the digests "manually"
//rather then calling hash.VerifyDigest()
//Test is the test siganture is equal to y

for(t=0; t<SHA::DIGESTSIZE; t++)
if(y[i] [t] !=tempCheck [t])

^ return 0;

^ return 1;

class WinternitzShort

*winternitzShort.h
*Done as a part of the thesis: "Aspects of Micropayments" by Terje
*Tollisen for his Master of Science (Honours) at University of
*Wollongong.
*

#ifndef winterntitzshort_h
#define winterntitzshort_h

#include "winternitz.h"//Global constants needed form this class

#include "sha.h"

USING_NAMESPACE(CryptoPP)

class WinternitzShort
{

public:
//Makes a signature object with the x and y values.
WinternitzShort();
-WinternitzShort() ;
//Makes a signature object, and creates a signature on

//the message messDigest
WinternitzShort(byte messDigest[], short unsigned int

messDigestLen);

//Assigns a message to a defined WinternitzShort object
b o o l update(byte messDigest[], short unsigned int

messDigestLen);
//Returns the length of the x and y matrices
short unsigned getxyLen()(return xyLen;}
//Returns the object's public y matrix
void getY(byte ** yTemp);
//Returns the public parts of the signature
b o o l getSignature(byte **sign, byte **yTemp);
//Tests if the given siganture is valid on

//the object's message
short verifySignature(byte ** testSign);
//Tests if the given siganture is valid on

//the object's message
short verifySignature(byte ** testSign, byte ** testY)/
//Tests if the given siganture is valid on

//given message
short verifySignature(byte messDigest[], byte **

testSign,
byte ** testY);

private:
void computeSubVal(byte m[]);
v o i d splitByte(const byte val, byte * splitArray);
v o i d makeCheckSum();
void produceX(byte ** xTemp);

#endif

void produceY(byte ** yTemp);
//To avoid making the x matrix several times
void produceY(byte ** yTemp, byte ** x)/
//Makes the signature
bool produceSignature(byte ** signTemp);
//To avoid making the x matrix several times
bool produceSignature(byte ** signTemp, byte ** x);

long seed;//Secret seed that the x-matrix is based on
short unsigned int xyLen;
byte *subVal;

/** *winternitzShort.cpp
*Done as a part of the thesis: "Aspects of Mierepayments" by Terje
*Tollisen for his Master of Science (Honours) at University of
*Wollongong.

#include "winternitzshort.h"
#include <iostream.h>
#include <math.h>
#include <time.h>
#include "osrng.h"

Winternitzshort::WinternitzShort() {
AutoSeededRandomPool rng;
seed=rng.GetLong0;
xyLen= (digestLen+checkLen) *elementPerByte;
subVal=NULL/

}
Winternitzshort::-WinternitzShort() {

if(subVal!=NULL)
delete [] subVal;

}
//messDigest is assumed to be a SHA digest
Winternitzshort::Winternitzshort(byte messDigest[] , short unsigned
messDigestLen)

//Make the random seed
AutoSeededRandomPool rng;
seed=rng.GetLong();

xyLen= (digestLen+checkLen) *elementPerByte;
//Long enough to hold the digest plus checksum
subVal = new byte [xyLen];
//Computes the sub values in the digest.

computeSubVal(messDigest); makeCheckSum();

////////////tMnctions////////////////////

//Makes the sub elements in subVal. See Witnernitz
//descriptions in Chapter 4 for details
void WinternitzShort::computeSubVal(byte m[]) {

short unsigned n = pow(2,elementLen);
short unsigned subLen=(digestLen+checkLen)*elementPerByte/
short unsigned i;//loop counter
if(elementPerByte==l)

for(i=0; i<SHA:iDIGESTSIZE; i++)
subVal[i]=m[i];

else
for(i=0; i<SHA::DIGESTSIZE; i++)

splitByte(m[i],
ScSubVal [i*elementPerByte]) ;//2==elementPerByte
}

//Creates the check sum for the siganture. See Chapter 4 for details
//This check sum will be appended to subVal
void WinternitzShort::makeCheckSum() {

//Find the value of the check sum that will
//be appended to subVal
short unsigned c=0;//the integer value of the checksum
short unsigned int i=0;//counter
short unsigned cLen=checkLen;
//The binary reprensentation of the check sum c
byte * cVal = new byte[checkLen];
int n=pow(2,elementLen);
//Compute the check sum
for(i=0; i<xyLen-(checkLen*elementPerByte); i++)

c+=(n-subVal[i]);
for(i=0; i<cLen/ i++)

cVal[i]=0;

//casts the integer check sum, c, into a byte array, cVal.
cVal= (byte*) 6cC;
int tempVal = xyLen-checkLen*elementPerByte;
short unsigned int k=cLen-l;//Last index of cVal
if(elementPerByte==l)//cVal can be copied straight into subVal

//Put cVal into the last indexes of subVal
for(int j= tempVal; j<xyLen; j++)

subVal[j]=cVal[k--];
else//bytes the check sum must split like the elements in

//Put cVal into the last indexes of subVal
for(int j= tempVal; j<xyLen; j+=2)

splitByte (cVal [k--] , ScSubVal [j]) ;
}

//Splits a byte into an array of bytes, padding the high
//order bits with 0
void WinternitzShort:rsplitByte(const byte val, byte * splitArray)

//The mask starts out with one 1, and seven O's: mask=1000000
byte mask = 12 8;

//Once for each element in splitArray
for(short unsigned int i=0; i<elementPerByte; i++)

splitArray[i]=0;
for(short unsigned int j=0/ j<elementLen; j++)

splitArray[i]<<=1;
if(val & mask)//Push 1, else push 0

splitArray[i]=splitArray[i]|l;
mask>>=l; } } }

//Generates a matrix of ramdom numbers. These are the
//secret x values.Each x is set to the same length as a SHA digest.
void WinternitzShort:rproduceX(byte ** xTemp) {

//Make the x values form the private seed
RandomPool randPool;
randPool.Put((byte*) ficseed, sizeof(seed))/

for(short unsigned int j=0; j<xyLen; j++)
randPool.GenerateBlock(xTemp[j], SHA::DIGESTSIZE);

//Generates the public y matrix and puts it in the argument yTemp
//Each y is a SHA digest of the corresponding x.
void WinternitzShort:rproduceY(byte ** yTemp) {

short unsigned int i, j///loop counters
short unsigned int n=pow(2,elementLen)/
SHA hash;

//Need to reproduce the x matrix
byte **x = new byte *[xyLen];
ford = 0; i < xyLen; i++)

x[i] = new byte[SHA::DIGESTSIZE];
produceX(x);
//make the y matrix from the x matrix
for(i=0; i<xyLen; i++)
^ hash.CalculateDigest(yTemp[i] , x[i], SHA::DIGESTSIZE) ;

for(j=l; j<n; j++)
hash.CalculateDigest(yTemp[i] , yTemp[i],

SHA::DIGESTSIZE);

//Generates the public y matrix and puts it in the argument yTemp
//Each y is a SHA digest of the corresponding x.
//The y matrix is based on the x matrix given as an argument
void WinternitzShort::produceY(byte ** yTemp, byte ** x) {

short unsigned int i, j;//loop counters
short unsigned int n=pow(2,elementLen);
SHA hash;

for(i=0; i<xyLen; i++)

hash.CalculateDigest(yTemp[i], x[i], SHA::DIGESTSIZE);

for(j=l; j<n; j++)
hash.CalculateDigest(yTemp[i], yTemp[i],

SHA::DIGESTSIZE);
} }

//Creating the signature involves hashing each x[i] as many
//times as the value in subVal[i].The result is stored in the
//argument signature[i]. Returns false if the signature
//can not be made, and true otherwise
bool WinternitzShort::produceSignature(byte ** signature)

if(subVal==NULL)//There is no message to produce a signature on
return false;

short unsigned int i, j, k;//loop counters
SHA hash;
//Need to reproduce the x matrix
byte **x = new byte *[xyLen];
for(i =0; i < xyLen; i++)

x[i] = new byte[SHA::DIGESTSIZE];
produceX(x);
//Create the signature
for(i=0; i<xyLen; i++)//Once for each x (and y and subVal)

^ //The x[i] is hashed subVal[i] times and put
//into signature[i]

if(subVal[i]>0)
^ hash.CalculateDigest(signature[i], x[i],

SHA::DIGESTSIZE);
//j=0 have been done on the line above
for(j=l; j<subVal[i]; j++) hash.CalculateDigest(signature[i],

signature [i],

SHA::DIGESTSIZE);
ilse//subVal[i] can be 0 in the check sum.

for(k=0; k<SHA::DIGESTSIZE; k++)
signature [i] [k]=x[i] [k] ;

} return 1;
}

„ HIP funtion above, except the x matrix is
the produced by the funtions. This

//saves time.
//Returns false if the siganture can not be made, and true otherwise
bool WinternitzShort::produceSignature(byte ** signature, byte **x)

if(subVal==NULL)//There is no message to produce a signature on
return false;

short unsigned int i, j, k;//loop counters
SHA hash;

//Create the signature
for(i=0; i<xyLen; i++)//Once for each x (and y and subVal) {

//The x[i] is hashed subVal[i] times and put
//into signature[i]

if(subVal[i]>0) {
hash.CalculateDigest(signature[i], x[i],

SHA::DIGESTSIZE);
//j=0 have been done on the line above
for(j=l; j<subVal[i]; j++)

hash.CalculateDigest(signature[i],
signature[i],

SHA::DIGESTSIZE);
}
else//subVal[i] can be 0 in the check sum.

for(k=0; k<SHA::DIGESTSIZE; k++)
signature [i] [k]=x[i] [k] ; }

return true;
}
//////////////////Public funtions////////////////////

//Each signature object must only be used on one message.
//Update can not be called on an object that have had x produced
//already. Returns false if x has been produced before.
//Returns true otherwise.
bool WinternitzShort::update(byte messDigest[], short unsigned int
messDigestLen) {

//Security check
//Comment out if several updates must be called to

// time the operations
if(subVal!=NULL)

return false;

//Split the bytes in m into shorter elements.
//Used to find number of hashes needed for signing
xyLen=(digestLen+checkLen)*elementPerByte;

//Long enough to hold the digest plus checksum
subVal = new byte [xyLen];

//Computes the sub elements in the digest.
computeSubVal(messDigest);
makeCheckSum();
return true;

}
//Copies the public y matrix into the argument yTemp

void WinternitzShort::getY(byte ** yTemp)

^ produceY(yTemp);

//The public parts of the siganture (the y and signature matrices)
//are copied into the arguments. Returns false if the signature can
//not be made. Returns true otherwise.
bool WinternitzShort::getSignature(byte **sign, byte **yTemp) {

short unsigned i;
//Need to reproduce the x matrix
byte **x = new byte *[xyLen];
for(i = 0; i < xyLen; i++)

x[i] = new byte[SHA::DIGESTSIZE];
produceX(x);
if(produceSignature(sign, x)==false)

return false;
produceY(yTemp, x);
return true;

}
//Tests if the recieved signature is a valid one for the message
//(subVal) in ths signatureobject. Returns -1 if the signature
//can not be made, 0 if the tet fails and 1 otherwise
short WinternitzShort::verifySignature(byte **testSign)

^ if(!subVal)//There is no message to produce a signature on
return -1;

SHA hash;
unsigned short i, j;//loop counters
int n=pow(2,elementLen);
byte ** y = new byte *[xyLen];
//Need to make y
for(i =0; i < xyLen; i++)

y[i] = new byte[SHA::DIGESTSIZE];
produceY(y);

byte tempCheck[SHA:iDIGESTSIZE] ;
for(i=0; i<xyLen; i++)//Once for each hash value

^ for(j=0; j<SHA::DIGESTSIZE; j++) tempCheck[j]=testSign[i] [j] ;
//hash tempCheck until it should be the same as
//the corresponding y
for(j=subVal[i]; j<n; j++) hash CalculateDigest(tempCheck, tempCheck, SHA::DIGESTSIZE);
//It is faster to check the digest "manually"

//rather then calling hash.VerifyDigest()
for(j=0; j<SHA::DIGESTSIZE; j++)

if(y[i] [j] 1=tempCheck[j])
return 0;

} return 1;
}
//Tests if the recieved signature and y matrix form a valid signature

//for the message (subVal) in ths signatureobject. Returns -1 if the
//signature can not be made, 0 if the tet fails and 1 otherwise
short WinternitzShort::verifySignature(byte **testSign, byte **y)

if(!subVal)//There is no messge to produce a signature on
return -1;

unsigned short i, j;//loop counters
int n=pow(2,elementLen);
SHA hash;
byte tempCheck[SHA::DIGESTSIZE];

for(i=0; i<xyLen; i++)//Once for each hash value {
for(j=0; j<SHA:iDIGESTSIZE; j++)

tempCheck[j]=testSign[i][j];
for(j=subVal[i]; j<n; j++)

hash.CalculateDigest(tempCheck, tempCheck,
SHA::DIGESTSIZE);

//It is faster to check the digest "manually" rather then
//calling hash.VerifyDigest()
for(j=0; j<SHA::DIGESTSIZE; j++)

if(y[i][j]!=tempCheck[j])
return 0; }

return 1;
}
//Tests if the received signature and y matrix form a valid signature
//for the received message. Used on an empty WinternitzShort object
//made by the default constructor
short WinternitzShort::verifySignature(byte messDigest[], byte
**testSign, byte **y)

short unsigned subLen=(digestLen+checkLen)*elementPerByte;
subVal = new byte [subLen];
//Make the subVal matrix based on the messDigest
computeSubVal(messDigest);
makeCheckSum();
unsigned short i, j;//loop counters
int n=pow(2,elementLen);
SHA hash;
byte tempCheck[SHA::DIGESTSIZE] ;

for(i=0; i<xyLen; i++)//Once for each hash value

^ for(j=0; j<SHA::DIGESTSIZE; j++) tempCheck[j]=testSign[i][j];
for(j=subVal[i]; j<n; j++)

hash CalculateDigest(tempCheck, tempCheck,
SHA::DIGESTSIZE);

//It is faster to check the digest "manually" rather
//then calling hash.VerifyDigest()

for(j=0; j<SHA::DIGESTSIZE; j++)
if(y[i] [j] !=tempCheck [j])

return 0;

^ return 1;

class Node

*node.h
*Done as a part of the thesis: "Aspects of Micropayments" by Terje
*Tollisen for his Master of Science (Honours) at University of
*Wollongong.
* /

#ifndef node_h
#define node_h

#include "winternitz.h"
#include "cryptlib.h"

class Tree;
class Node {

friend Tree;
public:

Node();
Node(int depth, float face, int n, Node* child=NULL);
void setChild(Node * c);
void getld(byte ID[]);
int getDepthO {return depth;}
float getFace0{return face;}
int getChainLenO{return chainLen;}
int getlndexO {return index;}
bool getChildSignature(byte **sign, byte **yTemp)

{return wChild.getSignature(sign, yTemp);}
void getChainRoot(byte cr []);
int getLink(byte link[]);
int getLinkNext(byte link[]);

private:
void getChainEnd(byte cr[]);
Node * getChildO;
void computeld();
void generateChain();

chain

hash chain

int depth;//Depth in the tree , ̂ v,
float face;//Face value of each link in the local hash
byte chainRoot[SHA:rDIGESTSIZE];//The root of the local

byte chainEnd[SHA::DIGESTSIZE];
byte id[SHA::DIGESTSIZE];

int chainLen;//Length of the local hash chain
int index///Current index of the local hash chain
Winternitz wChild;//Signature object for the child node
Node * child;//Points to the child node

#endif

/*** *node.cpp
*Done as a part of the thesis: "Aspects of Micropayments" by Terje
*Tollisen for his Master of Science (Honours) at University of
*Wollongong.
* /

include "node.h"
#include <iostream.h>
#include "osrng.h"

////////////Constructors//////////////////////

Node::Node(int d, float f, int n, Node* c) {
depth=d;
face=f/
chainLen=n;
index=0;
child=c;

//Makes the local hash chain. Gives root and chainEnd values
generateChain();
computeld(); }

////////////Private functions//////////////////////

void Node::computeld()

byte ** childY=new byte * [wChild.getxyLen()];
for(int i=0; i<wChild.getxyLen(); i++)

childY[i] = new byte[SHA::DIGESTSIZE] ;
//Get the public y values of the signature on the child
wChild.getY(childY);

SHA hash;//A SHA object that will be used for hashing
//Will hold temporary hash values
byte childTempiSHA:iDIGESTSIZE];
byte chainTemp[SHA::DIGESTSIZE] ;
byte faceTemp[SHA::DIGESTSIZE] ;

int j=0;
//Put all the public y values into the childTemp array

//and make a digest (into the same array)
for(j=0; j<wChild.getxyLen(); j++)

hash.Update(childY[j], SHA::DIGESTSIZE);
hash.Final(ChiIdTemp);

//The face value must be part of the id
hash.Update(chainRoot, SHA::DIGESTSIZE);
hash.Final(chainTemp);

//The face value must be part of the id
hash.Update((unsigned char*)¿face, sizeof(float)
hash.Final(faceTemp);

//Make a new digest out of the temporary ones
//This new digest is the node id.
hash.Update(ChiIdTemp, SHA::DIGESTSIZE);
hash.Update(chainTemp, SHA::DIGESTSIZE);
hash.Update(faceTemp, SHA::DIGESTSIZE);

hash.Final(id);

}
void Node::setChild(Node * c) {

child=c/
byte childId[SHA::DIGESTSIZE];
c->getld(childld);
wChild.update(childid, SHA::DIGESTSIZE);

}
void Node::generateChain() {

//Make the random end of the hash chain
AutoSeededRandomPool rng;
rng.GenerateBlock(chainEnd, SHA::DIGESTSIZE) ;.
SHA hash;

//The root is at least on hash "away" form the end
hash.CalculateDigest(chainRoot, chainEnd, SHA::DIGESTSIZE);
//Produce the rest of the links in the hash chain,

//ending up with root for(int j=l; j<chainLen-l; j++)
hash.CalculateDigest(chainRoot, chainRoot,

SHA::DIGESTSIZE);

void Node::getChainEnd(byte ce[])

for(short unsigned int i=0; i<SHA::DIGESTSIZE; i++:
ce[i]=chainEnd[i];

Node * Node::getChild()

return child;

/ / / / f u n c t i o n s / / / / / / / / / / / / / / / / / / / I I I

void Node::getld(byte ID[])

for(short unsigned int i=0; i<SHA::DIGESTSIZE; i++)
ID[i]=id[i] ; }

void Node:rgetChainRoot(byte cr[]) {
for(short unsigned int i=0; i<SHA::DIGESTSIZE; i++)

cr[i]=chainRoot[i]; }

int Node::getLink(byte link[]) {
if(index==chainLen)//end of chain

return -1;

for(short unsigned int k=0; k<SHA::DIGESTSIZE/ k++)
link[k]=chainEnd[k];

for(int j=l; j<chainLen-index; j++)
SHAO .CalculateDigest(link, link, SHA::DIGESTSIZE);

}
return index;

int Node::getLinkNext(byte link[]) {
if(index==chainLen)//end of chain

return -1;

for(short unsigned int k=0; k<SHA::DIGESTSIZE; k++)
link[k]=chainEnd[k] ;

for(int j=l; j<chainLen-index; j++)
SHAO .CalculateDigest(link, link, SHA::DIGESTSIZE);

return index++;//Return the current index of this link, then
advance the index }

class Tree

»Don^L a part of the thesis: "Aspects of Micropayn^ents" by Terje
.Tollisen for his Master of Science (Honours) at University of

#ifndef tree_h
#define tree_h

#include "node.h"

class Tree {
public:

Tree();
void insertNode(float face, int n);//, Node* c=NULL);
int getDepth0{return endPtr->getDepth();}
void getRootId(byte ID[]){rootPtr->getId(ID);}
bool up();
bool down();
void start 0;
void end();
int getSignatureSize0

{return currentPtr->wChild.getxyLen();}

float getCurrentFace0{return currentPtr->getFace();}
int getCurrentDepthO{return currentPtr->getDepth();}
int getCurrentChainLenO{return currentPtr-

>getChainLen()/}
int getCurrentlndexO{return currentPtr->getlndex();}
void getCurrentId(byte ID[]){currentPtr->getId(ID);}
void getCurrentChainRoot(byte cr[])

{currentPtr->getChainRoot(cr);}
int getCurrentLink(byte link[])

{return currentPtr->getLink(link);}
int getCurrentLinkNext(byte link[])

{return currentPtr->getLinkNext(link);}
bool getCurrentSignature(byte **sign, byte **yTemp)

{return currentPtr->getChildSignature(sign, yTemp);}
bool getCurrentY(byte **yTemp)

{return currentPtr->wChild.getY(yTemp);}
bool currentEmpty()

{return currentPtr->index==currentPtr->chainLen;}

private :
Node * rootPtr;
Node * currentPtr;
Node * endPtr;

};
#endif

/** *tree.cpp
*Done as a part of the thesis: "Aspects of Micropayments" by Terje
*Tollisen for his Master of Science (Honours) at University of
*Wollongong.
* /

#include "tree.h"
//#include <iostream.h>

Tree ::Tree() {
rootPtr=NULL;
current Pt r=NULL;
endPtr=NULL/

}
void Tree::insertNode(float face, int n)

if(rootPtr==NULL)
{

rootPtr=new Node(0, face, n) ;
currentPtr=rootPtr ;
endPtr=rootPtr;

}
else
{

}

Node * temp=new Node(endPtr->getDepth()+1, face, n)/
endPtr->setChild(temp);
currentPtr=temp ;
endPtr=temp/

}
bool Tree : : up()
{

if(currentPtr==rootPtr)
return false;

else
{

Node * temp=rootPtr;
while(temp->getChild()!=currentPtr;

temp=temp->getChild() ;
currentPtr=temp;
return true;

}
bool Tree : : down()
{

if(currentPtr==endPtr)
return false;

else
{

}

currentPtr=currentPtr->getChild();

return true;

void Tree::start 0

currentPtr=rootPtr;

void Tree : : end()

currentPtr=endPtr;

Test program
* / * * * * * * * * * * * * * * •

* D o n ^ 2 ^ a part of the thesis: "Aspects of Micropayments" by Terje

*Tollisen for his Master of Science (Honours) at University of

#include "config.h"
#include "cryptlib.h"
#include "osrng.h"
#include <iostream.h>
#include <iomanip.h>
#include "winternitz.h"
#include "winternitzshort.h"
#include "node.h"
#include "tree.h"
#include <math.h>
#include <time.h>
#include "pch.h"
#include "sha.h"
#include "mdS.h"
#include "dsa.h"
#include "rsa.h"
#include "hex.h"
#include "files.h"

USING_NAMESPACE(CryptoPP)
short unsigned int iy[AX_PHRASE_LENGTH=2 50 ;

void help();
void treeTestO;
void manualTreeTest();
void nodeTiming(int max, int inc, int len);
void printTree(Tree t);
bool verifyLink(byte root[] , byte link[], int i);
bool verifyChild(byte **sign, byte **y, byte*childID);
bool verifyChild(byte **sign, byte **y, byte**childY,
byte*childChainRoot, float face, int signLen);
void hashChainTiming(int max, int inc);
void randomTiming(int max, int inc) ;
void winternitzTest();
void winternitzTiming(int max, int inc);
void winternitzShortTest0;
void winternitzShortTiming(int max, int inc)/
void makeKeys();
void signingTest(int max, int inc);

int main(int argc, char* argv[])

int max=0, inc=0, len=0;
char command[10];

if(argc==l)
^ cout<<endl<<"Enter a command option (h for help):";

cin>>command;
if(strcmp(command, "h")==0) {

helpO ;
cout<<endl;
return 0;

)) else {
strcpy((char*)command,argv[1]);
if(argc>2)

m a x = a t o i (a r g v [2]) ;
if(argc>3)

inc = a t o i (a r g v [3]) ;
if(argc>4)

l e n = a t o i (a r g v [4]) ;
if(inc<=0)

i n c = m a x ;

}
i f (s t r c m p (c o m m a n d , "h")==0)

{
h e l p () ;

c o u t < < e n d l ;

r e t u r n 0;
}

i f (s t r c m p (c o m m a n d , "tt")==0)
{

t r e e T e s t () ;
c o u t < < e n d l ;
r e t u r n 0;

}
i f (s t r c m p (c o m m a n d , "mtt")==0)
{

m a n u a l T r e e T e s t () ;
c o u t < < e n d l ;
r e t u r n 0;

)
i f (s t r c m p (c o m m a n d , "wt")==0)
{

w i n t e r n i t z T e s t () ;

cout<<endl/

r e t u r n 0;

}
i f (s t r c m p (c o m m a n d , "wst")==0)
{

w i n t e r n i t z S h o r t T e s t () ;

c o u t < < e n d l ;

r e t u r n 0;

)
i f (s t r c m p (c o m m a n d , "mk")==0)
{

m a k e K e y s () ;
c o u t < < e n d l ;
r e t u r n 0;

}
i f (a r g c = = l)

c o u t < < " M a x n u b m e r of iterations:

c i n > > m a x ;

c o u t < < " S i z e of increments:

c i n > > i n c ;

}

i f (s t r c m p (c o m m a n d , "nt")==0)

^ if(len==0)

^ c o u t < < " L e n g t h of h a s h chain:

cin>>len;

}

nodeTiming(max, inc, len);
cout<<endl;
return 0;

f(strcmp(command, "hct")==0)

hashChainTiming(max, inc);
cout<<endl;
return 0;

f(strcmp(command, "rt")==0)

randomTiming(max, inc);
cout<<endl;
return 0;

f(strcmp(command, "wti")==0)

winternitzTiming(max, inc);
cout<<endl;
return 0;

if(strcmp(command, "wsti")==0)

winternitzShortTiming(max, inc);
cout<<endl;
return 0;

if(strcmp(command, "st")==0)

signingTest(max, inc);
cout<<endl;
return 0;

}
cout<<endl; return 0;

void helpO {
c o u t « e n d l « " P r o g r a m takes 1. 2 or 3 arguments."

« e n d l « " F i r s t argument is a letter code for which
<<operation \n\tto perform:" _
<<endl<<"-tt:\tPerform a test on a signature chain as
<<"described \n\tin Chapter 5."
<<endl<<"-mtt:\tPerform a manual test on a signature
<<"chain as \n\tdescribed in Chapter 5."
« e n d l « " + n t : \ t T e s t the time it takes to make a node
«"with a given \n\tnumber size hash chain."
<<endl«"+hct:\tTest the time it takes to make and verify

aiven \n\tnumber of hashes." . . .
<<end?<<"+rt:\tTest the time it takes to initialise a "
«"random \n\tnumber and do pseudo ramdom operations •
<<enS<<"-wt:\tPerform tests on the implementation of the

it takes to do operations

on "

the "

RSA(1024) "

<<"\n\tthe Winternitz class."

<<endl<<"-wst:\tPerform tests on the implementation of

<<"\n\tWinternitzShort class." <<endl<<"+wsti:\tTest the time it takes to do operations

<<"on \n\tthe WinternitzShort class."
<<endl<<"+mk:\tTest the time it takes to make an

<<"and \n\ta DSA(1024) key pair."
<<endl<<"+st:\tTest the time it takes to do a given

number "

chain

<<"of \n\tRSA and DSA operations.";
cout<<endl<<endl<<"The commands marked with a - takes only one

<<"\nargument (the command option)"

<<endl<<"The commands marked with a + can take one or two

<<"more options:"

<<endl<<"l) m a x nubmer of iterations"
<<endl<<"2) size of increment";

cout<<endl<<endl<<"The arguments \"htc 10000\" w i l l casue the "
<<"program to \ndo tests on 10000 hash chain operatios"
<<endl<<"The arguments \"htc 10000 5000\" w i l l casue the
<<"program to \ndo tests on 5000 and then 10000 hash

II

<<"operatios"
<<endl<<"And so on.";

void t r e e T e s t O
{

Tree tree;
tree.insertNode((float)1.1, 2)
tree.insertNode((float)2.2, 4)
tree.insertNode((float)3.3, 6)
tree.insertNode((float)4.4, 8)

b o o l test=true;

int signSize=tree.getSignatureSize();
int i;

byte testId[SHA::DIGESTSIZE];
byte ** testY=new byte*[signSize] ;
byte ** testSign=new byte*[signSize] ;
byte ** testChildy=new byte*[signSize] ;
byte * testChildRoot=new byte[signSize] ;
float testChildFace;

for(i=0; i<signSize; i++)

^ testY[i]=new byte[SHA::DIGESTSIZE] ;
testSign[i]=new byte[SHA::DIGESTSIZE];
testChildY[i]=new byte[SHA::DIGESTSIZE] ;

}
tree.start();
printTree(tree);

for(i=i; i<=tree.getDepth(); i++)

tree.getCurrentSignature(testSign, testY);
if(¡tree.down 0) {

cout<<endl<<"Unexpexcted end of tree";
return;

}
tree.getCurrentChainRoot{testChildRoot);
tree.getCurrentY(testChildY);
testChildFace=tree.getCurrentFace();
tree.getCurrentId(testid);
if(IverifyChild(testSign, testY, testChildY,

testChildRoot, testChildPace, signSize))
{

test=false;
cout<<endl<<"Signature on child "<<i<<" failed";

}
else

cout<<endl<<"Signature on child "<<i<<" ok";

if(IverifyChild(testSign, testY, testid)) {
test=false;
cout<<endl<<"Signature on child's id "<<i<<"

failed";

}

}
else

cout<<endl<<"Signature on child's id "<<i<<" ok";

//Make payments
cout<<endl<<endl<<"Payment tests";
byte tempLink[SHA:cDIGESTSIZE] ;
byte * chainRoot=new byte[signSize];
int index;
tree.start 0 ;
while(true)

printTree(tree) ;
while(true)

^ tree.getCurrentChainRoot(chainRoot);
index=tree.getCurrentLinkNext(tempLink);
if(index==-l)//end of chain

^ cout<<endl<<"End of chain";
break;

if(!verifyLink(ChainRoot, tempLink, index))

^ test=false;
cout<<endl<<"Link verification failed";

}
else cout<<endl<<"Link verification ok";

if(! tree.down 0) {

cout<<endl<<"End of tree";
break;

) '
printTree(tree);
if (test)

cout<<endl<<endl<<"All tests ran as expected";
else

cout<<endl<<endl<<"One or more tests did not go as
expected";

cout<<endl;

}
void manualTreeTest() {

clock_t tl, t2;
tl =clock();
Tree tree;
int length;//Length of chain to insert
float face;//Face value for the chain to insert
t2 =clock();

//Build the tree
while(true) {

tl=clock();
cout<<endl<<"Inserting new node (0 or less to exit):";
cout<<endl<<"Lenght of hash chain: ";
cin>>length;
if(length<=0)

break;
cout<<"Face value per link: ";
cin>>face;
t2=clock();
if(length>0) {

tl=clock();
tree.insertNode(face, length);
t2=clock();
cout<<"Insert node with a hash chain of

length\t"<<length<<"= "<<
(float)(t2-tl)/CLOCKS_PER_SEC
<<"\tseconds"<<endl;

} }
printTree(tree);
tree.start 0;

//Variables needed to test the tree signatures
int signSize=tree.getSignatureSize() ;
int i;

byte testId[SHA::DIGESTSIZE];
** testY=new byte* [signSize] ;

ĵ ŷ g ** testSign=new byte* [signSize] ;
byte ** testChildY=new byte*[signSize];
ĵ ŷ g * testChildRoot=new byte [signSize] ;
float testChildPace;

//Allocate memory
for(i=0; i<signSize/ i++)

testY[i]=new byte[SHA::DIGESTSIZE];
testSign[i]=new byte[SHA::DIGESTSIZE] ;
testChildY[i]=new byte[SHA::DIGESTSIZE]; }

//Test the signatures on the nodes
cout<<endl<<endl<<"Test the signatures on the nodes:";
tree.start();
while(true) {

//Get the siganture of the parent node
tree.getCurrentSignature(testSign, testY);
//Move the current point one down; to the child
if(!tree.down())

break;

//Get the three public parts of the child node
tree.getCurrentChainRoot(testChildRoot);
tree.getCurrentY(testChildY);
testChildFace=tree.getCurrentFace();

//Test the Winternitz signature on the public
//parts of the child node

if(IverifyChild(testSign, testY, testChildY,
testChildRoot, testChildPace, signSize))
cout<<endl<<"Signature on node "
<<tree.getCurrentDepth()
<<" public components failed";

else
cout<<endl<<"Signature on node "
<<tree.getCurrentDepth()

<<" public components ok";

//Test the Winternitz signature on the id number
//of the child node

tree.getCurrentId(testid);
if(¡verifyChild(testSign, testY, testid))

cout<<endl<<"Signature on node "
<<tree.getCurrentDepth0<<" id failed";

else
cout<<endl<<"Signature on node "
<<tree.getCurrentDepth0<<" id ok";

//Make payments
cout<<endl<<endl<<"Payment tests";
byte tempLink[SHA::DIGESTSIZE];_
byte * chainRoot=new byte[signSize];
int index;
while(true)

^ printTree(tree) ;
cout<<endl<<"Value of next payment: ";

cin>>face;
if(face==0)

break;
tree.start();
while(true) {

face

hash chain,

chain of

if(face == tree.getCurrentFace
ScSc ! tree. currentEmpty ()) {

}
else

index=tree.getCurrentlndex();
tree.getCurrentChainRoot(chainRoot);
tree.getCurrentLinkNext(tempLink);
if(verifyLink(chainRoot, tempLink, index))

cout<<endl<<"Link verification ok";
else

cout<<endl<<"Link verification failed";
break;

if(!tree.down()) {
cout<<endl<<"No such value found";
cout<<endl<<"To insert a new node with

value "<<face<<",";
cout<<endl<<"type length of the new

(0 to drop insert): ";
cin>>length;

if(length<=0)
break;

if (length>0) {
tl=clock();
tree.insertNode(face, length);
t2=clock();
cout<<"Insert node with a hash

length\t"<<length<<"= "
<<(float)(t2-tl)/CLOCKS_PER_SEC
<<"\tseconds"<<endl; }

break;

}
void printTree(Tree t)
{ cout<<endl<<"The tree structure:";

t.start();
while(true)
{ cout < < endl< <"Depth: "«t.getCurrentDepth()«

" Face= "<<t.getCurrentFace0<<
" Length= "<<t.getCurrentChainLen()<<
" Index= "<<t.getCurrentlndex0 ;
if (! t .downO)

break;

}
//Use public information to verify a link in a hash chain, compared
to the root of the chain
bool verifyLink(byte root[], byte link[], int i)

byte temp[SHA::DIGESTSIZE];
for(int k=0; k<SHA::DIGESTSIZE; k++)

temp[k]=link[k];

if(i>0)//link is root
for(int j=0; j<i; j++)

SHAO .CalculateDigest(temp, temp, SHA:iDIGESTSIZE);

for(int j=0; j<SHA:rDIGESTSIZE; j++)
if(root[j]!=temp[j])

return false;
return true; }

//Tests if the arguments sign and y makes a valid
//Wintetnitz signature on childID
bool verifyChild(byte **sign, byte **y, byte*childID) {

Winternitz testSign(childID, SHA::DIGESTSIZE, y);
if(!testSign.verifySignature(sign))

return false;
return true; }

//Computes the id of the child node form the arguments
//childY, childChainRoot and face. Tests if the arguments sign
//and y makes a valid Wintetnitz signature on that id
bool verifyChild(byte **sign, byte **y, byte**childY,
byte*childChainRoot, float face, int signLen) {

SHA hash;//A SHA object that will be used for hashing
//Will hold temporary hash values
byte chainTemp[SHA::DIGESTSIZE] ;
byte childTemp[SHA::DIGESTSIZE];
byte faceTemp[SHA::DIGESTSIZE];
byte id[SHA::DIGESTSIZE] ;

int j=0;

//Put all the public y values into the
//childTemp array and make a digest (intot he same array)
for(j=0; j<signLen; j++)

hash.Update(childY[j], SHA::DIGESTSIZE);
hash.Final(childTemp);

//The denomination of each link must be part of the id
hash.Update(childChainRoot, SHA::DIGESTSIZE);
hash.Final(chainTemp);
//The denomination of each link must be part of the id
hash.Update((unsigned char*)&face, sizeof(float));
hash.Final(faceTemp);

//Make a new digest out of the temporary ones. This new digest
is the node id.

hash.Update(childTemp, SHA::DIGESTSIZE);
hash.Update(chainTemp, SHA::DIGESTSIZE);
hash.Update(faceTemp, SHA::DIGESTSIZE);
hash.Final(id);

Winternitz W(id, SHA::DIGESTSIZE, y);
if(!W.verifySignature(sign))

return false;
return true;

//Times how long it takes to make a new signature node
//with a given length of the hash chain
void nodeTiming(int max, int inc, int len) {

cout<<endl<<"Node timing"<<endl;
clock_t tl, t2;
int i, j;//loop counters
tl=clock();
t2 =clock();

tl=ClOCk();
Tree tree;
t2 =clock();

for(i=inc; i<=max; i+=inc)
{ tl=clock();

for(j=0; j<i; j++)
tree.insertNode((float) 1.1, len) ;

t2=clock 0;
cout<<"Insert "<<j<<" nodes with lenght\t"
<<len<<"\tchain=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

}
//Times how long it takes to produce a hash chain with a
//given number of links
void hashChainTiming(int max, int inc)

^ cout<<endl<<"Hash chain timing"<<endl;
clock_t tl, t2;
SHA hash;
tl=clock();
byte ml[SHA: :DIGESTSIZE] ;
byte m2 [SHA::DIGESTSIZE];
AutoSeededRandomPool rng;
rng.GenerateBlock(ml, SHA::DIGESTSIZE);//Make the message
int i, j;//loop counters
t2 =clock();
for(i=inc; i<=max; i+=inc)

^ tl=clock();

for{j=0; j<i/ j++)
hash.CalculateDigest(ml, ml, SHA::DIGESTSIZE);

t2=clock()/
cout<<"Make a SHA-1 hash chain of length\t"
<<j<<"\t=\t"

^ <<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

MD5 md5; for(i=inc; i<=max; i+=inc)
tl=clock();
for(j=0; j<i/ j++)

md5 .CalculateDigest (ml, ml, SHA: .-DIGESTSIZE)/
t2=clock()/
cout<<"Make a MD5 hash chain of length\t"
<<j<<"\t=\t"

^ <<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

cout<<endl<<"Hash chain verification timing";
hash.CalculateDigest(m2, ml, SHA::DIGESTSIZE) ;
//m2 is now a digest of ml

//Test if m2 a digest of ml?
if (ihash.VerifyDigest(m2, ml, SHA::DIGESTSIZE)) {

cout<<endl<<"Hash verification failed"<<endl;
return; }

else
cout<<endl<<"Hash verification ok"<<endl;

for(i=inc; i<=max; i+=inc) {
tl=clock();
for(j=0; j<i; j++)

//Test if m2 a digest of ml?
if (!hash.VerifyDigest(m2, ml, SHA::DIGESTSIZE)) {

cout<<endl<<"Hash verification failed while
calling

}

hash.VerifyDigest(m2, ml, SHA::DIGESTSIZE)";
return;

}
t2=clock();
cout<<"Verify\t"<<j<<"\thash values with testing=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

hash.CalculateDigest(ml, ml, SHA::DIGESTSIZE);
//ml and m2 should now be equal
cout<<endl;

int k=0;
for(i=inc*10; i<=max*10; i+=inc*10)

^ tl=clock();

for(j=0; j<i; j++) {
for(k=0; k<SHA::DIGESTSIZE; k++)

if(ml [k] !=m2[k]) {
cout < < endl< <"error";
return; } }

t2=clock();
cout<<"Verify\t"<<j<<"\thash values manually=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

}
//Times how long it takes to initsialize a random number generator
//and to make a given number of pseudo random numbers
void randomTiming(int max, int inc) {

cout<<endl<<"Random number generation";
clock_t tl, t2;
tl=clock();
t2 =clock();
cout<<endl<<"Test zero time=\t"

<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

int i,j;
const short unsigned int messLen=SHA::DIGESTSIZE;
long seed;
byte mess[messLen];
AutoSeededRandomPool rng;

for(i=inc; i<=max; i+=inc) {
tl=clock 0 ;
for(j=0; j<i; j++)

AutoSeededRandomPool rng;
t2=clock 0;
cout<<"Initsialize\t"<<j
<<"\trandom number generators=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

}
for(i=inc; i<=max; i+=inc) {

tl=clock();
for(j=0; j<i; j++)

AutoSeededRandomPool rng;
seed=rng.GetLong();

} t2=clock();
cout<<"Initsialize\t"<<j
<<"\trandom number generator and get a long=\t"
«(float) (t2-tl)/CL0CKS_PER_SEC«"\tseconds"«endl;

for(i=inc; i<=max; i+=inc;

^ tl=clock();
for(j=0; j<i; j++) rng.GenerateBlock(mess, SHA::DIGESTSIZE);
t2=clock();

cout < <"Generate\t"< < j < <
"\trandom numbers of size SHASIZE=\t"
<<(float) (t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

void winternitzTest() {
int i=0/
bool test=true;

//A sub element has a values less then n.
const short unsigned int n = pow(2,elementLen);
const short unsigned int messLen=SHA: .-DIGESTSIZE;
byte mess[messLen];//The message who's digest will be signed

//Generating a random message
AutoSeededRandomPool rng;

rng.GenerateBlock(mess, SHA::DIGESTSIZE);

//Creating the digest of the message
byte m [SHA::DIGESTSIZE];//Will hold the digest of the message
SHA () .CalculateDigest(m, mess, messLen);
Winternitz Wl(m, SHA::DIGESTSIZE)/
cout<<endl<<"Wl is a Winternitz sigantue

object:Winternitz Wl(m, SHA::DIGESTSIZE)";
cout<<endl<<"Self verification on W1 should be ok"/
if(!W1.verifySignature()) {

test=false;
cout<<endl<<"Signature on W1 failed";

}
else

cout<<endl<<"Signature on W1 ok";

Winternitz W2;
cout<<endl<<"W2 is an empty Winternitz sigantue object."

<<endl<<"Calling W2.update(m, SHA::DIGESTSIZE)";
W2.update(m, SHA::DIGESTSIZE);
cout<<endl<<"Self verification on W2 should be ok";
if(!W2.verifySignature 0) {

test=false;
cout<<endl<<"Signature on W2 failed";

}
else

cout<<endl<<"Signature on W2 ok";

//Generate varables need for siganture testing
short unsigned int signLen=W2.getxyLen();
byte ** sign=new byte * [signLen];
byte *subVal=new byte [signLen];
short unsigned int subLen=W2.getxyLen();
byte **y=new byte *[signLen];;;
short testValue;
//Allocate memory
for(i=0; i<signLen; i++) {

y[i]=newbyte [SHA::DIGESTSIZE];
sign[i]=new byte [SHA:iDIGESTSIZE];

cout<<endl<<"Get the public y and sign
fromW2: W2.getSignature(sign, y)";
W2.getSignature(sign, y);

cout<<endl<<"W3 is a Winternitz testing
sigantue: Winternitz W3(m, SHA:rDIGESTSIZE, y)";
Winternitz W3(m, SHA::DIGESTSIZE, y);
cout<<endl<<"Use W3 to test the sign from W2.

Signaute test should be ok";
if(IW3.verifySignature(sign)) {

test=false;
cout<<endl<<"Signature on W3 failed"; }

else
cout<<endl<<"Signature on W3 ok";

sign [0] [0]++;
cout<<endl<<"Change a nubmer in sign, to make a miss match"

<<endl<<"Siganture on W3 should now fail";
if(!W3.verifySignature(sign))

cout<<endl<<"Signature on W3 failed"; else {
test=false;
cout<<endl<<"Signature on W3 ok"; }

cout<<endl<<"W4 is an empty Winternitz
sigantue object: Winternitz W4";
Winternitz W4;
cout<<endl<<"Calling W4.verifySignature()"

<<endl<<"This siganture does not exist,
the operation and should not be completed.";

testValue=W4.verifySignature();
if(testValue==-l)

cout<<endl<<"Signature W4 could not be completed";
else

if(testValue==0) {
test=false;
cout<<endl<<"Signature on W4 failed";

}
else

if(testValue==l) {
test=false;
cout<<endl<<"Signature on W4 ok";

}
if (test)

cout<<endl<<endl<<"All tests ran as expected";
else

cout<<endl<<endl<<"One or more tests did not
go as expected";

}

tl=clock();
for(j=0; j<i; j++)

tempW.getY(tempY);
t2=clock();
cout<<"Get (copy)\t"<<j
<<"\ty matrixes=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

Winternitz testW(m, SHA:iDIGESTSIZE, tempY);
if(!testW,verifySignature(tempSign)) {

cout<<endl<<"Test signature failed. Abnormal Abort";
return; }

//Verif the Winternitz siganture on a signature object
for(i=inc; i<=max; i+=inc) {

tl=clock();
for(j=0; j<i; j++)

testW.verifySignature(tempSign);
t2=clock();
cout<<"Verity\t"<<j
<<"\twintertnitz signatures=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

}

void winternitzShortTest()

//A sub element has a values less then n.
const short unsigned int n = pow(2,elementLen);
const short unsigned int messLen=SHA::DIGESTSIZE;
byte mess[messLen];//The message whos digest will be signed
bool test=true;

//Generating a random message
AutoSeededRandomPool rng;
rng.GenerateBlock(mess, SHA:iDIGESTSIZE);

//Creating the digest of the message
byte m [SHA::DIGESTSIZE];//Will hold the digest of the message
S H A O .CalculateDigest (m, mess, messLen) ;
WinternitzShort Wl(m, SHA::DIGESTSIZE) ;
cout<<endl<<"Wl is a WinternitzShort

object:WinternitzShort Wl(m, SHA::DIGESTSIZE) . " ;

//Generate varables need for siganture testing
short unsigned int signLen=Wl.getxyLen();
byte ** sign=new byte * [signLen];
byte *subVal=new byte [signLen];
byte **y=new byte *[signLen];
short testValue;

//Tiems how long it takes to do different actions on a
//Winternitz signature
void winternitzTiming(int max, int inc)

cout<<endl<<"Winternitz timing. lementLen=\t"<<elementLen;
clock_t tl, t2;
tl=clock();
t2 =clock()/

tl=clock();
//A sub element has a values less then n.
const short unsigned int n = pow(2,elementLen);
const short unsigned int messLen=SHA::DIGESTSIZE;
byte mess[messLen];//The message who's digest will be signed

//Generating a random message
AutoSeededRandomPool rng;
rng.GenerateBlock(mess, SHA: :DIGESTSIZE);

//Creating the digest of the message
byte m [SHA::DIGESTSIZE];
SHA().CalculateDigest(m, mess, messLen);

t2 =clock();
cout<<"Initsialize time=\t"

<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

int i,j;
//Makes an empty Winternitz siganture
for(i=inc; i<=max; i+=inc) {

tl=clock();
for(j=0; j<i; j++)

Winternitz W;
t2=clock 0;
cout<<"Make\t"<<j<<"\tempty wintertnitz signatures=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

} //Updates an empty Winternitz siganture
for(i=inc; i<=max; i+=inc) {

Winternitz W;
tl=clock 0;
for(j=0; j<i; j++)

W.update(m, SHA: :DIGESTSIZE) ;
t2=clock();
cout<<"Update\t"<<j<<"\terapty wintertnitz signatures=\t'
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

//Makes a Winternitz siganture
for(i=inc/ i<=max; i+=inc)

tl=clock();
for(j=0; j<i; j++)

Winternitz W(m, SHA::DIGESTSIZE);
t2=clock();
cout<<"Make\t"<<j
<<"\twintertnitz signatures=\t"
<< (float) (t 2 - t l) / C L 0 C K S _ P E R _ S E C « " \ t s e c o n d s " < < e n d l ;

}

//Makes a Winternitz siganture and does the self
//verification test
for(i=inc; i<=max; i+=inc)

tl=clock();
for(j=0; j<i; j++) {

Winternitz W(m, SHA: :DIGESTSIZE) ;
if(!W.verifySignature()) {

cout<<endl<<"Signature failed";
return; } }

t2=clock();
cout<<"Make/self verity\t"<<j
<<"\twintertnitz signatures=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl; }

//Create the temporary variables need to verify a
//signature
Winternitz tempW(m, SHA::DIGESTSIZE);

short unsigned int len=tempW.getxyLen();
byte ** tempSign=new byte * [len]/
byte *tempSubVal=new byte [len];
byte **tempY=new byte * [len];

for(i=0; i<len; i++) {
terapY[i]=new byte [SHA::DIGESTSIZE];
tempSign[i]=new byte [SHA::DIGESTSIZE];

)
//Gets the public parts of a Winternitz signature
tempW.getSignature(tempSign, tempY);
//Make Winternitz test-objects, used to veruty signatures.
for(i=inc; i<=max; i+=inc) {

tl=clock();
for(j=0; j<i; j++)

Winternitz testW(m, SHA::DIGESTSIZE, tempY);
t2=clock();
cout<<"Make\t"<<j<<"\twintertnitz test objects=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl; }

//Gets the public parts of a WinternitzShort signature
for(i=inc; i<=max; i+=inc) {

tl=clock();
for(j=0; j<i; j++)

tempW.getSignature(tempSign, tempY);
t2=clock 0;
cout<<"Get (copy)\t"<<j
<<"\twintertnitz signatures=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

)
//Gets the public parts of a WinternitzShort signature
for(i=inc; i<=max; i+=inc)

for(int i=0; i<signLen; i++)

y[i]=new byte [SHA::DIGESTSIZE];
^ sign[i]=new byte [SHA::DIGESTSIZE];

cout<<endl<<"Calling W1.getSignature(sign, y). Should be ok";
if(!W1.getSignature(sign, y))

test=false;
cout<<endl<<"Could not get the siganture on Wl"; }

else
cout<<endl<<"getSignature(sign, y) ok";

cout<<endl<<"Calling Wl.verifySignature(sign)."
<<endl<<"Signature on Wl should be ok";

testValue=Wl.verifySignature(sign);
if(testValue==-l) {

test=false;
cout<<endl<<"Signature verification on Wl

could not be completed"; }
else

if(testValue==0) {
test=false;
cout<<endl<<"Signature on Wl failed";

}
else

if(testValue==l)
cout<<endl<<"Signature on Wl ok";

cout<<endl;
cout<<endl<<"Calling Wl.verifySignature(sign, y)."

<<endl<<"Signature on Wl should be ok";
testValue=Wl.verifySignature(sign, y);
if(testValue==-l) {

test=false;
cout<<endl<<"Signature verification on Wl

could not be completed"; } else
if(testValue==0) {

test=false;
cout<<endl<<"Signature on Wl failed";

}
else

if(testValue==l)
cout<<endl<<"Signature on Wl ok";

cout<<endl;

WinternitzShort W2; v. • ^
cout«endl«"W2 is an empty test object. «endl«"Calling W2. verifySignature (m, sign, y) .

<<endl<<"Signature on W2 should be ok";
testValue=W2.verifySignature(m, sign, y);
if(testValue==-l)

{
test=false;
cout<<endl<<"Signature verification on W2

^ could not be completed";

else
if(testValue==0) {

test=false;
cout<<endl<<"Signature on W2 failed"; }

else
if(testValue==l)

cout<<endl<<"Signature on W2 ok";
cout<<endl;
cout<<endl<<"Changing a number in y to

produce a failed signature";
if (y[0] [0] >0)

y[0] [0] --;
else

y[0] [0]++;
cout<<endl;

cout<<endl<<"Calling W2.verifySignature(m, sign, y)."
<<endl<<"Signature on W2 should fail";

testValue=W2.verifySignature(m,sign, y);
if(testValue==-l) {

test=false;
cout<<endl<<"Signature verification on

W2 could not be completed"; }
else

else

if(testValue==0)
cout<<endl<<"Signature on W2 failed";

if(testValue==l) {
test=false;
cout<<endl<<"Signature on W2 ok";

}
cout<<endl;

WinternitzShort W3;
cout<<endl<<"W3 is an empty test object.";
cout<<endl<<"Calling W3.getSignature(sign, y).

Should not be able to get it";
if(!W3.getSignature(sign, y))

cout<<endl<<"Could not get the siganture on W3";
else {

test = false; n n. ̂ • „
cout«endl<<"Got the siganture on W3. Abnormal behavior";

}
if(test) ^

cout<<endl<<endl<<"All tests ran as expected ;
else ^ , cout<<endl<<endl<<"One or more tests did

not go as expected";
cout<<endl;

^ return;

//Times how long it takes to do different actions
//on a WinternitzShort signature
void winternitzShortTiming(int max, int inc)

cout<<endl<<"WinternitzShort timing."<<endl;
clock_t tl, t2;

tl=clock();
//A sub element has a values less then n.
const short unsigned int n = pow(2,elementLen);
const short unsigned int messLen=SHA::DIGESTSIZE;
byte mess[messLen];//The message whos digest will be signed

//Generating a random message
AutoSeededRandomPool rng;
rng.GenerateBlock(mess, SHA::DIGESTSIZE);

//Creating the digest of the message
byte m [SHA::DIGESTSIZE];
SHA().CalculateDigest(m, mess, messLen);
t2 =clock();

int i,j;//loop counters
//Makes an empty WinternitzShort siganture
for(i=inc; i<=max; i+=inc) {

tl=clock();
for(j=0; j<i; j++)

WinternitzShort W;
t2=clock 0;
cout<<"Make\t"<<j<<"\tempty wintertnitz signatures=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl; }

//Updates an empty WinternitzShort siganture
//Can normally only be done once on an empty object
for(i=inc; i<=max; i+=inc) {

WinternitzShort W;
tl=clock();
for(j=0; j<i; j++)

W.update(m, SHA::DIGESTSIZE);
t2=clock 0 ;
cout<<"Update\t"<<j
<<"\tempty wintertnitz signatures=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

}
//Makes a WinternitzShort siganture
for(i=inc; i<=max; i+=inc) {

tl=clock 0;
for(j=0; j<i; j++)

WinternitzShort W(m, SHA::DIGESTSIZE);
t2=clock();

cout<<"iyiake\t"<<j <<"\twintertnitz signature objects=\t"
^ <<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

//Create the temporary variables needed to verify a siganture
WinternitzShort tempW(m, SHA:iDIGESTSIZE);

short unsigned int len=tempW.getxyLen();
byte ** tempSign=new byte * [len];
byte *tempSubVal=new byte [len];
byte **tempY=new byte * [len];
//Allocate memory
for(i=0; i<len; i++) {

tempY[i]=new byte [SUA: iDIGESTSIZE] /
tempSign[i]=new byte [SHA::DIGESTSIZE]; }

//Gets the public parts of a WinternitzShort signature
tempW.getSignature(tempSign, tempY);

//A signature testing object
WinternitzShort testW;
short testValue=testW.verifySignature(m, tempSign, tempY);
if(testValue==-l) {

cout<<endl<<"Test signature could not be completed.
Abnormal abort";

return; }
else if(testValue==0) {

cout<<endl<<"Test signature failed. Abnormal abort";
return; }

//Verify the WinternitzShort siganture (tempSign, tempY)
//on the message m
for(i=inc; i<=max; i+=inc) {

tl = cloc]c 0 ;
for(j=0; j<i; j++)

testW.verifySignature(m, tempSign, tempY);
t2=clock();
cout < <"Verity\t"< < j
<<"\twintertnitz signatures=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

}
//Gets the public parts of a WinternitzShort signature.

//This involves producing the signature
for(i=inc; i<=max; i+=inc) {

tl=cloc]c 0 ;
for(j=0; j<i; j++)

tempW.getSignature(tempSign, tempY);
t2 = cloc]c() ;
cout<<"Get (produce)\t"<<j

<<"\twintertnitz signatures=\t"
<<(float)(t2-tl)/CLOCKS PER SEC<<"\tseconds"<<endl; } " "

//Gets the public y of a WinternitzShort signature.
//This involves producing the y martrix
for{i=inc; i<=max; i+=inc) {

tl=clock();
for(j=0; j<i; j++)

tempW.getY(tempY);
t2=clock();
cout<<"Get (produce)\t"<<j
<<"\ty matrices=\t"
<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

}

void makeKeys() {
clock_t tl, t2;
tl=clock();
unsigned int keyLength=1024;
const char *privRSAFilename="hexrsapriv.txt"/
const char *pubRSAFilename="hexrsapub.txt";
const char *privDSAFilename="hexdsapriv.txt"/
const char *pubDSAFilename="hexdsapub.txt";
const char *seed="456erty68ur";
t2=clock();
cout<<endl<<"Make keys timing"<<endl;
//Make RSA keys
tl=clock();
RandomPool randPool;
randPool.Put((byte *)seed, strlen(seed));

RSAES_OAEP_SHA_Decryptor priv(randPool, keyLength);
HexEncoder privFile(new FileSink(privRSAFilename));
priv.DEREncode(privFile);
privFile.MessageEnd();

RSAES_OAEP_SHA_Encryptor pub(priv);
HexEncoder pubFile(new FileSink(pubRSAFilename))/
pub.DEREncode(pubFile);
pubFile.MessageEndO ;
t2=clock();
cout<<"Make RSA (1024) key pair=\t"<<(float)(t2-

tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;

//Make DSA keys

tl=clock();
randPool.Put((byte *)seed, strlen(seed)) ;

DSAPrivateKey dsaPrivate(randPool,keyLength);
HexEncoder dsaPrivFile(new FileSink(privDSAFilenamej
dsaPrivate.DEREncode(dsaPrivFile)/
dsaPrivFile.MessageEnd();

GDSAVerifier<SHA> dsaPublic(dsaPrivate);
HexEncoder dsaPubFile(new FileSink(pubDSAFilename));

dsaPublic.DEREncode(dsaPubFile);
t2=clock();
cout<<"Make DSA (1024) key pair=\t"<<(float)(t2-

tl)/CLOCKS_PER_SEC<<"\tseconds"<<endl;
}

void signingTest(int max, int ine)

clock_t tl =clock();
const char *privRSAFilename="hexrsapriv. txt" ;
const char *pubRSAFilename="hexrsapub.txt";
const char *privDSAFilename="hexdsapriv.txt"/
const char *pubDSAFilename="hexdsapub.txt";
int i=0;
const char *seed="375rth5tdy";
long longseed;
const int messLen=12;
byte mess[messLen]="Hello world";
byte digest[SHA::DIGESTSIZE];
AutoSeededRandomPool rng;
longseed=rng.GetLong();
RandomPool randPool;
//(byte*)&c;
//randPool.Put ((byte *)seed, strlen(seed))/
randPool.Put((byte*)¿longseed, strlen(seed));
byte * randomMssg=new byte[SHA:rDIGESTSIZE];
randPool.GenerateBlock(randomMssg, SHA::DIGESTSIZE);

SHAO .CalculateDigest(digest, mess, messLen);

GDSASigner<SHA> dsaSigner(FileSource(privDSAFilename,
true, new HexDecoder));

GDSADigestSigner dsaDigestSigner(FileSource(privDSAFilename,
true, new HexDecoder));

GDSADigestVerifier dsaDigestVerifier(FileSource(pubDSAFileñame,
true, new HexDecoder));

RSASSA_PKCSlvl5_SHA_Signer rsaDigestSigner(FileSource
(privRSAFilename, true, new HexDecoder));

RSASSA_PKCSlvl5_SHA_Verifier rsaDigestVerifier(FileSource
(pubRSAFileñame, true, new HexDecoder));

int signDsaDigestLen=dsaSigner.SignatureLength() ;
byte * signatureDsaDigest=new byte [signDsaDigestLen];
int signRsaDigestLen=rsaDigestSigner.SignatureLength();
byte * signatureRsaDigest=new byte [signRsaDigestLen] ;

int rounds=max;
clock t t2 =clock();

tl=clock();
for(i=0; i<rounds; i++) ^

dsaDigestSigner.SignDigest(rng, digest

SHA::DIGESTSIZE, signatureDsaDigest);
t2=clock();
cout<<"dsaDigestSigner time=\t"

<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\t"<<rounds<<endl;
tl=clock();
for(i=0; i<rounds; i++)

dsaDigestVerifier.VerifyDigest(digest,
SHA::DIGESTSIZE, signatureDsaDigest);

t2=clock();
cout<<"dsaDigestVerifier time=\t"

<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\t"<<rounds<<endl;

tl=clock();
for(i=0; i<rounds; i++)

rsaDigestSigner.SignDigest(rng, digest,
SHA::DIGESTSIZE, signatureRsaDigest);

t2=clock();
cout<<"rsaDigestSigner time=\t"

<<(float)(t2-tl)/CLOCKS_PER_SEC<<"\t"<<rounds<<endl;

tl=clock();
for(i=0; i<rounds; i++)

rsaDigestVerifier.VerifyDigest(digest,
SHA::DIGESTSIZE, signatureRsaDigest);

t2=clock();
cout<<"rsaDigestVerifier time=\t"

<<(float)(t2-tl)/CLOCKS PER SEC<<"\t"<<rounds<<endl;

Betta Book Binding
M & D Morrisey 4261 2998

26 Fields Street
Kanahooka NSW 2530

	Aspects of micropayments
	Recommended Citation

	tmp.1448950517.pdf.ZUAr0

