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Abstract- In this paper, a stochastic multiobjective framework is proposed for a day-ahead short-term Hydro 

Thermal Self-Scheduling (HTSS) problem for joint energy and reserve markets. An efficient linear formulations are 

introduced in this paper to deal with the nonlinearity of original problem due to the dynamic ramp rate limits, 

prohibited operating zones, operating services of thermal plants, multi-head power discharge characteristics of hydro 

generating units and spillage of reservoirs. Besides, system uncertainties including the generating units’ 

contingencies and price uncertainty are explicitly considered in the stochastic market clearing scheme. For the 

stochastic modeling of probable multiobjective optimization scenarios, a lattice Monte Carlo simulation has been 



adopted to have a better coverage of the system uncertainty spectrum. Consequently, the resulting multiobjective 

optimization scenarios should concurrently optimize competing objective functions including GENeration 

COmpany’s (GENCO’s) profit maximization and thermal units’ emission minimization. Accordingly, the ε-

constraint method is used to solve the multiobjective optimization problem and generate the Pareto set. Then, a 

fuzzy satisfying method is employed to choose the most preferred solution among all Pareto optimal solutions. The 

performance of the presented method is verified in different case studies. The results obtained from ε-constraint 

method is compared with those reported by weighted sum method, evolutionary programming-based interactive 

Fuzzy satisfying method, differential evolution, quantum-behaved particle swarm optimization and hybrid multi-

objective cultural algorithm, verifying the superiority of the proposed approach. 

Index Terms— Stochastic Programming, Hydro-Thermal Self Scheduling, Price Uncertainty, Generating Unit 

Contingency, Multiobjective Mathematical Programming 

 

Nomenclature 

Indices 

i: Thermal unit index 

j: Hydro unit index 

t: Time interval (hour) index. For instance, p(j,t,s) is the power output of hydro unit j at hour t in the sth scenario 

(MW) 

s: Scenario index 

q: Network area index 

Constants  

k : Probability of kth price level 

πb(t): Bilateral contract price ($/MWh) 

πE: Emission Price($/lbs) 

 :   Number of periods in the planning horizon  

Ai: Shut-down cost of unit i ($) 



Aj: Start-up cost of unit j ($) 

bn(i): Slope of block n of fuel cost curve of unit i ($/MWh) 

bn(j): Slope of the volume block n of the reservoir associated to unit j (m3/s/Hm3)  

( )k

nb j : Slope of the block n of the performance curve k of unit j (MW/m3/s) 

ben(i): Slope of segment n in emission curve of unit i (lbs/MWh) 

ei ,fi : Coefficients of valve loading cost function 

Emin(i): Generated emission by off-unit while providing non-spinning reserve (lbs) 

1( ( ))u

nE p i
: Generated emission of n-1th upper limit in the emission curve of unit i (lbs) 

EGR: Emission group (SO2orNOx) 

EQUOTA: Emission quota (lbs) 

1( ( ))u

nF p i
: Generation cost of n-1th upper limit in the fuel cost curve of unit i ($/h) 

F(j,t,s): Forecasted natural water inflow of the reservoir associated to unit j (Hm3/h) 

L:   Number of performance curves 

M: Number of prohibited operating zones  

NL: Number of blocks of the piecewise linearized start-up fuel function 

NP: Number of price levels 

NS: Number of scenario after scenario reduction
 

NA: Number of areas in the network 

pb(t): Power capacity of bilateral contract (MW) 

P(s): Probability of scenario s 

Pr(s): Normalized probability of scenario s 

pmin(i), pmax(i): Minimum and Maximum power output of unit i (MW) 

( )np j : Minimum power output of unit j for performance curve n (MW) 

( )p j : Capacity of unit j (MW) 

( )d

np i : Lower limit of nth prohibited operating zone of unit i (MW) 

1( )u

np i : Upper limit of n-1th prohibited operating zone of unit i (MW) 

( )Q j , ( )Q j :Minimum and Maximum water discharge of unit j (m3/s) 



RDLn(i), RULn(i):Ramp down and Ramp up limit for block n (MW) 

SUE(i),SDE(i): Start-up and shut-down emission generated by unit i (lbs) 

SU(i),SD(i): Start-up and shut-down ramp rate limit of unit i (MW/h) 

RDL(p(i,t,s)), RUL(p(i,t,s)): Ramping down and ramping up limit of unit i (MW) 

v0(j): Minimum content of the reservoir associated to unit j (Hm3) 

( )nv j : Maximum content of the reservoir j associated to nth performance curve (Hm3) 

Variables 

( , , )n i t s : Generation of block n of fuel cost curve for unit i (MW)  

( , , )n i t s : Generation of block n of unit i for valve loading effect curve (MW)
 

πsp(t,s), πsr(t,s), and πns(t,s): Market price for energy, spinning and non-spinning reserve ($/MWh), respectively 

r
n : Individual membership function (the degree of optimality) for the nth objective function in the rth Pareto 

optimal solution 

wn: The weight factor of the nth objective function in the MMP problem 

r : Total membership function of the rth Pareto optimal solution 

B(i,t,s): Start-up cost of unit i ($) 

C(i,t,s): Valve loading effect cost of unit i ($) 

F(i,t,s): Fuel cost of unit i ($) 

EP: Main objective function (expected profit of GENCO) 

EA: GENCO’s total expected profit in dollars after arbitrage 

EE: Expected generated emission for each Pareto optimal solution (lbs) 

Nd(i,t,s),Nu(i,t,s): Non-spinning reserve of thermal unit i in the spot market when unit is off and on, respectively 

(MW) 

Nd(j,t,s), Nu(j,t,s): Non-spinning reserve of a hydro unit j in the spot market when unit is off and on, respectively 

(MW) 

p(i,t,s): Power output of thermal unit i (MW) 

( , , )p i t s : Maximum power output of unit i (MW) 

p(j,t,s): Power output of hydro unit j (MW) 



psp(t,s): Power for bid on the spot market (MW) 

PROFIT(s): Profit of scenario s 

qn(j,t,s): Water discharge of hydro unit j and block n (m3/s) 

R(i,t,s), R(j,t,s):Spinning reserve of a thermal unit i and hydro unit j in the spot market (MW), respectively 

v(j,t,s): Water content of the reservoir associated with unit j (Hm3) 

Binary variables 

I(i,t,s)=1 if thermal unit i is on  

I(j,t,s) =1 if hydro unit j is on 

Id(i,t,s) =1 if unit i provide non-spinning reserve when unit is off. 

( , , )n i t s =1 if block n of fuel cost curve of unit i is selected 

( , , )n j t s =1 if volume of reservoir water is greater than ( )nv j  

( , , )n i t s =1 if power output of unit i has exceeded block n of valve loading effect curve 

, ,

P

k t sW : Obtained from the roulette wheel mechanism in the scenario generation stage indicating whether kth price 

level in the sth scenario occurred ( , ,

P

k t sw =1) or not ( , ,

P

k t sw =0) 

Wi,t,s, Wj,t,s: Status of the ith thermal and jth hydro unit obtained from LMCS in the scenario generation stage (forced 

outage state, i.e. W=0 or available, i.e. W=1). 

y(i,t,s) =1 if thermal unit i is started-up  

y(j,t,s) =1 if hydro unit j is started-up  

z(i,t,s) =1 if unit i is shut-down  

Sets 

I: Thermal units 

J: Hydro units 

N: Set of indices of blocks of piecewise linearized hydro unit performance curve 

NE: The blocks of piecewise linearized thermal unit emission curve  

T: The periods of market time horizon T ={1, 2, …, NT} 

S:   Scenario 

 



I. Introduction 

For several years Unit Commitment (UC) has been used to determine the optimal scheduling of power producers 

for different horizons (daily, weekly and etc.). The Independent System Operator (ISO) implements Security-

Constrained Unit Commitment (SCUC) problem that its objective function is minimization of cost while considering 

system security and meeting system load. GENeration COmpanies (GENCOs) uses Price-Based Unit Commitment 

(PBUC) to maximize their profit but they are not concerning about providing the system load [1]. The UC and 

PBUC are respectively termed as the Hydro-Thermal Scheduling (HTS) and Hydro-Thermal Self Scheduling 

(HTSS) [2] for the system with the hydro and thermal units. Different solution methods of the HTSS problem are 

comprehensively classified into heuristic and analytical methods in [3]. In [4], a novel mixed-integer nonlinear 

approach is proposed to solve the short-term hydro scheduling problem in the day-ahead electricity market, 

considering not only head-dependency, but also start/stop of units, discontinuous operating regions and discharge 

ramping constraints. 

 In [5], a stochastic programming formulation is proposed for trading wind energy in a market environment under 

uncertainty of energy market prices as well as the volatile and intermittent nature of wind energy. Optimal hydro 

scheduling for the short-term time horizon is proposed in [6] wherein a mixed-integer nonlinear programming 

framework including the head effect on power production, start-up costs of units, multiple operating regions, and 

discharge variation constraints is considered. Also in [6], as new contributions to the field, the market price 

uncertainty is introduced in the model via price scenarios. Also, the risk management is included in [6] using 

Conditional Value-at-Risk (CVR) to limit profit volatility. In [7], Monte Carlo Simulation (MCS) method is 

implemented to generate random hourly prices for energy, ancillary services, and fuel in the stochastic PBUC 

framework. A stochastic midterm risk-constrained hydrothermal scheduling algorithm is proposed for profit 

maximization of GENCOs in [8]. In [9-10], the stochastic SCUC is implemented for the electricity market clearing 

problem while reserve services are determined based on the expected-load-not-served. Two methodologies are 

suggested to reduce computational burden of the stochastic UC in [11]. The stochastic nature of the electricity price 

is modeled in a multi-stage stochastic framework for thermal units’ self-scheduling in [12]. Ref [13] used a 

deterministic MIP approach for solving the HTSS problem of generating units. Also, [14] presents a mixed- 

integer stochastic framework for a hydro-wind power system scheduling. Ref. [15] presents the techno-

economic factor for distributed generation units based on the effect of their generation on the network 



losses. The MCS method is used for the outages of generating units and transmission lines together with the load 

forecasting inaccuracies in the SCUC problem in [16]. A stochastic self-scheduling for thermal units based on the 

ARIMA model is utilized in [17]. In [18], an interval-fuzzy two-stage stochastic programming method is developed 

for the carbon dioxide (CO2) emission trading under uncertainty. It is worth to mention that, in the above-mentioned 

papers, the valve loading effect and dynamic ramp rate are not taken into account. On the other hand, to the best of 

our knowledge, no research work in the area considers a stochastic multiobjective multiperiod framework for the 

HTSS problem. In other words, the uncertainty sources (generating unit contingencies and price forecast 

uncertainty) have been taken into account in this work. Accordingly, the main contribution of this paper is to present 

a multiperiod stochastic multiobjective framework for the short term HTSS. In the proposed model, the expected 

profit is maximized based on the MIP optimization formulation while at the same time the expected emission is 

minimized in the form of multiobjective stochastic problem. Furthermore, the price uncertainty is considered using 

the Probability Distribution Function (PDF) of price forecast error. Concurrently, the roulette wheel mechanism is 

implemented to generate the price of energy and spinning/non-spinning reserve for each hour and Lattice Monte 

Carlo simulation (LMCS) method is applied to consider Forced Outage Rate (FOR) of units. For the sake of 

accuracy, more practical constraints of thermal and hydro units are taken into account. In [19-21], the valve loading 

effect cost is modeled in the form of a nonlinear sinusoidal function which is linearized in our framework. Based on 

the work [22], different dynamic ramp rate is also proposed in the HTSS framework. Finally, a general formulation 

is recommended for the multi-performance curve of hydro units based on [23]. Different solution methods for the 

optimization problem can be found in [24-27]. Accordingly, the proposed HTSS includes a linear formulation for 

valve loading effect, fuel cost, emission function, fuel constraint, and multi-performance power-discharge curves of 

hydro units as well as units’ minimum up/down time. A GENCO can use the proposed methodology in their day-

ahead scheduling to find the optimal decision for the UC for the next day. The new contributions of this paper with 

respect to the previous works can be briefly summarized as follows: 

a) A new multiobjective model for the HTSS is proposed considering emissions in addition to cost function using 

linearized formulations. A new approach incorporating the lexicographic optimization and ε-constraint method is 

proposed to solve the multiobjective problem.  



b) Different operating constraints of thermal and hydro units have been included in the proposed formulations. Also, 

all the nonlinear terms of the HTSS formulations have been converted to linear forms using mixed integer 

techniques and piece-wise linearization. 

c) The generating units’ contingencies and price uncertainty are explicitly considered in the stochastic programming 

of the HTSS problem using the roulette wheel mechanism and Lattice Monte-Carlo Simulation (LMCS).  

d) Some discussions regarding emission trade, as a new paradigm in new era of power system operation, have been 

presented in the paper. 

The remainder of this paper is organized as follows: In section II, the proposed stochastic modeling of HTSS 

problem is formulated concerning system's uncertainties. In section III, the MIP formulation for the stochastic 

multiobjective HTSS has been presented. Solution approach of the multiobjective optimization problem is discussed 

in section IV. In the next section, the IEEE 118-bus test system is studied to demonstrate effectiveness of the 

proposed scheme. Some relevant conclusions are drawn in the section VI. 

 

II. Stochastic Modeling of Uncertainties 

There are some uncertain factors like market price and outages of generating units that affect the profit of 

the GENCO. However, several methods exist to characterize the uncertainty of the problem due to market 

price and outages of generating units, among which Monte-Carlo Simulation (MCS), time series 

technique, input/output hidden Markov model and Generalized Auto-Regressive Conditional 

Heteroskedasticity (GARCH) model are the well-known ones. However, this paper uses the Lattice 

Monte-Carlo Simulation (LMCS) method to consider the outages of generating units as well as the price 

uncertainty based on the price forecast error. Lattice rule is an algorithm to generate low-discrepancy 

procedures leading to better results than ordinary MCS method [16]. An n-point lattice rule of rank-r in d-

dimension is defined as follows [16]:  

1

. mod 1 0,1,..., 1 1,...,
r

l
l l l

l l

k
v k n l r

n

    (1) 

where, 
1 2, ,...and rv v v are randomly generated and linearly independent d-vector of integers. The dimension 

d indicates the number of random values required to generate each scenario and nl represents the 



variation range of kl in rank l (l= 1,2, …, r). The points generated by the rank-1 lattice rule and ordinary MCS are 

shown in Fig. 1(A) and 1(B), respectively. The points generated by the LMCS have a much more uniform 

distribution and better covers the space of the figure. Therefore, the LMCS is implemented based on the Forced 

Outage Rate (FOR) of units to model generating units’ uncertainties. Fig. 2 shows a typical continuous distribution 

function of the price forecast error along with its discretization. Here, seven intervals are centered on the zero mean 

and each of the intervals is one price forecast error standard deviation (σ) wide, as done in [28]. On the basis of 

different price forecast levels and their obtained probabilities from the PDF, roulette wheel mechanism [29-30] is 

implemented to generate price scenarios for each hour. For this purpose, at first, the probabilities of different price 

forecast levels are normalized such that their summation becomes equal to unity. Then the range of [0, 1] is 

accumulated by the normalized probabilities as shown in Fig. 3. After that, random numbers are generated between 

[0, 1]. Each random number falls in the normalized probability range of a price forecast level in the roulette wheel. 

That price forecast level is selected by the roulette wheel mechanism for each hour of a scenario. 

Scenario reduction techniques can be ultimately employed to reduce the number of scenarios while maintaining a 

good approximation of the system uncertain behavior. In this paper, the basic idea of the scenario reduction is to 

eliminate a scenario with very low probability and scenarios that are very similar [28-29]. Accordingly, the 

scenarios with higher probabilities as well as dissimilar ones should be extracted (NS scenarios) to be implemented 

in the stochastic multiobjective HTSS problem. The probability of each generated scenario can be calculated as 

follows: 

 , , , , , , , , , ,

1

P( ) . (1 ( )) (1 ) ( ) (1 ( )) (1 ) ( )
NP

P

k t s k i t s i t s j t s j t s

kt T i I j J

s W W FOR i W FOR i W FOR j W FOR j
  

    
          

    
    (2) 

where, , ,

1

1
NL

P

k t s

k

W


 . 

The binary parameters , ,

P

k t sW , are determined by the roulette wheel mechanism and Wi,t,s and Wj,t,sare specified by the 

LMCS for each hour of each scenario. Subsequently, the normalized probability of scenarios can be calculated as 

follows: 

1

P( )
Pr( )

P( )
NS

s

s
s

s





 (3) 

The flowchart of the proposed scenario-based stochastic modeling of uncertainties is illustrated in Fig. 4. 



The idea of the stochastic programming of the HTSS problem is to construct or sample possible options for 

uncertain circumstances, solve the deterministic optimization problem for the possible options, and select a good 

combination of the outcomes to represent the stochastic solution. So, in the proposed stochastic HTSS structure, the 

expected value is considered, which is the aggregation approach adopted in many stochastic frameworks such as 

[16]. It is noted that theoretically deviation from the minimum limits constraints, such as (18) of the paper, might 

occur in the aggregated solution obtained by the expected value operator. For a better illustration of this matter, 

simply consider two scenarios with the equal probability wherein a unit is assigned ON and OFF states in these two, 

respectively. Aggregated value of the generation output of this unit obtained by the expected value operator is half 

of its generation in the ON scenario, which may deviate from its minimum limit. On the other hand, deviation from 

the maximum limit constraints, such as (18) of the paper, cannot be occurred in the expected value based scenario 

aggregation result, since each scenario result separately satisfy the maximum limit constraints and so a weighted 

average of the scenario results cannot deviate from these constraints. At the same time, we observed no deviation 

from the minimum limit constraints in our all experimental results, since our remained scenarios after scenario 

reduction do not have much diversity (the low probability scenarios are removed by the scenario reduction 

technique). So, deviation from the minimum limit constraints by the expected values is not observed in our results. 

However, if in a test case, deviation from these constraints is likely to be occurred then inter-scenario constraints can 

be used to avoid such deviations. For instance, in [16], bundle constraints are proposed to avoid infeasible solutions 

with the expected value based scenario aggregation. Another alternative is to impose these constraints on the 

aggregated results (expected values). However, both approaches lead to inter-scenario constraints and so the 

obtained problem becomes more complex than the present stochastic framework, which can be solved using 

decomposition techniques (e.g., benders decomposition). This matter is beyond the scope of this paper and will be 

considered in our future work. 

 

III. MIP Formulation for the stochastic multiobjective HTSS 

The proposed multiobjective stochastic framework for HTSS contains two objective functions as follows: 

1

2

expectedprofit maximization
ObjectiveFunctions

expectedemmision minimization

F

F


 


 (4) 

Where F1, and F2 are the objective functions of the HTSS as following subsections. 



 

III.A. Expected Profit Maximization 

The main objective function of problem is the Expected Profit (EP) maximization, written as follows: 

1 :max ( ) ( ) Pr ( ) ( )b b

s NS

F EP t p t s PROFIT s
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    (5) 
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( , , )
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 
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where, the EP is the main objective function which equals to constant revenue from bilateral contract (the first term 

of (5)) plus the summation of revenue of each scenario times to its corresponding probability (the second term of 

(5)). Equation (6) shows the profit of each scenario and the first term of this equation is related to revenue from the 

sales of energy. Second and third term refer to revenue from the sales of ancillary services on the spot market by 

thermal and hydro units, respectively. Fourth and 5th terms stand for thermal and hydro units cost, respectively. 

Subsection III.C shows more details for thermal units cost which consists of fuel cost, shut-down cost, start-up cost 

and valve loading effects cost, respectively. The last term of equation (6) refers to hydro plants start-up cost 

because of wear and tear of the windings and mechanical equipments, loss of water during maintenance 

and start-up and finally malfunctions in the control equipments [31]. 

 

III.B Expected Emission Minimization 

The second objective function of the HTSS problem is to minimize the expected emission of thermal units which 

can be written as follows: 
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Where, EGR={SO2 , NOx}, since theSO2 and NOx are the most important emissions in power generation industry 

which have harmful effects on the environment [32]. The emission function is linearized using the piecewise linear 



approximation as shown in Fig. 5. In order to more accurately model the problem, the emission function consists of 

emission due to start-up and shut-down of thermal units. Note that the first term represents the emission caused by 

off thermal units when providing non-spinning reserve [13]. 

The proposed HTSS framework is subject to the equality and inequality constraints. One of them is that the total 

generated power of thermal and hydro units should be equal to the total power sold in the spot market and bilateral 

contract for each hour of each scenario as follows: 

;( , , ) ( , , ) ( ) ( , ) ,b sp

i I j J

p i t s p j t s p t p t s t T s S
 

         (8) 

The other constraints of the thermal units and hydro units are presented in the subsection III. C and D, respectively. 

 

III.C Thermal units’ model 

This subsection pertains to the linearization of all the nonlinear equations of the thermal units. 

 

A. Fuel cost function considering POZ 

Usually quadratic function is used to present the fuel cost of the thermal units. However, thermal units cannot 

operate in some specific zones due to the physical operating restrictions. Consequently, their fuel cost function is a 

discrete function. The proposed piecewise linear model for fuel cost function with M POZs is as follows as: 
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where, ( , , )F i t s is the piecewise linearized fuel cost function and ( , , )n i t s is binary variable and equal to 1 if power 

block n for thermal unit i of piecewise fuel cost curve selected. The second term in equation (9) is related to the 

slope and generation of power block n. The amount of unit output is determined by (10). The other constraints for 

linearization of fuel cost function can be formulated as follows [33]: , ,i I t T s S       

( , , ) 0 ; 1,2,..., 1n i t s n M     (11) 
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where, 
0 min( ) ( )up i p i and 

1 max( ) ( )d

Mp i p i  in (12). Equation (11) indicates that power output of each block is positive 

Equation (12) shows he generated power of each unit is restricted by its upper limit. Constraint (13) forces the 

selected thermal unit to operate only at one of the operating zones. 

 

B. Valve loading effect cost 

The valve loading effect is modeled as an absolute sinus function of the generated power [19-21] which has a 

nonlinear form. In the proposed MIP formulation for the HTSS problem, the valve loading effect is linearized, as 

shown in Fig. 6, according to the following equations. 
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The ceil (.) function, approximate its argument to its nearest upper integer value. For instance ceil (3.1)=4.  

where, ei and fi are coefficients of valve point effects for ith thermal unit and ψn(i,t,s) is power generated by nth 

block. Eq. (15) indicates that the generated power by the thermal unit i at the hour t of scenario s is the sum of its 

minimum power output when that unit is committed, plus the produced power in each block. Constraint (16) 

determines the thermal unit output in the first block. In other words, the thermal units output in the first block should 

smaller than or equal to π/4fi. In (16), the binary variable I(i,t,s) prevents unit i to generate power, if it is 

decommitted at the hour t of the scenario s. In order to restrict the produced power in each block, the binary variable

( , , )n i t s is introduced in constraints (16) and (17). In fact, the binary variable will be equal to 1, if the output of the 



thermal unit i at the hour t of the scenario s is more than the upper limit of the block n. In other words, the binary 

variable ( , , ) 1n i t s  if min( , , ) ( , , )
4 i

n
p i t s P i t s

f


  .

 

C. Capacity limits of thermal units 

The upper and lower limit constraints of the thermal units including the ramp up limit (RUL) and ramp down limit 

(RDL) can be written as follows: 

min( ) ( , , ) ( , , ) ( , , )p i I i t s p i t s p i t s 
 (18) 

 max( , , ) ( ) ( , , ) ( , 1, ) ( ) ( , 1, )p i t s p i I i t s z i t s SD i Z i t s    
 (19) 

( , 1, ) ( , , ) ( ) ( , , ) ( ( , , ))p i t s p i t s SD i Z i t s RDL p i t s   
 (20) 

( , 1, ) ( , , ) ( ) ( , 1, ) ( ( , , ))p i t s p i t s SU i y i t s RUL p i t s    
 (21) 

Equation (18) indicates the power generation limit of thermal units and equation (19) illustrates the upper limit of 

power generation by thermal units at each time. The shut-down ramp rate and Ramp-Down Limit (RUL) are shown 

in equation (17) while equation (18) indicates the start-up ramp rate and Ramp-Up Limit (RUL). 

D. Dynamic RDL and RUL 

Based on the work [22], the proposed dynamic ramp rate of the thermal units is as follows: 
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According to (22) and (23), the dynamic ramp rate is related to thermal units by ( , , )n i t s . 

 

E. Other constrains of thermal units 

Reserve Services: In order to sustain sudden events of power systems such as the outages of transmission lines and 

generators, the operating services (spinning reserve and non-spinning reserve) are considered as done by [16]. The 

other constraints of the proposed HTSS problem, as addressed in [2, 34], are: time varying start-up cost function, 

Minimum Up-Time (MUT) and Minimum Down-Time (MDT), and Logical status of commitment. Also, the fuel 

limit constraints are taken from [7, 16].  

 



III.D. Hydro units’ model 

In this section the constraints of the hydro units are addressed.  

 

A. Linear formulations for volume and multi-performance curves 

The linear formulations of the hydro units with L performance curves, as shown in Fig. 7, are as the following 

equations: 
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1 2 1( , , ) ( , , ) .... ( , , )Lj t s j t s j t s        (27) 

Equation (24) indicates that the volume of each hydro plant at each period should be greater than the minimum 

content of that hydro plant. Equations (25) and (26) stand for the right head corresponding to volume. The equations 

(24) to (27) determine the integer variable of ( , , )n j t s for performance curves based on the water volume. In other 

words, these equations choose the right curve for head according to the content level. 

 

B. Linear power-discharge performance curves 

The linear relationship between generated powers, discharged water and performance curves is presented as: 
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In above constraints, ( , , )p j t s is power generated by hydro plant at hour t and scenario s and ( )kp j is minimum 

generation of kth head. Proper head appointed by ( , , )n j t s and ( )p j is capacity of hydro plant j and ( , , )nq j t s is water 

discharge of block n and ( )k

nb j is slope of the block n of the performance curve k of hydro plant j. 

C. The other constraints of hydro units 



The water discharge limits are similar to those presented in [23]; however, in the proposed stochastic multiobjective 

HTSS model the spillage effect is also considered [2]. Also, the initial value of the reservoir, water balance [2], [23], 

and operating services [16] are considered in the proposed HTSS problem. 

 

 

 

IV. Multiobjective Mathematical Programming (MMP) 

In Multiobjective Mathematical Programming (MMP), there is more than one objective function and there is no 

single optimal solution that simultaneously optimizes all the objective functions. A well-organized technique to 

solve MMP problems owning one main objective function among all objective functions is the ε-constraint method 

which is used to solve the proposed stochastic multiobjective HTSS problem in this paper. In general, the ε-

constraint technique [35-36] optimizes the main objective function f1 considering the other objective functions as 

constraints: 
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2 2 3 3
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( ) ( ) ... ( )p p

f x

subject to f x e f x e f x e  
  (30) 

where, the subscript p indicates the number of competing objectives functions of the MMP problem and x  refers to 

the vector of decision variables. In (30), it is assumed that all p objective functions should be minimized. In order to 

properly apply the ε-constraint method, the ranges of at least p-1 objective functions are needed that will be used as 

the additional objective function constraints. The most common approach is to calculate these ranges from the 

payoff table. To calculate the payoff table for a MMP problem with p competing objective functions, at first, the 

individual optima of the objective functions fi are calculated. The optimum value of fi is indicated by * *( )i if x  where 

*

ix  refers to the vector of decision variables which optimizes the objective function fi. Then, with the solution that 

optimizes the objective function fi, the value of the other objective functions f1, f2,… , fi-1, fi+1,…,fp is calculated, 

which are represented by *

1( )if x , *

2 ( )if x ,…, *

1( )i if x
, *

1( )i if x  ,…,
*( )p if x . The ith row of the payoff table 

includes *

1( )if x , *

2 ( )if x ,…, * *( )i if x ,…, *( )p if x . In this way all rows of the payoff table are calculated as follows:  
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The payoff table has p rows and columns. The jth column of the payoff table includes the obtained values for the 

objective function fj among which the minimum and maximum values indicate the range of the objective function fj 

for the ε-constraint method. To enhance the ε-constraint method to the proposed MMP solution technique, at first a 

few concepts should be introduced. Without losing generality, it is again supposed that all objective functions should 

be minimized. 

Utopia point is a specific point, generally outside of the feasible region, that corresponds to all objectives 

simultaneously being at their best possible values. The utopia is written as: 

* * * * * *
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i p i i p pf f f f f x f x f x       
 

(32) 

Nadir point is a point in the objective space where all objective functions are simultaneously at their worst values. 

The nadir point is written as: 

1 ,..., ,...,N N N N
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(33)  
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Where, Ω represents the feasible region. A close concept to nadir point is pseudo nadir point defined as follows: 

1 ,..., ,...,SN SN SN SN

i pf f f f     
            (35)  

 * * * *
1max ( ),..., ( ),..., ( )SN

i i i i i pf f x f x f x
 (36) 

It is noted that utopia, nadir and pseudo nadir points are defined in the objective space, which is a vector space with 

the objective functions as its dimensions. In the ε-constraint technique, the range of each objective function in the 

payoff table is determined based on the utopia and pseudo nadir points, that is: 

( )U SN

i i if f x f   (37) 



Optimization of MMP problems is to identify the set of Pareto optimal solutions. For a general multi-objective 

optimization problem of (25), a point *x   is Pareto optimal or efficient solution for the MMP problem if and 

only if there is no x   such that *( ) ( )i if x f x  for all i=1, 2, ... ,p with at least one strict inequality. 

    After finding the range of all objective functions based on (37), the ε-constraint technique divides the range of p-1 

objective functions f2, …,fp to q2, …, qp equal intervals using (q2-1), …, (qp-1) intermediate equidistant grid points, 

respectively. Considering the minimum and maximum values of the range, we have in total (q2+1), …, (qp+1) grid 

points for f2, …, fp, respectively. So, we should solve 
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where, the superscript U and SN refer to the value of the objective function in the utopia and pseudo nadir points as 

shown in (32) and (36), respectively. The constraints of the MMP problem should be also considered in each of 

these optimization subproblems in addition to the objective function constraints mentioned in (38). By solving each 

optimization subproblem, one Pareto-optimal solution is obtained in the ε-constraint technique. Some of these 

optimization subproblems may have infeasible solution space, which will be discarded. Among the obtained Pareto-

optimal solutions, the most preferred one is selected by the decision maker.  

The advantages of the proposed method can be listed as following: 

i. For linear problems, the weighting method generates only efficient extreme solutions. On the contrary, the 

epsilon-constraint method is able to produce non-extreme efficient solutions [35]. 

ii. Despite the weighting method, the epsilon-constraint method can produce unsupported efficient solutions in 

multiobjective integer and mixed integer programming problems [35]. 

iii. In the epsilon-constrained method, the scaling of the objective functions is not necessary while this is needed in 

the weighting method [35]. 



iv. In the epsilon-constraint method, the number of the generated efficient solutions can be controlled by properly 

adjusting the number of grid points in each one of the objective function ranges [35]. 

Despite the above advantages, the epsilon-constraint method has two points that need attention: 

i. Firstly, the range of the objective functions over the efficient set is not optimized. To solve this problem, 

lexicographic optimization technique is proposed here.  

ii. Secondly, the generated Pareto optimal solutions by the epsilon-constraint method may be dominated or 

inefficient solutions. Augmented-weighted epsilon-constraint technique is suggested to remedy this deficiency. The 

details of incorporating lexicographic optimization and augmented-weighted epsilon-constraint technique have been 

described in our previous paper in the area [37, 38]. To avoid tautology in writing, these matters have not been 

repeated in this paper. 

The presented MMP solution method is formed by coming together the augmented-weighted ε-constraint technique 

and lexicographic optimization. The procedure of the proposed method can be stated as follows: 

Step 1: By employing the lexicographic optimization approach, the payoff table pertaining to a MMP problem is 

computed. 

Step 2: The range of the ith objective function (i = 2, 3,.., p) is determined using payoff table. 

Step 3: According to formulation proposed in (39-40), the range of at least p-1 objective functions is divided into qi 

(i = 2, 3,.., p) equal intervals. 

Step 4: The feasible optimization sub-problems in (38) are solved applying the presented MMP solution method to 

produce the Pareto efficient solution while the infeasible ones are discarded. 

Step 5: The efficient solutions derived through step 4 is evaluated using the Fuzzy decision making process; Eq. (41-

43), to choose the most desired Pareto optimal solution. 

The proposed optimization framework for ε-constraint optimization method for MMP problem is illustrated in Fig. 

8. 

A. Fuzzy decision maker 

In order to choose the best compromise solution among the obtained Pareto optimal solutions by the ε-constraint 

method, a fuzzy decision maker is proposed which can softly select the most preferred compromise solution among 

the Pareto solutions [29, 37-42].For this purpose, the fuzzy decision maker calculates a linear membership function 

for each objective function in each Pareto optimal solution, which measures the relative distance between the value 



of the objective function in the Pareto optimal solution from its values in the respective utopia and pseudo nadir 

points. The mathematical formulation of these membership functions for the MMP market clearing problem is as 

follows: 
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    (Minimization)                                      (42) 

The fuzzification process described in (41) and (42) is used for the objective functions that should be maximized and 

minimized, respectively. The total membership function (total degree of optimality) of each Pareto optimal solution 

is computed considering the individual membership functions and the relative importance of the objective functions 

( nw values) as follows: 
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The most preferred solution refers to the Pareto solution with the highest value of 
r or the highest preference for 

the MMP problem. This solution more optimizes the objective functions of the MMP problem, considering their 

relative importance, than the other Pareto solutions [29, 37-42]. 

B. Emission trade 

In some circumstances, selling the emission quota is more profitable than selling the power; therefore, the GENCO 

can use this opportunity to obtain more profit. On the other hand, in some cases, the GENCO is forced to procure 

emission quota, to increase its output to obtain more profit. The total profit of the GENCO considering emission 

arbitrage is as follows: 

 E QUATAEA EP E EE     (44) 



where EA, denotes that GENCO’s total profit in dollars, EP is the obtained profit of each Pareto optimal solution in 

dollars, πEis the price of emission in $/lbs, EQUOTA is the emission quota in (lbs) and finally EE is the expected 

generated emission of each Pareto optimal solution in (lbs). If EQUOTA>EE, then an excess quota is available that can 

be sold in the market. On the other hand if EQUOTA<EE then the GENCO need to purchase additional emission quota 

[52]. Hence, for each Pareto-optimal solution EA is calculated and then the solution with the highest value of EA can 

be chosen as the best solution by the GENCO. 

 

V. Case Study 

The case study used to illustrate the proposed stochastic multiobjective HTSS is the well-known IEEE 118-bus test 

system. This system contains 54 thermal units which are10 oil-fired, 11 gas-fired and 33 coal-fired units. Eight 

hydro units are considered that their required data are taken from [23]. The POZ data and valve loading coefficients 

are taken from [43]. Based on [2], the start-up cost of thermal units is linearized in 3 blocks. Also, based on [32] the 

emission functions of SO2 and NOx have been linearized in 4 blocks as shown in Fig. 5. It is assumed that both SU(i) 

and SD(i) are equal to 0.7*Pmax(i).Bilateral contract at each hour is 1000 MWh at the price of 40$/MWh. Also, it is 

assumed that the forecasted water inflow to the hydro plants is deterministic value while the proposed scheduling 

problem is considered for the short-term horizon plan. Due to lack of data, without the loss of generality, fix ramp 

rate data is used. For hydro units, 3 performance curves are used that each of them is linearized in 4 blocks as shown 

in Fig. 7. Total spinning and non-spinning reserves which can be sold at each hour of each scenario is 500MW. 

Other data for thermal units are taken from [43]. Thermal units 5, 10, 11, 28, 36, 43, 44 and 45 have valve loading 

effect cost and thermal units 7, 10, 30, 34, 35 and 47 have POZs limitations. 

The proposed MIP optimization problem of the stochastic multiobjective HTSS has been modeled in GAMS [44] 

software using CPLEX solver on a personal computer Pentium IV, 2.4 GHz with 2 GB RAM. The optimization 

problem includes millions of continuous and discrete variables which increase the solution time and computational 

burden. For this reason, without the loss of generality, in the case study of the proposed stochastic multiobjective 

HTSS framework, the number of scenarios and also the periods of time scheduling (hours) are reduced. However, 

the parallel computation method and decomposing approach can significantly decrease solution time of the HTSS 

optimization problem. According to this study, the number of scenarios after scenario reduction is reduced to 10. 



Also, 10 periods (hours) are considered for the stochastic multiobjective HTSS. In other words in each scenario, the 

system is scheduled over ten successive hours. Accordingly, the case study of the stochastic multiobjective HTSS 

includes one deterministic (non-contingent generating units and without price forecast error) scenario plus nine 

scenarios considering the generating units’ contingencies as well as the price forecast errors. In this study, five 

different price forecast levels are considered as shown in Fig. 2 and the MCP for each hour of each scenario (except 

the first scenario that is deterministic) is determined based on the roulette wheel mechanism described in the section 

II.  

The ε-constraint is used to find the Pareto solutions of the stochastic multiobjective HTSS problem. In the ε-

constraint method, F1 (expected profit maximization) is considered as the main objective function. To solve the 

MMP problem, 19 grid points (q2=19) for F2, i.e. EE, is used for obtaining Pareto optimal solutions. So, the problem 

should be solved totally (q2+1 = 20) times to obtain the Pareto optimal solutions of the stochastic multiobjective 

HTSS which all of them have feasible solution. 

In order to better explanation of the proposed framework, four cases are considered which are:  

Case 1-Deterministic single objective HTSS: In case 1, the objective function is the profit maximization and include 

only one scenario wherein it is assumed that all units can be on if necessary after solving optimization problem and 

forecasted price is equal to the actual price.  Therefore this case include equations of (5), (6), and (8) to (29). 

Case 2-Stochastic single objective HTSS: In this case, the objective function is profit maximization including 

uncertainty of price and availability of generation units. Therefore this case includes equations (1)-(6), (8)-(29), and 

(45)-(46). 

Case 3-Deterministic multiobjective HTSS: The objective functions of this case are profit maximization and 

emission minimization. Also, it includes only one scenario wherein all units can be on if necessary after solving 

optimization problem and the forecasted price is equal to the actual price. Therefore, this case includes equations (4) 

to (44).  

Case 4-Stochastic multiobjective HTSS: In case 4, the objective functions are profit maximization and emission 

minimization. Also, the uncertainty of price and availability of generation units has been considered in the 

formulation. Accordingly, this case includes equations of (1) to (46). 

The results of cases 1 and 2 are shown in Table I. The expected profit of the stochastic HTSS is lower than the profit 

in deterministic HTSS for the reason that in the stochastic framework in each scenario, some efficient units may 



decommitted based on their forced outage and therefore the profit of the GENCO is decreased. This difference in the 

profit can be interpreted as the value of perfect information [32]; i.e., the lack of information of the exact market 

price and also the exact status of generating units causes the GENCO to lose 6782 $ (2535224-2528442 = 6782$) of 

profits. Also, the amounts of the emissions are shown in Table I. 

For deterministic multiobjective HTSS, only 5 of 20 Pareto optimal solutions are reported in Table II. The results 

show that the GENCO’s emission is increased if the GENCO pursue more profit. In other words, obtaining more 

profit results in more emission showing the conflicting nature of these two objective functions. The best compromise 

solution can be selected by the fuzzy method or arbitrage approach [32], based on the GENCO’s priority to obtain 

more profit or lower emissions. The arbitrage approach will be explained more in this section.  

In the case 4, the stochastic multiobjective HTSS is studied for 10 scenarios and 10 successive hours. The payoff 

table results of the case 4 are shown in Table III. 

According to the Table III, both minimum and maximum value of the expected profit is lower than those of the 

deterministic ones. The minimum value of the expected profit is 1894347.22 $ which is lower than the lowest value 

of the profit in the deterministic HTSS as shown in the second column of the last row of Table II, i.e. 1899232.71 $. 

Similarly the maximum value of the profit is 2533858.45 $ for the stochastic case against 2535646.92 $ for the 

deterministic multiobjective HTSS as shown in the second column of the first row in the Table II. The difference in 

the profits is due to the uncertainty of price forecasting and units’ outage.  

To choose the optimal solution among the Pareto solutions of the problem, a fuzzy decision maker is used. The 

weighting factors (showing the importance of the objective function) are considered the same for 2 objective 

functions in the fuzzy decision maker (w1=w2=1). Results of equal weighting factors for these two objective 

functions are shown in Table IV. The membership value indicates the degree of optimality. If equal weighting 

factors are considered for two objective functions, then the total membership is obtained 0.616 for 20 Pareto 

solutions which is not acceptably optimized. However, changing the weighting factors can simply direct the decision 

maker to its interested solution. Nevertheless, the GENCO is more desirous to profit rather than the emission 

concerns. Therefore, the proposed method is solve again with the profit and emission weighting factors of 3 and 1, 

respectively, which logically searching for a Pareto solution with high value of the profit membership and low value 

of the emission membership as shown in Table V. From the Table V it can be seen that the membership value of the 

profit remarkably has been improved from 0.653 in case of equal weighting factors to 0.970 in the case of different 



weights. The profit value in the Table V is equal to 2514601.40 $; indeed it is very close to its ideal value reported 

in the Table III. On the other hand, the emission is increased as its membership is low. In other words, according to 

the Table V, the GENCO prefers to obtain more profit rather than emission decrease. 

Since GENCOs are more desirous to increase profit rather than decrease emission, in the stochastic multiobjective 

HTSS problem, the optimal solution can be also obtained using arbitrage opportunity to gain more profit. Therefore, 

the emission arbitrage formulation (44) is calculated for all the Pareto optimal solutions obtained by the ε-constraint 

method and the optimal solution is ultimately selected. The advantage of the arbitrage trade compared to the fuzzy 

method is that the emission quota is implicitly considered and the chosen solution is more economic and realistic 

from GENCOs viewpoint. The Pareto solutions and their related emission trade are shown in Table VI. These 

arbitrage scenarios are calculated based on the EQUOTA=100,000 lbs, with different prices of emission, i.e. πE= 1, 2 

and 3 $/lbs, which are shown in the last three columns of the Table VI. The negative value for emission indicates 

that GENCOs emission quota is not enough and it should accordingly purchase emission. In the Table VI, the 

optimal solutions for each price of emission are represented with the bold numbers superscripted with asterisk. By 

the proposed method, the GENCO can readily analyze arbitrage opportunities and make a decision that improves the 

total profit.  

Finally, the number of variables and constraints and solution time for the four cases are presented in Table VII. 

From the Table VII, it takes 6186 seconds to find the Pareto optimal solutions of the case 4 of the problem. This is 

mainly for dimensionality issue which includes thousands of equations, continuous and discrete variables. Also from 

this table, one can see that the execution time of the problem is dramatically increased as the number of equations 

and variables of the problem increases.  

It is noted that the methods used to solve pure integer and mixed integer programming problems require 

dramatically more mathematical computation than those for similarly sized pure linear programs [44]. Many 

relatively small integer programming models take enormous amounts of time to solve. 

Moreover, when the memory is limited, the CPLEX solver will automatically make adjustments which may 

negatively impact the performance [44]. The MIP nature of our problem on one hand, and relatively large 

dimensions and memory limitations on the other hand, causes our HTSS optimization problem to take 6186 seconds 

to be solved and find the Pareto optimal solutions. Nevertheless, the parallel computation and decomposing 



approach can significantly decrease this solution time. However, this paper pertains to present the comprehensive 

model for the stochastic multiobjective HTSS problem rather than computational viewpoints of the problem.  

V.A Comparative analysis 

We have used works [45] to [48] to compare the results of the proposed framework with them. It should be 

mentioned that the objective function of works [45] to [48] is the cost function. Also, in these works, emission 

function has been considered as another objective function of the optimization problem. All these works have used a 

heuristic approach to solve the problem. While the frameworks proposed in [45] to [48] are not completely same as 

the proposed scheme in this paper, i.e. multiobjective hydrothermal self-scheduling problem with objective 

functions of profit maximization and emission minimization, therefore we compare our proposed method with these 

references [45] to [48]. Accordingly, we have used their data, constraints and objective functions to show the 

performance of the proposed approach. Considering the above assumptions, the results of this case study are 

summarized in the tables VIII and IX which are taken from [48]. If we solve the same problem by the proposed 

method in this paper, the fuel cost is 40766.83($) and emission value is 18278.76 (lb). It can be seen from results 

that the proposed method can find better solution for fuel cost and emission in comparison with the results of [45] to 

[48]. Also, table X shows power generation of each thermal and hydro unit in each hour by solving the problem 

using the proposed method. 

Besides, in table XI, we can see the solution time of each method. It is inferred from this table that the proposed 

algorithm in this paper has better efficiency from the calculation speed. 

 

VI. Conclusions 

This paper presents a stochastic multiobjective HTSS framework in the form of MIP optimization problem in which 

the valve loading effect cost, dynamic ramp rate, POZs, fuel limitation are modeled all in linear form. It also 

includes multi-performance curves for hydro units making the HTSS framework more realistic. With the proposed 

method, each GENCO can cope with the uncertainties of the HTSS problem, i.e. price forecast error and generating 

units’ outage. Besides, each GENCO can compromise the conflicting objectives of the expected profit maximization 

in such a way that the GENCO’s concerns about the emission are to some extent relieved. Furthermore, the 

stochastic approach leads to a more efficient utilization of generating units, allowing the GENCOs to estimate the 



effects of units’ contingencies and price uncertainty on the HTSS results. Covering the uncertainties by the proposed 

stochastic multiobjective HTSS, each GENCO can bid in the day-ahead market so as to gain profit as much as 

possible. Using the arbitrage approach make it possible for the GENCO to purchase its required emission or sell its 

emission quota to obtain more profit.  

The research work under way to a) present a stochastic model with other scenario reduction techniques; b) consider 

financial risk associated with the market price uncertainty, and c) use accelerated benders decomposition to reduce 

computational burden. 
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Figure Captions 

Fig. 1. Random points generated by (A) rank-1 lattice rule and (B) the ordinary MCS 

Fig.2: Typical discretization of the probability distribution of the price forecast error 

Fig. 3: The roulette wheel mechanism for the normalized probabilities of the price forecast levels 

Fig. 4: Flowchart of the proposed scenario-based stochastic modeing of uncertainties 

Fig.5: Piecewise linear emission generation curve with M prohibited zones 

Fig. 6: Linear approximation of the absolute sinus function for valve loading effect 

Fig. 7: Piecewise linear form of non-concave performance curves for hydro unit j 

Fig. 8: Flowchart of the ε-constraint optimization method for the MMP problem 



Table I: Results of the single objective HTSS problem 

Single  

Objective 

Profit ($) Expected profit ($) 

Emission 

(lbs) 

Expected 

Emission (lbs) 

Deterministic 2535224 - 161288 - 

Stochastic - 2528442 - 161134 

 

Table II: 5 Pareto Optimal solutions of the deterministic multiobjective HTSS problem 

Pareto Solution Number F1 : Profit ($) F2: Emission (lbs) 

1 2535646.92 157420.36 

5 2489486.32 124693.28 

10 2378473.52 83784.42 

15 2194129.43 42875.57 

20 1899232.71 1966.71 

 

Table III: Payoff table for the stochastic multiobjective HTSS problem 

Objective Function Minimum value of objective function Maximum value of objective function 

F1 : Expected Profit ($) 1894347.22 2533858.45 

F2 : Expected Emission (lbs) 2171.61 158700.35 

 

Table IV: Optimal solution of the stochastic multiobjective HTSS problem with equal weighting factors  

Objective Function Weighting factor 

Objective 

function Value 

Membership value 

F1 : Expected Profit ($) 1 2312199.39 0.653 

F2 : Expected Emission (lbs) 1 68078.44 0.579 

Total membership of all objective functions 0.616 

 

 

 



Table V: Optimal solution of the stochastic multiobjective HTSS problem with different weighting factors  

Objective Function Weighting factor 

Objective 

function Value 

Membership value 

F1 : Expected Profit ($) 3 2514601.40 0.970 

F2 : Expected Emission (lbs) 1 142223.64 0.105 

Total membership of all objective functions 0.754 

 

Table VI: Emission arbitrage for some of Pareto optimal solutions of the stochastic multiobjective HTSS problem  

Total Expected Emission 

(lbs) 

Expected Profit 

Without Emission Trade ($) 

Expected 

Emission 

Trade ($) 

Net expected profit ($) 

πE = 1 

$/lbs 

πE = 2 

$/lbs 

πE = 3 

$/lbs 

158700 2533858 -58700 2475158* 2416458 2357757 

133985 2499743 -33985 2465757 2431772 2397787 

125747 2488137 -25747 2462390 2436643* 2410896 

109270 2450843 -9270 2441572 2432302 2423032 

101032 2429995 -1032 2428963 2427932 2426900* 

92794 2403701 7206 2410907 2418114 2425320 

2172 1894347 97828 1992176 2090004 2187832 

 

Table VII: Optimization statistics for all four cases 

Case Variables Discrete Variables Equations Solution time (Sec) 

Case 1 16007 6714 19635 1.3 

Case 2 160052 67117 196332 46.50 

Case 3 384312 161136 471384 52.9 

Case 4 3841392 1610808 4712112 6186 

 

 



Table VIII. Scheduling results listed in [45-47] 

Method [45] [46] [47] 

Fuel cost ($) 47906 44914 43507 

Emission(lb) 26234 19615 18183 

 

Table IX. Scheduling results listed in [48] 

Schedule 

index 

HMOCA NSGA-II Schedule 

index 

HMOCA NSGA-II Schedule 

index 

HMOCA NSGA-II 

F($) E(lb) F($) E(lb) F($) E(lb) F($) E(lb) F($) E(lb) F($) E(lb) 

1 41805 16841 42126 16763 11 43394 16243 43203 16404 21 45590 15943 44792 16109 

2 41918 16731 42197 16773 12 43593 16204 43224 16372 22 45826 15915 45054 16065 

3 42247 16542 42220 16770 13 43801 16174 43376 16338 23 46092 15887 45229 16053 

4 42376 16494 42221 16766 14 44007 16140 43529 16302 24 46365 15867 45423 16037 

5 42542 16452 42224 16680 15 44237 16108 43606 16270 25 46610 15844 45614 16021 

6 42671 16395 42342 16636 16 44474 16076 43794 16240 26 46880 15815 45887 15995 

7 42851 16357 42571 16592 17 44699 16049 44024 16217 27 47202 15794 46153 15967 

8 42851 16357 42631 16542 18 44926 16021 44158 16195 28 47492 15772 46350 15947 

9 43029 16313 42819 16511 19 45137 15995 44342 16170 29 47776 15755 46520 15934 

10 43220 16276 42957 16449 20 45359 15968 44567 16140 30 481991 15746 46744 15914 

 

  



Table X. Power generation of each unit in each hour using the proposed method 

 Thermal Units (MW)  Hydro Units (MW) 

Hour/unit 1 2 3  1 2 3 4 

1 96.59 176.00 188.68  80.55 50.16 28.99 129.03 

2 106.76 188.23 196.83  80.44 51.30 30.71 125.74 

3 81.24 157.55 176.40  78.79 52.93 31.47 121.63 

4 65.79 138.98 164.03  77.00 54.50 33.87 115.82 

5 66.54 139.88 164.63  75.36 55.50 37.01 131.08 

6 97.95 177.64 189.77  75.47 57.53 40.97 160.68 

7 132.68 219.40 217.57  76.21 60.62 44.19 199.32 

8 142.77 231.53 225.65  76.65 62.64 43.59 227.16 

9 160.57 252.94 239.89  77.80 65.45 42.63 250.72 

10 151.41 241.92 232.56  78.53 67.22 41.78 266.59 

11 152.98 243.81 233.82  79.82 69.32 40.69 279.57 

12 167.77 261.60 245.65  80.34 71.18 39.62 283.83 

13 153.97 245.00 234.61  80.38 71.65 39.21 285.19 

14 127.28 212.90 213.25  80.14 72.18 37.73 286.53 

15 119.84 203.95 207.29  79.84 73.58 37.01 288.50 

16 134.02 221.01 218.65  79.91 75.22 40.06 291.14 

17 128.87 214.81 214.52  78.80 75.51 43.81 293.67 

18 149.71 239.88 231.20  78.56 76.13 47.43 297.09 

19 132.14 218.75 217.14  76.50 76.45 50.17 298.86 

20 123.09 207.86 209.89  74.94 77.52 52.66 304.04 

21 77.53 153.09 173.43  72.11 78.14 54.72 300.99 

22 61.48 133.80 160.58  71.22 79.58 56.61 296.72 

23 59.04 130.87 158.63  72.45 79.74 58.01 291.26 

24 44.39 113.26 146.89  73.80 78.26 59.00 284.4 

 



Table XI.Comparison of CPU time for combined economic emission scheduling 

Reference [45] [46] [47] [48] Proposed 

method 

Computation time (Sec) 1 h, 16 min 

and 22 sec 

74.96 

Sec 

Not reported Not reported 9.25 

Sec 

 

  



 

Fig. 1. Random points generated by (A) rank-1 lattice rule and (B) the ordinary MCS 

 

 

 

Fig.2: Typical discretization of the probability distribution of the price forecast error 

 

  

Fig. 3: The roulette wheel mechanism for the normalized probabilities of the price forecast levels 
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Fig. 4: Flowchart of the proposed scenario-based stochastic modeing of uncertainties 

 

 

Fig.5: Piecewise linear emission generation curve with M prohibited zones 

 

Generate NS 24-hour Scenarios

Start

Input the Data (FOR, 

PDF,...)

Perform Deterministic Multiobjective 

Optimization Problem for sth Scenario

s=1

Solve the Deterministic 

Multiobjective Optimization 

problem Using e-constraint approvh

s<NS

   

s = s + 1

Yes

Aggregate the Solutions 

of the Scenarios Using 

Weighted sum Approach 

Print the Objective Function 

Values and Perform Pareto 

Front

No

      Pu
1
(i)   Pmin(i)  Pd

1
(i) Pd

2
(i)

 

Pu
M

(i) Pmax(i)

E(Pmax(i))

E(Pmin(i))

Generation(MW)

Emission Generation (lbs/h)

E(Pd
1
(i))

E(Pu
M

(i ))

E(Pd
2
(i))

1( )be i

2
( )be i

( )NEbe i



 

Fig. 6: Linear approximation of the absolute sinus function for valve loading effect 

 

 

Fig. 7: Piecewise linear form of non-concave performance curves for hydro unit j 
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Fig. 8: Flowchart of the ε-constraint optimization method for the MMP problem 
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