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UNIFIED CYCLIC STRESS-STRAIN MODEL FOR NORMAL AND 1 

HIGH STRENGTH CONCRETE CONFINED WITH FRP 2 

T. Yu1*, B. Zhang2 and J.G. Teng3 3 

ABSTRACT 4 

Fiber reinforced polymer (FRP) has become increasingly popular as a confining material for 5 

concrete, both in the strengthening of existing columns where FRP wraps with fibers oriented 6 

completely or predominantly in the hoop direction are typically used, and in new construction 7 

where filament-wound FRP tubes with fibers oriented at desired angles to the longitudinal 8 

axis are typically used. For both types of applications, the stress-strain behavior of 9 

FRP-confined concrete under cyclic axial compression needs to be properly understood and 10 

modeled for the accurate simulation of such columns under seismic loading. This paper 11 

presents an improved cyclic stress-strain model for FRP-confined concrete on the basis of a 12 

critical assessment of an earlier model proposed by Lam and Teng in 2009 by making use of a 13 

database containing new test results of both concrete-filled FRP tubes (CFFTs) and concrete 14 

cylinders confined with an FRP wrap. The assessment reveals several deficiencies of Lam 15 

and Teng’s model due to the limited test results available to them. The proposed model 16 

corrects these deficiencies and is shown to provide reasonably accurate predictions for both 17 

concrete in CFFTs and concrete confined with an FRP wrap and for both normal strength 18 

concrete (NSC) and high strength concrete (HSC). 19 
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1. INTRODUCTION 22 

Fiber reinforced polymer (FRP) wraps with fibers oriented completely or predominantly in 23 

the hoop direction have been widely used in practice to strengthen/retrofit concrete columns 24 

[1,2]. As a result of FRP confinement, both the compressive strength and the ultimate 25 

compressive strain of concrete can be significantly enhanced [3,4]. The use of FRP as a 26 

confining material has also been explored in new construction, where FRP is typically 27 

adopted in the form of a tube to confine the concrete infill with or without additional steel 28 

reinforcement (i.e. concrete-filled FRP tubes or CFFTs) [5-7]. In both types of applications, 29 

the stress-strain behavior of the FRP-confined concrete needs to be properly understood and 30 

modeled before a safe and economical design approach can be developed. The stress-strain 31 

behavior of FRP-confined concrete under cyclic axial compression is of particular importance 32 

for the accurate modeling of such columns under seismic loading. 33 

 34 

A number of experimental studies [8-16] have been conducted on the cyclic stress-strain 35 

behavior of concrete confined with an FRP wrap [17]. More recently, the authors’ group has 36 

conducted the first systematic experimental study on the cyclic compressive behavior of 37 

CFFTs [18], where the cyclic stress-strain behavior of the confined concrete was a focus of 38 

the study. Zhang et al.’s study [18] showed that the cyclic axial stress-strain behavior of 39 

concrete in CFFTs is generally similar to that of concrete confined with an FRP wrap, 40 

suggesting that a cyclic stress-strain model for the confined concrete suitable for both types 41 

of applications can be developed. 42 

 43 

Many studies have examined the stress-strain behavior of unconfined and steel-confined 44 

concrete under cyclic compression, leading to a number of cyclic stress-strain models (e.g. 45 

[19-21]). These models, however, are generally not applicable to FRP-confined concrete 46 



which is different from unconfined- and steel-confined concretes in nature: the lateral 47 

confining pressure does not exist for unconfined concrete and is constant for steel-confined 48 

concrete after the yielding of steel, but increases continuously with the lateral deformation of 49 

concrete for FRP-confined concrete [22]. To the best of the authors’ knowledge, only five 50 

cyclic stress-strain models have been proposed for FRP-confined concrete in circular 51 

columns (i.e. concrete under uniform FRP confinement) [10,16,17,23,24]. Shao et al.’s model 52 

[10] was shown to be inadequate in predicting unloading paths and incapable of predicting 53 

the cumulative effect of loading history on the stress-strain response of concrete [11]. Wang 54 

et al.’s model [23] is for FRP-confined concrete as well as concrete subjected to combined 55 

confinement from FRP and hoop steel reinforcement; this model also does not consider the 56 

cumulative effect of repeated loading cycles. Desprez et al.’s model [24] was neither based 57 

on test results from cyclic axial compression tests of FRP-confined concrete columns, nor 58 

verified directly against such test results. Lam and Teng’s model [17] was based on a test 59 

database assembled by them and was shown to capture all the key characteristics of and 60 

provide reasonably accurate predictions for cyclically loaded FRP-confined concrete. Bai et 61 

al.’s model [16] is specifically for concrete confined with FRP possessing a large rupture 62 

strain (around 6%); it includes most of the components (e.g. unloading/reloading paths) of 63 

Lam and Teng’s model [17] but a different envelope stress-strain curve to reflect the effect of 64 

this special type of FRP.  65 

 66 

Although Lam and Teng’s model [17] was developed on the basis of a relatively large 67 

database, a few significant issues could not be readily resolved using the test database 68 

available to them at that time. The test database was limited to concrete confined with an FRP 69 

wrap. The calibration of the model for high strength concrete (HSC) was based on limited test 70 

data from one single study (i.e. Ref. [8]). A recent study by Ozbakkaloglu and Akin [13] has, 71 



however, shown that the performance of Lam and Teng’s model [17] for HSC is not as good 72 

as its performance for normal strength concrete (NSC). In addition, while Lam and Teng [17] 73 

has considered the cumulative effect of loading history in their model, their proposed 74 

equations were based on limited test data with the maximum number of repeated loading 75 

cycles at a given unloading point being three. 76 

 77 

Against this background, this paper presents a critical assessment of Lam and Teng’s model 78 

[17] against the new test results of CFFTs obtained by the present authors [18] as well as 79 

those of concrete confined with an FRP wrap which were published after Lam and Teng’s 80 

study [17]. An improved cyclic stress-strain model is then proposed on the basis of this 81 

assessment for FRP-confined concrete in circular columns (i.e. concrete under uniform FRP 82 

confinement). The proposed model is a unified model in two senses: (1) it is applicable to 83 

both concrete confined with an FRP wrap and concrete in CFFTs; (2) it is applicable to both 84 

FRP-confined NSC and HSC. This paper is concerned only with concrete confined with 85 

conventional FRP (e.g. glass FRP and carbon FRP) with a rupture strain less than 3%, so Bai 86 

et al.’s work [16] is not further discussed in the paper. 87 

 88 

2. TEST DATABASE 89 

In the present study, a test database was assembled from the studies of Rousakis [8], Ilki and 90 

Kumbasar [9], Lam et al. [11], Ozbakkaloglu and Akin [13], Wang et al. [23] and Zhang et al. 91 

[18]. Test results from the first three studies were also used by Lam and Teng [17] for the 92 

development of their cyclic stress-strain model. Except for Zhang et al. [18] where CFFTs 93 

with a filament-wound FRP tube were tested, all the tests were conducted on circular solid 94 

cylinders confined with an FRP wrap. The present paper is concerned with concrete confined 95 



with FRP only, so the majority of the specimens reported in Ref. [23], which had transverse 96 

steel reinforcement, are excluded from the test database. Key information of the tests is given 97 

in Table 1, while readers may refer to the original papers for more details. In Table 1, the 98 

thickness given for wet-layup FRP wraps is the nominal thickness, while that for 99 

filament-FRP tubes is the actual thickness; their respective elastic moduli are both based on 100 

the thicknesses listed in Table 1. The compressive strength of unconfined concrete was 101 

obtained from accompanying compression tests on standard plain concrete cylinders, except 102 

for the tests of Rousakis [8], for which the unconfined concrete strengths shown in Table 1 103 

were converted from the cube compressive strength data based on the relationships specified 104 

in the CEB-FIP Model Code [25]. 105 

 106 

All specimens were subjected to a single unloading/reloading cycle at each prescribed 107 

unloading displacement/load level except two specimens tested by Lam et al. [11] and six 108 

specimens tested by Zhang et al. [18]. As indicated in Table 1, the two specimens (i.e., 109 

specimens CI-RC and CII-RC) tested by Lam et al. [11] were subjected to 3 110 

unloading/reloading cycles at each prescribed unloading displacement level and the six 111 

specimens tested by Zhang et al. [18] were subjected to 9~12 unloading/reloading cycles at a 112 

prescribed unloading displacement level.  113 

 114 

Linear variable displacement transducers (LVDTs) were used to obtain axial strains in all the 115 

studies. For the specimens in Refs. [8, 9, 13, 18], LVDTs were used to measure the total axial 116 

shortenings of specimens; for the specimens in Ref. [11], the LVDTs covered the 120 mm 117 



mid-height region of specimens; for the specimens in Ref. [23], the LVDTs covered the 204 118 

mm mid-height region. It has been shown that the strains obtained from total axial 119 

shortenings are generally similar to but slightly larger than those obtained from LVDTs 120 

covering a certain length of the mid-height region [11, 18], especially in the initial stage of 121 

loading, but this effect is generally very small for the later loading stage. Lam and Teng [17] 122 

also found that their model was generally applicable to the test database assembled by them 123 

despite the different methods of obtaining axial strains.  124 

 125 

3. CYCLIC AXIAL STRESS-STRAIN MODEL 126 

3.1. General 127 

In this section, Lam and Teng’s cyclic stress-strain model [17] is first critically assessed 128 

against the test data of the new database as described above, with the focus being on its 129 

applicability to HSC and concrete in CFFTs. The key components of Lam and Teng’s model 130 

[17] are examined separately, based on which revisions are proposed, leading to an improved 131 

stress-strain model.  132 

 133 

3.2. Key Characteristics of FRP-Confined Concrete 134 

Lam and Teng’s model [17] was proposed based on and can capture the following key 135 

characteristics of the experimental cyclic stress-strain behaviour of concrete confined with an 136 

FRP wrap: (1) the envelope curve is basically the same as the monotonic stress-strain curve; 137 

(2) the loading history has a cumulative effect on both the plastic strain and stress 138 

deterioration; (3) the unloading path is generally nonlinear with a continuously decreasing 139 

slope while the reloading path is approximately linear. It is shown in Ref. [18] that the cyclic 140 

stress-strain behaviour of concrete (including HSC) in CFFTs also possesses the same three 141 



characteristics, suggesting that the framework of Lam and Teng’s model [17] can be retained 142 

in developing an improved stress-strain model. 143 

 144 

3.3. Terminology 145 

The cyclic stress-strain history consists of unloading curves and reloading curves. The 146 

unloading curves are defined as the paths that the concrete experiences when its strain 147 

reduces. Unloading paths can be further divided into envelope unloading paths (i.e. unloading 148 

paths starting from the envelope curve) and internal unloading paths (i.e. the previous 149 

reloading path does not reach the envelope curve). They should be both independent of the 150 

subsequent terminating point. However, internal unloading paths are dependent on the prior 151 

loading history. The stress and strain where an unloading curve starts are named the 152 

unloading stress σ𝑢𝑢𝑢𝑢 and the unloading strain 𝜀𝜀𝑢𝑢𝑢𝑢 respectively. For envelope unloading, the 153 

two terms are denoted by σ𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  and 𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  respectively. The strain value at the 154 

intersection of an unloading path with the strain axis is defined as the plastic strain 𝜀𝜀𝑝𝑝𝑙𝑙. The 155 

reloading curves are defined as the paths that the concrete experiences when its strain 156 

increases. Similar to unloading paths, reloading paths are also independent of the subsequent 157 

terminating point where the concrete once again starts to unload or the concrete reaches the 158 

envelope curve. The stress and strain where a reloading curve starts are named the reloading 159 

stress σ𝑟𝑟𝑒𝑒 and the reloading strain 𝜀𝜀𝑟𝑟𝑒𝑒 respectively. The stress and strain where a reloading 160 

curve meets with the corresponding envelope curve are referred as envelope returning stress 161 

σ𝑟𝑟𝑒𝑒𝑟𝑟,𝑒𝑒𝑢𝑢𝑒𝑒 and strain 𝜀𝜀𝑟𝑟𝑒𝑒𝑟𝑟,𝑒𝑒𝑢𝑢𝑒𝑒 respectively. 162 

 163 

The internal cycles which are defined as those repeated within the envelope curve need to be 164 

numbered so that the effects resulting from previous internal cycles on subsequent cycles can 165 

be considered. Envelope unloading is always regarded as the first cycle (i.e. 𝑛𝑛 = 1). When 166 



the subsequent unloading stress is not greater than the present envelope unloading 167 

stress σ𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒, the cycle number needs to be updated (i.e. 𝑛𝑛 = 𝑛𝑛 + 1). The number will be 168 

reset to zero when a subsequent unloading stress is greater than this envelope unloading 169 

stress σ𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 . It is possible to encounter an unloading stress which is larger than the 170 

corresponding envelope unloading stress σ𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒, but is smaller than the envelope returning 171 

stress σ𝑟𝑟𝑒𝑒𝑟𝑟,𝑒𝑒𝑢𝑢𝑒𝑒. Unloading from such an unloading stress is treated as an envelope unloading 172 

cycle following Ref. [17]. 173 

 174 

The definitions of σ𝑢𝑢𝑢𝑢 , 𝜀𝜀𝑢𝑢𝑢𝑢 , σ𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 , 𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 , 𝜀𝜀𝑝𝑝𝑙𝑙 , σ𝑟𝑟𝑒𝑒 , 𝜀𝜀𝑟𝑟𝑒𝑒 , σ𝑟𝑟𝑒𝑒𝑟𝑟,𝑒𝑒𝑢𝑢𝑒𝑒  and 𝜀𝜀𝑟𝑟𝑒𝑒𝑟𝑟,𝑒𝑒𝑢𝑢𝑒𝑒  for 175 

both envelope and internal cycles are illustrated in Fig.1. 176 

 177 

3.4. Monotonic Stress-Strain Model for the Envelope Curve 178 

In Lam and Teng’s model [17], Lam and Teng’s monotonic stress-strain model [22] was 179 

adopted to predict the envelope curve of FRP-confined concrete under cyclic compression. A 180 

refined version of this design-oriented model was proposed by Teng et al. [26], which 181 

includes more accurate expressions for the ultimate axial strain and the compressive strength. 182 

Zhang et al. [18] showed that Teng et al.’s model [26] can provide accurate predictions for 183 

envelope stress-strain curves of concrete in CFFTs. Teng et al.’s model [26] is therefore 184 

adopted in the present stress-strain model for the envelope curve. 185 

 186 

Teng et al.’s model [26] consists of a parabolic first portion plus a linear second portion with 187 

a smooth transition at 𝜀𝜀𝑟𝑟, and is described as follows: 188 

𝜎𝜎𝑐𝑐 =  𝐸𝐸𝑐𝑐𝜀𝜀𝑐𝑐 −
(𝐸𝐸𝑐𝑐 −  𝐸𝐸2)2

4𝑓𝑓𝑐𝑐𝑐𝑐′
𝜀𝜀𝑐𝑐2 for 0 ≤ 𝜀𝜀𝑐𝑐 ≤ 𝜀𝜀𝑟𝑟 (1) 

and  189 



𝜎𝜎𝑐𝑐 = �
𝑓𝑓𝑐𝑐𝑐𝑐′ +  𝐸𝐸2𝜀𝜀𝑐𝑐

𝑓𝑓𝑐𝑐𝑐𝑐′ −  
𝑓𝑓𝑐𝑐𝑐𝑐′ − 𝑓𝑓𝑐𝑐𝑢𝑢′

𝜀𝜀𝑐𝑐𝑢𝑢 − 𝜀𝜀𝑐𝑐𝑐𝑐
(𝜀𝜀𝑐𝑐 − 𝜀𝜀𝑐𝑐𝑐𝑐)

        𝜌𝜌𝐾𝐾  ≥ 0.01
        𝜌𝜌𝐾𝐾  < 0.01     for 𝜀𝜀𝑟𝑟 < 𝜀𝜀𝑐𝑐 ≤ 𝜀𝜀𝑐𝑐𝑢𝑢 (2) 

where 𝜎𝜎𝑐𝑐 and 𝜀𝜀𝑐𝑐 are the axial stress and axial strain of concrete respectively; 𝑓𝑓𝑐𝑐𝑐𝑐′  and 𝐸𝐸𝑐𝑐 190 

are the compressive strength and elastic modulus of unconfined concrete, respectively. The 191 

slope of the linear second portion, 𝐸𝐸2 is given by: 192 

𝐸𝐸2 =  
𝑓𝑓𝑐𝑐𝑐𝑐′ − 𝑓𝑓𝑐𝑐𝑐𝑐′

𝜀𝜀𝑐𝑐𝑢𝑢
 (3) 

where 𝑓𝑓𝑐𝑐𝑐𝑐′  and 𝜀𝜀𝑐𝑐𝑢𝑢 are the compressive strength and ultimate axial strain of FRP-confined 193 

concrete, respectively. The strain at the transition point 𝜀𝜀𝑟𝑟 is given by: 194 

 195 

𝜀𝜀𝑟𝑟 =  
2𝑓𝑓𝑐𝑐𝑐𝑐′

𝐸𝐸𝑐𝑐 −  𝐸𝐸2
 (4) 

The compressive strength 𝑓𝑓𝑐𝑐𝑐𝑐′  and ultimate axial strain 𝜀𝜀𝑐𝑐𝑢𝑢 of FRP-confined concrete are 196 

defined by: 197 

𝑓𝑓𝑐𝑐𝑐𝑐′

𝑓𝑓𝑐𝑐𝑐𝑐′
= �1 + 3.5(𝜌𝜌𝐾𝐾 − 0.01)𝜌𝜌𝜀𝜀

1
        𝜌𝜌𝐾𝐾  ≥ 0.01
        𝜌𝜌𝐾𝐾  < 0.01      (5) 

and 198 

𝜀𝜀𝑐𝑐𝑢𝑢
𝜀𝜀𝑐𝑐𝑐𝑐

=  1.75 + 6.5𝜌𝜌𝐾𝐾0.8𝜌𝜌𝜀𝜀1.45 (6) 

The ratio between the confining pressure 𝑓𝑓𝑙𝑙 (the pressure provided by the FRP jacket when it 199 

fails by rupture due to hoop tensile stresses) and the unconfined concrete strength 𝑓𝑓𝑐𝑐𝑐𝑐′  is 200 

referred as the confinement ratio. The confinement ratio 𝑓𝑓𝑙𝑙/𝑓𝑓𝑐𝑐𝑐𝑐′  can be expressed as the 201 

product of the confinement stiffness ratio 𝜌𝜌𝐾𝐾 and the strain ratio 𝜌𝜌𝜀𝜀 as shown follows: 202 

𝑓𝑓𝑙𝑙
𝑓𝑓𝑐𝑐𝑐𝑐′

=  
𝐸𝐸𝑓𝑓𝑟𝑟𝑝𝑝𝑡𝑡𝑓𝑓𝑟𝑟𝑝𝑝𝜀𝜀ℎ,𝑟𝑟𝑢𝑢𝑝𝑝

𝑓𝑓𝑐𝑐𝑐𝑐′ 𝑅𝑅
=  𝜌𝜌𝐾𝐾𝜌𝜌𝜀𝜀 (7) 

 203 



𝜌𝜌𝐾𝐾 =  
𝐸𝐸𝑓𝑓𝑟𝑟𝑝𝑝𝑡𝑡𝑓𝑓𝑟𝑟𝑝𝑝

(𝑓𝑓𝑐𝑐𝑐𝑐′ /𝜀𝜀𝑐𝑐𝑐𝑐)𝑅𝑅
 (8) 

 204 

𝜌𝜌𝜀𝜀 =  
𝜀𝜀ℎ,𝑟𝑟𝑢𝑢𝑝𝑝

𝜀𝜀𝑐𝑐𝑐𝑐
 (9) 

where 𝐸𝐸𝑓𝑓𝑟𝑟𝑝𝑝 and 𝑡𝑡𝑓𝑓𝑟𝑟𝑝𝑝 are the elastic modulus and thickness of the FRP jacket, 𝜀𝜀𝑐𝑐𝑐𝑐  is the 205 

axial strain at the compressive strength of unconfined concrete, 𝜀𝜀ℎ,𝑟𝑟𝑢𝑢𝑝𝑝 is the FRP hoop 206 

rupture strain, and 𝑅𝑅 is the radius of the confined concrete core. It should be noted that 𝑓𝑓𝑐𝑐𝑢𝑢′  207 

in Eq. 2 is found from Eq. 10, which predicts the axial stress at the ultimate axial strain, but 208 

not the compressive strength 𝑓𝑓𝑐𝑐𝑐𝑐′  of FRP-confined concrete, although they are the same 209 

unless the stress-strain curve features a descending branch.  210 

𝑓𝑓𝑐𝑐𝑢𝑢′

𝑓𝑓𝑐𝑐o′
=  1 + 3.5(𝜌𝜌𝐾𝐾 − 0.01)𝜌𝜌𝜀𝜀 (10) 

 211 

3.5. Unloading Path 212 

An unloading path is defined as the stress-strain path that the concrete experiences when its 213 

strain reduces. Lam and Teng [17] proposed the following equations (Eqs. 11-16) for both 214 

internal and envelope unloading, which are adopted in the present model: 215 

𝜎𝜎𝑐𝑐 =  𝑎𝑎𝜀𝜀𝑐𝑐
𝜂𝜂 + 𝑏𝑏𝜀𝜀𝑐𝑐 + 𝑐𝑐 (11) 

with 216 

𝑎𝑎 =  
𝜎𝜎𝑢𝑢𝑢𝑢 − 𝐸𝐸𝑢𝑢𝑢𝑢,0(𝜀𝜀𝑢𝑢𝑢𝑢 −  𝜀𝜀𝑝𝑝𝑙𝑙)

𝜀𝜀𝑢𝑢𝑢𝑢
𝜂𝜂 −  𝜀𝜀𝑝𝑝𝑙𝑙

𝜂𝜂 −  𝜂𝜂𝜀𝜀𝑝𝑝𝑙𝑙
𝜂𝜂−1(𝜀𝜀𝑢𝑢𝑢𝑢 −  𝜀𝜀𝑝𝑝𝑙𝑙)

 (12) 

 217 
𝑏𝑏 =  𝐸𝐸𝑢𝑢𝑢𝑢,0 −  𝜂𝜂𝜀𝜀𝑝𝑝𝑙𝑙

𝜂𝜂−1𝑎𝑎 (13) 

 218 
𝑐𝑐 =  −𝑎𝑎𝜀𝜀𝑝𝑝𝑙𝑙

𝜂𝜂 −  𝑏𝑏𝜀𝜀𝑝𝑝𝑙𝑙 (14) 

 219 
𝜂𝜂 =  350𝜀𝜀𝑢𝑢𝑢𝑢 + 3 (15) 



 220 

𝐸𝐸𝑢𝑢𝑢𝑢,0 =  min (
0.5𝑓𝑓𝑐𝑐𝑐𝑐′

𝜀𝜀𝑢𝑢𝑢𝑢
,

𝜎𝜎𝑢𝑢𝑢𝑢
𝜀𝜀𝑢𝑢𝑢𝑢 −  𝜀𝜀𝑝𝑝𝑙𝑙

) (16) 

in which, 𝜎𝜎𝑐𝑐 and 𝜀𝜀𝑐𝑐 are the axial stress and axial strain of concrete respectively; and  𝐸𝐸𝑢𝑢𝑢𝑢,0 221 

is the slope of the unloading path at zero stress (Fig.1).  222 

 223 

Fig. 2 shows a comparison between the predictions of the above equations and the 224 

experimental envelope unloading curves from Ref. [18]. In making the predictions, the 225 

experimental 𝜀𝜀𝑢𝑢𝑢𝑢, σ𝑢𝑢𝑢𝑢  and 𝜀𝜀𝑝𝑝𝑙𝑙 were used so that the comparison in Fig. 2 reflects only the 226 

performance of the equations for the unloading path (i.e. Eqs. 11-16). Fig. 2 shows that Eqs. 227 

11-16 provide reasonably accurate predictions for specimens S54-2FW-C1 and S54-4FW-C1, 228 

but the predictions deviate significantly from the experimental results for the remaining 229 

specimens which had higher unconfined strengths. This observation suggests that Lam and 230 

Teng’s model [17] may be applicable to FRP-confined NSC, but revisions are needed before 231 

Lam and Teng’s model [17] can accurately predict the unloading paths of FRP-confined HSC. 232 

This is probably due to the fact that the development of Lam and Teng’s model [17] relied 233 

heavily on the experimental results by Lam et al. [11] which only covered a small range of 234 

concrete strengths (i.e. 38.9 MPa and 41.1 MPa).  235 

 236 

In Lam and Teng’s model [17], two parameters are used to control the shape of the unloading 237 

path: (1) parameter 𝜂𝜂 which controls the rate of change in the degree of non-linearity (or the 238 

curvature) of an unloading path with the unloading strain; (2) parameter 𝐸𝐸𝑢𝑢𝑢𝑢,0  which 239 

controls the slope of the unloading path at zero stress. Lam and Teng [17] proposed Eq. 16 240 

for 𝐸𝐸𝑢𝑢𝑢𝑢,0  where the unconfined concrete strength 𝑓𝑓𝑐𝑐𝑐𝑐′  is already a parameter. Fig. 3 241 

compares the predictions of Eq. 16 with the experimental results, and demonstrates its 242 

applicability to HSC. The inaccuracy of Lam and Teng’s model [17] for HSC is therefore 243 



believed to be mainly due to their equation for 𝜂𝜂 (i.e. Eq. 15) which does not reflect the 244 

effect of unconfined concrete strength 𝑓𝑓𝑐𝑐𝑐𝑐′ . Based on the experimental results in Ref. [18], the 245 

following equation was derived through a trial and error process, with 𝑓𝑓𝑐𝑐𝑐𝑐′  being an 246 

additional controlling parameter: 247 

𝜂𝜂 =  40(350𝜀𝜀𝑢𝑢𝑢𝑢 + 3)/𝑓𝑓𝑐𝑐𝑐𝑐′  (17) 

Eq. 17 reduces to Eq. 15 when 𝑓𝑓𝑐𝑐𝑐𝑐′  is equal to 40 MPa. Fig. 2 shows that the use of the new 248 

equation leads to much better predictions than the use of Eq. 15 in Ref. [17], especially for 249 

specimens S84-4FW-C, S84-9FW-C, S104-4FW-C1 and S104-9FW-C. 250 

 251 

3.6. Plastic Strain of Envelope Cycles 252 

Lam and Teng [17] proposed the following equation to predict the plastic strain of envelope 253 

unloading curves ε𝑝𝑝𝑙𝑙,1 , where the unconfined concrete strength 𝑓𝑓𝑐𝑐𝑐𝑐′  and the envelope 254 

unloading strain 𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 are the two controlling parameters:   255 

ε𝑝𝑝𝑙𝑙,1

=  �
0

[1.4(0.87 − 0.004𝑓𝑓𝑐𝑐𝑐𝑐′ ) − 0.64](𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 − 0.001)
(0.87 − 0.004𝑓𝑓𝑐𝑐𝑐𝑐′ )𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 − 0.0016

 

 

0 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.001
0.001 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  < 0.0035

0.0035 ≤  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 𝜀𝜀𝑐𝑐𝑢𝑢
 

(18) 

In Ref. [17], the development of Eq. 18 was based on: (1) the experimental observation that 256 

the plastic strain is independent of the confinement level and has a linear relationship with the 257 

envelope unloading strain; (2) the limited test results by Rousakis [8], Ilki and Kumbasar [9] 258 

and Lam et al. [11] among which only Rousakis’s study [8] covered HSC. While the first 259 

observation has been continuously supported by new test results [13, 23], a recent 260 

experimental study on FRP-confined HSC by Ozbakkaloglu and Akin [13] suggested that the 261 

unconfined concrete strength does not appear to have a considerable effect on the envelope 262 

plastic strain. Ozbakkaloglu and Akin [13] also showed that Eq. 18 provides reasonably 263 

accurate predictions for their test results on NSC, but underestimates the plastic strain of 264 



envelope unloading curves ε𝑝𝑝𝑙𝑙,1 significantly based on their test results for HSC. 265 

 266 

To clarify this issue, the plastic strains obtained from Ref. [18] are shown against the 267 

corresponding envelope unloading strains in Fig. 4, where the trend lines for 𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 >268 

0.0035 are also shown. Table 2 summarizes the statistical characteristics of the trend lines 269 

for specimens in Table 1 including the three studies used in Ref. [17]. Fig. 4 confirms the 270 

linear relationship between the plastic strain ε𝑝𝑝𝑙𝑙,1 and the envelope unloading strain 𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒. 271 

Table 2, however, suggests that such a linear relationship is not significantly affected by the 272 

unconfined concrete strength. The coefficient a (i.e. the slope of the trend line) is further 273 

shown against the unconfined concrete strength in Fig. 5, which clearly indicates that this 274 

coefficient is similar for most specimens covering a range of unconfined concrete strength 275 

from 24.5 MPa to 105 MPa. The only exceptions appear to be the three HSC specimens 276 

tested by Rousakis [8] which had a lower a value. It should be noted that these three 277 

specimens were also the only HSC specimens used in Ref. [17] in developing Eq. 18, which 278 

includes the unconfined concrete strength as a controlling parameter. For further comparison, 279 

the predictions of Eq. 18 are also shown in Fig. 6(a), and are seen to significantly 280 

underestimate the experimental results of FRP-confined HSC from most studies including the 281 

present study. 282 

 283 

Based on the experimental results summarized in Table 2, the following equations are 284 

proposed for the plastic strain of envelope curves, where the unconfined strength is not used 285 

as a parameter: 286 

ε𝑝𝑝𝑙𝑙,1 =  �
0

0.184𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 − 0.0002
0.703𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 − 0.002

 
0 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.001

0.001 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.0035
0.0035 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 𝜀𝜀𝑐𝑐𝑢𝑢

 (19) 

In the development of Eq. 19, the two coefficients a and b are obtained by averaging the a 287 



and b values listed in Table 2 for all the specimens. Fig. 6(b) shows that Eq. 19 can provide 288 

reasonably accurate predictions for the majority of the test results and is far superior to Eq. 18 289 

proposed by Lam and Teng [17]. It should be noted that Eq. 19 implies that ε𝑝𝑝𝑙𝑙,1 is 290 

independent of the unloading stress, which is also consistent with the experimental 291 

observation [e.g. the 4th unloading curve of specimen S54-4FW-C1 and the 6th unloading 292 

curve of specimen S54-2FW-C1 have similar envelope unloading strains but quite different 293 

unloading stresses, and they also have similar plastic strains (see Fig. 2)].  294 

 295 

3.7. Stress Deterioration of Envelope Cycles 296 

It has been commonly observed (e.g. Ref. [11]) that the new stress 𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛,1 on the first 297 

reloading path at the envelope unloading strain is lower than the envelope unloading stress. 298 

This phenomenon is referred to as stress deterioration. Lam and Teng [17] proposed the 299 

following equations for the stress deterioration ratio 𝜙𝜙1 of envelope cycles:    300 

 301 

𝜙𝜙1 =  �
1

1 − 80(𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 − 0.001)
0.92

  
0 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.001

0.001 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  < 0.002
0.002 ≤  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 𝜀𝜀𝑐𝑐𝑢𝑢

  (20) 

where 𝜙𝜙1 is defined as  302 

𝜙𝜙1 =  
𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛,1

𝜎𝜎𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒
  (21) 

The performance of Eq. 20 is shown in Fig. 7 against the experimental results from Ref. [18]  303 

and two other studies published after Ref. [17]. Fig. 7 shows that Eq. 20 provides reasonably 304 

accurate predictions except for the envelope unloading strains 𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 which are between 305 

0.001 and 0.035. For this range of 𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒, the predictions of Eq. 20 appear to be on the 306 

lower bound. In order to address this deficiency of Eq. 20, the following equations are 307 

proposed based on all the available test data:   308 



𝜙𝜙1 =  �
1

1 − 32(𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 − 0.001)
0.92

  
0 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.001

0.001 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.0035
0.0035 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 𝜀𝜀𝑐𝑐𝑢𝑢

 (22) 

The predictions of Eq. 22 are shown to be better than Lam and Teng’s equation [17], 309 

especially for the cases where 0.001 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.0035 (Fig. 7). The use of 0.0035 310 

instead of 0.002 as a threshold is also consistent with the equation for the plastic strain (i.e. 311 

Eq. 19).  312 

 313 

3.8. Effect of Loading History 314 

It is evident from Ref. [11] on concrete confined with an FRP wrap and the new test results 315 

from Ref. [18] on CFFTs that the loading history has a cumulative effect on both the plastic 316 

strain and stress deterioration. The cumulative effect of loading history is considered in Lam 317 

and Teng’s model [17], but their proposed equations were based on only data from Ref. [11] 318 

where the maximum number of repeated loading cycles at a given unloading point was three. 319 

In this section, Lam and Teng’s equations [17] are evaluated against new test results from Ref. 320 

[18] where the maximum number of repeated loading cycles ranged from 9 to 12. Revisions 321 

to Lam and Teng’s equations [17] are then proposed wherever necessary.  322 

 323 

3.8.1. Partial unloading and reloading 324 

In some cases, an unloading curve is terminated before reaching the zero stress point, or a 325 

reloading curve is terminated before reaching the reference strain (defined in Eq. 25, 326 

normally equal to the envelope unloading strain). These cases are referred to as partial 327 

unloading and partial reloading respectively. In the present study, the following definitions 328 

for the partial unloading factor 𝛽𝛽𝑢𝑢𝑢𝑢,𝑢𝑢 and the partial reloading factor 𝛾𝛾𝑟𝑟𝑒𝑒,𝑢𝑢  are used to 329 

consider the effect of partial unloading/reloading, following Ref. [17]: 330 



𝛽𝛽𝑢𝑢𝑢𝑢,1 =  
𝜎𝜎𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 −  𝜎𝜎𝑟𝑟𝑒𝑒,1

𝜎𝜎𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒
 n = 1 

(23) 
𝛽𝛽𝑢𝑢𝑢𝑢,𝑢𝑢 =  

𝜎𝜎𝑢𝑢𝑢𝑢,𝑢𝑢 −  𝜎𝜎𝑟𝑟𝑒𝑒,𝑢𝑢

𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛,𝑢𝑢−1
 n ≥ 2 

 331 

𝛾𝛾𝑟𝑟𝑒𝑒,𝑢𝑢 =  
𝜀𝜀𝑢𝑢𝑢𝑢,𝑢𝑢+1 −  𝜀𝜀𝑝𝑝𝑙𝑙,𝑢𝑢
𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓,𝑢𝑢 −  𝜀𝜀𝑝𝑝𝑙𝑙,𝑢𝑢

 (n = 1, 2, 3, …) (24) 

where 𝜀𝜀𝑢𝑢𝑢𝑢,𝑢𝑢 , 𝜎𝜎𝑢𝑢𝑢𝑢,𝑢𝑢 , 𝜀𝜀𝑝𝑝𝑙𝑙,𝑢𝑢  and 𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛,𝑢𝑢  are the unloading strain, unloading stress, plastic 332 

strain, new stress at the reference strain of the nth loading cycle respectively; the reference 333 

strain point is defined by:  334 

𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓,1 =  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 n = 1 
(25) 

𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓,𝑢𝑢 =  max (𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓,𝑢𝑢−1,  𝜀𝜀𝑢𝑢𝑢𝑢,𝑢𝑢) n ≥ 2 

 335 
𝜎𝜎𝑟𝑟𝑒𝑒𝑓𝑓,1 =  𝜎𝜎𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 n = 1 

(26) 
𝜎𝜎𝑟𝑟𝑒𝑒𝑓𝑓,𝑢𝑢 =  �

𝜎𝜎𝑟𝑟𝑒𝑒𝑓𝑓,𝑢𝑢−1
𝜎𝜎𝑢𝑢𝑢𝑢,𝑢𝑢

   
 𝜀𝜀𝑢𝑢𝑢𝑢,𝑢𝑢  ≤ 𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓,𝑢𝑢−1
 𝜀𝜀𝑢𝑢𝑢𝑢,𝑢𝑢  > 𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓,𝑢𝑢−1

 n ≥ 2 

The following conditions proposed by Lam and Teng [17] for effective unloading/reloading 336 

cycles are also adopted in the present study: 337 

𝛽𝛽𝑢𝑢𝑢𝑢 ≥  0.7 and 𝛾𝛾𝑟𝑟𝑒𝑒 ≥  0.7 (27) 

 338 

3.8.2. Plastic strain of internal cycles 339 

Lam and Teng [17] proposed the following equations for plastic strains of internal cycles:  340 

𝜔𝜔𝑢𝑢 =  
𝜀𝜀𝑢𝑢𝑢𝑢,𝑢𝑢 −  𝜀𝜀𝑝𝑝𝑙𝑙,𝑢𝑢
𝜀𝜀𝑢𝑢𝑢𝑢,𝑢𝑢 −  𝜀𝜀𝑝𝑝𝑙𝑙,𝑢𝑢−1

 n ≥ 2 (28) 

 341 

𝜔𝜔𝑢𝑢 =  𝑚𝑚𝑚𝑚𝑛𝑛 �
1

𝜔𝜔𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 − 0.25(𝛾𝛾𝑟𝑟𝑒𝑒,𝑢𝑢−1 − 1)  n ≥ 2 (29) 

 342 



ω𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 (2 ≤ 𝑛𝑛𝑒𝑒 ≤ 5)

=  �
1

1 + 400(0.0212𝑛𝑛𝑒𝑒 − 0.12)(𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 − 0.001)
0.0212𝑛𝑛𝑒𝑒 + 0.88

 

0 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.001
0.001 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  < 0.0035

0.0035 ≤  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 𝜀𝜀𝑐𝑐𝑢𝑢
 (30) 

in which 𝜀𝜀𝑢𝑢𝑢𝑢,𝑢𝑢 and 𝜀𝜀𝑝𝑝𝑙𝑙,𝑢𝑢 are the unloading strain and plastic strain of the nth loading cycle 343 

respectively from an envelope unloading strain 𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒, with n=1 representing the envelope 344 

cycle; ω𝑢𝑢 is the strain recovery ratio; ω𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 is the strain recovery ratio for the case of 345 

𝛾𝛾𝑟𝑟𝑒𝑒,𝑢𝑢−1 = 1 (i.e. full reloading); and en  is the number of effective cycles. Lam and Teng [17] 346 

proposed that Eq. 30 is only applicable when 2 ≤ 𝑛𝑛𝑒𝑒  ≤ 5, and that ω𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 = 1 when 347 

𝑛𝑛𝑒𝑒 ≥ 6.   348 

 349 

The predictions of Eq. 30 are compared with the new test results of Ref. [18] in Fig. 8. The 350 

test results presented in Ref. [11] are also shown in Fig. 8 for comparison. Fig. 8 shows that 351 

Eq. 30 generally provides reasonably accurate predictions when 𝑛𝑛𝑒𝑒 < 5 for both concrete 352 

confined with an FRP wrap and concrete in CFFTs, but overestimates the test results when 353 

𝑛𝑛𝑒𝑒 ≥ 6. This is understandable as Eq. 30 was developed based on the limited test results with 354 

the maximum 𝑛𝑛𝑒𝑒 being 3. In order to address this deficiency of Lam and Teng’s model [17], 355 

the following equations are proposed for nω  based on regression analysis of the mean 356 

,n fulω  values from all the available test data (Fig. 8): 357 

ω𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 (𝑛𝑛𝑒𝑒 ≥ 2)

=  �
1

1 − 32(𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 − 0.001)/(𝑛𝑛𝑒𝑒 − 1)
−0.08/(𝑛𝑛𝑒𝑒 − 1)  +  1

 

0 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.001
0.001 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.0035

0.0035 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 𝜀𝜀𝑐𝑐𝑢𝑢
 (31) 

 358 

3.8.3. Stress deterioration of internal cycles 359 

Lam and Teng [17] proposed the following equations for stress deterioration ratios of internal 360 



cycles:  361 

𝜙𝜙𝑢𝑢 =  
𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛,𝑢𝑢

𝜎𝜎𝑟𝑟𝑒𝑒𝑓𝑓,𝑢𝑢
 (32) 

 362 

𝜙𝜙𝑢𝑢 =  𝑚𝑚𝑚𝑚𝑛𝑛 �
1

𝜙𝜙𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 − 0.2(𝛽𝛽𝑢𝑢𝑢𝑢,𝑢𝑢 − 1)  n ≥ 2 (33) 

 363 
𝜙𝜙𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 (2 ≤ 𝑛𝑛𝑒𝑒 ≤ 5)

=  �
1

1 + 1000(0.013𝑛𝑛𝑒𝑒 − 0.075)(𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 − 0.001)
0.013𝑛𝑛𝑒𝑒 + 0.925

 

0 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.001
0.001 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  < 0.002

0.002 ≤  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 𝜀𝜀𝑐𝑐𝑢𝑢
 (34) 

in which 𝜙𝜙𝑢𝑢 is the stress deterioration ratio of the nth loading cycle from an envelope 364 

unloading strain 𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒; 𝜙𝜙𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 is the stress deterioration ratio for the case of 𝛽𝛽𝑢𝑢𝑢𝑢,𝑢𝑢 = 1. 365 

Lam and Teng [17] proposed Eq. 34 for use when 2 ≤ 𝑛𝑛𝑒𝑒  ≤ 5, and that 𝜙𝜙𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 = 1 when 366 

𝑛𝑛𝑒𝑒 ≥ 6.  367 

 368 

The predictions of Eq. 34 are compared with the new test results of Zhang et al. [18] in Fig. 9. 369 

The test results presented in Ref. [11] are also shown in Fig. 9 for comparison. Similar to the 370 

observation for Lam and Teng’s equations [17] for plastic strains, Eq. 34 generally provides 371 

reasonably accurate predictions when 𝑛𝑛𝑒𝑒 < 5 , but overestimates the test results when 372 

𝑛𝑛𝑒𝑒 ≥ 6. In order to address this deficiency of Lam and Teng’s model [17], the following 373 

equations (Eq. 35) are proposed for 𝜙𝜙𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 based on regression analysis of the mean 𝜙𝜙𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 374 

values from all the available test data: 375 

ϕ𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙  =  �
1

1 − 80(𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 − 0.001)
−0.08/𝑛𝑛𝑒𝑒 + 1

/𝑛𝑛𝑒𝑒  
0 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.001

0.001 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 0.002
0.002 <  𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒  ≤ 𝜀𝜀𝑐𝑐𝑢𝑢

 (35) 

 376 

3.9. Reloading Path 377 

A reloading path is defined as the stress-strain path that the concrete traces as its strain 378 



increases from a starting point on an unloading path. Lam and Teng [17] proposed equations 379 

for the reloading path based on the test observation that the major part of each reloading path 380 

of FRP-confined concrete resembles a straight line. In Lam and Teng’s model [17], the 381 

reloading path consists of a linear first portion from the reloading strain 𝜀𝜀𝑟𝑟𝑒𝑒 to the reference 382 

strain 𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓, and a possible short parabolic portion for the remaining part to meet smoothly 383 

with the envelope curve.  384 

 385 

The linear portion of the reloading path is defined as follows: 386 

𝜎𝜎𝑐𝑐 =  𝜎𝜎𝑟𝑟𝑒𝑒 +  𝐸𝐸𝑟𝑟𝑒𝑒(𝜀𝜀𝑐𝑐 −  𝜀𝜀𝑟𝑟𝑒𝑒)  𝜀𝜀𝑟𝑟𝑒𝑒 ≤  𝜀𝜀𝑐𝑐 ≤  𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓 (36) 

where the slope of the linear portion is found from: 387 

𝐸𝐸𝑟𝑟𝑒𝑒 =  (𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛 −  𝜎𝜎𝑟𝑟𝑒𝑒)/(𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓 −  𝜀𝜀𝑟𝑟𝑒𝑒)  𝜀𝜀𝑟𝑟𝑒𝑒 ≤  𝜀𝜀𝑐𝑐 ≤  𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓 (37) 

In most cases, the linear portion is followed by a parabola from the reference strain point to 388 

the envelope returning point. In some cases, the reloading path consists of only a straight line 389 

that returns to the envelope curve directly at the envelope unloading point. These cases are 390 

[17]: (1) 𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 ≤ 0.001; (2) n = 1; 𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 > 0.001; 𝜎𝜎𝑟𝑟𝑒𝑒,1 > 0.85𝜎𝜎𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒; and (3) n > 1; 391 

𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 > 0.001; 𝜎𝜎𝑟𝑟𝑒𝑒,𝑢𝑢 > 0.85𝜎𝜎𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒. 392 

  393 

The parabolic portion of the reloading path is given as follows: 394 

𝜎𝜎𝑐𝑐 =  𝐴𝐴𝜀𝜀𝑐𝑐2 +  𝐵𝐵𝜀𝜀𝑐𝑐 + 𝐶𝐶  𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓 ≤  𝜀𝜀𝑐𝑐 ≤  𝜀𝜀𝑟𝑟𝑒𝑒𝑟𝑟,𝑒𝑒𝑢𝑢𝑒𝑒 (38) 

 395 

For cases where the reloading path returns to the parabolic first portion of the envelope curve, 396 

the parameter A is as follows: 397 

𝐴𝐴 =  
(𝐸𝐸𝑐𝑐 −  𝐸𝐸2)2�𝐸𝐸𝑟𝑟𝑒𝑒𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓 −  𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛� + (𝐸𝐸𝑐𝑐 −  𝐸𝐸𝑟𝑟𝑒𝑒)2𝑓𝑓𝑐𝑐𝑐𝑐′  

4�𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛 −  𝐸𝐸𝑐𝑐𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓�𝑓𝑓𝑐𝑐𝑐𝑐′ +  (𝐸𝐸𝑐𝑐 −  𝐸𝐸2)2𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓2  (39) 



𝜀𝜀𝑟𝑟𝑒𝑒𝑟𝑟,𝑒𝑒𝑢𝑢𝑒𝑒 =  
𝐸𝐸𝑐𝑐 − 𝐵𝐵

2𝐴𝐴 + (𝐸𝐸𝑐𝑐 −  𝐸𝐸2
𝑓𝑓𝑐𝑐𝑐𝑐′

)2
<  𝜀𝜀𝑟𝑟 

 398 

For cases where the reloading path returns to the linear section portion of the envelope curve, 399 

the parameter A is as follows: 400 

𝐴𝐴 =  
(𝐸𝐸𝑟𝑟𝑒𝑒 −  𝐸𝐸2)2

4(𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛 −  𝑓𝑓𝑐𝑐𝑐𝑐′  −  𝐸𝐸2𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓)
  𝜀𝜀𝑟𝑟𝑒𝑒𝑟𝑟,𝑒𝑒𝑢𝑢𝑒𝑒 =  

𝐸𝐸𝑐𝑐 − 𝐵𝐵
2𝐴𝐴

 ≥  𝜀𝜀𝑟𝑟 (40) 

 401 

The other two parameters, B and C, are as follows: 402 

𝐵𝐵 =  𝐸𝐸𝑟𝑟𝑒𝑒− 2𝐴𝐴𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓 (41) 

 403 
𝐶𝐶 =  𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛 − 𝐴𝐴𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓2 − 𝐵𝐵𝜀𝜀𝑟𝑟𝑒𝑒𝑓𝑓 (42) 

 404 

Apparently, the new stress 𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛, which determines the slope of the linear portion, is a key 405 

parameter for the reloading path. Given that 𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛 is accurately predicted by the new 406 

equations proposed in the present study (Eqs. 21-22，32-33, 35), it is reasonable to expect that 407 

Eqs. 36-42 can also provide close predictions for the test results of FRP-confined HSC whose 408 

reloading paths also have a major part resembling a straight line. Eqs. 36-42 are therefore 409 

adopted in the proposed model.  410 

 411 

3.10. Summary of the Proposed Model 412 

To summarize, the proposed cyclic stress-strain model for FRP-confined concrete includes 413 

2Eqs. 1-10 from Teng et al.’s model [26], Eqs. 11-14, 16, 23-29, 32-33, 36-42 from Lam and 414 

Teng’s model [17], and Eqs. 17, 19, 22, 31, 35 proposed in the present study. The process of 415 

generating cyclic stress-strain curves is similar to that explained in Ref. [17].  416 

 417 



4. PERFORMANCE OF PROPOSED MODEL 418 

The predictions of the proposed model are compared with the experimental results of Ref. [18] 419 

in Fig. 10 for envelope unloading/reloading cycles. The predictions of Lam and Teng’s model 420 

[17] are also shown for comparison. It is evident that the predictions agree very well with the 421 

experimental results in terms of the envelope stress-strain curve, except for the initial slope 422 

for some specimens. The difference in the initial slope is due to the use of strains calculated 423 

from the total axial shortenings (i.e. LVDT readings) in establishing the experimental curves 424 

[18]. As explained in Ref. [18], the strains from LVDTs are generally larger than those at 425 

mid-height in the initial stage of loading. If the actual axial strains of concrete at mid-height 426 

are used, it can be expected that the predicted initial slopes will be in closer agreement with 427 

the experimental results. 428 

 429 

It is also evident from Fig. 10 that the proposed model is superior to Lam and Teng’s model 430 

[17], especially for specimens in the S84 and S104 series. The proposed model generally 431 

provides reasonably accurate predictions, but considerable errors are also seen for some 432 

specimens (i.e. specimens S84-9FW-C and S104-9FW-C). The errors are found to be mainly 433 

from the inaccuracy in predicting the envelope plastic strain ε𝑝𝑝𝑙𝑙,1. The equation proposed in 434 

the present study (i.e. Eq. 19) for ε𝑝𝑝𝑙𝑙,1 is based on a regression analysis of all the available 435 

test data while there is considerable scatter in the test data (Fig. 6). When the experimental 436 

envelope strains of the three specimens (i.e. specimens S54-2FW-C1, S84-9FW-C and 437 

S104-9FW-C) are used, Fig. 11 shows that the proposed model compares very well with the 438 

test results and is far superior to Lam and Teng’s model [17]. The small error of the proposed 439 

model in terms of the predicted reloading path, especially for specimen S84-4FW-C (see Fig. 440 

11), is mainly due to the error in predicting the envelope stress-strain curve, as discussed by 441 

Zhang et al. [18]. 442 



 443 

Fig. 12 shows comparisons between the experimental results and the predictions of the two 444 

models (i.e. the proposed model and Lam and Teng’s model [17]) for repeated 445 

unloading/reloading cycles. In order to assess these unloading/reloading cycles clearly, each 446 

cycle is shown with the corresponding predicted cycle individually to avoid the 447 

over-crowding of curves at the same unloading strain. Only the 1st, 4th, 7th, and the last cycles 448 

are examined here. In Fig. 12, the experimental plastic strains of envelope cycles ε𝑝𝑝𝑙𝑙,1 are 449 

used instead of Eq. 19, in order to eliminate the effect of inaccuracy in this equation. Again, 450 

the proposed model is shown to be superior to Lam and Teng’s model [17] especially for 451 

specimens in the S84 and S104 series, suggesting that the proposed revisions for ω𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 and 452 

ϕ𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 can capture the effect of loading history.  453 

 454 

As evident from the development process of the proposed model, the proposed model 455 

basically reduces to and provides very similar predictions as Lam and Teng’s model [17] 456 

when the concrete strength is equal to 40 MPa and/or when the number of repeated cycles is 457 

no more than 3. That is, the proposed model is as accurate as, if not more accurate than, Lam 458 

and Teng’s model [17] for the results reported in Ref. [11], where NSC cylinders confined 459 

with an FRP wrap were tested. 460 

 461 

5. CONCLUSIONS 462 

An improved cyclic stress-strain model for FRP-confined concrete has been presented in the 463 

paper. The development of the proposed model has been based on a critical assessment of 464 

Lam and Teng’s model [17] by making use of a large test database containing new test results 465 

on both concrete in filament-wound FRP tubes and concrete confined with an FRP wrap, 466 

which were published after Ref. [17]. The proposed cyclic stress-strain model has the 467 



following new features: 468 

 469 

(1) It provides accurate predictions for the unloading paths of FRP-confined HSC. The 470 

degree of non-linearity of unloading paths of FRP-confined HSC is different from that 471 

of FRP-confined NSC. This characteristic is considered in the proposed model. 472 

(2) It provides accurate predictions for the plastic strain of FRP-confined HSC. The 473 

relationship between the plastic strain ε𝑝𝑝𝑙𝑙,1  and the envelope unloading strain 474 

𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 does not seem to be significantly affected by the unconfined concrete strength, 475 

so a new equation was proposed to capture this observation. 476 

(3) It provides accurate predictions of the effect of repeated loading cycles (i.e. ω𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙 477 

and ϕ𝑢𝑢,𝑓𝑓𝑢𝑢𝑙𝑙) based on the large test database.  478 

 479 

The proposed cyclic stress-strain model therefore provides reasonably accurate predictions 480 

for both NSC and HSC confined with either an FRP wrap or an FRP filament-wound tube. 481 

 482 
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(a) Envelope cycle 

 
(b) Internal cycles 

Figure 1: Key parameters of cyclic stress-strain curves of FRP-confined concrete 
(After Lam and Teng [17]) 
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Figure 2: Envelope unloading curves 
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Figure 3: Slope of the unloading path at zero stress  

 

 

 
Figure 4: Relationships between plastic strains and envelope unloading strains 
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Figure 5: Effect of concrete strength on plastic strain 
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(a) Eq. 18 (Lam and Teng’s [17] equation for ε𝑝𝑝𝑝𝑝,1) 

 
(b) Eq. 19 (Proposed equation for ε𝑝𝑝𝑝𝑝,1) 

Figure 6: Performance of equations for the plastic strain of envelope cycles 
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Figure 7: Performance of equations for the stress deterioration ratio of envelope cycles 
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Figure 8: Performance of equations for the strain recovery ratio of internal cycles 

 

 
Figure 9: Performance of equations for the stress deterioration ratio of internal cycles 
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(a) Specimens of Batch 1, 𝑓𝑓𝑐𝑐𝑐𝑐′ = 54.1 MPa 

  
(b) Specimens of Batch 2,  𝑓𝑓𝑐𝑐𝑐𝑐′ = 84.6 MPa 

  
(c) Specimens of Batch 3, 𝑓𝑓𝑐𝑐𝑐𝑐′ = 104.4 MPa 

Figure 10: Performance of the two stress-strain models for envelope unloading/reloading curves: 
predictions based on the predicted values of ε𝑝𝑝𝑝𝑝,1 
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(a) Specimens of Batch 1, 𝑓𝑓𝑐𝑐𝑐𝑐′ = 54.1 MPa 

  
(b) Specimens of Batch 2, 𝑓𝑓𝑐𝑐𝑐𝑐′ = 84.6 MPa 

  
(c) Specimens of Batch 3, 𝑓𝑓𝑐𝑐𝑐𝑐′ = 104.4 MPa 

Figure 11: Performance of the two stress-strain models for envelope unloading/reloading curves: 
predictions based on experimental values of ε𝑝𝑝𝑝𝑝,1 
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(a) Specimens of Batch 1, 𝑓𝑓𝑐𝑐𝑐𝑐′ = 54.1 MPa 

  
(b) Specimens of Batch 2, 𝑓𝑓𝑐𝑐𝑐𝑐′ = 84.6 MPa 

  
(c) Specimens of Batch 3, 𝑓𝑓𝑐𝑐𝑐𝑐′ = 104.4 MPa 

Figure 12: Performance of the two stress-strain models for repeated internal unloading/reloading 
curves; predictions based on the experimental values of ε𝑝𝑝𝑝𝑝,1 

    
0

20

40

60

80

100

  Axial strain

  A
xi

al
 st

re
ss

 (M
Pa

)

 

 
 Experimental un/reloading curve

 Lam and Teng,s model [17]
 Proposed model

S54-2FW-C2

Cycle 
1

Cycle 
4

Cycle 
7

Cycle 
10

= 0.01
    

0

20

40

60

80

100

120

140

160

  Axial strain

  A
xi

al
 st

re
ss

 (M
Pa

)

 

 
 Experimental un/reloading curve

 Lam and Teng,s model [17]
 Proposed model

S54-4FW-C2

Cycle 
1

Cycle 
4

Cycle 
7

Cycle 
10

= 0.01

    
0

50

100

150

  Axial strain

  A
xi

al
 st

re
ss

 (M
Pa

)

 

 
 Experimental un/reloading curve

 Lam and Teng,s model [17]
 Proposed model

S84-4FW-C

Cycle 
1

Cycle 
4

Cycle 
7

Cycle 
11

= 0.01
    

0

50

100

150

200

250

  Axial strain

  A
xi

al
 st

re
ss

 (M
Pa

)

 

 
 Experimental un/reloading curve

 Lam and Teng,s model [17]
 Proposed model

S84-9FW-C

Cycle 
1

Cycle 
4

Cycle 
7

Cycle 
9

= 0.01

    
0

50

100

150

200

  Axial strain

  A
xi

al
 st

re
ss

 (M
Pa

)

 

 
 Experimental un/reloading curve

 Lam and Teng,s model [17]
 Proposed model

S104-4FW-C2

Cycle 
1

Cycle 
4

Cycle 
7

Cycle 
12

= 0.01
    

0

50

100

150

200

250

  Axial strain

  A
xi

al
 st

re
ss

 (M
Pa

)

 

 
 Experimental un/reloading curve

 Lam and Teng,s model [17]
 Proposed model

S104-9FW-C

Cycle 
1

Cycle 
4

Cycle 
7

Cycle 
10

= 0.01



Table 1: Key information of cyclic compression tests in the database 

Specimen Name 

Unconfined 
concrete 
strength 
𝑓𝑓𝑐𝑐𝑐𝑐′ (MPa) 

Thickness of 
FRP 

𝑡𝑡 (mm) 

Elastic modulus of 
FRP 

𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓 (GPa) 

FRP hoop 
rupture strain 

𝜀𝜀ℎ,𝑓𝑓𝑟𝑟𝑓𝑓 

Ultimate 
axial 

strain 𝜀𝜀𝑐𝑐𝑟𝑟 

Confined 
concrete 

strength 𝑓𝑓𝑐𝑐𝑐𝑐′  
(MPa) 

Rousakis [8]: 150mm in diameter; 300 mm in height; wet-layup FRP wraps 
20c1L1C 26.5 0.17 

CFRP: 377 GPa in 
hoop direction 

0.00639 0.0153 44.1 
20c1L2C 26.5 0.34 0.00569 0.0208 61.6 
20c1L3C 26.5 0.51 0.00435 0.0244 70.2 
40c1L2C 49.5 0.34 0.00540 0.0133 79.2 
40c1L3C 49.5 0.51 0.00615 0.0181 104.0 
60ac1L1C 65.5 0.17 0.00517 0.0068 79.2 
60ac1L2C 65.5 0.34 0.00513 0.0102 90.3 
60ac1L3C 65.5 0.51  0.00559 0.0153 117.2 
60ac1L5C 65.5 0.85  0.00526 0.0181 137.9 
80c1L1C 68.5 0.17  0.00663 0.0076 83.2 
80c1L2C 68.5 0.34  0.00598 0.0098 107.2 
80c1L3C 68.5 0.51  0.00391 0.0110 108.2 

100c1L1C 95.0 0.17  0.00333 0.0056 97.6 
100c1L2C 95.0 0.34  0.00154 0.0053 98.2 
100c1L3C 95.0 0.51  0.00443 0.0098 129.6 

Ilki and Kumbasar [9]: 150mm in diameter; 300 mm in height; wet-layup FRP wraps 
3-14-S 32.0 0.165 

CFRP: 230 GPa in 
hoop direction 

0.0079 0.0144 47.2 
3-15-S 32.0 0.495 0.0108 0.0392 91.0 
3-18-S 32.0 0.825 0.0100 0.0432 107.7 

Lam et al. [11] : 152mm in diameter; 305 mm in height; wet-layup FRP wraps 
CI-SC1 41.1 0.165 

CFRP: 250 GPa in 
hoop direction 

0.0132 0.0134 60.2 
CI-SC2 41.1 0.165 0.0103 0.0117 56.8 
CI-RCa 41.1 0.165 0.0113 0.0120 56.5 
CII-SC1 38.9 0.33 

CFRP: 247 GPa in 
hoop direction 

0.0122 0.0244 81.5 
CII-SC2 38.9 0.33 0.0108 0.0189 78.2 
CII-RCa 38.9 0.33 0.0122 0.0234 85.6 

Ozbakkaloglu and Akin [13]: 152mm in diameter; 305 mm in height; wet-layup FRP wraps 
N-A-2L-C1 38.0 0.400 

AFRP: 120 GPa in 
hoop direction 

0.0150 0.0225 64.3 
N-A-2L-C2 39.0 0.400 0.0156 0.0225 64.3 
N-A-3L-C1 39.0 0.600 0.0176 0.0404 97.4 
N-A-3L-C2 39.0 0.600  0.0202 0.0443 104.5 
H-A-4L-C1 100.0 0.800  0.0124 0.0182 136.4 
H-A-4L-C2 102.0 0.800  0.0110 0.0163 125.4 
H-A-6L-C1 104.0 1.20  0.0116 0.0187 157.2 
H-A-6L-C2 106.0 1.20  0.0145 0.0213 170.9 
H-C-4L-C1 100.0 0.468 

CFRP: 240 GPa in 
hoop direction 

0.0069 0.0107 102.3 
H-C-4L-C2 100.0 0.468 0.0081 0.0106 96.0 
H-C-6L-C1 109.0 0.702 0.0064 0.0114 123.7 
H-C-6L-C2 105.0 0.702  0.0081 0.0116 129.9 



Wang et al. [23]: 204mm in diameter; 612 mm in height; wet-layup FRP wraps 
C2H0L1C 24.5 0.167 CFRP: 244 GPa in 

hoop direction 
0.0145 0.0194 42.3 

C2H0L2C 24.5 0.334 0.0136 0.0382 66.8 
Zhang et al. [18]: 200mm in diameter; 400 mm in height; filament-wound FRP tubes 

S54-2FW-C1 54.1 2.2 

GFRP: in hoop 
direction 45.9 GPa;  

 

0.0108 0.0176 86.0 
S54-2FW-C2b 54.1 2.2 0.0111 0.0189 88.7 
S54-4FW-C1 54.1 4.7 0.0168 0.0442 161.7 

S54-4FW-C2 b 54.1 4.7 0.0169 0.0443 159.4 
S84-4FW-C b 84.6 4.7 0.0110 0.0239 152.3 
S84-9FW-C b 84.6 9.5 0.0105 0.0322 236.2 
S104-4FW-C1 84.6 4.7 0.0132 0.0258 179.6 
S104-4FW-C2 b 104.4 4.7 0.0109 0.0238 167.6 
S104-9FW-C b 104.4 9.5 0.0093 0.0261 236.4 

a Specimens tested by Lam et al. [11] which were subjected to 3 unloading/reloading cycles at each prescribed unloading 
displacement level; 
b Specimens tested by Zhang et al. [18] which were subjected to 9~12 unloading/reloading cycles at a prescribed 
unloading displacement level. 

Table 2: Linear relationships between unloading strains and plastic strains 

Source of test data 
Unconfined concrete 

strength 𝑓𝑓𝑐𝑐𝑐𝑐
′  (MPa) 

ε𝑝𝑝𝑝𝑝,1 = 𝑎𝑎𝜀𝜀𝑢𝑢𝑢𝑢,𝑒𝑒𝑢𝑢𝑒𝑒 + 𝑏𝑏 
R2 

a b 

Rousakis [8] 

26.5 0.744 -0.0006 0.987 
49.5 0.737 -0.0020 0.981 
65.5 0.601 -0.0015 0.981 
68.5 0.603 -0.0015 0.968 
95.0 0.467 -0.0013 0.999 

Ilki and Kumbasar [9] 32.0 0.713 -0.0019 0.994 

Lam et al. [11] 
38.9 0.714 -0.0016 0.998 
41.1 0.703 -0.0014 0.996 

Ozbakkaloglu and Akin [13] 

38.0~39.0 0.736 -0.0016 0.999 
39.0 0.743 -0.0017 0.999 

100.0~102.0 0.805 -0.0021 0.996 
104.0~106.0 0.775 -0.0022 0.998 

100.0 0.760 -0.0020 0.995 
105.0~109.0 0.760 -0.0023 0.999 

Wang et al. [23] 24.5 0.815 -0.002 0.999 

Zhang et al. [18] 

54.1 0.665 -0.0030 0.993 
54.1 0.764 -0.0034 0.998 
84.6 0.708 -0.0027 0.989 
84.6 0.638 -0.0028 0.996 
104.4 0.695 -0.0031 0.997 
104.4 0.614 -0.0024 0.998 
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