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A B S T R A C T

Measure theory provides one of the most inviting areas in which 

the transfinite and infinitesimal numbers of non-standard analysis may 

be applied. This is so because their use becomes not just a convenient 

tool but an essential requirement for a generalization of the theory.

In Chapter 1 we use a set-theoretic approach to non-standard 

analysis and establish the basis for our subsequent work. The process 

involves injective maps (monomorphisms) and allows us to contrast the 

technique with that using the more concrete but less direct ultrapower 

method. The chapter provides sufficient framework to allow the self- 

contained examination of the basic properties of the extended real line 

carried out in Chapter 2.

Non-standard measure theory is developed in Chapter 3 where we 

construct a premeasure F and use it to define a non-standard measure 

y as an extension of Lebesgue measure to all sets on the real line.

The measure is constructed as a point measure such that its standard 

part agrees with Lebesgue measure where the latter is defined. It is 

finitely additive in the sense of non-standard analysis and thus provides 

a natural solution to the "easy problem of measure" solved first by 

Banach.

In Chapter 4 we show that all sets on the real line are measurable 

in the sense of y and apply it to some well known subsets of R to 

find approximate non-standard measures for them. We also obtain some 

non-standard cardinality results for our premeasure F by taking standard 

parts of our measure in those cases where the set under consideration is a 

standard set which is Lebesgue measurable.
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CHAPTER 1. NON-STANDARD ANALYSIS

INTRODUCTION

Ever since the foundations of calculus were established late in 

the 17th century by both Newton and Leibniz, its concepts were easily 

explained if one assumed an enlarged real number system which includes 

both infinitely small and infinitely large numbers thought of as "ideal" 

elements. Unfortunately Leibniz and his followers were never able to 

state with sufficient precision just what rules were supposed to govern 

their new system. It is thus not surprising that calculus developed 

more as a descriptive science than as a deductive logical system, and 

as the axioms of the real number system emerged it became clear that 

the existence of infinitely small and infinitely large real numbers 

was inconsistent with these axioms.

To overcome this dilemma, the infinitesimal calculus was 

reformulated in the nineteenth century and the intuitive insights of 

Leibniz replaced by the sound but abstruse e, c approach of Cauchy 

and Weierstrass. Since then there have been many mathematicians, more 

recently Schmieden and Laugwitz [22], who have tried to revive Leibniz's 

ideas by proposing an extended concept of real numbers on which to base 

analysis. Based on a generalization of Cantor's construction of the 

reals, their enlarged number system is however in a certain sense too 

large in that it contains not only finite, infinitely small and infinitely 

large numbers but also numbers of an indeterminate size.

In [19] Robinson 

order language to show 

field of real numbers

formulates 

that there 

R , which i

the properties of R in a first 

exist proper extensions *R of the 

n a certain sense have the same

formal properties as R . It is well known that fields which are proper
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extensions of R are non-Archimedean, so that *R must contain the 

infinitely small and infinitely large numbers required by Leibniz.

This appears paradoxical at first since we stated above that *R has in 

some sense the same properties as R . There is however no paradox 

since the statement asserting that *R has the same properties as R 

refers only to a specified collection of properties of R which are 

formulated in a certain formal language. Statements of this language 

have specific interpretations in R as well as in *R , and reinter

pretations of higher-order properties like the Archimedean property do 

not retain their full metamathematical strength. This weak interpretation 

in the extension gives rise to a class of sets called ’’internal sets" 

which the formal language knows about; these have the "same properties", 

the external ones do not.

In [18] Robinson works within a type-theoretical version of higher 

order logic. The types he uses are in a certain sense like intuitive 

set theory; unfortunately their formal description makes them seem 

obscure. Other authors have independently presented variants of 

Robinson's theory [16], which however along with certain advantages 

still do not completely eliminate the complexity of the original theory.

Here we choose to develop the subject using the comparatively simple 

set-theoretic approach in [20] and [26] which is based on the fact that 

the various branches of mathematics can all be thought of as embedded 

in set theory. Thus the basic concepts of analysis can be defined in 

terms of sets and the membership relation within a formal first order 

language whose variables range over sets or points and whose constants denote 

certain sets or points. We also employ the "ultrapower" construction 

due to J. Los, which was developed further by Luxemburg.
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1.1 SUPERSTRUCTURE MODELS OF ANALYSIS

. . . AIn this section we introduce a superstructure R as a set

constructed on the ground set of real numbers R and large enough to
. A

contain standard analysis in the algebraic theory of (R, = , e) , where 

= and e denote respectively the standard predicates of equality and 

set membership.

We define the following sets inductively:

n = 0,1,2,...R = R , R - = P o ' n + 1
n
u Rkk=0 K

where P(X) denotes the set of all subsets of X .

Definition 1.11 The union R = (J R^ , together with the notions
n=0

A
of equality and membership on the elements of R is called the 

superstructure based on the ground set Rq .

We often refer to the set-elements of R as the entities of R

and to those elements contained in R = R as the individualso
A

("Urelemente") of R . Since individuals are not sets we see that if

a e Rq , x i a for all x ; consequently Rq n R^ = <f> (the empty
n

set) for n > 0 and II R. = R u R .
kVo k 0 n

The properties of R follow from the set theoretic properties 

of its entities and by definition we have:

1. 12 (i) <P «: R
A

(ii) R € Rn
(iii) If y

ows si.nee y e

1

(iii) If y is an entity and x c y , then x is an entity
a n
R means that y e R - , thus II R. d y d x 

J n + 1 k - y -k=0
so that x £ R
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(iv) If x is an entity then P(x) is also an entity.
A A

Each entity of R is a subset of R , since x e R .. and

x £ R_ u R ç R . Thus P(x) ç P(R u R ) = R , and by 1.12 (iii) o n  v o n n+1 J y Jn+1
is therefore an entity.

A
The above serve as an example of some of the properties of R 

which are a consequence of the entities it contains. In dealing with
. . . Aentities it should be observed that not all arbitrary subsets of R are
. . Aentities, but only those sets which are also elements of R .

We adopt the definition of ordered pairs as (x,y) = |{x},{x,y} 

and of n- tuples defined inductively as (x) = x ,

From this it follows that functions and n-ary relations whose domains 

and ranges are entities are themselves entities. In particular a binary

relation E is a binary relation entity of R if and only if its domain 

D(E) = {x : (3y)(x,y) e E} and range D'(E) = {y : (3x)(x,y) e E} are

elements of R .

In what follows the notion of equality is assumed to be given and
Afor entities is the set-theoretical notion. Thus entities x,y of R 

are equal if and only if (Vz)(z e x = z € y) , that is entities are equal 

if and only if they have the same elements.

The algebraic operations of R can be defined in terms of the 

three place relations below:

A

A

A = {(a,b,c) : a,b,c e R and a + b = c} , for addition, and

M = {(a,b,c) : a,b,c € R and a . b = c} , for multiplication,

while the order relation is the binary relation

E = {(a,b) : a,b c R and a < b} .
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This illustrates that all mathematical concepts and objects of 

standard analysis can be embedded in the entities of R , so that they 

become part of the algebraic theory of (R, = , e) .

1.2 THE FORMAL LANGUAGE L * (i) (ii) (iii) (iv) (v)

The advantage of introducing a formal language L is that it allows 

us to express statements concerning mathematical objects systematically 

and with great precision.

Here we adopt a first order language with the basic predicates 

e (read "member of") and = (read "equal to").

The atomic symbols of L are:

(i) The logical connectives a , v } d , e , ~ for "and", "or", 

"implies", "if and only if" and "not" respectively.

(ii) Variables; a countably infinite sequence usually denoted 

by x,y,..., with or without subscripts.

(iii) Quantifiers; which are the universal quantifier denoted by 

(Vx) and the existential quantifier denoted by (3x) .

(iv) Separating symbols [ and ] .

(v) Extra logical constants, which form a set of larger 

cardinality than the cardinality of the set of elements of whatever 

mathematical system we may subsequently wish to consider.

AIn considering R this ensures that there is a one-to-one
A

correspondence from a subset of the set of all constants of L onto R . 

If an object under consideration has already an accepted name, for 

example "the empty set" or 1,2,3,... for the natural numbers or "log"
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for the logarithmic function, we adopt the convention of using this name 

also as the corresponding constant symbol of L . We now identify all
A ,

elements of R with the appropriate subset of constants of L , so that
A

elements of R are recognizable in L by their usual names. For example, 

the binary order relation £ on R defined above is denoted by the 

constant E of L which stands for the element {(a,b) : a,b e R a a < b}
A

of R^ in R .

AHaving established this identification we refer to R as an L
A

superstructure and note that R becomes a part of L as a subset of the 

set of all constants of L .

The atomic formulas of L are obtained by combining £ and = 

in the usual way with constants or variables; e.g. x £ y , a = b ,

(x, , x0, ..., x ) £ y . From these the well formed formulas (wff.) are 

now formed through the use of connectives and quantifiers with appropriate 

placement of the separating symbols [ (left hand square bracket) and 

] (right hand square bracket). A wff. of L is called a sentence 

provided every variable x contained in it is within the scope of (Vx) 

or (3x) , or in the expression (Vx) or (3x) .

Definition 1.21 A formula of L is said to be bounded when the 

quantifiers always appear at the start of subwffs. of the following forms:

(i) (Vx) [x £ A]  ̂W(x) and

(ii) (3x) [x £ B] a W(x) , where W(x) is a wff. and A
A

and B are entities of R , that is constants of L . Set theoretically 

this corresponds to specifying which entities we are quantifying over.

We now develop interpretations of L , so that we can find a
a .relationship between R and L both viewed as mathematical objects m

the metalanguage of our text.
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Let L - L (-,e) be the formal language described above.

Definition 1.22 A one-to-one mapping I of a subset of the set of 

all constants of L into a superstructure is called an interpretation 

map of L in set theory.

Here the basic predicates = and e are always interpreted in 

the usual set-theoretic way; this is what we mean by an interpretation 

in set theory in the definition.

A
For our L-superstructure R we have made standard identifications

A
of elements of R as constants in L , which enables us to talk about

s aa standard interpretation map I from R as a subset of the set of all
A

constants of L onto (R, = , e) . Note here that the ability to

interpret does not require that the interpretation is true; specifically

if y is an individual then x e y has to have a false interpretation 
s • ^for x e D( I) (i.e. elements of R), but has no interpretation when 5

5x i D( I) . We retain maximum contact with our metalanguage by 

interpreting the logical connectives as their metamathematical counterparts.

From definition 1.21 we see that since each quantifier in a bounded 

formula is specified to run over a constant, the interpretation of

V = (Vx) [x 6 A] => W(x) IS

ST s tI s iV = "for elements x of 1(A) , the statement W(x)",
s iwhere W(x) denotes the portion of the formula already interpreted

swhere free occurrences of x are replaced by the elements of 1(A) 

Similarly the interpretation of

V = (3 x) [x e A] a W(x) is

S t SI Q IV = "there is an x in 1(A) such that W(x)" .
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A
We now show that (R, =, e) is a set-theoretical model of standard 

analysis based on the definition of a model given below.

Definition 1.23 An interpretation map I provides a model for a 

set of bounded sentences K in set-theory provided all the constants 

occurring in sentences of K are in the domain of I and provided the 

interpretation is true for each V in K .

Since I : L -► (R, =, e) is the standard interpretation map for

L , we see that every bounded sentence V of such a set K , whose
s Aconstants are in the domain of I has an interpretation m  R .

Consider now the set Kq of all the bounded sentences V of L such
S I A A

that V holds in R . By definition (R, =, e) is a model for Kq 

under our standard interpretation SI and in particular a standard set- 

theoretical model of analysis.

Definition 1.24 Suppose °I is an interpretation mapping from a
A

subset of constants of L into a superstructure (B, =, e) , such that

°I provides a model for K . If °I/R = * (that is °I with domain
00

restricted to R ) is one-to-one but not onto the set u (w® denote
a n=0

this union by *(R)} we say that the subset (*(R), =, e) of the super
A A .

structure B , is a non-standard set-theoretical model of l(R), =, eJ •

n AHere we see that I restricted to R reinterprets each element 

a e R as °I(a) = *a in *(R) . Since °I is one-to-one but not onto, 

*(R) must by definition contain all elements of R as well as other
A A

interpreted constants °I(c) , c e L - R , so that *(R) is a proper
A

extension of R .

In section 1.3 we produce a non-standard set-theoretical model of 

R by giving the axioms of an injective map $ (monomorphism) from
A A A(R, =, e) into (B, =, e) which ensure that $ produces *(R) as 

required by the above definition.



9.

1.3 NON-STANDARD MODELS OF R. MONOMORPHISMS

A
We now show that given (R, = , £) there is a larger superstructure

A A A
(B, =, e) and an embedding 4 : R B which preserves the mathematical

A
structure of (R, =, e) . One way to preserve the mathematical structure 

is to introduce all of the structure as part of the formal language L 

which may then be reinterpreted in certain ways. We demonstrate this 

later; here we give the axioms of an algebraic injection 4 which 

preserves the operations = and e . We modify our notation to comply
A

with common usuage and for A an element of R , write *A for $(A) .

Note that this is the same notation as that used in definition 1.24 for 
o ^I-images of elements of R . Since we ultimately show that 4 is an 

interpretation mapping in the sense of the definition we adopted the 

*- notation there to minimize notational proliferation.

A
Let (R, =, e) be the superstructure based on the set of

individuals Rq = R and (B, =, e) be another superstructure based on

the ground set B = *R .6 o o
A A

Definition 1.31 The mapping 4 : R -► B is a superstructure
A

monomorphism of R if it is a one-to

propositions :
A

(i) If A is an entity of R ,

*{ (x ,x) : x £ A} = { (y,y)

(ii) If A is an entity and a £ A

(iii) *{a 1 ’ a 2 ’ • •' an } =
{*a r  d2 *

(iv) *(p = 4 > *(A u B) = *A u *B ,

* (A - B) _ *A - *B , ★ (A x B)

(V) 4 preserves domains and range:

e.g . D(* 4) = *D(4) > D '(*4) :

A
one map defined on R satisfying

: y £ *A) .

, then *a £ *A .
A

. . . *an) , for a ^  a2, • • • an £ R •

*(A n B) = *A n *B ,

= *A x *B , for entities A and B .

of n-ary relations,

*D'0) ,



10.

and commutes with permutations of the variables, that is if 

(x,y) e \p if and only if (y,x) e \p , then (z,w) e *\p if 

and only if (w,z) e *ip .

(iv) If A is an entity

*{(x,y) : x e y e A} = {(z,w) : z e w e *A} .

(vii) *A 2 , with equality iff A is a finite set; here

$[A] = (*a : a e A} .

By definition we see that $ preserves = and € as well as finite 

sets and the basic set operations. Further note that $ preserves the 

atomic standard definition of sets (property 1.31(vi)) and produces a proper 

extension *A => $[A] for A infinite.

A
The set of individuals of B is *R , the $- extension of R .

The properties of the non-standard individuals in *Rq are "the same" 

as in Rq , but the higher order properties only transfer to a restricted
A

class of sets in B called internal sets. The description of those 

properties could be done ad hoc one at a time as required from the 

monomorphism axioms above.  ̂It is however, easier to utilize the formal 

language L and develop a systematic method of interpreting formulas
A A A

in R and the image *(R) c B .

The existence of *- maps will not be demonstrated until section 

1.4, where we show that ultrapower models of R give rise to monomorphisms 

as non-standard interpretation maps °I in the sense of definition 1.24, 

and provide a simple method namely the *- transform which allows us to
A A

transfer from R to *(R) and requires only a little care with 

quantifiers.

A
*(R)

Given a monomorphism 4 : R -+ B as in definition 1.31 we define
oo

U  *R , see T201 and introduce the notions of standard, internal w  n n=0
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and external elements of B as follows:

Definition 1.32 An element a e R is called standard and *a is

termed a $- standard (briefly, standard) element of B . Any element 

of a standard entity of B is called a internal (briefly, internal) 

element; other entities of B are called external.

It is in view of definition 1.32 that we refer to $[A] = (*a : a £ A)
A A

as the embedded standard copy in B of the entity A £ R . The standard 

subsets of a standard entity *A are the elements of $[P(A)] . The 

internal subsets of *A are the elements of *P(A) , while the external
A

subsets of B are the elements of P(*A) that are not internal. For
A

general A £ R we have $[P(A)] <= *P(A) ç P(*A) where the inclusion 

is strict if A is infinite. We prove this in Chapter 2, where we deal
A A

with external subsets of B to show that for infinite A £ R ,

P(*A) - *P(A) t <J> .

A A
Since R is a model of Kq , any theorem of R is formalizable 

as a bounded sentence of Kq provided it is written so that its
A

quantifiers are specified to run over specific entities of R . Since we can 

transfer "all properties with bounded quantifiers" we would at first
A a

expect *(R) to be isomorphic to R . That this is not the case follows 

from the restrictions of the method of transfer which we define below.

Definition 1.33 IIf V £ K , form V and put a * on each ---------------- o .s. Iinterpreted constant, the result is then the *- transform $[ \j of V.

To simplify our notation we now talk simply about V £ Kq holding
a ^ T a .

in R to mean that V is true in R ; we revert to talking about 

I when discussing the actual mapping.
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The meta-theorem 3.2 of [20] proves that the axioms of 4 imply
A

that the image *(R) is a non-standard model of K by showing that
A

any bounded sentence V of K holds in R if and only if itso J

*- transform *V holds in *(R) .

From the transfer constraints and our remarks about the entities 

of R we see that a statement like "every subset of N has a first 

element" is not permissible but must be replaced by "every element of 

P(N) has a first element". We will return to this case in our discussion 

of internal and external subsets of *R in Chapter 2.

We now state a general transfer principle which follows from our 

discussion above and as a consequence of our explicit ultrapower 

construction in section 1.4, which we prefer in the interest of 

concreteness.

A
1.34 Transfer Principle A sentence in R that has a bounded 

formalization in L is true if and only if its *- transform is true.

In [26] Zakon uses a version of 1.34 as part of his monomorphism 

definition. As indicated earlier we will now demonstrate the use of our
A A

transfer method from R to *(R) via the *- transforms of definition 

1.33. The transfer principle guarantees that the transfer really works, 

provided we take the necessary care with quantifiers.

A
1.35 Let a, b, a ^  a2> ... an be elements of R , then:

(i) a e b = *a e *b

(ii) (a-p a2> ••• an) e b - (*a >̂ *a2’ an̂  € k

(iii) a £ b h *a £ *b

(iv) a = b e *a = *b

fv) a e R = *a e B . v J o o
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Properties 1.35 (i), (ii) and (iv) are immediate from the

definition of 4> and (v) is a special case of (i) with Bq = *Rq . 

To prove (iii) note that a c b stands for the bounded sentence

(Vx) [x e a] 3 x e b 

to its *- transform (Vx) 

a c b e *a c *b .

which by our transfer principle is equivalent

[x e *a] 3 x £ *b , that is

We do not give other specific examples at this stage since the 

extensive use of *- transforms in later chapters is necessarily required 

to make true statements in non-standard analysis and will serve as 

further examples. We now use the ultrapower construction to show that 

the monomorphism as required by definition 1.31 exists and give concrete
A

examples of the *- images of entities of the superstructure R .

1.4 ULTRAPOWER MODELS

In this section we show that non-standard set-theoretical models 

of (R, =, £) can be constructed using the ultrapower method. The 

method has the advantage of being a concrete approach (see [1]) and 

provides a general technique for generating set-theoretical monomorphisms
A

as non-standard ultrafilter-dependent interpretation maps for R . 

Diagrammatically this can be depicted as:

L

A * A
$ : (R, =, e) ----------------- > (B, =, £)
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swhere I is the standard interpretation map discussed in section 1.2

and °I is a non-standard interpretation map (meaning here as distinct 
s afrom I) from R as a subset of the set of all constants of L into

A
the superstructure B .

As we will see below, things are not quite as straight forward as 

they may appear, in particular we need to use the ultrapower method in 

constructing °I . The ultrapower technique serves only as a tool. Once 

we have used it we dispense with ultrapowers by reverting back to dealing
A

with the superstructure (B, =, e) based on the set of individuals

°I(R) = B . This allows us to talk about °I as a non-standard o
interpretation map in set theory and produce a non-standard set-theoretical

A
model of (R, = , e) . We now employ the ultrapower technique to

A
constructively exhibit non-standard internal elements of B which are

A
needed to ensure that in B we obtain proper extensions of infinite

A
entities A of R , as required by our monomorphism axioms. How we 

actually achieve this is outlined in the following sections.

Definition 1.41 Let J be a countable set. A non-empty set U of 

subsets of J[<J> c u c P(J)] is called a free ultrafilter provided

(i) <J> e U (PROPER FILTER) .

(ii) If A and B e U , then A n B e U (FINITE INTERSECTION PROPERTY).

(iii) If A e U and B e P(J) and if A £ B then B e U (SUPERSET 

PROPERTY).

(iv) If B e  P(J) , then either B e U or 

J - B = { j e J : j ^ B } e U  (MAXIMALITY).

(v) No finite subset of J is an element of U (FREENFSS).
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The ultrafilter U is said to be 6- incomplete whenever there

exists a sequence F^ £ U > n = 1,2, ..
oo

. such that fi F £ U .1 nn=l
If a given ultrafilter U over J is 6- incomplete, then there exists

a countable partition {Jn : n = 1,2, . ..} of the set J such that

JR £ U for all n =  1,2,... .

To show this consider the decreasing sequence F e U , n = 1,2,3,...
oo

such that f| F = £ U . Letting J = J - F , we have J £ U ,\ n & n n nn=l
for all n = 1,2,3,... while

OO
U j
n=l n u

n=l
J - Fn

= j - n  f
n-l n

= J e U ,

so that the subsets as defined constitute a countable partition of

J with £ U , n = 1,2,... as required.

Let U be a 6- incomplete ultrafilter of subsets of J and consider
A J A
R , the set of all mappings of J into R .

aj
The reason we deal with R is that there is a self-evident

A J
interpretation mapping from a subset of constants of L into R which

A
interprets each constant of L which is an element of R as the

A J A
respective constant sequence in R . Thus any a £ R is interpreted

A j A A J
in R as the constant sequence a ' : J -* R of R defined by

a ' ( j ) = a for all j £ J .

a j
For example the positive integer 5 is interpreted in R as the 

constant sequence 5' = (5,5,5,...) ; similarly R is given by 

Rj' = (R1,R1,R1,•.•) in RJ .
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Till now we have produced nothing new except for reinterpreting

elements of R as constant sequences in R . That we do obtain
a atsomething other than sequence extensions of elements of R in R 

is a consequence of the following ultrafilter-dependent extension of 

the undefined basic predicates = and e of L to R1̂ .

A 7
Definition 1.42 If a,b e R , then 

a =u b = {j : a(j) = b(j)} e U and

a £u b e (j : a(j) e b(j)} £ U .

ASince J £ U it follows that for a,b £ R we have:

1.43 (i) a = b e a 1r = b* u and

(ii) a £ b e a1' £ b ’ u 9

so that the relations = and u £U are indeed U-extensions of = and
A

e of R as suggested.

In view of definition 1.42 we denote our interpretation map for 
^ J uR by I to indicate its U-dependence.

As stated earlier the U-dependent interpretation of = and £
A J A A J

in R is to allow us to produce proper extensions of R in R .

In particular we show in Chapter 2 that as a consequence of the U~
AJdependent interpretation of the binary relation £ of L in R we 

are able to construct an individual in UI(R) = R' , which is larger 

than any standard real number in R . Thus R' is a proper extension 

of R since R' - R j- <p . The infinitesimals, which are the foundation 

of non-standard analysis, are then obtained as the non-standard elements 

in R' which are the inverses of the "infinite" elements of R* - R .

We now examine a consequence of the ultrafilter-dependence of 

definition 1.42. With a * ub e {j : a(j) * b(j)> £ U and 

a 1 b = (j : a(j) l b(j)} £ U we see that either a = ^b or a * b̂,
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and either a e b or a i b . The proof follows from the ultrafilter 

properties and we verify it for to illustrate the technique. Let

a,b € RJ , and set = {j : a(j) e b(j)} and = {j : a(j) i b(j)} .

Since Tj u = J e U , it follows from 1.41 (iv) that either or

J - T1 = T belongs to U so that either a e b or a k b .

Note also that = as defined is an equivalence relation in R1̂ .

That = is reflexive and symmetric is clear; that it is transitive

follows from definition 1.41 since:
AJLet a,b,c e R , with a = b and b = c ;u u

then Tj = {j : a (j) = b(j)} e U and

T2 = {j : b(j) = c(j)} e U ,

thus T3 = {j : a (j) = c(j)}

2 Ti n T2 e U by 1.41 (ii) .

Thus T^ e U by 1.41 (iii) and a = c as required.

As another concrete example we now show that 5' A ’ , where

R 3 A = {2,3,5} .

Proceeding from first principles we see that 5? is the constant
AJ

sequence c R given by 5'(j) = 5 for all j e J . Similarly since 

A* is the constant map A ’ : J -► R^ , such that A ’(j) = {2,3,5} for 

all j £ J we have 5 ’ (j) e A'(j) for all j e J , so that 

{j : 5'(j) e A'(j)} = J c U and 5' ^  A' as required.

The algebraic operations in R^ are introduced pointwise and 

U-dependent, that is for a,b e R^ :

(1) a + b = c if and only if {j : a(j) + b(j) = c(j)} € U .

(2) a . b = c if and only if {j : a(j) . b(j) = c(j)} e U .

(3) a <u b if and only if {j : a(j) < b(j)} e U .
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Thus 2 ’ . 3' = 6 ' in RJ , since 2' = (2,2,2,___) and

3’ = (3,3,3,....) . Multiplying pointwise, 2’ . 3' = (6,6,6,....) = 6* 

and since (j : 6’(j) = 6} = J e U , our result follows by (2) above.

Note that the 6- incompleteness of U assures that whenever A
• • • • •  ̂ Jis an infinite entity of R , there are sequences in A which are
• • J a Jmequivalent mod U to all constant sequences in A , so that R is

a proper extension.

For example since R is an infinite entity of R there exists a

sequence (a : n = 1,2,. . .} of elements of R such that a  ̂ a forn n m
all n,m= 1,2,... and n  ̂m . Consider the sequence a of J into

R such that a(i) = a J J n for all j e J (elements of our J n countable
A T

partition of J discussed earlier) and n = 1,2,3,... . Then a e R ,
00

in fact a e R' but a is not equal to any element b f of U R '
n=0 n

(denoted in what follows by (R)'). Thus not all sequences in R^

are generated by our interpretation map UI ; this makes the construction

useful and is the origin of the internal-external terminology. However
U Ait is clear that our interpretation map I embeds R into the subset 

(R)? of R^ via the constant sequences.

It can be shown by using properties 1.41 (i)-(v) of our 6- incomplete
A

ultrafilter U that one by one all Kq sentences of L hold in (R)’ 

under the extended U-dependent interpretation of our basic predicates.

We do not intend doing this here but refer to [7] where it is shown that
A U
(R)’ is a model of Kq under the interpretation I defined above.

However since we want a non-standard set-theoretical model of Kq 
a jwe now embed part of R in set theory by making = into ordinary 

equality and ^  sets into real sets. This process is part of the
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construction of °I as an interpretation in set theory and will give

us the full non-standard set-theoretical model in the sense of

definition 1.24. Here we follow the approach in [20] where the process

is called "collapsing"; in [16] Machover and Hirschfeld use an

alternative approach and introduce "pseudosets": the internal map sets 
A Jof R and "real" sets.

Aj
The reason we embed part of R in an ordinary superstructure is 

that we want to be able to compare sets and functions which arise as
A jsequences in R with arbitrary ones. For example in Chapter 2 we see 

that the set of infinitesimals in 4(R) = *R is a collection of all the 

real-valued sequences x(j) e R^ which satisfy - pj- £ x(j) £ for 

each constant sequence i , n e N . This is a real set and its elements 

are described bv the metamathematical e rather than by € . A s  we 

see later the infinitesimals cannot be described by since they are

an external set, yet we certainly want to be able to discuss them.

A j
Above we showed that = is an equivalence relation in R .u

That = has substitutivity properties with respect to € follows u 1 u
from the K sentence : o

(Vx)(Vy)(Vz)(Vu) [~xeR a yeR a zeR a ueR 1 L n n n nJ
3 [[[xey] A [x=z] A [y=u]] =5 [zeu] which holds in R for all n,

 ̂ u ^and hence in (R)? under our interpretation I . We now modify R

by replacing each element a' € (R)' by its equivalence class

*a= Ta1] = (be RJ : b = a'} .u

(Here our use of the *- notation is deliberate and justifiable by what
A t .

follows.) For d e R not constant we associate the sequence with the 

equivalence class [d ] = d by abuse of notation.
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Once this replacement has been completed it allows us to use 

ordinary equality in R as modified and we tacitly assume from now on 

that this process has always been carried out and continue to talk simply
A T

about R .

AJSince R is a model of Kq we have an interpretation map
o A aj a o
I : R -► R given by setting for each a £ R , 1(a) = *a , as

defined above. That is K sentences hold in *(R) when each constanto  ̂ J
A Q

c of Kq (element of R) is replaced by 1(c) = *c .

Definition 1.44 Setting °I(R ) = *Rn ’ n = 0,1,2,.. . we say that

an element £Ja £ R is internal if a £ *R u n for some n . An internal

element a £ R^ is called standard whenever there exists an element
A

b e R such that a = *b . All entities which are not internal are called 

external. (Although the definition is simply a special case of 1.32, we

restate it here in the context of interpretation mappings.) A
By definition we see that no internal elements x £ *(R) canu

belong to any y *Rq . This follows from the Kq sentence:
A A J

(Vy £ Rq )(Vx e R ) x i y which holds in R , hence in R under our

interpretation °I , that is: (Vy *Rq)(Vx *R^) x i y , so

x y for every
A

x £ *(R) as asserted u

We say that x is an "element" of X in the metamathematical

sense if x £ X u Now X £ *R, if and u 1 only if X c *R that is u o *
(Vx) [[X £u X] 3 [x £ *R ] , so that we can replace u o J ’ r each X e *R1 by u 1
the genuine set {x : x £^ X} . Proceeding inductively we do the same

Aj
for each X e *R , n = 2,3,... so that for internal members of R , u n ’

becomes the ordinary set theoretical membership relation. We refer 

to R^ modified as above as a collapsed model of Kq and from now on 

use ordinary set theoretical notation in such models.
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oo

Definition 1.45 The set U *R of all internal members of the
n=0 n

AJ . Acollapsed model R is called an ultrapower model of R with respect

to the 6- incomplete ultrafilter U , and will be denoted by *(R) .

• . . . ANotice that by definition *(R) is a non-standard set-theoretical
A

model of (R, e) . From the above definition it follows that for
i A j aevery collapsed ultrapower model R of R there is a superstructure 

. A . Amonomorphism $ on R into B such that the $- internal members of
A A
B are exactly the elements of the ultrapower *(R) .

■ J . oTo see this let $ : R -> R be the interpretation map I of
A j A

the collapsed model R of R . We showed above that members of
_ A

$(R0) = *Rq have no elements in *(R) so that we may treat them as
. . . Athe set of individuals *Rq = Bq of the superstructure B . Notice

a j
that it was working with R which allowed us to identify non-standard

individuals and obtain *R as the proper extension of the ground set
_ A

Rq of individuals of R . Apart from the concrete nature of the constant
A

sequence extensions of members of R this was the main purpose of our
a jinvolvement with R . Since we no longer require it we now replace

OO
AJ A i iR by embedding it in the superstructure B = U  B , where B = *R

n=0
and deal with it. This does not affect the map $ and the internal 

members of R^ (that is elements of *(R)) since they have internal

elements only. Since the interpretation map $ above satisfies

properties 1.31 (i)-(vii), $ defines a superstructure monomorphism as
A J .well as the interpretation map of R so that $>- internal elements are

AJby definition 1.44 the internal elements of R , namely elements of

*(R) .

We have thus achieved our main aim, that of justifying the validity
A

of *- transforms in B , by exhibiting a concrete example of a super-
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. . A A
structure monomorphism $ : R -► B as the interpretation map °I of

our ultrapower construction. In summary we have

$(a) = *a = °I(a) = [a'] , a e R ando

* ( Rn ) = *Rn = = [ RF  . n % 1 •

This is best represented diagrammatically as below:

L

1.5 STRICT MONOMORPHISMS

From the point of view of applications, the nicest way to proceed
A

in non-standard analysis is to simply use *- transforms inside B and 

distinguish when necessary between internal and external sets (that is 

sets which arise as mappings J -> R^ and arbitrary subsets of *R^).
A A

This distinction is not necessary if we work within *(R) c B generated 

by a strict superstructure monomorphism $ , since then all members of
A

*(R) have internal elements only (if any).

Definition 1.51 The monomorphism
A A

0 : R -> B is said to be strict

if and only if
A

every member of *(R) has internal elements only (if

any), that is: (Vy) [y e (*(R) - *RQ,] d [y ç * (R)J .
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With $ strict, we see that any internal element y £ *R , is 

a subset of *R^ u *Rq and that within B we are working only with 

internal entities. It should be noted however that $ does not provide 

a mechanism for identifying the external subsets of the standard sets 

*Rr , n :> 1 . Thus we are guaranteed for example that all entities of 

*R^ are internal by definition, but our monomorphism does not identify 

the external entities, that is those belonging to P(*Rq) - *R^ . As a 

consequence strict monomorphisms provide a convenient aid but provide 

no additional structural insight. Note that every monomorphism $ can 

be changed into a strict one by replacing each y e *R (n £ 1) by
A

y n *(R) since this removes from y all its external elements, if any.

1.6 ENLARGEMENTS

A
Definition 1.61 A binary relation S £ R is said to be concurrent

if, for any finite number of elements a^5 a^, ..., a of its domain
A

D(S) , there is some b e R such that (a^,b) £ S , k = l,2,...n .

For example the relation £ between real numbers is concurrent

since for any a1, a n , ..., a £ R and b = max {a1,a~,...,a } we have 
y 1 2 n 1 2  n

a ^ < b ,  k = l , 2,...,n.

Definition 1.62 A monomorphism <i> is said to be enlarging if and
A _ A

only if for every concurrent relation S £ R , there is some b £ *(R) 

such that (*x,b) e *S for all x £ D(S) simultaneously. If this is 

the case we say that $ bounds all concurrent relations.

a .We refer to *(R) generated by an enlarging monomorphism $ as

an enlargement of R ; a strict enlargement if <1 is enlarging and strict.
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The existence of enlargements and their significance was first 

discovered by A. Robinson [18]. In [15] Luxemburg uses the fact that 

many results in mathematics can be reformulated to read that a certain 

binary relation is concurrent.

In set theory one of the basic concurrent binary relations is 

the binary relation of membership between the elements of an infinite 

set and its family of finite subsets. This means that in any enlargement 

of a mathematical theory every infinite set is contained externally in 

the enlargement in a *- finite set (see definition 2.33 of chapter 2) 

of the enlargement.

A
In [20] theorem 4.2 states that for every superstructure A (thus

A A
specifically for our R ) there is a superstructure B and an enlarging

A A . . .
superstructure monomorphism $ : A -* B . In our case this implies that
A A
R has an enlargement *(R) generated by the enlarging monomorphism 

$ ; that this is the case rests on the fact that a specific ultrafilter 

U can be chosen in such a way that all concurrent relations S in
A

*(R) are bounded by $ .
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CHAPTER 2. THE NON-STANDARD REAL LINE

2.1 BASIC PROPERTIES OF *R

In Chapter 1 we established the basis for non-standard analysis. 

We now make extensive use of the transfer method to establish certain
A

properties of the set of "hyperreal" numbers *R e *(R) in the form of 

*- transforms. Here we adopt a formal approach and deal with *R as 

the set of individuals generated by an enlarging monomorphism. For an 

informal descriptive approach see [8] and [9],

That we deal with $(R) = *R is appropriate since in Chapter 3 we 

develop non-standard measure theory on the non-standard unit interval 

*[0,1) = {x e *R : 0 £ x < 1} of *R and then apply it in Chapter 4.

By definition *R is a totally ordered field, which contains the 

embedded standard copy $[R] = (*a : a e R) as a proper subfield. This 

follows since each totally ordered field axiom of R can be written as
sa K - sentence whose I- interpretation is that axiom for R . Each 

*- transform is then that axiom for *R and our assertion follows. 

Specifically, that <: totally orders R involves trichotomy, which 

can be expressed as the K - sentence:

2.11 (Vx)(Vy) [x 6 R A y £ R] 3 [x < y] V [x = y] V [x > y]

Transforming this we obtain

2.12 (Vx)(Vy) [x £ *R A y e *R] 3 [x* < y] v [x = y] v [x* > y]

note that we are writing = for *= , so that for every x,y e *R , 

either x *:? y or y x , which implies that *R is totally ordered 

by *<; here *< is the extension of £ from R to *R . The 

algebraic operations, absolute value relation, integral part operation
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etc., of R extend to *R in a similar fashion and for notational 

convenience we continue to use the ordinary symbols to denote these 

unless confusion arises, or we wish to emphasize the non-standard 

nature of particular entities.

Since $[R] is an isomorphic copy of R in *R we further 

simplify matters by not using the *- notation for standard individuals 

of *R , denoting *3 for example simply by 3. Thus from now on we

will identify R with the proper subfield $[R] of standard

individuals of *R and feel free to write R c *R . This convention 

does not apply to set entities however since in general for sets E € 

$[E] is quite different from E .

Since N = (l,2, . . .} is a subset of R , *N is a subset of 

*R and is a standard entity having the same properties as N as far 

as these can be expressed as K - sentences. *N is called the extended 

natural number system and is totally ordered by £ as above. Note 

also that £ is concurrent on N , since considering s on N we 

have

£ = {(x,y) : x,y e N a x £ y} , with D(s) = N .

Thus for a1,a2,...,an e N and b = max{a1,a2,...,an> , (an >b) € *

so that as $ is enlarging there is a y e *N such that 

(Va e N)a = *a n  , an "infinite" natural number. This prompts us to 

formalize the following facts about *R :

Definition 2.13 (i) A real number a e *R is said to be

finite if | a | < no , for some n e N ? a is said to be

infinite if | a | :> n , for all n e N •

(ii) A real number a € *R is said to be

infinitesimal if 1 a 1 £ — for all 0 n n e N .

P3
>
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The set of all finite real numbers of *R will be denoted by

Mq and the set of all infinitesimals by . Since *R is a field,

each non zero a e *R has a multiplicative inverse, in particular with

t infinite, is infinitesimal. Above we showed the existence of

infinite natural numbers using the fact that < is concurrent and $

is enlarging. We now construct a particular infinite positive integer

t € *N and an infinitesimal — e *R as its inverse. As well asx
exhibiting x e *N - N our construction serves as a good illustration

of the concrete nature of the ultrapower method. Thus consider the 
AJmapping x e R which is one to one and onto N , that is x : J -> N

satisfies {j : x(j) = n} = > a singleton for each n £ N , so

x i n for any n e N (recall here that n is a constant sequence), 

x as defined is clearly positive, and infinite by definition 2.13, since 

the set where it is positive is J and the set where any n £ N exceeds

it is at most finite and thus not in U . Since x j- 0 , —  e *R isx
infinitesimal by definition as 0 < —  < — for all n £ N . The 

illustration above highlights the value of the ultrapower construction, 

since clearly for any infinite x as above we have x  ̂ *a , for all 

a £ R , as *a is standard and hence finite by definition. Having 

completed our construction above we now continue to learn more about *R 

by using *- transforms of well known properties of R .

Theorem 2.14 Any n e *N is finite if and only if it is standard,

that is *N n M = N .o

Proof: Clearly N c Mq and N £ *N .

If n £ *N is finite then n < nQ , for some nQ £ N .

K contains the sentence o

(Vx) ( x c N = ) X £ n o = x = l v x = 2 v ... v x = nQ) .
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The transformation of this says that n is one of the standard numbers

1 , 2 , n

Thus the finite elements of *N are the standard ones and the 

infinite elements are the non-standard ones, that is the set of 

infinitely large positive integers given by *N - N = {n e *N : n infinite}. 

Till now we have identified only one infinite integer x , as constructed 

above. However this is sufficient to generate "blocks" of infinite 

positive integers £ *N - N by using the *- transforms of a Kq- property 

of N .

Thus since (Vx) [[x e N] e [x +1 £ N]] we see that by transforming

we obtain (Vx) [[x £ *N] e [x +1 £ *N]] , so that the "block" of infinite

positive integers ... x-2, x-1, x, x+1, x+2, ... belongs to *N .
x

Since 2x, x-x, xT, xT , and so forth also belong to *N , so do blocks 

of positive integers with respect to them, e.g. ..., (x-x)-l, (x-x), 

(x-x)+l, .... It is clear that these blocks are densely ordered with 

no first or last element and that each block is itself order isomorphic 

to the integers ..., -2, -1, 0, 1, 2, ... . Thus we can think of *N 

as consisting of N as an initial segment, followed by an ordered set of 

blocks as above, see [4].

We now look more closely at some of the algebraic properties of

*R and its subsets. First note that M is an integral domain since

it is a subring of *R without zero divisors. The set of infinitesimals

constitutes a subring of Mq with the property that

(Vf)(Va)[[£ £ Mx a a £ Mq] ^ [la e M^] , that is is an ideal of

M • it is in fact a maximal ideal, see theorem 4.4.3 of [231. o ’

Following Robinson [18] we introduce the relations ~ and

~ below.
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Definition 2.15 Let a,b e *R . We write:

(i) a ~ b , if and only if there is some positive r e R such 

that |a - b| < r , and

(ii) a ~ b , if and only if |a - b| < r for all such r .

The above defines what is referred to as the infinitesimal relation 

~ , that is for a,b e *R , 2.15 (ii) holds if and only if a and b 

are infinitesimally close.

Both ~ and ^ define equivalence classes in *R and we use 

Zakon's notation [27] in calling them respectively the galaxy and the 

monad of a , denoted G(a) and M(a) . For a detailed study of 

monads see [14] and [25]. In [18] Robinson uses y(a) to denote the 

monad of a , however we want to retain this notation for our later non

standard measure theory. From the beforegoing we see that G(0) = MQ , 

consists of the union of all monads of standard points and M(0) = .

At this stage it is important to realize that the equivalence 

relation ~ allows us to express ideas in calculus in a very intuitive 

and natural way. For instance consider an internal function f defined 

on the infinitesimal neighbourhood of a e *R such that f(x) is 

infinitesimally close to f(a) whenever x is infinitesimally close 

to a . This expresses the "intuitive notion" of continuity of a function 

at x = a , namely that a small change in the independent variable produces 

a small change in the answer. This intuitive formulation is equivalent 

to the e - 6 definition of continuity [23], although only for a e Mq 

that is standard points of R .

7 2Thus for f(x) = x and e e M , f(x+e) = x + e(2x+e) so that
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f(x) is continuous at finite x since in the infinitesimal neighbourhood
2 . -

of x , f(x+c) - x . This follows as for e e , e(2x+e) e

since M is an ideal in M . Note that when x is not finite, f(x) i o
need not satisfy the infinitesimal perturbation condition. To see this

* . 1let x = t e N - N and consider the infinitesimal change c = —  .

Then
2

f (x+e) = (t+i) = t2 + 2 +  ^2* - t2 + 2.

2.2 THE STANDARD PART HOMOMORPHISM

The order homomorphism of M with kernel onto R is

called the standard part homomorphism and we denote it by st . That

the unique map st of M onto R exists follows from the fact

that the quotient ring Mq/M^ is order isomorphic to R . To prove

this first note that M /M^ is a totally ordered field by theorem

A.1.2 and A.2.5 of [23]. Further note that Mq/M^ is Archimedean

since M is Archimedean. • To show this let k,£ e N and k  ̂t ; 
o

then k + M, t t + M- so that the natural copy of N in M /M.. is 1 1  r o 1
(n + : n e N} . Now for any a e Mq , |a| < mQ for some mQ e N ,

so that la + M-I $ |m + M, I in M /M- , since the canonical order 

homomorphism preserves order. Since Mq/M^ is a totally ordered 

Archimedean field, it is isomorphic to a subfield of R (Theorem 

A.3.2 of [23]). To show it is actually R requires us to show that 

it contains a natural copy of R .

Let a,b € R c M , a t b . Since b - a € M , a + M1 / b + M1 .o o i l
Under these circumstances the canonical homomorphism restricted to R
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is one-to-one so the image M /M^ is a natural copy of R . This 

completes the proof of the existence of st ; we now summarize some 

of its properties for later reference.

2.21 Let a,b e M , then----  * o

(i) st(a+b) = st(a) + st(b)

(ii) st (a b) = st(a) • st(b)

(iii) a $ b => st(a) < st (b)

Civ) st(a) = o in p (T\

(V) (Vr) [r<eR] ^ [s 1(r) = r

(Vi) a ~ b = st(a) = st(b) .

As a consequence of the properties of st we see that by 2.21 (iv) 

all infinitesimals belong to the monad of zero, while 2.21 (v) shows 

that for r e R , st is the identity map. Property 2.21 (vi) says, 

as expected, that two finite numbers are infinitesimally close if they 

belong to the same monad.

2.3 EXTERNAL ENTITIES

So far we have considered properties of R which involve

quantification over numbers only, and now examine some higher order

properties. Above we introduced certain specific sets of individuals,

e.g. *N - N, M,, M and the monads M(a), a e R .& > 1’ o
It is now natural to ask whether any of these sets are internal 

or not, that is whether or not they belong to *R^ . To resolve these 

specific questions, as well as more general cases we proceed as follows.
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We assume the set in question is internal and examine whether or 

not it violates any of all the *- transform properties it should posess 

on that premise, since a set is internal only if all *- transforms of all 

standard properties hold. Because the fact that a particular *- transform 

property holds does not necessarily imply that the set is internal, this 

requires a "judicious” choice on our part in finding a K - property whose 

*- transform does not hold for the set under consideration. Although 

these K - properties are fairly obvious for the sets under investigation, 

it emphasizes the fact that explicit external knowledge about our non

standard model is relatively hard to obtain.

For example since N is well ordered, every nonempty subset of 

N has a first element. This can be expressed as a K - sentence 

expressing a higher-order property of N having a universal quantifier 

ranging over all subsets of N . The limitations of transferring 

properties of set entities from R to *(R) insofar as they can be 

expressed in L now require this to be interpreted as

2.31 every nonempty internal subset of *N (that is every element

of *P(N)) has a first element.

Assuming *N - N is internal contradicts 2.31 since there is no 

smallest infinite natural number. Thus we conclude that *N - N is 

external, that is *N - N e P(*N) - *P(N) . Similarly, assume that 

is internal. Now f <f> , and L e implies \Z\ < 1 , that is 

is bounded above. From the Dedekind completeness property of R it 

follows that every nonempty internal subset of *R which is bounded 

above has a least upper bound. Applying this to , let Z q be the

least upper bound. Now 0 e so that l Q > 0 (since R n = {0}

we regard zero as a special individual, namely the only standard 

infinitesimal). Furthermore, I q i since if it were, lQ < 2lQ f
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a contradiction. On the other hand if l i M, then t /2 is ano ^ l  o
upper bound for and £q/2 < Z Q so Z is not the least upper

bound. Since we have a contradiction in both cases we conclude that 

is external.

That is external demonstrates that *R is not complete in

the external sense, that is there are bounded subsets of *R with no 

least upper bound. The *- transform of the formal sentence describing 

completeness of R does of course hold. We could call this property 

*- completeness or internal completeness, that is bounded internal sets 

do have least upper bounds as required. Thus *N is *- well ordered 

but not well ordered and *R is *- complete but not complete. This 

highlights the fact that interplay between internal and external notions 

is at the crux of Robinson's infinitesimal foundations.

Using a similar procedure to the above it can be shown that the 

subsets Mq , M(a)(aeR) and *R - Mq of *R are all external. More 

generally Theorem 5.2 of [13] shows that:
A

2.32 If A e R  then the set *A - $[A] of all the non-standard

elements of *A is either empty or external.

In the latter case the set $[A] = (*a : a e A} is also external.

Having shown various sets to be external we now show that the 

standard part homomorphism is not an internal map. The set-theoretic
A „ A

properties of R show that if b is a binary relation entity of R ,
A

then the domain and range of b are entities of R . Transforming this 

implies that "the domain and range of an internal binary relation is 

internal". Since st is a mapping of Mq onto R and both Mq and 

R are external subsets of *R , we conclude on the basis of the remarks 

in inverted commas that st is an external operation.
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Although 2.32 shows that the set of non-standard elements of the
_ A

extension of an infinite set of R is external, any finite set of 

entities which are not standard is internal. Thus the set {x, x+1, x+2} 

is internal even though its elements are not standard (here x is the 

infinite individual of *N constructed earlier). That {x, x+1, x+2} 

is internal holds since as a set it has all the properties of a finite 

set of standard individuals as far as they can be expressed as
A

K - sentences. We now transfer the notion of finiteness to *(R) by 

transforming the statement expressing the property of being finite in
A
R . Thus since:

MAn entity A is finite if there is a bijection entity from an 

initial segment {l,2,...,n} of N onto A", 

we have by transforming that;

A
Definition 2.33 An internal entity A of *(R) is

*- finite if there is an internal one-to-one mapping from an initial

segment of *N onto A .

Here of course, an initial segment can be externally infinite, 

for example (n e *N : 0 < n <: x} , x e *N - N .

Theorem 2.34 Every *- finite set of internal entities is internal.

Proof: Since the range of an internal function is internal

(see example 3.9 (iv) of [13]} it follows from definition 2.33 that a 

*- finite set is internal.

In particular we see that since every finite set of real numbers 

e R has a largest and smallest element, the *- transform of the 

K - sentence expressing this property tells us that every *- finite set 

of real numbers in *R has both a largest and smallest element. Thus
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if A is a *- finite subset of *R there is a unique smallest integer 

Y , such that {1,2,3,. . .,y} , y e *N is one-to-one and onto A .

In this case we say that the internal cardinal of A is y or shortly 

that A has y- elements and write |{Aj ] = y to denote this. Note 

that any externally infinite *- finite set A has an external cardinal 

at least as big as 7Cq since N c {1,2,...,y} , for any y e *N - N . 

Further A as just described contains at least one internal element

which is not standard and so externally infinitely many of these. For

example, if *N 3 A e *R^ and A = {1,2,3,...,t } , t e *N - N then

A contains the externally infinite block ..... t -1, t ., discussed

earlier.

Given a finite sequence a^, 3.̂ , ..., a^ £ R we can form the
n

finite sum £ a, .
k=l

The ability to form sums extends to *R and

when n e *N we say that the *- finite sequence has a *- finite sum.

For example the *- finite sequence (1,1,1,...,1^) having A- elements, 

A e *N - N has the *- finite sum

A
l 1 = A •

k=l
This allows us to say that

\
1 2 = 2* 

k=l
, that is the *- finite sum

of (2,2,...,2^) is twice that of (1,1,1,...,1^) .

To conclude this chapter we look briefly at the non-standard 

interval *[0,1] of *R to obtain a cardinality result for *- finite

sets.

Fixing an infinite positive integer Y € *N - N we have

*rn 11 - U k where*[0,1] = u
k<Y

Y ’ Y
where
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k+1
, Y » *N 3 k < Y

constitutes an infinitesimal partition of *[0,1] into subintervals 
k k+1
Y 9 X

each of length . Since this length is an infinitesimal, 

each interval is contained in exactly one of the disjoint monads M(x) 

which cover *[0,1] and each such M(x) with x e [0,1] contains at 

least one such interval. Hence the number of intervals cannot be less 

than that of the M(x) , x e [0,1] , that is it is  ̂ 2 , since there are

as many M(x) as there are standard points in *[0,1] . This allows 

us to be more specific about the cardinality of *- finite sets, in fact

we see that any *- finite set is of power 

in some sense.

that is Y *
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CHAPTER 3. NON-STANDARD MEASURE THEORY

In this chapter we develop the non-standard measure theory 

applied in Chapter 4.

Non-standard measure theory has been exiimined by several authors 

using various approaches. Robinson in [18] gives the first brief 

outline of the extension of Lebesgue integration to non-standard models. 

In [10] - [12] Loeb uses set partitions to develop a non-standard 

representation for measures.

Here we use Bernstein and Wattenberg’s approach in [3] to construct 

a non-standard measure which is an extension of Lebesgue measure to all 

sets in the unit interval and thus provide a natural solution to the 

"easy problem of measure" solved first by Banach [17].

3.1 STANDARD MEASURE THEORY

The concept of measure of a set of real numbers is a generalization 

of the notion of length to arbitrary sets A on R .

Ideally the measure m(A) of a set A should be defined for all 

A £ R and should satisfy the following requirements:

3.11 (i) m(A) :> 0
n

(ii) Finite Additivity: If A = |J A1 , where thek=i k

components A^ are mutually disjoint, then

m (A) = l m(A,) .
k= 1

(iii) Countable Additivity: If A = U A, , with A, 1s
k-1

mutually disjoint, then
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m(A) = l m(A ) . 
k=l

(iv) Monotonicity: If A c A2 , then 

m(A1) * m(A2) .

(v) Translation Invariance:

m(A) = m(A+r) , where r e R is the distance by which 

each point of A is translated.

(vi) If A is an interval then

m(A) = length of the interval A .

It is well known that for arbitrary A c R not all of the properties 

3.11(i)-(vi) can be satisfied so that we must sacrifice some of them to 

ensure that all subsets of R do have a measure.

Definition 3.12 Let A be an arbitrary set and F a finite subset 

of S = [0,1) . Denote by ||A n F|j the number of elements (in the 

finite set) A n F . For every A £ s we define a measure mp on A 

relative to F as:

mp (A) IIA n F||
II FI!

As defined, m satisfies properties 3.11(i), fii) , (iii) and (iv) andr
is a normalized (i.e. mp(F) = l) non-negative, finitely additive measure 

on all subsets of S . However note that mr is not particularly usefulr
as it fails to distinguish on a measure basis between subsets S 2 A 2 F ,

since for all such A we have m„(A) = 1 . In the remaining sections of
F

Chapter 3 we show that a non-standard measure can be constructed on S
A

which is in a sense an extension of mr, to *(R) .r

Specifically we obtain a non-standard measure tip , defined on all 

subsets of the unit interval, such that its standard part agrees with 

Lebesgue measure where the latter is defined.
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The measure pp is constructed as a point measure finite in the 

sense of non-standard analysis. That is we choose F to be a well- 

distributed *- finite set of points in $(S) = *S such that S c F .

Then given any set A c S , the measure p (A) is defined to be the
r

number of points of the set F which lie in A divided by the total 

number of points in F . How we go about selecting a suitable F such 

that all our desired requirements are met will be detailed in the sections 

to follow.

3.2 NON-STANDARD MEASURE THEORY

We continue the approach in Chapter 2 and work within a fixed
A

enlargement *(R) generated by our superstructure monomorphism $ .

We tacitly assume that all sets and relations subsequently discussed in
A

*(R) are internal. In particular we deal only with internal subsets 

of *[0,1) ; however we underline this fact by occasionally restating 

it in the work to follow.

A
Let X e R be the set which consists of all finite sets of real

A
numbers. X extends to *X in *(R) , where any element of *X is 

*- finite, so that *X contains all finite sets of real numbers as well 

as sets such as {1,2,...,A} , where A is any infinite positive integer.

The function c which assigns to each A e X a positive integer
A

c (A) which is its standard cardinality extends to $>(c) = *c in *(R)

and assigns to each A e *X a positive integer in *N which is its non

standard cardinality, see [51. We retain our earlier notation and foi 

A e *X simply write ||a || to denote this integer, so that *c(A) = ||a || ,

that is A e *X has ||a || elements.
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Following Bernstein and Wattenberg we let S = [0,1) in R and 

write points and addition on S modulo 1 . For x,y e S we write 

x + y to denote this, so that x + y = x + y for x + y < 1 and 

x + y = x +  y - 1  for x + y  ̂ 1 .
A

In *(R) , S extends to $(S) = *S = *[0,1) = (x e *R : 0 < x < 1} . 

Definition 3.21 (Bernstein and Wattenberg)

A non-empty *- finite subset of *S will be called a sample. Any sample 

F has an associated sample measure which assigns to every subset A of 

*S a non-standard real number y (A) defined by
r

,.. || F n A|| .Up (A) = ---j-j-p-j-j--- ; (compare with ¿.12).

3.22

For any sample F we have:

(i) uF(*S) = 1 , uf(40 = 0 ,

Ur(A) :> 0 , for any subset A c *S r
(ii) If A c B , then y (A) < yc(B) .r r
(iii) If (A.) is any sequence of disjoint subsets of

ie*N
*S , then there is a non-standard integer L such that if i > L , then

y (A.) = 0  and r l

U  Ai] = l 
ie*N J i=l

Proof: Since F is a sample,

F n *S ||
(i) Fp(*S) =

F || / 0 we have

II F || _ , .| i r-* I I ~  ̂ 9

F n <j> = 0 ;

for any A £ *S , yp(A) = F n A Now F n All  ̂ 0 and so

Up. (A) * o .
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(ii) If A c B then || F n All f J| F n b II and pr(A) i p_(B) .
r r

(iii) In 6 we have the following true statement:

"If F is finite and {A.} any sequence of disjoint subsets
1 ieN

of S , then there is an integer L e N such that if i > L ,

Ap n F = (J> (i.e. UpCA^) = O) and

L
u
ieN

A.l l V V  • '

3.22 (iii) is now obtained in *(R) as the <±>- transform of the 

above statement, where it is important to note that i ranges over the 

set *N .

Notice that we can bound L , namely

convention of rewriting each sequence {A^}

B. is the j-th set A. for which A. n F 3 i i
this further and show that as expected L

{A.} has been defined.
1 ie*N

L < II F || if we adopt the

as {B.} , where
i£ *N 1 ie*N
 ̂ 4> . In Chapter 4 we develop 

depends on how the sequence

Since F is *- finite we can write F = {x^, x?, ..., x^} , for 

some v £ *N-N , that is || F|| =v and we tacitly assume this value 

for || F || in our subsequent work unless otherwise stated. We now 

show that *S - F  ̂ 4 , so that we can obtain zero for the measure of 

certain subsets of *S . Since F is *- finite and bounded it has a 

least element x, . Let g be the standard inverse function on R - {0}.K
Then 4>(g) = *g and for positive r £ *R - *S , *g(r) £ *S . Thus for

any s £ *R such that s > (*g)_1(xk) we have *g(s) £ *S - F .

Checking with 3.11 defines a non-negative measure, *- finitely

additive in *(R) . Note that cannot be countably additive in the
_ A

old sense, since standard countability is an external notion in *(R) .
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The $- transform of standard countability is of course internal so that 

sets such as *N itself as well as *Q for example, are both *- countable.

Property 3.11 (v) requires a measure to be translation invariant.

This is the case for Lebesgue measure on S (mod 1) and we show the 

following :

Theorem 3.23 Let A c S be Lebesgue measurable. Then for each 

x e S , A + x is Lebesgue measurable and L(A + x) = L(A) .

Proof : Let A^ = A n [0, 1-x) and

A^ = A n [1-x, 1) .

Then A^ n A^ = <|i and A = A^ u A^ , so that 

L(A) = L(A x) + L(A2) .

Now A^ + x = A^ + x so L(A^ + x) = L(A^) since Lebesgue measure is 

translation invariant. Similarly, L(A2 + x) = l (A2 + (x-1)) = L(A2) •

But A + x = (Aj + x) u (A + x) , where (Â  + x) n (A2 + x) = <J> .

Hence A + x is Lebesgue measurable and

L(A + x) = L(A^) + L(A2) from above 

= L(A) .

We shall see later that y- is not strictly translation invariantr
on *S in the above sense, but at this stage we investigate invariance 

of subsets A £ *S through distances , n e *N .

Definition 3.24 (Bernstein and Wattenberg)

If n *N and F is a sample, F is said to be n-invariant

if F = F + —  ; that is, if whenever x e F so does x + i and vice n n
versa.

Theorem 3.25 If F is n-invariant then for any internal subset

A £ *S ,
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(i) yp(A) = yp A + -  nV- J

(ii)
r

yc a, a + tl) t
nj J = JT * 1 e *N • 0 <: t < n

(iii) FpUa.b)) - (b-a) < i .

Proof: (i) Clearly

!I(A n F) ; i || = !!II (a ; - n ip - l)
l nJ l nJ

f. - l) p A + — n F
nJ

since F is n-invariant.

_ _ A
Using this result we have the following true statement in R : 

" (VF)(VA)A e P(S) a F £ X a F is n-invariant

3 || A n F|| = |! (A n F) i i A + -\ n F|i " .
nJ

Transforming this statement now gives us the required result, namely 

for all A £ *P(S) , that is all internal subsets A of *S , we have

||A n F A + —  n F || so that n 11

M A) = m f [a ; k as required.

We obtain (ii) by partioning any interval [a, a+1) as follows

1 = y, a, a + —
- nJ + y, ' 1 2a + — , a + —. n n

. . . + y, n-1 .a + --- , a + 1It n

11a, a + — . nSetting A =

3.22 (iii) with n = L gives

in the above and using 3.25 (i) and

1 = n y. ■ 1a + — . n
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Hence a, a + n

r
>

a, a + —L ’ nj

y n

t_
n

and

by additivity.

To obtain (iii) note that if t is the greatest integer such that

— < (b-a) , then n
t
n yF

ta, a + — . n from 3.25 (ii) .

Also [a,b) = [a,

a,

XT t+1 n. xNow --- > (b-a)

yP([a,b)) < a

That is y ([a,b)j - 

yp[a,b) - (b-a) £ ^ . 

required result namely,

a+(b-a))

a + — , since — < (b-a) .nj n

from our requirement on t , and so
\

_ t + 1
F d , a t n ̂ J n

j

< — and since — < (b-a) we have n n

Thus - — < y_[a,b) - (b-a) and we have the n F

|yp ([a,b)) - (b-a) |  ̂~ .

Till now we have only looked at the effect of n-invariance on F ,

without specifying which values of n we are interested in. Since we

want to use \ir for all sets *A = 4(A) , A c S , we require F to be r
n-invariant for at least every positive integer n , and below we see the 

consequence of such a requirement.

Theorem 3.26 If F is a sample which is n-invariant for

every standard positive integer n , then there is a *- finite positive 

integer a (a e *N-N) such that F is k-invariant for any k £ *N ,

k < a .
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Proof : Consider the set T of all standard positive integers

n such that F is k-invariant for k < n . Now for all finite positive 

integers n £ T , $ is a concurrent binary relation on T , so that by
A

extending n-invariance to *(R) under our enlarging monomorphism we are 

guaranteed the existence of a *- finite positive integer a £ *N - N 

for which F is k-invariant for all k $ a . That is F is k-invariant 

for integers k e *N ranging over the values 1,2,3,...,o-3,a-2,a-l,a . 

We refer to the largest such a as the mesh of F .

If

q £ r <: a 

3.27

F has mesh a then for positive integers q,r e *N , 

we have as an immediate consequence of Theorem 3.25 that:

(i) y + 1 ra = q
r

(ii) Hp([a,b) - (b-a)) s I = 0 , for r e *N - N .

We can construct a sample F which is n-invariant for every standard

positive integer n and which includes all standard points of *S .
- kAlthough F 3 y = x + —  , x e S  and k < n < o (the mesh of F) , we

_ kcannot write F = U S + — , since for a £ F points like
i yk<n<a ■

a + a-1 1 - 1 = a + a(a-l) also belong to F .

However for x £ S, any x + ^ £ F, where p,r £ *N, (p,r) 1 and

r = l ^ l l ^ 2 ... inln , V  i2 > •••» in non-negative integers £ N 

and l ^ 1 , l 2±2 , the prime powers < a .

This kind of sample gives the appropriate measure to intervals and 

gives each standard point in *S an infinitesimal measure —jjp“j|~ * 

However the sample may produce a sample measure which gives inaccurate 

measures to some Lebesgue measurable sets and which behaves poorly with
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respect to translation of subsets. To illustrate this let Q = Q n S ,J
where Q is the set of rationals, then *Q = *(Q n S) = *Q n *S .J
Let || *QS n F 11 = y , then

* il*Qs n F ll
V‘c (*Qq) ---------------— , where clearly y < v since

l|F|| V '

S c F . Now form another sample F' 3 F by adding to F some non

standard rationals q e *Q - F and their translates q + - , k £ n e N,

to retain the n-invariance of F* (here we add only a *- finite number 

of new points to F, thus assuring that F’ as formed remains internal) 

For Ff formed as above write F' = F u H . Since F n H = <p,

|| F» || = ||f || + IIH11 ; further as H c *Qg , ||h || = || *Qg n H || and

UF ’
*QS n F' *QS n F|| + ¡1H

Y  ̂ II H ||

v ♦ II H ||

Thus by adding enough non-standard rationals q e - F to form

F * , we can make || H || very large in comparison with y and v and

give *Q a large sample measure y (*Q ) . On the other hand we can o F S
assign a very small measure to *Q^ by adding to F many points 

x e (*S - *Qq) - F and their translates to form F' . Then since 

*QS n (F’ - F) = *

II *Qg n F ' II II *QS 0 F || 

IlF'H IIf * !|

7 which can be made small by making F*

large enough. For a particular Lebesgue measurable set V c S the above

possibilities show that to keep p (V) close to L(V) in constructing
- kF , by adding points x and their translates x + — to the sample,
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it is vital to be able to choose points x such that just enough of 

the points x + — belong to V . Requirement 3.28 (iii) below 

specifies what we need to aim for and in section 3.3 we state the 

technical lemma which allows us to achieve this.

We now have a clear conception of the overall properties we wish 

a sample F to have if yp is to be defined for all subsets of *S . 

Following Bernstein and Wattenberg we say that a sample F is called 

a premeasure and its associated sample measure called a measure, 

provided the conditions below are satisfied.

3.28 (i) S c F

(ii) F = F + —  for all n e N n
(iii) If A is any Lebesgue measurable set, then St

is its Lebesgue measure, denoted L(A) .

(iv) If a is any standard point of *S and A is any

internal subset of *S then

yp(A) = yp(A + a) .

Condition (i) above gives each standard point in *S an

infinitesimal measure Note that the third requirement does not

restrict us to Lebesgue measurable standard sets since st(y„(*A)) is
A

not *Lebesgue measure in *(R) but an extension of Lebesgue measure on

R . To see this note that F is *- finite and so has *Lebesgue measure zero

in *(R) , but y„(F) = 1 . In Theorem 3.23 we proved that Lebesgue

measure is translation invariant on S (mod 1). Now we show that in the

sense of \i„ the translate of a set may be smaller than the original r
set, so that 3.28 (iv) is the best we can hope for. However, even though 

we do not have strict translation invariance, what we do have is as good 

as what we have for standard Lebesgue measure since

st(yp(A)) = s t (y p (A + a)} .
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Let T = {kx : k e N , x a fixed irrational} .

Translating T through x gives the set T + x , and since we are 

working in the unit interval (modulo 1) we have T = (T + x) u {x} , 

where x i T + x .

Since pp({x}) = --||-p-,| and our measure is finitely additive the 

measure of T is infinitesimally larger than that of (T + x) . We 

list below some conditions on F which are equivalent to requirement

3.28 (iii) and illustrate the general relationship between y_ and 

standard Lebesgue measure. In particular if F is a sample then the 

following conditions on F are equivalent.

3.29 (i) For every standard open set 0 , st(yp(*0)) < L(0) .

(ii) For every standard set A , if m(A) is its outer 

measure and m(A) is its inner measure then

m(A) < st(pp(*A)} < m (A) .

(iii) For every Lebesgue measurable set A ,

st(yF(*A)) = L(A) .

To show (i) implies (ii) we use the fact that

m(A) = inf {L(0) : 0 open, A c 0} .

Now A c 0 => *A c *0 so that using 3.22 (ii) we have by 3.29 (i) that

st ()jp(*A)) < st (pp(*0)} f L(0) ,

that is st(up(*A)) < m(A) .

Now A c S and since *(S-A) = *S - *A we obtain 

m(A) = 1 - in(S-A) < 1 - st(yp(*S - *A)) = st(pp(*A)) .

Further (ii) => (iii) since if A is Lebesgue measurable L(A) = m(A) = m(A). 

To show (iii) => (i) let 0 be an open set. Then 0 is Lebesgue 

measurable and by (iii) st(p (*0)) = L(0) so that

st(up(*0)) < L(0) .
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h i  the EXISTENCE OF PREMEASURES IN *(R)

To show the existence of premeasures in *(R) , we construct a 

sample F which satisfies the premeasure requirements. In general terms 

we achieve this by showing that a relation Q which holds between F 

and a certain quintuple, if and only if F satisfies 3.28 (i) - (iv), 

is finitely satisfiable (i.e. concurrent) in R . Our enlarging 

monomorphism 0 then guarantees the existence of a premeasure F in
A

*(R) which simultaneously satisfies Q for all standard objects in 

its domain.

As part of our construction we need several technical lemmas from 

[3] which we state here without proof, except in those cases where a 

proof clarifies the concepts involved.

In section 3.2 we highlighted the need to exercise control over

our sample during its construction. In particular for any Lebesgue

measurable set V we have to ensure that not too many of the points 
- kx + —  , k e Z ,  n e N , lie in V when we add new points x and

- k Atheir translates x + — to build up F . The following lemma in R

allows us to do just that.

Lemma 3.31 Let V be any Lebesgue measurable set with Lebesgue

measure L(V) and suppose p, q are integers such that

E- < LfV) < Eli- . Then there is a point x in S such that at most
q q
p of the points in the set

T(x) = j x  + i - : 0 £ t < q ,  t e N

are in V .

The proof of the lemma rests on the contradiction L(V) > E_— 

obtained by assuming that for each x e S at least p + 1 points of 

T(x) are in V .
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The corollary of lemma 3.31 in [3] states that if in addition to 

V, p, q as above we are given a set W of Lebesgue measure zero, then 

a point x can be chosen satisfying the lemma for V but such that 

no point of T(x) lies in W .

Applying the corollary to Qg we see that since L(Qg) = 0 we 

can choose any irrational point y e S and have T(y) n Q = <f> for 

any q e N .

For a given integer n e N we obtain n-invariance in building
- kup a sample by adding both new points x and their translates x + — , 

k e Z . Similarly for any real number y we can obtain a sample which 

assigns to a set A a measure which is close to the measure it assigns 

to A + y , by adding to the sample a lot of the translates x + ky of 

points x in the sample. Again the definition and lemmas below allow 

us to do this without losing control of the sample we obtain.

Definition 5.32 The standard points z^, z2, ..., zt € s are said

to be independent if whenever 
t
Y k.z. = 0 for k. e Z ,.L, i i  ii= 1

then all of the k >s must be zero. Since we are working modulo 1, 

if any ẑ  is rational and t > 1 then the points ẑ , ẑ , ..., ẑ  

are not independent.

Lemma 3.33 Let z t z2> zt be independent,

and T = { x + — : t e N }  .
q

t
Then all of the sets of the form T + £ k.z.

i = l
pairwise disjoint.

x <£ S , q e N

for k. c Z arel
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Proof: Suppose they are not pairwise disjoint. Then there is

a point y which can be expressed as

x + + k1z1 + ... + k z, and asq 1 1 t t
T*\ ?

x + —  + k * z + ... + k'z with some k.  ̂k! . q 1 1 t t i l

™ en lEr : l i  (kx - qjzj + ••• i (kt - k;)zt = o
t

and since we are working modulo 1, this requires

which contradicts the independence of the z^'s

k. / k! .1 1

l fk- 
i=i l 1

- k.'lz.1 1

since for some i

0

Lemma 3.34 Suppose y^, y^, •••, y are irrational points of S . 

Then there is a set of independent points ẑ , z^> . z and an 

integer T such that each y^ is of the form k^z^ + ^2Z2 * ‘ * * + ^tZt 

for some integers k^ , |k̂ J £ T .

The proof is by induction on s . Here we only note the for 

s = 1 we can write
t

y = Y k.z. , where t = 1 ,
7 1 . i ii=l

kj = 1 and y ^ ~  .

When building up a sample there are always some points over which 

we have no control and which adversely affect our measure. This problem 

is overcome by adding enough points to the sample to suppress their 

effect and the following lemma allows us to do this.

Lemma 3.35 Suppose F and H are samples with e for

some standard positive real number e . Let F’ = F u H . Then for 

any set A , |pp(A) - Pp,(A)| < e •
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Proof: Let ||F n A|| = p . Then p_(A) = 77̂ -77 and the

smallest Up,(A) can be, occurs when ||F* n A|| has its least value. 

Since F ' = F u H , this occurs for A c F , in which case 

||F» n A|| = II (F u H) n a ||

= I! (F n A) || + || H n A ||

= P •

Thus the smallest ypi(A) can possibly be, is

F II + £ ||F

Now

F || + c II F || ||F|!

P

1 - l + £

< e since < 1F || \e + lj ' c IIF ||

Thus Up t(A) > y (A) - £ . Similarly the largest Up,(A) can be, 

occurs when H c A and H n F = <{> . Then

_ P + Hh ||
PF ,l-AJ II F |] + e IIF ||

and so y (A) cannot be larger than p + II H 11

But p + II H || I! H < £ .

Thus Up, (A) <: Up (A) + £ , and combining the two results we have

yp(A) - Up,(A)| < £ .

It is important to note that by making F' - F sufficiently small, 

we can make yp and Up, arbitrarily close in the standard sense. As 

a consequence of Lemma 3.35 we are now in a position to obtain a sample 

which keeps the measure of any set A close to the measure of A + y 

for a standard real y .
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Corollary 3.36 Let y e R and suppose F' is a sample such that 

F f n (F* + ky) = <J> for each integer k . Let F be the sample given 

by

F = (x + ky : x e F' , |k| $ L) .

Then for any set A , |p (A) - y (A + y) | < i .

Proof: Since F* is a sample we can write its elements as

r - (x^ , •••, x || p i j | } •

Since F* + ky are pairwise disjoint for integers |k| <: L we have 

||F|| = (2L+1)||F’|| and we can write

x -i _Ly,

F =

, x1? ...... . xx+Ly

X2 ’

X || F ' || L y >---’ X ||F' IT ’ X I!F-Il+Lyj

Now let H = F n (F-y) . Then both Ii and H + y are subsets 

of F with

||h || = 2LIIF' II and ||H + y|| = 2L||F’|| , from which

(i)
I! F - H || 

II F ||
II F

(2L + 1) II F ’
1 1<2L + 1 2L and

IIF - (H + y) II 1(n) -------------  <11 F || 2L

Let H' = H + y , then yH ,(A i y) = yH(A) . We now write F = (F-H) u H

which is in a form to which we can immediately apply Lemma 3.35.

Using the lemma, with e = -jj- we obtain from inequality (i) above that

(iii) |uh (A) - nF(A)| < and similarly

|yHf(A + y) - Pp(A + y)| < Jp , that is

(iv) |mh (A) - pf(A i y)| < Y C •
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By combining inequalities (iii) and (iv) we now obtain

|vip(A) - Pp(A + y) | < -j- , as required.

Having established the necessary construction aids above, we now define 

the relation Q mentioned at the beginning of section 3.3 and point out 

that the four parts of the definition correspond exactly to those of 

3.28 (i) - (iv) as required.

Definition 3.37 Let Q(<0,n,e,x,y>, F) be the relation which holds 

between a sample F and a quintuple consisting of an open set 0 , an 

integer n e N , a positive real number e , a point x £ S and an 

irrational real number y , if and only if

(i) x £ F

(ii) F is an n-invariant sample

(iii) |y_ (0) - L(0) | < £ , where L(0) denotes the Lebesgue 

measure of 0

(iv) |y„(A) - y„(A + y)| < £ for every A c S .r r

Theorem 3.38 The relation Q as defined above is concurrent and hence
_ A

both premeasures and measures exist in *(R) .

To show that 

F which satisfies 

n ^  e ^  xx, y 1

Q as defined is concurrent we must exhibit a sample

Q for the finite collection of quintuples

............  Î0 , n , g , x , y] in its domain....... { s s s’ s ’ ' sj

Using Lemma 3.34 we obtain a set of independent points ẑ , ẑ , •••>

and an integer T^ , so that each y^, .. •> can be written in the form

t
y . = T k . z . , 
1 j=i > J

for integers | k_. | * Ti

N such that < 
2

With £ ■ minfc|, . .., gs|J a choose T2 £ g and

let T = tTlT2 '
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Let W be the finite collection of open sets consisting of all
t

sets of the form CL + £ k̂  z_. , where now |k_. j < T . Enumerating 

the elements of W we can write W = {W , W0 . . ., W } , where each 

is an open set and as such can be represented as a countable union 

of disjoint open intervals = (J I . . Fix an integer J such that
j 13

for each i ,

U I
U>j 13 <

2
and note that as a consequence, letting

r 1
0 = U I - • , yields L(0) i c Ï —  < e . 

j>j 1J i-i 21
l£i<r

Let J' be any integer > — and let n be the product

J'n^ n2 ... ns . Now any sample which is n - invariant is n^ -

invariant for each i , 1 s i s s . To see this note that if x belongs
- kto a particular sample then so does x + — , k e N and we have n^

invariance by choosing an integer k = ^J'n^ n^ ..

then x + —  beongs to the sample. We now construct an n-invariant 
i

sample H containing all the x^’s by putting

ng J j  n^ since

H = jx^ 1 S i £ s , k e Nj .

However, since we have no control over the measure it assigns to 0 we 

construct another n-invariant sample K satisfying conditions (ii) - (iv) 

of definition 3.37 and large enough to overwhelm H . The final sample 

will then be H u K and we proceed inductively with our construction.

Let p be the integer such that ^ s L(0) < 2-i- . Using 3.31 

we can choose a point v c S such that at most p of the points of

T(v) = |v + h" • k e Nj , lie in 0 .

Let Fx = T(v) , then
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||0 n F || P
y (0) = ---------  * ----

1 H^ll ll^ll

Since || F11| n and £ L(0) £ e by our choice of p , we have

hp (0) * e .
F1

By Lemma 3.33 the samples + £ k.z. are all pairwise disjoint.
i=l

Let 1 - ■) x + J k.z. : x 6 F k. integers
1 i=l 1 1

Since F^ is finite (it has n distinct elements), is countable

and L(Z1) = 0 . Hence we can apply the corollary to Lemma 3.31 to 1

and obtain a point such that at most p of the points in

T(V  = {V1 ; Vn : k £ Nj

lie in 0 and none lie in Ẑ  .

Suppose now inductively that F has been chosen so that
t

Up (0) < e and the samples F^ + £ ^izi are Pai-rwise disjoint. Let
u i = l

Z = \x + T k.z. : x e F  , k. integersf . u I > , 1 1  u ’ 1 Jk i=l '

As Z is countable L(Z ) = 0 and we can obtain a point v such that u u u
at most p of the points in T(v ) lie in 0 and none in zu » tFat is

T(v ) n u F + 7 k.z.u > , 1 1  i=l
= <p .

f f t  .Let F , = F u T(v ) and k. , k. be integers, 1 z l ¡? t . u+1 u u i i
We are required to prove that the samples Fu+j + I ^izi are Pa -̂rw^se 

disjoint,and do so by showing that||[>u+1 + [ k!z.j n F̂u+1 + l k̂ 'z.j || 

is zero. Since we have
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F 1 +u+1 l k . z .1 n F 
L 11 u+1> u+l ; l klz.) n (Fu+1 i l k]'z.'

where k. = k! - k" and F = F u T(v ) by definition, we substitute 1 1 1  u+1 u u J

for F 1 to obtain: u+1

tFu+l ; l kizi) " Fu+1 = (Fu ; I kizi) u (T( V  ; l V i )

n F n T(v ) 1 u u

fF + T k.z.l n F u fT(v ) + j k.z.] n T(v ) [ u L 1 lj u [ u L 1 lj u

fF + y k.z.l n T(v ) u F n fT(v ) + \ k.z. ( u  L 1 lj v u u ( u ^ 1 1

Now the first term is <J> by our inductive hypothesis. Term 2

is <j> by Lemma 3.33, and was chosen in such a way that term 3 is

<j> . Finally note that if f̂ , • • •> fr e Fu n (*̂ viP +  ̂^iZi) tken

each f n = v + J k.z. , 1 £ £ £ r , so that
¡i u L 1 1

v = f„ - y k.z. and the number of elements in u £ ^ 1 1

Fu n (T(-Vû  + I k.z.j and (Fu " l kizi) n TO u) are the same and we 

have,

II Fu n (T(vu) * I  k.z.] II = II (Fu - I  k.z.] n T fv J  || .

Since we can write F^ - y k^z^ = Fu + I(~k^)z  ̂ * we see ^ka^

fourth term reduces to ĵ F̂  + ¿(-k^)z^J n T(vu) which is <f> by

construction so that Fu+1 + l k.z. are pairwise disjoint as required.

, u IIH|| _ s n _ s K
Since F__ has un elements, we have j| p “|T ~ iTn ~ u ’ Dyu

choosing u > — we have ^̂  ̂ -- < e . Thus putting G = F , n > —

we obtain a sample G which is n-invariant and for which <
IIGII

e .
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Further we have G + V k.z. disjoint and y fO) $ e . ̂ 1 1 J G

Let K = u
k± I ST

t i
g ; k.z.

i=l 1 1

= U  ♦ l k.z, : g £ G , Ik 1 i T
i=l 1 1

and put F = H u K . Since G is finite, so is K and so is F .

We now have to show that F as constructed satisfies all of the

requirements of Definition 3.37. Condition (i) is satisfied by F

since it is already satisfied by H . Also note that H is n-invariant

by construction and K is n-invariant since G is. Thus F is

n-invariant which implies, as shown earlier, that F is n^-invariant,

1 $ i <: s . It now remains to show that |y_(0) - L(0.)| < £. andF i 3

|Up(A) - yp(A + y^)| < ei , 1 < i,j < s .

Returning to our earlier set W , if Wp is a set in W , then

w. = yk. = f u i--i u i u i--i
1 J [}SJ 1JJ U>J 13J

and

W  = PG u  i
Uij ij

+ V, U I
U >J IJ

Now since U i.. c o and y (0) < e we obtain y 
• T iJ uj>J J

by property 3.2.3(ii). Using this above yields

u  hji ? £ •

yG(Wi) - yG U i
[ U J

ij
< £ .

Similarly since L(W.) - L U  I.* + L
U*J JJ

u  ^1>J
and

U I
U>J IJ

< -V < £ for 1 < i  ̂r , 
21

L(W.) - Lf U  I - *) * e • Combining these results and noting
1 [u j  1JJ

we have

that G is n-invariant we have by 3.25 (iii) that
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yr (l. .) - L(I.-) G 1y  K n and hence

U T lij
- L U I

H J
1J

J< — < En

by countable additivity and our choice of n . Combining the above

results we get |y (W.) - L(W.)| < 3e .G l  l

Now let X be the set of all points of the form

one

y = £ k.z. where |k.| < T .
i= 1

Note that for each of our original Ch's and each y e X we have

yG-y (0.) = yG (0i - y) and since (0± - y) e W , (i.e. (0. - y) is

of the above) we obtain |yG_^(0^) - L(O^) | < 3e . Now since G

was chosen so that the sets of the form G + y , y e X are pairwise

disjoint, and K = U (G + y) it follows that
ycX

■(Op - L(0p = X IIG * y n 0.|| - L(0.) 
‘ yeX___________

l l|G i y|| 
y£X

[ f||G * y n 0 || - ||G i y||L(op] 
yeX1-_________________________ '
l ilG * y||
y«X

l IIG + y|| yeX
yeX

l IIg ; yII
'||G + y n 0i

II g + y

- L(0p

but |uG_ (Op - L(0p | < 3e from above so that

MK(0p - L(0.)| < 3e .

By Lemma 3.35 we obtain jL>p(°i) - | < e , so that

fO.} - Lf0.)| <4 c < e . for 1 f i,j i s
l' 1 1 J
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Thus F satisfies condition (iii) of Definition 3.37. Turning now to

our last requirement on F , for each z. let1

K.l v +
t
l

3 = 1
k . z.3 3

Applying Corollary 3.36 to K.l
K = (x + kz. : x € K. , Ik.Il i 3

v e G ,  k. $ T , k. = 0 f .i 3 i ' i

above and the set

£ T} we obtain |y (A) - y„(A +
K K

t
zi) <

for any set A . Now since each y. = J k.z. , with Ik. I $ T„ wei i^1 i i ’ 1 l1 1

get by repeated application of the above inequality, with the triangle 

inequality that

yK(A) _ i*k (a * y)
tTll 1---  < -- < £
T T~

by our earlier choice of the constants T, T^, T^ e N . Since

¡p (A) - y (A) | < e and hence |y (A + y.) - y (A + y.)| $ e we finally R r R 1 r 1

obtain

|yp(A) - yp(A + y^)| < 3e < e. , 1 $ i $ s .

Thus F satisfies all the requirements of Definition 3.37 and our proof 

is complete. That is, F as constructed is a sample which finitely 

satisfies the relation Q for the set of quintuples

<01, nr  e1, xx, Y > , <®s > ns» es> xs> ys>

in the domain of Q .

This shows that Q is concurrent as defined and our enlarging 

monomorphism $ guarantees the existence of a *- finite premeasure F'
A

and its associated measure in *(R) such that Ff simultaneously 

satisfies the relation *Q for all standard objects in its domain.

Note that F ’ i $(F) = *F for any sample as constructed above. Indeed 

since F e R is finite in any of these cases we would simply obtain the 

same sample after transformation by $ . Informally we can think of F'

T—
I |t—'
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as a specific limiting sample , based on the above construction 

with X e *N - N , since this serves as an aid in visualizing the 

construction and *- finiteness of our premeasure in *(R) . At this 

stage we modify our notation, as a matter of convenience, and in all 

subsequent work deal simply with a premeasure F on *S .

In this section we have been successful in producing a measure for 

a finite interval, and it is evident from our construction that a similar 

approach will produce a measure on the entire real line. In [2] Bernstein 

constructs such a measure. Here we only outline his approach since in 

Chapter 4 we prefer to work with measures defined for sets A c *R 

reduced mod 1.

Denoting the general interval L-n,n) by and writing + to

denote summation modulo 2n , we see that the sequence {S^} intervals
A

extends to $({S }) = *{S^} in *(R) and for any d e *N ,

*S, = {x e *R : -d s x < d} . d

With the requisite modifications of our earlier technical lemmas

Bernstein shows that there exists a r\ e *N - N and a *- finite

such that

(i) r e G for all r e R

(ii) G is n-invariant on *S for all n e Nn
(iii) yG(*A) = L(A) for Lebesgue measurable A £ R

(iv) yG (A) = ug (A + y) for every y e R and A £ *S^ .

He then shows that G as above represents a premeasure on the extended

real line *S => R so that for our earlier premeasure F on *S we n
have the relationship

IIG || = 2n 11 F!| .
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CHAPTER it._____NON-STANDARD MEASURES OF
SETS ON THE REAL LINE

Standard Lebesgue measure does not distinguish between various 

denumerable sets, nor even between a denumerable set and sets such as 

Cantor's ternary set.

Here we will show that in the sense of F we can assign non

standard cardinals as upper and lower bounds for the number of points 

in such sets, so that in each case we are able to find an approximate 

infinitesimal measure for the set in question. As the standard part 

of these measures must agree with the Lebesgue measure where the latter 

is defined, we also find a more accurate relationship between ||f (| = v 

and the non-standard cardinals of the various sets under investigation.

4.1 A NON-STANDARD MEASURE

For all subsets B of S we define a non-standard measure y as:

Definition 4.11 u(B) = Up(* *B) = 11 ^ - ■ ,  where F is as defined

at the end of Chapter 3.

Note that in considering any B c S , we are guaranteed that *B 

is internal since it is a $- standard set. From the above definition 

we see that our measure depends entirely on ||F n *B|| which we shall 

refer to as the non-standard cardinal of B corresponding to F . Since 

|| F || = v we have in general that || F n *B|| = vy(B) and note here that

*B is not necessarily a subset of F , (e.g. put B = S) .

Before proceeding to find actual non-standard measures of particular 

sets we must show that all B € P(S) are measurable in the sense of 4.11. 

To show this we must prove that ||*B n F || is always defined for all 

B e P(S) , that is that *B n F is *- finite. This follows directly
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A
from the fact that in R the intersection of two sets, one of which is 

finite, is itself finite. Writing this more formally we have that in

4.12 (Vu) : u e P(S) => : (Vv) . v c X ^ u n v e X ,  where X €

is the set of all finite subsets of R . Under our monomorphism $ ,

4.12 is transformed into the true statement

(Vu) : u e *P(S) =3 : (Vv) . v e *X => u n v e *X ,
A

in *(R) . Since B e P(S) we have *B e *P(S) so that with F e *X

we obtain *B n F e *X , that is *B n F is *- finite.

>
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4.2 *- FINITE CARDINALS

In this section we use the fact that *(R) is an enlargement to 

obtain some results for non-standard cardinals.

For a given set E , consider the relation

Clearly K is concurrent on E and since *(R) is an enlargement

there is a *- finite subset I of *E satisfying (*e,I) e K , that is

*e £ I for each e £ E .

Let ft £ *N - N , and put E = N = {1,2,...} in the above. Then 

we can embed N into the internal *- finite subset N = {1,2,3,...,ft} 

of *N . Since N £ *P(R) the embedding is external, in fact any 

embedding as above is external whenever E is an infinite standard set. 

That N is internal follows since it is a *- finite set of individuals 

n £ *N , 1 s n £ ft . Note that N is externally infinite, but since 

N c N for any ft £ *N - N , we can informally write ||n || < ft .

1 ALet g(x) = — , for x £ R - {0} . In R we know that for a 

specific finite set of positive integers N , g maps N onto the

finite set g(N ) , where ||N || = ||g(N )|| •cl d &

Since $ preserves these properties, the extension 4>(g) = *g 

maps *- finite sets onto *- finite sets having the same number of elements. 

With X the set of all finite subsets of R we can write this formally 

as:

K - {(x,y) : x £ y and y is a finite subset of E} .

A

(VY) (Y £ X  ̂g(Y) £ X a ¡¡Y|| = |1 g (Y) ||) ,

where Transforming this we obtain

4.21 (VY) (Y £ *X 3 *g(Y) e *X a ¡I Y * g(Y) ||J
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that is *g(Y) is *- finite.

Let A = : n e N f , then A c S so *A c *S

F = a we can write *A = ^  : n e *N} as

With mesh

*A = 9 n  ̂Q | u j~ : 0 < n e *N

Since F is n-invariant for *N 9 n < o we have i—  : * N 9 n £ a } - c F

and so

*A n F = a + n : a < n e *N > n F

Clearly ■<—  : a < n e *NV n F * 6 since for example e F .\n J r q (cj-I)

Further, with X as above, we have in R the true statement:

obtain

(Vy) . y € X  ̂ (3n)n € N a — l y , so that by transforming we

(Vy) . y € *X ^ (3n)n e *N a — I y

This shows that there is a x e *N - N with *A 3 — i F , so that

— : a < n e *Nj £ F . However since F is *- finite there exists a 

least element q = inf. *A n F , where q = — , p e * N - N .  Setting

p* = sup{x : x e *N a (Vy) . y < x a y € *N ° ~  6 * A n F }

we thus have the inequality.

4.22 a < p ' < p .

Note here that if a = p' , we obtain p’ < p by our remarks above; 

however observe that we have explicit information only about those points 

of the set - : n e *N a o < n < pj- which can be generated as

m-invariant translates (a :> m e  *N) of points in the set

jjL ; *N 3 n $ aj’ • Allowing as well for points -- , X e *N for which

we may have *A n F p — e *A , p’ < X < p we thus find ourselves
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restricted to the general inequality 4.22.

4* 23 If we let || *A n F11 = o> , we then have

p’ $ w  = a + | | | i : a < n < : p | n F | |  $ p , 

that is a < || *A n F || <: p .

Note here that although : n £ a| is not the <I> - transform of

any standard set, it is still an internal, *- finite subset of *S and 

can be assigned a measure using definition 3.21. Within P(*S) we 

can regard it informally as the cr-extension of the standard set A as 

above.

We now establish bounds for non-standard cardinals of other subsets 

of S in terms of both a and p . Specifically we consider the 

following subsets B,C,D of S .

Let

B

C

1 1 1 1
x y 3 ' 5 ’ 7

1 1 1 *

2 ’ 4 ’ 8 y and

D = 1 I I
’ 2 ’ 4

3 1 3 5
4 ' 8 ' 8 ’ 8

1  J_
8 ’ 16 ’

Transforming we see that

■g = ’ n c *N a 2 |n — 1  ̂ so that
\n

:B n F = — : * N ^ n < a A 2 | n - l | u | ^ - a < n < p a 2 n-1 n F

and *B n F -  : a < n < p a 21 n-1J- n Fll , that is

< *B n F < P + 1 where
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[...] stands for the "integral part of" operation.

As it is conceivable that all odd points ~ belong to F ,*Nan ^ p, 

but only few of the even ones do for n > a we could have at 

worst that

*A n F ~ a +
p-G P + G
_ 2 _ _ 2 _

*B n F p-a

and

We certainly have

p  ̂g (g-1) so that || *A n F|| may be approximately equal to || *B n F 

rather than double.

' 1Transforming the set C we obtain *C = \ ~  : n e *Nr so that

[log2a] < || *C n F|| < [log2p] .

For the set D above, representing the set of all finite decimals

in base 2 belongong to S , we see that since for k , n e *N and
k .k <: n < a all points —  e F we obtain

2 [lo&2a] <: || *D n F || $ 2 tlo^2P  ̂ , so that 

<: I! *D n F || £ p .1 +

Although one might expect jj *D n F || to be larger than ||*A n F|| , 

we observe that on the basis of the bounds it could well be smaller.

Note that A,B,C and D are all Lebesque measurable subsets of 

S so that by 3.28(iii) we require the standard part of each of their 

non-standard measures to be zero so that v > nw for all n e N .
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4.3 NON-STANDARD MEASURES ON R

Our non-standard measure y as defined by 4.11 can be immediately 

applied to all subsets B of S . However, we want to assign non

standard measures to arbitrary subsets of the real line and indicated 

in Chapter 3 that there are several ways of achieving this. In [2] 

Bernstein constructs a premeasure for a non-standard interval

*S. = {x e *R : -A £ x < A} , where A e *N - N so that R c *S , toA A
obtain the required result. Here we prefer to modify each subset B £ R 

by reducing it mod 1 and then applying Definition 4.11.

For bounded sets B £ R let a = inf. B and b = sup. B . Then 

with m = [a] (the integral part of a) and n = [b] + 1  we reduce B 

mod 1 and have

n
4.31 y(B) = l y ((B - i + 1) n s) ,

i=m+l

where we simplify our notation by writing Bi = (B - i + 1) n S in the 

above expression.

In line with 4.22 we now fix our extended real line *R to be of 

length 2go , so that for unbounded sets B £ R , 4.31 reduces to

GO
4.32 u(B) = l u(B.) .

i=-u+l

Applying this to N = {1,2,...} we have

GO
U(N) = Up (*N) = I MF(Ni) ,

i=-GJ+l

where N ^ n F = l  , l ^ i ^ w

N . n F = <j> , -Go+1 £ i < 1 •
i

Thus y(N) = -  [ 1 = - , which shows that in the F sense, as defined
v i=l
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in 4.32 the number of elements of A = j 1, y , -j , . ..| is the same 

as that of (1,2,3,...} .

For arbitrary closed intervals A = 

bounded by integers m = [a] and n =

pa, a + —q we have A

a ♦ ?
. qj

+ 1 so that in these

cases we are really only concerned with the measure of intervals 0, - s
r $ s obtained by applying Definition 4.11; the result in a specific

case being obtained by using 4.31 first. Let A = ' ri0, — c S , then

*A c *S and 
( r
0, = y.

■ 'i
o, -. sj

o, ? | n F

, by 3.25 (ii)

Now

measurable

and

st
(T\ = L(A) , as required since A is a Lebesgue

standard set. In general we thus have r pa, a + *-
. q.

P
q

4.33 (i) a ♦ P
qj

n F thus

pa, a + SL n F || = + 1 and
q. q

Apa, a + £-
qj

n F || = Ê . . i
q

•

4.35 EXAMPLE

The preceding results have an immediate application to non-standard 

probability. To see this consider the interval [O,1̂) - I0,h) u .

Since y is translation invariant through standard rational distances,



y ( [ 0 , y )  = 2 y ( [ 0 )  and 

ll*[0,y n F [I, = 2 11 * [ 0, -ì) n F ||
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We are thus in a position to state that corresponding to F there 

are twice as many points in [0,^) as there are in [0,%) . This 

allows us to compare the probabilities of picking a particular real 

y belonging to both intervals, by using a non-standard probability 

function 3 . Here the non-standard probability 3 of picking a given 

real in the standard interval 1 0 ,k) can be defined as

1
|| *C0,Ss) n F || '

We are thus able to say that the chance of picking a particular real 

in the interval [0,14) is twice that of picking it in the interval 

[0,y , where the "chance of picking” has been defined in terms of the 

non-standard probability 3 as given above. With respect to standard 

probabilities we know that our chance of picking a given real in any 

interval is zero, because there are infinitely many points to choose 

from. This violates the intuitive feeling that after all there is some 

chance of picking the point and the above example provides a solution

for this dilemma.



4.4 THE SET OF RATIONALS IN THE UNIT INTERVAL

Since the B.'s in 4.33 are all standard subsets of S . we now 1 *

deal with subsets of S in greater detail before finding bounds for 

the non-standard measure of the set of rationals in S .

In Chapter 3 we had property 3.22 (iii) which states that if

{A.} is any sequence of internal disjoint subsets of *S , then1 ie*N
there is a non-standard integer L such that if i > L then

yc(A.) = 0 and y_r 1 r u
i£*N

A.l l f f (a .)
i=l

For any A c *S , in particular A = *B, B £ S, we can write A = U ̂
ie*N

where the A^'s are nonempty disjoint internal subsets of *S . Clearly 

only intersections for which A. n F / I contribute to the measure and if 

the A. can be selected to contain at most one element of F each, we canl .
write L'
4.41 yF (AD U-,it

u  Ai] = l wf CC-D .
i=l

the Aj that contains x.
for C. =i k<J> if no A.

3
contains x^ ,

where {x1, x2, • * ‘ * x }
V

= F , 1 $ i £ v

Clearly C. n F = <j) for i > v which allows us to write:

v #
4 42 A n F = U C. , where L* = v in 4.41, that is
— —  i=l 1

v
4.43 (A) = l yF(C.) .
----  F i=l ^

In the special case where C_̂ = {x^} for all e F we have



72.

P (n = l y (C ) 
i=l

= l Vip({x.})
i= 1

= v . ■—  = 1 , as required.

For general A c *s, we can set the L £ v in 3.22 (iii) if our 

decomposition of A is in terms of its disjoint components Ch as in

4.41. To illustrate this consider A = U A. ,
ie*N

where

A.l n t—1 A H A <L and F ^ A. = {x. *}1 1 1-V+1J , v $ i < v+6

Then Il F n U A. || = 6 
ie*N

and PFf.u Ai|[l€*N ,
_ 6 

v ’ but

1V y fA.) = -  . This is rectified if as required, we set,L„ F l v 1=1
C. = A ,. .. , since then C- n F = (p for i > 6 and 1 v+(i-l) 1

v
he (A) = I hp(C,) reduces to 
F i=l ^

. _ y 1 _ 6_
yF v v 'i=l

To fix a value for L for transformed sets we examine the 

situation for finite sets in R and transform the appropriate statement.
A

For [J A. £ S , we have in R the true statement: 
ieN 1

4.44 (Vy) .y e X = (3L)L e N a || U  A. n y||
i eN

a L = || {i : (3j)j e N a i e N a j >, i

= I l|A. n y || 
i= 1

A A. n y î <j)} II •

Transforming 4.44 we obtain the corresponding statement in *(R) ,

F for the *- finite set y e *X we have:and using
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4.45
L

(3L)L e *N a || U *A. n F || = l ||*A. n F || 
ie*N 1 i=1 1

a L || {i : (3j)j e *N a i £ *N a j >, i a *A n F  ̂ <f>}|| .

In the special case where

4.46 *Aj n F t <}> 3 (Vi) (i < j *A^ n F i 0) ,

we have L = ||{i : i £ *N a *Ai n F f <J>}||

< v , as we saw earlier.

So L = v for the case

F = U  A. 
i£*N

other hand

B. n F = cf>1

where B. =

, A. = {x.} , since then A. = d> for i > v ; on the

L < v if B. is a subset of F for values i < v and 1
i :> v . For example consider the sequence {B.} ,

1 ie*N

{x3-_2, x3._1, x3.} , x. e F , i < v . By definition

+ 1 . Even though v is fixed, we do not knowB^ n F = <J> for i > 

to which residue class (mod 3) it belongs. However, we can set

L = + 1 and consider the following cases:

(i) v = 3L - 3 or

(ii) v = 3L - 2 or

(iii) v = 3L - 1 .

We then have y, U B
 ̂i £ * N 

= (L-l)
73

= L[vj

I WF CB.)
1= 1

= L

3
V = 1 if V = 3L

1V
if \) — 3 L

- 1 = 1V if v = 3L

So in each case we have U B.Ì - 1 - PpCF) > as required. Thus
(ic*N J

we see that the value of L depends in general on the definition of



74.

the sequence of disjoint subsets under consideration; however, if in 

each case we modify our sequence in an way which allowed us to write 

4.42, then we always have L £ v .

Let Qs be the set of rationals in S , that is

= Q n S = U  A
icN

N ? i  ̂ 1 where

Ai • {i •' ^ € N a (i J) = 1 a 1 $ j
? i } •

Now Qs c S => *Q c *s xs , SO *QS = *i U A ' 
|.i€N J = U  *A

ie*N

can be written as a sequence of disjoint subsets of *S . Let <& be 

the Euler function. Then

*(i) = |]A.|| = ]|{j : j £ N a 1 < j < i a (i,j) = 1} ||

so that

*d>(i) = * ]| A. 11 = ||*Â || , since is the extension of

a> , which associates with each *A^ c *Qs , i e *N , the number of 

points in *Ai namely ||*Ai|| .

Now *A. c F 1 £ i $ a (mesh of F), soi

||*A. n F || = ||*A.|| = **(i) 1 < i < a .

Thus writing

*Q n Fxs = I *A. n F
i=l

= l ||*A n F || + I ||*A. n F || 
i=l i=o+l

from section 4.2. So

|| *Q n F || = l *®(i) + l !l*Ai n F l! 
5 i=l i=a+l

P
< l (i) 

i = l



75.

by the n-invariance properties of F . In [6] it is shown that the 

average order of &(n) is ~  and that the inequality
TT<_

4.47 n T 2
l *(0 -
i=l IT

< n log n

due to R. Tambs-Lyche, gives us an asymptotic estimate for the sum of 

the first n terms of the Euler function.

Applying this in our case we can fix both an upper and lower bound

for || *Q, n F|| by considering the largest possible error in the values
n

of £ *(i) from 4.47. Thus we see that
i = l

2 2
--a log a <: || *Q n F|| < + p log p , so that

TT TT

4.48 fej- - o log oj < y(Qs) < ^ fey- + p log pj
 ̂TT '  ̂TT ^

1 ]3o
v

As L(Q ) = st(y(Q )) = 0 we have ny(Q ) < 1 , for all n € NS s j

so that applying this to 4.48 yields

4.49
■ i 23a _ a log ai < v , for all n c N
1 *
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4.5 CANTOR'S TERNARY SET

Cantor’s ternary set is interesting since it is a non denumerable 

set of Lebesgue measure zero.

Consider the unit interval and remove in succession the following 

open intervals

(i) , the middle third Ì 2
3 ' 3 j

(ii) , the middle thirds of the remaining two intervals, viz.

Ì  1
19 ’ 9j

7 8
9 ’ 9 and continue this process to form the sequence IP

i £ N , of disjoint subsets of S . We see that in general the Lebesgue

measure of the open intervals removed at stage i is L(IP) =  ̂

and that at the n-th step we have removed intervals of total length

2 Ù - 1

4.51
n f7i n
I L(Up = l - j  • 
i=i >

Consider the points remaining after U^, ••• have been removed.

These form a set called Cantor’s ternary set, which we shall denote by 

T . Clearly T has Lebesgue measure zero since in 4.51 n can be 

chosen arbitrarily large. As T is also non denumerable [24] it is an 

interesting set, as stated earlier, and we now proceed to find upper and 

lower bounds for its non-standard measure y(T) .

For i £ N , IP c S and we have by transformation that

★ y 7 e forms a sequence of disjoint internal subsets of *S to
i *

which 3.22 (iii) applies. Now at step one we are removing one interval

U1 of measure p(Uj) = yF(*up = PF X £ *R x < 2

' * r
= y,

= ì - Ì by 4.34 (iii) .
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So the measure of intervals U^, ... removed are

p (u i) 4 4  

2 2
p CÎ ) = —j - — and in general

= 3
n-1 „n-1

At the nth step we have thus removed intervals of total measure

n

i=l i=l

from above and by 4.51.

’21n (

1II

3N J \ I ■

Now T = S - U U. and since T n U U. = b , we have. l . iieN l € N

4.52 *T = *S - U *U. . Since the *U.'s are disjoint, we
ie *N 1 1 ’

have by 3.22 (iii) that for some L e *N - N :

U *U = I p (*u ) .
ie*N J i=l

By 4.52

p(T) = Pp (*T) = yp (*S) - pp U *u.
ie*N 1

= 1 - T un(*U.) from above . , r l1=1

Now p (*U.) = —  If *U. n F || and with A € *N , forF i v l

3A < a (mesh of F) A 0 < i,j < 3 we have

i + 1
3A ’ 3A j

n F J_ h i

3A ’ 3A
n F v_

, A v ’

Now the largest A can be above, such that

3A < a , is A = [log a] < *N - N , so that
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Thus

4.53

L X
UF (*U.) >, l uF(*u.)

= 1 - V x
I3j

(2X - 1)
V

U(T) = U (*S) - uFj u *U.
ie*N

f \ 2< 3k J

A + l i . i
V V

Note here that each step i in our construction involves the interval
1 2 ]—  -7- and that for *N ? i % [log^p] + 1 none of the end-points 3iJ o

-i- e *T belong to F , although there may be points of F in some of 
3
the components of Ih even for i :> [log^p] + 1 .

To fix a lower bound for y(T) we use the fact that at each step

i of our construction we guarantee the presence of 21 more (end)-points

in T . We also know that by the n-invariance of F , all end-points of the
X .

components of each Ih , i £ X belong to F , so that ||*T n F|| £ I 2 .
i=l

1 3As we also have 0, —  and — e *T we thus have4 4

< || *T n F|| , and combining this with 4.53 we now obtain

„X+l
4.54 v < p (T) *

'~vX 2X + --
V

2

l3j

Since T is a standard set of Lebesgue measure zero we have

n
L(T) = 1 - Aim l L(IL)

n-H» i=i

= st(y(T)) .
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Chapter 3 guarantees that st y(T) = 0 so that applying the

standard part operation to 4.54 and noting that 

infinitesimal we have
,3, is

4.55 0An 2 < v for all n e N , and A = [log^a] .

Notice here that taking standard parts has produced nothing new in 

4.55 since clearly

n 2Clog3°] < 2[log2°] < o < v ,

so that 4.55 is a much weaker inequality than 4.49. There we have
3

no(-^2° ~l°g o) < v for all n e N so that certainly

4.56 n a < v , for all n e N .

It is interesting to note that 4.55 can be obtained from the 

construction of T without resorting to non-standard measures. Indeed 

if we choose to write each lb above in component form, e.g. as:

r 1 2 ' 2 ’7 8 ' 3 19 20 4 f 25 26'
27 ’ 27V. >’ U3 “ 27 ’ 27v >• U3 = 27 ’ 21 ̂ ’ U3 27 J 27v J

and similarly for all other - Ik , i e N , we are removing at step i ,
i — 1 k 1 .2 intervals U. each of Lebesgue measure —  . Now we can write

1 31

T = S
,i-l

u u
ieN k=l

where each U^, i e N , H  k ,< 21 1 , is a subset of S . By the
* k • •n-invariance of F we see that Ik n F f for i $ A defined as

\ ★ k .above. But there are 2 - 1 of these intervals lb and since for

1 $ i $ A, || *U^ n F11 > n for all n c N we have v > n(2 - 1) ,

which agrees with 4.55 as required.
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U L  A STANDARD SUBSET OF S THAT IS LEBESGUE NON MEASURABLE

We define the equivalence relation on S as follows:

4»61 Definition For x,y e S , x and y are said to be 

equivalent points if |x-y| e Q n S , and in such case we write x y .

By definition we see that ~r partitions S into equivalence

classes A , where x,y e A if x ~ y . It is clear that the a yJ a r J
A ’s are countable subsets of S and that there are a non-denumerable 

number of them; this follows since distinct A^ are mutually disjoint 

and their union is S .

Since each a e S belongs to A for some a , we denote by A
Ot 3

the equivalence class generated by a and write:

4.62 A = { x : x ~  a} .----  a r

From above we see that the sets Ao form disjoint subsets of S , 

the union of which is S .

Using the axiom of choice we form the set W by taking one

element x from each set Ao . The set W is then Lebesgue nona a
measurable [21], but we show below that we can still find an approximate 

non-zero value for y(W) . Note at this stage that since 3.28 (iii) 

applies only to subsets A S which are Lebesgue measurable we arc 

fjot forced to apply the standard part homomorphism here, and no 

contradiction results.

Consider the sets (W + r) , r e Q n S . These are mutually

disjoint subsets of S and for any x € S we have x c A& for some

a. c S . But x e A and it follows that x e (W + r) for somea a



r e Q n S . Thus (Vx) x e S . 

from which we conclude that

D (3r) x e ( W  + r ) A r e Q n S ,

4.63 S = U (W + r)
reQnS

Now (W+r.) n (W + r.) = <J> for r., r. e Q n S , r.  ̂r.i J  i j * 1 j
A

transforming we have in *(R) that for r. , r. e *(Q n S)

Thus

(W + r^) n (W + rj)l = *(W + r^) n *(W + r^)

= *<i> = <f> ,

and the sets *(W + r) , r £ *(Q n S) form a sequence of disjoint 

subsets of *S . Transforming 4.63 we thus have

4.64 *S = U  *(W + r) .
r£*(QnS)

By transforming 4.63, we see that each x e *(W + r) is of the form 

a + r ,  a £ * S ,  r e * ( Q n S ) .

By Theorem 3.25 we see that for r = - ^ - , q < s < a  we have

4.65 ||*(W + r) n F || = IJ (*W + r) n F ||

= ||*W n F || .

We now examine this case in detail in the standard, finite case and 

transform our result to obtain an approximation for y(W) as outlined 

below. In R we have the following true statement:

(Vy).y £ X a (Vr)r e (QnS) n y ^

d || U  (W+r) n y
re(QnS)ny

|| (W+r) n y || 

|| (QnS) n y ||

||W n y|| 

W n y|| .

Transforming 

(Vy).y e

this we have in

*X a (Vr)r e

*(R)

(QnS)

U *(W+r)
re*(QnS)ny

that:

n y  ̂

n y|| =

|| * (W+r) 

II * (QnS)

n y || = || *W n y

n y || • || *W n y ||
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With F e *X we now write

4.66 II U *(W+r) n FII = II U *(W+% n F j|
re*(QnS)nF q s V ; ^F;q,se*Ns

q

+ II U *(W+1) n F|
^£F;t,ue*N
o<u,t<U

a
= I ®(i)»||*W n FII + || U  *(Wii) n F||

1=1 i-eF;t,u£*N
a<u,t<u

But

by 4.65 and section 4.4.

F = *S n F

= U  *(W+r) n F , by 4.64 
re*(QnS)nF

Since we want to apply 4.66 we write

4.67

r e *(Q n S) e r e *(Q n S) n F u *(Q n S) - F 

Thus

F = U *(W+r) n F u U *(W+r) n F . 
re*(QnS)nF re(*QnS)-F

From earlier work we know that *(Q n S) - F * <p , however in 

general we cannot be sure which rationals are in *(Q n S) - F , nor 

for which of these *(W+r) n F  ̂ <j> . Using 4.67 we can however make 

the approximation

so that

||f || 5 II u *(W+r) n F| > II U n Fll >
re * (QnS) nF ^F;q,se*N

q <s<cj 
a

||F|| :> l *(i).||*W n F , by 4.66 . 
i = l



83.

Thus II * W  n F 11 < --------ii n a

l *(i)
i=l

and y(W) $ —-—  ---  .
I ‘Hi)
i=l

To find a lower bound for y(W) we note that the number of A ’sa
having an element of F in it is || *W n F || . Each element of A n Fa

P
will have at most £ *(i) rational translates also in F and

i=l
A^ n F will have no other points. Thus

P
|| *W n F|| • l *(i) * ||F|| and

i = l

u(W) >. -̂--  •
I Hi)

i=l

Combining our inequality above with 4.47 we now obtain

— 5—  ------  < v(W) < — =----------
3P^ , 3a .+ p log p —  - a log a
7T TT
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