Numerical approaches to flood routing in rivers

Dedi Budiawan
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong
 Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Budiawan, Dedi, Numerical approaches to flood routing in rivers, Master of Engineering (Hons.) thesis, Department of Civil and Mining Engineering, University of Wollongong, 1990. https://ro.uow.edu.au/ theses/2430

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NUMERICAL APPROACHES TO FLOOD ROUTING IN RIVERS

A thesis submitted in fulfilment of the requirements
for the award of the degree of
MASTER OF ENGINEERING (HONOURS)
from
THE UNIVERSITY OF WOLLONGONG

by
UNIVERSTY OF
WOLLONGONG library
Dedi Budiawan, Ir.

To my parents:
$\mathcal{M r}$. and $\mathcal{M r s}$. Budiawan

Acknowledgements

The author wisfies to thank the chairman and staff of the Department of Civil and Mining Engineering at the University of Wollongong for their assistance, and for the study and research facilities provided during the research and computer work related to this thesis. In particular, the author wisfies to express fis great gratitude and appreciation to fis supervisor, Dr. M.J. Boyd, for fis advice, patience and guidance throughout the period of this project.

The author also wishes to thank the staff of the computer laboratory of the $\mathcal{D e p a r t m e n t}$ of Civil and Mining Engineering at the \mathcal{I} niversity of Wollongong for their assistance during the computer programming and analysis work.

Finally, but certainly not in the least, the author wishes to express his special gratitude to fis parents and family for the on-going support and encouragement which led to the completion of this thesis.

ADSTMTC

Flood routing is commonly used to calculate the shape of the flood hydrograph at the downstream end of a reservoir or a river reach, if the flood hydrograph at the upstream end of the reach is known. The flood routing procedure also enables prediction of the time at which the flood will occur at the downstream station.

One of the methods of flood routing which has been widely applied in engineering practice because of its simplicity and accuracy is the Muskingum method. This method is based on the assumption of a linear algebraic relationship between inflow I , outflow Q and storage S in a reach. The equation used is basically and numerically derived from the differential equation of continuity or conservation of mass.

As mentioned above, flood routing normally involves the use of an upstream hydrograph to estimate a downstream hydrograph, an example is estimating the flood hydrograph at the downstream end of a river reach. An estimate of the upstream hydrograph from the recorded flood hydrograph at the downstream end is sometimes required. This case is less common, but still significant. For example, it can be needed to fill in missing records using those at a downstream station.

This reverse routing equation, mathematically, can be deduced easily from the conventional Muskingum equation, i.e.: re-arranging the Muskingum equation to solve for inflow I given outflow Q . Difficulties often arise, since the process is numerically unstable. This numerical instability can cause the process to diverge from the true solution or oscillations to occur in the calculated upstream hydrograph. In practice, satisfactory upstream hydrographs cannot be obtained.

This project is intended to investigate that problem, to determine the cause of the numerical instability and to develop some alternative approaches which can overcome the problem.

Several methods of solution were investigated, including an iterative approach combined with a smoothing and averaging algorithms. Results using this method show that the numerical instability can be overcome by selecting an appropriate time step (routing period), which has been shown to depend on the values of the Muskingum model parameters. The solution converges rapidly because of the use of the averaging algorithm, and accurate estimates of the upstream hydrograph are obtained. It can be said that this method has the same order of accuracy as the conventional downstream routing using the Muskingum method.
Table of Contems
Chapter Page
Title page i
Declaration ii
Acknowledgements iii
Abstract iv
Table of Contents vi
List of Figures xi
List of Tables xiv
List of Notation xvi
1 INTRODUCTION 1-1
1.0 INTRODUCTORY REMARKS 1-1
1.1 THE AIM AND THE SCOPE OF THIS PROJECT 1-3
1.2 DESCRIPTION OF DATA USED 1-5
2 LITERATURE SURVEY 2-1
2.0 INTRODUCTION 2-1
2.1 THE MUSKINGUM METHOD 2-2
2.2 PARAMETER EVALUATION 2-4
2.2.1 Graphical and Trial-and-Error Methods 2-4
2.2.2 Least-Squares Method 2-7
2.2.3 Direct Optimization 2-9
2.3 HYDRODYNAMIC APPROACH 2-10
2.3.1 Convection-Diffusion and Kinematic Wave Equation 2-10
2.3.2 The Analogy between the Muskingum and the
Kinematic Wave Equation 2-12
2.4 ALLOWABLE VALUES OF PARAMETERS K AND x AND CHOICE OF Δt 2-14
2.5 SUMMARY 2-20
3 SOME ASPECTS OF DOWNSTREAM ROUTING USING MUSKINGUM METHOD 3-1
3.0 INTRODUCTION 3-1
3.1 EFFECTS OF MODEL PARAMETERS ON DOWNSTREAM HYDROGRAPH 3-2
3.1.1 Effect of Varying Time Step $\Delta \mathrm{t}$ 3-2
3.1.2 Effect of Varying K Value 3-4
3.1.3 Effect of Varying Parameter x Value 3-5
3.2 NEGATIVE OR REDUCED INITIAL DOWNSTREAM DISCHARGES 3-6
3.3 CASE OF PURE TRANSLATION 3-11
3.4 NASH COEFFICIENTS 3-15
3.5 SUMMARY 3-20
4 UPSTREAM ROUTING USING CONVENTIONAL MUSKINGUM EQUATION 4-1
4.0 INTRODUCTION 4-1
4.1 UPSTREAM ROUTING DERIVED FROM CONVENTIONAL DOWNSTREAM ROUTING 4-1
4.2 UPSTREAM ROUTING COMPUTATIONS USING EQUATION (4.1.1) 4-2
4.2.1 Further Computations Using Parameter $\mathbf{x}=0.0$
with Various Δt 4-11
4.2.2 Further Computations Using Parameter $\mathrm{x}=0.45$ with Various Δt 4-29
4.2.3 Further Computations with Various K Values 4-50
4.3 INVESTIGATION OF THE CAUSE OF THE INSTABILITY 4-56
4.4 PROOF OF THE INSTABILITY 4-61
4.4.1 Muskingum Coefficients 4-62
4.4.2 Nash Coefficients 4-63
4.5 SUMMARY 4-67
5 ALTERNATIVE APPROACHES TO UPSTREAM ROUTING 5-1
5.0 INTRODUCTION 5-1
5.1 ITERATIVE METHOD 5-2
5.1.1 Criterion to Terminate the Iteration 5-4
5.1.2 Condition to Converge 5-5
5.1.3 Weighting Factor (α) 5-8
5.1.4 Summary of the Computation Procedure 5-9
5.1.5 Tests of Computations 5-11
5.2 ITERATIVE METHOD WITH BACKWARD DIFFERENCE AT THE END OF HYDROGRAPH 5-29
5.2.1 Computation using Backward Difference Based on the Second Derivative at the End of Hydrograph 5-33
5.2.2 Computation using Backward Difference Based on the First Derivative at the End of Hydrograph 5-40
5.3 ITERATIVE METHOD WITH NEWTON BACKWARD
FORMULA AT THE END OF HYDROGRAPH 5-45
5.3.1 The Theory of Newton Backward Formula 5-45
5.3.2 The Application of Newton Backward Formula 5-48
5.4 UPSTREAM ROUTING MOVING BACKWARD IN TIME 5-63
5.5 THE CUBIC SPLINE AND RUNGE-KUTTA METHODS 5-64
5.5.1 The Cubic Spline 5-66
5.5.2 The Runge-Kutta Method 5-69
5.5.3 The Application of the Cubic Spline and Runge-Kutta Methods 5-71
5.6 SUMMARY 5-73
6 DOWNSTREAM ROUTING USING ITERATIVE METHOD 6-1
6.0 INTRODUCTION 6-1
6.1 COMPUTATION PROCEDURE 6-2
6.2 CONDITION TO CONVERGE 6-7
6.3 WEIGHTING FACTOR (α) 6-9
6.4 TESTS OF COMPUTATIONS 6-10
6.5 SUMMARY 6-11
7 CONCLUSIONS 7-1
REFERENCES R-1

APPENDIX :

A EXAMPLES OF RUNNING PROGRAMS App.A-1
A. 0 INTRODUCTION App.A-1
A. 1 HOW TO RUN THE PROGRAM App.A-2
A. 2 WORKED EXAMPLES App.A-4
A.2.1 Downstream Routing App.A-4
A.2.1.1 Downstream Routing Using
Conventional Muskingum Method App.A-4
A.2.1.2 Downstream Routing Using IterativeMethodApp.A-10
A.2.2 Upstream Routing App.A-12
A.2.2.1 Upstream Routing Moving Backward in Time App.A-13
A.2.2.2 Upstream Routing Using Iterative Method App.A-16

List of Ifigures

Page

Figure 1.0.1 Attenuation and Lag 1-2
Figure 2.1.1 Illustration of Storage in a River Reach (Raudkivi, 1979) 2-3
Figure 2.2.1 Determination of the (a) Parameter x , and
(b) Parameter K (Raudkivi, 1979) 2-5

Figure 2.2.2 Description of Storage S (Raudkivi, 1979) 2-6
Figure2.2.3 Determination of Parameters x and K for the Muskigum Method (Raudkivi, 1979) 2-6

Figure 2.3.1 Difference Scheme of the Muskingum Method in s-t plane $\quad 2-12$
Figure 2.4.1 Variation of Muskingum Coefficient C_{0} as a Function of $\Delta t / \mathrm{K}$ and Parameter x (Ponce, 1978)2-16

Figure 2.4.2 Critical Value of $1 /(\omega r)$ Plotted Against x for Different Values of λ (Jones, 1981)

Figure 3.1.1 Calculated Downstream Hydrograph with Various Time Steps 3-3

Figure 3.1.2 Downstream Hydrograph with Various K Values 3-5
Figure 3.1.3 Downstream Hydrograph with Various x Values 3-6
Figure 3.2.1 Routing Through Storage with $\mathrm{x}=0.5$ (Nash, 1959) 3-8
Figure 3.3.1 Routing Through Storage with $\mathrm{x}=0.5, \mathrm{~K}=66$ Hours and $\Delta t=24$ Hours and 66 Hours 3-14

Figure 4.3.1 Oscillations in Upstream Hydrograph Using Parameter $\mathrm{x}=0.0$

Figure 4.4.1 Graphic $f(a)$ and $g(a)$ Vs. a $\quad 4-66$
Figure 5.1.1 River Reach Routing Using Instantaneous Discharges
Figure 5.1.2 Graphic x/2 Vs. Min. Time Step/K 5-7
Figure 5.1.3 Graphic α Vs. Number of Iterations for $\mathrm{x}=0.2$ 5-9
Figure 5.1.4 Flow Chart of the Computation 5-10
Figures 5.1.5 Graphics of Samples of Computations 5-20
Figure 5.1.6a Upstream Routing to Obtain Upstream Hydrograph
Using Iterative Method 5-24Figure 5.1.6b Downstream Routing to Obtain Downstream HydrographUsing Standard Muskingum Equation 5-25Figures 5.1.6c Upstream Routing Using Observed DownstreamHydrograph 5-26Figures 5.2.1 Upstream Routing with Backward Difference Based on theSecond Derivative at the End of Hydrograph UsingObserved Downstream Hydrograph5-35
Figures 5.2.2 Calculated Upstream Hydrographs with $\Delta t=22,24$ and26 Hours Using Backward Difference Based on theSecond Derivative at the End of Hydrograph5-38
Figures 5.2.3 Calculated Upstream Hydrographs with $\Delta t=22,24$ and 26 Hours Using Basic Method (Eq. 5.1.5). 5-39
Figures 5.2.4 Upstream Routing with Backward Difference Based on the First Derivative at the End of Hydrograph Using Observed Downstream Hydrograph 5-41
Figures 5.2.5 Calculated Upstream Hydrographs with $\Delta t=22,24$ and26 Hours Using Backward Difference Based on the FirstDerivative at the End of Hydrograph5-44
Figures 5.3.1 Upstream Routing Using Observed Downstream Hydrograph with Newton Backward Formula at the End of Hydrograph, n=2 5-50
Figures 5.3.2 Upstream Routing Using Observed Downstream
Hydrograph with Newton Backward Formula at the End of Hydrograph, $n=3$ 5-53
Figure 5.4.1 Upstream Routing Moving Backward in Time 5-64
Figure 5.5.1 Upstream Routing with Spline Function 5-72
Figure 6.1.1 Flow Chart of the Computation 6-4
Figure 6.2.1 Graphic (1-x)/2 Vs. Min. Time Step/K 6-8
Figure 6.3.1 Graphic α Vs. Number of Iterations for Parameter $x=0.3$ 6-9
Figure 6.4.1 Downstream Routing to Obtain Downstream HydrographUsing the Standard Muskingum and Iterative Methods 6-11

List of Tmbles

Page

$\begin{array}{lll}\text { Table I.2.1 } & \text { Storage Analysis of Flood of September-October } 1960 \\ & \text { in the Reach of Murray River } & 1-6\end{array}$
Table III.1.1 The Values of $\mathrm{C}_{0}, \mathrm{C}_{1}$ and C_{2} for $\mathrm{K}=66$ Hours, $\mathrm{x}=0.45$ and $\Delta t=24,48$ and 72 Hours 3-2

Table III.1.2 The Values of $\mathrm{C}_{0}, \mathrm{C}_{1}$ and C_{2} for $\mathrm{x}=0.45$ and $\Delta t=24$ Hours and Various Parameter K Values 3-4
Table III.1.3 The Values of $\mathrm{C}_{0}, \mathrm{C}_{1}$ and C_{2} for $\mathrm{K}=66$ Hours, $\Delta \mathrm{t}=24$ Hours and Various Parameter x Values 3-6

Table III.3.1 Result of Computation Using $\mathrm{x}=0.5, \mathrm{~K}=66$ Hours and $\Delta t=K$

Table III.4.1 Sample of Computation Using Muskingum and Nash Coefficients

Tables IV.2.1 Results of Computations Using Various Parameter x Values, $K=66$ Hours and $\Delta t=24$ Hours 4-4
Tables IV.2.2 Results of Computations Using Parameter $\mathrm{x}=0$, Various Time Step Δt and $K=66$ Hours

Tables IV.2.3 Results of Computations Using Parameter $\mathrm{x}=0.45$, Various Time Step Δt and $K=66$ Hours 4-30

Tables IV.2.4 Results of Computations Using Parameter $\mathrm{x}=0.45$, Various K Values and $\Delta t=24$ Hours

Table IV.3.1 Values of Muskingum and Nash Coefficients with $\mathrm{K}=66$ Hours, $\Delta \mathrm{t}=24$ Hours and Various Parameter x Values
Table IV.3.2 Values of $-\mathrm{C}_{1} / \mathrm{C}_{0}$ with Parameter $\mathrm{x}=0.45, \mathrm{~K}=66$ Hours
and Various Δt 4-60
Table IV.3.3 Values of $-C_{1} / C_{0}$ with Parameter $x=0.45, \Delta t=24$ Hours and Various K Values 4-61
Tables V.1.1 Samples of Computations 5-13
Table V.3.1 Backward Difference 5-46
Table V.3.2 Samples of Backward Difference 5-47
Tables V.3.3 Upstream Routing Calculation with Newton BackwardFormula, $\mathrm{n}=2$ and Finite Difference Based on the SecondDerivative at the End of Hydrograph5-56

List of $\mathbb{N a t m r i b a ~}$

A wetted cross-sectional area of channel
B mean channel width
C Courant number
$\mathrm{C}_{0} \quad$ Muskingum coefficient, Nash coefficient
C_{1} Muskingum coefficient, Nash coefficient
C_{2} Muskingum coefficient, Nash coefficient
D reciprocal of cell Reynolds number, differential operator d / dt
d relative difference in each value of I or Q from one iteration to the next
E error function
g acceleration due to gravity
I inflow or upstream discharge into a reach
I* inflow or upstream discharge assumed for first trial or obtained from previous iteration
i increment counter
j increment counter
K Muskingum method parameter
k iteration number
M conveyance
m slope of inflow curve [Nash (1959)]
$\mathrm{N} \quad$ time interval at which last hydrograph ordinate was observed or is calculated
n Manning coefficient
Q outflow or downstream discharge, discharge
Q* outflow or downstream discharge assumed for first trial or obtained from previous iteration lateral inflow per unit length
q_{o} reference discharge per unit width
R hydraulic radius, cell Reynolds number
r ratio of time increment to space increment
S volume of temporary or channel storage
S_{c} estimated storage
S_{f} friction slope
S_{o} observed storage, bed slope
s downstream distance
T_{R} time of rise of inflow hydrograph
t time
V_{q} downstream component of velocity of lateral inflow
x Muskingum method parameter
y water depth
z weighting factor
$\Delta \mathrm{S}$ storage increment
$\Delta \mathrm{s} \quad$ space increment (reach length)
$\Delta t \quad$ time increment or time step or routing period
$\alpha \quad$ weighting factor
λ ratio of time base to time increment
$\mu \quad$ diffusion parameter
σ difference between absolute and relative storage
$\tau \quad$ time taken by the flood wave to reach the downstream end of the river reach as defined by Gill (1979a)
$\omega \quad$ kinematic wave speed
∇ backward difference operator

Introduction

1.0 INTRODUCTORY REMARKS

In hydrologic practice, the need to determine a flood hydrograph at a certain site when the flood hydrograph at an upstream site on a river channel or reservoir system is known, is a common problem. For example, a major flood hydrograph may be known at a certain site on a river and it is required to calculate the corresponding flood hydrograph at a downstream station, in order that ample flood protection can be provided. As another example, assume that a major flood hydrograph has been recorded by the stream gauging station at a certain site of a river just upstream from a proposed reservoir site. The corresponding outflow hydrograph is required for the proposed reservoir as a test of the sufficiency of the proposed outlet works.

Both of the examples above show the need for flood routing. The first is concerned with river routing and the second with reservoir routing. In scientific
terms, flood routing is a technique used to compute the effect of system storage on the shape and movement of a flood wave. Storage, in this context, is the volume of water temporarily stored within the reach at any given time and which is in transit to the outlet or downstream site. It does not include water which is retained permanently. Because this storage is temporary, the total volume of inflow must be equal to the total volume of outflow.

The hydrograph for the downstream site differs from the one for the upstream site. It has a different pattern in which peak is lower and base is broader. The peak itself occurs at a later time. The effect of the system which leads to a lower peak is called attenuation and a delay between the peaks of the downstream and the upstream hydrographs is called lag-time.

The lower peak indicates the degree of peak flow reduction resulting from passage through the reservoir or the reach of river. The change in time tells whether the peak of the outflow hydrograph occurs at time when the outlet at the downstream site can pass the flood without any trouble or whether it occurs at a time when the outlet is being flooded with water from any other tributaries. If this happens, some
measures have to be taken which will change the time adequately to avoid the occurrence of flood peaks from other tributaries at the same time.

The Muskingum method of flood routing in rivers is one of the methods which has been widely applied in engineering practice. This method is based on the assumption of a linear algebraic relationship between inflow I, outflow Q and storage S in the reach. The Muskingum equation is numerically derived from the differential equation of conservation of mass.

It is sometimes necessary to estimate the hydrograph at the upstream end of a reach from a known hydrograph at the downstream end. This reverse routing or upstream routing process can be deduced from the conventional downstream routing procedure. The problem is that difficulties often arise in this upstream routing since the process is computationally unstable and unrealistic fluctuations may occur in the calculated hydrograph at the upstream end of the reservoir or river reach.

1.1 THE AIM AND THE SCOPE OF THIS PROJECT

The aim of this project is to investigate the problem mentioned above, to determine the cause of the computational instability and eventually to develop some alternative approaches which can overcome the problem. The methods of solution retain a numerical method which is based on a finite difference approximation.

The scope of this project is restricted to the problem of upstream routing in a river using the Muskingum assumption for the storage system.

In investigating the problem, several computer programs have been written. They are also provided with a graphic program in order that the analyses can be displayed clearly and quickly. This program consists of several subprograms which were taken from 'Turbo Graphix Toolbox' by Borland International (1985). However, some modifications to those subprograms were made to suit the needs
of the numerical analyses. A diskette containing the computer programs which allow normal downstream routing calculations, downstream and upstream routing calculations using iterative method and upstream routing moving backward in time is enclosed. All of the programs were written in Turbo Pascal language. Examples of running these programs are given in appendix A.

In order to avoid ambiguities of symbols and definitions used in this thesis, the following terms are used:

- 'Upstream discharge' and 'downstream discharge' have the same meaning as 'inflow' and 'outflow' respectively which are often used in text books. Similarly, 'upstream hydrograph' is the same as 'inflow hydrograph' and 'downstream hydrograph' is the same as 'outflow hydrograph'.
- 'Time step' with the symbol Δt is the 'routing period', which in some text books is symbolized by ' T '. The symbol ' T ' is also used in this thesis in the results of computer computations in the form of the graphics and tables to represent Δt, because of the difficulty in writing ' Δ ' in the computer graphics.

This thesis is divided into seven chapters. Chapter two consists of the theoretical background and literature survey. Chapter three discusses some specific aspects of downstream routing using the Muskingum equation. This can be looked upon as a further investigation of the literature described in chapter two. Chapter four presents the analyses of the problem of upstream routing for which an equation is derived from the equation for conventional downstream routing. This chapter contains a great number of pages presenting computer outputs in the form of tables of computations. These are deliberately not placed in the appendix for the ease of the reader to follow the discussion. Chapter five introduces some alternative approaches for upstream routing. The Runge-Kutta method combined with a cubic spline fitting method which is used in the graphic program (Turbo Graphix Toolbox) are also discussed here as one of the methods. Chapter six
presents an iterative method for downstream routing. This applies the methods of chapter five to conventional downstream routing. Finally, conclusions are highlighted in chapter seven.

This thesis forms part of a study into upstream routing in rivers and reservoirs, as reported by Boyd et.al. (1989). It considers in greater detail the problem of upstream routing in rivers.

1.2 DESCRIPTION OF DATA USED

This investigation is concerned with numerical approaches to Muskingum flood routing rather than the analysis of floods in actual rivers. Therefore, only one flood event was used in the example calculations. The methods developed in this thesis however are generally applicable to a wide range of flood events.

The data used in this project are of the September-October 1960 flood in the reach of the Murray River from Doctors Point at Albury (National Station No. 409017) to Corowa (409002). The respective catchment areas are 16800 and $18800 \mathrm{~km}^{2}$, and no major tributaries enter the reach between the stations. These data were taken from "Australian Rainfall and Runoff - A Guide to Flood Estimation" Vol.1, chapter 7, Table 7.1, page 134 [Pilgrim, I.E., Australia, 1987] referred to herein as ARR87. The data are given in Table I.2.1.

The storage at instant i in column (4) of Table I.2.1 was obtained by cumulating the storage increments before instant i (see Fig. 2.2.2 in chapter 2). The storage increments were obtained by multiplying the average values of the differences between the inflow and outflow discharges over each 24 -hour period with the number of seconds in the period.

The parameter $\mathrm{x}=0.45$ in column (5) was obtained by applying the trial-end-error method discussed in chapter 2 section 2.2.1. The parameter K value
obtained from this method is $\mathrm{K}=66$ hours. These parameter x and K values are consistently used in this project.

Table I.2.1 Storage Analysis of Flood of September-October 1960 in the reach of Murray River

9 am , Date (1)	Doctors Pt. Inflow I m ${ }^{3} / \mathrm{sec}$ (2)	Adjusted Corowa Ouflow Q m ${ }^{3} / \mathrm{sec}$ (3)	Storage S $\mathrm{m}^{3} \times 10^{6}$ (4)	$\begin{gathered} {[\mathrm{x} . \mathrm{I}+(1-\mathrm{x}) . \mathrm{Q}]} \\ \text { for } \mathrm{x}=0.45 \\ \mathrm{~m}^{3} / \mathrm{sec} \end{gathered}$ (5)
Sept. 15	274	274	0	274
16	314	298	0.7	305
17	355	320	2.9	336
18	404	361	6.3	380
19	495	383	13.0	433
20	566	405	24.8	477
21	586	446	37.8	509
22	572	502	46.8	534
23	575	543	51.2	557
24	572	593	51.8	584
25	571	593	49.9	583
26	676	593	52.4	630
27	1026	614	73.9	799
28	1156	686	112.0	898
29	1081	899	140.1	981
30	1001	1100	143.7	1055
Oct. 1	816	1061	128.8	951
2	681	972	105.7	841
3	568	884	79.4	742
4	538	817	53.7	691
5	534	678	35.4	613
6	535	606	26.2	574
7	551	558	22.8	555
8	555	539	23.2	546
9	549	534	24.5	541
10	544	529	25.8	536
11	493	524	25.1	510
12	428	517	20.0	477
13	376	476	11.8	431
14	357	413	5.0	388
15	301	301	2.6	301
16	274	295	1.7	286
17	271	290	0	281

Total inflow volume $=$ total outflow volume $=1.583 .10^{9} \mathrm{~m}^{3}$.

$\mathbb{C h m p t e r ~ T W (1)}$

Literature Survey

2.0 INTRODUCTION

Since its development in 1930's, the Muskingum method of flood routing in rivers has been the subject of many investigations. Several useful papers dealing with various aspects of the method have been published.

The aim of this chapter is to describe not only the basic theory of the Muskingum method but also those aspects which contribute to its use in flood routing. For example, Gill (1978) proposed a least-squares method to replace the trial-and-error procedure for obtaining the Muskingum parameters x and K of a river reach, Cunge (1969) developed the Muskingum method using a hydrodynamic approach and Jones (1981) discussed the choice of the space and time steps $\Delta \mathrm{s}$ and $\Delta \mathrm{t}$ in terms of the parameters of the convection-diffusion equation.

The sources of this chapter were taken from the text books or papers written by Cunge (1969), Dooge (1973), Price (1973a), Gill (1978), Ponce et.al.(1978), Raudkivi (1979), Strupczewski and Kundzewicz (1980a), Singh and McCann (1980), Jones (1981), Linsley et.al.(1982), and Pilgrim (I.E. Australia, 1987).

2.1 THE MUSKINGUM METHOD

In routing floods through a river, the river is divided into convenient segments called 'reaches'. In this project, only the reach which has no accretion from precipitation, ground water, or tributaries is taken into account. All flow is looked upon as entering the reach at its upstream limit, then progressing to the downstream end of the reach, and it is considered to be unaffected by backwater from lower reaches.

The Muskingum method, originated by Mc Carthy (1938), is the most widely used method of flood routing in rivers. The method is based on a linear algebraic relationship between storage S and both inflow I and outflow Q , along with parameters x and K. Parameter x, the value of which lies between 0 and 0.5 , is a weighting factor which expresses the relative influence of the inflow I and the outflow $\mathrm{Q} . \mathrm{K}$ is a storage parameter which has a time dimension and expresses the average storage to discharge ratio for the river reach. The K value is approximately equal to the average travel time through the reach. It measures the delay between the center of gravity of the input wave and the center of gravity of the output wave.

The basic continuity or storage equation is

$$
\begin{equation*}
\frac{\mathrm{dS}}{\mathrm{dt}}=\mathrm{I}-\mathrm{Q} \tag{2.1.1}
\end{equation*}
$$

This is also often called 'the equation of conservation of mass'. With reference to Figure 2.1.1, the total storage is expressed:

$$
\begin{equation*}
S=K \cdot Q+K \cdot x \cdot(I-Q)=K \cdot[x \cdot I+(1-x) \cdot Q] \tag{2.1.2a}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta \mathrm{S}=\mathrm{S}_{2}-\mathrm{S}_{1}=\mathrm{K} \cdot\left[\mathrm{x} \cdot\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+(1-\mathrm{x}) \cdot\left(\mathrm{Q}_{2}-\mathrm{Q}_{1}\right)\right] \tag{2.1.2b}
\end{equation*}
$$

Solution of eqs.(2.1.1) and (2.1.2a) can be obtained algebraically if I can be expressed as a mathematical function. Such a solution is presented by Kulandaiswamy (1966) and also Diskin (1967). Normally, the inflow data I are available only at a certain time step, or in other words the inflow I is available only in discrete form. Therefore, a solution is obtained using finite difference method instead of the differential equation in eq. (2.1.1). Equation (2.1.1) can thus be expressed in finite difference terms as

$$
\frac{1}{2} \cdot \Delta \mathrm{t} \cdot\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)-\frac{1}{2} \cdot \Delta \mathrm{t} \cdot\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right)=\mathrm{S}_{2}-\dot{\mathrm{S}}_{1}
$$

Substituting eq.(2.1.2b) into this equation yields

$$
\mathrm{Q}_{2}=\mathrm{C}_{0} \cdot \mathrm{I}_{2}+\mathrm{C}_{1} \cdot \mathrm{I}_{1}+\mathrm{C}_{2} \cdot \mathrm{Q}_{1}
$$

or in common numerical expression

$$
\begin{equation*}
Q_{i+1}=C_{0} \cdot I_{i+1}+C_{1} \cdot I_{i}+C_{2} \cdot Q_{i} \tag{2.1.3}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{C}_{0}=\frac{\Delta \mathrm{t}-2 \cdot \mathrm{~K} \cdot \mathrm{x}}{2 \cdot \mathrm{~K} \cdot(1-\mathrm{x})+\Delta \mathrm{t}} \tag{2.1.4a}\\
& \mathrm{C}_{1}=\frac{\Delta \mathrm{t}+2 \cdot \mathrm{~K} \cdot \mathrm{x}}{2 \cdot \mathrm{~K} \cdot(1-\mathrm{x})+\Delta \mathrm{t}} \tag{2.1.4b}\\
& \mathrm{C}_{2}=\frac{2 \cdot \mathrm{~K} \cdot(1-\mathrm{x})-\Delta \mathrm{t}}{2 \cdot \mathrm{~K} \cdot(1-\mathrm{x})+\Delta \mathrm{t}} \tag{2.1.4c}
\end{align*}
$$

2.2 PARAMETER EVALUATION

2.2.1 Graphical and Trial-and-Error Methods

If the inflow and the outflow hydrographs for the reach are available, the value of x can be determined from the observation that the storage is maximum at the time when the inflow and the outflow hydrographs intersect, Fig. 2.2.1a. At this point $\mathrm{dS} / \mathrm{dt}=0$. Differentiating eq. (2.1.2a) and setting $\mathrm{dS} / \mathrm{dt}$ equal to zero yields:

$$
\begin{equation*}
\mathrm{x} \cdot\left(\frac{\mathrm{dI}}{\mathrm{dt}}\right)_{\mathrm{c}}=-(1-\mathrm{x}) \cdot\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)_{\mathrm{c}} \tag{2.2.1}
\end{equation*}
$$

in which x is the only unknown. With x determined in this way, the value of K can be determined by plotting S versus [x.I $+(1-x)$.Q], Fig. 2.2.1b. The slope of this line is the storage coefficient [Raudkivi (1979)].

Another method of determining values of K and x is to plot values of S against the weighted discharges at successive times t. The volumes of storage in the river reach S_{i} at instants $\mathrm{t}_{\mathrm{i}}, \mathrm{i}=0,1,2, \ldots$ are represented by the area between the inflow and outflow hydrographs (usually the area under inflow or outflow hydrograph is obtained by adding up the area of trapezoidal elements) as can be seen in Fig. 2.2.2. These values plotted against [x.I + (1-x).Q] for arbitrary values
of x, give K as the slope. The value of x which yields a loop closest to a single line, Fig. 2.2.3, is taken to be the correct value.

Figure 2.2.2 Description of Storage S (Raudkivi, 1979)

Figure 2.2.3 Determination of Parameters x and K for the Muskingum Method (Raudkivi, 1979)

This trial-and-error procedure can be replaced by other methods. Gill (1978) proposed the least-squares method and Stephenson (1979) proposed a direct
optimization method for parameter estimation. These methods are briefly discussed herein. The description is based on the appendix of the paper by Singh and McCann (1980).

2.2.2 Least-squares Method

The storage S that is normally available is the relative storage (the storage volume in excess of the base value of storage which existed at the start of the flood) unless the initial flow in the river reach is zero. The storage equation, i.e.: eq.(2.1.2a) refers to the absolute value. Therefore, it is necessary to modify eq.(2.1.2a), if the initial storage is significant or the difference between relative and absolute storage is significant. Equation (2.1.2a) is modified into

$$
\begin{equation*}
\mathrm{S}=\mathrm{K} \cdot[\mathrm{x} \cdot \mathrm{I}+(1-\mathrm{x}) \cdot \mathrm{Q}]+\sigma \tag{2.2.2}
\end{equation*}
$$

where σ is the difference between absolute and relative storages.
The method is based on minimizing the squares of deviations between the estimated and the observed values of S. The error function which represents this condition can be expressed as

$$
\begin{equation*}
E=\sum_{j=0}^{N}\left[S_{o}(j)-S_{e}(j)\right]^{2} \tag{2.2.3}
\end{equation*}
$$

where $S_{o}(j)$ is the observed storage at the time interval $j, S_{e}(j)$ is the estimated storage at the time interval j and N is the time interval at which last hydrograph ordinate was observed or is estimated. The error E has to be minimized. There are two cases which have to be considered.

Case 1: $\sigma \neq 0$
Firstly, assume $A=K . x$ and $B=K .(1-x)$. By dropping j for brevity, eq. (2.2.3) can be written as

$$
\begin{equation*}
E=\sum_{j=0}^{N}\left[S_{o}-K . x \cdot I-K \cdot(1-x) \cdot Q-\sigma\right]^{2} \tag{2.2.4}
\end{equation*}
$$

This error E has to be minimized. Using the usual procedure, the following normal equations are obtained.

$$
\begin{align*}
& \sum_{0}^{\mathrm{N}} \mathrm{~S}_{\mathrm{o}}-\mathrm{A} \cdot \sum_{0}^{\mathrm{N}} \mathrm{I}-\mathrm{B} \cdot \sum_{0}^{\mathrm{N}} \mathrm{Q}-\mathrm{N} \cdot \sigma=0 \tag{2.2.5}\\
& \sum_{0}^{\mathrm{N}} \mathrm{~S}_{\mathrm{o}} \cdot \mathrm{I}-\mathrm{A} \cdot \sum_{0}^{\mathrm{N}} \mathrm{I}^{2}-\mathrm{B} \cdot \sum_{0}^{\mathrm{N}} \mathrm{I} \cdot \mathrm{Q}-\sigma \cdot \sum_{0}^{\mathrm{N}} \mathrm{I}=0 \tag{2.2.6}\\
& \sum_{0}^{\mathrm{N}} \mathrm{Q} \cdot \mathrm{~S}_{\mathrm{o}}-\mathrm{A} \cdot \sum_{0}^{\mathrm{N}} \mathrm{I} \cdot \mathrm{Q}-\mathrm{B} \cdot \sum_{0}^{\mathrm{N}} \mathrm{Q}^{2}-\sigma \cdot \sum_{0}^{\mathrm{N}} \mathrm{Q}=0 \tag{2.2.7}
\end{align*}
$$

The values of A, B and σ can be obtained from these equations.

$$
\begin{align*}
& \mathrm{B}=\left(\mathrm{y}_{1} \cdot z_{2}-\mathrm{z}_{1} \cdot \mathrm{y}_{2}\right) /\left(\mathrm{z}_{2} \cdot \mathrm{y}_{3}-\mathrm{y}_{2} \cdot \mathrm{z}_{3}\right) \tag{2.2.8}\\
& \mathrm{A}=\mathrm{y}_{1} / \mathrm{y}_{2}-\mathrm{B} \cdot\left(\mathrm{y}_{3} / \mathrm{y}_{2}\right) \tag{2.2.9}\\
& \sigma=\left(\sum \mathrm{S}_{\mathrm{o}}-\mathrm{A} \cdot \sum \mathrm{I}-\mathrm{B} \cdot \sum \mathrm{Q}\right) / \mathrm{N} \tag{2.2.10}
\end{align*}
$$

where

$$
\begin{array}{ll}
\mathrm{y}_{1}=\sum \mathrm{S} \cdot \mathrm{I}-\left(\sum \mathrm{S} \cdot \sum \mathrm{I}\right) / \mathrm{N} ; & \mathrm{y}_{2}=\sum \mathrm{I}^{2}-\left(\sum \mathrm{I}\right)^{2} / \mathrm{N} \\
\mathrm{y}_{3}=\sum \mathrm{Q} \cdot \mathrm{I}-\sum \mathrm{Q} \cdot \sum \mathrm{I} / \mathrm{N} ; & \mathrm{z}_{1}=\sum \mathrm{S}_{\mathrm{o}} \cdot \mathrm{Q}-\left(\sum \mathrm{S}_{\mathrm{o}} \cdot \sum \mathrm{Q}\right) / \mathrm{N} \\
\mathrm{z}_{2}=\sum \mathrm{I} \cdot \mathrm{Q}-\left(\sum \mathrm{I} \cdot \sum \mathrm{Q}\right) / \mathrm{N} ; & \mathrm{z}_{3}=\sum \mathrm{Q}^{2}-\left(\sum \mathrm{Q} \cdot \sum \mathrm{Q}\right) / \mathrm{N}
\end{array}
$$

Then

$$
\begin{equation*}
\mathrm{K}=\mathrm{A}+\mathrm{B} \text { and } \mathrm{x}=\mathrm{A} /(\mathrm{A}+\mathrm{B}) \tag{2.2.11}
\end{equation*}
$$

Case 2: $\sigma=0$

Solving for A and B as before:

$$
\begin{align*}
& \mathrm{A}=\left(\sum \mathrm{S}_{\mathrm{o}} \cdot \mathrm{I} \cdot \sum \mathrm{Q}^{2}-\sum \mathrm{S}_{\mathrm{o}} \cdot \mathrm{Q} \cdot \sum \mathrm{I} \cdot \mathrm{Q}\right) / \mathrm{D} \tag{2.2.12}\\
& \mathrm{~B}=\left(\sum \mathrm{S}_{\mathrm{o}} \cdot \mathrm{Q} \cdot \sum \mathrm{I}^{2}-\sum \mathrm{S} \cdot \mathrm{I} \cdot \sum \mathrm{I} \cdot \mathrm{Q}\right) / \mathrm{D} \tag{2.2.13}\\
& \mathrm{D}=\sum \mathrm{I}^{2} \cdot \sum \mathrm{Q}^{2}-\left(\sum \mathrm{I} \cdot \mathrm{Q}\right)^{2} \tag{2.2.14}
\end{align*}
$$

K and x can be obtained using eq.(2.2.11).

2.2.3 Direct Optimization

This is a direct method of deriving the routing coefficients C_{0}, C_{1} and C_{2} without performing the intermediate step of obtaining K and x . This involves minimizing the difference between the observed hydrograph and computed hydrograph. The difference can be expressed by the error defined in a leastsquares function. Therefore, this method is none other than a least-squares optimization method which is similar to the one discussed previously.

There are only two unknowns in this method since the third can be determined from $\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}=1$. If C_{1} and C_{2} are the two unknowns then

$$
\begin{align*}
& x=\frac{C_{1}+0.5 \cdot C_{2}-0.5}{C_{1}+C_{2}} \tag{2.2.15}\\
& K=\frac{\Delta t \cdot\left(C_{1}+C_{2}\right)}{1-C_{2}} \tag{2.2.16}
\end{align*}
$$

By re-arranging, eq.(2.1.3) becomes

$$
\begin{equation*}
C_{1} \cdot\left(I_{i+1}-I_{i}\right)+C_{2} \cdot\left(I_{i+1}-Q_{i}\right)=I_{i+1}-Q_{i+1} \tag{2.2.17}
\end{equation*}
$$

if

$$
\mathrm{R}_{\mathrm{i}+1}=\mathrm{I}_{\mathrm{i}+1}-\mathrm{Q}_{\mathrm{i}+1} ; \quad \mathrm{F}_{\mathrm{i}+1}=\mathrm{I}_{\mathrm{i}+1}-\mathrm{I}_{\mathrm{i}} ; \quad \mathrm{G}_{\mathrm{i}+1}=\mathrm{I}_{\mathrm{i}+1}-\mathrm{Q}_{\mathrm{i}}
$$

then

$$
\begin{equation*}
R_{i+1}=C_{1} \cdot F_{i+1}+C_{2} \cdot G_{i+1} \tag{2.2.18}
\end{equation*}
$$

By dropping the subscript $i+1$ for brevity, the error function follows:

$$
\begin{equation*}
\mathrm{E}=\sum\left(\mathrm{R}_{\mathrm{o}}-\mathrm{R}_{\mathrm{e}}\right)^{2} \tag{2.2.19}
\end{equation*}
$$

where subscripts o and e refer to observed and estimated R, respectively.
Following the usual procedure,

$$
\begin{equation*}
\sum \mathrm{R}_{\mathrm{o}} \cdot \mathrm{~F}=\mathrm{C}_{1} \cdot \sum \mathrm{~F}^{2}+\mathrm{C}_{2} \cdot \sum \mathrm{~F} \cdot \mathrm{G} \tag{2.2.20a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum \mathrm{R}_{\mathrm{o}} \cdot \mathrm{G}=\mathrm{C}_{1} \cdot \sum \mathrm{~F} \cdot \mathrm{G}+\mathrm{C}_{2} \cdot \sum \mathrm{G}^{2} \tag{2.2.20b}
\end{equation*}
$$

Then C_{1} and C_{2} can be obtained.

$$
\begin{align*}
& \mathrm{C}_{1}=\left(\sum \mathrm{R}_{\mathrm{o}} \cdot \mathrm{~F} \cdot \sum \mathrm{G}^{2}-\sum \mathrm{R}_{\mathrm{o}} \cdot \mathrm{G} \cdot \sum \mathrm{~F} \cdot \mathrm{G}\right) / \mathrm{DET} \tag{2.2.21a}\\
& \mathrm{C}_{2}=\left(\sum \mathrm{R}_{\mathrm{o}} \cdot \mathrm{G} \cdot \sum \mathrm{~F}^{2}-\sum \mathrm{R}_{\mathrm{o}} \cdot \mathrm{~F} \cdot \sum \mathrm{~F} \cdot \mathrm{G}\right) / \mathrm{DET} \tag{2.2.21b}
\end{align*}
$$

where

$$
\mathrm{DET}=\sum \mathrm{G}^{2} \cdot \sum \mathrm{~F}^{2}-\left(\sum \mathrm{F} \cdot \mathrm{G}\right)^{2}
$$

Eventually, after knowing the values of C_{1} and $\mathrm{C}_{2}, \mathrm{x}$ and K can be determined by using eqs.(2.2.15) and (2.2.16) respectively.

2.3 HYDRODYNAMIC APPROACH

2.3.1 Convection-Diffusion and Kinematic Wave Equation

Basically, flood routing methods are based on the St. Venant equations which describe the conservation of volume and momentum in a channel.

$$
\begin{align*}
& \frac{\partial A}{\partial t}+\frac{\partial Q}{\partial s}=q \tag{2.3.1}\\
& \frac{\partial Q}{\partial t}+\frac{\partial}{\partial s}\left(\frac{Q^{2}}{A}\right)=A \cdot g \cdot\left(S_{o}-\frac{\partial y}{\partial s}-S_{f}\right)+q \cdot V_{q} \tag{2.3.2}
\end{align*}
$$

Flood routing methods can be classified into three groups [see Jones (1981)]
a. those methods based on a numerical solution of the St. Venant equations without simplication
b. methods based on momentum governed by bed, friction and surface slopes only, which yields diffusion analogy models
c. methods based on momentum governed by bed and friction slopes only, which yields kinematic models.

Since the slope terms have much greater effect on the momentum if compared to the other terms, eq.(2.3.2) can be approximated as

$$
S_{o}-\frac{\partial y}{\partial s}-S_{f}=0
$$

$$
\begin{equation*}
S_{o}=\frac{\partial y}{\partial s}+S_{f} \tag{2.3.3}
\end{equation*}
$$

Equation (2.3.3) can be combined with eq.(2.3.1) to yield convection-diffusion equation using

$$
\begin{equation*}
\mathrm{S}_{\mathrm{f}}=\mathrm{Q}^{2} \mathrm{M}^{2} \tag{2.3.4}
\end{equation*}
$$

where M is the conveyance which is assumed to be a function of depth and channel parameters. The convection-diffusion equation is then expressed as

$$
\begin{equation*}
\frac{\partial Q}{\partial t}+\omega \cdot \frac{\partial Q}{\partial s}=\mu \cdot \frac{\partial^{2} Q}{\partial s^{2}}+\omega \cdot q \tag{2.3.5}
\end{equation*}
$$

where

$$
\begin{align*}
& \omega=\frac{Q \cdot(d M / d y)}{B \cdot M} \tag{2.3.6}\\
& \mu=M^{2} /(2 \cdot B \cdot Q) \tag{2.3.7}\\
& M=\left(A \cdot R^{2 / 3}\right) / n \tag{2.3.8}
\end{align*}
$$

B is mean channel width,
A is wetted cross-sectional area of channel,
n is Manning coefficient,
R is hydraulic radius.
Since the water surface slope has only a secondary effect on momentum, the momentum equation, eq.(2.3.3), can be further approximated to

$$
\begin{equation*}
S_{o}=S_{f} \tag{2.3.9}
\end{equation*}
$$

Combining this equation with eq.(2.3.1) yields

$$
\begin{equation*}
\frac{\partial \mathrm{Q}}{\partial \mathrm{t}}+\omega \cdot \frac{\partial \mathrm{Q}}{\partial \mathrm{~s}}=\omega \cdot \mathrm{q} \tag{2.3.10}
\end{equation*}
$$

This equation is called kinematic wave equation, where ω is the kinematic wave speed which may depend on Q [Jones (1981)].

2.3.2 The Analogy between the Muskingum and the Kinematic

 Wave EquationIf there is no lateral inflow, eq.(2.3.10) can be written as

$$
\begin{equation*}
\frac{\partial Q}{\partial t}+\omega \cdot \frac{\partial Q}{\partial s}=0 \tag{2.3.11}
\end{equation*}
$$

As mentioned previously, ω is a function of Q, therefore eq.(2.3.11) is a quasi linear equation. For certain applications, however, ω is considered a constant and eq.(2.3.11) reduces to a linear form.

Figure 2.3.1 Difference scheme of the Muskingum Method in s-t Plane

Assuming a difference scheme in the s-t plane (Fig. 2.3.1), eq. (2.3.11) is discretized to yield (the discharges on the left-hand side of Fig.2.3.1 are symbolized by I not Q to refer to upstream discharge) :

$$
\begin{equation*}
\left[\frac{\mathrm{x} \cdot\left(\mathrm{I}_{\mathrm{i}+1}-\mathrm{I}_{\mathrm{i}}\right)+(1-\mathrm{x}) \cdot\left(\mathrm{Q}_{\mathrm{i}+1}-\mathrm{Q}_{\mathrm{i}}\right)}{\Delta \mathrm{t}}\right]+\omega \cdot\left[\frac{\mathrm{z} \cdot\left(\mathrm{Q}_{\mathrm{i}}-\mathrm{I}_{\mathrm{i}}\right)+(1-\mathrm{z}) \cdot\left(\mathrm{Q}_{\mathrm{i}+1}-\mathrm{I}_{\mathrm{i}+1}\right)}{\Delta \mathrm{s}}\right]=0 \tag{2.3.12}
\end{equation*}
$$

where x and z are weighting factors. By taking $\mathrm{z}=0.5$, eq.(2.3.12) reduces to

$$
\begin{equation*}
\Delta \mathrm{t} \cdot\left[\left(\frac{\mathrm{I}_{\mathrm{i}}+\mathrm{I}_{\mathrm{i}+1}}{2}\right)-\left(\frac{\mathrm{Q}_{\mathrm{i}}+\mathrm{Q}_{\mathrm{i}+1}}{2}\right)\right]=\frac{\Delta \mathrm{s}}{\omega} \cdot\left[\mathrm{x} \cdot\left(\mathrm{I}_{\mathrm{i}+1}-\mathrm{I}_{\mathrm{i}}\right)+(1-\mathrm{x}) \cdot\left(\mathrm{Q}_{\mathrm{i}+1}-\mathrm{Q}_{\mathrm{i}}\right)\right] \tag{2.3.13}
\end{equation*}
$$

if $\Delta \mathrm{s} / \omega=\mathrm{K}$, eq.(2.3.13) becomes

$$
Q_{i+1}=\frac{\Delta t-2 . K \cdot x}{2 \cdot K \cdot(1-x)+\Delta t} \cdot I_{i+1}+\frac{\Delta t+2 \cdot K \cdot x}{2 \cdot K \cdot(1-x)+\Delta t} \cdot I_{i}+\frac{2 \cdot K \cdot(1-x)-\Delta t}{2 \cdot K \cdot(1-x)+\Delta t} \cdot Q_{i}
$$

which is the Muskingum formula.
The convection-diffusion equation [eq.(2.3.5)] with no lateral inflow is

$$
\begin{equation*}
\frac{\partial \mathrm{Q}}{\partial \mathrm{t}}+\omega \cdot \frac{\partial \mathrm{Q}}{\partial \mathrm{~s}}=\mu \cdot \frac{\partial^{2} \mathrm{Q}}{\partial \mathrm{~s}^{2}} \tag{2.3.14}
\end{equation*}
$$

Cunge (1969) noted that the solution of the finite difference forms of equations (2.1.1) and (2.1.2a), by means of a Taylor series expansion, can be shown to approximate eq.(2.3.14) with an error of $\operatorname{order}(\Delta s)^{2}$ provided that

$$
\begin{equation*}
\mathrm{K}=\Delta \mathrm{s} / \omega \tag{2.3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
x=\frac{1}{2}-\frac{\mu}{\omega \cdot \Delta s} \tag{2.3.16}
\end{equation*}
$$

It can be noticed from eq.(2.3.16), once the parameter values of μ and ω for a reach are known, the determination of parameter x is equivalent to the determination of Δs, that is to say the value of x should depend on the reach length adopted.

Price (1973a) in his paper mentioned that the parameters μ and ω can vary significantly with the magnitude of the flood. This is the reason why there is a disadvantage with the approach of using the values of μ and ω resulting from calibration to route other floods of significantly different magnitude in the same river. It should be noted that calibration is a process for determining a certain parameter value through comparing the predicted result with a recorded result.

This is done repeatedly using various trial values of that parameter until the parameter value which yields the most accurate result is obtained.

Price suggested that curves for μ and ω, where possible, be defined. This can be done by correlating values of μ and ω calculated for a number of recorded floods with the average peak discharge along the reach in each case. Thus, the functions $\mu(\mathrm{Q})$ and $\omega(\mathrm{Q})$ can be obtained in the form of curves which are drawn through the resulting points. However, the use of μ and ω values from the curves to route a future flood has to be performed with caution, since the curves may not be smooth, or in other words there may be some scatter about the curves due to observational error and also to the dependence of the calculated values of μ and ω on the shapes of the discharge hydrographs. To overcome this difficulty, Price developed the variable parameter diffusion method [Price (1973b)].

2.4 ALLOWABLE VALUES OF PARAMETERS K AND x AND CHOICE OF Δt

Since K is the parameter which has time dimension, its value must be greater than zero. It can be seen from eq.(2.3.15) that its value depends on the length of the reach and the wave speed.

The range of parameter x value, in practice, is [0,0.5]. However, Dooge (1973) and Strupczewski and Kundzewicz (1980a) in their paper asserted that the parameter x value can be negative. This principle was proved by the formulae obtained from matching the moments of the impulse response of the Muskingum model with those of a linear dynamic model. The negative x value is needed in the case when the river reach is short. In general, the parameter x value can theoretically lie in the range $(-\infty, 0.5]$.

According to Ponce et.al. (1978), the range of parameter x value is $[0,0.5]$. Further, Ponce mentioned that values of $x \geq 0.5$ cause numerical instability and
values of $x<0$ will be associated with very small values of Δs (river reach length) which lead to inefficient computation. They also presented a graphic which correlates the Muskingum coefficient C_{0} to parameter x, time step Δt and parameter K (Figure 2.4.1). Before presenting the graphic, it is necessary to explain briefly the derivation of the parameter used. Equation (2.3.16) can be written as

$$
\begin{equation*}
\mu=(1 / 2-x) \cdot \omega \cdot \Delta s \tag{2.4.1}
\end{equation*}
$$

This is the numerical diffusion coefficient of a second order approximation of the finite difference equation. The physical diffusion coefficient is $\mu=q_{o} /\left(2 . S_{o}\right)$, where q_{o} is a reference discharge per unit width and S_{o} is the channel bed slope. The parameter x can be obtained by matching the physical diffusion coefficient with eq.(2.4.1).

$$
\begin{equation*}
\mathrm{x}=\frac{1}{2} \cdot\left(1-\frac{\mathrm{q}_{\mathrm{o}}}{\mathrm{~S}_{\mathrm{o}} \cdot \omega \cdot \Delta \mathrm{~s}}\right) \tag{2.4.2}
\end{equation*}
$$

or

$$
x=\frac{1}{2} \cdot(1-D)
$$

where D is the reciprocal of a cell Reynolds number R .

$$
\begin{align*}
& \mathrm{D}=1 / \mathrm{R} \tag{2.4.3}\\
& \mathrm{R}=\frac{\omega \cdot \Delta \mathrm{s}}{\mathrm{q}_{\mathrm{o}} / \mathrm{S}_{\mathrm{o}}} \tag{2.4.4}
\end{align*}
$$

Defining the Courant number $\mathrm{C}=\Delta \mathrm{t} / \mathrm{K}$ to be used as a substitution in equations (2.1.4a,b,c), those equations become

$$
\begin{align*}
& \mathrm{C}_{0}=\frac{-1+C+D}{1+C+D} \tag{2.4.5a}\\
& \mathrm{C}_{1}=\frac{1+C-D}{1+C+D} \tag{2.4.5b}\\
& \mathrm{C}_{2}=\frac{1-C+D}{1+C+D} \tag{2.4.5c}
\end{align*}
$$

Figure 2.4.1 shows the values of C_{0} bounded between +1 and -1 to be a function of C and D. The shaded area satisfies the condition $2 . x \leq \Delta t / K \leq 2 .(1-x)$ and $0 \leq x<0.5$. The condition represented by the shaded area in Fig.2.4.1 can be regarded as the criterion for choosing the time step.

Figure 2.4.1 Variation of Muskingum Coefficient C_{0} as a Function of $\Delta t / K$ and Parameter x [Ponce (1978)]

A Similar but more restrictive criterion of choosing the time step is described by Pilgrim (I.E. Australia, 1987). The time step $\Delta \mathrm{t}$ chosen should generally conform with the following conditions:

$$
\begin{equation*}
\Delta \mathrm{t} \leq 0.25 \mathrm{~T}_{\mathrm{R}} \tag{2.4.6}
\end{equation*}
$$

where T_{R} is the time of rise of the inflow hydrograph, and

$$
\begin{align*}
& \Delta t \leq K \tag{2.4.7}\\
& \Delta t \geq 2 . K . x \tag{2.4.8}
\end{align*}
$$

In some cases it is not possible to satisfy all of these conditions, therefore a compromise value may have to be taken. Inability to satisfy the condition may result in some practical problems. One of these problems is the occurrence of an unexpected decreasing value of calculated discharge represented by the dip near the start of the hydrograph. This problem is further discussed in chapter 3.

The criterion of choosing the time step Δt and space step $\Delta \mathrm{s}$ for the Muskingum-Cunge method was discussed by Jones (1981). In order to apply the Muskingum-Cunge method, the parameters μ and ω of the convection-diffusion eq.(2.3.14) which are assumed to be constant, must be determined. Substituting eq.(2.4.1) into eq.(2.3.14) yields

$$
\begin{equation*}
\frac{\partial \mathrm{Q}}{\partial \mathrm{t}}+\omega \cdot \frac{\partial \mathrm{Q}}{\partial \mathrm{~s}}=\left(\frac{1}{2}-\mathrm{x}\right) \cdot \frac{\omega}{\mathrm{r}} \cdot \Delta \mathrm{t} \cdot \frac{\partial^{2} \mathrm{Q}}{\partial \mathrm{~s}^{2}} \tag{2.4.9}
\end{equation*}
$$

where $\quad r=\Delta t / \Delta s$

Jones presented the true solution to the convection-diffusion equation and some related graphics. One of them is the graphic which permits the choice of Δt and Δs for wave forms of a number of time steps λ (λ is the ratio of time base to time step). However, in application the time base of the inflow hydrograph, and hence the value of λ, may not be known in advance, so the model should be chosen to be applicable and accurate in as many cases as possible. Figure 2.4 .2 shows the graphic $1 /(\omega r)$ vs. x. The Muskingum-Cunge parameters K and x and the space and time steps $\Delta \mathrm{s}$ and $\Delta \mathrm{t}$ may be found using equations (2.3.15) and (2.3.16) together with Fig.2.4.2. It can be seen in Fig 2.4.2 that the behaviour of the model for $0.3 \leq x \leq 0.5$ is similar for a wide range of values of λ. The value of $\lambda=10$

Figure 2.4.2 Critical Value of $1 /(\omega \mathrm{r})$ Plotted against x for Different Values of λ [Jones (1981)]
can be taken as a representative choice for that range of x value. That is, the time step Δt can be taken as one tenth of the hydrograph time base.

There are three approaches to the choice of the values of Δs and Δt which depend on whether or not one of them is more clearly defined by the physical model. They are:
a. space step Δ s fixed,
b. time step Δt fixed,
c. checks when both space step and time step are fixed.

The third approach is used when the space and time steps Δs and Δt are specified from physical conditions. This is usually found in the case of pipe routing. It is not discussed herein, for further detail see Jones (1981).

a. Space step Δ s fixed

If the space step $\Delta \mathrm{s}$ is obviously suggested by the physical model, but the time step $\Delta \mathrm{t}$ is not, the parameter x can be determined using eq.(2.3.16) with known values of parameters μ and ω. An increased value of Δs should be considered if the parameter x value is less than 0.3 since the corresponding choice of the time step Δt will depend on λ. To obtain the calculated outflow hydrograph
at the end of the true reach at a distance $\Delta \mathrm{s}$, interpolation on the final solution has to be performed.

Using the parameter x value calculated from eq.(2.3.16) and $\lambda=10$ curve in Fig.2.4.2, the value of $1 /(\mathrm{r} . \omega)$ is obtained, and hence the time step $\Delta \mathrm{t}$ using $\mathrm{r}=\Delta \mathrm{t} / \Delta \mathrm{s}$. Another alternative to obtain the value of $1 /(\mathrm{r} . \omega)$ is using eq.(2.4.11) which is a good fit to the $\lambda=10$ curve in the region $0.3 \leq x \leq 0.5$.

$$
\begin{equation*}
\frac{1}{\omega . r}=1.0-0.0939 \cdot\left(\frac{1}{2}-\mathrm{x}\right)+9.015 \cdot\left(\frac{1}{2}-\mathrm{x}\right)^{2} \tag{2.4.11}
\end{equation*}
$$

b. Time step $\Delta \mathrm{t}$ fixed

If time step Δt is determined in advance but space step Δs is not, what has to be performed first is checking the time step Δt, whether it is at most a fifth of the rise time of the inflow hydrograph T_{R} (to give $\lambda>10$).

Substituting for $1 / 2-\mathrm{x}$ from eq.(2.3.16) into eq.(2.4.11) yields

$$
\begin{equation*}
\frac{\Delta \mathrm{s}}{\omega . \Delta \mathrm{t}}=1.0-0.0939 \cdot\left(\frac{\mu}{\omega . \Delta \mathrm{s}}\right)+9.015 \cdot\left(\frac{\mu}{\omega . \Delta \mathrm{s}}\right)^{2} \tag{2.4.12}
\end{equation*}
$$

This is a cubic equation in Δs which may be cumbersome to solve for each reach. For convenience, a simpler approximation is used :

$$
\begin{equation*}
\frac{1}{\omega . \mathrm{r}}=1.0+0.767 \cdot\left(\frac{\mu}{\omega . \Delta \mathrm{s}}\right) \tag{2.4.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta s^{2}-\omega \cdot \Delta t \cdot \Delta \mathrm{~s}-0.767 \cdot \mu \cdot \Delta \mathrm{t}=0 \tag{2.4.14}
\end{equation*}
$$

Solving this equation yields

$$
\begin{equation*}
\left.\Delta \mathrm{s}=\frac{1}{2} \cdot \omega \cdot \Delta \mathrm{t} \cdot\left[1+\sqrt{\left(1+\frac{3.068 \cdot \mu}{2}\right.} \frac{\omega \cdot \Delta \mathrm{t}}{2}\right)\right] \tag{2.4.15}
\end{equation*}
$$

If x is in the range $0.3 \leq x \leq 0.5$, equation (2.3.16) gives

$$
\begin{equation*}
\Delta s>5 . \mu / \omega \tag{2.4.16}
\end{equation*}
$$

and from eq.(2.4.15) this leads to the requirement that

$$
\Delta t>4.335 . \mu / \omega^{2}
$$

If this condition is not satisfied, a larger time step Δt should be chosen.

2.5 SUMMARY

The parameters x and K can be obtained by a trial-and-error procedure. The value of x which results in a loop closest to a single line in a graphic of S vs. [x.I + (1-x).Q] using historical data is adopted, while the value of K is obtained as the slope of the straight line. Alternatively, the value of x can be first found by calculating $\mathrm{dI} / \mathrm{dt}$ and $\mathrm{dQ} / \mathrm{dt}$ at the intersection of the inflow and outflow hydrographs. This value of x can then be used to plot S versus $[x . I+(1-x) . Q]$ and the value of K determined from the slope of the resulting straight line. The trial-and-error procedure can be replaced either by the least-squares method proposed by Gill (1978) or the direct optimization method for parameter estimation proposed by Stephenson (1979).

The conventional Muskingum equation has an analogy with the kinematic wave equation, where $K=\Delta s / \omega$ and ω is the kinematic wave speed.

The parameter x value can theoretically lie in the range $(-\infty, 0.5]$. The negative x value is needed in the case when the river reach is short. However, in practice, the range of parameter x is $[0,0.5]$.

The criterion of choosing the time step Δt for the conventional Muskingum method in terms of T_{R}, x and K was presented by Pilgrim (I.E. Australia, 1987). The time step Δt chosen should generally conform with the three stated conditions. But in some cases, it is not possible to satisfy all of those conditions, therefore a compromise value may have to be taken. Inability to satisfy the condition may result in some practical problems, such as the occurrence of an unexpected decreasing value of calculated discharge represented by the dip near the start of the hydrograph (further discussed in chapter 3). The criterion of choosing the time
step Δt and space step Δs was presented by Jones (1981) in terms of parameters ω and μ (the kinematic wave speed and the diffusion parameter).

Chapter Three

Some Aspects of Downstream Routing Using Muskingum Method

3.0 INTRODUCTION

The aim of this chapter is to consider some specific aspects which are significant in the conventional Muskingum downstream routing equation. One of them involves an explanation for the failure of the Muskingum method when $\Delta t / \mathrm{K}$ is not small. This is demonstrated by the widely accepted belief that Muskingum routing with parameter $\mathrm{x}=0.5$ operates as a pure delay when the time step $\Delta \mathrm{t}$ equals K . Another aspect considered is the reduced or sometimes negative outflows which occur near the start of the hydrograph. Finally, an alternative way of calculating Muskingum coefficients, Nash coefficients, which are potentially more accurate than the Muskingum coefficients is considered.

Some of the sources of this chapter were taken from the papers written by Nash (1959), Kulandaiswamy (1966), Gill (1979a,b), Singh and McCann (1980), Strupczewski and Kundzewicz (1980b) and Pilgrim (I.E.Australia, 1987).

3.1 EFFECTS OF MODEL PARAMETERS ON DOWNSTREAM HYDROGRAPH

In order to describe more clearly the effects of model parameters on the calculated downstream hydrograph, results of computations using the observed upstream hydrograph taken from ARR87 page 134 table 7.1 with various values of model parameters are presented. The computations encompassed the effect of varying time step Δt, varying parameter K and varying parameter x values.

3.1.1 Effect of Varying Time Step Δt

The computations used time steps $\Delta t: 24,48$ and 72 hours, parameter $\mathrm{K}=$ 66 hours and parameter $x=0.45$. Figure 3.1.1 shows the result. It can be noticed from the figure that unexpected decreasing values occur for $\Delta t=24$ and 48 hours. They are shown by the dips at time $\mathrm{t}=288$ hours. The unexpected decreasing value is due to the negative value of C_{0} in the Muskingum equation (see Table III.1.1) and the high value of $\mathrm{I}_{2}\left(\mathrm{I}_{\mathrm{i}+1}\right)$ for that period. This negative value of C_{0} also results in fluctuations which are evident in the calculated hydrograph beyond this time. Using a longer time step, i.e.: $\Delta t=72$ hours, the dip is eliminated.

Table III.1.1 The values of $\mathrm{C}_{0}, \mathrm{C}_{1}$ and C_{2} for $K=66$ Hours, $x=0.45$ and $\Delta t=24,48$ and 72 Hours

$\Delta \mathrm{t}$ (hours)	C_{0}	C_{1}	C_{2}
24	-0.366	0.863	0.503
48	-0.095	0.891	0.204
72	0.087	0.909	0.004

Figure 3.1.1 Calculated Downstream Hydrograph with Various Time Steps

The time steps used in this computation do not satisfy the three conditions discussed in section 7.4 of chapter 7 by Pilgrim (I.E.Aust., 1987). The conditions are:

$$
\begin{aligned}
* \Delta \mathrm{t} & \leq 0.25 \mathrm{~T}_{\mathrm{R}} \\
& \leq 0.25 \times 72 \text { hours } \leq 18 \text { hours }
\end{aligned}
$$

where T_{R} is the time of rise of the major peak of the inflow hydrograph,

$$
* \Delta \mathrm{t} \leq \mathrm{K}
$$

$$
\leq 66 \text { hours, }
$$

$$
* \Delta t \geq 2 . K . x
$$

$$
\geq 2 \times 66 \times 0.45 \geq 59.4 \text { hours. }
$$

Since the three conditions cannot be satisfied by any one value of $\Delta \mathrm{t}$, a compromise is necessary. In spite of the dip, time step $\Delta t=24$ hours provides a result which agrees with the observed downstream hydrograph reasonably well.

Using a longer time step, i.e.: $\Delta t=72$ hours, the dip is eliminated, but the spacing of the computed points is so great that the shape of hydrograph and particularly the peak, is not adequately defined.

The other criterion for choosing time step Δt presented by Jones (1981) as discussed in chapter 2 cannot be applied in this case since the parameters μ and ω are not known.

It can be concluded that since the time step Δt has a significant effect on the calculated downstream hydrograph, it must be chosen with care.

3.1.2 Effect of Varying K Value

The computations used K values: $6,12,24,33$ and 66 hours with parameter $x=0.45$ and $\Delta t=24$ hours. Figure 3.1.2 shows the result. It can be noticed from the figure that the larger the K value, the longer the time lag is and the more the peak is reduced (attenuation). In addition, the dip at time 288 hours is more pronounced with the larger K value, since it makes the value of C_{0} decrease to become negative (see Table III.1.2).

K (hours)	C_{0}	C_{1}	C_{2}
6	0.608	0.961	-0.569
12	0.355	0.935	-0.290
24	0.048	0.905	0.048
33	-0.095	0.891	0.204
66	-0.366	0.863	0.503

Figure 3.1.2 Downstream Hydrograph with Various K Values

3.1.3 Effect of Varying Parameter x Value

The computations used parameter x values: $0,0.1,0.2,0.3,0.4,0.45$ and 0.5 , parameter $\mathrm{K}=66$ hours and time step $\Delta \mathrm{t}=24$ hours. It can be noticed from Figure 3.1.3 that as parameter x decreases to zero, attenuation is greater so that the peak discharge decreases. Also, as x decreases, the dip in the outflow hydrograph becomes less pronounced. As mentioned previously, the dip results from the negative value of C_{0} and the high value of $\mathrm{I}_{2}\left(\mathrm{I}_{\mathrm{i}+1}\right)$ for the corresponding period. The more negative the value of C_{0} is, the more pronounced the dip becomes. As can be seen in Table III.1.3, the most negative value of C_{0} is given by $\mathrm{x}=0.5$. This parameter x value results in the most pronounced dip (Fig. 3.1.3).

Table III.1.3 The values of $\mathrm{C}_{0}, \mathrm{C}_{1}$ and C_{2} for $\mathrm{K}=66$ hours, $\Delta \mathrm{t}=24$ Hours and Various Parameter x Values

x	C_{0}	C_{1}	C_{2}
0	0.154	0.154	0.692
0.1	0.076	0.261	0.664
0.2	-0.019	0.389	0.630
0.3	-0.134	0.546	0.588
0.4	-0.279	0.744	0.535
0.45	-0.366	0.863	0.503
0.5	-0.467	1	0.467

Figure 3.1.3 Downstream Hydrograph with Various x Values

3.2 NEGATIVE OR REDUCED INITIAL DOWNSTREAM

DISCHARGES

Reduced or sometimes negative initial downstream discharges may occur at the start of the computation, as can be seen in Figure 3.1.1, for time near to zero.

This is investigated to reveal whether this phenomenon, which results from using a finite difference method of solution, is in accordance with the analytical solution of the Muskingum equation.

The description presented by Nash (1959) is given below.
The fundamental equations are (as previously mentioned):

$$
\begin{gather*}
I=Q+\frac{d S}{d t} \tag{3.2.1}\\
S=K(x \cdot I+(1-x) \cdot Q) \tag{3.2.2}
\end{gather*}
$$

from which

$$
\begin{equation*}
\mathrm{I}-\mathrm{x} \cdot \mathrm{~K} \cdot \frac{\mathrm{dI}}{\mathrm{dt}}=\mathrm{Q}+(1-\mathrm{x}) \cdot \mathrm{K} \cdot \frac{\mathrm{dQ}}{\mathrm{dt}} \tag{3.2.3a}
\end{equation*}
$$

This can be re-arranged in terms of I

$$
\begin{equation*}
\mathrm{Q}(\mathrm{t})=\frac{1-\mathrm{x} \cdot \mathrm{~K} \cdot \mathrm{D}}{1+(1-\mathrm{x}) \cdot \mathrm{K} \cdot \mathrm{D}} \mathrm{I}(\mathrm{t}) \tag{3.2.3b}
\end{equation*}
$$

where $\mathrm{D}=$ the differential operator d / dt.
When $\mathrm{x}=0$, the linear reservoir case is obtained.

$$
\begin{equation*}
Q(t)=\frac{1}{1+K \cdot D} I(t) \tag{3.2.4}
\end{equation*}
$$

which has the solution

$$
\begin{equation*}
\mathrm{Q}=\frac{1}{\mathrm{~K}} \cdot \mathrm{e}^{-t / \mathrm{K}} \int \mathrm{e}^{\mathrm{t} / \mathrm{K}} \cdot I d t \tag{3.2.5}
\end{equation*}
$$

Now eq.(3.2.3b) may be looked upon as the result of operating on $I(t)$ successively with 1 -x.K.D and $1 /[1+(1-x) . K . D]$. The operation $1-x . K . D$ merely involves differentiation of the inflow (upstream discharge), and the operation $1 /[1+(1-x) \cdot K . D]$ represents reservoir routing with $S=(1-x) \cdot K . Q$. Therefore eq. (3.2.3b) is equivalent to subtracting x.K times the first derivative of I from I and routing the remainder through reservoir storage with $S=(1-x) \cdot K . Q$. From eq. (3.2.3b), another significant point can be obtained by defining
or

$$
\begin{align*}
& I^{\prime}(t)=(1-x \cdot K \cdot D) \cdot I(t) \tag{3.2.6a}\\
& I^{\prime}(t)=I(t)-x \cdot K \cdot D \cdot I(t) \tag{3.2.6b}
\end{align*}
$$

By comparing with eq.(3.2.1), this means that I^{\prime} is the result of routing I backwards through linear reservoir storage $S=-x . K . I$. The effect of the negative $\mathrm{x} . \mathrm{K}$ is achieved by taking the routing procedure from right to left; that is, in the negative direction of time (Fig.3.2.1).

When time t_{1} at which I^{\prime} becomes zero is reached, I would fall off logarithmically and never actually reach zero unless I' took negative values. This means that when I starts from zero and rises at a finite rate, I' must always take negative values initially.

Figure 3.2.1 Routing Through Storage with $\mathrm{x}=0.5$ [Nash (1959)]

It is clear that the interval between the centres of area of $I^{\prime}(t)$ and $I(t)$ is x.K. Further routing moving forwards through $S=(1-x) . K . Q$ should be carried out to obtain Q (Fig. 3.2.1). Clearly this involves a further shift of the centre of area by (1-x).K so that the total shift is K . It is shown in Fig 3.2.1 that I and Q are not identical when parameter $\mathrm{x}=0.5$ or any other value, so that pure translation cannot occur. This circumstance is further discussed later in section
3.3. It should be noted that the negative initial values of I' result in negative initial values of Q .

Gill in his paper (1979b) asserted that the reduced or sometimes negative initial downstream discharges are the result of using a wrong initial condition rather than due to any inherent defect of the Muskingum method. That the negative outflows are due to a wrong initial condition is demonstrated by considering specific examples (not discussed herein). Further, Gill proposed an initial condition:

$$
\begin{equation*}
\mathrm{I}(0)=\mathrm{Q}(\tau), \tau>0 \tag{3.2.7}
\end{equation*}
$$

and emphasized that the use of this condition would prevent the occurrence of negative outflow in the Muskingum method.

Singh and McCann (1980) criticized this assertion and stated that the condition is incompatible with the formulation of the Muskingum method and, therefore, cannot be used. Below is their explanation.

If eq.(3.2.3a) is solved using the initial condition proposed by Gill [eq.(3.2.7)] then the solution is, for $\tau \leq \mathrm{t}$:

$$
\begin{equation*}
\mathrm{Q}(\mathrm{t})=-\frac{\mathrm{x}}{1-\mathrm{x}} \cdot \mathrm{I}(\mathrm{t})+\left[\mathrm{Q}(\tau)+\frac{\mathrm{x}}{1-\mathrm{x}} \cdot \mathrm{I}(\tau)\right] \cdot \mathrm{e}^{-(\mathrm{t}-\tau) /[\mathrm{K}(1-\mathrm{x})]}+\frac{1}{\mathrm{~K}(1-\mathrm{x})^{2}} \int_{\tau}^{1} \mathrm{e}^{-(\mathrm{t}-\mathrm{s}) /[\mathrm{K}(1-\mathrm{x})]} \cdot \mathrm{I}(\mathrm{~s}) \mathrm{ds} \tag{3.2.8}
\end{equation*}
$$

This solution was obtained by Singh and McCann (1979) with the explicit statement of eq.(3.2.7).

To show that the initial condition in eq.(3.2.7) proposed by Gill (1979a,b) is incompatible with eq. (3.2.3a), an inflow represented by a finite-duration rectangular pulse is considered:

$$
\begin{align*}
& I(t)=A \text { for } 0 \leq t<T \\
& I(t)=0 \text { for } t \geq T \tag{3.2.9}
\end{align*}
$$

where T is the duration of inflow, and A some constant >0. In order to obtain $\mathrm{Q}(\mathrm{t})$ from eq. (3.2.8), using eq. (3.2.9) two cases must be distinguished.
a). $T<\tau$
b). $\mathrm{T} \geq \tau$

In case (a) for $t \leq T<\tau, Q(t)$ cannot be obtained since eq. (3.2.8) is valid only for $t \geq \tau$. Further, $Q(t)$ cannot be obtained either for $t \geq T$ since $Q(t)$ is not known for $t \leq T$. Therefore, this condition is incompatible for $\mathrm{I}(\mathrm{t}), \mathrm{t} \leq \tau$.

In case (b) for $\tau \leq t \leq T, Q(t)$ is obtained from eq. (3.2.8):

$$
\begin{equation*}
\mathrm{Q}(\mathrm{t})=\mathrm{A}, \quad \tau \leq \mathrm{t} \leq \mathrm{T} \tag{3.2.10a}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(t)=A \cdot e^{-(t-T) /[K(1-x)]}, \quad t \geq T \tag{3.2.10b}
\end{equation*}
$$

From these equations, it can be seen immediately that eq. (3.2.1) for conservation of mass cannot be satisfied. To illustrate, the inflow volume applied is A.T. The total outflow produced, if $\mathrm{Q}(\mathrm{t})$ is assumed to be zero during $0 \leq \mathrm{t} \leq \tau$ is:

$$
\mathrm{A}(\mathrm{~T}-\tau)+\int_{\mathrm{T}}^{\infty} \mathrm{A} \cdot \mathrm{e}^{-(\mathrm{t}-\mathrm{T}) /[\mathrm{K}(1-\mathrm{x})]} \mathrm{dt}=\mathrm{A}(\mathrm{~T}-\tau)+\mathrm{A} \cdot \mathrm{~K}(1-\mathrm{x})
$$

It is obvious that the total volume of inflow does not equal the total volume of outflow produced.

Furthermore, if the outflow during $0 \leq t \leq \tau$ is assumed as $Q(t)=A$, then the total volume of outflow becomes

$$
A . T+A . K(1-x)
$$

which again violates eq. (3.2.1). Therefore, the conclusion that can be deduced is that eq. (3.2.7) is not consistent with the Muskingum hypothesis. Gill (1979a,b) is mistaken to assert the adequacy of this condition in the Muskingum flood routing method. Another inflow which can be considered is

$$
\begin{align*}
& I(t)=\sin (t \cdot \pi / \tau), \quad \text { for } 0 \leq t \leq \tau \\
& I(t)=0, \quad \text { for } \tau \leq t \tag{3.2.11}
\end{align*}
$$

Then $\mathrm{Q}(\tau)=\mathrm{I}(0)=0$ and $\mathrm{I}(0)=0$ for $\mathrm{t} \geq \tau$. For this choice of I eq. (3.2.8) becomes $\mathrm{Q}(\mathrm{t})=0$ for $\mathrm{t} \geq \tau$. This is obviously incorrect since there is no outflow before $t \leq \tau$. Apparently, any lag time τ to be imposed on Muskingum method should be imposed through the basic equations, not through the initial condition.

Strupczewski and Kundzewicz in their paper (1980b) alleged that: Gill's idea of shifting the initial conditions on outflow is only 'skipping' the problem of negative outflows. Outflows are simply not calculated in the periods when they should be negative. Again, this opposes Gill's opinion.

As has been explained by Nash above, it is clear that the reduced or sometimes negative initial downstream discharges which may occur when the inflow rises steeply, is associated with the storage assumption and not with any particular method of solution. Apparently, based on the analyses above, Gill's idea of shifting the initial condition on the outflow is physically incorrect.

3.3 CASE OF PURE TRANSLATION

A curious feature of the Muskingum method which directly leads to the consideration of translatory waves is the special case in which $x=0.5$ and time step $\Delta t=K$. Substituting these values into Muskingum coefficients yields C_{0} and C_{2} being equal to zero and $C_{1}=1$. From eq. (2.1.3), it is seen that

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{i}+1}=\mathrm{I}_{\mathrm{i}} \tag{3.3.1}
\end{equation*}
$$

Equation (3.3.1) indicates that, the downstream discharge at any time $i+1$ is equal to the upstream discharge at time i . In other words, the flood wave is merely translated with a time lag of $\Delta \mathrm{t}=\mathrm{K}$. Whether this circumstance is correct is rather doubtful. It may be considered to happen because of adopting a large value for the time step Δt and making it equal to K. If the time step $\Delta t \neq K$, the coefficients C_{0} and C_{2} are not zero and with parameter $\mathrm{x}=0.5$, it can be seen that

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{i}+1} \neq \mathrm{I}_{\mathrm{i}} \tag{3.3.2}
\end{equation*}
$$

Kulandaiswamy in his paper (1966) alleged that the value of time step Δt that may be adopted for solving numerically the differential equation in eq.(2.1.1) is purely arbitrary and the value adopted for $\Delta \mathrm{t}$ should not change the basic nature of the result. But actual routing has also shown that with parameter $x=0.5$ the downstream hydrograph is more or less the same as upstream hydrograph translated over a certain period even without time step $\Delta \mathrm{t}$ being equal to K . With respect to this, Kulandaiswamy investigated whether $Q_{i+1}=I_{i}$ when parameter $x=0.5$, or Q_{i+1} is at least very nearly equal to I_{i} if $Q_{i+1} \neq I_{i}$. The investigation is described as follows:

The differential equation in eq.(2.1.1) can be written in operator form as

$$
\begin{equation*}
Q(t)=\frac{1-K \cdot x \cdot D}{1+K \cdot(1-x) \cdot D} \cdot I(t) \tag{3.3.3}
\end{equation*}
$$

where $\mathrm{D}=\mathrm{d} / \mathrm{dt}$, when $\mathrm{x}=0.5$

$$
\begin{equation*}
\mathrm{Q}(\mathrm{t})=\frac{1-\frac{1}{2} \cdot \mathrm{~K} \cdot \mathrm{D}}{1+\frac{1}{2} \cdot \mathrm{~K} \cdot \mathrm{D}} \cdot \mathrm{I}(\mathrm{t}) \tag{3.3.4}
\end{equation*}
$$

The term $1 /(1+1 / 2$.K.D) can be expanded into series and eq.(3.3.4) becomes

$$
\begin{equation*}
Q(t)=\left(1-\frac{1}{2} \cdot K \cdot D+\frac{1}{4} \cdot K^{2} \cdot D^{2}-\frac{1}{8} \cdot K^{3} \cdot D^{3} \ldots\right)\left(1-\frac{1}{2} \cdot K \cdot D\right) \cdot I(t) \tag{3.3.5}
\end{equation*}
$$

Since the operator can be treated as an algebraic quantity, the multiplication can be performed and

$$
\begin{equation*}
Q(t)=\left(1-K \cdot D+\frac{1}{2} \cdot K^{2} \cdot D^{2}-\frac{1}{4} \cdot K^{3} \cdot D^{3} \ldots\right) I(t) \tag{3.3.6}
\end{equation*}
$$

Then, the upstream hydrograph $\mathrm{I}(\mathrm{t})$ which is merely translated by a time lag K is considered. The expression $I(t-K)$ is now regarded as the resulting downstream hydrograph which can be expanded in Taylor series:

$$
\begin{align*}
I(t-K) & =I(t)-K \cdot I^{\prime}(t)+\frac{K^{2}}{2!} \cdot I^{\prime \prime}(t)-\frac{K^{3}}{3!} \cdot I^{\prime \prime \prime}(t) \ldots \\
& =\left(1-K \cdot D+\frac{K^{2}}{2!} \cdot D^{2}-\frac{K^{3}}{3!} \cdot D^{3} \ldots\right) I(t) \tag{3.3.7}
\end{align*}
$$

If eq.(3.3.6) and (3.3.7) are compared, it can be seen that the first three terms on the right hand side of those equations are identical. The difference starts from the fourth term. However, this difference is very small. If $I(t)$ is such that the third and higher order derivatives are not significant, the following equation can be written:

$$
\begin{equation*}
\mathrm{Q}(\mathrm{t})=\mathrm{I}(\mathrm{t}-\mathrm{K}) \tag{3.3.8}
\end{equation*}
$$

The conclusion which can be extracted from the discussion above is that when $x=0.5$, the value of Q_{i+1} is not identically equal to I_{i}. It is approximately equal provided that the third and higher order derivatives of $I(t)$ are very small and can be ignored. Equation (2.1.3) shows that $\mathrm{Q}_{\mathrm{i}+1}=\mathrm{I}_{\mathrm{i}}$ when $\mathrm{x}=0.5$ and $\Delta t=\mathrm{K}$. This is purely due to the approximation inherent in the numerical procedure used for the solution of the continuity differential equation.

Gill in his paper (1979a) alleged that Kulandaiswamy's conclusions were rather vague because he could not reduce eq.(3.3.8) to eq.(3.3.1) for any value of $\Delta \mathrm{t}$ not necessarily equal to K . This was mentioned with respect to Kulandaiswamy's statement that the actual routing has also shown that with parameter $\mathrm{x}=0.5$ the downstream hydrograph is more or less the same as the upstream hydrograph translated over a certain period, even without time step $\Delta \mathrm{t}$ being equal to K. Furthermore, Gill proposed that for a translatory wave, a general condition which is required to be satisfied is $Q(t)=I(t-T)$, where T is the time lag which in some cases may be different from K . It really depends on the form of the inflow function. Gill's conclusion was based on his example in terms of sinusoidal flood without any further explanation regarding the proof.

Figure 3.3.1 shows an example using an observed upstream hydrograph taken from ARR87 page 134 table 7.1 with $\Delta t=24$ and 66 hours, $K=66$ hours and parameter $x=0.5$. The result of using time step $\Delta t=K=66$ hours is a translatory wave. This can be seen in Table III.3.1. The observed upstream
discharges which have time interval 24 hours had been interpolated using $\Delta t=66$ hours, before the computation was carried out. Figure 3.3.1 cannot show the translatory wave properly for $\Delta t=K=66$ hours, because the observed upstream discharges were plotted using a time interval of 24 hours while the calculated downstream discharges were plotted using a time interval of 66 hours, so that the shape and the peak of the calculated downstream hydrograph cannot be adequately defined. The result of using time step $\Delta t=24$ hours (regardless of the dip occurring at time $t=288$ hours) seems to give a translatory wave. But, careful examination shows that it does not. The peak of the hydrograph is slightly attenuated and in addition, a reduced initial outflow occurs as has been discussed by Nash (1959), and given in section 3.2 of this thesis.

Figure 3.3.1 Routing Through Storage with $x=0.5, K=66$ Hours and $\Delta t=24$ and 66 Hours

Table III.3.1 Result of Computation Using $x=0.5, K=66$ Hours and $\Delta t=K$

$\begin{aligned} & \text { PERIOD } \\ & \text { (x } 66 \mathrm{hrs} \text {) } \end{aligned}$	$\begin{aligned} & \text { INFLOW } \\ & \left(\mathrm{m}^{3} / \mathrm{sec}\right) \end{aligned}$	$\begin{aligned} & \text { OUTFLOW } \\ & \left(\mathrm{m}^{3} / \mathrm{sec}\right) \end{aligned}$
0	274.000	274.000
1	391.750	274.000
2	576.000	391.750
3	574.250	576.000
4	676.000	574.250
5	1099.750	676.000
6	748.500	1099.750
7	537.000	748.500
8	551.000	537.000
9	545.250	551.000
10	402.000	545.250
11	294.250	402.000

The translatory wave occurs in Table III.3.1 because a large value of time step $\Delta t=66$ hours is used and this is made equal to K. This leads coefficients C_{0} and C_{2} to being equal to zero and C_{1} being to 1 in the numerical approximation for the solution of the differential equation. If the time step Δt is not equal to K, a translatory wave does not occur as can be seen on Figure 3.3.1. This is in accordance with what has been discussed by Nash (1959), see section 3.2. Kulandaiswamy's approach (i.e.: the existence of translatory wave, even though Δt is not equal to K) prevails, if the third and higher order derivatives are small enough to be ignored. According to Singh and McCann (1980), the appearance of the upstream hydrograph frequently encountered in nature resembles a gamma or log-normal distribution. Obviously their third-and higher-order derivatives do not vanish in this case and therefore pure translation is only approximated.

3.4 NASH COEFFICIENTS

The derivation of the coefficients below are cited from Nash (1959).
Equation (3.2.3b) can be divided into two parts, i.e.:

$$
\begin{equation*}
\mathrm{Q}=\frac{1}{1+(1-\mathrm{x}) \cdot \mathrm{K} \cdot \mathrm{D}} \frac{\mathrm{I}}{1-\mathrm{x}}-\frac{\mathrm{x} \cdot \mathrm{I}}{1-\mathrm{x}} \tag{3.4.1}
\end{equation*}
$$

This equation will be used to obtain the expression for the C's of the conventional downstream routing equation, i.e:

$$
\begin{equation*}
\mathrm{Q}_{1}=\mathrm{C}_{0} \cdot \mathrm{I}_{1}+\mathrm{C}_{1} \cdot \mathrm{I}_{0}+\mathrm{C}_{2} \cdot \mathrm{Q}_{0} \tag{3.4.2}
\end{equation*}
$$

In expressing Q as a function of $\mathrm{I}_{0}, \mathrm{I}_{1}$ and Q_{0} only, second and higher order derivatives of I must be neglected; that is, I must be assumed to consist of straight line segments. If the second or higher order derivatives are required, three or more values of I in eq.(3.4.2) must be used. However, by choosing time intervals which are sufficiently short, the calculation using only $\mathrm{I}_{0}, \mathrm{I}_{1}$ and Q_{0} can be made as precise as is desired. The only difference between the present calculation and the usual development of the Muskingum coefficient equation is that the values of the time interval are not limited to the small values compared with K .

The solution of eq.(3.4.1) when I is a series of straight segments is obtained as follows. Let $m=\left(I_{1}-I_{0}\right) / \Delta t$ be the slope of a segment.

Let

$$
q(t)=\frac{1}{1+(1-x) \cdot K \cdot D} I(t)
$$

then

$$
\begin{equation*}
\mathrm{Q}=\frac{\mathrm{q}}{1-\mathrm{x}}-\frac{\mathrm{x} \cdot \mathrm{I}}{1-\mathrm{x}} \tag{3.4.3}
\end{equation*}
$$

Let $\mathrm{k}=(1-\mathrm{x}) . \mathrm{K}$ and $\mathrm{c}=\mathrm{e}^{-\Delta t[\mathrm{~K}(1-\mathrm{x})]}$ to simplify the notation. From eq.(3.2.5)

$$
\begin{align*}
& q=(1 / k) \cdot e^{-t / k} \int\left(I_{0}+m \cdot t\right) \cdot e^{t / k} d t \\
& q=(1 / k) \cdot e^{-t / k}\left[k \cdot I_{0} \cdot e^{t / k}+m \cdot k^{2} \cdot e^{t / k}(t / k-1)+A\right] \\
& q=I_{0}+m \cdot k \cdot(t / k-1)+A / k \cdot e^{-t / k} \tag{3.4.4}
\end{align*}
$$

The constant value of A can be defined by letting $\mathrm{q}=\mathrm{q}_{0}$ at time $\mathrm{t}=0$. Equation (3.4.4) becomes:

$$
\mathrm{q}_{0}=\mathrm{I}_{0}-\mathrm{m} \cdot \mathrm{k}+\mathrm{A} \cdot \mathrm{k}
$$

or

$$
\mathrm{A}=\mathrm{k} \cdot\left(\mathrm{q}_{0}-\mathrm{I}_{0}+\mathrm{m} \cdot \mathrm{k}\right)
$$

By substituting this A value, equation (3.4.4) becomes

$$
\mathrm{q}=\mathrm{I}_{0}+\mathrm{m} \cdot \mathrm{k} \cdot(\mathrm{t} / \mathrm{k}-1)+\left(\mathrm{q}_{0}-\mathrm{I}_{0}+\mathrm{m} \cdot \mathrm{k}\right) \cdot \mathrm{e}^{-\mathrm{t} / \mathrm{k}}
$$

By substituting $\left(\mathrm{I}_{1}-\mathrm{I}_{0}\right) / \Delta \mathrm{t}$ for m and letting $\mathrm{t}=\Delta \mathrm{t}$, eq. (3.4.5) is obtained.

$$
\begin{align*}
& \mathrm{q}_{1}=\mathrm{I}_{0}+\mathrm{k} / \Delta \mathrm{t} \cdot(\Delta \mathrm{t} / \mathrm{k}-1)\left(\mathrm{I}_{1}-\mathrm{I}_{0}\right)+\left[\mathrm{q}_{0}-\mathrm{I}_{0}+\mathrm{k} / \Delta \mathrm{t} \cdot\left(\mathrm{I}_{1}-\mathrm{I}_{0}\right)\right] \cdot \mathrm{c} \\
& \mathrm{q}_{1}=\mathrm{I}_{0}[\mathrm{k} / \Delta \mathrm{t} \cdot(1-\mathrm{c})-\mathrm{c}]+\mathrm{I}_{1}[-\mathrm{k} / \Delta \mathrm{t} \cdot(1-\mathrm{c})+1]+\mathrm{q}_{0} \cdot \mathrm{c} \tag{3.4.5}
\end{align*}
$$

whence by eq.(3.4.3)

$$
\begin{equation*}
\mathrm{Q}_{1}=\mathrm{I}_{0} \cdot\left[\frac{\mathrm{k}}{\Delta \mathrm{t}} \cdot \frac{1-\mathrm{c}}{1-\mathrm{x}}-\frac{\mathrm{c}}{1-\mathrm{x}}\right]+\mathrm{I}_{1} \cdot\left[-\frac{\mathrm{k}}{\Delta \mathrm{t}} \cdot \frac{1-\mathrm{c}}{1-\mathrm{x}}+\frac{1}{1-\mathrm{x}}-\frac{\mathrm{x}}{1-\mathrm{x}}\right]+\mathrm{q}_{0} \cdot \frac{\mathrm{c}}{1-\mathrm{x}} \tag{3.4.6}
\end{equation*}
$$

From eq.(3.4.3)

$$
\frac{\mathrm{q}_{0}}{1-\mathrm{x}}=\mathrm{Q}_{0}+\frac{\mathrm{x} \cdot \mathrm{I}_{0}}{1-\mathrm{x}}
$$

which when substituted in eq.(3.4.6) with $\mathrm{k}=\mathrm{K} .(1-\mathrm{x})$, gives

$$
\begin{equation*}
\mathrm{Q}_{1}=\mathrm{I}_{0} \cdot\left[\frac{\mathrm{~K}}{\Delta \mathrm{t}} \cdot(1-\mathrm{c})-\mathrm{c}\right]+\mathrm{I}_{1} \cdot\left[-\frac{\mathrm{K}}{\Delta \mathrm{t}} \cdot(1-\mathrm{c})+1\right]+\mathrm{Q}_{0} \cdot \mathrm{c} \tag{3.4.7}
\end{equation*}
$$

or it can be written in numerical expression as

$$
\begin{equation*}
Q_{i+1}=C_{0} \cdot I_{i+1}+C_{1} \cdot I_{i}+C_{2} \cdot Q_{i} \tag{3.4.8}
\end{equation*}
$$

where:

$$
\begin{align*}
& \mathrm{C}_{0}=-\frac{\mathrm{K}}{\Delta \mathrm{t}} \cdot(1-\mathrm{c})+1 \tag{3.4.9a}\\
& \mathrm{C}_{1}=\frac{\mathrm{K}}{\Delta \mathrm{t}} \cdot(1-\mathrm{c})-\mathrm{c} \tag{3.4.9b}\\
& \mathrm{C}_{2}=\mathrm{c} \tag{3.4.9c}\\
& \mathrm{c}=\mathrm{e}^{-\Delta \mathrm{t} /[\mathrm{K} \cdot(1-\mathrm{x})]} \tag{3.4.9d}
\end{align*}
$$

These Nash coefficients are more accurate than conventional Muskingum coefficients of equations (2.1.4a) to (2.1.4c). However, the differences are not great in many cases as can be seen in Table III.4.1 which is a sample of
computation using the observed upstream hydrograph taken from ARR87 page 134 Table 7.1 with parameter $x=0.45, K=66$ hours and $\Delta t=24$ hours.

Guidelines for choice of the form of the coefficients are given below [Pilgrim (I.E.Aust, 1987)]. Assuming the Nash coefficients give the more accurate answer:
a). If the maximum acceptable difference in the calculated hydrograph peak using the conventional Muskingum is set at 5%, for $0 \leq x \leq 0.35$, both methods are satisfactory, for $0.35<\mathrm{x} \leq 0.5$, use Nash with $\Delta \mathrm{t}=\mathrm{K}$, as long as $\Delta \mathrm{t} \leq 0.25 \mathrm{~T}_{\mathrm{R}}$. Otherwise, a compromise value must be used (T_{R} is the time of rise of the upstream hydrograph).
b). If the maximum acceptable difference in the calculated hydrograph peak using the conventional Muskingum coefficients is set at 2%, for $0 \leq x \leq 0.15$, both methods are satisfactory. $0.15<x \leq 0.4$, use Nash if $\Delta t>0.1 T_{R}$, but both methods are satisfactory if $\Delta t \leq 0.1 T_{R}$.
$0.4<\mathrm{x} \leq 0.5$, use Nash with $\Delta \mathrm{t}=\mathrm{K}$, as long as $\Delta \mathrm{t} \leq 0.25 \mathrm{~T}_{\mathrm{R}}$. Otherwise a compromise value must be used.

The conventional Muskingum coefficients generally overestimate the peak flow. The above criteria apply most critically to narrow, sharp-peaked hydrographs. For flatter hydrographs, the criteria are rather too severe, and the Muskingum coefficients will give answers within the indicated accuracies for a wider range of values of x than indicated above.

Nuober of data $=33$			
*	$=86.0$ hours		
\dagger	$=24.0$ hours		
\%	$=0.45000$		
PERIOD \{dzy)	INFLOH (ctserved) ($\mathrm{m} / \mathrm{sec}$)	0UTFLOH (Muskingua) ($\mathbf{6} 3 / \mathrm{sec}$)	
0	274.000	274.009	274.000
1	314.000	259.342	250.788
2	355.000	271.476	272.987
3	404.000	295.022	296.475
4	495.000	315.825	318.433
5	566.000	378.837	380.395
6	556.000	464.508	463.575
7	572.000	530.007	527.422
${ }^{8}$	575.000	549.774	547.995
9	572.009	563.409	562.050
10	571.000	568.044	567.193
11	576.000	531.034	534.353
12	1022.000	474.806	487.268
13	1156.000	701.652	704.939
14	1081.000	954.597	947.911
15	1001.000	1048.723	1038.716
16	816.000	1091.798	1081.577
17	651.000	1004.229	997.696
18	56.000	885.028	881.820
19	539.000	739.492	739.970
20	534.000	640.335	643.563
21	535.000	587.131	59.932
22	551.000	555.364	558.229
23	555.000	551.730	553.411
24	549.000	555.553	556.161
25	544.000	554.129	554.349
26	493.000	557.786	566.189
27	428.000	554.445	552.253
28	376.000	510.671	509.322
29	357.000	450.716	45!. 104
30	301.000	424.671	424.078
31	274.000	373.114	373.459
32	271.000	324.964	326.336

Table III.4.1 Sample of Computation Using Muskingum and Nash Coefficients

Values of coefficients:
Muskingum : $\mathrm{C}_{0}=-0.366, \mathrm{C}_{1}=0.863$ and $\mathrm{C}_{2}=0.503$
Nash $\quad: \mathrm{C}_{0}=-0.330, \mathrm{C}_{1}=0.814$ and $\mathrm{C}_{2}=0.516$

3.5 SUMMARY

Based on the description by Nash (1959), the reduced or sometimes negative initial outflow which sometimes occurs when the inflow rises steeply, is associated with the storage assumption in the Muskingum method and not with any particular method of solution.

The Muskingum method of flood routing is not a translatory solution. The translatory wave obtained when time step $\Delta t=K$ with parameter $x=0.5$ is due to the approximation inherent in the numerical procedure. When time step $\Delta t \neq K$, a translatory wave does not occur, even though the calculated wave seemingly resembles a wave translated over a certain time period.

Sometimes an unexpected decreasing value shown by the existence of a dip in the calculated hydrograph occurs (as is shown on Fig. 3.1.1). This is caused by a negative value of the coefficient C_{0}, due either to the value of time step Δt being too small, K being too large, or x being too large. If values of K and x are given, then the dip can be avoided by using a larger time step Δt. But if the time step Δt used is too large, the shape of the hydrograph and particularly the peak is not adequately defined.

The coefficients derived by Nash (1959) yield very similar results to those resulting from the standard Muskingum coefficients. For smaller values of the time step Δt, the Nash and Muskingum coefficients become almost identical. For larger time steps, and for larger values of x, the Nash coefficients should give more accurate results.

Upstream Routing Using Conventional Muskingum Equation

4.0 INTRODUCTION

This chapter is intended to give a description of the problems which are associated with upstream routing. Upstream routing is deduced mathematically from the conventional downstream routing procedures. Samples of the computations showing the problem are given.

4.1 UPSTREAM ROUTING DERIVED FROM CONVENTIONAL DOWNSTREAM ROUTING

Mathematically, upstream routing can be deduced easily from the Muskingum operating equation (Eq. 2.1.3), which is obtained by combining the equation of linear relationship between I, Q and S and the equation of conservation of mass in terms of finite differences. That equation can be expressed as:

$$
\begin{equation*}
I_{i+1}=\frac{Q_{i+1}}{C_{0}} \cdot-\frac{C_{1}}{C_{0}} \cdot I_{i}-\frac{C_{2}}{C_{0}} \cdot Q_{i} \tag{4.1.1}
\end{equation*}
$$

where:
and $\quad \frac{1}{\mathrm{C}_{0}}-\frac{\mathrm{C}_{1}}{\mathrm{C}_{0}}-\frac{\mathrm{C}_{2}}{\mathrm{C}_{0}}=1$
The method of solving this equation is similar to that used to solve conventional downstream routing. If the routing coefficients $1 / \mathrm{C}_{0}, \mathrm{C}_{1} / \mathrm{C}_{0}$ and $\mathrm{C}_{2} / \mathrm{C}_{0}$ are evaluated, routing is carried out by solving equation (4.1.1) consecutively for I_{i+1} period by period throughout the flood. In each routing period, Q_{i} and Q_{i+1} are known from the observed hydrograph at the downstream station, while I_{i} is set equal to the value of I_{i+1} calculated for the previous routing period.

The routing coefficients in terms of K, x and Δt are the same as the ones described in chapter 2, namely Muskingum coefficients. The coefficients derived by Nash (1959) which are more accurate if applied in conventional routing, still can be used. However, the computations using both Muskingum and Nash coefficients show that unexpected results arise.

4.2 UPSTREAM ROUTING COMPUTATIONS USING EQUATION (4.1.1)

The values of the Muskingum parameters on which the Muskingum coefficients depend were adopted as: average travel time $\mathrm{K}=66$ hours, time step $\Delta t=24$ hours and parameter $\mathrm{x}=0.0,0.1,0.2,0.3,0.4,0.45$ and 0.5 .

Firstly, downstream hydrograph ordinates were calculated from the given observed upstream hydrograph, applying conventional downstream routing [eq.(2.1.3)] with each set of parameter values. Secondly, each calculated downstream hydrograph was used to calculate back the upstream hydrograph ordinates, applying upstream routing (eq. 4.1.1). The results of the computations are given in Tables IV.2.1.

It can be noticed from the results in Tables IV.2.1 that the only x value which makes the calculated upstream discharges agree exactly with the observed ones is $\mathrm{x}=0$. It might be expected that the other x values should give similar results, since the conventional downstream and the upstream routings are basically derived from the same equation. However, this does not occur, and all other values of x give unsatisfactory results. A value of $\mathrm{x}=0.2$ gives the worst result, and $\mathrm{x}=0.5$ seems to give a satisfactory result, but as a matter of fact it does not, since the last few calculated upstream discharges do not match the observed ones.

In addition, fluctuations are likely to occur in the calculated hydrograph. This circumstance can be noticed most clearly from the computation with $\mathrm{x}=0.1$. These problems are due to the computational instability of the process. It should be noted that they result not only from using Muskingum coefficients but also with Nash coefficients.

Tables IV.2.1
Results of Computations Using Various Parameter x Values, $K=66$ Hours and $\Delta t=24$ Hours

Notes: (i) Values of coefficients:

$$
1 / \mathrm{C}_{0}=6.50, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-1.00 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=-4.50
$$

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

Nueber of f 1 :	$\begin{aligned} \mathrm{z} & =33 \\ & =6.00 \mathrm{~h} \\ & =24.00 \mathrm{~h} \\ & =0.10000 \end{aligned}$		
	1HFLOH (cobserved) (a3/sec) \qquad (2)	©UIFLOH fcalculated! \qquad \{ E 3 ; E er: (3)	INFLGH (calculated) (3) $3 / 5 e r$) (4)
0	274.000	274.600	274.000
1	334.000	27.625	314.060
2	355.600	292.555	355.000
3	404.000	317.251	404.000
4	495.000	35.292	495.000
5	56.000	40.705	566.010
6	586.000	481.490	586.000
7	572.000	50.283	572.000
8	575.000	52.944	575.000
9	572.000	59.207	572.000
10	571.090	55. 146	571.090
11	675.600	556.94	676.009
12	3026.000	62¢.727	1026.000
13	1158.09	71: 366	1155. 999
14	1081.009	gc5.909	1081.003
15	1001.099	¢5.673	1090.989
16	836.009	5	816.039
17	581.6 酸	87.754	685.867
18	568.090	51.3 .349	568.459
19	538.000	T30.691	536.40
\%	534.609	605.5s9	539.442
21	535.090	c21.43	516.256
22	551.0in	59.577	615. 564
23	555.000	575.588	332.612
24	599.000	57.856	1315.004
25	544.006	58.131	-2094.459
26	493.000	552.843	9581.027
27	428.000	51.812	-30875.205
28	376.000	490.329	108198.149
29	357.000	459.46%	-371030.403
30	301.000	414.814	1279534.278
31	274.600	374.513	-4405939.512
32	271.000	340.500	15177228.653

Notes: (i) Values of coefficients:

$$
1 / \mathrm{C}_{0}=13.22, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-3.44 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=-8.78
$$

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

Notes: (i) Values of coefficients:

$$
1 / \mathrm{C}_{0}=-54.00, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=21.00 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=34.00
$$

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

```
Chapter 4 - Upstream Routing Using Conventional
\begin{tabular}{|c|c|c|c|}
\hline Nueber of : 1 : & \[
\begin{aligned}
& =3: \\
& =66.00 \mathrm{ho} \\
& =24.00 \mathrm{ho} \\
& =0.30000
\end{aligned}
\] & & \\
\hline \[
\begin{aligned}
& \text { PEFIOD } \\
& 08.540 \\
& \text { hours) }
\end{aligned}
\] & \begin{tabular}{l}
1KFLO lobserved) \\

\(\qquad\) (2)
\end{tabular} & 0UTFLO: (calculated) (4 \(3 / \mathrm{sec}\) ) (3) & 3 HFLO \{calculated
\(\qquad\) ( \(\mathrm{G} 3 / \mathrm{sec}\) ) (4) \\
\hline 0 & 274.000 & 274.000 & 274.000 \\
\hline 1 & 314.000 & 268.637 & 314.000 \\
\hline 2 & 355.000 & 281.850 & 355.009 \\
\hline 3 & 404.000 & 305.448 & 404.009 \\
\hline 4 & 495.000 & 333.892 & 495.09 \\
\hline 5 & 566.09 & 390.813 & 566.69 \\
\hline 6 & 586.009 & 460.375 & 586.000 \\
\hline 7 & 572.000 & 514.055 & 572.000 \\
\hline 8 & 575.000 & 537.548 & 575.000 \\
\hline 9 & 572.000 & 553.394 & 572.900 \\
\hline 10 & 571.000 & 561.201 & 571.000 \\
\hline 11 & 676.000 & 551.167 & 575.998 \\
\hline 12 & 1026.000 & 555.739 & 1025.992 \\
\hline 13 & 1156.009 & 732.238 & 1155.967 \\
\hline 19 & 1081.000 & 917.037 & 1080.865 \\
\hline 15 & 1001.000 & 985.372 & 1010.449 \\
\hline 10 & 816.000 & 1022.487 & 813.753 \\
\hline 17 & 681.093 & 955.430 & 671.841 \\
\hline 18 & 563.0w & 857.408 & 530.659 \\
\hline 15 & 539.001 & 742.985 & 385.766 \\
\hline Ti & 534.000 & 658.462 & -86.648 \\
\hline 21 & 535.000 & 607.004 & -1995.335 \\
\hline 2 & 551.000 & 575.167 & -9764.982 \\
\hline 2 & 555.000 & 564.665 & -41502.484 \\
\hline 24 & 549.000 & 581.484 & -170916.046 \\
\hline 25 & 544.000 & 557.006 & -698505. 89.4 \\
\hline 26 & 493.009 & 558.478 & -2849479.276 \\
\hline \(2 ?\) & 428.100 & 540.188 & -11658689.741 \\
\hline 28 & 376.001 & 500.894 & -47369873.254 \\
\hline \(2 \%\) & 357.1006 & 451.938 & -193124505. 340 \\
\hline 30 & 301.000 & 420.293 & -787354907.010 \\
\hline 31 & 274.001 & 374.719 & \(-3299986343.300\) \\
\hline 32 & 271.000 & 333.597 & -13086888246.000 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=-7.46,-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=4.08 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=4.38
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nafter of ditas \(=33\)} \\
\hline \(k\) & \multicolumn{3}{|l|}{\(=65.00\) hours} \\
\hline 1 & \multicolumn{3}{|l|}{\(=24.00\) hours} \\
\hline \(\because\) & \multicolumn{3}{|l|}{\(=0.4006\)} \\
\hline \[
\begin{array}{r}
\text { FEFIUR } \\
\because 24.00
\end{array}
\] & 1NFLO \{observed) & OUTFLOH icalculated) & 1HFl0 (calcu\}ated) \\
\hline \[
\begin{aligned}
& \text { hours! } \\
& \text { (1) }
\end{aligned}
\] & \begin{tabular}{l}
 \\
(2)
\end{tabular} &  (3) & \{E]sec
(4) \\
\hline 0 & 274.009 & 274.000 & 274.900 \\
\hline 1 & 314.000 & 282.837 & 314.000 \\
\hline 2 & 355.000 & 775.142 & 355.000 \\
\hline 3 & 404.000 & 299.638 & 404.000 \\
\hline 1 & 495.000 & 322.248 & 495.000 \\
\hline 5 & 556.000 & 382.784 & 56.000 \\
\hline 6 & 585.000 & 462.419 & \(58 \% .000\) \\
\hline 7 & 572.000 & 523.806 & 572.000 \\
\hline 8 & 575.009 & 545.384 & 575.000 \\
\hline 9 & 572.000 & 554.996 & 572.000 \\
\hline 10 & 571.000 & 565.854 & 571.900 \\
\hline 11 & 676.000 & 538.948 & 676.(09) \\
\hline 12 & 1025.009 & 505.018 & 1028.000 \\
\hline 13 & 1156.000 & 711.056 & 1156.000 \\
\hline 14 & 1081.009 & 938.937 & 1081.000 \\
\hline \(!5\) & 1901.000 & 1027.338 & 1001.000 \\
\hline 16 & 816.004 & 1086.716 & 816.900 \\
\hline 17 & 881.000 & 987.778 & 686.998 \\
\hline 18 & 568.000 & 876.526 & 567.978 \\
\hline 19 & 538.040 & 741.451 & 537.995 \\
\hline 20 & 534.009 & 647.93? & 531.987 \\
\hline I 1 & 5 ES .000 & 594.865 & 534.986 \\
\hline 22 & \(55_{51.000}\) & 562.449 & 550.909 \\
\hline 27 & 555.000 & 556.007 & 554.758 \\
\hline 24 & 549.000 & 557.213 & 548.356 \\
\hline 25 & 544.1000 & 554.789 & 542.281 \\
\hline 26 & 493.000 & \(564.00{ }^{3}\) & 489.417 \\
\hline 27 & 428.000 & 549.118 & 415.779 \\
\hline 28 & 376.000 & 507.296 & 343.410 \\
\hline 29 & 357.000 & 451.530 & 270.093 \\
\hline 30 & 301.100 & 423.191 & 69.248 \\
\hline 31 & 274.000 & 373.893 & - 344.005 \\
\hline 32 & 271.000 & 328.268 & -137].013 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=-3.58,-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=2.67 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=1.92
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Nuater of \\
f. \\
1 \\
\(\because\)
\end{tabular} & \[
\begin{aligned}
& =33 \\
& =66.00 \mathrm{~h} \\
& =24.00 \mathrm{n} \\
& =0.45000
\end{aligned}
\] & & \\
\hline \[
\begin{aligned}
& \text { PERIOD } \\
& \text { (:24. } 24 \\
& \text { houre) }
\end{aligned}
\] & IHFLOH (observed) (mJicec) (2) & \begin{tabular}{l}
\(0 \| 1 \mathrm{FLO}\) (calculated) \\
( 3 3/5ec) \\
(3)
\end{tabular} & \begin{tabular}{l}
I HFLOH (calculated) \\
( \(\mathrm{m} . \mathrm{J} / \mathrm{sec}\) ) \\
(4)
\end{tabular} \\
\hline 0 & 274.000 & 279.000 & 274.060 \\
\hline 1 & 384.000 & 259.342 & 314.000 \\
\hline 2 & 355.000 & 271.476 & 355.000 \\
\hline 3 & 404.000 & 295.022 & 494.090 \\
\hline 4 & 495.090 & 315.825 & 495.090 \\
\hline 5 & 586.000 & 378.837 & 565.000 \\
\hline 6 & 586.000 & 464.508 & 585.900 \\
\hline 7 & 572.090 & 530.607 & 572.09 \\
\hline \(\overline{6}\) & 575.600 & 549.774 & 575.000 \\
\hline 9 & 572.100 & 565.498 & 572.060 \\
\hline 10 & 571.000 & 568.044 & 571.000 \\
\hline 11 & 676.009 & 531.034 & 676.990 \\
\hline 12 & 1026.000 & 474.806 & 1026.009 \\
\hline 13 & 1156.000 & 701.052 & 1156.000 \\
\hline 14 & 1081.000 & \(99^{54.597}\) & 1081.090 \\
\hline 15 & 1901.000 & 1096.723 & 1001.000 \\
\hline 16 & 816.000 & 1091.798 & 815.098 \\
\hline 17 & 681.000 & 1004.228 & 881.091 \\
\hline 18 & 568.000 & 885.1278 & 568.002 \\
\hline 19 & 538.000 & 735.492 & 538.0010 \\
\hline iv & 534.000 & 640.355 & 534.013 \\
\hline 21 & 535.0003 & 587.131 & 535.031 \\
\hline 21 & 551.000 & 555.364 & 551.074 \\
\hline 23 & 555.6010 & 551.734 & SES.134 \\
\hline 24 & 549.000 & 555.553 & 549.410 \\
\hline 25 & 544.000 & S54.129 & 544.967 \\
\hline 26 & 493.000 & 567.786 & 195.278 \\
\hline 27 & 428.000 & 554.445 & 433.367 \\
\hline 28 & 376.000 & 510.671 & 388.645 \\
\hline 29 & 357.005 & 450.715 & 386.790 \\
\hline 30 & 301.000 & 424.671 & 371.184 \\
\hline 31 & 274.000 & 373.114 & 439.348 \\
\hline 32 & 271.000 & 324.964 & 660.548 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=-2.73,-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=2.36 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=1.37
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Humber of data \(=33\)} \\
\hline k. & \multicolumn{3}{|l|}{\(=66.00\) hours} \\
\hline 1 & \multicolumn{3}{|l|}{\(=24.00\) bour 5} \\
\hline \(\stackrel{\square}{5}\) & \multicolumn{3}{|l|}{\(=0.5009\)} \\
\hline \[
\begin{array}{r}
\text { FEF100 } \\
\because 24.00
\end{array}
\] & IHFL0 (chserved) & 0ひ1F10 icalculated) & \[
\begin{aligned}
& \text { lNFL才W } \\
& \text { (calculated) }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
hours! \\
.... (I)
\end{tabular} & \begin{tabular}{l}
 \\
(2)
\end{tabular} & [e3;5ec) (3) & \[
\begin{gathered}
\left\{\mathbb{E}^{3} / \operatorname{cec}\right) \\
(4)
\end{gathered}
\] \\
\hline i) & 274.000 & 274.090 & 274.000 \\
\hline 1 & 314.000 & 255.335 & 314.900 \\
\hline 2 & 355.000 & \(267.48 \%\) & 355.000 \\
\hline 3 & 404.009 & 391.295 & 404.000 \\
\hline 4 & 495.000 & 308.938 & 495.000 \\
\hline 5 & 566.1000 & 375.038 & 566.000 \\
\hline 6 & 588.000 & 467.551 & 586.000 \\
\hline 7 & 572.000 & 537.257 & 572.000 \\
\hline 8 & 575.100 & 554.387 & 575.000 \\
\hline 4 & 572.000 & 566.789 & 572.000 \\
\hline 10 & 571.000 & 579.031 & 571.000 \\
\hline 11 & 376.000 & 571.548 & 676.000 \\
\hline 12 & 1026.000 & 440.589 & 1026.000 \\
\hline 13 & 1156.100 & 697.142 & 1156.000 \\
\hline 14 & 1081.000 & 974.535 & 1081.010 \\
\hline 15 & 1901.000 & 1068.649 & 1001.000 \\
\hline 16 & 816.000 & 1118.903 & 816.000 \\
\hline 17 & 581.009 & 1020.355 & 681.000 \\
\hline 16 & 56.809 & 897.099 & 567.999 \\
\hline \(!\overline{4}\) & 538.009 & 733.246 & 537.999 \\
\hline 26 & 534.000 & 630.982 & 53 J .997 \\
\hline 31 & 535.000 & 578.791 & 534.984 \\
\hline 23 & 55.1 .009 & 547.969 & 550.988 \\
\hline 23 & 555.000 & 547.719 & 554.974 \\
\hline 24 & 549.100 & 554.402 & 548.944 \\
\hline 25 & 544.009 & 553.854 & 543.880 \\
\hline 26 & 493.000 & 572.379 & 492.743 \\
\hline 27 & 428.000 & 560.386 & 427.449 \\
\hline 28 & 378.064 & 514.947 & 374.820 \\
\hline 29 & 357.000 & 449.289 & 354.471 \\
\hline 33 & 351.000 & 426.201 & 295.591 \\
\hline 31 & 274.000 & 372.027 & 262.387 \\
\hline 32 & 271.000 & 321.146 & 246.116 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=-2.14,-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=2.14 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=1.00
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

\subsection*{4.2.1 Further Computations Using Parameter \(\mathrm{x}=0.0\) with} Various \(\Delta t\)

Tables IV.2.1 show that only \(\mathrm{x}=0.0\) gives a satisfactory result, where all of the calculated upstream discharges agree exactly with the observed ones. The computation used only one set of parameter values, i.e.: \(\mathrm{K}=66\) hours and \(\Delta t=24\) hours. In order to be able to verify whether or not the parameter \(x=0.0\) always gives satisfactory results, it is necessary that further computations be carried out. For this purpose, various time steps \(\Delta t\) are used besides \(\Delta t=24\) hours. They are respectively \(3,6,12,24,36\) and 48 hours.

Firstly, the observed upstream hydrograph ordinates were interpolated using linear interpolation according to the time step \(\Delta t\) used. Secondly, conventional downstream routing was applied to obtain calculated downstream hydrograph ordinates. These hydrographs were then used to compute back the upstream ones applying upstream routing [eq.(4.1.1)].

Tables IV. 2.2 show the results. It can be noticed that all of the calculated upstream discharges agree exactly with the observed ones, no matter what the time step \(\Delta t\) is used.

Tables IV.2.2
Results of Computations Using Parameter \(\mathrm{x}=\mathbf{0}\), Various Time Step \(\Delta t\) and \(K=\mathbf{6 6}\) hours
\begin{tabular}{|c|c|c|c|}
\hline Nuaber of * 1 \(\approx\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =25: \\
& =66.00 \text { hours } \\
& =3.00 \text { hours } \\
& =0.00000
\end{aligned}
\]} & \\
\hline \[
\begin{array}{r}
\text { PERIOD } \\
0 \quad 3.00 \\
\text { haters) } \\
\hdashline-(1)
\end{array}
\] & 1 KFLOH lobservedi) (m3/sec) (2) & \begin{tabular}{l}
0 リfflon (calculated) \\
(e3sec) \\
(3)
\end{tabular} & \begin{tabular}{l}
1 HFLO (calculated) \\
(Ej3) 5 (4) (4)
\end{tabular} \\
\hline 0 & 274.000 & 27400 & 274.006 \\
\hline 1 & 279.000 & 274.111 & 279.000 \\
\hline 2 & 284.000 & 274.440 & 294.099 \\
\hline 3 & 287.000 & 274.976 & 289.600 \\
\hline 4 & 284.000 & 275.710 & 294.000 \\
\hline 5 & 299.000 & 23.634 & 299.000 \\
\hline : & 304.000 & 277.739 & 304.000 \\
\hline ? & 309.000 & 279.197 & 399.060 \\
\hline a & 314.000 & 280.461 & 314.000 \\
\hline 9 & 319.125 & 28.065 & 319.125 \\
\hline 10 & 324.250 & 253.827 & 324.250 \\
\hline 11 & 329.375 & 255.737 & 329.375 \\
\hline 12 & 334.500 & 287.790 & 334.590 \\
\hline 13 & 339.625 & 289.98\% & 20.625 \\
\hline 14 & 344.750 & 292.301 & 344.750 \\
\hline 15 & 349.875 & 294.746 & 349.875 \\
\hline 16 & \(3{ }^{355} .000\) & 297.354 & 355.000 \\
\hline 17 & 361.125 & 3 So.049 & 361.125 \\
\hline 18 & 567.250 & 3i'. 862 & 367.250 \\
\hline 19 & 373.375 & 365.869 & 373.375 \\
\hline 5 & 379.500 & 368.997 & 379.500 \\
\hline S 1 & 385.625 & 312.266 & 325.625 \\
\hline 2 & 39.750 & 315.663 & 391.750 \\
\hline 23 & 397.875 & 35.181 & 397.875 \\
\hline 24 & 404.600 & 322.814 & 404.000 \\
\hline 25 & 415.375 & 328.675 & 415.375 \\
\hline 20 & 426.750 & 330.870 & 426.750 \\
\hline 27 & 438.125 & \(3{ }^{3} 5.384\) & 438.125 \\
\hline 18 & 449.500 & 346.203 & 449.590 \\
\hline 29 & 460.875 & 345.314 & 460.875 \\
\hline 30 & 472.259 & 356.703 & 472.250 \\
\hline \(3!\) & 483.625 & 35. 357 & 483.625 \\
\hline 32 & 495.000 & 362.267 & 495.000 \\
\hline 33 & 503.875 & 358.353 & 503.875 \\
\hline
\end{tabular}

Notes: (i) \({ }^{*}\) Values of coefficients:
\[
1 / \mathrm{C}_{0}=45.00, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-1.00 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=-43.00
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
步 \\

\end{tabular} & \[
\begin{aligned}
& =25 i \\
& =66.00 \text { hour } \\
& =3.09 \text { hour } 5 \\
& =0.00000
\end{aligned}
\] & & \\
\hline \[
\begin{gathered}
\text { PERIOD } \\
\text { (: } 3.00 \\
\text { hour } 5)
\end{gathered}
\] & 1月FLOH \{observedi (43/5ec) & OUIFLOH [calculated) (63/sec) & IHFLOH (calculated) ( \(\mathrm{a}^{3} / \mathrm{sec}\) ) \\
\hline 34 & 512.750 & 374.583 & 512.750 \\
\hline 35 & 521.625 & 300.921 & 521.625 \\
\hline 36 & 530.500 & 387.372 & 530.500 \\
\hline 37 & 539.375 & 393.930) & 539.375 \\
\hline 38 & 548.250 & 400.592 & 545.250 \\
\hline \(3 ?\) & 557.125 & 407.351 & 557.125 \\
\hline 40 & 566.000 & 414.205 & 566.000 \\
\hline 41 & 558.500 & 421.007 & 568.500 \\
\hline 42 & 571.100 & 427.618 & 571.000 \\
\hline 43 & 573.509 & 434.946 & 573.500 \\
\hline 44 & 576.000 & \$40.309 & 576.000 \\
\hline 45 & 578.500 & 44.386 & 578.500 \\
\hline 46 & 501.000 & 452.314 & 581.000 \\
\hline 47 & 583.500 & 458.689 & 583.560 \\
\hline 48 & 586.000 & 463.718 & 586.000 \\
\hline 48 & 584.250 & 469.114 & 584.250 \\
\hline 50 & 582.500 & 474.192 & 582.500 \\
\hline 51 & 580.750 & 478.967 & 580.750 \\
\hline 52 & 579.000 & 483.457 & 579.000 \\
\hline 53 & 577.250 & 487.659 & 577.250 \\
\hline 54 & 575.500 & 491.602 & 575.500 \\
\hline \({ }_{5}^{5}\) & 573.750 & 495.292 & 573.750 \\
\hline 5 & 572.000 & 498.740 & 572.000 \\
\hline 57 & 572.375 & 50.005 & 572.375 \\
\hline 58 & 572.750 & 505.141 & 572.750 \\
\hline 59 & 573.125 & 509.154 & 573.175 \\
\hline 60 & 573.500 & 511.050 & 573.500 \\
\hline 61 & 573.875 & 513.834 & 573.875 \\
\hline 62 & 574.250 & 516.510 & 574.250 \\
\hline 63 & 574.625 & 519.095 & 574.625 \\
\hline 64 & 575.000 & 531.552 & 575.000 \\
\hline 65 & 574.625 & 523.928 & 574.625 \\
\hline 66 & 574.250 & 525.173 & 574.250 \\
\hline 67 & 573.875 & 528.302 & 573.875 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{\(\cdots \mathrm{l}\)} \\
\hline 1 & \multicolumn{3}{|l|}{\(=3.003\) hours} \\
\hline ¢ & \multicolumn{3}{|l|}{\(=0.00000\)} \\
\hline PEF100 & I HFLOH & 0UTFL最 & H \\
\hline (\% 3.00 & \{otserved\} & (calcalated) & (calculated) \\
\hline hours) & (43/5ec) & (majser) & ( \(\mathrm{aj} / \mathrm{ser}\) ) \\
\hline 68 & 573.500 & 530.319 & 573.500 \\
\hline 69 & 573.125 & 532.230 & 573.125 \\
\hline 70 & 572.750 & 534.035 & 572.750 \\
\hline 71 & 572.375 & 535.751 & 572.375 \\
\hline 72 & 572.000 & 537.370 & 572.600 \\
\hline 73 & 571.875 & 538.907 & 571.875 \\
\hline 74 & 571.750 & 540.369 & 571.750 \\
\hline 75 & 571.65 & 541.761 & 571.625 \\
\hline 36 & 571.509 & 543.086 & 571.500 \\
\hline 77 & 531.375 & 544.346 & 571.375 \\
\hline 78 & 571.250 & 545.544 & 571.250 \\
\hline 79 & 571.125 & 546.684 & 571.125 \\
\hline 80 & 571.000 & 547.767 & 571.900 \\
\hline 81 & 584.125 & 549.092 & 584.125 \\
\hline 82 & 547.250 & 550.940 & 577.250 \\
\hline 83 & 610.375 & 553.290 & 619.375 \\
\hline 84 & 623.500 & 556.119 & 623.500 \\
\hline 85 & 634.625 & 559.405 & 636.625 \\
\hline 86 & 649.750 & 563.129 & 649.750 \\
\hline 87 & 362.875 & 567.271 & 662.875 \\
\hline 98 & 676.000 & 571.811 & 676.000 \\
\hline 89 & 719.750 & 577.414 & 719.750 \\
\hline 90 & 763.500 & 584.712 & 783.500 \\
\hline 91 & 807.250 & 593.631 & 807.250 \\
\hline 92 & 851.000 & 604.097 & 851.000 \\
\hline 93 & 894.750 & 616.043 & 894.750 \\
\hline 94 & 938.500 & 659.402 & 938.590 \\
\hline 75 & 782.250 & 644.112 & 982.250 \\
\hline 96 & 1026.000 & 660.113 & 1026.000 \\
\hline 97 & 1942.250 & 676.735 & 1042.250 \\
\hline 98 & 1058.500 & 693.342 & 1058.500 \\
\hline \(9{ }^{7}\) & 1074.750 & 709.938 & 1074.750 \\
\hline 100 & 1091.000 & 726.507 & 1091.090 \\
\hline 101 & 1107.250 & 743.168 & 1107.250 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Humber dif data \(=25 \%\)} \\
\hline ! & \multicolumn{3}{|l|}{\(=86.00\) hours} \\
\hline I & \multicolumn{3}{|l|}{\(=3.00\) hours} \\
\hline \(\because\) & \multicolumn{3}{|l|}{\(=0.00090\)} \\
\hline \[
\begin{array}{r}
\text { PERIOD } \\
\text { (3 } 3.00 \\
\text { hours }
\end{array}
\] & INFLOH \{observed) (醇/sec) & \(0 \| T F L O H\) icalculated) (m3/sec) & 1等F10 (calculated) (63/5ec) \\
\hline 102 & 1123.500 & 759.615 & 1123.500 \\
\hline 103 & 1139.750 & 77.149 & 1139.750 \\
\hline 104 & 1150.000 & 792.679 & 1156.090 \\
\hline 105 & 1146.625 & 803.610 & 1146.625 \\
\hline 106 & 1137.250 & 823.424 & 1137.250 \\
\hline 107 & 1127.875 & 83.164 & 1157.875 \\
\hline 108 & 1118.500 & 849.876 & 1118.500 \\
\hline 119 & 1109.125 & 861.60a & 1109.125 \\
\hline 110 & 1099.750 & 872.379 & 1097.750 \\
\hline 111 & 1040.375 & 882.295 & 1090.375 \\
\hline 112 & 1081.000 & 871.335 & 1081.000 \\
\hline 113 & 1071.0100 & 897.519 & 1071.000 \\
\hline 114 & 1061.000 & 906.740 & 1061.000 \\
\hline 115 & 1051.000 & 513.565 & 1051.000 \\
\hline 116 & 1041.000 & 919.451 & 1041.000 \\
\hline 117 & 1031.000 & 924.631 & 1031.000 \\
\hline 118 & 1021.000 & 929.136 & 1021.000 \\
\hline 119 & 1011.000 & 932.997 & 1011.000 \\
\hline 120 & 1001.000 & 936.241 & 1001.000 \\
\hline 121 & 977.875 & 939.605 & 877.875 \\
\hline 152 & 954.750 & 939.837 & 954.750 \\
\hline 123 & 931.625 & 939.986 & 931.625 \\
\hline \(3{ }^{24}\) & 908.500 & 939.101 & 908.500 \\
\hline 125 & 885.375 & 937.227 & 885.375 \\
\hline 128 & 852.250 & 934.408 & 862.250 \\
\hline 127 & 839.125 & 930.687 & 839.125 \\
\hline 128 & 816.000 & 926.104 & 816.000 \\
\hline 127 & 379.125 & 920.835 & 799.125 \\
\hline 130 & 782.250 & 915.951 & 782.253 \\
\hline 131 & 765.375 & 908.774 & 765.375 \\
\hline 132 & 748.500 & 902.026 & 748.509 \\
\hline 133 & 731.675 & 894.827 & 731.525 \\
\hline 134 & 714.750 & 887.199 & 714.750 \\
\hline 135 & 697.875 & 879.159 & 697.875 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Humber of data \(=25\)} \\
\hline \(k\) & \multicolumn{3}{|l|}{\(=86.00\) hour} \\
\hline T & \multicolumn{3}{|l|}{\(=3.00\) hours} \\
\hline \(\stackrel{*}{ }\) & \multicolumn{3}{|l|}{\(=0.00000\)} \\
\hline \[
\begin{array}{r}
\text { PERIOO } \\
\text { (: } 3.00 \\
\text { hours }\}
\end{array}
\] & IHFLOH iobseryed! \{甶了/sec \(\}\) & 0 (1) FLOH \{calcu!ated) ( \(\mathrm{m} 3 / \mathrm{sec}\) ) & \begin{tabular}{l}
1HFEOH \{calculated) \\

\end{tabular} \\
\hline 204 & 518.500 & 560.593 & 518.500 \\
\hline 205 & 512.125 & 558.581 & 512.125 \\
\hline 206 & 505.750 & 556.374 & 565.750 \\
\hline 207 & 497.375 & 553.983 & 479.375 \\
\hline 208 & 493.000 & 551.414 & 493.000 \\
\hline \(20 \%\) & 484.875 & 545.657 & 484.875 \\
\hline 210 & 476.750 & 545.623 & 476.750 \\
\hline 211 & 468.525 & 547.381 & 465.625 \\
\hline 212 & 460.500 & 538.923 & 460.500 \\
\hline 213 & 451.375 & 535.257 & 457.375 \\
\hline 214 & 444.250 & 531.392 & \$44.250 \\
\hline 215 & 436.125 & 527.339 & 436.125 \\
\hline 216 & 424.000 & 523.104 & 428.000 \\
\hline 217 & 421.500 & 512.733 & 421.500 \\
\hline 218 & 445.000 & 514.267 & 415.000 \\
\hline 219 & 408.500 & 509.711 & 408.500 \\
\hline 220 & 402.000 & 505.058 & 402.000 \\
\hline 251 & 395.500 & 500.343 & 395.500 \\
\hline 22 & 389.000 & 495.539 & 389.000 \\
\hline 223 & \(38 \% .500\) & 490.659 & 382.500 \\
\hline 224 & 376.000 & 485.708 & 376.000 \\
\hline 225 & 373.625 & 480.779 & 373.625 \\
\hline 216 & 371.250 & 475.964 & 371.250 \\
\hline 227 & 368.875 & 471.257 & 368.875 \\
\hline 228 & 366.500 & 466.654 & 366.500 \\
\hline 279 & 364.125 & 462.150 & 364.125 \\
\hline 230 & 351.750 & 457.741 & 361.750 \\
\hline 231 & 357.375 & 453.421 & 359.375 \\
\hline 232 & 357.000 & 449.189 & 357.000 \\
\hline 233 & 350.000 & 444.936 & 350.000 \\
\hline 234 & 343.000 & 440.561 & 343.000 \\
\hline 235 & 336.000 & 436.069 & 336.000 \\
\hline 236 & 329.000 & 431.486 & 329.000 \\
\hline 237 & 32.000 & 426.757 & 322.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Number ait
1
1
\(!\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =25 \\
& =56.00 \text { hours } \\
& =3.00 \text { hours } \\
& =0.0000
\end{aligned}
\]} & \\
\hline \[
\begin{aligned}
& \text { FEERIU } \\
& \text { (x } 3 .(0) \\
& \text { hours) }
\end{aligned}
\] & I HFLOH （observed） （a3̃isec） & OUTFLOH \｛calculated！ \｛角／sec） & 1月FLO （calculated） （酸： \\
\hline 238 & 315.000 & 421.945 & 315.000 \\
\hline 234 & 303.000 & 417.037 & 305.900 \\
\hline 240 & 301.000 & 412.035 & 301.000 \\
\hline 24］ & 297.625 & 407.025 & 297.625 \\
\hline 242 & 294.250 & 402.088 & 294.250 \\
\hline 243 & 290.875 & 397.220 & 290.875 \\
\hline 244 & 28.500 & 392.419 & 287.500 \\
\hline 245 & 284.125 & \(383.68!\) & 284.125 \\
\hline 245 & 280.750 & 383.005 & 280.750 \\
\hline 247 & 277.375 & 370.354 & 277.375 \\
\hline 248 & 274.000 & 373.819 & 274.600 \\
\hline 249 & 273.625 & 369.375 & 273.625 \\
\hline 250 & 273.250 & 365.111 & 273.250 \\
\hline 251 & 272.975 & 351.020 & 272.875 \\
\hline 252 & 272.500 & 357.094 & 272．500 \\
\hline 253 & 272.125 & 353.324 & 272.125 \\
\hline 25.4 & 27.750 & 349.708 & 271.750 \\
\hline 25 & 271.375 & 336.235 & 271.375 \\
\hline 256 & 27.690 & 342.909 & 271.000 \\
\hline
\end{tabular}


Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=23.00, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-1.00 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=-21.00
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Humber of \\
\(k\) \\
I \\
\(\ddot{\circ}\)
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =66.00 \text { houre } \\
& =6.00 \text { tours } \\
& =0.00000
\end{aligned}
\]} & \\
\hline \[
\begin{aligned}
& \text { PEEIOD } \\
& \left\{\begin{array}{l}
\text { \{ } 6.00 \\
\text { hours }
\end{array}\right. \\
& \hline
\end{aligned}
\] & 1月F10 \｛observed （立 \(3 / 5 \mathrm{sec}\) ） & UUIFLOH〔calculated） \｛的 \(3 / \mathrm{sec}\) ！ & 1HFLOH （calculated） （ \(\mathrm{E}, 3 \mathrm{i} / \mathrm{sec}\) ） \\
\hline 88 & 681.000 & 870.344 & 691.600 \\
\hline 69 & 65.750 & 85.108. & 652.750 \\
\hline 70 & 534.500 & 834.457 & 624.500 \\
\hline 71 & 586.250 & 814.972 & 596.250 \\
\hline 72 & 568.000 & 784.724 & 568.060 \\
\hline 73 & 560.509 & 774.683 & 560.500 \\
\hline 74 & 553.600 & 755.732 & 533.000 \\
\hline 75 & 545.500 & 737.777 & 545.500 \\
\hline 76 & 538.000 & 720.731 & 535.000 \\
\hline 77 & 537.000 & 764.798 & 537.600 \\
\hline 78 & 536.000 & 690.154 & 535．000 \\
\hline 79 & 535.00 & 676.715 & 535.000 \\
\hline 80 & 534.000 & 664.348 & 534.000 \\
\hline 81 & 534.250 & 653.024 & 534.250 \\
\hline 82 & 534.500 & 542.707 & 534.500 \\
\hline 83 & 534.750 & 633.309 & 534.750 \\
\hline 84 & 535.000 & 624.748 & 535.000 \\
\hline 85 & 539.000 & 617.119 & 539.000 \\
\hline 86 & 543.000 & 610.500 & 543.000 \\
\hline 87 & 547.000 & 604.804 & 547.090 \\
\hline 88 & 551.000 & 599.759 & 551.000 \\
\hline 89 & 552.000 & 595.738 & 552.000 \\
\hline 90 & 553.000 & 591.879 & 553.006 \\
\hline 91 & \({ }_{554}^{55.090}\) & 588.633 & 554.000 \\
\hline 92 & 555.100 & 585.685 & 5 SJ .000 \\
\hline 93 & 555.500 & 582.933 & 55.500 \\
\hline 94 & 552.000 & 580.308 & 552.000 \\
\hline 95 & 550.500 & 577.781 & 550.500 \\
\hline \(9 \%\) & 549.000 & 575.344 & 549.060 \\
\hline 97 & 547.750 & 572.594 & 547.750 \\
\hline 98 & 546.509 & 570.749 & 545.500 \\
\hline 93 & 545.250 & 568.586 & 545.250 \\
\hline 100 & 544.000 & 565.507 & 544.060 \\
\hline 101 & 531.250 & 563.951 & 531.250 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Number of \\
* \\
1 \\
\(\because\)
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =66.00 \text { hour } \\
& =12.06 \text { hours } \\
& =0.60900
\end{aligned}
\]} & \\
\hline \[
\begin{aligned}
& \text { FERIOD } \\
& \{12.00 \\
& \text { hours) }
\end{aligned}
\] & 1HFLOH (observed) (fis/sec) (2) & \begin{tabular}{l}
0UTFLOH (calculated) \\
(Ejisec) (3)
\end{tabular} & IHFLO icalculated) (e3/5ec) (4) \\
\hline 6 & 274.900 & 274.000 & 274.900 \\
\hline 1 & 294.900 & 275.667 & 294.000 \\
\hline 2 & 314.000 & 280.389 & 314.000 \\
\hline 3 & 334.500 & 28?.699 & 334.500 \\
\hline 4 & 355.000 & 297.208 & 355.004 \\
\hline 5 & 379.500 & 308.881 & 379.500 \\
\hline 6 & 404.100 & 322.693 & 419.000 \\
\hline 7 & 449.500 & 344.136 & 449.500 \\
\hline 8 & 495.000 & 352.171 & 495.000 \\
\hline 9 & 530.5010 & 387.184 & 530.500 \\
\hline 10 & 566.000 & 414.029 & 566.000 \\
\hline 11 & 576.100 & 44.191 & 576.900 \\
\hline 12 & 586.000 & 463.659 & 566.00 \\
\hline 13 & 579.000 & 485.466 & 579.000 \\
\hline 14 & 572.000 & 498.805 & 572.000 \\
\hline 15 & 573.5001 & 511.129 & 573.500 \\
\hline 16 & 575.000 & 521.649 & 575.000 \\
\hline 17 & 573.509 & 53.416 & 573.506 \\
\hline 18 & 572.006 & 537.472 & 572.000 \\
\hline 19 & 571.560 & 543.185 & 571.500 \\
\hline 20 & 571.000 & 547.862 & 571.000 \\
\hline 2 & 623.560 & 556.1994 & 623.560 \\
\hline 22 & 676.000 & 571.703 & 876.000 \\
\hline 23 & 851.000 & 203. 669 & 851.000 \\
\hline 24 & 1026.000 & 659.474 & 1026.000 \\
\hline 25 & 1091.000 & 725.979 & 1091.000 \\
\hline 26 & 1156.000 & 792.232 & 1156.000 \\
\hline 27 & 1118.500 & 849.735 & 1118.500 \\
\hline 28 & 1081.000 & 891.404 & 1081.009 \\
\hline 29 & 1041.000 & 919.670 & 1041.000 \\
\hline 30 & 1001.000 & 936.559 & 1001.000 \\
\hline 31 & 908.500 & 939.590 & 908.510 \\
\hline 32 & 816.009 & 926.700 & 816.000 \\
\hline 33 & 748.500 & 902.625 & 748.500 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=12.00, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-1.00 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=-10.00
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Number o \\
\(k\) \\
1 \\
\%
\end{tabular} & \[
\begin{aligned}
& =65 \\
& =66.00 \mathrm{ho} \\
& =12.00 \mathrm{ho} \\
& =0.00000
\end{aligned}
\] & & \\
\hline \[
\begin{array}{r}
\text { PERIOD } \\
(\because \quad 12.00 \\
\text { hours })
\end{array}
\] & I HFLOH (observed) (鳥 \(3 / \mathrm{sec}\) ) & GUTFLGH (calculated) ( ( \(3 / 5 \mathrm{sec}\) ) & IHFLOH icalculated) (E \(3 / 5 E C\) ) \\
\hline 34 & 581.000 & 871.313 & 681.000 \\
\hline 35 & 624.500 & 834.886 & \(6{ }^{6} 4.509\) \\
\hline 36 & 568.000 & 795.113 & 568.000 \\
\hline 37 & 553.600 & 756.011 & 553.000 \\
\hline 38 & 535.000 & 729.426 & 538.000 \\
\hline 39 & 536.000 & 690.271 & 536.000 \\
\hline 40 & 534.000 & 664.393 & 534.000 \\
\hline 41 & 534.500 & \(64 \% .702\) & 534.500 \\
\hline 42 & 535.000 & 524.710 & 535.000 \\
\hline 43 & 543.060 & 610.425 & 543.000 \\
\hline 44 & 551.000 & 579.854 & 551.00 \\
\hline 45 & 553.000 & 571.879 & 553.090 \\
\hline 46 & 555. 000 & 585.566 & 555.000 \\
\hline 47 & 552.000 & 580.221 & 552.900 \\
\hline 48 & 547.000 & 575.268 & 544.000 \\
\hline 49 & 546.500 & 570.681 & 546.500 \\
\hline 50 & 544.000 & 566.443 & 544.000 \\
\hline 51 & 519.500 & 560.577 & 518.50 \\
\hline 5 & 493.000 & 551.439 & 493.040 \\
\hline 53 & 460.500 & 538.991 & 460.500 \\
\hline 54 & 428.000 & 523.208 & 428.000 \\
\hline 55 & 402.000 & 505.168 & 402.090 \\
\hline 56 & 376.000 & 465.806 & 376.090 \\
\hline 5 ? & 366.500 & 486.714 & 386.500 \\
\hline 58 & 357.000 & 449.220 & 357.600 \\
\hline 59 & 329.000 & 431.516 & 329.090 \\
\hline 60 & 301.000 & 412.197 & 301.000 \\
\hline 61 & 287.500 & 392.456 & 287.50 \\
\hline 62 & 274.000 & 373.839 & 274.000 \\
\hline 53 & 272.500 & 357.173 & 272.500 \\
\hline 64 & 271.000 & 342.853 & 271.000 \\
\hline
\end{tabular}


Notes: (i) Values of coefficients:
\[
1 / C_{0}=6.50, \quad-\left(C_{1} / C_{0}\right)=-1.00 \quad \text { and } \quad-\left(C_{2} / C_{0}\right)=-4.50
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
```

Chapter 4-Upstream Routing Using Conventional ... 4-27

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Number of data \(=22\)} \\
\hline 1 & \multicolumn{3}{|l|}{\(=66.00\) heurs} \\
\hline 1 & \multicolumn{3}{|l|}{\(=30.00\) hours} \\
\hline \(\because\) & \multicolumn{3}{|l|}{\(=0.00000\)} \\
\hline \[
\begin{aligned}
& \text { PERTOO } \\
& \left\{\begin{array}{l}
36.00
\end{array}\right.
\end{aligned}
\] & INFLOH !observed! & 0UTFLOH (calculated) & IHFLOH (calculated) \\
\hline \[
\begin{aligned}
& \text { haurs) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { (a3isec) } \\
& (2)
\end{aligned}
\] & \begin{tabular}{l}
(f3) \\
(3)
\end{tabular} & (misec)
(4) \\
\hline 0 & 274.000 & 214.000 & 274.009 \\
\hline 1 & 334.500 & 285.984 & 334.500 \\
\hline 2 & 404.000 & 332.230 & 404.000 \\
\hline 3 & 530.500 & 384.389 & 530.500 \\
\hline 4 & 586.000 & 458.896 & 586.000 \\
\hline 5 & 573.500 & 510.691 & 573.500 \\
\hline 6 & 572.100 & 537.288 & 572.000 \\
\hline 7 & 625.500 & 563.200 & 623.500 \\
\hline 8 & 1026.000 & 675.243 & 1026.000 \\
\hline 9 & 1118.500 & 845.417 & 1118.500 \\
\hline 10 & 1001.000 & 937.274 & 1001.000 \\
\hline 11 & 748.500 & 910.478 & 748.500 \\
\hline 12 & 568.000 & 802.380 & 568.000 \\
\hline 13 & 536.000 & 695.174 & 536.000 \\
\hline 14 & 535.000 & 626.685 & 535.040 \\
\hline 15 & 553.060 & 591.249 & 553.000 \\
\hline 16 & 549.600 & 573.999 & 549.000 \\
\hline 17 & 518.500 & 556.750 & 518.500 \\
\hline 18 & 428.000 & 50.964 & 428.000 \\
\hline 19 & 366.500 & 467.744 & 366.509 \\
\hline 20 & 301.1005 & 410.432 & 301.000 \\
\hline 21 & 272.509 & 357.428 & 272.500 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=4.67, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-1.00 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=-2.67
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)


Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=3.75, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-1.00 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=-1.75
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

\subsection*{4.2.2 Further Computations Using Parameter \(\mathrm{x}=0.45\) with Various \(\Delta t\)}

Since the parameter x value derived from the September-October 1960 flood in the reach of the Murray River from which the data were taken is 0.45 , this value was adopted to investigate the effect of \(\Delta t\) in the numerical computation. The time steps \(\Delta t\) used were chosen to cover a wide range. They are, respectively, \(3,6,12\), \(24,36,48,60,72\) and 96 hours while the parameter K value is 66 hours. It should be noted that these time steps \(\Delta t\) of which some of them are larger than the K value are only for the use of numerical investigation. In practice, the time step \(\Delta t\) used would always be less than or equal to the \(K\) value.

The method of computation is the same as that discussed in the previous section. After interpolating the data according to the time step \(\Delta t\), conventional downstream routing was applied to obtain calculated downstream hydrograph ordinates. Afterwards, this result was used to compute back the upstream hydrograph ordinates.

Tables IV.2.3 show the results. It can be noticed from these tables that the only time step \(\Delta \mathrm{t}\) giving calculated upstream discharges which agree precisely with the observed ones is \(\Delta t=96\) hours. With this large time step, the number of data points becomes very few. The time step \(\Delta t=12\) hours apparently gives a satisfactory result, but actually it does not since the last few calculated upstream discharges do not match the observed ones. The time step \(\Delta \mathrm{t}=72\) hours gives fairly good result, but again the last few calculated upstream discharges do not match precisely the observed ones. If the number of data points were more than that shown in the table, the differences would propagate and magnify. The worst result is given by time step \(\Delta t=60\) hours, even though the number of data is very few, the computation diverges very rapidly. The cause of these results will be discussed later in this chapter.

Tables IV.2.3
Results of Computations Using Parameter \(\mathbf{x}=\mathbf{0 . 4 5}\), Various Time Step \(\Delta \mathrm{t}\) and \(\mathrm{K}=\mathbf{6} 6\) hours


Notes: (i) Values of coefficients:
\(1 / \mathrm{C}_{0}=-1.34,-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=1.11 \quad\) and \(\quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=1.23\)
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Huaber of data \(=2{ }^{5} 7\)} \\
\hline \(k\) & \multicolumn{3}{|l|}{\(=65.00\) hours} \\
\hline 1 & \multicolumn{3}{|l|}{\(=3.00\) hours} \\
\hline \% & \multicolumn{3}{|l|}{\(=0.45000\)} \\
\hline FEFIOD & 3HFL0 & UUTFLOH & NFLG \\
\hline (\% 3.00 & (cobseryed) & \{càlculated) & (calcusäted) \\
\hline hours) & (m3/cer) & \{63isec) & (EJ/5EC) \\
\hline 68 & 573.500 & 550.443 & 573.500 \\
\hline 69 & 573.125 & 558.077 & 573.125 \\
\hline 70 & 572.750 & 559.551 & 572.750 \\
\hline 71 & 572.375 & 560.878 & 572.375 \\
\hline 72 & 572.009 & 562.970 & 572.000 \\
\hline 73 & 571.875 & 562.952 & 571.875 \\
\hline 74 & 571.750 & 563.753 & 571.750 \\
\hline 75 & 571.625 & 564.481 & 571.675 \\
\hline 76 & 571.500 & 565.141 & 571. 500 \\
\hline 77 & 571.375 & 565.739 & 571.375 \\
\hline 78 & 571.259 & 586.280 & 571.250 \\
\hline 79 & 571.125 & 566.767 & 571.125 \\
\hline 90 & 571.000 & 557.207 & 571.060 \\
\hline 81 & 584.125 & 557.716 & 584.125 \\
\hline 82 & 597.250 & 550.020 & 597.250 \\
\hline 83 & 610.375 & 543.977 & 610.375 \\
\hline 94 & 623.500 & 537.455 & 623.500 \\
\hline 85 & 636.625 & 536.334 & 636.625 \\
\hline 85 & 647.759 & 534.502 & 649.750 \\
\hline \(\overline{6} 7\) & 662.875 & 533.857 & 662.875 \\
\hline 88 & 676.000 & 534.304 & 676.000 \\
\hline 89 & 719.750 & 512.911 & 719.750 \\
\hline 96 & 763.500 & 496.688 & 763.500 \\
\hline 91 & 807.250 & 485.225 & 807.250 \\
\hline 92 & 851.000 & 478.143 & 851.000 \\
\hline 33 & 894.750 & 475.996 & 894.750 \\
\hline 94 & 938.500 & 475.753 & 938.509 \\
\hline 9 & 982.250 & 479.85 .5 & 982.250 \\
\hline 95 & 1026.000 & 487.084 & 1026.090 \\
\hline 97 & 1042.250 & 517.732 & 1042.250 \\
\hline 98 & 1950.500 & 547.237 & 1058.500 \\
\hline 9 & 1074.750 & 575.691 & 1074.750 \\
\hline 100 & 1091.000 & 603.176 & 1091.090 \\
\hline 101 & 1107.250 & 629.769 & 1107.250 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Humter of data \(=257\)} \\
\hline \(k\) & \multicolumn{3}{|l|}{\(=66.00\) hours} \\
\hline I & \multicolumn{3}{|l|}{\(=3.00\) hours} \\
\hline ¢ & \multicolumn{3}{|l|}{\(=0.45090\)} \\
\hline FES100 & IHFL0 & 0UIFL0 & 1HFL0 \\
\hline (\% 3.10 & \{observed) & [calculated) & \{calculated) \\
\hline hours) & (m3/ERC) & ( 3 /see ) & (i3/5ec) \\
\hline 102 & 1123.500 & 655.541 & 1123.500 \\
\hline 193 & 1139.750 & 680.558 & 1139.750 \\
\hline 104 & 1154.000 & 704.878 & 1156.000 \\
\hline 105 & 1146.625 & 747.676 & 1146.625 \\
\hline 106 & 1137.250 & 785.332 & 1137.250 \\
\hline 107 & 1127.875 & 621.177 & 1127.875 \\
\hline 108 & 1118.500 & 852.512 & 1119.500 \\
\hline 108 & 1109.125 & 880.616 & 1109.125 \\
\hline 110 & 1099.750 & 905.746 & 1097.750 \\
\hline 111 & 1090.375 & 928.137 & 1090.375 \\
\hline 112 & 1081.009 & 948.007 & 1081.000 \\
\hline 113 & 1071.000 & 366.023 & 1071.000 \\
\hline 114 & 1061.000 & 951.814 & 1061.090 \\
\hline 115 & 1051.000 & 975.559 & 1051.600 \\
\hline 116 & 1041.000 & 1007.420 & 1041.050 \\
\hline 117 & 1031.000 & 1017.545 & 1031.050 \\
\hline 118 & 1021.000 & 1023.073 & 1021.000 \\
\hline 119 & 1011.000 & 1033.151 & 1011.000 \\
\hline 120 & 1001.000 & 1038.835 & 1001.000 \\
\hline 121 & 977.875 & 1053.184 & 977.875 \\
\hline 122 & 954.750 & 1054.367 & 954.750 \\
\hline 123 & 931.625 & 1072.919 & 931.624 \\
\hline 124 & 908.500 & 1078.957 & 90.479 \\
\hline 125 & 885.375 & 1082.681 & 885.374 \\
\hline 126 & 862.250 & 1084.274 & 862.249 \\
\hline 127 & 839.125 & 1083.985 & 839.124 \\
\hline 129 & 816.000 & 1081.730 & 815.999 \\
\hline 129 & 779.125 & 1073.230 & 799.124 \\
\hline 130 & 782.250 & 1064.184 & 782.249 \\
\hline 131 & 765.375 & 1954.288 & 765.374 \\
\hline 132 & 748.509 & 1043.947 & 748.499 \\
\hline 133 & 731.625 & 1033.088 & 731.674 \\
\hline 134 & 714.750 & 1021.752 & 714.748 \\
\hline 135 & 697.875 & 1009.976 & 697.873 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Number of : I \% & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =66.00 \text { hours } \\
& =3.00 \text { hours } \\
& =0.45000
\end{aligned}
\]} & \\
\hline \[
\begin{array}{r}
\text { FEBiOD } \\
(x \quad 3.00 \\
\text { hours) }
\end{array}
\] & IHFLU (otseryed) \{43/5ect & 4UIF\& 0 icalculated) (甶3/5er) & 1HFLOH (calculated) ( ® \(^{3} / 5 \mathrm{Ec}\) ) \\
\hline 170 & 539.000 & 579.067 & 538.941 \\
\hline 171 & 541.000 & 574.395 & 540.935 \\
\hline 172 & 543.000 & 570.75 & 542.928 \\
\hline 173 & 545.000 & 566.597 & 544.920 \\
\hline 174 & 547.000 & 363.391 & 544.972 \\
\hline 175 & 549.009 & 560.598 & 548.992 \\
\hline 176 & 551.000 & 558.185 & 550.892 \\
\hline 377 & 551.500 & 557.242 & 551.380 \\
\hline 178 & 557.100 & 556.414 & 551.868 \\
\hline 179 & 552.500 & ¢5E. 690 & 552.354 \\
\hline 180 & 553.609 & 555.664 & 552.838 \\
\hline 131 & 553.500 & \({ }_{554.59}\) & 553.321 \\
\hline 182 & 554.000 & 554.173 & 553.802 \\
\hline 183 & \({ }_{554.500}\) & \({ }_{5}^{55 J} .694\) & 554.281 \\
\hline 124 & 555.606 & 553.385 & 554.757 \\
\hline 185 & 554.250 & 554.073 & 553.981 \\
\hline 186 & 553.599 & \({ }_{554} 5.646\) & 553.263 \\
\hline 187 & 555.750 & 555.115 & 552.421 \\
\hline 189 & 552.000 & 555.487 & 551.636 \\
\hline 189 & 551.250 & \({ }_{555.769}\) & 550.848 \\
\hline 170 & 550.500 & 555.976 & 550.055 \\
\hline 191 & 549.750 & 55.9 .996 & 549.257 \\
\hline 192 & 549.000 & 556.158 & 548.455 \\
\hline 193 & 543.375 & 55.650 & 547.772 \\
\hline 194 & 547.750 & 555.907 & 547.083 \\
\hline 175 & 547.125 & 555. 726 & 546.387 \\
\hline 178 & 546.500 & 555.510 & 545.684 \\
\hline 197 & 545.875 & 555. 261 & 544.972 \\
\hline 198 & 545.250 & 554.981 & 544.251 \\
\hline 199 & 544.625 & 554.676 & 543.519 \\
\hline 200 & 544.000 & 554.345 & 542.777 \\
\hline 201 & 537.625 & 559.280 & 536.271 \\
\hline 202 & 531.250 & 561.396 & 529.752 \\
\hline 203 & 524.875 & 563.760 & 523.218 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Humber of data \(=25!\)} \\
\hline \& & \multicolumn{3}{|l|}{\(=66.00\) hours} \\
\hline I & \multicolumn{3}{|l|}{\(=3.60\) hour 5} \\
\hline ¢ & \multicolumn{3}{|l|}{\(=0.45000\)} \\
\hline FEFIOD & 1 \(\ddagger\) F \(10 \%\) & OUTFLOH & 1HFL0H \\
\hline (\% 3.00 & Cotservedj & (cälculated) & (calculated) \\
\hline hear 5) & ( 3 /5ec) & [EJisec) & (63/5ec) \\
\hline 238 & 315.000 & 432.528 & 257.887 \\
\hline 239 & 308.000 & 428.422 & 24.722 \\
\hline 240 & 301.000 & 424.087 & 231.211 \\
\hline 241 & 297.625 & 416.836 & 220.412 \\
\hline 242 & 294.250 & 407.893 & 209.823 \\
\hline 243 & 270.875 & 403.233 & 196.360 \\
\hline 244 & 287.509 & 396.835 & 192.930 \\
\hline 245 & 284.125 & 390.674 & 168.450 \\
\hline 246 & 280.759 & 384.736 & 152.747 \\
\hline 247 & 277.375 & 379.001 & 135.755 \\
\hline 248 & 274.009 & 373.453 & 117.314 \\
\hline 249 & 273.625 & 365.840 & 100.270 \\
\hline 250 & 273.259 & 359.891 & 81.453 \\
\hline 251 & 272.875 & 352.291 & 60.674 \\
\hline 252 & 272.500 & 345.269 & 37.725 \\
\hline 253 & 272.125 & 344.693 & 12.374 \\
\hline 254 & 271.750 & 335.531 & -15.634 \\
\hline 255 & 271.375 & 330.749 & -46.582 \\
\hline 256 & 271.600 & 325.316 & -80.782 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Number of data \(=12 \mathrm{c}\)} \\
\hline \& & \multicolumn{3}{|l|}{\(=68.00\) hours} \\
\hline 1 & \multicolumn{3}{|l|}{\(=6.00\) hours} \\
\hline : & \multicolumn{3}{|l|}{\(=0.45000\)} \\
\hline PEFIOD & 1 HFLOH & OUTFLOH & 1HFLOH \\
\hline (\% 6.00 & lotserved) & icalculated! & (calculated) \\
\hline \[
\begin{aligned}
& \text { troure } \\
& (1)
\end{aligned}
\] & (43:cen) (2) & (ETisec) (3) & \[
(\mathbb{m} / 4)=5
\] \\
\hline 0 & 274.000 & 274.000 & 274.000 \\
\hline 1 & 284.000 & 267.205 & 284.000 \\
\hline 2 & 294.000 & 262.976 & 294.000 \\
\hline 3 & 304.000 & 260.919 & 304.000 \\
\hline 4 & 314.000 & 260.702 & 314.000 \\
\hline 5 & 324.250 & 261.875 & 324.250 \\
\hline 6 & 334.500 & 264.435 & 334.500 \\
\hline 7 & 344.750 & 268.168 & 344.750 \\
\hline 8 & 3E.009 & 272.896 & 355.000 \\
\hline 9 & 357.250 & 277.108 & 387.250 \\
\hline 10 & 57.500 & 282.546 & 379.500 \\
\hline 11 & 351.750 & 289.62? & 391.750 \\
\hline 12 & 404.000 & 296.388 & 404.000 \\
\hline 13 & 426.750 & 297.351 & 426.750 \\
\hline 14 & 449.509 & 301.65 & 449.500 \\
\hline 15 & 472.250 & 308.774 & 472.250 \\
\hline 16 & 455.000 & 318.276 & 495.000 \\
\hline 17 & \(5!2.75\) & 333.195 & 512.750 \\
\hline 18 & 5 & 348.551 & 530.500 \\
\hline 19 &  & 364.270 & 548.250 \\
\hline 5 & Sec.inio & 380.300 & 566.000 \\
\hline 21 & 51.09 & 405.254 & 571.000 \\
\hline 2 & 50.6 & 427.182 & 575.000 \\
\hline 23 & 5 c 1.0 mi & 446.488 & 581.000 \\
\hline 24 & 58.000 & 463.627 & 586.000 \\
\hline 25 & 582.500 & 484.688 & 582.560 \\
\hline it & 575.60 & 501.999 & 579.000 \\
\hline 27 & 575.509 & 516.135 & 575.560 \\
\hline 28 & 572.000 & 527.574 & 572.000 \\
\hline 29 & 572.750 & 533.847 & 572.750 \\
\hline 30 & 573.500 & 539.277 & 573.510 \\
\hline 31 & 574.250 & 543.992 & 574.250 \\
\hline 32 & 575.000 & 548.10 & 575.000 \\
\hline 33 & 59.250 & SGi. 718 & 574.250 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=-1.47,-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=1.22 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=1.25
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline Muater of k: 1 \% & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =120 \\
& =66.00 \text { hours } \\
& =8.00 \text { hours } \\
& =0.45000
\end{aligned}
\]} & \\
\hline \[
\begin{gathered}
\text { PERIOD } \\
(x \quad 6.00 \\
\text { hours })
\end{gathered}
\] & IWF10 (observed) \{a3/sec) & OUTFLOH (calculated) (6) 3 sec) & I HFLOH (calculated) ( \(\mathbf{x} 3 / \mathrm{cec}\) ) \\
\hline 34 & 573.509 & 55.515 & 573.509 \\
\hline 35 & 572.750 & 559.618 & 572.750 \\
\hline 36 & 572.000 & 562.132 & 572.009 \\
\hline \(3 i\) & 571.750 & 563.809 & 571.750 \\
\hline 38 & 571.500 & 565.191 & 571.500 \\
\hline 37 & 571.250 & 566.324 & 571.250 \\
\hline 40 & 571.000 & 567.246 & 571.000 \\
\hline 41 & 57.250 & 549.985 & 597.250 \\
\hline 42 & 623.500 & 539.367 & 523.500 \\
\hline 43 & 649.750 & 534.374 & 647.750 \\
\hline 44 & 676.000 & 534.158 & 676.000 \\
\hline 45 & 763.599 & 496.367 & 763.500 \\
\hline 45 & 851.000 & 477.769 & 851.000 \\
\hline 47 & 938.504 & 475.249 & 935.560 \\
\hline 48 & 1026.000 & 486.528 & 1026.009 \\
\hline 49 & 1059.501 & 545.310 & 1058.500 \\
\hline 50 & 1091.000 & 602.85i & 1091.009 \\
\hline 51 & 1123.509 & 555.297 & 1123.500 \\
\hline 57 & 1156.000 & 704.698 & 1156.090 \\
\hline 53 & 1137.250 & 785.335 & 1137.250 \\
\hline 54 & 1118.500 & 852.651 & 1118.500 \\
\hline 55 & 1999.750 & 905.977 & 1099.750 \\
\hline 56 & 1081.000 & 948.299 & 1081.000 \\
\hline 57 & 1061.000 & 992.147 & 1051.000 \\
\hline 58 & 1041.000 & 1097.773 & 1041.000 \\
\hline 59 & 1021.000 & 1026.434 & 1021.090 \\
\hline 60 & 1001.000 & 1039.192 & 1001.000 \\
\hline 31 & 954.750 & 1064.783 & 954.750 \\
\hline 62 & 908.500 & 1079.406 & 908.500 \\
\hline 63 & \(86 \% .750\) & 1084.735 & 852.250 \\
\hline 64 & 816.000 & 1082.190 & 816.000 \\
\hline 65 & 78.250 & 1064.479 & 782.250 \\
\hline 66 & 748.500 & 1044.320 & 748.59 \\
\hline \(3 i\) & 714.750 & 1072.086 & 714.750 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Humber of k. 1 * & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =66.00 \text { thours } \\
& =6.00 \text { hours } \\
& =0.45000
\end{aligned}
\]} & \\
\hline \[
\begin{gathered}
\text { PERIOD } \\
\text { i: } \quad 6.00 \\
\text { hours) }
\end{gathered}
\] & IHFLOH (atseryed) (G3/sec) & OUTFLOH (calculated) ( \(\mathrm{B} 3 / \mathrm{sec}\) ) & I \& FL 0 icalculsted (酸/5ec) \\
\hline 68 & 681.000 & 998.1984 & 681.090 \\
\hline 69 & 657.750 & 989.876 & 652.751 \\
\hline 70 & 624.500 & 939.805 & 624.501 \\
\hline 71 & 595.250 & 919.859 & 546.251 \\
\hline 32 & 568.009 & 882.028 & 568.009 \\
\hline 33 & 560.500 & 839.174 & 569.591 \\
\hline 74 & 553.000 & 901.723 & 553.002 \\
\hline 75 & 545.500 & 768.846 & 545.592 \\
\hline 76 & 536.009 & 739.843 & 538.002 \\
\hline 37 & 537.061 & 707.705 & 537.003 \\
\hline 78 & 533.600 & 684.018 & 536.904 \\
\hline 79 & 535.000 & 662.160 & 535.094 \\
\hline 80 & 534.000 & 643.374 & 534.005 \\
\hline 81 & 534.254 & 626.506 & 534.257 \\
\hline 82 & \(534.50 \%\) & 612.251 & 534.508 \\
\hline 23 & 534.750 & 600.211 & 534.760 \\
\hline 84 & 535.000 & 590.047 & 535.0112 \\
\hline 85 & 539.000 & 578.926 & 539.015 \\
\hline 85 & 543.000 & 570.112 & 543.018 \\
\hline 87 & 547.000 & 563.256 & 547.023 \\
\hline 88 & 551.009 & 558.506 & 551.028 \\
\hline 89 & 552.000 & 556.300 & 552.034 \\
\hline 95 & 553.009 & 554.964 & EE3.041 \\
\hline 91 & 554.000 & 553.985 & 554.051 \\
\hline 92 & \({ }_{555.06 \%}\) & 553.308 & E55.062 \\
\hline 93 & 553.500 & 554.585 & 553.576 \\
\hline 94 & \(55 \% .000\) & 555.438 & 552.093 \\
\hline 95 & 550.500 & 555.933 & 550.614 \\
\hline 93 & 549.019 & 556.122 & 549.140 \\
\hline 97 & 547.750 & 555.884 & 547.971 \\
\hline 98 & 546.501 & 555.492 & 546.710 \\
\hline 99 & 545.250 & 554.968 & 545.507 \\
\hline 100 & 544.000 & 554.334 & 544.315 \\
\hline 101 & 531.250 & 561.418 & 531.635 \\
\hline
\end{tabular}

```

Number of data = bs
|}=66.00 hour
I = 12.00 hours

= 0.45000

```
\begin{tabular}{|c|c|c|c|}
\hline PER100 & 1HFLU & UUTFLJ\% & HFL0 \\
\hline (\% 12.00 & lobserved) & (calculated) & (calculated) \\
\hline \begin{tabular}{l}
hours) \\
(1)
\end{tabular} & \begin{tabular}{l}
(m3/cer) \\
(2)
\end{tabular} & \[
\left\{\begin{array}{c}
(3) \\
\hline 3 / 5 e c\}
\end{array}\right.
\] & 3isec) (4) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 0 & 274.000 & 274.000 & 274.000 \\
\hline 1 & 294.000 & 262.794 & 294.000 \\
\hline 2 & 314.009 & 269.441 & 314.000 \\
\hline 3 & 334.500 & 264.149 & 334.500 \\
\hline 4 & 355.000 & 272.621 & 355.000 \\
\hline 5 & 379.500 & 282.264 & 379.500 \\
\hline 6 & 404.000 & 296.122 & 484.000 \\
\hline 7 & 449.500 & 301.233 & 449.500 \\
\hline 8 & 495.000 & 317.801 & 495.000 \\
\hline 9 & 530.500 & 348.180 & 530.500 \\
\hline 10 & 566.009 & 386.012 & 566.000 \\
\hline 11 & 576.000 & 427.172 & 576.000 \\
\hline 12 & 588.000 & 463.790 & 586.000 \\
\hline 13 & 579.000 & 502.381 & 579.000 \\
\hline 14 & 572.1009 & 528.039 & 572.000 \\
\hline 15 & 573.509 & 539.679 & 573.500 \\
\hline 1 c & 575.000 & \({ }_{5} 98.427\) & 575.000 \\
\hline 17 & 573.504 & 556.806 & 573.500 \\
\hline 18 & 572.009 & 562.382 & 572.000 \\
\hline 19 & 57.500 & 565.391 & 571.500 \\
\hline 20 & 571.000 & 567.404 & 571.000 \\
\hline 21 & 623.500 & 539.009 & 623.500 \\
\hline 2 & 676.006 & 533.563 & 676.000 \\
\hline 23 & 851.000 & 475.921 & 851.000 \\
\hline 24 & 1026.000 & 484.277 & 1026.000 \\
\hline 25 & 1091.000 & 601.539 & 1091.000 \\
\hline 26 & 1156.000 & 703.975 & 1158.000 \\
\hline 27 & 1118.500 & 853.219 & 1118.500 \\
\hline 28 & 1081.000 & 947.487 & 1081.000 \\
\hline \(2{ }^{\text {i }}\) & 1041.000 & 1009.707 & 1041.000 \\
\hline 30 & 1001.000 & 1040.638 & 1091.060 \\
\hline 31 & 908.500 & 1081.219 & 9188.500 \\
\hline 32 & 896.000 & 1084.047 & 816.000 \\
\hline 33 & 748.540 & 1045.824 & 748.500 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=-1.78,-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=1.51 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=1.28
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Humber of \\
\(k\) \\
I \\
:
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =\$ 6.00 \text { hours } \\
& =\$ 2.00 \text { hours } \\
& =0.45000
\end{aligned}
\]} & \\
\hline \[
\begin{gathered}
\text { PEFIOD } \\
(x .12 .00 \\
\text { hours) }
\end{gathered}
\] & 1月FLOH lotserved \{胃3/5ec\} & 0UIfL0 \{calculated) \{ix) 3 sec) & 1HFLOH (calculated) ( \(\mathrm{m} / \mathrm{sec}\) ) \\
\hline 34 & 881.000 & 999.794 & 681.000 \\
\hline 35 & 624.500 & 940.655 & 624.500 \\
\hline 36 & 568.000 & 882.672 & 568.000 \\
\hline 37 & 553.090 & 801.772 & 553.000 \\
\hline 38 & 538.900 & 739.602 & 538.001 \\
\hline 39 & 536.100 & 683.531 & 536.001 \\
\hline 40 & 534.000 & 642.799 & 534.001 \\
\hline 41 & 534.500 & 611.654 & 534.502 \\
\hline 42 & 535.009 & 589.486 & 535.003 \\
\hline 43 & 543.100 & 569.547 & 543.004 \\
\hline 44 & 551.000 & 557.533 & 551.006 \\
\hline 45 & 553.009 & 554.559 & 553.009 \\
\hline 46 & 555.090 & 552.996 & 555.013 \\
\hline 47 & 552.000 & 555.246 & 552.000 \\
\hline 48 & 549.1009 & 556.006 & 549.030 \\
\hline 49 & 546.500 & 555.419 & 546.546 \\
\hline 50 & 544.000 & \(55.4 .2 \%\) & 544.069 \\
\hline 51 & 518.501 & 565.658 & 518.604 \\
\hline 52 & 493.000 & 566.567 & 493.156 \\
\hline 5 & 460.500 & 563.906 & 460.735 \\
\hline 54 & 428.009 & 552.780 & 428.355 \\
\hline 5 & 452.000 & 531.849 & 402.534 \\
\hline 5 & 376.000 & 509.651 & 376.895 \\
\hline 57 & 366.500 & 477.059 & 367.712 \\
\hline 58 & 357.000 & 451.017 & 358.826 \\
\hline 59 & 329.000 & 440.034 & 331.756 \\
\hline 60 & 301.090 & 424.223 & 395.142 \\
\hline 61 & 287.500 & 396.834 & 293.740 \\
\hline 62 & 274.000 & 373.378 & 283.399 \\
\hline 63 & 272.500 & 346.926 & 286.658 \\
\hline 64 & 271.000 & 326.008 & 292.327 \\
\hline
\end{tabular}

\section*{Chapter 4 - Upstream Routing Using Conventional ... 4-44}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Number of \\
K \\
I \\
"
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =66.00 \text { hours } \\
& =24.00 \text { hours } \\
& =0.45000
\end{aligned}
\]} & \\
\hline  & IHFLOH lobservedi (e3/sec)
\(\qquad\) (2) & \begin{tabular}{l}
OUTFLOH (calculated) \\
(e3/sec) \\
(3)
\end{tabular} & \[
\begin{array}{r}
\text { INFLOW } \\
\text { (calculated) } \\
(53 / 550)
\end{array}
\] \\
\hline 0 & 274.000 & 274.000 & 274.000 \\
\hline 1 & 314.000 & 259.342 & 314.000 \\
\hline 2 & 355.000 & 271.476 & 355.000 \\
\hline 3 & 404.000 & 295.022 & 404.000 \\
\hline 4 & 495.100 & 315.825 & 495.000 \\
\hline 5 & 566.000 & 378.837 & 566.000 \\
\hline 6 & 586.000 & 464.508 & 586.000 \\
\hline 7 & 572.000 & 536.007 & 572.000 \\
\hline 8 & 575.000 & 549.774 & 575.000 \\
\hline 9 & 572.60 & 563.408 & 572.000 \\
\hline 10 & 571.000 & 568.044 & 571.000 \\
\hline 11 & 676.000 & 531.034 & 676.0010 \\
\hline 12 & 1026.000 & 474.806 & 1026.000 \\
\hline 13 & 1156.000 & 701.052 & 1156.000 \\
\hline 14 & 1188.090 & 954.597 & 1081.000 \\
\hline 15 & 1001.006 & 1164.723 & 1001.090 \\
\hline 16 & 816.000 & 1999.798 & 816.000 \\
\hline 17 & 681.001 & 1094.228 & 681.001 \\
\hline 18 & 568.100 & 385.148 & 568.002 \\
\hline 19 & 538.100 & 738.492 & 538.016 \\
\hline 20 & 534.009 & 840.335 & 534.013 \\
\hline 21 & 535.000 & 587.131 & 535.931 \\
\hline 22 & 551.060 & ¢¢5. 364 & 551.074 \\
\hline 23 & 555.060 & 551.730 & S55. 174 \\
\hline 24 & 549.000 & 555.553 & 549.410 \\
\hline 25 & 544.099 & 554.129 & 544.987 \\
\hline 26 & 493.000 & 567.786 & 495.278 \\
\hline 27 & 428.000 & 554.445 & 433.367 \\
\hline 28 & 376.000 & 510.671 & 388.645 \\
\hline 29 & 357.000 & 450.716 & 386.790 \\
\hline 30 & 301.000 & 424.671 & 371.184 \\
\hline 31 & 274.000 & 373.114 & 439.348 \\
\hline 32 & 271.000 & 324.964 & 660.548 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / C_{0}=-2.73,-\left(C_{1} / C_{0}\right)=2.36 \quad \text { and } \quad-\left(C_{2} / C_{0}\right)=1.37
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Number of datà \(=22\)} \\
\hline k & \multicolumn{3}{|l|}{\(=66.06\) hours} \\
\hline 1 & \multicolumn{3}{|l|}{\(=3\) E.06 hours} \\
\hline : & \multicolumn{3}{|l|}{\(=0.45000\)} \\
\hline PER100 & IHFL6\% & OUIFLOH & 1 HFLOH \\
\hline (x 36.00 & (abserved) & \{calculeted & (calculated) \\
\hline hours
(0) & \begin{tabular}{l}
\[
\text { ( } \mathrm{z}, \text { ised })
\] \\
(2)
\end{tabular} & \[
\begin{aligned}
& (\boxed{3} / 50 e) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\left\{\begin{array}{l}
3 \\
3
\end{array}(\mathrm{sec})\right. \\
(4)
\end{gathered}
\] \\
\hline 0 & 274.009 & 274.090 & 274.090 \\
\hline 1 & 334.500 & 260.964 & 354.500 \\
\hline 2 & 404.000 & 294.742 & 494.000 \\
\hline 3 & 530.590 & 339.921 & 530.50 \\
\hline 4 & 586.600 & 454.313 & 586.000 \\
\hline 5 & 573.500 & 544.313 & 573.500 \\
\hline 6 & 572.009 & 563.987 & 572.000 \\
\hline 7 & 623.509 & 586.203 & 623.500 \\
\hline 8 & 1026.000 & 514.767 & 1025.600 \\
\hline 8 & 1118.500 & 833.775 & 1118.590 \\
\hline 10 & 1001.000 & 1047.881 & 1001.090 \\
\hline 11 & 748.500 & 1071.199 & 748.498 \\
\hline 12 & 568.000 & 896.147 & 567.992 \\
\hline 13 & 536.000 & 685.486 & 535.908 \\
\hline 14 & 535.06 & 586.595 & 534.870 \\
\hline 15 & 5fu.up & 548.510 & 552.470 \\
\hline 16 & 549.600 & SET. 349 & 546.839 \\
\hline 17 & 518.506 & 556.706 & 509.690 \\
\hline 16 & 428.60 & 55.6 .874 & 392.083 \\
\hline 19 & 366.506 & 482.662 & 220.06 ? \\
\hline 20 & 391.6 & 419.762 & -295.987 \\
\hline 21 & 272.50 & 347.160 & \(-2161.369\) \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / C_{0}=-4.64,-\left(C_{1} / C_{0}\right)=4.08 \quad \text { and } \quad-\left(C_{2} / C_{0}\right)=1.56
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Huaber of data \(=17\)} \\
\hline \multicolumn{4}{|l|}{\%. \(\quad=36.00\) trours} \\
\hline 1 & \multicolumn{3}{|l|}{\(=48.00\) houre} \\
\hline \(\pm\) & \multicolumn{3}{|l|}{\(=0.45000\)} \\
\hline PERIOD & 1NF10 & UUTFL0年 & 1NFLU \\
\hline (x 48.00 & (otserved) & (calculated) & (calculated) \\
\hline \begin{tabular}{l}
hours) \\
(1)
\end{tabular} & \begin{tabular}{l}
(a3̃/cec) \\
(2)
\end{tabular} & \begin{tabular}{l}
(E3/ser) \\
(3)
\end{tabular} & (4) \\
\hline 0 & 274.100 & 274.000 & 274.000 \\
\hline 1 & 355.000 & 266.343 & 355.000 \\
\hline 2 & 495.000 & 323.682 & 495.060 \\
\hline 3 & 586.600 & 451.453 & 586.090 \\
\hline 4 & 575.000 & 559.595 & 575.000 \\
\hline 5 & 571.000 & 572.236 & 571.000 \\
\hline 6 & 108.000 & 528.242 & 1028.000 \\
\hline 7 & 1981.000 & 919.268 & 1081.001 \\
\hline 8 & 816.600 & 1073.050 & 816.010 \\
\hline 9 & 569.000 & 891.878 & 568.054 \\
\hline 10 & 534.094 & 637.279 & 534.883 \\
\hline 11 & 551.000 & 553.469 & 559.315 \\
\hline 12 & 549.004 & 551.691 & 627.340 \\
\hline 13 & 493.009 & 554.842 & 1231.045 \\
\hline 14 & 376.000 & 516.674 & 7329.146 \\
\hline 15 & 301.000 & 411.784 & 65807.144 \\
\hline 15 & 271.000 & 325.434 & 617407.827 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / C_{0}=-10.58, \quad-\left(C_{1} / C_{0}\right)=9.42 \quad \text { and } \quad-\left(C_{2} / C_{0}\right)=2.16
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nuater of dita \(=13\)} \\
\hline \multicolumn{4}{|l|}{\(k_{0}^{\prime}=86.09\) hours} \\
\hline 1 & \multicolumn{3}{|l|}{\(=80.00\) hour 5} \\
\hline \(\because\) & \multicolumn{3}{|l|}{\(=0.45000\)} \\
\hline PEFIOD & IHFLOH & OUTFLOH & 1HFLOH \\
\hline ( 860.00 & (observed) & (calculated) & (calculated) \\
\hline \begin{tabular}{l}
frours) \\
(1)
\end{tabular} & \begin{tabular}{l}
(43/sec) \\
(2)
\end{tabular} & \begin{tabular}{l}
(自3/5ec) \\
(3)
\end{tabular} & \[
\begin{aligned}
& (63 / 5 e c) \\
& (4)
\end{aligned}
\] \\
\hline 0 & 274.000 & 274.000 & 274.000 \\
\hline 1 & 377.503 & 379.500 & 23589.500 \\
\hline 2 & 566.000 & 566.090 & -4577193.999 \\
\hline 3 & 573.500 & 573.500 & 910976463.340 \\
\hline 4 & 571.000 & \(571.0001-\) & 1284202050.000 \\
\hline 5 & 1095.000 & 1091.0003 & 755556434000.000 \\
\hline 6 & 1001.000 & 1008.000- & 79035729800000.000 \\
\hline 7 & 624.500 & 624.5001 & 2857811010000000. 100 \\
\hline 8 & 534.000 & \(534.000-\) & 4296983900000000000. 690 \\
\hline 9 & 553.000 & 555.0095 & 751017830000000000to.000 \\
\hline 10 & 544.000 & \(544.000-\) & 258445254000000000009009.000 \\
\hline \(1!\) & 402.000 & 402.0002 & 10430605400000000006000090. 609 \\
\hline 12 & 301.100 & \(301.000-\) & 58456904500000000009000000.000 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=221.00, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-199.00 \text { and }-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=-21.00
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nufter of data \(=11\)} \\
\hline \(k\) & \multicolumn{3}{|l|}{\(=65.00\) hours} \\
\hline 1 & \multicolumn{3}{|l|}{\(=72.00\) trours} \\
\hline * & \multicolumn{3}{|l|}{\(=0.45000\)} \\
\hline FER10] & 1NFL0 & OUTF10 & 1HFLOH \\
\hline (\% 72.00 & \{observed\} & \{ca\}culated\} & (calculated) \\
\hline (hours) & \[
\begin{aligned}
& \{\text { [ } 3 / \text { sec }) \\
& (2)
\end{aligned}
\] & ( \(\mathrm{m}^{7} / \mathrm{sec}\) ) (3) & \[
\begin{aligned}
& (63 / 5 e c) \\
& \hline
\end{aligned}
\] \\
\hline 0 & 274.009 & 274.000 & 274.000 \\
\hline 1 & 404.100 & 285.328 & 404.009 \\
\hline 2 & 586.009 & 419.357 & 586.000 \\
\hline 3 & 572.000 & 584.089 & 572.000 \\
\hline 4 & 1025.000 & 611.610 & 1026.000 \\
\hline 5 & 1001.000 & 102.102 & 1001.0001 \\
\hline 6 & 569.000 & 983.357 & 568.060 \\
\hline 7 & 535.000 & 506.785 & 534.999 \\
\hline 8 & 547.000 & 536.352 & 549.011 \\
\hline ¢ & 425.000 & 538.404 & 427.882 \\
\hline 10 & 301.000 & 417.392 & 302.232 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=11.48, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-10.43 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=-0.05
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nuater of data \(=\) c} \\
\hline \(\%\) & \multicolumn{3}{|l|}{\(=66.00\) hours} \\
\hline I & \multicolumn{3}{|l|}{\(=56.60\) hrurs} \\
\hline * & \multicolumn{3}{|l|}{\(=0.45000\)} \\
\hline PERIOD & INFLOH & OUTFLBy & 1HFLOH \\
\hline 4996.00 & lobserved! & (calculsted) & (calculated) \\
\hline \[
\begin{gathered}
\text { hours) } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { (6.3/5ec) } \\
& \text { (2) }
\end{aligned}
\] & \begin{tabular}{l}
(63/cec) \\
(3)
\end{tabular} & (sJj/5ec)
(4) \\
\hline 0 & 274.009 & 274.000 & 274.000 \\
\hline 1 & 495.000 & 321.975 & 495.000 \\
\hline 2 & 575.000 & 536.381 & 575.000 \\
\hline 3 & 1025.000 & 678.264 & 1028.000 \\
\hline 4 & 816.009 & 1028.675 & 816.000 \\
\hline 5 & 534.000 & 725.765 & 534.000 \\
\hline 6 & 549.000 & 510.710 & 549.000 \\
\hline 7 & 375.000 & 516.759 & 376.060 \\
\hline B & 27.600 & 333.670 & 271.000 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / C_{0}=4.61, \quad-\left(C_{1} / C_{0}\right)=-4.25 \quad \text { and } \quad-\left(C_{2} / C_{0}\right)=0.64
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

\subsection*{4.2.3 Further Computations with Various K Values}

Computations using various parameter x values and time steps \(\Delta \mathrm{t}\) have been implemented. In order that the problem of upstream routing discussed herein can be analysed more thoroughly, it is essential that the computation using various average travel time K values be considered as well.

The K values used in the computations are respectively \(6,12,24,33\) and 66 hours with time step \(\Delta t=24\) hours and parameter \(x=0.45\).

Tables IV.2.4 show that all of the K values yield unsatisfactory results, except \(K=6\) hours. This \(K\) value almost gives a perfect result. However, differences still occur in the last few calculated values even though they are very small. These results therefore are consistent with the previous sections, where \(\Delta t\) and x were varied. The overall result is that upstream routing using equation (4.1.1) gives unsatisfactory results in almost all cases.

It should be noted that in the real case, the value of time step \(\Delta t\) used in the computation should be made less than or equal to the \(K\) value. In this section, the value of time step \(\Delta t\) used remains unchanged, i.e.: \(\Delta t=24\) hours, no matter what the K value is. This is for the use of numerical investigation only.

\section*{Tables IV.2.4}

Results of Computations Using Parameter \(\mathrm{x}=0.45\), Various K Values and \(\Delta t=24\) hours
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
muther of \\
\(f\). \\
1
\end{tabular} & \[
\begin{aligned}
& =33 \\
& =3.06 \text { hou } \\
& =24.000 \\
& =0.45000
\end{aligned}
\] & & \\
\hline \[
\begin{gathered}
\text { FERIOD } \\
\text { i } 24.00 \\
\text { hours! } \\
\hdashline(1)
\end{gathered}
\] & 1月FLU\# iotseryed) \{e3/seci (2) & \begin{tabular}{l}
OUTFLOH icalculatedi \\
(ET3/sec) (3)
\end{tabular} &  \\
\hline 0 & 274.000 & 274.000 & 274.004 \\
\hline 1 & 314.600 & 298.314 & 314.600 \\
\hline 2 & 355.000 & 347.841 & 355.090 \\
\hline 3 & 404.009 & 388.855 & 404.000 \\
\hline 4 & 495.006 & 487.926 & 495.000 \\
\hline 5 & 566.090 & \(553.55 \%\) & 566.000 \\
\hline b & 586.009 & 585.235 & 585.900 \\
\hline ; & 572.000 & 577.925 & 572.800 \\
\hline 8 & 575.000 & 570.454 & 575.000 \\
\hline 9 & 572.00 & 575.761 & 572.009 \\
\hline (1) & 57.06 & 569.253 & 571.000 \\
\hline 11 & 676.00i & 635.817 & 576.000 \\
\hline 12 & 1026.00 & 911.594 & 1926.000 \\
\hline 13 & 1150.000 & 1170.974 & 1156.000 \\
\hline 14 & 1081.00 & 1109.49\% & 10.01 .00 \\
\hline 15 & 1091.000 & 1080.199 & 100t.000 \\
\hline 12 & 8:6.0.9 & d77. 38 & 516.90 \\
\hline 17 & 881.090 & 68.895 & 681.000 \\
\hline 18 & 568.001 & \(66^{2} .138\) & 568.000 \\
\hline : 9 & s38.009 & 536.353 & 538.00 \\
\hline \(\because\) & 534.069 & 539.917 & 534.906 \\
\hline 21 & 535.000 & 531.243 & 535.000 \\
\hline 2 & 551.000 & 545.852 & 551.000 \\
\hline 23 & 55s.0n9 & 555.785 & 555.000 \\
\hline 24 & 549.000 & 55.907 & 549.900 \\
\hline 25 & 544.800 & 544.877 & 544.000 \\
\hline 25 & 493.060 & 512.592 & 493.000 \\
\hline 27 & 428.000 & 442.401 & 428.000 \\
\hline 2 c & 376.000 & 388.703 & 378.000 \\
\hline 29 & 357.060 & 357.512 & 357.0019 \\
\hline \(3{ }^{3}\) & 301.000 & 322.876 & 301.096 \\
\hline 31 & 274.000 & 272.266 & 274.001 \\
\hline 32 & 271.000 & 27.182 & 270.999 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=1.65, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-1.58 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=0.94
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Huater at \\
f. \\
1 \\
\(\stackrel{\square}{2}\)
\end{tabular} & \[
\begin{aligned}
& =33 \\
& =12.00 \mathrm{~h} \\
& =24.00 \mathrm{~h} \\
& =0.45000
\end{aligned}
\] & & \\
\hline \[
\begin{array}{r}
\text { PEFIOD } \\
(24.00 \\
\text { Hours) }
\end{array}
\] & IHFLOK (observed) (a3/sec)
\(\qquad\) & OUIFLOH [calculated\} (e3/sec) (3) & \begin{tabular}{l}
1HELOH (calculated) \\
( \(\mathbf{M} \mathbf{3} / \mathrm{cec}\) ) \\
(4)
\end{tabular} \\
\hline 0 & 274.090 & 274.000 & 274.000 \\
\hline 1 & 314.000 & 288.194 & 384.000 \\
\hline 2 & 355.9090 & 336.041 & 355.000 \\
\hline 3 & 404.000 & 377.891 & 404.000 \\
\hline 4 & 495.000 & 443.870 & 495.000 \\
\hline 5 & 565.000 & 535.038 & S 56.000 \\
\hline 6 & 586.100 & 582.086 & 586.000 \\
\hline 7 & 572.009 & \(58 . .169\) & 572.000 \\
\hline 8 & 575.1000 & 570.112 & 575.060 \\
\hline \(\bigcirc\) & 572.000 & 575.354 & 572.000 \\
\hline 10 & 571.000 & 570.671 & 571.000 \\
\hline 11 & 575.000 & 608.353 & 676.000 \\
\hline 12 & 1026.000 & 819.833 & 1025.000 \\
\hline 13 & 1156.000 & 1131.984 & 1156.000 \\
\hline 14 & 1081.000 & 1136.359 & 1081.000 \\
\hline 15 & 1001.000 & 1036.541 & 1009.000 \\
\hline 15 & 816.000 & 925.037 & 816.099 \\
\hline 13 & 881.600 & 730.441 & 681.000 \\
\hline 18 & 559.000 & 024.807 & 568.001 \\
\hline 15 & 538.000 & \(541.86 i\) & 537.998 \\
\hline 20 & 534.000 & 535.750 & 534.005 \\
\hline 21 & 535.000 & 533.847 & 534.986 \\
\hline 22 & 551.000 & 541.017 & 551.038 \\
\hline 23 & 555.000 & ¢55. 319 & 554.900 \\
\hline 24 & 549.000 & 552.778 & 549.265 \\
\hline 25 & 544.000 & 546.129 & 543.302 \\
\hline 26 & 493.100 & 525.285 & 494.841 \\
\hline 27 & 428.000 & \(460.56 \%\) & 413.146 \\
\hline 28 & 376.100 & 401.1985 & 388.797 \\
\hline 29 & 357.000 & 362.263 & 323.263 \\
\hline 30 & 301.000 & 335.601 & 389.943 \\
\hline 31 & 274.009 & 281.374 & 39.514 \\
\hline 32 & 271.009 & 270.785 & 889.190 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=2.82, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-2.64 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=0.82
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Huetter of data \(=33\)} \\
\hline \multicolumn{4}{|l|}{1 . \(=24.00\) hour} \\
\hline T & \multicolumn{3}{|l|}{\(=24.00\) trours} \\
\hline : & \multicolumn{3}{|l|}{\(=0.45000\)} \\
\hline PEFIOS & INFLU & UUJFLGH & 1NFLOH \\
\hline (\%24.00 & iotserved) & (calculated) & (calculated) \\
\hline hours)
(1) & \begin{tabular}{l}
 \\
(2)
\end{tabular} & \begin{tabular}{l}
\{-3/5ec \\
(3)
\end{tabular} & \begin{tabular}{l}
(23) 5 5ec) \\
(4)
\end{tabular} \\
\hline 0 & 274.000 & 274.000 & 274.060 \\
\hline 1 &  & 275.905 & 314.000 \\
\hline 2 & 355.0009 & 314.138 & 355.000 \\
\hline 3 & 404.000 & 555. 388 & 404.000 \\
\hline 4 & 495.000 & 406.018 & 495.000 \\
\hline c & 556.000 & 494.144 & 566.000 \\
\hline 6 & 588.000 & 563.531 & 586.000 \\
\hline 7 & 572.000 & 584.253 & 572.002 \\
\hline 8 & 575.090 & 572.727 & 574.960 \\
\hline \(\xi\) & 572.009 & 574.749 & 572.759 \\
\hline 10 & 571.06 & 57.4 .483 & 355 \\
\hline 11 & 575.000 & 576.952 & 9 949.884 \\
\hline 12 & 1025.009 & 687.907 & -4177.805 \\
\hline 13 & 1156.06 & 1016.091 & 100028.292 \\
\hline 14 & 1081.6 & 1145.756 & - -1877472.540 \\
\hline 15 & 3004.090 & 1080.275 & 5 35693898.262 \\
\hline 16 & 816.609 & 795.965 & 5 -679164231.970 \\
\hline 17 & 381. mm & 818.141 & 12885136592.000 \\
\hline 18 & 568.096 & 685.159 & 1-244817581749.000 \\
\hline 1 ? & 539.60 & 572.1074 & 74651534064400.090 \\
\hline 20 & 534.009 & 539.429 & -88379147212000.000 \\
\hline 21 & 535.06 & 534.306 & 1679203797050000.690 \\
\hline 22 & 551.009 & 535.729 & -31904872143090500.609 \\
\hline 23 & 555.60 & 550.4636 & 3606192570710000100.000 \\
\hline 24 & 549.004 & 554.498 & -11517658843000000000.0019 \\
\hline 25 & 544.000 & 549.024 & 4218835518020000000000.000 \\
\hline 26 & 493.000 & 541.811 & 1-4157874842400000009090.010 \\
\hline 27 & 428.009 & 492.2297 & 78999622004000060000000.m9 \\
\hline 28 & 376.00 m & 428.582 & 2-155099281810500009000900.000 \\
\hline 29 & 357.000 & 377.599 & 28518863543000000000900000.600 \\
\hline 30 & 301.00 & 355.314 & 4-541858407310000000g60000600.090 \\
\hline 31 & 274.100 & 302.301 & 110295309739000000000006000000.006 \\
\hline 32 & 271.000 & 275.205 & 5-195610885030000000600906900060.000 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=21.00, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=-19.00 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=-1.00
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Number of data \(=33\)} \\
\hline \multicolumn{4}{|l|}{\%. \(=33.00 \mathrm{y}\) tours} \\
\hline I & \multicolumn{3}{|l|}{\(=24.00\) tours} \\
\hline \(:\) & \multicolumn{3}{|l|}{= 0.4500} \\
\hline FERIOO & 1HFLOH & OUTFL0 & 1 HFL 0 年 \\
\hline (524.00 & \atserved) & (calculated) & (calculated) \\
\hline \[
\begin{aligned}
& \text { hours) } \\
& \text { (1) }
\end{aligned}
\] & \begin{tabular}{l}
Texisect \\
(2)
\end{tabular} & (3) & (4) \\
\hline 0 & 274.000 & 274.000 & 274.000 \\
\hline 1 & 314.600 & 270.219 & 314.000 \\
\hline 2 & 35. 5001 & 301.178 & 355.000 \\
\hline 3 & 494.000 & 334.373 & 494.000 \\
\hline 4 & 405.000 & 382.219 & 495.000 \\
\hline 5 & Sct.0ng & 465.284 & 566.000 \\
\hline 6 & 585.000 & 543.565 & 586.000 \\
\hline \(?\) & 572.090 & 578.66 c & 571.598 \\
\hline 8 & 575.000 & 573.076 & 574.985 \\
\hline ¢ & 572.000 & 574.851 & 571.857 \\
\hline 10 & 571.000 & 572.684 & 569.651 \\
\hline 11 & 576.000 & 561.418 & 663.294 \\
\hline 12 & 1026.00 & 619.543 & 906.292 \\
\hline 13 & 1156.000 & 930.802 & 28.220 \\
\hline 14 & 108. 000 & 1117.154 & -9543.873 \\
\hline 15 & 1001.009 & 1055.937 & -99096. 492 \\
\hline is & 513.00 & 1037.853 & -942207.744 \\
\hline 17 & 881.000 & 874.015 & -8883595. 328 \\
\hline 19 & \(5 \pm 8.009\) & 731.153 & -83698566.882 \\
\hline 15 & 538.909 & 604.095 & -788534359.050 \\
\hline 29 & 534.000 & 551.860 & -7428928232.900 \\
\hline 21 & sic. 000 & 537.549 & -69487388269.010 \\
\hline 22 & 5 & 534.007-6 & 659354854080.000 \\
\hline 23 &  & \(547.156-6\) & 6211816787800. 000 \\
\hline 24 & 599.000 & 553.967-5 & 58521852900000.000 \\
\hline 25 & 534.009 & \(550.486-5\) & 551337456280009.000 \\
\hline 20 & 493.000 & 550.144-5 & 5194179193300000.000 \\
\hline 47 & 428.000 & \(510.8001-4\) & 489345355580990000.000 \\
\hline 28 & 376.000 & 449.805-4 & 4610157771000060000.040 \\
\hline 29 & 357.000 & 342.851-4 & 4343253900100060000.000 \\
\hline 30 & 301.000 & 369.606-4 & 40918023585000000000.000 \\
\hline 31 & 274.009 & 317.547-3 & 385490853770000000005.000 \\
\hline 32 & 271.000 & \(293.166-3\) & 363172962240000000000.000 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=-10.58, \quad-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=9.42 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=2.16
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
\begin{tabular}{|c|c|c|c|}
\hline Nuater of
\(k\)
1
\(\vdots\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =36.00 \text { hours } \\
& =24.00 \text { hours } \\
& =0.45000
\end{aligned}
\]} & \\
\hline \[
\begin{gathered}
\text { fERIOD } \\
\text { (: } 24.00 \\
\text { hours) } \\
\hdashline
\end{gathered}
\] & 1 HF [0 0 iatservedi \{in], cer! (2) & \begin{tabular}{l}
0 UTFLOH (calculated) \\
 (3)
\end{tabular} & \begin{tabular}{l}
! RFLG (calculated) \\
 (4)
\end{tabular} \\
\hline 0 & 274.000 & 774.600 & 274.900 \\
\hline 1 & 314.90 & 259.342 & 314.006 \\
\hline i & 355 & \(271.47 \%\) & 355.904 \\
\hline 3 & 404.000 & 295.02 & \$04.000 \\
\hline 4 & 495.001 & 315.805 & 495.000 \\
\hline 5 & 566.090 & 378.83] & 566.009 \\
\hline 6 & 58.090 & 484.508 & 586.000 \\
\hline 7 & 572.000 & 530.097 & 572.000 \\
\hline ¢ & 575.000 & 549.774 & 575.900 \\
\hline 9 & 572.090 & 563.468 & 572.009 \\
\hline 10 & 571.604 & 568.044 & 571.060 \\
\hline 11 & 875.000 & 531.034 & 676.009 \\
\hline 12 & 1025.000 & 474.886 & 1026.000 \\
\hline 13 & 1156.000 & 701.052 & 1156.000 \\
\hline 14 & 1081.000 & 754.597 & 1081.900 \\
\hline 15 & 3093.000 & 1946.723 & 1091.090 \\
\hline 15 & 816.600 & 1091.798 & 815.000 \\
\hline 17 & 681.009 & 1004.228 & 881.001 \\
\hline 18 & 568.400 & 95s.088 & 568.002 \\
\hline 18 & 538.000 & 788.492 & 538.006 \\
\hline 20 & 534.000 & 649.335 & 534.013 \\
\hline 21 & 535.000 & 587.131 & 535.031 \\
\hline 2 & 551.000 & 555.364 & 551.074 \\
\hline 23 & 55 & 555.730 & 555.174 \\
\hline 24 & 549.000 & S¢5.5J] & 549.410 \\
\hline 25 & 544.600 & 554.129 & 544.967 \\
\hline 26 & 493.600 & 567.786 & 495.278 \\
\hline 27 & 423.000 & 554.445 & 433.367 \\
\hline 28 & 376.000 & 510.671 & 388.645 \\
\hline 29 & 357.000 & 450.716 & 386.790 \\
\hline 30 & 301.003 & 424.671 & 371.184 \\
\hline 31 & 274.000 & 373.114 & 439.348 \\
\hline 32 & 271.004 & 324.764 & 660.548 \\
\hline
\end{tabular}

Notes: (i) Values of coefficients:
\[
1 / \mathrm{C}_{0}=-2.73,-\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)=2.36 \quad \text { and } \quad-\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)=1.37
\]
(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

\subsection*{4.3 INVESTIGATION OF THE CAUSE OF THE INSTABILITY}

The existence of error in numerical processes is inevitable. The important thing is to attempt to lessen the error as much as possible.

There are three types of error in numerical processes performed by digital computer. These are:
a. Round-off error. This is machine made and is caused by the limitations of the particular computer.
b. Truncation error. With the truncation of series after only a few terms, a generally known error is committed. This error is not machine-caused but it is due to the method used in the numerical process.
c. Propagation or inherited error. This is caused by the use of values previously calculated by the computer, which already are erroneous owing to either (a) or (b) or both errors above, to calculate values at the next time step. Since they are already off the correct solution, any new computed points cannot be expected to have the correct solution [Grove (1966)].

The method used to solve eq. (4.1.1) is repetitive. Subscript i refers to the values which are obtained from the previous routing period. The downstream discharges \(Q\) are known from the given data and these are obviously fixed, therefore they do not have any inherited errors. The upstream discharge variables \(\mathrm{I}_{\mathrm{i}}\) and \(\mathrm{I}_{\mathrm{i}+1}\) however are obtained from calculation and are therefore susceptible to error. If the previously calculated value of upstream discharge \(\mathrm{I}_{\mathrm{i}}\) which already contains an error is used to calculate the next one ( \(\mathrm{I}_{\mathrm{i}+1}\) ), the error is inherited. Since the routing is carried out by successively solving equation (4.1.1) for \(I_{i+1}\) period by period throughout the flood, errors tend to accumulate or magnify. It was suspected that the coefficient \(-C_{1} / C_{0}\) which multiplies \(I_{i}\) is the cause of error propagation. Table IV.3.1 gives values of Muskingum and Nash coefficients (for the example calculations given in Table IV.2.1).

Table IV.3.1 Values of Muskingum and Nash Coefficients with \(K=66\) Hours, \(\Delta t=24\) Hours and Various Parameter \(x\) Values
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{MUSKINGUM} & \multicolumn{4}{|c|}{NASH} \\
\hline x & \(\mathrm{C}_{0}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(-C_{1} / C_{0}\) & \(\mathrm{C}_{0}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(-\mathrm{C}_{1} / \mathrm{C}_{0}\) \\
\hline 0.0 & 0.154 & 0.154 & 0.692 & -1 & 0.162 & 0.143 & 0.695 & -0.886 \\
\hline 0.1 & 0.076 & 0.261 & 0.664 & -3.444 & 0.086 & 0.246 & 0.668 & -2.867 \\
\hline 0.2 & -0.019 & 0.389 & 0.630 & 21.000 & -0.004 & 0.370 & 0.635 & 82.626 \\
\hline 0.3 & -0.134 & 0.546 & 0.588 & 4.077 & -0.114 & 0.519 & 0.595 & 4.547 \\
\hline 0.4 & -0.279 & 0.744 & 0.535 & 2.667 & -0.250 & 0.704 & 0.545 & 2.819 \\
\hline 0.45 & -0.366 & 0.863 & 0.503 & 2.356 & -0.330 & 0.814 & 0.516 & 2.465 \\
\hline 0.5 & -0.467 & 1 & 0.467 & 2.143 & -0.421 & 0.938 & 0.483 & 2.227 \\
\hline
\end{tabular}

It can be noticed from Tables IV.2.1 that the calculated hydrograph is worst for \(\mathrm{x}=0.2\) and best for \(\mathrm{x}=0.0\). If the parameter x values are set in order according to the accuracy of the calculated upstream hydrograph, starting from the worst to the best, the order will be: \(0.2,0.3,0.1,0.4,0.45,0.5\) and 0.0 . There is a correlation between this order and the values of \(-\mathrm{C}_{1} / \mathrm{C}_{0}\) given in Table IV.3.1. If the parameter x values in that table are also set in order according to the value of \(1-\mathrm{C}_{1} / \mathrm{C}_{0} \mathrm{l}\), starting from the largest to the least, the order will be precisely the same as that above. The largest value of \(1-C_{1} / C_{0} \mid\) given by \(x=0.2\), gives the worst calculated hydrograph. Conversely, the least value of \(1-C_{1} / C_{0} l\) given by \(x=0.0\), gives the best calculated hydrograph.

The error propagation in the computation can be described as follows:

\section*{If parameter \(x=0.0\) then}
\[
\begin{aligned}
& I_{i+1}=\frac{Q_{i+1}}{C_{0}} \cdot-\frac{C_{1}}{C_{0}} \cdot I_{i}-\frac{C_{2}}{C_{0}} \cdot Q_{i} \\
& I_{i+1}=6.5 \cdot Q_{i+1}-1 . I_{i}-4.5 \cdot Q_{i}
\end{aligned}
\]
at instant \(t\), if error in \(I\) is \(\Delta I\), at \(\mathrm{t}+\Delta \mathrm{t}\), the error becomes \(\Delta \mathrm{I} .(-1)=-\Delta \mathrm{I}\) at \(\mathrm{t}+2 . \Delta \mathrm{t}\), the error becomes \(\Delta \mathrm{I} .(-1)^{2}=\Delta \mathrm{I}\)
at \(\mathrm{t}+3 . \Delta \mathrm{t}\), the error becomes \(\Delta \mathrm{I} .(-1)^{3}=-\Delta \mathrm{I}\)
at \(\mathrm{t}+\mathrm{n} . \Delta \mathrm{t}\), the error becomes \(\Delta \mathrm{I} .(-1)^{\mathrm{n}}\)

In this case, the absolute value of error remains unchanged. It does not magnify but the sign of the error changes repeatedly. This circumstance may cause oscillations but, since the error is very small and does not magnify, these oscillations do not affect the computation. However in some cases, i.e. if an observed downstream hydrograph which is used in the computation to obtain calculated upstream hydrograph has even slight oscillations, the circumstance above may allow these oscillations to amplify.

If parameter \(x=0.2\) then
\[
\begin{gathered}
I_{i+1}=\frac{Q_{i+1}}{C_{0}} \cdot-\frac{C_{1}}{C_{0}} \cdot I_{i}-\frac{C_{2}}{C_{0}} \cdot Q_{i} \\
I_{i+1}=-54 \cdot Q_{i+1}+21 \cdot I_{i}+34 \cdot Q_{i}
\end{gathered}
\]
at instant t , if error in I is \(\Delta \mathrm{I}\), at \(t+\Delta t\), the error becomes \(\Delta \mathrm{I}\).(21)
at \(t+2 . \Delta t\), the error becomes \(\Delta \mathrm{I} .(21)^{2}\)
at \(t+3 . \Delta t\), the error becomes \(\Delta I .(21)^{3}\)
at \(\mathrm{t}+\mathrm{n} . \Delta \mathrm{t}\), the error becomes \(\Delta \mathrm{I} .(21)^{\mathrm{n}}\),
in this case, any error in I will magnify dramatically.
It is clear that the coefficients relating to \(I_{i}\) affect the instability of the process. Parameter \(x=0.2\) gives the worst result since any error entering to \(I_{i}\) can magnify very rapidly due to the very large value of \(1-C_{1} / C_{0} l\). Parameter \(x=0.0\) gives the best result since the value of \(1-C_{1} / C_{0} l\) is equal to 1 therefore any error entering to \(I_{i}\) does not magnify. This does not imply that parameter \(x=0.0\) always yields satisfactory results, as it may result in oscillations in the computation since the value of \(-\mathrm{C}_{1} / \mathrm{C}_{0}\) which multiplies \(\mathrm{I}_{\mathrm{i}}\) is negative. Figure 4.3 . 1 shows an example. The downstream hydrograph ordinates used in the computation are observed data taken from ARR87 table 7.1 page 134 , rather than values calculated from the observed upstream hydrograph.


Figure 4.3.1 Oscillations in Upstream Hydrograph
Using Parameter \(\mathbf{x}=\mathbf{0 . 0}\)

The reason why the computations using parameter \(\mathrm{x}=0.0\) in Tables IV.2.2 do not result in oscillations may be explained by noting that the downstream hydrograph ordinates used in the computation are those which were calculated using the equation for conventional downstream routing. In that equation, the multiplying factor of \(\mathrm{Q}_{\mathrm{i}}\), namely \(\mathrm{C}_{2}\), is positive and less than 1.0. Therefore no oscillations occurred and any error entering to \(Q_{i}\) diminished towards zero. Since there was no oscillation in the calculated downstream hydrograph and this result was used to calculate back the upstream hydrograph ordinates using eq.(4.1.1), the coefficient \(-\mathrm{C}_{1} / \mathrm{C}_{0}=-1\) did not affect the computation and therefore the calculated upstream hydrograph ordinates agree exactly with the observed ones. The result in Figure 4.3.1 was obtained using observed downstream hydrograph ordinates. They have slight oscillations (which cannot be detected, since the scale in that figure is too small), and these are amplified by the coefficient \(-\mathrm{C}_{1} / \mathrm{C}_{0}=-1\)

From Table IV.3.1, it can be seen that the coefficient \(-\mathrm{C}_{1} / \mathrm{C}_{0}\) for parameter \(x=0.1\) is -3.444 . This value is negative and the absolute value \(1-C_{1} / C_{0}\) is larger than 1.0. Any error entering to \(I_{i}\) will therefore magnify, with a sign change at each time step. This is the the reason why oscillations and divergence occurred in the computation (see Tables IV.2.1 for parameter \(\mathrm{x}=0.1\) ).

The results in Tables IV.2.3 can be explained in conjunction with the coefficient \(-\mathrm{C}_{1} / \mathrm{C}_{0}\). Table IV. 3.2 shows the values of that coefficient corresponding to the time steps used.

Table IV.3.2 Values of \(-C_{1} / C_{0}\) with Parameter \(x=0.45, K=66\) Hours and
Various \(\Delta t\)
\begin{tabular}{|c|ccccccccc|}
\hline\(\Delta \mathrm{t}\) (hours) & 3 & 6 & 12 & 24 & 36 & 48 & 60 & 72 & 96 \\
\hline\(-\mathrm{C}_{1} / \mathrm{C}_{0}\) & 1.106 & 1.225 & 1.506 & 2.356 & 4.077 & 9.421 & -199 & -10.429 & -4.246 \\
\hline
\end{tabular}

According to the value of \(-\mathrm{C}_{1} / \mathrm{C}_{0}\) for \(\Delta t=60\) hours, oscillations and very rapid divergence will occur. It is the worst case since the value \(1-\mathrm{C}_{1} / \mathrm{C}_{0}\) is the largest one. Result in Tables IV.2.3 for \(\Delta t=60\) shows that the computation oscillates and diverges very rapidly. The only calculated upstream discharges which agree precisely with the observed ones are given by \(\Delta t=96\) hours. Seemingly, this is a contradiction since the value \(1-\mathrm{C}_{1} / \mathrm{C}_{0} \mid\) is larger than 1.0 and it therefore should have given a bad result. The reason why it gives a satisfactory result is that the number of data points becomes very few (from 33 to 9 ) since interpolation was used, so that any error entering to \(\mathrm{I}_{\mathrm{i}}\) does not have the opportunity to magnify. The time step \(\Delta t=72\) hours also gives quite satisfactory result even though the value \(1-\mathrm{C}_{1} / \mathrm{C}_{0} \mathrm{l}\) is larger than 1.0. However, there are some small differences in the last few calculated upstream discharges if compared to the observed ones. If the number of data were more than that shown in the table, the differences would propagate and magnify. In practice, a time step \(\Delta t\) which is larger than \(K\) would
not be used since it is too coarse and good definition of the hydrograph is not possible. The shape of the calculated hydrograph, and especially the peak, are not adequately defined.

Table IV.3.3 shows the values of the coefficient \(-\mathrm{C}_{1} / \mathrm{C}_{0}\) for various K used in the computation of which results are presented in Table IV.2.4.

Table IV.3.3 Values of \(-C_{1} / C_{0}\) with Parameter \(x=0.45, \Delta t=24\) Hours and Various Parameter K values
\begin{tabular}{|c|c|c|c|c|c|}
\hline K (hours) & 6 & 12 & 24 & 33 & 66 \\
\hline \(-\mathrm{C}_{1} / \mathrm{C}_{0}\) & -1.581 & -2.636 & -19 & 9.421 & 2.356 \\
\hline
\end{tabular}

According to the value of \(-\mathrm{C}_{1} / \mathrm{C}_{0}\) for \(\mathrm{K}=24\) hours, the result should be the worst. Oscillations and rapid divergence will occur since the value of \(-\mathrm{C}_{1} / \mathrm{C}_{0}\) is negative and its absolute value is the largest. Result in Table IV.2.4 for \(\mathrm{K}=24\) hours precisely show that condition. The only K value which gives adequately satisfactory result is \(\mathrm{K}=6\) hours, but as a matter of fact, the calculated upstream discharges do not agree exactly with the observed ones since there are some differences in the last few discharges. In other words, the error started magnifying at almost the end of the computation.

\subsection*{4.4 PROOF OF THE INSTABILITY}

Stability (convergence) of the numerical process can only be achieved by selecting a time step \(\Delta t\) relative to the \(K\) value so as to make \(1-C_{1} / C_{0} \mid \leq 1\). However, as shown in Tables IV.2.3 (for \(\mathrm{x}=0.45\) ), this cannot be done, since no time step \(\Delta \mathrm{t}\) can make the process converge for any parameter x values other than \(\mathrm{x}=0.0\). This result can be proved mathematically, either using Muskingum or Nash coefficients, as described below.

\subsection*{4.4.1 Muskingum Coefficients}

From equation (2.1.4) :
\[
\begin{equation*}
\left|\frac{-C_{1}}{C_{0}}\right|=\left|\frac{K \cdot x+0.5 \cdot \Delta t}{K \cdot x-0.5 \cdot \Delta t}\right| \leq 1 \tag{4.4.1}
\end{equation*}
\]
where: K and T are positive,
\[
\text { and } 0 \leq x \leq 0.5
\]

Condition (4.4.1) can be written as:
\[
\begin{equation*}
-1 \leq \frac{K \cdot x+0.5 \cdot \Delta t}{K \cdot x-0.5 \cdot \Delta t} \leq 1 \tag{4.4.2}
\end{equation*}
\]

To solve this condition, it is necessary to assume the value of the denominator whether \(>0\) or \(<0\), since it affects the mathematical operators.
a. Suppose K. \(x-0.5 . \Delta t>0\) or \(x>0.5 . \Delta t / K\) then
condition (4.4.2) can be written as:
\(-K . x+0.5 . \Delta t \leq K . x+0.5 . \Delta t \leq K . x-0.5 . \Delta t\)
The first condition: \(-\mathrm{K} . \mathrm{x}+0.5 . \Delta \mathrm{t} \leq \mathrm{K} . \mathrm{x}+0.5 . \Delta \mathrm{t}\)
\[
\begin{aligned}
-K \cdot x & \leq K \cdot x \\
x & \geq 0
\end{aligned}
\]

The second condition: K.x \(+0.5 . \Delta t \leq K . x-0.5 . \Delta t\)
since K and \(\Delta \mathrm{t}\) are positive, there is no solution for it.
From these conditions, it can be concluded that there is no solution for this case.
b. Suppose K.x \(-0.5 . \Delta t<0\) or \(x<0.5 . \Delta t / K\) then
condition (4.4.2) can be written as:
\(-K . x+0.5 . \Delta t \geq K . x+0.5 . \Delta t \geq K . x-0.5 . \Delta t\)
The first condition: \(-\mathrm{K} . \mathrm{x}+0.5 . \Delta \mathrm{t} \geq \mathrm{K} . \mathrm{x}+0.5 . \Delta \mathrm{t}\)
\[
\begin{aligned}
-K . x & \geq K \cdot x \\
x & \leq 0
\end{aligned}
\]

The second condition: K.x \(+0.5 . \Delta t \geq\) K. \(x-0.5 . \Delta t\)
\[
K . x \geq K . x-\Delta t
\]
since \(K\) and \(\Delta t\) are positive, any \(x\) will satisfy this condition.

From those conditions above, \(\mathrm{x}<0.5 . \Delta \mathrm{t} / \mathrm{K}\) and \(\mathrm{x} \leq 0\), it can be concluded that only \(\mathrm{x} \leq 0\) will satisfy condition (4.4.1). This is the reason why only \(\mathrm{x}=0.0\) gives a satisfactory result in the samples of the computations (Table IV.2.1).

\subsection*{4.4.2 Nash Coefficients}

From equation (3.4.9) :
\[
\begin{equation*}
\left|\frac{-\mathrm{C}_{1}}{\mathrm{C}_{0}}\right|=\left|\frac{\mathrm{c} \cdot \Delta \mathrm{t}-\mathrm{K}(1-\mathrm{c})}{\Delta \mathrm{t}-\mathrm{K}(1-\mathrm{c})}\right| \leq 1 \tag{4.4.3}
\end{equation*}
\]
where : K and \(\Delta \mathrm{t}\) are positive,
\[
\begin{aligned}
& \Delta \mathrm{t} \leq \mathrm{K} \\
& 0 \leq \mathrm{x} \leq 0.5 \text {, and } \\
& \mathrm{c}=\mathrm{e}^{\frac{-\Delta t}{\mathrm{~K}(1-\mathrm{x})}} \text { is always positive }
\end{aligned}
\]

Condition (4.4.3) can be written as:
\[
\begin{equation*}
-1 \leq \frac{c \cdot \Delta t-K .(1-c)}{\Delta t-K(1-c)} \leq 1 \tag{4.4.4}
\end{equation*}
\]

Again, to solve this equation, it is necessary to assume the value of the denominator whether \(>0\) or \(<0\) since it affects the mathematical operators.
a. Suppose \(\Delta t-K(1-c)<0\) then condition (4.4.4) can be written as:
\(-\Delta \mathrm{t}+\mathrm{K}-\mathrm{K} . \mathrm{c} \geq \mathrm{c} . \Delta \mathrm{t}-\mathrm{K}+\mathrm{K} . \mathrm{c} \geq \Delta \mathrm{t}-\mathrm{K}+\mathrm{K} . \mathrm{c}\)
The second condition: \(c . \Delta t-K+K . c \geq \Delta t-K+K . c\)
\[
\begin{aligned}
\mathrm{c} \cdot \Delta \mathrm{t}-\Delta \mathrm{t} & \geq 0 \\
\mathrm{c} & \geq 1 \\
\mathrm{e}^{\frac{-\Delta \mathrm{t}}{\mathrm{~K}(1-\mathrm{x})}} & \geq 1 \\
\frac{-\Delta \mathrm{t}}{\mathrm{~K}(1-\mathrm{x})} & \geq 0
\end{aligned}
\]
since x lies in \([0,0.5]\), no x will satisfy that condition, therefore it is not necessary to consider the first condition.
b. Suppose \(\Delta t-K(1-c)>0\) then \(c>1-(\Delta t / K)\)

If \(\Delta t / K=1\) then \(\mathrm{c}>0\)
\[
\begin{aligned}
& \mathrm{e}^{\frac{-\Delta \mathrm{t}}{\mathrm{~K}(1-\mathrm{x})}}>0 \\
& \mathrm{e}^{\frac{-1}{1-\mathrm{x}}}>0
\end{aligned}
\]
any x in \([0,0.5]\) will satisfy that condition, therefore that condition can be ignored.

If \(\Delta t / K<1\) then
\[
\begin{aligned}
& \mathrm{e}^{\frac{-\Delta \mathrm{t}}{\mathrm{~K}(1-\mathrm{x})}}>1-\frac{\Delta \mathrm{t}}{\mathrm{~K}} \\
& \frac{-\Delta \mathrm{t}}{\mathrm{~K}(1-\mathrm{x})}>\ln \left(1-\frac{\Delta \mathrm{t}}{\mathrm{~K}}\right)
\end{aligned}
\]
since : \(0 \leq \mathrm{x} \leq 0.5,(1-\mathrm{x})\) is always positive and
\(\Delta t / K<1, \ln (1-\Delta t / K)\) is negative then
\[
\begin{aligned}
& 1-x>\frac{-\Delta t}{\mathrm{~K} \cdot \ln \left(1-\frac{\Delta t}{\mathrm{~K}}\right)} \\
& \mathrm{x}<1+\frac{\Delta \mathrm{t}}{\mathrm{~K} \cdot \ln \left(1-\frac{\Delta \mathrm{t}}{\mathrm{~K}}\right)}
\end{aligned}
\]
\[
\text { let } a=\Delta t / K \text { : }
\]
\[
\begin{equation*}
x<1+\frac{a}{\ln (1-a)} \tag{4.4.5}
\end{equation*}
\]

Since \(\Delta t-K(1-c)>0\), condition (4.4.4) can be written as:
\(-\Delta \mathrm{t}+\mathrm{K}-\mathrm{K} . \mathrm{c} \leq \mathrm{c} . \Delta \mathrm{t}-\mathrm{K}+\mathrm{K} . \mathrm{c} \leq \Delta \mathrm{t}-\mathrm{K}+\mathrm{K} . \mathrm{c}\)
The second condition: \(\mathrm{c} . \Delta \mathrm{t}-\mathrm{K}+\mathrm{K} . \mathrm{c} \leq \Delta \mathrm{t}-\mathrm{K}+\mathrm{K} . \mathrm{c}\)
\[
\begin{aligned}
c . \Delta t-\Delta t & \leq 0 \\
c & \leq 1 \\
\mathrm{e}^{\frac{-\Delta t}{\mathrm{~K}(1-x)}} & \leq 1 \\
\frac{-\Delta \mathrm{t}}{\mathrm{~K}(1-\mathrm{x})} & \leq 0
\end{aligned}
\]
any \(x<1\) will satisfy that condition.
The first condition: \(-\Delta t+K-K . c \leq c . \Delta t-K+K . c\)
\[
\begin{aligned}
& -\Delta \mathrm{t}+2 \mathrm{~K} \leq \mathrm{c} \cdot \Delta \mathrm{t}+2 \mathrm{~K} . \mathrm{c} \\
& \frac{2 \mathrm{~K}-\Delta \mathrm{t}}{\Delta \mathrm{t}+2 \mathrm{~K}} \leq \mathrm{c} \\
& \frac{2 \mathrm{~K}-\Delta \mathrm{t}}{\Delta \mathrm{t}+2 \mathrm{~K}} \leq \mathrm{e}^{\frac{-\Delta \mathrm{t}}{\mathrm{~K}(1-\mathrm{x})}} \\
& \ln \left(\frac{2 \mathrm{~K}-\Delta \mathrm{t}}{2 \mathrm{~K}+\Delta \mathrm{t}}\right) \leq \frac{-\Delta \mathrm{t}}{\mathrm{~K}(1-\mathrm{x})}
\end{aligned}
\]
since: \({ }^{*} \mathrm{~K}\) and \(\Delta \mathrm{t}\) are positive and \(\Delta \mathrm{t} \leq \mathrm{K}, \ln ((2 \mathrm{~K}-\Delta \mathrm{t}) /(2 \mathrm{~K}+\Delta \mathrm{t}))\) is negative,
\[
\begin{align*}
& * \mathrm{x} \text { lies in }[0,0.5],(1-\mathrm{x}) \text { is always positive then } \\
& 1-\mathrm{x} \geq \frac{-\Delta \mathrm{t}}{\mathrm{~K} \cdot \ln \left(\frac{2 \mathrm{~K}-\Delta \mathrm{t}}{2 \mathrm{~K}+\Delta \mathrm{t}}\right)} \\
& \mathrm{x} \leq 1+\frac{\Delta \mathrm{t}}{\mathrm{~K} \cdot \ln \left(\frac{2 \mathrm{~K}-\Delta \mathrm{t}}{2 \mathrm{~K}+\Delta \mathrm{t}}\right)} \tag{4.4.6}
\end{align*}
\]

From the first and the second conditions above, condition (4.4.6) should be chosen. Let \(\mathrm{a}=\Delta \mathrm{t} / \mathrm{K}\), condition (4.4.6) becomes:
\[
\begin{equation*}
\mathrm{x} \leq 1+\frac{\mathrm{a}}{\ln \left(\frac{2-\mathrm{a}}{2+\mathrm{a}}\right)} \tag{4.4.7}
\end{equation*}
\]

Both conditions (4.4.5) and (4.4.7) should be taken into account. In order to know which condition will entirely satisfy condition (4.4.3), they are illustrated in graphic (see Fig. 4.4.1).


Figure 4.4.1 Graphic \(f(a)\) and \(g(a)\) vs. \(a\), where :
\[
x=f(a)=1+\frac{a}{\ln (1-a)} \text { and } x=g(a)=1+\frac{a}{\ln \left(\frac{2-a}{2+a}\right)}
\]

It can be noticed from Fig. 4.4.1, condition (4.4.7) satisfies condition (4.4.3). It also can be noticed that the value of parameter \(x\) which can satisfy condition (4.4.3) is \(x \leq 0.0898\) ( 0.0898 is obtained by substituting \(a=\Delta t / K=1\) into condition (4.4.7)). This is the reason why only \(\mathrm{x}=0.0\) gives a satisfactory result, if upstream routing is computed by using eq. (4.1.1).

\subsection*{4.5 SUMMARY}

Upstream routing using a re-arranged form of the conventional downstream routing equation is numerically unstable. The only parameter x value which reproduces precisely the observed upstream hydrograph is \(x=0.0\). This result for \(x=0.0\) occurs only when the downstream hydrograph has been calculated from a given upstream hydrograph using normal Muskingum routing procedures, i.e. the downstream hydrograph contains 'perfect' data. In practical problems, where a recorded downstream hydrograph, which is not error free, must be used, satisfactory upstream hydrographs cannot be obtained, since very rapid and great oscillations will occur, as shown in Figure 4.3.1.

It has been found that the coefficient multiplying \(I_{i}\) is the cause of the instability. If its value is negative and its absolute value is much larger than 1.0 , oscillations and very rapid divergence will occur. If its value is positive and greater than 1.0 then monotonic divergence, either increasing or decreasing, will occur.

Satisfactory results can only be obtained by making the absolute value of the coefficient relating to \(\mathrm{I}_{\mathrm{i}}\) equal to or less than 1.0 with the appropriately chosen time step \(\Delta \mathrm{t}\). However, as has been proved, no time step \(\Delta \mathrm{t}\) and parameter x value can satisfy that condition, except \(\mathrm{x}=0.0\). In view of this, other techniques for upstream routing must be developed and these are covered in the following chapter.

\section*{Chapter Five}

\section*{Alternative Approaches to Upstream Routing}

\subsection*{5.0 INTRODUCTION}

It is clear that the upstream routing derived from standard Muskingum routing equation gives unsatisfactory results as described in chapter 4. In view of this point, this chapter is intended to investigate some alternative approaches to upstream routing.

An iterative solution which is based on finite differences is introduced as one of the methods. Both first order and second order finite difference formulations are applied in conjunction with this method. The method of cubic spline fitting combined with the Runge-Kutta method and an alternative approach, in which the upstream hydrograph is calculated moving backward in time are also investigated.

\subsection*{5.1 ITERATIVE METHOD}

As described in chapter 4, Equation (4.1.1) cannot be used due to its instability. An alternative solution has been developed which is still based on the equation of conservation of mass [eq.(2.1.1)] but using a different approach. Equation (2.1.1) is re-arranged into
\[
\begin{equation*}
\mathrm{I}_{\mathrm{i}}=\mathrm{Q}_{\mathrm{i}}+\mathrm{dS} / \mathrm{dtl} \mathrm{l}_{\mathrm{i}} \tag{5.1.1}
\end{equation*}
\]

This follows a procedure used by Pilgrim and Watson (1967) for a similar problem in estimating the input from a recorded output, for a radiation ratemeter involving an electrical storage system.

The derivative in equation (5.1.1) is expressed in central finite difference form as discussed for example in Salvadori and Baron (1964). The simplest two point scheme is used [eq.(5.1.2)].
\[
\begin{equation*}
\mathrm{dS} / \mathrm{dt} \mathrm{l}_{\mathrm{i}}=\left(\mathrm{S}_{\mathrm{i}+1}-\mathrm{S}_{\mathrm{i}-1}\right) /(2 . \Delta \mathrm{t}) \tag{5.1.2}
\end{equation*}
\]

The storage \(S\) at any specified discharge is expressed by the linear relationship between upstream discharge \(I\), downstream discharge \(Q\) and storage \(S\), i.e.:
\[
\begin{equation*}
S=K[x \cdot I+(1-x) \cdot Q] \tag{5.1.3}
\end{equation*}
\]
as mentioned in chapter 2.
Since eq.(5.1.1) is a differential equation, it is necessary to assume the initial value of \(I\) (at time \(\mathrm{i}=0\) ). Therefore, equation (5.1.2) is not used to obtain \(\mathrm{dSdtl}_{0}\). This assumption of initial value of \(I\) is actually dependent on the judgement of the hydrologist. Normally, the hydrologist takes equation (5.1.4) into account, although the initial discharges do not have to be equal.
\[
\begin{equation*}
\mathrm{I}_{0}=\mathrm{Q}_{0} \tag{5.1.4}
\end{equation*}
\]

Difficulty arises in calculating the derivative at the end of the hydrograph (at time \(\mathrm{i}=\mathrm{N}\), the time at which the last downstream discharge was observed) using eq.(5.1.2) since the observed downstream discharge at time \(\mathrm{i}=\mathrm{N}+1\) is not known. Assumptions or methods for obtaining that derivative are discussed in the
latter part of this chapter. In this section, it is first assumed that \(\mathrm{S}_{\mathrm{N}+1}=\mathrm{S}_{\mathrm{N}}\), therefore the derivative becomes
\[
\begin{equation*}
\mathrm{dS} / \mathrm{dtt}_{\mathrm{N}}=\left(\mathrm{S}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}-1}\right) /(2 . \Delta \mathrm{t}) \tag{5.1.5}
\end{equation*}
\]

If equations (5.1.1), (5.1.2) and (5.1.3) are combined, they will yield an implicit equation, since the storage \(S\) is expressed in terms of the upstream discharge \(I\), the value of which itself is being sought.

An iterative solution using instantaneous discharges is required. The method of solution used is to adopt the downstream hydrograph ordinates Q as the first estimate of the upstream hydrograph ordinates \(I\), give an initial value at time \(i=0\) to \(\mathrm{I}_{0}\) which remains unchanged throughout the iterative process, use equation (5.1.3) to calculate the values of storage \(S\), use equations (5.1.2) and equation (5.1.5) to determine the derivative \(\mathrm{dS} / \mathrm{dt}\), then use equation (5.1.1) to make an improved estimate of I. These steps are repeated until successive calculated upstream hydrographs converge. A detailed explanation of the procedures with help of a flowchart is given in Section 5.1.4.

In the first application of this method, the results of computations were unsatisfactory. Oscillations occurred in the estimated upstream hydrograph. These oscillations became greater with each iteration. The reason why this occurred was that the first derivative dS/dt estimated using eq.(5.1.2) possessed slight oscillations. Much more satisfactory results were obtained when those oscillations were eradicated by the smoothing algorithm [eq.(5.1.6)].
\[
\begin{equation*}
\frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{t}_{\mathrm{i}}^{*}=\left(\left.\frac{\mathrm{dS}}{\mathrm{dt}}\right|_{\mathrm{i}-1} ^{*}+2 \cdot \frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{t}_{\mathrm{i}}+\frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{t}_{\mathrm{i}+1}\right) / 4 \tag{5.1.6}
\end{equation*}
\]

Superscript * refers to the value which has been or is being smoothed.
The smoothing algorithm is carried out from the derivative at time \(\mathrm{i}=1\) up to time \(\mathrm{i}=\mathrm{N}-1\). Since the value of I at time \(\mathrm{i}=0\left(\mathrm{I}_{0}\right)\) is assumed, \(\mathrm{dS} / \mathrm{dtl} \mathrm{I}_{0}\) is not calculated using eq.(5.1.2) but using
\[
\begin{equation*}
\frac{\mathrm{dS}}{\mathrm{dt}}{ }_{0}^{*}=\frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{t}_{0}=\mathrm{I}_{0}-\mathrm{Q}_{0} \tag{5.1.7}
\end{equation*}
\]

The expression of equation (2.1.1) in the finite difference form of equations (5.1.1), (5.1.2) and (5.1.5) provides a satisfactory procedure for upstream routing in river reaches, and gives much better results than the reverse application of normal routing procedures as expressed in equation (2.1.3). Figure (5.1.1) shows results of the iterative method including this smoothing algorithm.


Figure 5.1.1 River Reach Routing Using Instantaneous Discharges

\subsection*{5.1.1 Criterion to Terminate the Iteration}

As mentioned above, the downstream hydrograph ordinates Q are adopted as the first estimate of the upstream hydrograph ordinates I. These results are used to estimate the ordinates I at the next iteration. The iteration is repeated until
successive calculated upstream hydrographs converge. The question of when to terminate the iteration arises, and this depends on the convergence criterion adopted.

The vector of estimates after k th iteration is denoted as \(\mathrm{I}_{1}{ }^{\mathrm{k}}, \mathrm{I}_{2}{ }^{\mathrm{k}}, \ldots, \mathrm{I}_{\mathrm{N}-1}{ }^{\mathrm{k}}\), \(\mathrm{I}_{\mathrm{N}}{ }^{\mathrm{k}}\) while the (k-1) th iteration results in the vector of estimates denoted as \(\mathrm{I}_{1}{ }^{\mathrm{k}-1}\), \(\mathrm{I}_{2}{ }^{\mathrm{k}-1}, \ldots, \mathrm{I}_{\mathrm{N}-1}{ }^{\mathrm{k}-1}, \mathrm{I}_{\mathrm{N}}{ }^{\mathrm{k}-1}\). Convergence is most easily measured in terms of the relative change in each value of I from one iteration to the next. If the quantities:
\[
\begin{equation*}
d_{i}=\left|\frac{I_{i}^{k}-I_{i}^{k-1}}{I_{i}^{k}}\right| \quad i=1,2, \ldots, N \tag{5.1.8}
\end{equation*}
\]
are computed for each value of \(i\), then convergence can be said to have been reached when each \(d_{i}\) is equal to or less than some specified small quantity [de Vahl Davis (1986)]. In this project, the criterion of convergence is taken as
\[
\begin{equation*}
\mathrm{d}_{\mathrm{i}} \leq 0.001 \tag{5.1.9}
\end{equation*}
\]

The small quantity in (5.1.9) is selected depending on the precision of the computation required by the hydrologist. However, the value of \(d_{i}\) affects the total number of iterations, the smaller that quantity is, the more iterations are required.

\subsection*{5.1.2 Condition to Converge}

Equations (5.1.1), (5.1.2) and (5.1.3) can be combined and yield:
\[
\begin{equation*}
I_{i}=Q_{i}+\frac{K}{2 . \Delta t}\left[x \cdot I_{i+1}^{*}+(1-x) \cdot Q_{i+1}-x \cdot I_{i-1}^{*}-(1-x) \cdot Q_{i-1}\right] \tag{5.1.10}
\end{equation*}
\]

Superscript * refers to the values which are assumed for the first trial or obtained from the previous iteration.

It is clear that equation (5.1.10) is implicit since the variable being solved also appears on the right hand side of the equation. Therefore, it is necessary to use an iterative solution in which values of the variable I calculated from a previous trial are used in the computation.

It has been mentioned in chapter 4 that the multiplying factor related to the unknown variable I affects convergence. Convergence can be reached as long as the absolute value of the multiplying factor is less than 1.0. This condition is expressed from equation (5.1.10) as
\[
\begin{align*}
& (\mathrm{K} \cdot \mathrm{x}) /(2 . \Delta \mathrm{t})<1, \quad \text { or } \\
& \Delta \mathrm{t}>(\mathrm{K} \cdot \mathrm{x}) / 2 . \tag{5.1.11}
\end{align*}
\]

If this condition is fulfilled, the process of computation should converge. In addition, the time step \(\Delta t\) should be well taken into account. If it is too large, not all points on the hydrograph are considered and the peak may be missed. However, the larger the time step \(\Delta t\), the fewer the number of iterations required, in accordance with eq.(5.1.11).

In practice, the limiting time step \(\Delta t\) required to converge is somewhat larger than that given by condition (5.1.11). This can be noticed more clearly from Figure 5.1.2.


Figure 5.1.2 Graphic \(x / 2\) Vs. Min. Time Step/K data were obtained from upstream routing calculation

The values in the actual line (Fig.5.1.2) were obtained by trial and error computations using the data taken from ARR87 Table 7.1 page 134, and it can be seen that the time step required for convergence is somewhat greater than indicated by eq. (5.1.11). However, these values can be reduced down to those in theoretical line, if a weighting factor is applied, as discussed in the section 5.1.3.

In the particular case when parameter \(x=0.0\), equation (5.1.10) becomes
\[
\begin{equation*}
I_{i}=Q_{i}+\frac{K}{2 . \Delta r}\left[Q_{i+1}-Q_{i-1}\right] \tag{5.1.12}
\end{equation*}
\]

This equation becomes explicit and it can be solved without using an iterative solution. There is no error which will magnify, since the variable involved on the right hand side of the equation (Q) is fixed once the given outflow hydrograph is adopted. Therefore, the condition for choosing time step \(\Delta t\) in order to converge is no longer necessary for this case.

\subsection*{5.1.3 Weighting Factor ( \(\alpha\) )}

If the upstream hydrograph ordinates at iteration k are combined with those at iteration k-1 as a weighted average to make a new estimate of upstream hydrograph ordinates \(\left(I_{a}\right)\), before commencing iteration \(k+1\), results can be dramatically improved, with fewer iterations required. This condition is expressed as follows:
\[
\begin{equation*}
I_{a_{i}}=I_{i}^{k-1}+\left(I_{i}^{k}-I_{i}^{k-1}\right) \cdot \alpha \tag{5.1.13}
\end{equation*}
\]
where \(\mathrm{i}=0,1,2, \ldots, \mathrm{~N}\) and \(0<\alpha<1\). It was found by numerical experiments that the effective \(\alpha\) lies between 0.1 and 0.7 .

The other advantage of applying a weighting factor \(\alpha\) in the iterations is that, as mentioned in section 5.1.2, the actual limiting time steps \(\Delta \mathrm{t}\) can be reduced down to those in the theoretical line given by condition (5.1.11) or even to values of \(\Delta t\) which are less than those in the theoretical line if the appropriate weighting factor \(\alpha\) is used. The particular values of \(\Delta t\) that can be reached should be determined by numerical experiments. For example if parameter \(\mathrm{x}=0.5\) and \(\mathrm{K}=\) 66 hours, then using condition (5.1.11), \(\Delta \mathrm{t}>16.5\) hours. In practice, the minimum \(\Delta t\) which still can make the process converge without weighting (i.e. \(\alpha=1\) ) is 21 hours. If a weighting factor \(\alpha=0.4\) is applied, \(\Delta t\) can be reduced down to 12 hours which is less than that given by condition (5.1.11).

The question which arises is: what is the optimum \(\alpha\) to be chosen? In this context, 'optimum' implies the value of \(\alpha\) which requires the fewest number of iterations. It should be determined by numerical experiments. According to the experiments using various values of parameter \(x\), with \(K=66\) hours and \(\Delta t=\) K. \(\mathrm{x} / 2\) and condition (5.1.9) for terminating the iterations, the optimum \(\alpha\) is close to 0.4 (see Figure 5.1.3).


Figure 5.1.3 Graphic \(\alpha\) Vs. Number of Iterations for \(\mathrm{x}=0.2\)

Other values of parameter x result in similar graphics to that in Figure 5.1.3 with approximately 20 being the minimum number of iterations. If the computation is carried out without weighting (i.e. \(\alpha=1\) ), the minimum time step used in order to converge is somewhat greater than that given by condition \(\Delta t=K . x / 2\) as shown in Fig. 5.1.2, and the number of iterations also becomes greater.

\subsection*{5.1.4 Summary of the Computation Procedure}

All of the steps discussed in the previous sections of this chapter can be summarized with the help of a flow chart as described in figure 5.1.4.


Figure 5.1.4 Flow Chart of the Computation

\section*{Explanation of the steps of the computation}

Step 1 : initialize iteration \(\mathrm{k}=1\)
Step 2 : give an initial value at time \(\mathrm{i}=0\) to \(\mathrm{I}\left(\mathrm{I}_{0}\right)\) which remains unchanged throughout the required number of iterations to converge [eq.(5.1.4)] and adopt the downstream hydrograph ordinates Q as the first estimate of the upstream hydrograph ordinates \(\left(I_{a}\right)\)

Step 3 : equate \(I^{k-1}\) (upstream hydrograph ordinates at iteration \(k-1\) ) with \(I_{a}\)
Step 4: calculate storage \(S\) for all ordinates throughout the flood according to the given data Q and the values of \(I\) obtained in step 3 using equation (5.1.3).

Step 5: calculate storage change dS/dt using eq.(5.1.2) for all ordinates, except for the first and the last ordinates. The value of dS/dt at the last ordinate is calculated using eq.(5.1.5) and dS/dt at the first ordinate is calculated using eq.(5.1.7).

Step 6: apply smoothing algorithm using eq.(5.1.6).
Step 7: calculate new upstream hydrograph ordinates \(\mathrm{I}^{\mathrm{k}}\) using eq.(5.1.1).
Step 8: calculate the relative change in each value of I from the previous value to the new one using eq.(5.1.8).

Step 9: check the results of step 8, if they are all equal to or less than 0.001 , the upstream hydrograph ordinates I are set equal to the \(I^{k}\) ordinates and the process is finished. If not, continue to step 10.

Step 10: use eq.(5.1.13) to make a new estimate of upstream hydrograph ordinates I and return to step 3 to get into the next iteration \((\mathrm{k}+1)\).

\subsection*{5.1.5 Tests of Computations}

Firstly, tests were carried out using samples of computations to check their stability and convergence. The upstream hydrograph from Australian Rainfall and

Run-off (ARR87) Table 7.1 page 134 (Pilgrim, I.E. Aust. 1987) was used to obtain a downstream hydrograph by applying an iterative method to downstream routing (to be discussed in chapter 6). These results were then used to calculate the upstream hydrograph using the method outlined in the preceding sections of this chapter. Tables V.1.1 and Figures 5.1.5 show results for \(\mathrm{K}=66\) hours, \(\Delta \mathrm{t}=24\) hours, \(\alpha=0.4\) and \(\mathrm{x}=0,0.1,0.2,0.3,0.4,0.45\) and 0.5 . 'Total iterations' in those tables indicates the number of iterations which are required for upstream routing to converge. It can be noticed from these results that upstream routing reproduces upstream discharges which are almost the same as those observed.

Tables V.1.1
Samples of Computations
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nuaber of data \(=33\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{B}=60.00\) hours} \\
\hline T & \multicolumn{3}{|l|}{\(=24.00\) hours} \\
\hline \% & \multicolumn{3}{|l|}{\(=0.00000\)} \\
\hline 2lfa & \multicolumn{3}{|l|}{\(=0.40000\)} \\
\hline \multicolumn{4}{|l|}{Total iterstions \(=13\)} \\
\hline PESIDE &  & 0UTFLGu &  \\
\hline ( P 2 2 .00 & (observedi) & Caajculatad & (calculated) \\
\hline hoars & (unjsec) &  & (6Jisec) \\
\hline 0 & 274.000 & 274.000 & 274.000 \\
\hline 1 & 314.000 & 28.649 & 315.837 \\
\hline 2 & 355.060 & 30.587 & 554.572 \\
\hline 3 & 404.000 & 316.062 & 405. 821 \\
\hline 4 & 475.000 & 354.749 & 495.436 \\
\hline 5 & 566.000 & 421.85 & \(56 t .675\) \\
\hline 6 & 50.600 & 478.963 & 5E6.198 \\
\hline 7 & 572.000 & 506.045 & 571.507 \\
\hline 8 & 575.000 & 517.377 & 574.324 \\
\hline 9 & 572.000 & 546.785 & 571.85 \\
\hline 10 & 571.000 & 56.457 & 571.427 \\
\hline 11 & 674.000 & 494.374 & 476.572 \\
\hline 12 & 1025.000 & 653.114 & 1025.127 \\
\hline 15 & 1156.000 & \$54. 577 & 1155.650 \\
\hline 14 & 1051.000 & ¢¢E. 357 & 1080.810 \\
\hline 15 & 1001.000 & 973.857 & 1000.501 \\
\hline 15 & 816.000 & 930.406 & 816.215 \\
\hline 17 & 551.000 & 875.011 & 68.269 \\
\hline 15 & 56.000 & 775.182 & 565.078 \\
\hline 15 & 50.000 & 7 T .856 & 53.8 \\
\hline 20 & 534.000 & 655.923 & 535.825 \\
\hline 21 & 5 SE 000 & 614.600 & 534.741 \\
\hline 22 & 553.000 & 597.178 & 551.674 \\
\hline 23 & 555.000 & 559.002 & 55.106 \\
\hline 24 & 549.000 & 572.407 & 545.696 \\
\hline 25 & 54.000 & 575.457 & 54.565 \\
\hline 26 & 495.000 & E6. 514 & 402.943 \\
\hline 27 & 42 E .000 & 52.157 & 427.976 \\
\hline 28 & 576.000 & 474.748 & 576.014 \\
\hline 29 & 357.000 & 454. 544 & 35.7 .024 \\
\hline 30 & 301.000 & 410.279 & 301.012 \\
\hline 31 & 274.000 & 371.574 & 273.795 \\
\hline 32 & 271.000 & 59.236 & 270.745 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Number of data \(=33\)} \\
\hline \multicolumn{4}{|c|}{\(=66.00\) haurs} \\
\hline T & \multicolumn{3}{|l|}{\(=25.00\) hears} \\
\hline \％ & \multicolumn{3}{|l|}{\(=0.10000\)} \\
\hline 2！fa & \multicolumn{3}{|l|}{\(=0.40000\)} \\
\hline \multicolumn{4}{|l|}{Total iterations \(=14\)} \\
\hline FEEITD & I HFL L H & \(0 \cup 15 \mathrm{E}\) & 1成FLS号 \\
\hline （1） 24.00 & lobserved） & ｜calculzted & （caicuミちゃせ） \\
\hline heurs） & \｛mis／sec & \｛n了isec & \｛misect \\
\hline 0 & 274.000 & 274.009 & 274．600 \\
\hline 1 & 314.000 & 279.627 & 314.027 \\
\hline 2 & 355．000 & 300.853 & 554.724 \\
\hline 3 & 404.000 & 310.065 &  \\
\hline 4 & 495.60 & 35.753 & ¢5\％．705 \\
\hline 5 & 56.600 & 416.610 & 55.480 \\
\hline 6 & 582.000 & 474.425 & 58.555 \\
\hline 7 & 572.000 & 508.797 & 572.150 \\
\hline 8 & 575.000 & 520.281 & 574.601 \\
\hline 9 & 57.000 &  & 575.454 \\
\hline 10 & 571.000 & \(56.7 \%\) & 570.600 \\
\hline 11 & \(67 \% .000\) & 475.795 & 676.334 \\
\hline 12 & 102t．000 & 631.104 & 1026.515 \\
\hline 1.3 & 1156．000 & 85．055 & 1156.203 \\
\hline 14 & 1051．000 & 712.35 & 1080.784 \\
\hline 15 & 1001.000 & 91．704 & 1000.674 \\
\hline 16 & Eic．060 & 755.555 & प55．9\％2 \\
\hline 17 & 6E：，000 & 875.455 & 6E．i5： \\
\hline 19 & 56．00 & 7 Y 0.375 & 56.205 \\
\hline 19 & 5 SE 000 & 709.134 & 50.000 \\
\hline 20 & 55.600 & 456.55 & 535.605 \\
\hline 21 & 535.600 & 611.400 & 584.85 \\
\hline 22 & 551.000 & 552.705 & 550.946 \\
\hline 23 & 555.000 & 564．76： & 55.505 \\
\hline 24 & 549.000 & 35.564 & 549.065 \\
\hline 25 & 544.000 & \(\overline{512.308}\) & 544.045 \\
\hline 26 & 493.000 & 56.106 & 497.015 \\
\hline 27 & 42 E .000 & 52.965 & 427.9 CJ \\
\hline 28 & 376.06 & 476.864 & 375 \\
\hline 29 & 357.000 & \(45^{4} \mathrm{E} .684\) & 35.960 \\
\hline 30 & 301.000 & 412.313 & 30.901 \\
\hline 31 & 274.000 & 370.401 & 27.59 \\
\hline 32 & 271.000 & 32.454 & 271.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Number of data & \(=35\) \\
\hline \% & \(=86.00\) hours \\
\hline T & \(=24.00\) heurs \\
\hline x & \(=0.20000\) \\
\hline alfa & \(=0.40000\) \\
\hline Total iterations & \(=14\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { FERIGD } \\
\text { (Y } 24.00 \\
\text { hedre }
\end{array}
\] & I丘F10 iobserved) (at? 3 sec) & (i) TFLO (calculated) ( 5 3/cec) & I MF: 1 E (calculeted) (63/cec) \\
\hline 7 & 274.000 & 274.000 & 274.060 \\
\hline 1 & 314.000 & 277.011 & 315.917 \\
\hline 2 & 355.000 & 246.405 & 355.182 \\
\hline 5 & 404.000 & 303.266 & 404.354 \\
\hline 4 & 495.000 & 345.752 & 475.131 \\
\hline 5 & 56.000 & 412.276 & 565.721 \\
\hline 6 & 58.000 & 480.985 & 585.604 \\
\hline 7 & 572.000 & 511.419 & 571.878 \\
\hline 8 & 575.000 & 223.305 & 575.205 \\
\hline 9 & 572.000 & 56.60 & 572.285 \\
\hline 10 & 571.000 & 567.253 & 571.140 \\
\hline 11 & 576.000 & 454.111 & 675.965 \\
\hline 12 & 1026.000 & 606.86\% & 1025.982 \\
\hline 13 & 1155.000 & 830.276 & 1155. \(\mathrm{Y}_{5}\) \\
\hline 14 & 108.000 & 92.285 & 10 t .122 \\
\hline 15 & toes.000 & 1013.780 & 1001.172 \\
\hline 16 & 816.000 & 980.569 & 916.822 \\
\hline 17 & 30:.000 & 919.787 & 680.545 \\
\hline 16 & 568.000 & 909.079 & 587.516 \\
\hline 17 & 539.000 & 715.434 & 237. 337 \\
\hline 20 & 534.000 & 654.811 & 534.650 \\
\hline 21 & 55.000 & 606.143 & 55.105 \\
\hline 22 & \(55 . .000\) & 58.6 .971 & 551.072 \\
\hline 23 & 555.000 & 579.729 & 555.022 \\
\hline 24 & 549.000 & 564.339 & 544.988 \\
\hline 25 & 544.000 & 571.524 & 543.972 \\
\hline 26 & 593.000 & 564.874 & 492.986 \\
\hline 27 & 42 Ec 000 & 537.231 & 427.572 \\
\hline 28 & 376.060 & 479.060 & 375.985 \\
\hline 27 & 357.000 & 485.027 & \$56.854 \\
\hline 30 & 301.000 & 414.250 & 300.9\% \\
\hline 31 & 274.000 & 367.615 & 274.000 \\
\hline 32 & 271.060 & 323.045 & 271.002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Number of data \(=33\)} \\
\hline \multicolumn{4}{|c|}{\(=66.00\) hours} \\
\hline T & \multicolumn{3}{|l|}{\(=24.00\) hours} \\
\hline \(x\) & \multicolumn{3}{|l|}{\(=0.30000\)} \\
\hline alfa & \multicolumn{3}{|l|}{\(=0.40000\)} \\
\hline \multicolumn{4}{|l|}{Total jteretjons \(=14\)} \\
\hline FERICD & I HFL OH & OUTFLOH & 1HFLOH \\
\hline \[
1 \times 24.00
\] & (ctserved) & (calculated) & (calculated) \\
\hline heurel & \{ 3 jeec \(\}\) & \{ misec) & (界3/5ec) \\
\hline 0 & 274.060 & 274.000 & 274.000 \\
\hline 1 & 314.000 & 274.520 & 314.096 \\
\hline 2 & 355.000 & 272.143 &  \\
\hline \(j\) & 404.000 & 274.402 & 403.681 \\
\hline 4 & 485.000 & J3.975 & 454.917 \\
\hline 5 & 523.000 & 508. 347 & 56.250 \\
\hline b & \(5 E 6.000\) & 484.681 & 5E. 14.4 \\
\hline 7 & 57.000 & 5.5 .854 & 571.167 \\
\hline 8 & 575.000 & 527.965 & 574.719 \\
\hline 9 & 572.000 & 566.14\% & 572.148 \\
\hline 10 & 571.600 & 564.26 & 571.575 \\
\hline 11 & 6it.00 & 425.992 & 476.523 \\
\hline 12 & 1625.000 & 5 EL .305 & 1024.051 \\
\hline 13 & 115.000 & ¢82.60\% & 1155.615 \\
\hline \(1 \frac{1}{4}\) & 10 E .0 mb & 95.171 & 1060.515 \\
\hline 15 & 1001.000 & 1040.385 & 1000.672 \\
\hline 16 & 516.000 & 1010.461 & 816.015 \\
\hline 17 & 681.000 & 745.862 & 68.281 \\
\hline 15 & 56.000 & 916.749 & 56.289 \\
\hline 17 & 5 SE .000 & 715.706 & 538.081 \\
\hline 20 & 534.600 & 050.614 & 533.911 \\
\hline 21 & 53.000 & 59.597 & 534.907 \\
\hline 22 & 551.000 & 579.656 & 550.965 \\
\hline 73 & 555.000 & 573.233 & 551.981 \\
\hline 24 & 545.000 & 559.078 & 549.977 \\
\hline 25 & 554.060 & 571.574 & 545.989 \\
\hline 26 & 493.000 & 571.568 & 493.006 \\
\hline 27 & 42 E .000 & 542.095 & 428.011 \\
\hline 28 & 376.060 & 40.145 & 375.997 \\
\hline 29 & 357.000 & 461.50 & 55.977 \\
\hline 30 & 301.000 & 415.904 & 300.978 \\
\hline 31 & 274.000 & 367.35 & 273.974 \\
\hline 3 & 271.000 & 315.970 & 271.007 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nupter of data \(=33\)} \\
\hline \multicolumn{4}{|c|}{\(=66.00\) hours} \\
\hline T & \multicolumn{3}{|l|}{\(=24.00\) hours} \\
\hline \(\chi\) & \multicolumn{3}{|l|}{\(=0.40000\)} \\
\hline alfa & \multicolumn{3}{|l|}{\(=0.50000\)} \\
\hline \multicolumn{4}{|l|}{Total iterations \(=16\)} \\
\hline PERIOD & INFLOH & 04TFL0 0 & 1HFLOH \\
\hline (\%24.00 & (coserved & (raiculated) & (calculated) \\
\hline hours) & ( \(\mathrm{mJ} / \mathrm{sec}\) ) &  & ( ajuisec \(^{\text {) }}\) \\
\hline 0 & 274.000 & 274.000 & 274.0000 \\
\hline 1 & 314.000 & 271.150 & 314.003 \\
\hline 2 & 355.000 & 286.557 & 355.045 \\
\hline 3 & 404.000 & 285.704 & 403.345 \\
\hline 4 & 45.600 & 32.69 & 479.85 \\
\hline 5 & 56.000 &  & \(55_{5}^{5} .991\) \\
\hline 6 & 58.000 & 469.201 & 59.376 \\
\hline 7 & 572.000 & 520.695 & 572.634 \\
\hline 8 & 5 5 5.000 & 534.865 & 575.042 \\
\hline 7 & 572.000 & 571.075 & 571.650 \\
\hline 10 & 57.000 & 557.254 & 570.634 \\
\hline 11 & 676.000 & 373.45 & 675.895 \\
\hline 12 & 1025.000 & 553.725 & 1026.161 \\
\hline 13 & 15 E .00\% & 8.8 .742 & 1156.275 \\
\hline 14 & 108.000 & ¢5.360 & 1051.054 \\
\hline 15 & 100.600 & 107.353 & 1000.887 \\
\hline ! & 5 ctom & 1045.327 & 515.916 \\
\hline 17 & ESt.000 & 48.05 & 650.904 \\
\hline 15 & 558.000 & 826.401 & 568.057 \\
\hline 19 & 58.600 & 71.768 & 535.165 \\
\hline 20 & 554.000 & 645.017 & 534.115 \\
\hline 21 & 55.600 & 58.808 & 534.95 \\
\hline 22 & 55.1000 & 51.304 & 550.936 \\
\hline 23 & 55.000 & 567.347 & 554.941 \\
\hline 24 & 545.090 & 555.511 & 549.840 \\
\hline 25 & 544.000 & 575.026 & 543.959 \\
\hline 26 & 493.000 & 578.254 & 472.970 \\
\hline 27 & 42 E .000 & 547.377 & 428.005 \\
\hline 28 & 37.600 & 48.8 .815 & 576.026 \\
\hline 59 & 357.000 & 484.054 & 357.042 \\
\hline 30 & 51.000 & 417.648 & 301.045 \\
\hline 31 & 274.000 & 364.507 & 274.027 \\
\hline 32 & 271.000 & 514.981 & 271.005 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nutber of data \(=33\)} \\
\hline \% & = 65.00 ho & & \\
\hline T & \(=24.00 \mathrm{~h}\) & & \\
\hline \% & \(=0.45000\) & & \\
\hline alfa & \(=0.40000\) & & \\
\hline \multicolumn{4}{|l|}{Total iterations \(=17\)} \\
\hline \[
\begin{array}{r}
\text { PERIOD } \\
\text { (:24.00 } \\
\text { haurs) }
\end{array}
\] & 1HFLO lobservedi (a3/5ec) & 0UTFLD (calculated) ( \(\mathrm{m}_{\mathrm{j}} \mathrm{j} / \mathrm{sec}\) ) & INFLO: (calcuiated) (4.3/5ec) \\
\hline 0 & 275.000 & 275.000 & 274.000 \\
\hline 1 & 311.000 & 25\%.450 & 315.997 \\
\hline 2 & 35.0000 & 283.450 & 354.958 \\
\hline 5 & 404.000 & 200.261 & 40.922 \\
\hline 4 & 495.000 & 35.890 & 495.000 \\
\hline 5 & 56.600 & 405.55 & 565.321 \\
\hline \(t\) & 5EE.000 & 452.670 & 58.27 \\
\hline 7 & 572.60 & 523.492 & 571.842 \\
\hline 9 & 575.060 & 538.651 & 574.659 \\
\hline 9 & 572.60 & 502.12 c & 571.853 \\
\hline 10 & 571.000 & 551.747 & 571.104 \\
\hline 11 & 676.00 & 374.840 & 676.149 \\
\hline 12 & 102.000 & 540.551 & 1026.93 \\
\hline 13 & 1156.000 & 82.897 & 1155.898 \\
\hline 14 & 1 EE .000 & 971.354 & 1080.848 \\
\hline 15 & 1001.00 & 1091.655 & 1000.955 \\
\hline 16 & 815.60 & 106.150 & 816.095 \\
\hline 17 & 651.600 & 979.95 & 601.198 \\
\hline 18 & 56.000 & 930.254 & 563.151 \\
\hline 19 & 53.000 & 711.745 & 55.615 \\
\hline 20 & 535.000 & 657.609 & 533.802 \\
\hline 21 & 55.000 & 58.793 & 534.826 \\
\hline 22 & 551.000 & 566.637 & 550.925 \\
\hline 23 & 555.000 & 563.959 & 554.960 \\
\hline 24 & 549.006 & 554.001 & 54.977 \\
\hline 25 & 54.000 & 574.446 & 544.022 \\
\hline 26 & \(4{ }^{\text {co.000 }}\) & 552.130 & 493.060 \\
\hline 27 & 4 E .000 & 550.260 & 420.057 \\
\hline 28 & 375.000 & 485.060 & 376.045 \\
\hline 29 & 357.000 & 465.385 & 357.031 \\
\hline 30 & 50.000 & 417.354 & 501.006 \\
\hline 31 & 274.000 & 32.516 & 273.982 \\
\hline 32 & 271.00 & 311.456 & 270.978 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nusber of data \(=35\)} \\
\hline \({ }^{\prime}\) & \(=42.00\) & & \\
\hline T & \(=24.00 \mathrm{~h}\) & & \\
\hline \(\times\) & \(=0.50000\) & & \\
\hline alfa & \(=0.40000\) & & \\
\hline \multicolumn{4}{|l|}{Total iterations \(=18\)} \\
\hline PEFIOE & 1 HFLOH & OUTFLOH & 1 HFLO \\
\hline (1)24.00 & lotserved) & (calculated) & (calculated) \\
\hline heur 5) & \(\left.(\pi)^{\prime} \mathrm{sec}\right)\) & (Ex3/cer) &  \\
\hline 0 & 274.000 & 274.000 & 274.006 \\
\hline 1 & \(33^{3} .000\) & 267.481 & 313.988 \\
\hline 2 & 55.000 & 279.501 & 355.037 \\
\hline 3 & 404.000 & 274.544 & 454.105 \\
\hline 4 & 475.000 & 315.060 & 40.158 \\
\hline 5 & 56.000 & 405.784 & 565.152 \\
\hline t & 5 EL .000 & 45.150 & 565.716 \\
\hline 7 & 572.000 & 52.575 & 571.697 \\
\hline 8 & 55.000 & \(5 \pm 5.144\) & 574.760 \\
\hline 9 & 572.000 & 587.304 & 572.064 \\
\hline 10 & 572.600 & 54.4 .242 & 571.165 \\
\hline 11 & b\%,000 & 35.869 & 67.150 \\
\hline 12 & 1025.000 & 527.305 & 102.025 \\
\hline 13 & 1156.000 & 932.945 & 1155.925 \\
\hline 14 & 1051.000 & 98.86 & 1680.920 \\
\hline 15 & 1001.000 & 1112.087 & 100.60 \\
\hline 16 & 515.000 & 105.735 & 816.095 \\
\hline 17 & 68.1000 & 79.147 & EE! 08! \\
\hline 18 & 55.000 & 85.50] & 59.610 \\
\hline 19 & 535.000 & 707.725 & 537.05 \\
\hline 20 & 534.000 & 63.574 & 53.502 \\
\hline 21 & 535.000 & 576.720 & 534.945 \\
\hline 22 & 551.0000 & 51.955 & 550.994 \\
\hline 23 & 555.000 & 56.505 & 55.011 \\
\hline 74 & 547.000 & 552.637 & 549.020 \\
\hline \(2{ }^{25}\) & 544.000 & 576.525 & 544.039 \\
\hline 26 & 493.000 & 56.419 & 493.045 \\
\hline 27 & 428.000 & 55.138 & 420.029 \\
\hline 28 & 315.060 & 456.171 & 57.614 \\
\hline 29 & 35.000 & 46.554 & 357.000 \\
\hline 30 & 301.000 & 4.37 .359 & 301.952 \\
\hline 31 & 274.000 & 30.175 & 273.977 \\
\hline 32 & 274.000 & 309.545 & 270.986 \\
\hline
\end{tabular}

\section*{Figures 5.1.5}

Graphics of Samples of Computations







Secondly, the iterative method for upstream routing was applied to recorded upstream and downstream hydrographs, to examine the case which occurs in practice where the known downstream hydrograph is used to estimate an unknown upstream hydrograph. In this test, the upstream plus the downstream hydrograph from ARR 87 Table 7.1, page 134 were used. Figure 5.1.6a shows results for \(\mathrm{K}=66\) hours, \(\Delta \mathrm{t}=24\) hours and \(\mathrm{x}=0.45\). As for conventional Muskingum routing from upstream to downstream, the estimated and recorded hydrographs cannot be expected to agree exactly because the movement of flood waves in river reaches does not exactly conform with the behaviour assumed in the linear Muskingum equation. Note however that the method gives calculated hydrographs that agree reasonably well with the recorded upstream hydrograph. Figure 5.1.6b shows conventional Muskingum downstream routing to estimate the downstream hydrograph from a recorded upstream hydrograph. Comparison of Figures 5.1.6a and 5.1.6b shows that the upstream routing method developed in this study has the same order of accuracy as conventional Muskingum downstream routing.


Figure 5.1.6a Upstream Routing to Obtain Upstream Hydrograph Using Iterative Method


Figure 5.1.6b Downstream Routing to Obtain Downstream Hydrograph Using Standard Muskingum Equation

Results of computations using the same observed downstream hydrograph, \(\mathrm{K}=66\) hours and \(\Delta \mathrm{t}=24\) hours but different parameter x values are shown in Figs. 5.1.6c. In each case the iterative method works well, with approximately 15 iterations required to produce an upstream hydrograph.

Figures 5.1.6c
Upstream Routing Using Observed Downstream Hydrograph






\subsection*{5.2 ITERATIVE METHOD WITH BACKWARD DIFFERENCE AT THE END OF THE HYDROGRAPH}

As mentioned in section 5.1, a difficulty arises in calculating the derivative at the end of the hydrograph (at time \(\mathrm{i}=\mathrm{N}\) ). Equation (5.1.2) cannot be properly used to calculate \(\mathrm{dS} / \mathrm{dtt}_{\mathrm{N}}\), since \(\mathrm{S}_{\mathrm{N}+1}\) is not known. Therefore, an assumption must be made. Equation (5.1.5) is one of the assumptions which can be taken into account. The other possible assumption is applying a backward finite difference. There are two types which have been investigated, backward finite difference based on the first derivative and backward finite difference based on the second derivative. The procedure of computation is entirely the same as that discussed in section 5.1 .

First of all, these backward differences are derived prior to their application in the computation. The derivation is taken from Salvadori and Baron (1964).

Given the values
\[
\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{11}, \mathrm{y}_{1}, \mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{r}}, \mathrm{y}_{\mathrm{rr}}, \ldots, \mathrm{y}_{\mathrm{n}-2}, \mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}
\]
of a function \(y(x)\) at the pivotal points of its interval of definition, evenly spaced by \(h\), the first backward difference of \(y\) at \(i\) is
\[
\begin{equation*}
\nabla y_{i}=y_{i}-y_{1} \tag{5.2.1}
\end{equation*}
\]

The second backward difference of \(y\) at \(i\) is defined as the difference of the first difference and is therefore given by
\[
\begin{align*}
\nabla\left(\nabla y_{i}\right) & \equiv \nabla^{2} y_{i}=\left(y_{i}-y_{1}\right)-\left(y_{1}-y_{1}\right) \\
& =y_{i}-2 \cdot y_{1}+y_{1]} \tag{5.2.2}
\end{align*}
\]

Similarly, the \(n\)th backward difference is the difference of ( \(n-1\) ) th difference:
\[
\nabla^{\mathrm{n}} \mathrm{y}_{\mathrm{i}} \equiv \nabla\left(\nabla^{\mathrm{n}-1} \mathrm{y}_{\mathrm{i}}\right)
\]

It is well known that the differential operator \(D \equiv d / d x\) can be used symbolically as if it were a number, in as much as it satisfies formally the fundamental laws of algebra. The difference operator \(\nabla\) may also be used
symbolically as a number (or variable), since it satisfies formally the laws of algebra, as shown by the following identities:
\[
\begin{gathered}
\nabla\left(y_{i}+y_{j}\right)=\nabla y_{i}+\nabla y_{j}=\nabla y_{j}+\nabla y_{i} \\
\nabla\left(c . y_{i}\right)=c \nabla y_{i} ; \\
\nabla^{m}\left(\nabla^{n} y_{i}\right)=\nabla^{m+n} y_{i}
\end{gathered}
\]

Making use of these properties, it is possible to express the differences of a function y in terms of its successive derivatives and, conversely, its derivatives in terms of its successive differences. The derivation of these expressions by symbolical methods is by far the most efficient.

Consider for this purpose the Taylor expansion of \(\mathrm{y}(\mathrm{x}+\mathrm{h})\) about x :
\[
\begin{equation*}
y(x+h)=y(x)+\frac{h}{1!} y^{\prime}(x)+\frac{h^{2}}{2!} y^{\prime \prime}(x)+\frac{h^{3}}{3!} y^{\prime \prime \prime}(x)+\ldots \tag{a}
\end{equation*}
\]
which, using the powers of symbol \(D\) to indicate the derivatives of \(y\), becomes
\[
\begin{align*}
y(x+h) & =y(x)+\frac{h}{1!} D y(x)+\frac{h^{2}}{2!} D^{2} y(x)+\frac{h^{3}}{3!} D^{3} y(x)+\ldots \\
& =\left(1+\frac{h}{1!} D+\frac{h^{2}}{2!} D^{2}+\frac{h^{3}}{3!} D^{3}+\ldots\right) y(x) \tag{b}
\end{align*}
\]

By means of the series expansion for \(\mathrm{e}^{ \pm x}\),
\[
e^{ \pm x}=1 \pm \frac{x}{1!}+\frac{x^{2}}{2!} \pm \frac{x^{3}}{3!}+\ldots,
\]
the differential operator on the right-hand side of eq.(b) may be written symbolically as
\[
\begin{equation*}
1+\frac{\mathrm{hD}}{1!}+\frac{\mathrm{h}^{2} \mathrm{D}^{2}}{2!}+\frac{\mathrm{h}^{3} \mathrm{D}^{3}}{3!}+\ldots=e^{\mathrm{hD}} \tag{5.2.3}
\end{equation*}
\]
and hence \(y(x+h)\) may also be written symbolically as
\[
\begin{equation*}
y(x+h)=e^{h D} \cdot y(x) \tag{5.2.4}
\end{equation*}
\]

Setting \(\mathrm{x}=\mathrm{x}_{\mathrm{i}}\) and indicating as before \(\mathrm{y}\left(\mathrm{x}_{\mathrm{i}}+\mathrm{h}\right)\) by \(\mathrm{y}_{\mathrm{r}}\) and \(\mathrm{y}\left(\mathrm{x}_{\mathrm{i}}\right)\) by \(\mathrm{y}_{\mathrm{i}}\), eq.(5.2.4) becomes
\[
\begin{equation*}
y_{\mathrm{r}}=\mathrm{e}^{\mathrm{hD}} \cdot \mathrm{y}_{\mathrm{i}} \tag{5.2.5}
\end{equation*}
\]

Similarly, changing \(h\) into -h in eq.(5.2.4),
\[
\begin{equation*}
y(x-h)=e^{-h D} \cdot y(x) \tag{5.2.6}
\end{equation*}
\]
and letting, as before, \(y(x)=y_{i}\), and \(y_{1}=y\left(x_{i}-h\right)\), eq.(5.2.6) becomes
\[
\begin{equation*}
\mathrm{y}_{\mathrm{l}}=\mathrm{e}^{-\mathrm{hD}} \cdot \mathrm{y}_{\mathrm{i}} \tag{5.2.7}
\end{equation*}
\]

The first backward difference \(\nabla y_{i}\) [eq.(5.2.1)] may now be written by means of eq.(5.2.7) as
\[
\begin{equation*}
\nabla y_{i}=y_{i}-y_{l}=\left[1-e^{-h D}\right] \cdot y_{i} \tag{5.2.8}
\end{equation*}
\]
or, by eq.(5.2.3), as
\[
\begin{align*}
\nabla y_{i} & =\left(\frac{h D}{1!}-\frac{h^{2} D^{2}}{2!}+\frac{h^{3} D^{3}}{3!}-\frac{h^{4} D^{4}}{4!}+\ldots\right) y_{i} \\
& =\left(1-\frac{h D}{2}+\frac{h^{2} D^{2}}{6!}-\frac{h^{3} D^{3}}{24}+\ldots\right) h D y_{i} \tag{5.2.9}
\end{align*}
\]

Equation (5.2.9) gives the expression of \(\nabla y_{i}\) into an infinite series of all the derivatives of \(y\) at \(i\).

If eq.(5.2.8) is written in purely operational form, by dropping \(y_{i}\) on both sides of the equation,
\[
\begin{equation*}
\nabla=1-\mathrm{e}^{-\mathrm{hD}} \tag{5.2.10}
\end{equation*}
\]
its 'powers' may be used to evaluate the series expansions for the successive differences of a function. Thus, squaring eq.(5.2.10), and making use of eq.(5.2.3), the expansion for the second difference \(\nabla^{2}\) can be obtained in the form
\[
\begin{aligned}
\nabla^{2}=\left(1-e^{-h D}\right)^{2}= & 1+e^{-2 h D}-2 . e^{-h D} \\
& =1+\left(1-\frac{2 h D}{1!}+\frac{4 h^{2} D^{2}}{2!}-\frac{8 h^{3} D^{3}}{3!}+\frac{16 h^{4} D^{4}}{4!}-\ldots\right) \\
& -2\left(1-\frac{h D}{1!}+\frac{h^{2} D^{2}}{2!}-\frac{h^{3} D^{3}}{3!}+\frac{h^{4} D^{4}}{4!}-\ldots\right),
\end{aligned}
\]
or
\[
\begin{equation*}
\nabla^{2}=h^{2} \cdot D^{2}-h^{3} \cdot D^{3}+\frac{7}{12} h^{4} \cdot D^{4}-\ldots \tag{5.2.11}
\end{equation*}
\]

Conversely, to obtain expressions for the derivatives of \(y\) in terms of its difference, solve eq. (5.2.10) for \(e^{-h D}\) :
\[
\begin{equation*}
e^{-h D}=1-\nabla \tag{5.2.12}
\end{equation*}
\]
and take the natural logarithms of both sides of this equation, obtaining
\[
\begin{equation*}
\ln \mathrm{e}^{-\mathrm{hD}}=-\mathrm{hD}=\ln (1-\nabla) \tag{5.2.13}
\end{equation*}
\]

The series expansion of \(\ln (1 \pm x)\) equals
\[
\ln (1 \pm x)= \pm x-\frac{x^{2}}{2} \pm \frac{x^{3}}{3}-\frac{x^{4}}{4} \pm \frac{x^{5}}{5}-\cdots
\]
therefore eq.(5.2.13) can be written as
\[
\ln \mathrm{e}^{-\mathrm{hD}}=-\mathrm{hD}=\ln (1-\nabla)=-\left(\nabla+\frac{\nabla^{2}}{2}+\frac{\nabla^{3}}{3}+\frac{\nabla^{4}}{4}+\ldots\right)
\]
the expansion of the first derivative D into an infinite series of differences becomes
\[
\begin{equation*}
\mathrm{hD}=\nabla+\frac{\nabla^{2}}{2}+\frac{\nabla^{3}}{3}+\frac{\nabla^{4}}{4}+\ldots \tag{5.2.14}
\end{equation*}
\]

The difference expansions (5.2.9), (5.2.10), (5.2.11) and (5.2.14) allow the simple derivation of unilateral differentiation formula and of their errors.

For example, solving eqs. (5.2.9) and (5.2.11) for D and \(\mathrm{D}^{2}\), respectively, eqs.(5.2.15) can be obtained.
\[
\begin{align*}
& \mathrm{D}=\frac{\nabla}{h}+\frac{\mathrm{hD}^{2}}{2}-\frac{\mathrm{h}^{2} \mathrm{D}^{3}}{6}+\frac{\mathrm{h}^{3} D^{4}}{24}-\ldots \\
& \mathrm{D}^{2}=\frac{\nabla^{2}}{h^{2}}+\mathrm{hD}^{3}-\frac{7 \mathrm{~h}^{2} D^{4}}{12}+\ldots \tag{5.2.15}
\end{align*}
\]
from which, taking into account the first term of the series only,
\[
\begin{align*}
D y_{i} & =\frac{1}{h}\left(y_{i}-y_{1}\right)+O(h)  \tag{5.2.16a}\\
D^{2} y_{i} & =\frac{1}{h^{2}}\left(y_{i}-2 \cdot y_{1}+y_{11}\right)+O(h) \tag{5.2.16b}
\end{align*}
\]

Where the symbol \(O(h)\) stands for an error 'of the order of \(h\) ' and is the sum of the terms neglected in eqs.(5.2.15).

It can similarly be proved that the approximation of the \(n\)th derivative by the first term of its backward difference expansion has an error of the order of \(h\).

To obtain formulas with errors of order \(h^{2}\), the first two terms of the derivative expansions into differences must be taken into account.

Thus, eliminating \(\mathrm{h}^{2} \mathrm{D}^{2}\) between eqs.(5.2.9) and (5.2.11) results in
\[
\nabla+\frac{\nabla^{2}}{2}=\mathrm{hD}-\frac{1}{3} \mathrm{~h}^{3} \mathrm{D}^{3}+\ldots
\]
or, by eqs.(5.2.1) and (5.2.2),
\[
\begin{equation*}
D y_{i}=\frac{1}{2 h}\left(3 \cdot y_{i}-4 \cdot y_{1}+y_{1}\right)+O\left(h^{2}\right) \tag{5.2.17}
\end{equation*}
\]

In general, if the first m terms of the derivative expansions into backward differences are taken into account, the corresponding formulas have errors of order \(h^{m}\).

\subsection*{5.2.1 Computation Using Backward Difference Based on the}

\section*{Second Derivative at the End of Hydrograph}

Neglecting the error term, equation (5.2.17) can be adopted to calculate the derivative \(S\) at the end of hydrograph (at time \(i=N\) ). That equation becomes
\[
\begin{equation*}
\frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{I}_{\mathrm{N}}=\frac{1}{2 \cdot \Delta \mathrm{t}}\left(3 \cdot \mathrm{~S}_{\mathrm{N}}-4 \cdot \mathrm{~S}_{\mathrm{N}-1}+\mathrm{S}_{\mathrm{N}-2}\right) \tag{5.2.18}
\end{equation*}
\]

Test results indicate that this scheme is less satisfactory than that of eq.(5.1.5). The results are very similar to those obtained from section 5.1, except for the tails of the hydrograph. The discharges in the tail tend to become smaller as the parameter x value increases. Figures 5.2 .1 show results using the observed downstream hydrograph ordinates taken from ARR87 Table 7.1 page 134.

The other problem which arises is that if various time steps \(\Delta t\) are used, the tails of the hydrographs are inconsistent. For example using the same data above with \(\Delta t=22,24\) and 26 hours, \(K=66\) hours and parameter \(x=0.1\), the results are presented in Figures 5.2.2.

It can be noticed from Figures 5.2.2 that each tail of the upstream hydrograph is not consistent with the others. The hydrograph tails do not vary consistently as the time step \(\Delta t\) changes. This circumstance does not occur if the
same data are evaluated using the scheme discussed in section 5.1, i.e.: eq.(5.1.5). Small differences among the tails of the hydrographs occur in this case, but these occur only because of the linear interpolation needed to estimate discharges for other than 24 hours. The results are shown in Figures 5.2.3.

Figures 5.2.1
Upstream Routing with Backward Difference Based on the Second Derivative at the End of Hydrograph Using Observed Downstream Hydrograph


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}




Figures 5.2.2
Calculated Upstream Hydrographs with \(\Delta t=22,24\) and 26 Hours Using Backward Difference Based on the Second Derivative at the End of Hydrograph




Figures 5.2.3
Calculated Upstream Hydrographs with \(\Delta t=22,24\) and 26 Hours Using Basic Method (Eq. 5.1.5)




\subsection*{5.2.2 Computation Using Backward Difference Based on the First Derivative at the End of Hydrograph}

Another backward difference which can be taken into account for calculating the derivative S at the end of hydrograph (at time \(\mathrm{i}=\mathrm{N}\) ) is equation (5.2.16a). By neglecting the error term and converting the variables used, the equation can be written as
\[
\begin{equation*}
\left.\frac{\mathrm{dS}}{\mathrm{dt}}\right|_{\mathrm{N}}=\left(\mathrm{S}_{\mathrm{N}^{-}} \mathrm{S}_{\mathrm{N}-1}\right) / \Delta \mathrm{t} \tag{5.2.19}
\end{equation*}
\]

Results of the test of computation show that this scheme gives very similar results to those obtained by using eq.(5.1.5). The slight difference is only at the tail of the hydrograph. It can be said that the rest of the ordinates are precisely the same. This result is reasonable since the method used is iterative, the last calculated ordinate (at time \(\mathrm{i}=\mathrm{N}\) ) affects the other ordinates which are relatively close to it in time, or in other words, it propagates up to a certain ordinate. Figures 5.2.4 show results of computations using the observed downstream hydrograph ordinates taken from ARR87 Table 7.1 page 134 for \(\mathrm{K}=66\) hours, \(\Delta \mathrm{t}=24\) hours and various parameter x values.

This scheme encounters the same problem as that discussed in section 5.2.1 does, if various time steps \(\Delta \mathrm{t}\) are applied for a certain parameter x value. Each tail of the hydrograph is not consistent with the others. However, the deviation of each tail is not as much as that in Figs. 5.2.2. Figures 5.2 .5 show the results using \(\mathrm{K}=66\) hours, parameter \(\mathrm{x}=0.1\) and \(\Delta \mathrm{t}=22,24\) and 26 hours.

Figures 5.2.4
Upstream Routing with Backward Difference Based on the First Derivative at the End of Hydrograph Using Observed Downstream Hydrograph







Figures 5.2.5
Calculated Upstream Hydrographs with \(\Delta t=22,24\) and 26 Hours Using Backward Difference Based on the First Derivative at the End of Hydrograph




\subsection*{5.3 ITERATIVE METHOD WITH NEWTON BACKWARD FORMULA AT THE END OF HYDROGRAPH}

Equation (5.1.2) can be used to calculate \(\mathrm{dS} / \mathrm{dt}_{\mathrm{N}}\) as long as the value \(\mathrm{S}_{\mathrm{N}+1}\) is known. It may be obtained using the assumption made in section 5.1 , that \(S_{N+1}\) is assumed to be equal to \(S_{N}\). Therefore equation (5.1.2) becomes equation (5.1.5).

There is another way to obtain the value \(\mathrm{S}_{\mathrm{N}+1}\), namely by applying the Newton backward formula. Its role is to predict (extrapolate) the value outside the data interval. Firstly, before the iterative computation begins, it is necessary to obtain the value \(\mathrm{Q}_{\mathrm{N}+1}\) (downstream discharge at time \(\mathrm{i}=\mathrm{N}+1\) ) applying Newton backward formula. Since downstream hydrograph ordinates are adopted as the first estimate of the upstream hydrograph ordinates \(\mathrm{I}, \mathrm{I}_{\mathrm{N}+1}\) is equal to \(\mathrm{Q}_{\mathrm{N}+1}\). Thus, the storage \(S\) at time \(\mathrm{i}=\mathrm{N}+1\) can be calculated using eq.(5.1.3) and the derivative of \(S\) can be calculated using eq.(5.1.2). Secondly, in the iteration process, the Newton backward difference formula is applied to obtain the value \(\mathrm{I}_{\mathrm{N}+1}\) (upstream discharge at time \(\mathrm{i}=\mathrm{N}+1\) ) based on the calculated upstream hydrograph ordinates \(\left(\mathrm{I}_{\mathrm{N}}, \mathrm{I}_{\mathrm{N}-1}, \ldots\right)\). The derivative of S at time \(\mathrm{i}=\mathrm{N}\) can be continuously calculated using eq.(5.1.2) after storage \(S\) has been calculated using eq.(5.1.3).

\subsection*{5.3.1 The Theory of Newton Backward Formula}

The Newton backward formula is derived below, prior to the test of computation. This is taken from Scheid (1968).

Given a discrete function, that is, a finite set of arguments \(x_{k}-x_{k-1}=h\), the backward differences of the \(y_{k}\) values are denoted
\[
\nabla y_{k}=y_{k}-y_{k-1}
\]
and called first differences. The differences of these first differences are denoted
\[
\nabla^{2} y_{k}=\nabla\left(\nabla y_{k}\right)=\nabla y_{k}-\nabla y_{k-1}=y_{k}-2 . y_{k-1}+y_{k-2}
\]
and called second differences. In general
\[
\nabla^{n} y_{k}=\nabla^{n-1} y_{k}-\nabla^{n-1} y_{k-1}
\]
defines the n th differences.
Backward differences are normally applied only at the bottom of a table, using negative arguments as shown in table V.3.1.

Table V.3.1


Each difference proves to be a combination of the \(y\) values in column three. A simple example is
\[
\nabla^{3} y_{0}=y_{0}-3 \cdot y_{-1}+3 \cdot y_{-2}-y_{-3}
\]

The general result is
\[
\begin{equation*}
\nabla^{k} y_{0}=\sum_{i=0}^{k}(-1)^{i+k} \cdot\binom{k}{i} \cdot y_{i-k} \tag{5.3.1}
\end{equation*}
\]
where
\[
\binom{\mathrm{k}}{\mathrm{i}}=\frac{\mathrm{k}!}{\mathrm{i}!(\mathrm{k}-\mathrm{i})!}
\]

The Newton backward formula, in terms of \(k\), is expressed as
\[
\begin{equation*}
P\left(x_{k}\right)=y_{0}+k \nabla y_{0}+\frac{k(k+1)}{2!} \nabla^{2} y_{0}+\ldots+\frac{k \ldots(k+n-1)}{n!} \nabla^{n} y_{0} \tag{5.3.2a}
\end{equation*}
\]
or
\[
\begin{equation*}
P\left(x_{k}\right)=y_{0}+\sum_{i=1}^{n} \frac{k(k+1) \ldots(k+i-1)}{i!} \nabla^{i} y_{0} \tag{5.3.2b}
\end{equation*}
\]
where
\[
\begin{equation*}
\mathrm{k}=\frac{\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{0}}{\mathrm{~h}} \tag{5.3.3}
\end{equation*}
\]
\(h=\) the increment of \(x\) values in the data.

\section*{Example.}
* Apply Newton backward formula to the prediction of \(\sqrt{1.35}\) in table V.3.2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & x & \(y(x)=\sqrt{x}\) & \(\nabla\) & \(\nabla^{2}\) & \(\nabla^{3}\) & \(\nabla^{4}\) & \(\nabla^{5}\) & \(\nabla^{6}\) \\
\hline \multirow[t]{2}{*}{-6} & 1.00 & 1.00000 & & & & & & \\
\hline & & & 2470 & & & & & \\
\hline \multirow[t]{2}{*}{-5} & 1.05 & 1.02470 & & -59 & & & & \\
\hline & & & 2411 & & 5 & & & \\
\hline \multirow[t]{2}{*}{-4} & 1.10 & 1.04881 & & -54 & & -1 & & \\
\hline & & & 2357 & & 4 & & -1 & \\
\hline \multirow[t]{2}{*}{-3} & 1.15 & 1.07238 & & -50 & & -2 & & 4 \\
\hline & & & 2307 & & 2 & & 3 & \\
\hline \multirow[t]{2}{*}{-2} & 1.20 & 1.09544 & & -48 & & 1 & & \\
\hline & & & 2259 & & 3 & & & \\
\hline \multirow[t]{2}{*}{-1} & 1.25 & 1.11803 & & -45 & & & & \\
\hline & & & 2214 & & & & & \\
\hline 0 & 1.30 & 1.14017 & & & & & & \\
\hline
\end{tabular}
k (in eq. \(5.3 .2 \mathrm{a}, \mathrm{b}\) ) can be found using equation (5.3.3)
\[
\mathrm{k}=(1.35-1.30) / 0.05=1
\]

By choosing \(\mathrm{n}=3\) and substituting into eq.(5.3.2a), the result will be
\(\mathrm{P}(1.35)=1.14017+1 .(0.02214)+1 .(-0.00045)+1 .(0.00003)=1.16189\), while the exact solution of \(\sqrt{1.35}\) is 1.161895 .

\subsection*{5.3.2 The Application of Newton Backward Formula}

It is clear that the purpose of applying Newton backward formula is to predict (extrapolate) the values of \(\mathrm{Q}_{\mathrm{N}+1}\) and \(\mathrm{I}_{\mathrm{N}+1}\) in order to able to obtain the derivative of S at time \(\mathrm{i}=\mathrm{N}\) using equation (5.1.2).

When applied to this problem, equation (5.3.2a) becomes
\[
Q_{N+1}=Q_{N}+k \nabla Q_{N}+\frac{k(k+1)}{2!} \nabla^{2} Q_{N}+\ldots+\frac{k \ldots(k+n-1)}{n!} \nabla^{n} Q_{N}
\]
and
\[
\mathrm{I}_{\mathrm{N}+1}=\mathrm{I}_{\mathrm{N}}+\mathrm{k} \nabla \mathrm{I}_{\mathrm{N}}+\frac{\mathrm{k}(\mathrm{k}+1)}{2!} \nabla^{2} \mathrm{I}_{\mathrm{N}}+\ldots+\frac{\mathrm{k} \ldots(\mathrm{k}+\mathrm{n}-1)}{\mathrm{n}!} \nabla^{\mathrm{n}} \mathrm{I}_{\mathrm{N}}
\]
where:
\[
\mathrm{k}=\frac{\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{0}}{\mathrm{~h}}=\frac{\mathrm{i}_{\mathrm{N}+1}-\mathrm{i}_{\mathrm{N}}}{\Delta \mathrm{t}}=\frac{\Delta \mathrm{t}}{\Delta \mathrm{t}}=1
\]

The differences \(\nabla\) are calculated using eq. (5.3.1), where
\[
\begin{gathered}
\mathrm{y}_{0} \equiv \mathrm{Q}_{\mathrm{N}} \text { or } \mathrm{I}_{\mathrm{N}} \\
\mathrm{y}_{-1} \equiv \mathrm{Q}_{\mathrm{N}-1} \text { or } \mathrm{I}_{\mathrm{N}-1} \\
\mathrm{y}_{-2} \equiv \mathrm{Q}_{\mathrm{N}-2} \text { or } \mathrm{I}_{\mathrm{N}-2} \\
\vdots \\
\mathrm{y}_{-\mathrm{n}} \equiv \mathrm{Q}_{\mathrm{N}-\mathrm{n}} \text { or } \mathrm{I}_{\mathrm{N}-\mathrm{n}}
\end{gathered}
\]

The number of ordinates \(n\) which are considered to be involved in the equation is dependent on the hydrologist's judgement. According to numerical experiments carried out here, computation using the larger n value gives less satisfactory results at the tail of hydrograph. This is explained by noting that as more ordinates are taken into account, the more uncertain the interpolation is, since the hydrograph ordinates do not follow any function which can be expressed precisely as a mathematical equation as with the example in section 5.3.1.

Results of computations using \(\mathrm{n}=2\) and \(\mathrm{n}=3\) are presented in Figures 5.3.1 and 5.3.2 respectively. The downstream hydrograph ordinates are also taken from ARR87 Table 7.1 page 134. The computations used \(\mathrm{K}=66\) hours, \(\Delta \mathrm{t}=24\) hours
and weighting factor \(\alpha=0.4\) for various parameter x values. It can be noticed from these figures that \(\mathrm{n}=3\) gives poorer results. Negative discharges come out at the tail of hydrograph. The larger the parameter \(x\) value, the more negative the tail is.

The iterative method using the Newton backward formula with \(\mathrm{n}=2\) and the iterative method using backward difference based on the second derivative at the tail of hydrograph were found to give identical results. To demonstrate this, the results of these two methods are shown in Tables V.3.3.

The problem encountered by Newton backward formula with \(n=2\) and \(n=3\) and various time steps \(\Delta t\) for a certain parameter \(x\) value is the same as that encountered by backward difference based on the second derivative. Each tail of the upstream hydrograph is not consistent with the others.

Figures 5.3.1
Upstream Routing Using Observed Downstream Hydrograph with Newton Backward Formula at the End of Hydrograph, \(\mathrm{n}=2\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}





镸


Figures 5.3.2
Upstream Routing Using Observed Downstream Hydrograph with Newton Backward Formula at the End of Hydrograph, \(n=3\)







Tables V.3.3
Upstream Routing Calculation with Newton Backward Formula, \(n=2\) and Finite Difference Based on the Second Derivative at the End of Hydrograph
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nuaber of data \(=33\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{K}=66.00\)} \\
\hline \multicolumn{4}{|l|}{\(i \quad=24.00\)} \\
\hline \multicolumn{4}{|l|}{\(\therefore 0\)} \\
\hline \multicolumn{4}{|l|}{aife} \\
\hline \multicolumn{4}{|l|}{Totel itarations \(=15\)} \\
\hline PERIOD &  & I具FLC & 1 MFE [ \\
\hline 1424.00 & tobservedi & (EE) & (calulatod-2) \\
\hline helers! & (my/EEC) & (m3) 5 E \()\) &  \\
\hline 0 & 275.000 & 274.000 & 275.600 \\
\hline 1 & \(2 \% .000\) & 55. 51 & 55.20! \\
\hline 2 & 520.000 & 50. 295 & 39.289 \\
\hline 3 & 361.000 & 454.010 & 454.010 \\
\hline 4 & 353.000 & 454.409 & 454. 504 \\
\hline 5 & 405.000 & 495.560 & 45.508 \\
\hline 6 & 442.000 & 55.650 & 565.650 \\
\hline 7 & 50.000 & 650.85 & 670.885 \\
\hline 8 & 545.000 & 6 ES .971 & 654.971 \\
\hline 9 & 593.000 & 65.365 & 65E, 36 \\
\hline 10 & 55.000 & 615.8!i & 615.811 \\
\hline 11 & 573.000 & \(6 \div 5.109\) & 65.109 \\
\hline 12 & 615.000 & 766.95 & 78.953 \\
\hline 15 & 68.000 & 1087.95 & 106.985 \\
\hline 14 & 85c.000 & 155.6me & 1534.50 \\
\hline 15 & 110.000 & 127.37 & 1276.37 \\
\hline 16 & 1056.000 & cEs. 238 & 95.258 \\
\hline 17 & 972.600 & 70.84 & 770.54 ! \\
\hline 15 & 56.000 & ESE.35 & 65.35 \\
\hline 15 & 517.000 & 545.928 & 545.920 \\
\hline 20 & 678.000 & 425.919 & 425.915 \\
\hline 21 & 666.000 & 436.945 & 43.949 \\
\hline 22 & 55.600 & 461.425 & 451.425 \\
\hline 23 & 539.000 & 454.917 & \(44^{4} 4.45\) \\
\hline 54 & 55.4000 & 512.667 & 512.667 \\
\hline 25 & 52.600 & 512.867 & 512.667 \\
\hline 26 & 524.000 & 455.167 & 95.167 \\
\hline 27 & 517.000 & \(44^{21.642}\) & 441.042 \\
\hline 28 & 475.000 & 325.354 & 325.354 \\
\hline 24 & 415.000 & 214.424 & 214.464 \\
\hline 30 & 301.000 & 166. 560 & 16.4.40 \\
\hline 31 & 27.000 & 250.709 & 250.707 \\
\hline 32 & 290.000 & 27.625 & 277.58 \\
\hline
\end{tabular}

Note:
calculated-1 is attaned usine fenton Bathard fermutan \(n=2\) calculated-2 is ottaned using batharis finite wiffence based un the serond deripatiye
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nuwber of data \(=33\)} \\
\hline & \(=66.00 \mathrm{~h}\) & & \\
\hline \(\dagger\) & \(=24.00 \mathrm{~h}\) & & \\
\hline x & = 0.10000 & & \\
\hline alfa & \(=0.90000\) & & \\
\hline \multicolumn{4}{|l|}{Tetal iterations \(=15\)} \\
\hline \[
\begin{array}{r}
\text { PESIOD } \\
\text { (: } 24.00 \\
\text { hour } 5)
\end{array}
\] & 0リTFLO (observed) (醇 \(/ \mathrm{Eac}\) ) & \[
\begin{array}{r}
1 \text { NFLO } \\
(\text { (calcuated }-1) \\
(\text { majsec })
\end{array}
\] & MFLOH (EAlculated-2) ( \(\mathrm{m} 3 / 5 \mathrm{sec}\) ) \\
\hline 0 & 274.000 & 274.060 & 274.000 \\
\hline 1 & 298.600 & 557.515 & 357.513 \\
\hline 2 & 320.900 & 600. 774 & 400.974 \\
\hline 3 & 361.000 & 47.972 & 439.972 \\
\hline 4 & 38.000 & 457.835 & 457.655 \\
\hline 5 & 405.000 & 56.765 & \(504.78{ }^{\text {5 }}\) \\
\hline \(t\) & 446.600 & 571.986 & 571.95 \\
\hline 7 & 50, 000 & 62.54 .5 & 677.545 \\
\hline \(\Sigma\) & 543.000 & 86.568 & 646.768 \\
\hline 9 & 59.000 &  & 545.577 \\
\hline 16 & 595.000 & \(621.95 \%\) & 621.833 \\
\hline 11 & 595.000 & 365.943 & 669.9 .93 \\
\hline 12 & 614.000 & 6R, 565 & 92.565 \\
\hline 13 & 685.000 & 10.00 .368 & 1000. 360 \\
\hline 14 & E90.000 & 1300.182 & 1304.182 \\
\hline \({ }_{5}^{5}\) & 1100.000 & 12te. 4 E6 & 1215.485 \\
\hline 16 & 1051.000 & 915.45 & 915.447 \\
\hline 17 & 972.000 & 752.716 & 75.710 \\
\hline 19 & 884.000 & 645.208 & 345.200 \\
\hline 15 & 817.009 & 547.668 & 527.668 \\
\hline 20 & 67.000 & 437.935 & 437.955 \\
\hline 21 & 606.009 & 4 4 5.2 E 2 & 455.282 \\
\hline 22 & 559.000 & 476.079 & 475.099 \\
\hline 23 & 53.000 & 50.48 .48 & 50.483 \\
\hline 24 & 534.000 & 515.233 & 515.253 \\
\hline 25 & 5.59 .000 & 509.516 & 549.516 \\
\hline 26 & 524.000 & \(455.35 \%\) & 485.352 \\
\hline 27 & 517.000 & 426.738 & 426.738 \\
\hline 28 & 476.000 & 316.152 & 316.152 \\
\hline 24 & 413.000 & 270.426 & 720.48 \\
\hline 30 & 301.000 & 182.542 & 182.362 \\
\hline 31 & 285.000 & 260.653 & 260.553 \\
\hline 32 & 290.000 & 275.404 & 273.464 \\
\hline
\end{tabular}

Hote:
calculated-1 is cistained using Nenton Hachuard Forabia, \(n=2\) calculated-2 is obtained using Fackuard finite difference based on the socord deriyative
\begin{tabular}{|c|c|}
\hline Wuather of data & \(=33\) \\
\hline R & \(=66.00\) hours \\
\hline T & \(=24.00\) hours \\
\hline \% & \(=0.20000\) \\
\hline 2lfa & \(=0.40000\) \\
\hline Tetal iterations & \(=19\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { FERIOD } \\
\text { (x } 24.00 \\
\text { hours }
\end{array}
\] & OUTFLDH (ebserved) (my/sec) &  & \[
\begin{array}{r}
\text { INFLOA } \\
\text { (calculated-2) } \\
\text { (ejisen) }
\end{array}
\] \\
\hline 0 & 274.000 & 274.060 & 274.000 \\
\hline 1 & 258.009 & 365.702 & 365.702 \\
\hline 2 & 320.000 & 418.078 & 40. 078 \\
\hline J & 361.000 & 441.217 & 441.217 \\
\hline 4 & 383.000 & 451.522 & 461.592 \\
\hline 5 & 40¢,000 & 50.003 & 509.023 \\
\hline 6 & 445.000 & 572.339 & 572.374 \\
\hline 7 & 502.000 & 62.599 & 62.979 \\
\hline 8 & 523.00 & 639.965 & 635.963 \\
\hline 9 & 593. W00 & 647.276 & 647.776 \\
\hline 10 & 55.000 & 63.911 & 633.911 \\
\hline 11 & 59.600 & 85.215 & 376.213 \\
\hline 12 & 614.000 & 889.606 & 869.606 \\
\hline 13 & 686.00 & 1077.172 & 1077.172 \\
\hline 14 & 989.000 & 1255.259 & 1255.259 \\
\hline 15 & 1100.000 & 1162.895 & 1162.89 \\
\hline 16 & 1031.000 & 98.9 .47 & 883.427 \\
\hline 17 & 972.000 & 742.021 & 742.021 \\
\hline 18 & 984.000 & 865.628 & 665.629 \\
\hline 19 & 817.000 & 554, 168 & \(55^{5} 4.188\) \\
\hline 20 & 678.000 & 454.37: & 454.371 \\
\hline 21 & 606.000 j & 472.782 & 472.782 \\
\hline 22 & 558.00 & 485.45 & 458.015 \\
\hline 23 & 539.000 & 50.857 & 50.577 \\
\hline 24 & 534.006 & 514.737 & 514.737 \\
\hline 25 & 529.000 & \(505.70{ }^{5}\) & 50.708 \\
\hline 26 & 524.000 & 474.625 & 474.425 \\
\hline 27 & 517.000 & 414.500 & 414.520 \\
\hline 25 & 476.000 & 311.685 & 311.685 \\
\hline 29 & 433.000 & 277.612 & 27.42 \\
\hline 30 & 301.000 & 195.999 & \(195.99 \%\) \\
\hline 31 & 295.000 & 262.805 & 262.805 \\
\hline 32 & 290.000 & 256.872 & 256.872 \\
\hline
\end{tabular}

Note :
calculated-1 is ottainad using kewton Eackuard Forgula; fi=2
calculated-2 is ottained using Eackerd finite difforence
tased on the secend derivative

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nuaber of data \(=33\)} \\
\hline k & \(=\$ 6.00 \mathrm{~h}\) & & \\
\hline T & \(=24.00 \mathrm{~h}\) & & \\
\hline \% & \(=0.40000\) & & \\
\hline alfa & \(=0.40000\) & & \\
\hline \multicolumn{4}{|l|}{Tutal iterations \(=23\)} \\
\hline PEsion & 0UTFL易 & INFLid & I \#F LO \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
(: 24,00 \\
\text { hour } 5 \text { ) }
\end{gathered}
\]} & \{oteserved & (calculated-1) & [calculater-2! \\
\hline & (6]/sec) &  & [ \(8 \sqrt{3} \mathrm{sec}\) ) \\
\hline 0 & 274.000 & 274.000 & 274.000 \\
\hline 1 & 295000 & 375.558 & 375.659 \\
\hline 2 & 320.000 & 40.8376 & 40.585 \\
\hline 3 & 36.000 & 48.4 .75 & 444.775 \\
\hline 4 & 385.000 & 465.169 & \$68.169 \\
\hline , & 405.000 & 514.140 & 515.160 \\
\hline \(\stackrel{i}{ }\) & 44.600 & 569.902 & 569.902 \\
\hline 7 & 502.000 & 615.033 & 615.035 \\
\hline 8 & 583.60 & 634.276 & 654.276 \\
\hline 9 & 593.000 &  & 85.594 \\
\hline 10 & 598.000 & 655.515 & 665.515 \\
\hline 11 & 593.000 & 73.434 & 73.454 \\
\hline 12 & 614.000 & 969.382 & 365.382 \\
\hline 13 & 536.000 & 1037.225 & 107.126 \\
\hline 14 & 89\%.000 & 1157.986 & 1157.985 \\
\hline 15 & 1100.000 & 1075.202 & 1073.202 \\
\hline 16 & 1001.000 & 845.960 & 845.960 \\
\hline 17 & 972.600 & 73.492 & 737.897 \\
\hline 15 & 884.000 & 651.679 & 651.679 \\
\hline 19 & 917.60 & 575.025 & 575.025 \\
\hline 20 & 678.000 & 497.353 & 467.383 \\
\hline 21 & 606.000 & 50.702 & 500.702 \\
\hline 2 & 559.000 & 50.671 & 502.671 \\
\hline 3 & 585.000 & 511.365 & 511.358 \\
\hline 24 & 534.000 & 507.360 & 507.360 \\
\hline 25 & 599.000 & \(4{ }^{4} 5.500\) & 455.590 \\
\hline \(2 t\) & 524.000 & \(45 \pm .156\) & 454.156 \\
\hline 27 & 517.000 & 397.452 & 397.452 \\
\hline 28 & 476.000 & 30.973 & 309.875 \\
\hline 29 & 413.000 & 245.497 & 243.497 \\
\hline 30 & 30.000 & 201.384 & 201.394 \\
\hline 31 & 295.600 & 231.711 & 231.711 \\
\hline 32 & 290.60 & 179.098 & 179.078 \\
\hline
\end{tabular}
fiete :
Calculated-1 is ottanod using lewton Eactuard Forgula, \(n=2\)
Ealculated-2 is obtained using Eackuard finite difference tased on the second derivative

fote :
calculated-1 is obtaned usine Menten Eacherd Formula, \(n=2\)
calculated-2 is cttaned using rackerd finite đifference tesed on the second terivative
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nunber of dita \(=33\)} \\
\hline \(k\) & \(=62.00 \mathrm{~h}\) & & \\
\hline \(\dagger\) & \(=24.00 \mathrm{~h}\) & & \\
\hline \% & \(=0.50000\) & & \\
\hline alfa & \(=0.40000\) & & \\
\hline \multicolumn{4}{|l|}{Total iterations \(=25\)} \\
\hline Period & OUTFLOE & I HFLO & INFLG: \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
(224.00 \\
\text { hours) }
\end{gathered}
\]} & (coseerved) & (calculsted-1) & (calculated-2) \\
\hline & ( 3 3/5e0) & ( \(\mathrm{a}_{3} / \mathrm{Sec}\) ) &  \\
\hline 0 & 274.000 & 275.000 & 274,006 \\
\hline 1 & \(2 \% .000\) & 381.32 & 381.32 \\
\hline 2 & 320.000 & 40.577 & 466.577 \\
\hline 3 & 36.000 & 445.512 & 445.920 \\
\hline 4 & 383.000 & 470.876 & 470.876 \\
\hline 5 & 405.60 & 515.534 & 515.539 \\
\hline b & 46.000 & 568.437 & 56.4 .437 \\
\hline \(i\) & 502.000 & 612.776 & 612.776 \\
\hline 8 & \(5 \div 5.00\) & 634.566 & 65.5 .565 \\
\hline 9 & \(5 \% .00\) & 641.929 & 66t.9.29 \\
\hline 10 & 507.00 & 675.632 & 675.832 \\
\hline 11 & 50.000 & 747.204 & 747.204 \\
\hline 12 & 614.000 & 955.587 & 86.937 \\
\hline 15 & Letom & 100.716 & 1009.715 \\
\hline 14 & 595.060 & 1113.46? & 1113.467 \\
\hline is & 1100.000 & 1040. 844 & 1040.844 \\
\hline 16 & 1081.000 & 837.607 & 837.697 \\
\hline 17 & 972.60 & 740.417 & 740.417 \\
\hline 15 & 884.000 & 657.757 & 657.757 \\
\hline 19 & 517.000 & 58.654 & 58.654 \\
\hline 20 & 67e.000 & 501.700 & 501.700 \\
\hline 21 & 60.000 & 510.495 & 510.468 \\
\hline 22 & 55.60 & 505.909 & 50.9089 \\
\hline 23 & 535.000 & 50.521 & 509.521 \\
\hline 24 & 53t.000 & 501.641 & 501.641 \\
\hline 25 & 50.000 & 450.295 & 480.296 \\
\hline 25 & 52t.009 & 444.687 & 444.687 \\
\hline 27 & 517.000 & 359.895 & 389.959 \\
\hline \% & 476.000 & 36.855 & 305.955 \\
\hline 29 & 423.000 & 241.372 & 241.372 \\
\hline 30 & 301.000 & 187.628 & 157.65 \\
\hline 31 & 295000 & 195.288 & 155.256 \\
\hline 3 & 200.60 & 115.943 & 116.843 \\
\hline
\end{tabular}

辣を:
 celculated-2 is obtained using Eackard finite difference
based on the gecond derivative

\subsection*{5.4 UPSTREAM ROUTING MOVING BACKWARD IN TIME}

In chapter 4, it has been shown that the cause of the instability of equation (4.1.1) is the coefficient in terms of \(C_{1}\) and \(C_{0}\). If the value of \(1-C_{1} / C_{0}\) is larger than 1.0 , the computation diverges. It has also been proved that only \(\mathrm{x}=0.0\) will give satisfactory results.

If equation (4.1.1) is re-arranged to
\[
\begin{equation*}
\mathrm{I}_{\mathrm{i}}=\frac{1}{\mathrm{C}_{1}} \cdot \mathrm{Q}_{\mathrm{i}+1}-\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}} \cdot \mathrm{Q}_{\mathrm{i}}-\frac{\mathrm{C}_{0}}{\mathrm{C}_{1}} \cdot \mathrm{I}_{\mathrm{i}+1} \tag{5.4.1}
\end{equation*}
\]
then
\[
\left|-\frac{C_{0}}{C_{1}}\right|=\left|-\frac{(-K \cdot x+\Delta t / 2)}{(K \cdot x+\Delta t / 2)}\right|
\]
is always less than 1.0 and any error entering into the calculated \(\mathrm{I}_{\mathrm{i}+1}\) value is carried forward into the calculation but diminishes towards zero. Therefore, equation (5.4.1) is numerically stable.

To solve eq.(5.4.1), it is required that the calculation be carried out backward in time, starting from the tail of the hydrograph (the ordinate at time \(i=N\) ) and moving backward to the start of rise of the hydrograph. Seemingly, this step is rather unusual, but as long as it can be computed mathematically and the concept is valid, it is still acceptable.

A problem which arises with this approach is that the starting discharge (at the tail of the hydrograph) may not be known. However, any uncertainty in this discharge diminishes rapidly towards zero, since the value of \(1-C_{0} / C_{1} \mid\) is always less than 1.0.

For a sample of computation, firstly the downstream hydrograph is calculated from the observed upstream hydrograph taken from ARR87 Table 7.1 page 134 using conventional downstream routing [equation (2.1.3)] with \(\mathrm{K}=\) 66 hours, \(\Delta t=24\) hours and parameter \(x=0.45\). Secondly, this result is used to
calculate back the upstream hydrograph using eq.(5.4.1). Figure 5.4 .1 shows the resulting upstream hydrograph calculated from various assumed starting discharges. Convergence is reached rapidly and good upstream hydrograph reproduction is obtained.


Figure 5.4.1 Upstream Routing Moving Backward in Time

This method works very well since there is no error propagation. It can be said that satisfactory results can always be obtained.

\subsection*{5.5 THE CUBIC SPLINE AND RUNGE-KUTTA METHODS}

If the derivative term in the equation of conservation of mass [eq.(2.1.1)] is based on the storage \(S\) equation [eq.(5.1.3)], that derivative can be written as follows:
\[
\begin{equation*}
\frac{\mathrm{dS}}{\mathrm{dt}}=\mathrm{K} \cdot \mathrm{x} \cdot \frac{\mathrm{dI}}{\mathrm{dt}}+\mathrm{K} \cdot(1-\mathrm{x}) \cdot \frac{\mathrm{dQ}}{\mathrm{dt}} \tag{5.5.1}
\end{equation*}
\]

Thus, the equation of conservation of mass:
\[
I-Q=\frac{d S}{d t}
\]
becomes
\[
\begin{align*}
& I-Q=K \cdot x \cdot \frac{d I}{d t}+K \cdot(1-x) \cdot \frac{d Q}{d t} \\
& I-K \cdot x \cdot \frac{d I}{d t}=Q+K \cdot(1-x) \cdot \frac{d Q}{d t} \tag{5.5.2}
\end{align*}
\]

On the right-hand side of eq.(5.5.2) are the known variables obtained from observed data, while on the left-hand side are the variables for which the solution is sought. This ordinary differential equation may be solved numerically by the Runge-Kutta. method. Difficulty arises in applying this method, since it requires that the right hand side \(Q\) variable in eq.(5.5.2) be available as a function, not as a set of data points, in order to be able to obtain the \(Q\) values and their derivatives at any time required in the method of solution. However, this problem can be overcome by fitting a Cubic Spline through the ordinates of the downstream hydrograph.

In the particular case where parameter \(x=0.0\), equation (5.5.2) becomes
\[
\begin{equation*}
\mathrm{I}=\mathrm{Q}+\mathrm{K} \cdot \frac{\mathrm{dQ}}{\mathrm{dt}} \tag{5.5.3}
\end{equation*}
\]
thus, it is not necessary to apply Runge-Kutta to solve. It can be solved for I straight-forwardly with help of cubic spline to obtain the derivative of Q . If parameter \(x\) is not equal to 0.0 , eq.(5.5.2) can be written as
\[
\begin{equation*}
\frac{1}{\mathrm{~K} \cdot \mathrm{x}} \cdot \mathrm{I}-\frac{\mathrm{dI}}{\mathrm{dt}}=\frac{1}{\mathrm{~K} \cdot \mathrm{x}} \cdot \mathrm{Q}+\frac{\mathrm{K}(1-\mathrm{x})}{\mathrm{K} \cdot \mathrm{x}} \cdot \frac{\mathrm{dQ}}{\mathrm{dt}} \tag{5.5.4}
\end{equation*}
\]

To solve eq.(5.5.4), both the cubic spline and Runge-Kutta methods have to be applied.

\subsection*{5.5.1 The Cubic Spline}

The theory described below is derived from Young (1972).
Suppose that one is interested in determining a function \(F(x)\) which approximates a given function \(f(x)\) in an interval \(I=[a, b]\). One method would be to subdivide the interval into N subintervals \(\mathrm{I}_{1}=\left[\mathrm{x}_{0}, \mathrm{x}_{1}\right] ; \mathrm{I}_{2}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] ; \ldots\); \(\mathrm{I}_{\mathrm{N}}=\left[\mathrm{x}_{\mathrm{N}-1}, \mathrm{x}_{\mathrm{N}}\right]\) where \(\mathrm{a}=\mathrm{x}_{0}, \mathrm{~b}=\mathrm{x}_{\mathrm{N}}\), and \(\mathrm{x}_{0}<\mathrm{x}_{1}<\ldots<\mathrm{x}_{\mathrm{N}}\). One could then determine by Lagrangian interpolation, or if the intervals are of equal length, by Gregory-Newton interpolation, a polynomial \(\mathrm{F}(\mathrm{x})\) of degree N or less such that \(F\left(x_{i}\right)=f\left(x_{i}\right), i=0,1, \ldots, N\). However, for certain functions the approximate representation of \(f(x)\) by a single polynomial throughout the interval is not satisfactory.

It is possible to use a cubic polynomial in each subinterval to obtain a function \(S(x)\) which interpolates to \(f(x)\) at the \(\left\{x_{i}\right\}\) in the entire interval. Such a function is known as a cubic spline function.

In using cubic spline interpolation, \(\mathrm{F}^{\prime}(\mathrm{x})\) and \(\mathrm{f}^{\prime}(\mathrm{x})\) are not required to agree at the points of interpolation. A function \(F_{k}(x)\) in the interval \(I_{k}\) has to be determined such that
\[
\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right), \quad \mathrm{i}=\mathrm{k}-1, \mathrm{k}
\]

For \(\mathrm{k}=1,2, \ldots, \mathrm{~N}-1\), it is also required that
\[
\begin{aligned}
& \mathrm{F}_{\mathrm{k}}^{\prime}\left(\mathrm{x}_{\mathrm{k}}-\right)=\mathrm{F}_{\mathrm{k}+1}^{\prime}\left(\mathrm{x}_{\mathrm{k}}+\right) \\
& \mathrm{F}_{\mathrm{k}}^{\prime \prime}\left(\mathrm{x}_{\mathrm{k}^{-}}\right)=\mathrm{F}_{\mathrm{k}+1}^{\prime \prime}\left(\mathrm{x}_{\mathrm{k}}+\right)
\end{aligned}
\]

The procedure involves determining \(\mathrm{M}_{\mathrm{k}}\), where
\[
\mathrm{M}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}}^{\prime \prime}\left(\mathrm{x}_{\mathrm{k}}-\right)=\mathrm{F}_{\mathrm{k}+1}^{\prime \prime}\left(\mathrm{x}_{\mathrm{k}}+\right)
\]

Since \(F_{k}(x)\) is a cubic polynomial, \(F_{k}^{\prime \prime}(x)\) is a linear function of \(x\) in \(I_{k}\), i.e.:
\[
\begin{equation*}
F_{k}^{\prime \prime}(x)=M_{k-1} \cdot \frac{x_{k}-x}{x_{k}-x_{k-1}}+M_{k} \cdot \frac{x-x_{k-1}}{x_{k}-x_{k-1}} \tag{5.5.5}
\end{equation*}
\]

By integrating eq.(5.5.5), it becomes
\[
\mathrm{F}_{\mathrm{k}}^{\prime}(\mathrm{x})=-\mathrm{M}_{\mathrm{k}-1} \cdot \frac{\left(\mathrm{x}_{\mathrm{k}}-\mathrm{x}\right)^{2}}{2 \mathrm{~h}_{\mathrm{k}}}+\mathrm{M}_{\mathrm{k}} \frac{\left(\mathrm{x}-\mathrm{x}_{\mathrm{k}-1}\right)^{2}}{2 \mathrm{~h}_{\mathrm{k}}}+\mathrm{c}_{1}
\]
where
\[
\begin{equation*}
\mathrm{h}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{k}-1} \tag{5.5.6}
\end{equation*}
\]
and where \(c_{1}\) is a constant of integration to be determined. By integrating again, it becomes
\[
\begin{equation*}
F_{k}(x)=M_{k-1} \cdot \frac{\left(x_{k}-x\right)^{3}}{6 h_{k}}+M_{k} \cdot \frac{\left(x-x_{k-1}\right)^{3}}{6 h_{k}}+c_{1} \cdot x+c_{2} \tag{5.5.7}
\end{equation*}
\]

By letting \(y_{k}=f\left(x_{k}\right)\), eqs.(5.5.8) is obtained.
\[
\begin{align*}
\mathrm{y}_{\mathrm{k}-1} & =\mathrm{M}_{\mathrm{k}-1} \cdot \frac{\mathrm{~h}_{\mathrm{k}}^{2}}{6}+\mathrm{c}_{1} \cdot \mathrm{x}_{\mathrm{k}-1}+\mathrm{c}_{2} \\
\mathrm{y}_{\mathrm{k}} & =\mathrm{M}_{\mathrm{k}} \cdot \frac{\mathrm{~h}_{\mathrm{k}}^{2}}{6}+\mathrm{c}_{1} \cdot \mathrm{x}_{\mathrm{k}}+\mathrm{c}_{2} \tag{5.5.8}
\end{align*}
\]
hence,
\[
\begin{aligned}
& c_{1}=\frac{\left(y_{k}-y_{k-1}\right)-\left(M_{k}-M_{k-1}\right)\left(h_{k}^{2} / 6\right)}{\mathrm{h}_{\mathrm{k}}} \\
& \mathrm{c}_{2}=\frac{\left(\mathrm{x}_{\mathrm{k}} \cdot \mathrm{y}_{\mathrm{k}-1}-\mathrm{x}_{\mathrm{k}-1} \cdot \mathrm{y}_{\mathrm{k}}\right)-\left(\mathrm{x}_{\mathrm{k}} \cdot \mathrm{M}_{\mathrm{k}-1}-\mathrm{x}_{\mathrm{k}-1} \cdot \mathrm{M}_{\mathrm{k}}\right)\left(\mathrm{h}_{\mathrm{k}}^{2} / 6\right)}{\mathrm{h}_{\mathrm{k}}}
\end{aligned}
\]
by substituting in eq.(5.5.7), eq.(5.5.9) is obtained.
\[
\begin{align*}
F_{k}(x)= & M_{k-1} \cdot\left(\frac{\left(x_{k}-x\right)\left(\left(x_{k}-x\right)^{2}-h_{k}^{2}\right)}{6 \cdot h_{k}}\right)+M_{k} \cdot\left(\frac{\left(x-x_{k-1}\right)\left(\left(x-x_{k-1}\right)^{2}-h_{k}^{2}\right)}{6 \cdot h_{k}}\right) \\
& +\frac{1}{h_{k}} \cdot y_{k-1}\left(x_{k}-x\right)+\frac{1}{h_{k}} \cdot y_{k}\left(x-x_{k-1}\right) \tag{5.5.9}
\end{align*}
\]

By differentiating, eq.(5.5.10) is obtained.
\(F_{k}^{\prime}(x)=M_{k-1} \cdot\left(\frac{h_{k}^{2}-3\left(x_{k}-x\right)^{2}}{6 \cdot h_{k}}\right)+M_{k} \cdot\left(\frac{3\left(x-x_{k-1}\right)^{2}-h_{k}^{2}}{6 \cdot h_{k}}\right)+\frac{1}{h_{k}}\left(y_{k}-y_{k-1}\right)\)

If \(\mathrm{F}_{\mathrm{k}}^{\prime}\left(\mathrm{x}_{\mathrm{k}^{-}}\right)=\mathrm{F}_{\mathrm{k}+1}^{\prime}\left(\mathrm{x}_{\mathrm{k}}+\right)\) then
\(\frac{h_{k}}{6} \cdot M_{k-1}+\frac{h_{k}}{3} \cdot M_{k}+\frac{1}{h_{k}}\left(y_{k}-y_{k-1}\right)=-\frac{h_{k+1}}{3} \cdot M_{k}-\frac{h_{k+1}}{6} \cdot M_{k+1}+\frac{1}{h_{k+1}}\left(y_{k+1}-y_{k}\right)\)
or
\(\frac{h_{k}}{6} \cdot M_{k-1}+\frac{h_{k}+h_{k+1}}{3} \cdot M_{k}+\frac{h_{k+1}}{6} \cdot M_{k+1}=\left[\frac{1}{h_{k+1}}\left(y_{k+1}-y_{k}\right)-\frac{1}{h_{k}}\left(y_{k}-y_{k-1}\right)\right]\)
\((\mathrm{k}=1,2, \ldots, \mathrm{~N}-1)\)
This is a system of \(\mathrm{N}-1\) linear algebraic equations with \(\mathrm{N}+1\) unknowns, i.e.: \(\mathrm{M}_{0}\), \(\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{N}}\). Two more equations are needed to solve that system. Arbitrarily, \(\mathrm{M}_{0}\) and \(\mathrm{M}_{1}\) can be assumed by taking:
\[
\begin{align*}
& \dot{F}_{1}^{\prime}\left(x_{0}\right)=0 \\
& \dot{F_{N}^{\prime}}\left(x_{N}\right)=0 \tag{5.5.13}
\end{align*}
\]
(Equations (5.5.13) imply that the slopes of downstream Q hydrograph at time i \(=0\) and \(\mathrm{i}=\mathrm{N}\) are assumed to be equal to zero.)

Using eqs. (5.5.13), eq.(5.5.10) gives
\[
\begin{align*}
& \frac{\mathrm{h}_{1}}{3} \cdot M_{0}+\frac{\mathrm{h}_{1}}{6} \cdot M_{1}=\frac{1}{\mathrm{~h}_{1}}\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right) \\
& \frac{\mathrm{h}_{\mathrm{N}}}{6} \cdot M_{N-1}+\frac{h_{N}}{3} \cdot M_{N}=-\frac{1}{\mathrm{~h}_{\mathrm{N}}}\left(\mathrm{y}_{\mathrm{N}}-\mathrm{y}_{\mathrm{N}-1}\right) \tag{5.5.14}
\end{align*}
\]

Eventually, the system has \(\mathrm{N}+1\) linear algebraic equations with \(\mathrm{N}+1\) unknowns. The values of \(M_{0}, M_{1}, \ldots, M_{N}\) can uniquely determined. This follows since the determinant of matrix \(A\) of the system, does not vanish.
\[
[\mathrm{A}][\mathrm{M}]=[\mathrm{D}]
\]
\[
A=\begin{array}{cccccc}
\frac{h_{1}}{3} & \frac{h_{1}}{6} & \cdot & \cdot & \cdots & \cdot \\
\frac{h_{1}}{6} & \frac{h_{1}+h_{2}}{3} & \frac{h_{2}}{6} & \cdot & \cdots & \cdot \\
\cdot & \frac{h_{2}}{6} & \frac{h_{2}+h_{3}}{3} & \frac{h_{3}}{6} & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot \\
& \cdot & \cdot & \cdot & \cdot & \cdots \\
& \cdot & \cdot & \cdot & \cdots & \cdot \\
& \cdot & \cdot & \cdot & \cdot \\
& & & & & \cdot \\
\hline
\end{array}
\]
\[
\mathrm{M}=\left[\begin{array}{c}
\mathrm{M}_{0} \\
\mathrm{M}_{1} \\
\mathrm{M}_{2} \\
\vdots \\
\mathrm{M}_{\mathrm{N}-1} \\
\mathrm{M}_{\mathrm{N}}
\end{array}\right]
\]
\[
D=\left[\begin{array}{c}
\frac{1}{h_{1}}\left(y_{1}-y_{\partial}\right) \\
\frac{1}{h_{2}}\left(y_{2}-y_{1}\right)-\frac{1}{h_{1}}\left(y_{1}-y_{\partial}\right) \\
\frac{1}{h_{3}}\left(y_{3}-y_{2}\right)-\frac{1}{h_{2}}\left(y_{2}-y_{\nu}\right) \\
\vdots \\
\frac{1}{h_{N}}\left(y_{N}-y_{N-1}\right)-\frac{1}{h_{N-1}}\left(y_{N-1}-y_{N-2}\right) \\
-\frac{1}{h_{N}}\left(y_{N}-y_{N-l}\right)
\end{array}\right]
\]

The solution of a system of linear algebraic equations with a tri-diagonal matrix can easily be carried out. In this project, that system is solved by using Gauss elimination methods. This method is common, hence it is not discussed herein.

\subsection*{5.5.2 The Runge-Kutta Method}

The theory described below is all derived from Grove (1966).

This version of the Runge-Kutta method uses terms through the fourth derivative. The equations are given below:
\[
\begin{equation*}
y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 \cdot k_{2}+2 \cdot k_{3}+k_{4}\right) \tag{5.5.15}
\end{equation*}
\]
where
\[
\begin{align*}
& \mathrm{k}_{1}=\mathrm{h} . \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)  \tag{5.5.16}\\
& \mathrm{k}_{2}=\mathrm{h} . \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}+\frac{1}{2} \mathrm{~h}, \mathrm{y}_{\mathrm{n}}+\frac{1}{2} \mathrm{k}_{1}\right)  \tag{5.5.17}\\
& \mathrm{k}_{3}=\mathrm{h} . \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}+\frac{1}{2} \mathrm{~h}, \mathrm{y}_{\mathrm{n}}+\frac{1}{2} \mathrm{k}_{2}\right)  \tag{5.5.18}\\
& \mathrm{k}_{4}=\mathrm{h} . \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}+\mathrm{h}, \mathrm{y}_{\mathrm{n}}+\mathrm{k}_{3}\right) \tag{5.5.19}
\end{align*}
\]

The differential equation must, of course, be written as \(y^{\prime}=f(x, y)\) with an initial condition that \(\mathrm{x}=\mathrm{x}_{0}\) when \(\mathrm{y}=\mathrm{y}_{0}\).

Use of the Runge-Kutta method is as follows: compute the four k values from (5.5.16), (5.5.17), (5.5.18) and (5.5.19) and substitute into (5.5.15). This yields a new point \(\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+1}\right)\), which is then re-used as the initial point. The process is repeated across the interval of the desired solution.

Example : Solve \(\mathrm{y}^{\prime}=\mathrm{x}-\mathrm{y}\) for the initial condition \(\mathrm{x}=0, \mathrm{y}=2\) with \(\mathrm{h}=0.1\).
Solution:
\[
\begin{aligned}
& \mathrm{x}_{0}=0, \mathrm{y}_{0}=2, \mathrm{~h}=0.1, \mathrm{y}^{\prime}=\mathrm{x}-\mathrm{y} \\
& \mathrm{k}_{1}=0.1(0-2)=-0.2 \\
& \mathrm{k}_{2}=0.1\{0.05-[2+1 / 2(-0.2)]\}=0.1[0.05-1.9]=-0.185 \\
& \mathrm{k}_{3}=0.1\{0.05-[2+1 / 2(-0.185)]\}=0.1[0.05-1.9075]=-0.18575 \\
& \mathrm{k}_{4}=0.1\{0.1-(2-0.18575)\}=0.1[0.1-1.81425]=-0.171425 \\
& \mathrm{y}_{1}=2+1 / 6[-0.2+2(-0.185)+2(-0.18575)-0.171425]=1.8145125
\end{aligned}
\]

Now, using \(x=0.1\) and \(y=1.8145125\) as the initial point,
\[
\begin{aligned}
& \mathrm{k}_{1}=-0.17145125 \\
& \mathrm{k}_{2}=-1.5787869 \\
& \mathrm{k}_{3}=-1.5855732 \\
& \mathrm{k}_{4}=1.4559552
\end{aligned}
\]
\[
\mathrm{y}_{2}=1.6561927
\]

Now
\[
\begin{array}{ll}
\mathrm{x}_{2}=0.2, & \mathrm{y}_{2}=1.6561927 \\
\mathrm{x}_{3}=0.3, & \mathrm{y}_{3}=1.5224553 \\
\mathrm{x}_{4}=0.4, & \mathrm{y}_{4}=1.4109609 \\
\mathrm{x}_{5}=0.5, & \mathrm{y}_{5}=1.3195929 \\
\mathrm{x}_{6}=0.6, & \mathrm{y}_{6}=1.2464359 .
\end{array}
\]

\subsection*{5.5.3 The Application of the Cubic Spline and Runge-Kutta} Methods

Equation (5.5.4) can be written as
\[
\frac{d \mathrm{I}}{\mathrm{dt}}=-\frac{1}{\mathrm{~K} \cdot \mathrm{x}} \cdot \mathrm{Q}-\frac{\mathrm{K}(1-\mathrm{x})}{\mathrm{K} \cdot \mathrm{x}} \cdot \frac{\mathrm{dQ}}{\mathrm{dt}}+\frac{1}{\mathrm{~K} \cdot \mathrm{x}} \cdot \mathrm{I}
\]
or \(\quad I^{\prime}(t)=D(t)+c . I\)
where
\[
\begin{align*}
c & =1 /(\mathrm{K} \cdot \mathrm{x})  \tag{5.5.20}\\
\mathrm{D}(\mathrm{t}) & =-\frac{1}{\mathrm{~K} \cdot \mathrm{x}} \cdot \mathrm{Q}-\frac{\mathrm{K}(1-\mathrm{x})}{\mathrm{K} \cdot \mathrm{x}} \cdot \mathrm{Q}^{\prime}(\mathrm{t})
\end{align*}
\]

Equation (5.5.20) is very similar to the example discussed above, i.e.: \(\mathrm{y}^{\prime}=\mathrm{x}-\mathrm{y}\). Hence, the way to solve eq.(5.5.20) is the same as that in the example. The difference is that the value of \(\mathrm{D}(\mathrm{t})\) should be determined by using the spline function. The value \(Q(t)\) is obtained using eq.(5.5.9) while the value of \(Q^{\prime}(t)\) is obtained using eq.(5.5.10). It should be emphasized that since the spline function results in a different polynomial equation for every subinterval, it is very essential to check thoroughly whether or not the appropriate polynomial equation is used according to the corresponding time interval.

Numerical experiments were done using the downstream hydrograph taken from ARR87 Table 7.1 page 134 with \(\mathrm{K}=66\) hours, \(\Delta \mathrm{t}=24\) hours and various parameter x values \((0,0.1, \ldots, 0.5)\). Computation shows that only \(\mathrm{x}=0.0\) gives
adequately satisfactory result, the rest of parameter \(x\) values result in divergence, even though the very small \(h\) value ( \(h=0.1\) hours) and quite large \(h\) value ( \(h=\Delta t\) \(=24\) hours) are used (in this context, \(h\) is the subinterval of time step \(\Delta t\), see section 5.5.2).

If parameter \(x=0.0\), the Runge-Kutta method is not applied. This is because eq.(5.5.3) does not have a term \(\mathrm{dI} / \mathrm{dt}\). The spline function is still applied to obtain the value of \(\mathrm{dQ} / \mathrm{dt}\) (and Q ) at any time required in the computation. Figure 5.5.1 shows the result for parameter \(\mathrm{x}=0.0\).


Figure 5.5.1 Upstream Routing with Spline Function

Based on experiments, it can be concluded that the Runge-Kutta combined with cubic spline fitting methods does not yield satisfactory results, the computation diverges rapidly. The only \(x\) which makes the computation converge
is \(\mathrm{x}=0.0\), since the computation does not need the Runge-Kutta method. However, the result is not satisfactory, oscillations will most probably occur, as can be seen in Fig. 5.5.1.

\subsection*{5.6 SUMMARY}

It has been shown that the reverse application of the conventional Muskingum routing procedure to obtain an upstream hydrograph yields unsatisfactory results (chapter 4). Very rapid divergence occurs since the computation is numerically unstable. However, re-arrangement of the formulation to use an iterative solution combined with a smoothing algorithm and a weighting factor \(\alpha\) can replace that method. Very good estimates of upstream hydrograph I are obtained if the correct choice of time step \(\Delta \mathrm{t}\) is applied (section 5.1).

The problem encountered by the iterative method is how to determine the derivative storage \(S\) at the end of hydrograph (at time \(i=N\) ). In conjunction with that, several approximations which have been investigated indicate that the most accurate estimates of \(I\) are obtained by assuming the derivative \(S\) at time \(i=N+1\) to be equal to the one at time \(\mathrm{i}=\mathrm{N}\), so that a central finite difference can be used to calculate the derivative \(S\) at time \(\mathrm{i}=\mathrm{N}\). First order backward difference also gave satisfactory results, but second order backward difference and Newton backward formula did not.

The use of a smoothing algorithm in the iteration process is for removing oscillations which are likely to occur in the computation, while the use of a weighting factor \(\alpha\) is for accelerating the iteration process so that the required number of iterations decreases greatly.

Re-arrangement of the usual finite difference form of the Muskingum equation to solve for \(I_{i}\) given \(I_{i+1}\) (i.e.: upstream routing moving backward in
time) ensures that the solution converges and very accurate estimates of the upstream hydrograph are obtained (section 5.4).

The cubic spline combined with the Runge-Kutta method does not yield satisfactory results. According to the numerical experiments, the computation diverges for any time step \(\Delta t\), except for parameter \(x=0\), and even this has oscillations. It should be noted that if parameter \(x=0\), only the cubic spline (without Runge-Kutta) is applied in the computation since the term \(\mathrm{dI} / \mathrm{dt}\) does not appear in the equation.

\section*{Chaprerer Sias}

\section*{Downstream Routing Using Iterative Method}

\subsection*{6.0 INTRODUCTION}

As discussed in chapter 5, it is clear that the iterative method can overcome the inability of upstream routing derived from the standard Muskingum equation to give satisfactory results.

This chapter is intended to describe briefly how the iterative method can be applied not only for upstream routing but also for downstream routing. Samples of computations using both the iterative method and conventional downstream routing are compared. The results of the iterative method cannot agree exactly with those of conventional downstream routing, since the approaches used are different. Nevertheless, the results of both methods have been shown to agree reasonably well with the observed downstream hydrograph.

As has been described in chapter 5, a problem with the iterative method is how to determine the derivative of storage \(S\) at the tail of the hydrograph (at time \(\mathrm{i}=\mathrm{N}\) ) since the value of \(\mathrm{S}_{\mathrm{N}+1}\) is not known. Some approaches were investigated in conjunction with that problem. Computations showed that the best results were obtained by assuming \(\mathrm{S}_{\mathrm{N}+1}\) equal to \(\mathrm{S}_{\mathrm{N}}\). Therefore, in this chapter this assumption is adopted. The other approaches, i.e.: backward differences, Newton backward formula and Runge-Kutta and cubic spline are no longer discussed.

\subsection*{6.1 COMPUTATION PROCEDURE}

The computation procedure of the iterative method for downstream routing is the same as that for upstream routing. The procedure is discussed briefly.

The equation of conservation of mass [eq.(2.1.1)] is re-arranged into
\[
\begin{equation*}
\mathrm{Q}_{\mathrm{i}}=\mathrm{I}_{\mathrm{i}}-\frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{I}_{\mathrm{i}} \tag{6.1.1}
\end{equation*}
\]
where the subscript \(i\) refers to the time \(i\). The derivative of \(S\) is expressed in central finite differences using the simplest two point scheme
\[
\begin{equation*}
\frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{I}_{\mathrm{i}}=\left(\mathrm{S}_{\mathrm{i}+1}-\mathrm{S}_{\mathrm{i}-1}\right) /(2 . \Delta \mathrm{t}) \tag{6.1.2}
\end{equation*}
\]
while the storage \(S\) at any specified discharge is expressed by
\[
\begin{equation*}
S=K \cdot[x \cdot I+(1-x) \cdot Q] \tag{6.1.3}
\end{equation*}
\]

Equation (6.1.1) is not used to calculate the value of \(\mathrm{Q}_{0}\) at time \(\mathrm{i}=0\). The value of \(Q_{0}\) must be given an initial value, since eq.(6.1.1) is a differential equation. The assumption usually made is
\[
\begin{equation*}
\mathrm{Q}_{0}=\mathrm{I}_{0} \tag{6.1.4}
\end{equation*}
\]
but any value of \(Q_{0}\) can be used.

As has been discussed in chapter 5 , the storage S at time \(\mathrm{i}=\mathrm{N}+1\) is assumed to be equal to that at time \(\mathrm{i}=\mathrm{N}\left(\mathrm{S}_{\mathrm{N}+1}=\mathrm{S}_{\mathrm{N}}\right)\), therefore eq.(6.1.2) for calculating \(\mathrm{dS} / \mathrm{dt} \mathrm{N}_{\mathrm{N}}\) becomes
\[
\begin{equation*}
\frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{I}_{\mathrm{N}}=\left(\mathrm{S}_{\mathrm{N}}-\mathrm{S}_{\mathrm{N}-1}\right) /(2 . \Delta \mathrm{t}) \tag{6.1.5}
\end{equation*}
\]

Combining eqs.(6.1.1), (6.1.2) and (6.1.3) yields an implicit equation, since the storage \(S\) is expressed in terms of the downstream discharge \(Q\), the value of which itself is being sought.

The implicit equation is solved using an iterative process with instantaneous discharges. The method of solution used is to
- adopt the upstream hydrograph ordinates I as the first estimate of the downstream hydrograph ordinates \(Q\), give an initial value at time \(i=0\) to \(Q_{0}\) which remains unchanged throughout the iterative process,
- use eq.(6.1.3) to calculate the values of storage \(S\),
- use eqs.(6.1.2) and (6.1.5) to determine the derivative dS/dt
- then use eq.(6.1.1) to make an improved estimate of \(Q\).

These steps are repeated until successive calculated downstream hydrographs converge.

For clarity, it is more convenient to describe the steps in the computation procedure with help of a flow chart (see Fig. 6.1.1). They are explained below.

\section*{Step 1}

Initialize iteration \(\mathrm{k}=1\).

\section*{Step 2}

Give an initial value at time \(\mathrm{i}=0\) to \(\mathrm{Q}\left(\mathrm{Q}_{0}\right)\) [eq.(6.1.4)] which remains unchanged throughout the required number of iterations to converge and adopt the upstream


Figure 6.1.1 Flow Chart of the Computation
hydrograph ordinates as the first estimate of the downstream hydrograph ordinates \(\left(\mathrm{Q}_{\mathrm{a}}\right)\).

\section*{Step 3}

Equate \(\mathrm{Q}^{\mathrm{k}-1}\) (downstream hydrograph ordinates at iteration \(\mathrm{k}-1\) ) with \(\mathrm{Q}_{\mathrm{a}}\).

\section*{Step 4}

Calculate storage \(S\) for all ordinates throughout the flood according to the given data \(I\) and the values of \(Q\) obtained in step 3 using eq.(6.1.3).

\section*{Step 5}

Calculate storage change dS/dt using eq.(6.1.2) for all ordinates, except for the first and the last ordinates. Since the value of Q at time \(\mathrm{i}=0\left(\mathrm{Q}_{0}\right)\) is assumed, \(\mathrm{dS} /\left.\mathrm{dt}\right|_{\mathrm{O}}\) is calculated using
\[
\begin{equation*}
\frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{~J}_{0}=\mathrm{I}_{0}-\mathrm{Q}_{0} \tag{6.1.6}
\end{equation*}
\]

The value of \(\mathrm{dS} / \mathrm{dt}\) at the last ordinate is calculated using eq.(6.1.5). It should be noted that the value of \(\mathrm{dS} /\left.\mathrm{dt}\right|_{0}\) is used in the smoothing algorithm (step 6) when time \(\mathrm{i}=1\).

\section*{Step 6}

Because oscillations are likely to occur in the estimated downstream hydrograph (as discussed in chapter 5), the smoothing algorithm
\[
\begin{equation*}
\left.\frac{\mathrm{dS}}{\mathrm{dt}}\right|_{i} ^{*}=\left(\frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{t}_{\mathrm{i}-1}^{*}+2 \cdot \frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{t}_{\mathrm{i}}+\frac{\mathrm{dS}}{\mathrm{dt}} \mathrm{i}_{\mathrm{i}+1}\right) / 4 \tag{6.1.7}
\end{equation*}
\]
is applied to eradicate them. The subscript * refers to the value which has been or is being smoothed. The smoothing algorithm is carried out from the derivative at time \(\mathrm{i}=1\) up to time \(\mathrm{i}=\mathrm{N}-1\).

\section*{Step 7}

Calculate new downstream hydrograph ordinates \(\mathrm{Q}^{\mathrm{k}}\) using eq.(6.1.1).

\section*{Step 8}

Since the upstream hydrograph ordinates I are adopted as the first estimate of the downstream hydrograph ordinates to be used to estimate the ordinates \(Q\) at the next iteration, and the iteration is repeated until successive calculated downstream hydrographs converge, it is necessary to adopt a convergence criterion for terminating the iteration. If the relative change in each value of \(Q\) from one iteration to the next is expressed as
\[
\begin{equation*}
d_{i}=\left|\frac{Q_{i}^{k}-Q_{i}^{k-1}}{Q_{i}^{k}}\right| \quad i=1,2, \ldots, N \tag{6.1.8}
\end{equation*}
\]
where superscript \(k\) refers to the value of \(Q\) at iteration \(k\) and superscript \(k-1\) refers to the value of Q at iteration \(\mathrm{k}-1\), convergence can be said to have been reached when each \(d_{i}\) is equal to or less than some specified small quantity. In this project, as used in chapter 5 , the convergence criterion is taken as
\[
\begin{equation*}
\mathrm{d}_{\mathrm{i}} \leq 0.001 \tag{6.1.9}
\end{equation*}
\]

\section*{Step 9}

Check the values of \(d_{i}\) obtained from eq.(6.1.8) in step 8 using condition (6.1.9). If they are all equal to or less than 0.001 , the downstream hydrograph ordinates
are set equal to the \(\mathrm{Q}^{\mathrm{k}}\) ordinates and the process is finished. If not, continue to step 10.

\section*{Step 10}

In order to improve the results dramatically, with fewer iterations required, the downstream hydrograph ordinates at iteration k are combined with those at iteration \(\mathrm{k}-1\) as a weighted average to make a new estimate of downstream hydrograph ordinates \(\left(\mathrm{Q}_{\mathrm{a}}\right)\). This condition is expressed as
\[
\begin{equation*}
Q_{a_{i}}=Q_{i}^{k-1}+\left(Q_{i}^{k}-Q_{i}^{k-1}\right) \cdot \alpha \tag{6.1.10}
\end{equation*}
\]
where \(\mathrm{i}=0,1,2, \ldots, \mathrm{~N}\) and \(0<\alpha<1\). It was found by numerical experiments that the effective \(\alpha\) lies between 0.1 and 0.7. After calculating a new estimate of downstream hydrograph ordinates \(Q\) using eq.(6.1.10) return to step 3 to get into the next iteration \((\mathrm{k}+1)\).

Further explanation about the weighting factor \(\alpha\) is discussed in section 6.3 of this chapter.

\subsection*{6.2 CONDITION TO CONVERGE}

Equations (6.1.1), (6.1.2) and (6.1.3) can be combined to yield
\[
\begin{equation*}
Q_{i}=I_{i}-\frac{K}{2 \cdot \Delta t}\left[x \cdot I_{i+1}+(1-x) \cdot Q_{i+1}^{*}-x \cdot I_{i-1}-(1-x) \cdot Q_{i-1}^{*}\right] \tag{6.2.1}
\end{equation*}
\]

Superscript * refers to the values which are assumed for the trial or obtained from the previous iteration.

Convergence can be reached as long as the absolute value of the multiplying factor related to the unknown variable Q is less than 1.0 (as discussed similarly for upstream routing). This condition is expressed from eq. (6.2.1) as
\[
\begin{gather*}
\mathrm{K} .(1-\mathrm{x}) /(2 . \Delta \mathrm{t})<1, \text { or } \\
\Delta \mathrm{t}>\mathrm{K} .(1-\mathrm{x}) / 2 \tag{6.2.2}
\end{gather*}
\]

The larger the time step \(\Delta t\) used in the computation, the fewer the number of iterations required. However, if the time step \(\Delta t\) is too large, not all points on the hydrograph are considered and the peak may be missed.

In practice, the limiting time step \(\Delta t\) required to converge is somewhat larger than that given by condition (6.2.2). This can be noticed more clearly from Figure 6.2.1.


Figure 6.2.1 Graphic (1-x)/2 vs. Min.Time Step/K

The values in the actual line (Fig.6.2.1) were obtained by trial and error computations using the data taken from ARR87 Table 7.1 page 134. These values can be reduced down to those in the theoretical line, if a weighting factor is applied, as discussed in the next section.

\subsection*{6.3 WEIGHTING FACTOR \((\alpha)\)}

As mentioned in section 6.1 step 10 , applying a weighting factor \(\alpha\) [eq.(6.1.10)] can improve the results, with fewer iterations required. The other advantage of applying a weighting factor \(\alpha\) (as also mentioned in chapter 5) in the iterations is that the actual limiting time steps \(\Delta t\) can be reduced down to those in the theoretical line given by condition (6.2.2) or even to certain values of \(\Delta t\) which are less than those in the theoretical line if the appropriate weighting factor \(\alpha\) is used. The particular values of \(\Delta t\) that can be reached should be determined by numerical experiments. For example if parameter \(\mathrm{x}=0\) and \(\mathrm{K}=66\) hours, then using condition (6.2.2), \(\Delta t>33\) hours. In practice, the minimum \(\Delta t\) which still can make the process converge without weighting factor (i.e. \(\alpha=1\) ) is 41 hours. If a weighting factor \(\alpha=0.4\) is applied, the time step \(\Delta \mathrm{t}\) can be reduced down to 23 hours which is less than that given by condition (6.2.2).


Figure 6.3.1 Graphic \(\alpha\) Vs. Number of Iterations for Parameter \(\mathrm{x}=0.3\)

Based on numerical experiments using various values of parameter \(x\), with \(\mathrm{K}=66\) hours and \(\Delta \mathrm{t}>\mathrm{K} .(1-\mathrm{x}) / 2\) and condition (6.1.9) for terminating the iteration, the optimum \(\alpha\) which gives the fewest number of iterations is \(\alpha=0.4\) or a value which is close to 0.4 (see Fig. 6.3.1). Other values of parameter x result in similar graphics to that in Fig. 6.3.1 which is given by \(\mathrm{x}=0.3\).

\subsection*{6.4 TESTS OF COMPUTATIONS}

Tests of computations have been carried out in chapter 5 using the observed upstream hydrograph taken from ARR87 Table 7.1 page 134, see Tables V.1.1 column 3 and also Figs. 5.1.5 in this thesis.

In order to see the order of accuracy of the iterative method for downstream routing compared with that of the standard Muskingum method, results using both methods with the observed upstream hydrograph taken from ARR87 Table 7.1 page 134 , parameter \(x=0.45, K=66\) hours and \(\Delta t=24\) hours are presented in Fig. 6.4.1.

It can be noticed from Fig. 6.4.1 that the decreasing discharge which occurs on day 12 in the hydrograph obtained from the standard Muskingum method, occurs in the hydrograph obtained from the iterative method on day 11 and is 'deeper' than that on day 12 . On the other hand, the peak of the hydrograph (the magnitude and the time at which it occurs) obtained from the iterative method is much closer to the recorded one compared with that obtained from the standard Muskingum method. It can be concluded that notwithstanding the decreasing discharge on day 11 , the result obtained from the iterative method for downstream routing agrees as well with the recorded one as does the standard Muskingum method.

It should be noted that the decreasing discharge at the start of rise of the major peak in the downstream hydrograph occurs for all values of parameter \(x\) in
the range \(0 \leq x \leq 0.5\). The decreasing discharge becomes 'deeper' as the parameter \(x\) value increases.


Figure 6.4.1 Downstream Routing to Obtain Downstream Hydrograph

> Using the Standard Muskingum and Iterative Methods

Note : Calculated (1) : calculated using the standard Muskingum method Calculated (2) : calculated using the iterative method

\subsection*{6.5 SUMMARY}

It has been shown that the iterative method developed in this study for the case of upstream routing can also be applied to downstream routing. It can be seen, by comparing the results obtained from the standard Muskingum and iterative methods with the observed downstream hydrograph, that the results obtained from the iterative method agree reasonably well with the observed hydrograph and also with the standard Muskingum method.

In order to converge, the iterative method has a condition for choosing the time step \(\Delta \mathrm{t}\) [eq.(6.2.2)]. The number of iterations are reduced if a time step larger than this value of \(\Delta t\) is used. However, if the time step \(\Delta t\) chosen is too large, the
shape of the calculated hydrograph is not adequately defined, and the peak may be missed.

If a weighting factor \(\alpha=0.4\) is used, the iteration converges much faster, and a smaller time step can be used.

\section*{Chsupter Sewem}

\section*{Conclusions}

Conventional application of the Muskingum method, to calculate the flood hydrograph at a downstream station on a river from a known hydrograph at an upstream station, has been shown to work satisfactorily. However, when the method is applied in reverse, to calculate the upstream hydrograph from a known hydrograph at a downstream station, the process has been found to be computationally unstable and the calculation diverges from the true solution. This has been investigated and found to be due to the values of the coefficients appearing in the equation.

The computational instability can be overcome by adopting an alternative finite difference approximation to the differential equation of conservation of mass, and solving the problem iteratively, in which the required values for each trial are set equal to the calculated values from the previous trial. The method has been
found to converge to the correct solution, depending on the time \(\Delta t\) used, and this value of \(\Delta t\) depends on the values of the model parameters K and x . More rapid convergence occurs if a smoothing algorithm is applied to the derivative of storage \(S\) and a weighting factor ( \(\alpha\) ) is applied to combine the calculated values from the last two trials as a weighted average to yield a new estimate for the subsequent trial.

The advantage of applying the weighting factor ( \(\alpha\) ) in the calculations is in not only reducing the total number of iterations required but also reducing the limiting time step \(\Delta t\) which still can make the process converge.

Several variations of the iteration method have been investigated, including the use of backward differences and the Newton backward formula for estimating values at the end of the hydrograph. However best results were obtained when a simple two point central difference scheme, plus smoothing and weighting was used.

The computational instability of the Muskingum method to calculate the upstream hydrograph from a known hydrograph at a downstream station can also be overcome if the Muskingum equation is re-arranged to solve for \(I_{i}\) given \(I_{i+1}\) (i.e.: moving backward in time). The solution has been found to converge and yield very accurate estimates of the upstream hydrograph.

The application of cubic spline combined with the Runge-Kutta method to calculate the upstream hydrograph from a known downstream hydrograph does not yield satisfactory results. The computations have been found to diverge rapidly for any time step \(\Delta \mathrm{t}\), except for parameter \(\mathrm{x}=0\) when only the cubic spline (without Runge-Kutta) is applied in the computation.

Computer programs have been developed which allow normal downstream routing calculation, upstream and downstream routing using the iterative method,

\section*{Chapter 7-Conclusions 7-3}
and upstream routing moving backward in time. These computer programs contain graphical output. Examples of running the programs are given in Appendix A.

\section*{Referemees}

Bellman, R.E. and Roth, R.S. (1986). "Methods in Approximation". D. Reidel Publishing Co., Holland.

Borland International (1985). "Turbo Graphix Toolbox". Version 1.0, First Edition. U.S.A.

Boyd, M.J., Pilgrim, D.H., Knee, R.M. and Budiawan, D. (1989). "Reverse Routing to Obtain Upstream Hydrographs". Inst. Engineers Australia, Hydrology and Water Resources Symposium, National Conference Publ. 89/19, pp. 372-376.

Butler, S.S. (1957). "Engineering Hydrology". Prentice-Hall, U.S.A.

Cunge, J.A. (1969). "On the Subject of a Flood Propagation Method". Jour. of Hydraulic Research, Intl Assoc. of Hydraulic Research. Vol. 7, pp. 205-230.

De Vahl Davis, G. (1986). "Numerical methods in Engineering and Science". Allen and Unwin Ltd., U.K.

Diskin, M.H. (1967). "On the Solution of the Muskingum Method of Flood Routing Equation". Jour. of Hydrology, Vol. 5, pp. 286-289.

Dooge, J.C.I. (1973). "Linear Theory of Hydrologic Systems". U.s. Dep. Agric. Res. Serv. Washington., D.C., Tech. Bull. 1468.

Gill, M.A. (1978). "Flood Routing by the Muskingum Method". Jour. of Hydrology, Vol. 36, pp. 353-363.

Gill, M.A. (1979a). "Translatory Characteristics of the Muskingum Method of Flood Routing". Jour. of Hydrology, Vol. 40, pp. 17-29.

Gill, M.A. (1979b). "Flood routing by the Muskingum Method - Reply". Jour. of Hydrology, Vol. 41, pp. 169-170.

Grove, W.E. (1966). "Brief Numerical Methods", Prentice-Hall, N.J.

Institution of Engineers, Australia (1987). "Australian Rainfall and Runoff. A Guide to Flood Estimation". Vol. 1.

Jones, S.B. (1981). "Choice of Space and Time Steps in the Muskingum-Cunge Flood Routing Method". Proc. ICE, Part 2, Vol. 71, pp. 759-772.

Kulandaiswamy, V.C. (1966). "A Note on Muskingum Method of Flood Routing". Jour. of Hydrology, Vol. 4. pp. 273-276.

Linsley, R.K., Kohler, M.A. and Paulhus, J.L.H. (1982). "Hydrology for Engineers". 3rdEd. McGraw-Hill, New york.

Nash, J.E. (1959). "A Note on the Muskingum Flood Routing Method". Jour. of Geophysical Research, Vol. 64, pp. 1053-1056.

Pilgrim, D.H. and Watson, K.K (1967). " A Comparative Study of Response Correction Methods for Linear Ratemeters". Nuclear Instruments and Methods, Vol. 46, pp. 77-85.

Ponce, V.M., Yevjevich, V. and Simons, D.B. (1978). "The Numerical Dispersion pf the Muskingum Method". Proc. 26 th Hydraulic Div. Specialty Conf. ASCE, College Park Md.

Price, R.K. (1973a). "Flood Routing Methods for British Rivers". Proc. ICE, Part 2, Vol. 55, pp. 913-930.

Price, R.K. (1973b). "Variable Parameter Diffusion Method for Flood Routing". Hydr. Res. Station, Wallingflord, U.K. Rep. INT 115.

Raudkivi, A.J. (1979). "Hydrology - An Advanced Introduction to Hydrological Processes and Modelling". William Clowes (Beccles) Limited, Beccles and London.

Salvadori, M.G. and Baron, M.L (1964). "Numerical Methods in Engineering". Prentice Hall, N.J.

Savitch, W.J. (1986). "An Introduction to the Art and Science of Programming: Turbo Pascal Edition". The Benjamin/Cummings Publishing Co., Inc.

Scheid, F. (1968). "Theory and Problems of Numerical Analysis". Schaum's Outline Series. McGraw-Hill, U.S.A.

Schneider, G.M., Weingart, S.W., Perlman, D.M. (1982). "An Introduction to Programming and Problem Solving with Pascal". John Wiley and Sons.

Sharp, J.J. and Sawden, P. (1984). "Basic Hydrology". Butterworth and Co. Ltd., U.K.

Singh, V.P. and McCann, R.C. (1979). "Quick Estimation of Parameters of Muskingum Method of Flood Routing". Proc. 14 th Annu. Mississippi Water Resour. Conf., Jackson, Miss., Sept. 24-25, 1979, pp.65-70.

Singh, V.P. and McCann, R.C. (1980). "Some Notes on Muskingum Method of Flood Routing". Jour. of Hydrology, Vol. 48, pp. 343-361.

Stephenson, D. (1979). "Direct Optimization of Muskingum Routing Coefficients". Jour. of Hydrology, Vol. 41, pp. 161-165.

Steve W. (1986). "Using Turbo Pascal". Osbome McGraw-Hill.

Strupczewski, M. and Kundzewicz, Z. (1980a). "Muskingum Method Revisited". Jour. of Hydrology, Vol. 48, pp. 327-342.

Strupczewski, M. and Kundzewicz, Z. (1980b). "Translatory Characterictics of the Muskingum Method of Flood Routing - A Comment". Jour. of Hydrology, Vol. 48, pp. 363-368.

Venetis, C. (1969). "The IUH of the Muskingum Channel Reach". Jour. of Hydrology, Vol. 7, pp. 444-447.

Young, D.M. (1972). "A Survey of Numerical Mathematics". Volume 1. Addison-Wesley, U.S.A.

\title{
Examples of Running Programs
}

\section*{A. 0 INTRODUCTION}

The aim of these examples is to provide a set of easy to follow instructions on how to use the programs, on the function of each program and the data and information that each program requires.

The programs are written in Turbo Pascal language and allow for the input of upstream and downstream hydrograph data to be used for downstream or upstream routing. To describe results of computations more clearly, graphic programs are also provided. These programs comprise several sub-programs taken from 'Turbo Graphix Toolbox' by Borland International (1985). Some modifications to those sub-programs were made to suit the need of the numerical analysis. These graphic programs have some limitations, namely:
- Spline function which is used for fitting polynomials through the observed or calculated data points cannot be expected to work satisfactorily when the
number of data points is very few (e.g. 3 data points). This is because the spline function is not fitted to endpoints. To overcome this problem, linear curves are used to replace spline function at end intervals.
- The maximum number of data points which can be plotted is approximately 60 . This limitations is due to the size of matrix used in the spline computation in 'Turbo Graphix Toolbox'.

All of the programs in the diskette enclosed with this thesis are in machine code language. This means that to run the program, it is not necessary to first load the Turbo Pascal language into the memory of the computer. The programs can be run directly from DOS. The advantage of this is that the program will run much faster, because the computer does not have to change the Turbo Pascal commands into executable machine code commands while it is running.

\section*{A. 1 HOW TO RUN THE PROGRAM}

First of all, if the computer is off, place the diskette in disk drive A and switch on the computer. If everything is working correctly, there will simply be a prompt like 'A>'. If the computer is already on, place the diskette in disk drive A and depress <ctrl><Alt><Del> simultaneously. Now type 'INITIAL' and press \(<\) RETURN \(>\). This will load the menu program, so on running the program the opening screen will look like this:

Flood Routing Program
MUSKINGUM
by :
DEDI BUDIAWAN
Student id. no. 8900066
Department of Civil \& Mining Engineering
The University of Wollongong
N.S.W. - AUSTRALIA

Figure A.1.1

And then after few seconds,

\section*{MUSKINGUM \\ FLOOD ROUTING PROGRAM}
\begin{tabular}{c} 
MAIN MENU \\
[a] Downstream Routing \\
[b] Upstream Routing \\
[Q] Exit to System \\
Press the appropriate character and \(<\) RETURN \(>\) ! \\
Your choice? \\
\hline
\end{tabular}

Figure A.1.2

This is the main menu of the programs. Once the user has decided which program to use, simply enter the character of the program followed by pressing \(<\) RETURN \(>\).

\section*{A. 2 WORKED EXAMPLES}

The data used in these examples are the same as those used in the main chapters, i.e. the data taken from ARR87 Table 7.1 page 134 (Pilgrim, I.E.,Australia, 1987). See chapter 1 in this thesis.

Note: the character(s) written in italics is(are) entered by the user.

\section*{A.2.1 DOWNSTREAM ROUTING}

If option [a] in Main Menu (Fig. A.1.2) is chosen, downstream routing calculation will be carried out. The following menu will come up:

PROGRAM OF DOWNSTREAM ROUTING
[a] Conventional Muskingum Method
[b] Iterative Method
[R] Return to Main Menu
[Q] Exit to System
Press the appropriate character and <RETURN> !
your choice?

Figure A.2.1

There are two methods of downstream routing, namely:
a. Conventional Muskingum method
b. Iterative method.

\section*{A.2.1.1 Downstream Routing Using Conventional Muskingum \\ Method}

If option [a] in the menu above (Fig. A.2.1) is chosen, the following menu will come up:

\section*{Downstream Routing Using Conventional Muskingum Method}

MENU
[a] Store data into a file
[b] Change data
[c] Run program
[d] Graphic
[e] Erase data file
[R] Return to Main Menu
[Q] Exit to System
Press the appropriate character and <RETURN> !
Your choice?

Figure A.2.2

Below is the description of main options of the menu in Fig. A.2.2.

\section*{[a] Store data into a file}

After choosing [a] in the menu (Fig. A.2.2), the opening screen will be:
Name of data file to store observed upstream hydrograph data : DATA1 <RETURN>
The next screen is:
The unit of inflow discharge has to be in \(\mathrm{m}^{3} / \mathrm{sec}\).
Information:
The things which should be noticed are that:
1. Number of data is unlimited
2. As the last datum, simply write " 30303 "
3. The value of alfa ( \(0<a \mathrm{lfa} \mathrm{a} 1\) ) plays no part in

Conventional Muskingum downstream routing
Routing Period T [hours] \(=24\)
Average Travel Time K [hours] = 66
Parameter \(\mathrm{x} \quad=0.00\)
alfa
\(=0.40\)
Inflow [ 0] = 274
Inflow [ 1] = 314
Inflow [2] \(=355\)
Inflow [ 3] \(=404\)

Inflow [30] \(=301\)

Inflow [31] = 274
Inflow [32] = 271
Inflow [33] \(=30303\)

Note: Inflow [ 0] \(=274\) denotes the value of inflow at time \(\mathrm{i}=0\)
Inflow [32] \(=271\) denotes the value of inflow at time \(i=32\)
Inflow [33] \(=30303\) does not denote the value of inflow at time \(\mathrm{i}=33\).
This is used for terminating data input. The data in this example are taken from chapter 1 Table I. 2.1 column (2) of this thesis.

After Inflow \([33]=30303\), the screen will return to the menu in Fig. A.2.2.

\section*{[b] Change data}

After choosing [b] in the menu (Fig. A.2.2), the opening screen will be:
Name of file of which data will be changed : DATAI
The next screen is:

INFORMATION
Name of file of which data will be changed : DATA1
\begin{tabular}{lccc} 
PD & DATA & PD & DATA \\
\hline 0 & 24.000 & 1 & 66.000 \\
2 & 0.000 & 3 & 0.400 \\
\(:\) & & & \\
etc. & & &
\end{tabular}
(Press <RETURN>)

PD is datum position number on which the change of datum is based.
After pressing \(<\) RETURN \(>\), the next screen will be:

\section*{INFORMATION :}

You will change the data in a file named : DATA1
if there is no datum changed, give 30303 to PD !
Position number of datum (PD) which is changed: 2
Old datum
New datum
Do you want to change more data? \([\mathrm{Y} / \mathrm{N}] N\)

After pressing ' N ' and \(<\) RETURN \(>\), the program will return to the menu in Fig. A.2.2.

\section*{[c] Run Program}

After choosing [c] in the menu (Fig. A.2.2), the opening screen will be :

INFORMATION :
You must have the inflow hydrograph data
stored in a file
if not, choose [a] in MEN U
Do you have an inflow hydrograph data file ? [Y/N] \(Y\)
The next line is :
Name of inflow hydrograph data file : DATA1
The next screen will be:
The current values of \(\mathrm{T}, \mathrm{K}, \mathrm{x}\) and alfa are:
Routing Period T \(\quad=24.00\) hours
Average Travel Time K \(\quad=66.00\) hours
Parameter \(x \quad=0.00\)
alfa \(=0.40\)
Note: The value of alfa \((0<a l f a<1)\) plays no part in this method
Do you want to make any changes to K and x values? \([\mathrm{Y} / \mathrm{N}] Y\)
The next lines will be:
New Average Travel Time K [hours] \(=66\)
New Parameter \(\mathrm{x}=0.45\)
In this case, only the parameter x value is changed.
The next line is:
Do you want to change T value ? \([\mathrm{Y} / \mathrm{N}] N\)

If the answer is ' Y ' then the program will ask for the new routing period. Based on this new routing period, the data are interpolated. Then, the program will ask for a data filename to put these interpolated data. They are needed in the graphic program.

The next screen will be:

Is starting outflow value the same as starting inflow value ? \([\mathrm{Y} / \mathrm{N}] Y\)
The program will then display the result of the computation:
\(Q\) outflow [ 0] \(=274.000\)
Q outflow [ 1] = 259.342
Q outflow [ 2 ] \(=271.476\)
Q outflow [3] = 295.022
etc.
Press any key to continue !
After displaying the result of the computation, the next screen will be:
Total volume of inflow hydrograph \(=1583064000.00 \mathrm{~m}^{3}\)
Total volume of outflow hydrograph \(=1576724760.40 \mathrm{~m}^{3}\)
Relative difference between these total volumes \(=0.400 \%\)
Name of data file to store result matrix : \(B B B\)
Note: Relative difference between the total volumes above is obtained using:
\[
\mathrm{D}_{\mathrm{R}}=\frac{\left|\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}\right|}{\mathrm{V}_{\text {in }}} \cdot 100 \%
\]
where: \(\mathrm{V}_{\text {in }}\) : total volume of inflow hydrograph
\(\mathrm{V}_{\text {out }}\) : total volume of outflow hydrograph, and
\(\mathrm{D}_{\mathrm{R}} \quad:\) relative difference between these total volumes
The next screen is:
Input \& output will be printed ? \([\mathrm{Y} / \mathrm{N}] N\)

If the answer is ' Y ', make sure that the printer is already on. The results of the computations including the data used are printed in a tabular form as presented in the former chapters.

The last screen of this program is:

\section*{Return to MENU ? [Y/N] Y}

If the answer is ' N ' then it will exit to DOS. Since the answer is ' Y ', the program will return to menu in Fig.A.2.2, and the next option is ready to be chosen.

\section*{[d] Graphic}

This graphic program can be run provided that program [c] has been run to obtain the result of computation stored in a file.

Below are the instructions after choosing [d] in the menu (Fig. A.2.2).
Do you have RESULT FILE, obtained by
running program [c] in MENU ? [Y/N] \(Y\)
If the answer is ' N ', the program will ask the user to return to MENU. The next screen is:

Was your result file obtained by iterative method ? \([\mathrm{Y} / \mathrm{N}] N\)
This question determines whether or not the value of alfa is put in the graphic. In this method the value of alfa plays no part so that the answer is ' N '.

The next screen will be:

Name of the calculated outflow data file : \(B B B\)
and then

Name of the inflow hydrograph data file used for calculation : DATA1

It should be noted that if the data have been interpolated according to the new value of T before being processed, the name of the inflow hydrograph data file must be the name of the file in which the interpolated data are stored (see part '[c] Run Program')

The next screen is :
Graphic will be printed? [Y/N] \(N\)
If the answer is ' Y ', make sure that the printer is already on.
After a few moments, the screen will display the graphic. To return to text mode, simply press any key.

The last screen of this program is:

The program will return to menu in Fig. A.2.1. If the answer is ' N ', it will exit to DOS.

\section*{A.2.1.2 Downstream Routing Using Iterative Method}

If option [b] in the menu (Fig. A.2.1) is chosen, the following menu will come up:


Figure A.2.3

Except option '[c] Run Program', the other options in Fig. A. 2.3 will not be discussed any longer since they are similar to those in section A.2.1.1.

\section*{[c] Run Program}

After choosing [c] in the menu (Fig. A.2.3), the opening screen will be:

INFORMATION :
You must have the inflow hydrograph data
stored in a file
if not, choose [a] in MEN U
Do you have an inflow hydrograph data file ? [Y/N] \(Y\)

The next line is :
Name of inflow hydrograph data file : DATA1
The next screen will be:
The current values of \(\mathrm{T}, \mathrm{K}, \mathrm{x}\) and alfa are:
Routing Period T \(\quad=24.00\) hours
Average Travel Time K \(\quad=66.00\) hours
Parameter \(\mathrm{X} \quad=0.00\)
alfa \(=0.40\)
Do you want to make any changes to \(\mathrm{K}, \mathrm{x}\) and alfa values? [Y/N] \(Y\)
The next lines will be:
\[
\begin{aligned}
\text { New Average Travel Time K [hours] } & =66 \\
& =0.45 \\
\text { New Parameter x } & =0.40
\end{aligned}
\]

Only the parameter x value is changed in this case.
The next lines are :

> Based on K and x values in order to converge, Routing Period T should be \(>18.15\) hours

Do you want to change T value? [Y/N] \(N\)

If the answer is ' Y ' then the program will ask for the new routing period. If the new routing period is still \(\leq 18.15\) hours, the program will warn that it may lead to divergence and it will ask the user whether or not to correct the routing period \(T\) again. Based on the new routing period, the data are interpolated. Then, the program will ask for a data filename to put these interpolated data. They are needed in the graphic program.

The next screen will be:
Is starting outflow value the same as starting inflow value? \([\mathrm{Y} / \mathrm{N}] Y\)
The program will then display:
Iteration 21
Process has been finished ! Press any key to continue !

The next screen will be the result of the computation:

Q outflow [ 0] \(=274.000\)
Q outflow [ 1] = 269.450
\(Q\) outflow [ 2] \(=283.490\)
\(Q\) outflow [ 3 ] \(=280.261\)
Q outflow [ 4] = 319.690
:
etc.
Press any key to continue !
After displaying the result of the computation, the next screen will be:
Total volume of inflow hydrograph \(=1583064000.00 \mathrm{~m}^{3}\)
Total volume of outflow hydrograph \(=1578855653.00 \mathrm{~m}^{3}\)
Relative difference between these total volumes \(=0.266 \%\)
Name of data file to store result matrix : \(B B B\)

Note: The relative difference between the total volumes above is obtained using the same formula given in section A.2.1.1 part '[c] Run Program'.

The next screen is:
Input \& output will be printed ? \([\mathrm{Y} / \mathrm{N}] N\)

If the answer is ' Y ', make sure that the printer is already on. The results of the computations including the data used are printed in a tabular form as presented in the former chapters.

The last screen of this program is:

\section*{Return to MENU ? [Y/N] \(Y\)}

If the answer is ' \(N\) ' then it will exit to DOS. Since the answer is ' \(Y\) ', the program will return to menu in Fig.A.2.3.

\section*{A.2.2 UPSTREAM ROUTING}

If option [b] in Main Menu (Fig. A.1.2) is chosen, upstream routing calculation is ready to be carried out. The following menu will come up:

\section*{PROGRAM OF UPSTREAM ROUTING}
[a] Moving Backward in Time
[b] Iterative Method
[R] Return to Main Menu
[Q] Exit to System
Press the appropriate character and <RETURN> !
your choice?

Figure A.2.4

There are two methods of upstream routing, namely:
a. moving backward in time
b. iterative method

The worked examples for storing data into a file, changing data and graphic will not be described any longer in this section, since they are similar to those in section A.2.1.1. The only option which will be described is '[c] Run Program'. The data used in these examples are taken from chapter 1 Table I.2.1 column (3). These data were stored using option [a] in the menu presented later below with file name: DATA2.

\section*{A.2.2.1 Upstream Routing Moving Backward in Time}

If option [a] in the menu (Fig. A.2.4) is chosen, the following menu will come up:


Figure A.2.5

Below is the description of option [c] of the menu in Fig. A.2.5.

\section*{[c] Run Program}

After choosing [c] in the menu (Fig. A.2.5), the opening screen will be:
INFORMATION:
You must have the outflow hydrograph data
stored in a file
if not, choose [a] in MEN U
Do you have an outflow hydrograph data file ? \([\mathrm{Y} / \mathrm{N}] Y\)
The next line is :
Name of outflow hydrograph data file : DATA2
The next screen will be:
The current values of \(\mathrm{T}, \mathrm{K}, \mathrm{x}\) and alfa are:
Routing Period T \(\quad=24.00\) hours
Average Travel Time \(K \quad=66.00\) hours
Parameter \(\mathrm{x} \quad=0.00\)
alfa \(\quad=0.40\)
Note: The value of alfa \((0<a l f a<1)\) plays no part in this method
Do you want to make any changes to K and x values? \([\mathrm{Y} / \mathrm{N}] Y\)
The next lines will be:
\[
\begin{aligned}
\text { New Average Travel Time K [hours] } & =66 \\
\text { New Parameter } \mathrm{x} & =0.45
\end{aligned}
\]

In this case, only the parameter x value is changed.
The next line is:
Do you want to change T value? \([\mathrm{Y} / \mathrm{N}] N\)

As has been mentioned in the previous section, if the answer is ' \(Y\) ' then the program will ask for the new routing period. Based on this new routing period, the data are interpolated. Then, the program will ask for a data filename to put these interpolated data. They are needed in the graphic program.

The next screen will be:
Is starting inflow value the same as starting outflow value ? [Y/N] \(Y\)
If the answer is ' N ', the program will ask for the new starting inflow value. It should be carefully noted that since this method is moving backward in time, the starting inflow is the value at the end of hydrograph (at time \(\mathrm{i}=\mathrm{N}\) ).

The program will then display the result of the computation:
\[
\begin{aligned}
& Q \text { inflow }[0]=343.920 \\
& Q \text { inflow }[1]=373.235 \\
& Q \text { inflow }[2]=415.14 \\
& Q \text { inflow }[3]=432.436 \\
& Q \text { inflow }[4]=469.265 \\
& \vdots \\
& \text { etc. }
\end{aligned}
\]

> Press any key to continue !

After displaying the result of the computation, the next screen will be:
Total volume of inflow hydrograph \(=1579346579.70 \mathrm{~m}^{3}\)
Total volume of outflow hydrograph \(=1583020800.00 \mathrm{~m}^{3}\)
Relative difference between these total volumes \(=0.232 \%\)
Name of data file to store result matrix : CCC
Note: Relative difference between the total volumes above is obtained using:
\[
D_{R}=\frac{\left|V_{\text {in }}-V_{\text {out }}\right|}{V_{\text {out }}} \cdot 100 \%
\]
where: \(V_{\text {in }}\) : total volume of inflow hydrograph
\(V_{\text {out }}\) : total volume of outflow hydrograph, and
\(\mathrm{D}_{\mathrm{R}} \quad\) : relative difference between these total volumes
The next screen is:
Input \& output will be printed ? \([\mathrm{Y} / \mathrm{N}] N\)

If the answer is ' Y ', make sure that the printer is already on. The results of the computations including the data used are printed in a tabular form as presented in the former chapters.

The last screen of this program is:
\[
\text { Return to MENU ? }[\mathrm{Y} / \mathbb{N}] Y
\]

If the answer is ' \(N\) ' then it will exit to DOS. Since the answer is ' \(Y\) ', the program will return to menu in Fig.A.2.5.

\section*{A.2.2.2 Upstream Routing Using Iterative Method}

If option [b] in the menu (Fig. A.2.4) is chosen, the following menu will come up:

Upstream Routing Using Iterative Method
MENU
[a] Store data into a file
[b] Change data
[c] Run program
[d] Graphic
[e] Erase data file
[R] Return to Main Menu
[Q] Exit to System
Press the appropriate character and <RETURN>!
Your choice? _

Figure A.2.6

Below is the description of option [c] of the menu in Fig. A.2.6.

\section*{[c] Run Program}

After choosing [c] in the menu (Fig. A.2.6), the opening screen will be:

INFORMATION:
You must have the outflow hydrograph data
stored in a file
if not, choose [a] in MEN U
Do you have an outflow hydrograph data file ? [Y/N] \(Y\)
The next line is :
Name of outflow hydrograph data file : DATA2
The next screen will be:
The current values of \(\mathrm{T}, \mathrm{K}, \mathrm{x}\) and alfa are:
Routing Period \(\mathrm{T} \quad=24.00\) hours
Average Travel Time K \(\quad=66.00\) hours
Parameter \(\mathrm{x} \quad=0.00\)
alfa \(=0.40\)
Do you want to make any changes to \(\mathrm{K}, \mathrm{x}\) and alfa values ? \([\mathrm{Y} / \mathrm{N}]\)
The next lines will be:
New Average Travel Time K [hours] \(=66\)
New Parameter \(\mathrm{x} \quad=0.45\)
New alfa \(=0.40\)
Only the parameter x value is changed in this case.
The next lines are :
Based on K and x values in order to converge,
Routing Period T should be > 14.85 hours
Do you want to change T value ? \([\mathrm{Y} / \mathrm{N}] N\)

As has been similarly mentioned in section A.2.1.2, if the answer is ' Y ', the program will ask for the new routing period. If the new routing period is still \(\leq 14.85\) hours, the program will warn that it may lead to divergence and it will ask the user whether or not to correct the routing period T again. Based on the
new routing period, the data are interpolated. Then, the program will ask for a data filename to put these interpolated data. They are needed in the graphic program. The next screen will be:

Is starting inflow value the same as starting outflow value ? \([\mathrm{Y} / \mathrm{N}] \mathrm{Y}\)
The program will then display:
Iteration 16
Process has been finished !
Press any key to continue !
The next screen will be the result of the computation:
Q inflow [ 0] = 274.000
\(Q\) inflow [ 1 ] \(=378.502\)
\(Q\) inflow [ 2] \(=406.226\)
\(Q\) inflow [ 3] \(=445.065\)
\(Q\) inflow [ 4] = 469.599
etc.
Press any key to continue !
After displaying the result of the computation, the next screen will be:
Total volume of inflow hydrograph \(=1575918712.50 \mathrm{~m}^{3}\)
Total volume of outflow hydrograph \(=1583020800.00 \mathrm{~m}^{3}\)
Relative difference between these total volumes \(=0.449 \%\)
Name of data file to store result matrix : CCC

Note: The relative difference between the total volumes above is obtained using the same formula given in section A.2.2.1.

The next screen is:
Input \& output will be printed ? \([\mathrm{Y} / \mathrm{N}] N\)

If the answer is ' Y ', make sure that the printer is already on. The results of the computations including the data used are printed in a tabular form as presented in the former chapters.

The last screen of this program is:

\section*{Return to MENU ? [Y/N] Y}

If the answer is ' \(N\) ' then it will exit to DOS. Since the answer is ' \(Y\) ', the program will return to menu in Fig.A.2.6.

\section*{DATATECHㅁ}```

