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A l b s t t i r a c t l

Flood routing is commonly used to calculate the shape of the flood 
hydrograph at the downstream end of a reservoir or a river reach, if the flood 
hydrograph at the upstream end of the reach is known. The flood routing 
procedure also enables prediction of the time at which the flood will occur at the 
downstream station.

One of the methods of flood routing which has been widely applied in 
engineering practice because of its simplicity and accuracy is the Muskingum 
method. This method is based on the assumption of a linear algebraic relationship 
between inflow I, outflow Q and storage S in a reach. The equation used is 
basically and numerically derived from the differential equation of continuity or 
conservation of mass.

As mentioned above, flood routing normally involves the use of an upstream 
hydrograph to estimate a downstream hydrograph, an example is estimating the 
flood hydrograph at the downstream end of a river reach. An estimate of the 
upstream hydrograph from the recorded flood hydrograph at the downstream end 
is sometimes required. This case is less common, but still significant. For 
example, it can be needed to fill in missing records using those at a downstream 
station.

This reverse routing equation, mathematically, can be deduced easily from 
the conventional Muskingum equation, i.e.: re-arranging the Muskingum equation 
to solve for inflow I given outflow Q. Difficulties often arise, since the process is 
numerically unstable. This numerical instability can cause the process to diverge 
from the true solution or oscillations to occur in the calculated upstream 
hydrograph. In practice, satisfactory upstream hydrographs cannot be obtained.
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This project is intended to investigate that problem, to determine the cause of 
the numerical instability and to develop some alternative approaches which can 
overcome the problem.

Several methods of solution were investigated, including an iterative 
approach combined with a smoothing and averaging algorithms. Results using this 
method show that the numerical instability can be overcome by selecting an 
appropriate time step (routing period), which has been shown to depend on the 
values of the Muskingum model parameters. The solution converges rapidly 
because of the use of the averaging algorithm, and accurate estimates of the 
upstream hydrograph are obtained. It can be said that this method has the same 
order of accuracy as the conventional downstream routing using the Muskingum 
method.
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A wetted cross-sectional area of channel 
B mean channel width 
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C0 Muskingum coefficient, Nash coefficient
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D reciprocal of cell Reynolds number, differential operator d/dt 
d relative difference in each value of I or Q from one iteration to the next
E error function
g acceleration due to gravity
I inflow or upstream discharge into a reach
I* inflow or upstream discharge assumed for first trial or obtained from 

previous iteration 
i increment counter
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k iteration number
M conveyance
m slope of inflow curve [Nash (1959)]
N time interval at which last hydrograph ordinate was observed or is calculated
n Manning coefficient
Q outflow or downstream discharge, discharge
Q* outflow or downstream discharge assumed for first trial or obtained from 

previous iteration 
q lateral inflow per unit length
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qQ reference discharge per unit width 
R hydraulic radius, cell Reynolds number 
r ratio of time increment to space increment 
S volume of temporary or channel storage 
Se estimated storage
Sf friction slope
SG observed storage, bed slope
s downstream distance
Tr time of rise of inflow hydrograph
t time
Vq downstream component of velocity of lateral inflow 
x Muskingum method parameter
y water depth
z weighting factor
AS storage increment
As space increment (reach length)
At time increment or time step or routing period 
a  weighting factor
X ratio of time base to time increment
ji diffusion parameter
o  difference between absolute and relative storage
x time taken by the flood wave to reach the downstream end of the river reach 

as defined by Gill (1979a) 
co kinematic wave speed
V backward difference operator



I n t r o d u c t i o n

1.0 INTRODUCTORY REMARKS
In hydrologic practice, the need to determine a flood hydrograph at a certain 

site when the flood hydrograph at an upstream site on a river channel or reservoir 
system is known, is a common problem. For example, a major flood hydrograph 
may be known at a certain site on a river and it is required to calculate the 
corresponding flood hydrograph at a downstream station, in order that ample flood 
protection can be provided. As another example, assume that a major flood 
hydrograph has been recorded by the stream gauging station at a certain site of a 
river just upstream from a proposed reservoir site. The corresponding outflow 
hydrograph is required for the proposed reservoir as a test of the sufficiency of the 
proposed outlet works.

Both of the examples above show the need for flood routing. The first is 
concerned with river routing and the second with reservoir routing. In scientific

3 0009 02898 4370
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terms, flood routing is a technique used to compute the effect of system storage 
on the shape and movement of a flood wave. Storage, in this context, is the 
volume of water temporarily stored within the reach at any given time and which is 
in transit to the outlet or downstream site. It does not include water which is 
retained permanently. Because this storage is temporary, the total volume of 
inflow must be equal to the total volume of outflow.

The hydrograph for the downstream site differs from the one for the 
upstream site. It has a different pattern in which peak is lower and base is broader. 
The peak itself occurs at a later time. The effect of the system which leads to a 
lower peak is called a tte n u a tio n  and a delay between the peaks of the 
downstream and the upstream hydrographs is called lag-time.

The lower peak indicates the degree of peak flow reduction resulting from passage 
through the reservoir or the reach of river. The change in time tells whether the 
peak of the outflow hydrograph occurs at time when the outlet at the downstream 
site can pass the flood without any trouble or whether it occurs at a time when the 
outlet is being flooded with water from any other tributaries. If this happens, some
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measures have to be taken which will change the time adequately to avoid the 
occurrence of flood peaks from other tributaries at the same time.

The Muskingum method of flood routing in rivers is one of the methods 
which has been widely applied in engineering practice. This method is based on 
the assumption of a linear algebraic relationship between inflow I, outflow Q and 
storage S in the reach. The Muskingum equation is numerically derived from the 
differential equation of conservation of mass.

It is sometimes necessary to estimate the hydrograph at the upstream end of a 
reach from a known hydrograph at the downstream end. This reverse routing or 
upstream routing process can be deduced from the conventional downstream 
routing procedure. The problem is that difficulties often arise in this upstream 
routing since the process is computationally unstable and unrealistic fluctuations 
may occur in the calculated hydrograph at the upstream end of the reservoir or 
river reach.

1.1 THE AIM AND THE SCOPE OF THIS PROJECT
The aim of this project is to investigate the problem mentioned above, to 

determine the cause of the computational instability and eventually to develop some 
alternative approaches which can overcome the problem. The methods of solution 
retain a numerical method which is based on a finite difference approximation.

The scope of this project is restricted to the problem of upstream routing in a 
river using the Muskingum assumption for the storage system.

In investigating the problem, several computer programs have been written. 
They are also provided with a graphic program in order that the analyses can be 
displayed clearly and quickly. This program consists of several subprograms 
which were taken from Turbo Graphix Toolbox' by Borland International (1985). 
However, some modifications to those subprograms were made to suit the needs
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of the numerical analyses. A diskette containing the computer programs which 
allow normal downstream routing calculations, downstream and upstream routing 
calculations using iterative method and upstream routing moving backward in time 
is enclosed. All of the programs were written in Turbo Pascal language. Examples 
of running these programs are given in appendix A.

In order to avoid ambiguities of symbols and definitions used in this thesis, 
the following terms are used:
- 'Upstream discharge' and 'downstream discharge' have the same meaning as 
'inflow' and 'outflow' respectively which are often used in text books. Similarly, 
'upstream hydrograph' is the same as 'inflow hydrograph' and 'downstream 
hydrograph' is the same as 'outflow hydrograph'.
- 'Time step' with the symbol At is the 'routing period', which in some text 
books is symbolized by 'T'. The symbol T  is also used in this thesis in the 
results of computer computations in the form of the graphics and tables to 
represent At, because of the difficulty in writing 'A' in the computer graphics.

This thesis is divided into seven chapters. Chapter two consists of the 
theoretical background and literature survey. Chapter three discusses some specific 
aspects of downstream routing using the Muskingum equation. This can be looked 
upon as a further investigation of the literature described in chapter two. Chapter 
four presents the analyses of the problem of upstream routing for which an 
equation is derived from the equation for conventional downstream routing. This 
chapter contains a great number of pages presenting computer outputs in the form 
of tables of computations. These are deliberately not placed in the appendix for 
the ease of the reader to follow the discussion. Chapter five introduces some 
alternative approaches for upstream routing. The Runge-Kutta method combined 
with a cubic spline fitting method which is used in the graphic program (Turbo 
Graphix Toolbox) are also discussed here as one of the methods. Chapter six
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presents an iterative method for downstream routing. This applies the methods of 
chapter five to conventional downstream routing. Finally, conclusions are 
highlighted in chapter seven.

This thesis forms part of a study into upstream routing in rivers and 
reservoirs, as reported by Boyd et.al. (1989). It considers in greater detail the 
problem of upstream routing in rivers.

1.2 DESCRIPTION OF DATA USED
This investigation is concerned with numerical approaches to Muskingum 

flood routing rather than the analysis of floods in actual rivers. Therefore, only 
one flood event was used in the example calculations. The methods developed in 
this thesis however are generally applicable to a wide range of flood events.

The data used in this project are of the September-October 1960 flood in the 
reach of the Murray River from Doctors Point at Albury (National Station No. 
409017) to Corowa (409002). The respective catchment areas are 16800 and 
18800 km2, and no major tributaries enter the reach between the stations. These 
data were taken from "Australian Rainfall and Runoff - A Guide to Flood 
Estimation" Vol.l, chapter 7, Table 7.1, page 134 [Pilgrim, I.E., Australia, 
1987] referred to herein as ARR87. The data are given in Table 1.2.1.

The storage at instant i in column (4) of Table 1.2.1 was obtained by 
cumulating the storage increments before instant i (see Fig. 2.2.2 in chapter 2). 
The storage increments were obtained by multiplying the average values of the 
differences between the inflow and outflow discharges over each 24-hour period 
with the number of seconds in the period.

The parameter x = 0.45 in column (5) was obtained by applying the 
trial-end-error method discussed in chapter 2 section 2.2.1. The parameter K value
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obtained from this method is K = 66 hours. These parameter x and K values are 
consistently used in this project.

Table 1.2.1 Storage Analysis of Flood of September-October 1960 in the 
reach of Murray River

9am,
Date

(1)

Doctors Pt. 
Inflow 

I m3/sec 
(2)

Adjusted 
Corowa Ouflow 

Q m3/sec
(3)

Storage
S

m3 x 106
(4)

[x.I + (l-x).Q] 
for x = 0.45 

m3/sec 
(5)

Sept. 15 274 274 0 27416 314 298 . 0.7 30517 355 320 2.9 33618 404 361 6.3 38019 495 383 13.0 43320 566 405 24.8 47721 586 446 37.8 50922 572 502 46.8 534
23 575 543 51.2 55724 572 593 51.8 584
25 571 593 49.9 58326 676 593 52.4 630
27 1026 614 73.9 799
28 1156 686 112.0 89829 1081 899 140.1 981
30 1001 1100 143.7 1055

Oct. 1 816 1061 128.8 9512 681 972 105.7 841
3 568 884 79.4 742
4 538 817 53.7 691
5 534 678 35.4 613
6 535 606 26.2 574
7 551 558 22.8 555
8 555 539 23.2 546
9 549 534 24.5 541
10 544 529 25.8 536
11 493 524 25.1 510
12 428 517 20.0 477
13 376 476 11.8 431
14 357 413 5.0 388
15 301 301 2.6 301
16 274 295 1.7 286
17 271 290 0 281

Total inflow volume = total outflow volume = 1 .583.109 m3.
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Literature Survey

2.0 INTRODUCTION
Since its development in 1930's, the Muskingum method of flood routing in 

rivers has been the subject of many investigations. Several useful papers dealing 
with various aspects of the method have been published.

The aim of this chapter is to describe not only the basic theory of the 
Muskingum method but also those aspects which contribute to its use in flood 
routing. For example, Gill (1978) proposed a least-squares method to replace the 
trial-and-error procedure for obtaining the Muskingum parameters x and K of a 
river reach, Cunge (1969) developed the Muskingum method using a 
hydrodynamic approach and Jones (1981) discussed the choice of the space and 
time steps As and At in terms of the parameters of the convection-diffusion
equation.
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The sources of this chapter were taken from the text books or papers written 
by Cunge (1969), Dooge (1973), Price (1973a), Gill (1978), Ponce et.al.(1978), 
Raudkivi (1979), Strupczewski and Kundzewicz (1980a), Singh and McCann 
(1980), Jones (1981), Linsley et.al.(1982), and Pilgrim (I.E. Australia, 1987).

2.1 THE MUSKINGUM METHOD
In routing floods through a river, the river is divided into convenient 

segments called 'reaches'. In this project, only the reach which has no accretion 
from precipitation, ground water, or tributaries is taken into account. All flow is 
looked upon as entering the reach at its upstream limit, then progressing to the 
downstream end of the reach, and it is considered to be unaffected by backwater 
from lower reaches.

The Muskingum method, originated by Me Carthy (1938), is the most 
widely used method of flood routing in rivers. The method is based on a linear 
algebraic relationship between storage S and both inflow I and outflow Q, along 
with parameters x and K. Parameter x, the value of which lies between 0 and 
0.5, is a weighting factor which expresses the relative influence of the inflow I and 
the outflow Q. K is a storage parameter which has a time dimension and expresses 
the average storage to discharge ratio for the river reach. The K value is 
approximately equal to the average travel time through the reach. It measures the 
delay between the center of gravity of the input wave and the center of gravity of 
the output wave.

The basic continuity or storage equation is
7 T = I 'Qdt (2.1.1)

This is also often called 'the equation of conservation of mass'. With reference to 
Figure 2.1.1, the total storage is expressed:

S = K.Q + K.x.(I - Q) = K.[x.I + (1 - x).Q] (2.1.2a)



vedge storage = K.x (l-Q)

Figure 2.1.1 illustration of Storage in a River Reach (Raudkivi, 1979)
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\

or AS = S2 - Si = K.[x.(I2 - Ii) + d  - x).(Q2 - Q2)] (2.1.2b)
Solution of eqs.(2.1.1) and (2.1.2a) can be obtained algebraically if I can be 

expressed as a mathematical function. Such a solution is presented by 
Kulandaiswamy (1966) and also Diskin (1967). Normally, the inflow data I are 
available only at a certain time step, or in other words the inflow I is available only 
in discrete form. Therefore, a solution is obtained using finite difference method 
instead of the differential equation in eq. (2.1.1). Equation (2.1.1) can thus be
expressed in finite difference terms as

i-AtCIj + 12) - j-At.CCh + Qi) = S 2- S !

Substituting eq.(2.1.2b) into this equation yields
q 2= c 0.i2 + c 1.i 1 + c 2.q 1

or in common numerical expression
Qi+i = Co^i+i + C!*Ii+ C2.Qi (2.1.3)

^  At - 2.K.xc 0 = --------------------2.K.(1 - x) + At (2.1.4a)
^  At + 2.K.x . C 1 - 2.K.(1 - x) + At (2.1.4b)
„  2.K.(1 -  x) -  At'-"2 - 2.K.(1 - x) + At (2.1.4c)

2.2 PARAMETER EVALUATION
2.2.1 Graphical and Trial-and-Error Methods

If the inflow and the outflow hydrographs for the reach are available, the 
value of x can be determined from the observation that the storage is maximum at 
the time when the inflow and the outflow hydrographs intersect, Fig. 2.2.1a. At 
this point dS/dt = 0. Differentiating eq. (2.1.2a) and setting dS/dt equal to zero 
yields:



Chapter 2 - Literature Survey 2 - 5

( 2 .2 . 1)

in which x is the only unknown. With x determined in this way, the value of K 
can be determined by plotting S versus [x.I + (l-x).Q], Fig. 2.2.1b. The slope of 
this line is the storage coefficient [Raudkivi (1979)].

Another method of determining values of K and x is to plot values of S 
against the weighted discharges at successive times t. The volumes of storage in 
the river reach Sj at instants t*, i = 0, 1, 2,... are represented by the area between 
the inflow and outflow hydrographs (usually the area under inflow or outflow 
hydrograph is obtained by adding up the area of trapezoidal elements) as can be 
seen in Fig. 2.2.2. These values plotted against [x.I + (l-x).Q] for arbitrary values
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of x, give K as the slope. The value of x which yields a loop closest to a single 
line, Fig. 2.2.3, is taken to be the correct value.

Figure 2.2.3 Determination of Parameters x and K for the Muskingum Method (Raudkivi, 1979)

This trial-and-error procedure can be replaced by other methods. Gill (1978) 
proposed the least-squares method and Stephenson (1979) proposed a direct
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optimization method for parameter estimation. These methods are briefly discussed 
herein. The description is based on the appendix of the paper by Singh and 
McCann (1980).

2.2.2 Least-squares Method
The storage S that is normally available is the relative storage (the storage 

volume in excess of the base value of storage which existed at the start of the 
flood) unless the initial flow in the river reach is zero. The storage equation, i.e.: 
eq.(2.1.2a) refers to the absolute value. Therefore, it is necessary to modify 
eq.(2.1.2a), if the initial storage is significant or the difference between relative 
and absolute storage is significant. Equation (2.1.2a) is modified into

S = K.[x.I + (1 - x).Q] + a  (2.2.2)
where a  is the difference between absolute and relative storages.

The method is based on minimizing the squares of deviations between the 
estimated and the observed values of S. The error function which represents this 
condition can be expressed as

N
E = X [S 0( j) -S e(j)]

j=° (2.2.3)
where S0(j) is the observed storage at the time interval j, Se(j) is the estimated 
storage at the time interval j and N is the time interval at which last hydrograph 
ordinate was observed or is estimated. The error E has to be minimized. There are 
two cases which have to be considered.

Case 1 : 0
Firstly, assume A = K.x and B = K.(l-x). By dropping j for brevity, eq. 

(2.2.3) can be written as
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N 2
E = £ [ S 0-K .x.I-K .(1-x) .Q - o]

j=0 (2.2.4)
This error E has to be minimized. Using the usual procedure, the following normal
equations are obtained.

N N N
X s 0- a .X i - b . £ q - n .<j = o
0 0 0

N N „ N N
& B.I - A .¿ I 2 - B-XI.Q - CT.Xl = 0

N N N _ N
X q s „ - a .X i .q  - b -X q  - o .X q = 0

(2.2.5)

(2.2.6)

(2.2.7)

The values of A, B and a  can be obtained from these equations. 
B = (y!.z2- z1.y2)/(z2.y3 - y2.z3)
A = y i/y2 -B-(y3/y2>
a = ( X s o-A .X l-B .X Q )/N

where
yi = X s o.I - ( X s o.XD/N; 
y3 = X Q -1 - X q T w  ; 
z2= X I-Q -(X I-XQ)/N ;

(2.2 .8)

(2.2.9)
(2.2. 10)

y 2 = X l2 - ( X r)2/N
Zi = I s 0.q - ( X s 0X Q )/n
z3=Xq2-(Zq- I q)/n

Then
K = A + B and X = A/(A+B) (2.2.11)

o 0 0 0

0 0 0 0

Case 2 : o  = 0
Solving for A and B as before:

A =  (X So-I-X Q 2 - X S o-Q-XbOVD 
B = (X S o Q -X l2 - X S o-bX bQ)/0  
d = X i 2 I q 2 - ( W

(2.2.12)

(2.2.13)
(2.2.14)

K and x can be obtained using eq.(2.2.11).
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2.2.3 Direct Optimization
This is a direct method of deriving the routing coefficients C0, Cj and C2 

without performing the intermediate step of obtaining K and x. This involves 
minimizing the difference between the observed hydrograph and computed 
hydrograph. The difference can be expressed by the error defined in a least- 
squares function. Therefore, this method is none other than a least-squares 
optimization method which is similar to the one discussed previously.

There are only two unknowns in this method since the third can be 
determined from Cq + Q  + C2 = 1. If C\ and C2 are the two unknowns then

_ C 1 + 0.5.C2 -0.5
C i + C2 (2.2.15)

At^Ci + Ca)
1 '  C2 (2.2.16)

By re-arranging, eq.(2.1.3) becomes
Ci-(Ii+i- Ij) + C2.(Ii+i- Qi) = Ii+i- Qi+i (2.2.17)

if
Ri+i— î+i " Qi+i ’ Fi+i — - Ij, Gi+i — - Qj

then
R i+i= Ci-Fi+1+ C2.G i+1

By dropping the subscript i+1 for brevity, the error function follows: 
E = X (R o-R  e)2

(2.2.18)

(2.2.19)
where subscripts o and e refer to observed and estimated R, respectively. 
Following the usual procedure,

£ r , f  = c 1. £ f 2+ c 2.X f .g (2.2.20a)
and

£ r , g  = c 1. £ f .g  + c 2.X g 2 (2.2.20b)
Then Q  and C2 can be obtained.
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Cl = (X R o-F-Xg 2- X r o-g Z f -G)/det 
C2= (X r o-G.Xf 2- X r o-F-Xf -G)/det

(2.2.21a)
(2.2.21b)

where
d e t  = X g 2 X f 2- ( X f -G)2

Eventually, after knowing the values of Cx and C2, x and K can be determined by 
using eqs.(2.2.15) and (2.2.16) respectively.

2.3 HYDRODYNAMIC APPROACH
2.3.1 Convection-Diffusion and Kinematic Wave Equation

Basically, flood routing methods are based on the St. Venant equations 
which describe the conservation of volume and momentum in a channel.

Flood routing methods can be classified into three groups [see Jones (1981)] 
a. those methods based on a numerical solution of the St. Venant equations 

without simplication

only, which yields diffusion analogy models 
c. methods based on momentum governed by bed and friction slopes only, 

which yields kinematic models.
Since the slope terms have much greater effect on the momentum if 

compared to the other terms, eq.(2.3.2) can be approximated as

(2.3.2)

(2.3.1)

b. methods based on momentum governed by bed, friction and surface slopes

S0------- Sf -  0ds
or
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s . - ^ + s ,
9s (2.3.3)

Equation (2.3.3) can be combined with eq.(2.3.1) to yield convection-diffusion 
equation using

S f = Q V  12.3.41
where M is the conveyance which is assumed to be a function of depth and
channel parameters. The convection-diffusion equation is then expressed as

23Q
at

aQ a q+  CO.----- =  |LL.--------+  co.q
3s as2 (2.3.5)

where
Q.(dM/dy)

B.M
H = M2/(2.B.Q) 
M =(A .R 2/3)/n

(2.3.6)
(2.3.7)
(2.3.8)

B is mean channel width,
A is wetted cross-sectional area of channel, 
n is Manning coefficient,
R is hydraulic radius.

Since the water surface slope has only a secondary effect on momentum, the 
momentum equation, eq.(2.3.3), can be further approximated to

So=Sf (2.3.9)
Combining this equation with eq.(2.3.1) yields

aQ aQ—  +  CO.----- co.q
ds (2 .3 .1 0 )

This equation is called kinematic wave equation, where co is the kinematic wave 
speed which may depend on Q [Jones (1981)].
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2.3.2 The Analogy between the M uskingum  and the Kinematic 
W ave Equation

If there is no lateral inflow, eq.(2.3.10) can be written as
d Q  dQ A—  + CD.— = 0at a s (2.3.11)

As mentioned previously, co is a function of Q, therefore eq.(2.3.11) is a q u a s i  
l in e a r  eq u a tio n . For certain applications, however, CD is considered a constant and 
eq.(2.3.11) reduces to a linear form.

i i+i Qi+i

At

As Qi
Figure 2.3.1 Difference scheme of the Muskingum Method in s-t Plane

Assuming a difference scheme in the s-t plane (Fig. 2.3.1), eq. (2.3.11) is 
discretized to yield (the discharges on the left-hand side of Fig.2.3.1 are 
symbolized by I not Q to refer to upstream discharge):

x.(Ii+1 - Ij) + (l-x).(Qi+1 - Qi)"
I r%\

z.(Q; - 1;) + (l-z).(Qi+i - Ij+i)"
At i u J . As

(2.3.12)
where x and z are weighting factors. By taking z = 0.5, eq.(2.3.12) reduces to



Chapter 2 - Literature Survey 2 - 1 3

At. 2 j
' Qi + Qi+i^

2 j — ■ [x.(Ii+1- I i) + (l-x).(Qi+1-Q i)l 
CO L

(2.3.13)
if As/co = K, eq.(2.3.13) becomes

^  At - 2.K.x T At + 2.K.x _ 2.K.(l-x) -  At _Qi+l = ------------------- Ii+i + ---------------------I; + ------------------ Qi2.K.(l-x) + At 2.K.(l-x) + At 2.K.(l-x) + At
which is the Muskingum formula.

The convection-diffusion equation [eq.(2.3.5)] with no lateral inflow is
23Q 3Q d Q— + c o .- ^ = p .—

dt 8s ds (2.3.14)
Cunge (1969) noted that the solution of the finite difference forms of equations 
(2.1.1) and (2.1.2a), by means of a Taylor series expansion, can be shown to 
approximate eq.(2.3.14) with an error of order (As)2 provided that

K = As/co (2.3.15)
and

l P
X =  2 ------------CO. As (2.3.16)

It can be noticed from eq.(2.3.16), once the parameter values of |i and co for a 
reach are known, the determination of parameter x is equivalent to the 
determination of As, that is to say the value of x should depend on the reach length
adopted.

Price (1973a) in his paper mentioned that the parameters p. and co can vary 
significantly with the magnitude of the flood. This is the reason why there is a 
disadvantage with the approach of using the values of Ji and co resulting from 
calibration to route other floods of significantly different magnitude in the same 
river. It should be noted that calibration is a process for determining a certain 
parameter value through comparing the predicted result with a recorded result.
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This is done repeatedly using various trial values of that parameter until the 
parameter value which yields the most accurate result is obtained.

Price suggested that curves for 11 and CD, where possible, be defined. This 
can be done by correlating values of |i and co calculated for a number of recorded 
floods with the average peak discharge along the reach in each case. Thus, the 
functions Ji(Q) and cd(Q) can be obtained in the form of curves which are drawn 
through the resulting points. However, the use of ji and CD values from the curves 
to route a future flood has to be performed with caution, since the curves may not 
be smooth, or in other words there may be some scatter about the curves due to 
observational error and also to the dependence of the calculated values of |i and CD 
on the shapes of the discharge hydrographs. To overcome this difficulty, Price 
developed the variable parameter diffusion method [Price (1973b)].

2.4 ALLOW ABLE VALUES OF PARAMETERS K AND x AND 
CHOICE OF At

Since K is the parameter which has time dimension, its value must be greater 
than zero. It can be seen from eq.(2.3.15) that its value depends on the length of 
the reach and the wave speed.

The range of parameter x value, in practice, is [0,0.5]. However, Dooge 
(1973) and Strupczewski and Kundzewicz (1980a) in their paper asserted that the 
parameter x value can be negative. This principle was proved by the formulae 
obtained from matching the moments of the impulse response of the Muskingum 
model with those of a linear dynamic model. The negative x value is needed in the 
case when the river reach is short. In general, the parameter x value can 
theoretically lie in the range (-©<>,0.5].

According to Ponce et.al. (1978), the range of parameter x value is [0,0.5]. 
Further, Ponce mentioned that values of x > 0.5 cause numerical instability and
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values of x < 0 will be associated with very small values of As (river reach length) 
which lead to inefficient computation. They also presented a graphic which 
correlates the Muskingum coefficient C0 to parameter x, time step At and 
parameter K (Figure 2.4.1). Before presenting the graphic, it is necessary to 
explain briefly the derivation of the parameter used. Equation (2.3.16) can be 
written as

ji = (1/2 - x).co.As (2.4.1)
This is the numerical diffusion coefficient of a second order approximation of the 
finite difference equation. The physical diffusion coefficient is |i = q0/(2.S0), 
where qQ is a reference discharge per unit width and S0 is the channel bed slope. 
The parameter x can be obtained by matching the physical diffusion coefficient 
with eq.(2.4.1).

1/1 fio \ x =  ( 1 -------------)
S q.co.As (2.4.2)

or
x = i-.(l-D )

where D is the reciprocal of a cell Reynolds number R.
D = 1/R (2.4.3)
R M-As

Qt/So (2.4.4)
Defining the Courant number C = At/K to be used as a substitution in equations 
(2.1.4a,b,c), those equations become

C0 =
Ci =
C2 =

-1 + C + D 
1 + C + D 
1 + C -D  
1 + C + D 
1 -C  + D 
1 + C  + D

(2.4.5a)
(2.4.5b)
(2.4.5c)
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Figure 2.4.1 shows the values of Cq bounded between +1 and -1 to be a function 
of C and D. The shaded area satisfies the condition 2.x < At/K < 2.(l-x) and 
0 < x < 0.5. The condition represented by the shaded area in Fig.2.4.1 can be 
regarded as the criterion for choosing the time step.

O.O! 0.1 I 10 100

Figure 2.4.1 Variation of Muskingum Coefficient Q  as a Function of 
At /K and Parameter x [Ponce (1978)]

A Similar but more restrictive criterion of choosing the time step is described 
by Pilgrim (I.E. Australia, 1987). The time step At chosen should generally 
conform with the following conditions:

At < 0.25 Tr (2.4.6)
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where TR is the time of rise of the inflow hydrograph, and
At < K (2.4.7)
At > 2.K.x (2.4.8)

In some cases it is not possible to satisfy all of these conditions, therefore a 
compromise value may have to be taken. Inability to satisfy the condition may 
result in some practical problems. One of these problems is the occurrence of an 
unexpected decreasing value of calculated discharge represented by the dip near the 
start of the hydrograph. This problem is further discussed in chapter 3.

The criterion of choosing the time step At and space step As for the 
Muskingum-Cunge method was discussed by Jones (1981). In order to apply the 
Muskingum-Cunge method, the parameters |t  and co of the convection-diffusion 
eq.(2.3.14) which are assumed to be constant, must be determined. Substituting 
eq.(2.4.1) into eq.(2.3.14) yields

where

3Q OQ a co d Q —  + co.—  = (-  -  x).—.At.——
at ds as
r = At/As

(2.4.9)
(2.4.10)

Jones presented the true solution to the convection-diffusion equation and some 
related graphics. One of them is the graphic which permits the choice of At and As 
for wave forms of a number of time steps X (X is the ratio of time base to time 
step). However, in application the time base of the inflow hydrograph, and hence 
the value of X, may not be known in advance, so the model should be chosen to be 
applicable and accurate in as many cases as possible. Figure 2.4.2 shows the 
graphic l/(cor) vs. x. The Muskingum-Cunge parameters K and x and the space 
and time steps As and At may be found using equations (2.3.15) and (2.3.16) 
together with Fig.2.4.2. It can be seen in Fig 2.4.2 that the behaviour of the model 
for 0.3 < x < 0.5 is similar for a wide range of values of X. The value of X = 10
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Figure 2.4.2 Critical Value of l/(cor) Plotted against x for Different Values 
of X [Jones (1981)]

can be taken as a representative choice for that range of x value. That is, the time 
step At can be taken as one tenth of the hydrograph time base.

There are three approaches to the choice of the values of As and At which 
depend on whether or not one of them is more clearly defined by the physical 
model. They are:

a. space step As fixed,
b. time step At fixed,
c. checks when both space step and time step are fixed.

The third approach is used when the space and time steps As and At are specified 
from physical conditions. This is usually found in the case of pipe routing. It is 
not discussed herein, for further detail see Jones (1981). 
a. Space step As fixed

If the space step As is obviously suggested by the physical model, but the 
time step At is not, the parameter x can be determined using eq.(2.3.16) with 
known values of parameters p. and CD. An increased value of As should be 
considered if the parameter x value is less than 0.3 since the corresponding choice 
of the time step At will depend on X. To obtain the calculated outflow hydrograph
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at the end of the true reach at a distance As, interpolation on the final solution has 
to be performed.

Using the parameter x value calculated from eq.(2.3.16) and X = 10 curve in 
Fig.2.4.2, the value of l/(r.co) is obtained, and hence the time step At using 
r = At/As. Another alternative to obtain the value of l/(r.co) is using eq.(2.4.11)
which is a good fit to the X = 10 curve in the region 0.3 < x < 0.5.

1 2 —  = 1.0 - 0.0939.( j  - x) + 9.015.( j -  x) (2.4.11)co.r
b.Time step At fixed .

If time step At is determined in advance but space step As is not, what has to 
be performed first is checking the time step At, whether it is at most a fifth of the 
rise time of the inflow hydrograph TR (to give X > 10).

Substituting for 1/2 - x from eq.(2.3.16) into eq.(2.4.11) yields
/ \ 2As

co.At 1 .0 -0 .0939 . IX '
^co.As/

+ 9.015.
ĉd.Asj (2.4.12)

This is a cubic equation in As which may be cumbersome to solve for each reach. 
For convenience, a simpler approximation is used :

— = 1.0+0.767.co.r co.Asj
or

As -  co.At.As - 0.767.p..At = 0

(2.4.13)

(2.4.14)
Solving this equation yields

As = -.co.At 1 + 1 + 3.068.JI
2co .At

If x is in the range 0.3 < x < 0.5, equation (2.3.16) gives
As > 5.|i/co

and from eq.(2.4.15) this leads to the requirement that

(2.4.15)

(2.4.16)
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2
At > 4.335.JI/C0 (2 4 17)

If this condition is not satisfied, a larger time step At should be chosen.

2.5 SUMMARY
The parameters x and K can be obtained by a trial-and-eiror procedure. The 

value of x which results in a loop closest to a single line in a graphic of S vs. 
[x.I + (l-x).Q] using historical data is adopted, while the value of K is obtained as 
the slope of the straight line. Alternatively, the value of x can be first found by 
calculating dl/dt and dQ/dt at the intersection of the inflow and outflow 
hydrographs. This value of x can then be used to plot S versus [x.I + (l-x).Q] and 
the value of K determined from the slope of the resulting straight line. The trial- 
and-error procedure can be replaced either by the least-squares method proposed 
by Gill (1978) or the direct optimization method for parameter estimation proposed 
by Stephenson (1979).

The conventional Muskingum equation has an analogy with the kinematic 
wave equation, where K = As/co and co is the kinematic wave speed.

The parameter x value can theoretically lie in the range (-«>, 0.5]. The 
negative x value is needed in the case when the river reach is short. However, in 
practice, the range of parameter x is [0, 0.5].

The criterion of choosing the time step At for the conventional Muskingum 
method in terms of TR, x and K was presented by Pilgrim (I.E. Australia, 1987). 
The time step At chosen should generally conform with the three stated conditions. 
But in some cases, it is not possible to satisfy all of those conditions, therefore a 
compromise value may have to be taken. Inability to satisfy the condition may 
result in some practical problems, such as the occurrence of an unexpected 
decreasing value of calculated discharge represented by the dip near the start of the 
hydrograph (further discussed in chapter 3). The criterion of choosing the time
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step At and space step As was presented by Jones (1981) in terms of parameters co 
and ji (the kinematic wave speed and the diffusion parameter).
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Some Aspects of Downstream Routing UsingMuskingum Method

3.0 INTRODUCTION
The aim of this chapter is to consider some specific aspects which are 

significant in the conventional Muskingum downstream routing equation. One of 
them involves an explanation for the failure of the Muskingum method when At/K 
is not small. This is demonstrated by the widely accepted belief that Muskingum 
routing with parameter x = 0.5 operates as a pure delay when the time step At 
equals K. Another aspect considered is the reduced or sometimes negative 
outflows which occur near the start of the hydrograph. Finally, an alternative way 
of calculating Muskingum coefficients, Nash coefficients, which are potentially 
more accurate than the Muskingum coefficients is considered.

Some of the sources of this chapter were taken from the papers written by 
Nash (1959), Kulandaiswamy (1966), Gill (1979a,b), Singh and McCann (1980), 
Strupczewski and Kundzewicz (1980b) and Pilgrim (I.E.Australia, 1987).
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3.1 EFFECTS OF MODEL PARAMETERS ON DOWNSTREAM 
HYDROGRAPH

In order to describe more clearly the effects of model parameters on the 
calculated downstream hydrograph, results of computations using the observed 
upstream hydrograph taken from ARR87 page 134 table 7.1 with various values 
of model parameters are presented. The computations encompassed the effect of 
varying time step At, varying parameter K and varying parameter x values.

3.1.1 Effect of Varying Time Step At
The computations used time steps A t: 24,48 and 72 hours, parameter K = 

66 hours and parameter x = 0.45. Figure 3.1.1 shows the result. It can be noticed 
from the figure that unexpected decreasing values occur for At = 24 and 48 hours. 
They are shown by the dips at time t = 288 hours. The unexpected decreasing 
value is due to the negative value of C0 in the Muskingum equation (see Table 
III. 1.1) and the high value of I2 (Ii+i) for that period. This negative value of C0 
also results in fluctuations which are evident in the calculated hydrograph beyond 
this time. Using a longer time step, i.e.: At = 72 hours, the dip is eliminated.

Table III. 1.1 The values of C0, Cj and C2 for
K = 66 Hours, x = 0.45 and At = 24, 48 and 
72 Hours

At (hours) C0 Cl c 2

24 -0.366 0.863 0.503
48 -0.095 0.891 0.204
72 0.087 0.909 0.004
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Figure 3.1.1 Calculated Downstream Hydrograph with Various Time Steps

The time steps used in this computation do not satisfy the three conditions 
discussed in section 7.4 of chapter 7 by Pilgrim (LE.Aust., 1987). The conditions 
are:

* At < 0.25 Tr

< 0.25 x 72 hours <18 hours
where TR is the time of rise of the major peak of the inflow hydrograph,

* At < K
< 66 hours,

* At > 2.K.x
> 2 x 66 x 0.45 > 59.4 hours.

Since the three conditions cannot be satisfied by any one value of At, a 
compromise is necessary. In spite of the dip, time step At = 24 hours provides a 
result which agrees with the observed downstream hydrograph reasonably well.
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Using a longer time step, i.e.: At = 72 hours, the dip is eliminated, but the spacing 
of the computed points is so great that the shape of hydrograph and particularly the 
peak, is not adequately defined.

The other criterion for choosing time step At presented by Jones (1981) as 
discussed in chapter 2 cannot be applied in this case since the parameters ¡1 and co 
are not known.

It can be concluded that since the time step At has a significant effect on the 
calculated downstream hydrograph, it must be chosen with care.

3.1.2 Effect of Varying K Value
The computations used K values: 6,12, 24, 33 and 66 hours with parameter 

x = 0.45 and At = 24 hours. Figure 3.1.2 shows the result. It can be noticed from 
the figure that the larger the K value, the longer the time lag is and the more the 
peak is reduced (attenuation). In addition, the dip at time 288 hours is more 
pronounced with the larger K value, since it makes the value of C0 decrease to 
become negative (see Table 111.1.2).

Table EL 1.2 The values of C0, Cj and C2 for
x = 0.45 and At = 24 Hours and Various 

Parameter K Values
K (hours) C0 Cl C2

6 0.608 0.961 -0.569
12 0.355 0.935 -0.290
24 0.048 0.905 0.048
33 -0.095 0.891 0.204
66 -0.366 0.863 0.503
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Figure 3.1.2 Downstream Hydrograph with Various K Values

3.1.3 Effect of Varying Param eter x Value
The computations used parameter x values: 0, 0.1, 0.2, 0.3, 0.4, 0.45 and 

0.5, parameter K = 66 hours and time step At = 24 hours. It can be noticed from 
Figure 3.1.3 that as parameter x decreases to zero, attenuation is greater so that the 
peak discharge decreases. Also, as x decreases, the dip in the outflow hydrograph 
becomes less pronounced. As mentioned previously, the dip results from the 
negative value of C0 and the high value of I2 (Ii+1) for the corresponding period. 
The more negative the value of C0 is, the more pronounced the dip becomes. As 
can be seen in Table ffl.1.3, the most negative value of C0is given by x = 0.5. 
This parameter x value results in the most pronounced dip (Fig. 3.1.3).
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Table IE. 1.3 The values of Cq, Cj and C2 for
K = 66 hours, At = 24 Hours and Various 
Parameter x Values

X C o C l C 2

0 0.154 0.154 0.692
0 . 1 0.076 0.261 0.6640.2 -0.019 0.389 0.6300.3 -0.134 0.546 0.5880.4 -0.279 0.744 0.5350.45 -0.366 0.863 0.5030.5 -0.467 1 0.467

Figure 3.1.3 Downstream Hydrograph with Various x Values

3.2 N E G A T IV E  OR RED UCED IN IT IA L  DOW NSTREAM  
D ISCH A RG ES

Reduced or sometimes negative initial downstream discharges may occur at 
the start of the computation, as can be seen in Figure 3.1.1, for time near to zero.
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This is investigated to reveal whether this phenomenon, which results from using 
a finite difference method of solution, is in accordance with the analytical solution 
of the Muskingum equation.

The description presented by Nash (1959) is given below.
The fundamental equations are (as previously mentioned):

t ^  dS I = Q + -r -^  dt (3.2.1)
S = K (x.I + (l-x).Q) (3.2.2)

from which
I - x .K .^ - = Q + ( l - x ) .K .^  dt ^  v ’ dt (3.2.3a)

This can be re-arranged in terms of I
Q(t) “  1 + (l-x).K.D I(t) (3.2.3b)

where D = the differential operator d/dt.
When x = 0, the linear reservoir case is obtained.

(3.2.4)
which has the solution

~ 1 -t/Kf t/KT . Q = —.e e .1 dtK J (3.2.5)
Now eq.(3.2.3b) may be looked upon as the result of operating on I(t) 
successively with 1 - x.K.D and 1/[1 + (l-x).K.D]. The operation 1 - x.K.D 
merely involves differentiation of the inflow (upstream discharge), and the 
operation 1/[1 + (l-x).K.D] represents reservoir routing with S = (l-x).K.Q. 
Therefore eq. (3.2.3b) is equivalent to subtracting x.K times the first derivative of 
I from I and routing the remainder through reservoir storage with S = (l-x).K.Q. 
From eq. (3.2.3b), another significant point can be obtained by defining
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I’(t) = (1 - x.K.D).I(t) (3.2.6a)
or I'(t) = I(t) - x.K.D.I(t) (3.2.6b)
By comparing with eq.(3.2.1), this means that I' is the result of routing I 
backwards through linear reservoir storage S = -x.K.I. The effect of the negative 
x.K is achieved by taking the routing procedure from right to left; that is, in the 
negative direction of time (Fig.3.2.1).

When time ^  at which I' becomes zero is reached, I would fall off 
logarithmically and never actually reach zero unless I' took negative values. This 
means that when I starts from zero and rises at a finite rate, I' must always take

It is clear that the interval between the centres of area of I'(t) and I(t) is 
x.K. Further routing moving forwards through S = (l-x).K.Q should be carried 
out to obtain Q (Fig. 3.2.1). Clearly this involves a further shift of the centre of 
area by (l-x).K so that the total shift is K. It is shown in Fig 3.2.1 that I and Q 
are not identical when parameter x = 0.5 or any other value, so that pure 
translation cannot occur. This circumstance is further discussed later in section
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3.3. It should be noted that the negative initial values of I' result in negative initial 
values of Q.

Gill in his paper (1979b) asserted that the reduced or sometimes negative 
initial downstream discharges are the result of using a wrong initial condition 
rather than due to any inherent defect of the Muskingum method. That the negative 
outflows are due to a wrong initial condition is demonstrated by considering 
specific examples (not discussed herein). Further, Gill proposed an initial 
condition:

1(0) = Q (x), x > 0 (3.2.7)
and emphasized that the use of this condition would prevent the occurrence of 
negative outflow in the Muskingum method.

Singh and McCann (1980) criticized this assertion and stated that the 
condition is incompatible with the formulation of the Muskingum method and, 
therefore, cannot be used. Below is their explanation.
If eq.(3.2.3a) is solved using the initial condition proposed by Gill [eq.(3.2.7)j 
then the solution is, for x < t:

Q(t) = - ^ . K t )  + [QW + I ^ .l(x )] .e '(t't)/[K(1'X)1 +
K(l-x)h i:e -(t-s)/[K(l-x)]J { s )  ^

(3.2.8)
This solution was obtained by Singh and McCann (1979) with the explicit 
statement of eq.(3.2.7).

To show that the initial condition in eq.(3.2.7) proposed by Gill (1979a,b) is 
incompatible with eq. (3.2.3a), an inflow represented by a finite-duration 
rectangular pulse is considered:

I(t) = A for 0 < t < T 
l(t) = 0 for t > T (3.2.9)
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where T is the duration of inflow, and A some constant > 0. In order to obtain Q(t) 
from eq. (3.2.8), using eq. (3.2.9) two cases must be distinguished.

a) . T < x
b) . T > x

In case (a) for t < T < x, Q(t) cannot be obtained since eq. (3.2.8) is valid only for 
t > x. Further, Q(t) cannot be obtained either for t > T since Q(t) is not known for 
t < T. Therefore, this condition is incompatible for I(t), t < x.

In case (b) for x < t < T, Q(t) is obtained from eq. (3.2.8):
Q(t) = A, x < t < T (3.2.10a)

and
-(t-T)/[K(l-x)]Q(t) = A.e " t >T (3.2.10b)

From these equations, it can be seen immediately that eq. (3.2.1) for conservation 
of mass cannot be satisfied. To illustrate, the inflow volume applied is A.T. The 
total outflow produced, if Q(t) is assumed to be zero during 0 < t < x is:

A(T-x) + J A.e ~(t'T)/[K(1'x,] dt = A(T-t) + A.K(l-x)

It is obvious that the total volume of inflow does not equal the total volume of 
outflow produced.

Furthermore, if the outflow during 0 < t < x is assumed as Q(t) = A, then the 
total volume of outflow becomes

A.T + A.K(l-x)
which again violates eq. (3.2.1). Therefore, the conclusion that can be deduced is 
that eq. (3.2.7) is not consistent with the Muskingum hypothesis. Gill (1979a,b) 
is mistaken to assert the adequacy of this condition in the Muskingum flood 
routing method. Another inflow which can be considered is

I(t) = sin (t.7t/x), for 0 < t < x 
I(t) =0 , for x < t (3.2.11)
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Then Q(x) = 1(0) = 0 and 1(0) = 0 for t > x. For this choice of I eq. (3.2.8) 
becomes Q(t) = 0 for t > x. This is obviously incorrect since there is no outflow 
before t < t. Apparently, any lag time % to be imposed on Muskingum method 
should be imposed through the basic equations, not through the initial condition.

Strupczewski and Kundzewicz in their paper (1980b) alleged that: Gill's idea 
of shifting the initial conditions on outflow is only 'skipping' the problem of 
negative outflows. Outflows are simply not calculated in the periods when they 
should be negative. Again, this opposes Gill's opinion.

As has been explained by Nash above, it is clear that the reduced or 
sometimes negative initial downstream discharges which may occur when the 
inflow rises steeply, is associated with the storage assumption and not with any 
particular method of solution. Apparently, based on the analyses above, Gill's idea 
of shifting the initial condition on the outflow is physically incorrect.

3.3 CASE OF PURE TRANSLATION
A curious feature of the Muskingum method which directly leads to the 

consideration of translatory waves is the special case in which x = 0.5 and time 
step At = K. Substituting these values into Muskingum coefficients yields Co and 
C2 being equal to zero and Q  = 1. From eq. (2.1.3), it is seen that

Qi+i = li (33.1)
Equation (3.3.1) indicates that, the downstream discharge at any time i+1 is equal 
to the upstream discharge at time i. In other words, the flood wave is merely 
translated with a time lag of At = K. Whether this circumstance is correct is rather 
doubtful. It may be considered to happen because of adopting a large value for the 
time step At and making it equal to K. If the time step At * K, the coefficients C0 
and C2 are not zero and with parameter x = 0.5, it can be seen that

Qi+i ^  ii (3.3.2)
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Kulandaiswamy in his paper (1966) alleged that the value of time step At that may 
be adopted for solving numerically the differential equation in eq.(2.1.1) is purely 
arbitrary and the value adopted for At should not change the basic nature of the 
result. But actual routing has also shown that with parameter x = 0.5 the 
downstream hydrograph is more or less the same as upstream hydrograph 
translated over a certain period even without time step At being equal to K. With 
respect to this, Kulandaiswamy investigated whether Qi+1 = Ij when parameter 
x = 0.5, or Qi+1 is at least very nearly equal to Ij if Qj+i * I j . The investigation is 
described as follows:
The differential equation in eq.(2.1.1) can be written in operator form as

Q(t) 1 - K.x.D 
1 +K .(l-x).D I(t) (3.3.3)

where D = d/dt, when x = 0.5
l- i -K .D

Q(t) = — 2--------• I(t)
1 + i-.K.D

2 (33.4)
The term 1/(1 + 1/2.K.D) can be expanded into series and eq.(3.3.4) becomes l t̂ 2 ^2  i k 3d 3  ̂ i 1{T,

(3.3.5)Q(t) = (1 - [ .K .D + i.K 2.D2 - i-K 3.D3 ...)(1 - |-.K.D).I(t)

Since the operator can be treated as an algebraic quantity, the multiplication can be 
performed and

Q(t) = (1 - K.D + I .K 2 D2 - i-.K3 D3 ...) I(t) 3

Then, the upstream hydrograph I(t) which is merely translated by a time lag K is
considered. The expression I(t-K) is now regarded as the resulting downstream
hydrograph which can be expanded in Taylor series:

2 3
I(t-K) = I(t) - K.I'(t) + f p I 'X t )  - f p I - X t ) ...

2 3
= (1 -K .D  + ^ . D ^ ^ - . D 3 ...) !©2! 3! (3.3.7)
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If eq.(3.3.6) and (3.3.7) are compared, it can be seen that the first three terms on 
the right hand side of those equations are identical. The difference starts from the 
fourth term. However, this difference is very small. If I(t) is such that the third 
and higher order derivatives are not significant, the following equation can be 
written:

Q(t) = I(t-K) (3.3.8)
The conclusion which can be extracted from the discussion above is that 

when x = 0.5, the value of Qi+1 is not identically equal to Ij. It is approximately 
equal provided that the third and higher order derivatives of I(t) are very small and 
can be ignored. Equation (2.1.3) shows that Qi+1 = Ij when x = 0.5 and 
At = K. This is purely due to the approximation inherent in the numerical 
procedure used for the solution of the continuity differential equation.

Gill in his paper (1979a) alleged that Kulandaiswamy's conclusions were 
rather vague because he could not reduce eq.(3.3.8) to eq.(3.3.1) for any value of 
At not necessarily equal to K. This was mentioned with respect to 
Kulandaiswamy’s statement that the actual routing has also shown that with 
parameter x = 0.5 the downstream hydrograph is more or less the same as the 
upstream hydrograph translated over a certain period, even without time step At 
being equal to K. Furthermore, Gill proposed that for a translatory wave, a general 
condition which is required to be satisfied is Q(t) = I(t-T), where T is the time lag 
which in some cases may be different from K. It really depends on the form of the 
inflow function. Gill's conclusion was based on his example in terms of 
sinusoidal flood without any further explanation regarding the proof.

Figure 3.3.1 shows an example using an observed upstream hydrograph 
taken from ARR87 page 134 table 7.1 with At = 24 and 66 hours, K = 66 hours 
and parameter x = 0.5. The result of using time step At = K = 66 hours is a 
translatory wave. This can be seen in Table III.3.1. The observed upstream
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discharges which have time interval 24 hours had been interpolated using At = 66 
hours, before the computation was carried out. Figure 3.3.1 cannot show the 
translatory wave properly for At = K = 66 hours, because the observed upstream 
discharges were plotted using a time interval of 24 hours while the calculated 
downstream discharges were plotted using a time interval of 66 hours, so that the 
shape and the peak of the calculated downstream hydrograph cannot be adequately 
defined. The result of using time step At = 24 hours (regardless of the dip 
occurring at time t = 288 hours) seems to give a translatory wave. But, careful 
examination shows that it does not. The peak of the hydrograph is slightly 
attenuated and in addition, a reduced initial outflow occurs as has been discussed 
by Nash (1959), and given in section 3.2 of this thesis.

Figure 3.3.1 Routing Through Storage with x = 0.5, K = 66 Hours
and A t = 24 and 66 Hours
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Table 111.3.1 Result of Computation Using 
x = 0.5, K = 66 Hours and At = K

PERIOD 
(x 66 hrs)

INFLOW
(m3/sec)

OUTFLOW
(m3/sec)

0 274.000 274.0001 391.750 274.0002 576.000 391.7503 574.250 576.0004 676.000 574.2505 1099.750 676.0006 748.500 1099.7507 537.000 748.5008 551.000 537.0009 545.250 ' 551.00010 402.000 545.25011 294.250 402.000

The translatory wave occurs in Table ni.3.1 because a large value of time step 
At = 66 hours is used and this is made equal to K. This leads coefficients Cq and 
C2 to being equal to zero and Q  being to 1 in the numerical approximation for the 
solution of the differential equation. If the time step At is not equal to K, a 
translatory wave does not occur as can be seen on Figure 3.3.1. This is in 
accordance with what has been discussed by Nash (1959), see section 3.2. 
Kulandaiswamy’s approach (i.e.: the existence of translatory wave, even though 
At is not equal to K) prevails, if the third and higher order derivatives are small 
enough to be ignored. According to Singh and McCann (1980), the appearance of 
the upstream hydrograph frequently encountered in nature resembles a gamma or 
log-normal distribution. Obviously their third-and higher-order derivatives do not 
vanish in this case and therefore pure translation is only approximated.

3.4 NASH COEFFICIENTS
The derivation of the coefficients below are cited from Nash (1959). 
Equation (3.2.3b) can be divided into two parts, i.e.:
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Q 1 + (l-x).K.D 1-x '  1-x (3.4.1)
This equation will be used to obtain the expression for the C's of the conventional 
downstream routing equation, i.e:

In expressing Q as a function of I0, Ii and Q0 only, second and higher order 
derivatives of I must be neglected; that is, I must be assumed to consist of straight 
line segments. If the second or higher order derivatives are required, three or more 
values of I in eq.(3.4.2) must be used. However, by choosing time intervals 
which are sufficiently short, the calculation using only I0, Ix and Q0 can be made 
as precise as is desired. The only difference between the present calculation and 
the usual development of the Muskingum coefficient equation is that the values of 
the time interval are not limited to the small values compared with K.

The solution of eq.(3.4.1) when I is a series of straight segments is obtained 
as follows. Let m = (It - Io)/At be the slope of a segment

Let k = (l-x).K and c = to simplify the notation. From eq.(3.2.5)

The constant value of A can be defined by letting q = q0 at time t = 0. Equation 
(3.4.4) becomes:

Qi -  Cq.Ii + Cj.Io + C2.Qo (3.4.2)

Let

then
(3.4.3)

q = (l/k).e 't/k (I0 + m.t).et/kdt

q = (l/k).e’t/k [k.Io.et/k+ m.k2.et/k(t/k -1 ) + A] 
q = I0 + m.k.(t/k -1) + A/k.e t/k (3.4.4)

q0 = I0 - m.k + A/k
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or
A = k.(q0-10 + m.k)

By substituting this A value, equation (3.4.4) becomes
q = I0 + m.k.(t/k - 1) + (q0 - 10 + m.k).e't/k

By substituting (Ix - I0)/At for m and letting t = At, eq. (3.4.5) is obtained. 
qi = Io + k/At.(At/k - l)(Ii - 10) + [q0 - 10 + k/At(Ii - I^].c 
qi = I0 [k/At.(l - c) - c] + Ij [-k/At.(l - c) + 1] + q0.c

whence by eq.(3.4.3)
O -T k 1_CVl “  aq. At‘1-x 1-x + 1 k 1-c 1+A t l-X 1-x 1-x + q°'To (3.4.6)

From eq.(3.4.3)
qo
1-x -  Qo + x.Ip

1-x

which when substituted in eq.(3.4.6) with k = K.(l-x), gives

+ Qo-c

or it can be written in numerical expression as
Qi+i = C0.Ii+i + C !• Ij + C2.Qi

where:
C 0 = - —.(l-c )+  1 At
C ,= —.(l-c )-c  At
C2 = c

-At/[K.(l-x)]c = e

Qi = io K s K „— .(1 - c) - c + Ii- -----.(1 -c )+  1At At (3.4.7)

(3.4.8)

(3.4.9a)

(3.4.9b)
(3.4.9c)
(3.4.9d)

These Nash coefficients are more accurate than conventional Muskingum 
coefficients of equations (2.1.4a) to (2.1.4c). However, the differences are not 
great in many cases as can be seen in Table III.4.1 which is a sample of
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computation using the observed upstream hydrograph taken from ARR87 page 
134 Table 7.1 with parameter x = 0.45, K = 66 hours and At = 24 hours.

Guidelines for choice of the form of the coefficients are given below 
[Pilgrim (I.E.Aust, 1987)]. Assuming the Nash coefficients give the more accurate 
answer:
a) . If the maximum acceptable difference in the calculated hydrograph peak using

the conventional Muskingum is set at 5%, 
for 0 < x < 0.35, both methods are satisfactory, 

for 0.35 < x < 0.5, use Nash with At = K, as long as At <_ 0.25 TR. 
Otherwise, a compromise value must be used (TRis the time of rise of the 
upstream hydrograph).

b) . If the maximum acceptable difference in the calculated hydrograph peak using
the conventional Muskingum coefficients is set at 2%, 
for 0 < x < 0.15, both methods are satisfactory.

0.15 < x < 0.4, use Nash if At > 0.1 TR, but both methods are satisfactory 
if At <0.1 Tr .
0.4 < x < 0.5, use Nash with At = K, as long as At < 0.25 TR. Otherwise a 
compromise value must be used.

The conventional Muskingum coefficients generally overestimate the peak 
flow. The above criteria apply most critically to narrow, sharp-peaked 
hydrographs. For flatter hydrographs, the criteria are rather too severe, and the 
Muskingum coefficients will give answers within the indicated accuracies for a 
wider range of values of x than indicated above.
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Nusber of data = 33 
K = 6 6 . 0  hours
T = 2 4 . 0  hours
x = 0.45000
PERIOD I NF L OW OUTF LOW 0 ü T F L 0 «

(observed) (Huskingua) ( Na s h )
(day) (a3/sec) (s3/sec) (i3/sec)

0 274.000 274.000 274.000
1 314.000 259.342 260.788Oi. 355.000 271.476 272.987
3 404.000 295.022 296.475
4 495.000 315.825 318.433
5 566.000 378.837 380.395
6 586.000 464.508 463.5757
t 572.000 530.007 527.422
e 575.000 549.774 547.995
9 572.000 563.408 562.050

10 571.000 568.044 567.193
ii 676.000 531.034 534.353
12 1026.000 474.806 487.268
13 1156.000 701.052 704.939
14 1081.000 954.597 947.911
15 1001.000 1046.723 1038.716
16 816.000 1091.798 1081.577
17 681.000 1004.228 997.696
18 568.000 885.028 881.820
19 538.000 733.492 739.920
20 534.000 640.335 643.563
21 535.000 587.131 590.232
22 551.000 555.364 558.229
n ji. j 555.000 551.730 553.411
24 549.000 555.553 556.161
25 544.000 554.129 554.349
26 493.000 567.786 566.188
27 428.000 554.445 e c o  nc-7Mwl « l J 0

28 376.000 510.671 509.322
29 357.000 450.716 451.104
30 301.000 424.671 424.078
31 274.000 373.114 373.458
32 271.000 324.964 326.336

Table III.4.1 Sample of Computation Using Muskingum and Nash 
Coefficients 
Values of coefficients:
Muskingum : Co = -0.366, Q  = 0.863 and C2 = 0.503 
Nash : Co = -0.330, Cj = 0.814 and C2 = 0.516
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3.5 SUMMARY
Based on the description by Nash (1959), the reduced or sometimes 

negative initial outflow which sometimes occurs when the inflow rises steeply, is 
associated with the storage assumption in the Muskingum method and not with 
any particular method of solution.

The Muskingum method of flood routing is not a translatory solution. The 
translatory wave obtained when time step At = K with parameter x = 0.5 is due to 
the approximation inherent in the numerical procedure. When time step At ^  K, a 
translatory wave does not occur, even though the calculated wave seemingly 
resembles a wave translated over a certain time period.

Sometimes an unexpected decreasing value shown by the existence of a dip 
in the calculated hydrograph occurs (as is shown on Fig. 3.1.1). This is caused by 
a negative value of the coefficient Cq, due either to the value of time step At being 
too small, K being too large, or x being too large. If values of K and x are given, 
then the dip can be avoided by using a larger time step A t. But if the time step At 
used is too large, the shape of the hydrograph and particularly the peak is not 
adequately defined.

The coefficients derived by Nash (1959) yield very similar results to those 
resulting from the standard Muskingum coefficients. For smaller values of the time 
step At, the Nash and Muskingum coefficients become almost identical. For larger 
time steps, and for larger values of x, the Nash coefficients should give more 
accurate results.
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Upstream Routing Using Conventional Muskingum Equation

4.0 IN TRO D U C TIO N
This chapter is intended to give a description of the problems which are 

associated with upstream routing. Upstream routing is deduced mathematically 
from the conventional downstream routing procedures. Samples of the 
computations showing the problem are given.

4.1 U PSTR EA M  RO U TIN G  DERIVED FROM  CONVENTIONAL 
DO W N STREA M  ROUTING

Mathematically, upstream routing can be deduced easily from the 
Muskingum operating equation (Eq. 2.1.3), which is obtained by combining the 
equation of linear relationship between I, Q and S and the equation of conservation 
of mass in terms of finite differences. That equation can be expressed as:

I i+i = Qi+i

(4.1.1)
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where:

and

_1_
C0
Çi
C0
S i
Co
J _
Co

K - K.x + 0.5At
K.x - 0.5At 

K.x + 0.5At
K.x - 0.5At 
K - K.x - 0.5At

K.x - 0.5At
ç i
C0

(4.1.2)

(4.1.3)

(4.1.4)

(4.1.5)
The method of solving this equation is similar to that used to solve 

conventional downstream routing. If the routing coefficients 1/C0 Cj/Cq and
C 2/C 0 are evaluated, routing is carried out by solving equation (4.1.1) 
consecutively for Ii+1 period by period throughout the flood. In each routing 
period, Qj and Qi+1 are known from the observed hydrograph at the downstream 
station, while Ij is set equal to the value of Ii+1 calculated for the previous routing 
period.

The routing coefficients in terms of K, x and At are the same as the ones 
described in chapter 2, namely Muskingum coefficients. The coefficients derived 
by Nash (1959) which are more accurate if applied in conventional routing, still 
can be used. However, the computations using both Muskingum and Nash 
coefficients show that unexpected results arise.

4.2 UPSTREAM ROUTING COMPUTATIONS USING 
EQUATION (4.1.1)

The values of the Muskingum parameters on which the Muskingum 
coefficients depend were adopted as: average travel time K = 66 hours, time step 
At = 24 hours and parameter x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.45 and 0.5.
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Firstly, downstream hydrograph ordinates were calculated from the given 
observed upstream hydrograph, applying conventional downstream routing 
[eq.(2.1.3)] with each set of parameter values. Secondly, each calculated 
downstream hydrograph was used to calculate back the upstream hydrograph 
ordinates, applying upstream routing (eq. 4.1.1). The results of the computations 
are given in Tables IV.2.1.

It can be noticed from the results in Tables IV.2.1 that the only x value 
which makes the calculated upstream discharges agree exactly with the observed 
ones is x = 0. It might be expected that the other x values should give similar 
results, since the conventional downstream and the upstream routings are basically 
derived from the same equation. However, this does not occur, and all other 
values of x give unsatisfactory results. A value of x=0.2 gives the worst result, 
and x=0.5 seems to give a satisfactory result, but as a matter of fact it does not, 
since the last few calculated upstream discharges do not match the observed ones.

In addition, fluctuations are likely to occur in the calculated hydrograph. 
This circumstance can be noticed most clearly from the computation with x=0.1. 
These problems are due to the computational instability of the process. It should be 
noted that they result not only from using Muskingum coefficients but also with 
Nash coefficients.



Tables IV.2.1
Results of Computations Using Various Parameter 

Values, K = 66 Hours and At = 24 Hours
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Nueber of data = 33
K = ¿6 .00  hour C

I = 24.00 hour
* = 0.00000

PERIOD I NF LOW 0 U T F l  0 # I NF LOW
( z  24.00 (observed) (calculated) (calculated)

hours) («3/sec) U3/sec) («3/sec)(') ________ S3-)______ 03) <*>
0 274.000 274.000 274.000

' 1 314.000 280.154 314.000
X 355.000 296.876 355.000
5 404.000 322.299 404.000
4 495.000 361.437 495.000
r 566.000 413.457 566.000
6 586.000 463.470 586.0007 572.000 499.018 572.000
r,C 575.000 521.935 575.000
0 572.000 537.801 572.000

10 571.000 548.170 571.000
n ¿76.000 571.349 ¿76.000
t 7 1026.000 657.395 1026.000
13 1156.000 790.812 1156.000
14 1081.000 891.639 1081.000
13 1001.000 937.596 1001.000

16 816.000 928.644 816.000
17 ¿81.000 873.215 681.000
IS 568.000 796.687 568.000
19 538.000 721.707 538.000
20 534.000 664.566 534.000
21 535.000 624.546 535.000
i. X 551.000 599.455 551.000

*7±  \ 555.000 585.161 555.000
24 549.000 574.958 549.000
25 544.000 566.201 544.000
2o 493.000 551.524 493.000*7 x : 428.000 523.517 428.000
28 376.000 486.127 376.000
29 357.000 449.319 357.000
30 301.000 412.298 301.000
31 274.000 373.898 274.0007 r,JX 271.000 342.699 271.000

Notes : (i) Values of coefficients:
1/Cq = 6.50, -(CyQ,) = -1.00 and -(C2/C0) = -4.50

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nuaber of data1;
f

PERIOD i N F L 0 « 0 U I F L 0 « 1 N F L fl «
is 24.00 (observed) (calculated) (calculated)

hours)
0 ) («3/seci_______S ò l _____ (a3/sec)C3) (a3/sec)

(A )

0 274.000 274.000 274.000
1 314.000 277.025 314.000
2 355.000 292.555 355.000
3 404.000 317.251 404.000
4 495.000 353.292 495.000
C
J 566.000 406.295 • 566.000
6 586.000 461.490 586.0007 572.000 502.283 5 7 2 . 0 0 0
8 575.000 525.944 575.000
9 572.000 542.207 572.000

10 571.000 552.146 571.000
11 676.000 566.424 676.000
12 1026.000 629.727 1026.000
13 1156.000 772.760 1155.999
14 1081.000 895.903 1081.003
15 1001.000 952.073 1000.989
16 816.000 954.528 816.039
17 681.000 697.754 680.867
18 568.000 816.349 568.459
19 538.000 730.601 536.420
20 534.000 ¿65.559 539.442
21 535.000 ¿21.413 516.256
22 551.000 583.577 615.564
23 555.000 578.568 332.612
24 549.000 570.656 1315.004
25 544.000 5t3.!3l -2094.459

. 26 493.000 552.843 9581.027
27 428.000 527.812 -30875.205
28 376.000 490.329 108198.149
29 357.000 450.462 -371030.403
30 301.000 414.811 1279524.278
31 274.000 374.513 -4405939.512
32 271.000 340.500 15177228.653

= 66 .00  hours 
= 24.00 hours 
= 0.10000

Notes : (i) Values of coefficients:
1/Co = 13.22, -(cy q ,) = -3.44 and -(CJCq) = -8-78

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)



Chapter 4 Upstream Routing Using Conventional ... 4 - 6

Husber of dataK
I

33
66 .0 0  hours
24.00 hours
0.20000

PERIOD I NF LOW 0 U 1 F L 0 « I NF LOW
;» 24.00 (observed) (calculated) (calculated)

hours) («3/sec) (*3/sec) (a37sec)
0 ) CO O)

0 274.000 274.000 274.000
1 314.000 273.259 314.0007 355.000 287.589 355.000
3 404.000 311.649 404.000
4 495.000 344.168 495.000rJ 566.000 398.717 . 566.003
6 586.000 460.3G3 586.064
7 572.000 507.117 573.345
8 575.000 531.092 603.238
9 572.000 547.410 1164.996

10 571.000 558.536 13023.918
n 676.000 559.948 262187.288
12 1026.000 596.449 5492763.039
13 1156.000 753.135 115327633.830
14 1081.000 903.733 2421857115.500
15 1001.000 970.86? 50858977725.000
16 816.000 985.4541068038512000.000
17 681.000 925.19422428808737000.000
13 568.000 836.844471004 9834 60000.000
19 538.000 737.8289891104652900000.000
20 534.000 663.892207713197710000000.000
21 535.000 615.7654361977152000000000.000
22 551.000 585.55691601520194000000000.000
-f 7* 1 J 555.000 572.6831923631924100000000000.000
24 549.000 566.24540396270407000000000000.000
25 544.000' 559.951848321678550000000000000.000
26 493.000 554.98717814 75525000000000000*0000.000
27 428.000 533.233374109860250000000000000000.000
28 376.000 495.2217356307065400000000000000000.000
29 357.000 451.417164982448370000000000000000000.000
30 301.000 417.4853464631415900000000000000000000.000
31 274.000 374.84272757259735000000000000000000000.000
32 271.000 337.5491527902454500000000000000000000000.000

Notes : (i) Values of coefficients:
1/C0 = -54.00, -(C1/C0) = 21.00 and -(C2/C0) = 34.00

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Number cf data K 
1 66 .0 0  hours

24.00 hours 
0.30000

PERIOD 
; 24.00 
hours)to

I M F L 0 K 
(observed)

(fi3/sec)OU

0 U T F L 0 « 
(calculated) 

(fi3/sec)(3)

I H F L 0 H 
(calculated) 

(&3/sec)
(A )

0 274.000 274.000 274.000
1 314.000 268.639 314.000
2 355.000 281.850 355.000
¿\ 404.000 305.448 404.000
4 495.000 333.892 495.000
C 566.000 390.813 566.000
6 586.000 460.375 586.000
7 572.000 514.055 572.000
8 575.000 537.548 575.000
9 572.000 553.394 572.000

10 571.000 561.201 571.000
11 676.000 551.169 675.998
12 1026.000 555.739 1025.992
13 1156.000 732.238 1155.967
14 1081.000 917.037 1080.865
15 1001.000 995.372 1000.449
l ò 816.000 1022.487 813.753
1? 681.000 955.430 671.841
IS 563.000 857.408 530.659
1? 538.000 742.085 385.766
20 534.000 658.462 -86.648
21 . 535.000 607.004 -1995.335'*? 7L *. 551.000 575.167 -9764.982O’i. w' 555.000 564.665 -41502.464
24 549.000 561.484 -170916.046
25 544.000 557.006 -698505.804
26 493.000 558.478 -2849479.276
21 428.000 540.188 -11618689.741
28 376.000 500.894 -47369873.254
29 357.000 451.938 -193124505.340
30 301.000 420.293 -787354907.010
31 274.000 374.719 -3209986343.300
32 271.000 333.587 -13086868246.000

Notes : (i) Values of coefficients:
1/Q, = -7.46, -(CyCo) = 4.08 and -(C2/C0) = 4.38

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nusber Gf data
K
T

PERIOD 1 H F L 0 « 0 U I f l  0 « I NF LOW
k 24.00 (observed) (calculated) (calculated)

hours)(O (63/sec)- a ) («3/sec)(3) (s3/sec)C-4)
0 274.000 274.000 274.000
I 314.000 262.837 314.000
2 355.000 275.192 355.000
3 404.000 298.638 404.000
4 495.000 322.248 495.000CJ 566.000 . 382.784 ' 566.000
6 586.000 462.419 586.0007 572.000 523.806 572.000
e 575.000 545.384 575.0009 572.000 559.996 572.000

10 571.000 565.858 571.000
11 676.000 538.948 676.000
12 1026.000 505.018 1026.000
13 1156.000 711.056 1156.000
14 1081.000 938.937 1081.000
15 1001.000 1027.338 1001.000

16 816.000 1066.716 816.000
17 681.000 987.778 680.999
18 568.000 876.626 567.998
1? 538.000 741.451 537.995
20 534.000 647.939 533.987
21 535.000 594.665 534.966
1 7* 551.000 562.449 550.909
23 555.000 556.007 554.758
24 549.000 557.213 548.356nr x J 544.000 554.789 542.281
26 493.000 564.003 488.4177'7 428.000 549.118 415.779
28 376.000 507.296 343.410
29 357.000 451.530 270.093
30 301.000 423.191 69.248
31 274.000 373.893 -344.005
32 271.000 328.268 -1377.013

— -■» 7-  JO
= 66.00 hours 

= 24.00 hours 
= 0.40000

Notes : (i) Values of coefficients:
1/C0 = -3.58, -(Cj/Cq) = 2.67 and -(C2/C0) = 1.92

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nusber of data - JO
K = 66 .0 0  hour£
r = 24.00 hourC

= 0.45000
PERIOD I N F L 0 « 0 U 1 F L 0 H I H F L 0 H

h  24.00 (observed) (calculated) (calculated)
hours)

0 )
(a3/sec) 

d )
(*3/sec)(?) (*3/sec) 

C*)
0 274.000 274.000 274.000
1 314.000 259.342 314.000nL 355.000 271.476 355.0003 404.000 295.022 404.000
4 495.000 315.825 495.000CJ 566.000 378.837 • 566.000
6 586.000 464.508 586.000
7 572.000 530.007 572.000
B 575.000 549.774 575.000
9 572.000 563.408 572.000

10 571.000 568.044 571.000
11 676.000 531.034 676.000
12 1026.000 474.806 1026.000
13 1156.000 701.052 1156.000
14 1081.000 954.597 1081.000
15 1001.000 1046.723 1001.000

16 816.000 1091.798 816.000
17 681.000 1004.228 681.001
18 568.000 885.023 568.002
19 538.000 738.492 538.006
20 534.000 640.335 534.013
21 535.000 587.131 535.0317 i x x 551.000 555.364 551.074
x J 555.000 551.730 555.174
24 549.000 CCC Cf7JJJ.JJJ 549.410
*~,cL J 544.000 554.129 544.967
2 6 493.000 567.786 495.278
27 428.000 554.445 433.367
28 376.000 510.671 388.645
29 357.000 450.716 386.790
30 301.000 424.671 371.184
31 274.000 373.114 439.348
32 271.000 324.964 660.548

Notes : (i) Values of coefficients:
1/Cq = -2.73, -(Cj/Cq) = 2.36 and -(C2/C0) = 1.37

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Husber of data - 33
K = 6 6 . 0 0  hourc
T = 24.00 hourc
" = O.jUÔVO

PERIOD I H f L 0 « ö ü I F L 0 « 1 H F L 0 «
k 24.00 (ohserved} icakulated) icakulated)hours!(O ifiJ/sec)GU i e 3 / e ec >

C3J
(fej/sec)

ij 274.000 274.000 274.000
1 314.000 "fCC 777¿JJ.OOO 314.000
L 355.000 267.489 355.000
7 404.000 291.295 404.ÔÔ0
4 495.000 308.938 495.000
5 566.000 375.038 - 566.000
6 586.000 467.551 586.000“7 572.000 537.257 572.000
6 575.000 554.387 575.000
9 572.000 566.780 572.000Î0 571.000 570.031 571.000

11 676.000 521.548 676.000
12 1026.000 440.589 1026.000
13 1156.000 692.142 1156.00014 1081.000 974.533 1081.000
15 1001.000 3068.649 1001.000

It 816.000 1118.903 816.000n 681.000 1020.355 681.000
IS 568.000 892.099 567.999
19 538.000 733.246 537.999V i'» 534.000 630.982 533.997
21 535.000 578.791 534.994
22 551.000 547.969 550.988“»7 555.000 547.719 554.97424 549.000 554.402 548.944
25 544.000 553.854 543.880
26 493.000 572.399 492.74327 428.000 560.386 427.449
28 376.000 514.047 374.820
29 357.000 449.289 354.471
30 301.000 426.201 295.581
31 274.000 372.027 262.387
32 271.000 321.146 246.116

Notes : (i) Values of coefficients:
1/Co = -2.14, -(Cj/Cq) = 2.14 and -(C2/C0) = 1.00

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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4.2.1 Further Computations Using Parameter x = 0.0 with 
Various At

Tables IV.2.1 show that only x = 0.0 gives a satisfactory result, where all 
of the calculated upstream discharges agree exactly with the observed ones. The 
computation used only one set of parameter values, i.e.: K = 66 hours and 
At = 24 hours. In order to be able to verify whether or not the parameter x = 0.0 
always gives satisfactory results, it is necessary that further computations be 
carried out. For this purpose, various time steps At are used besides At = 24 
hours. They are respectively 3, 6, 12, 24, 36 and 48 hours.

Firstly, the observed upstream hydrograph ordinates were interpolated using 
linear interpolation according to the time step At used. Secondly, conventional 
downstream routing was applied to obtain calculated downstream hydrograph 
ordinates. These hydrographs were then used to compute back the upstream ones 
applying upstream routing [eq.(4.1.1)].

Tables IV.2.2 show the results. It can be noticed that all of the calculated 
upstream discharges agree exactly with the observed ones, no matter what the time 
step At is used.



Tables IV.2.2
Results of Computations Using Parameter x = 0, Various 

Time Step At and K = 66 hours
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Nueber of data = 25:
= 66.ÖÖ hours 

T = 3.00 hours
- = 0.00000

PERIOD I NF L OW 0 U ï F L 0 H I NF LOW
(s 3.00 (observed) (calculated) (calculated)hours)Cl) (fi3/sec)CA) (s3/sec)

O )
(fi3/sec)

0 274.000 274.000 274.000
1 279.000 274.111 279.000

284.000 274.440 284.0003 289.000 274.976 289.0004 294.000 275.710 294.0005 299.000 276.634 299.000
6 304.000 277.739 304.000

309.000 279.017 309.000
8 334.000 280.461 314.000
r, 319.125 282.066 319.125

10 324.250 283.827 324.250
11 329.375 285.737 329.375
12 334.500 287.790 334.500
13 339.625 289.980 33°.62514 344.750 292.301 344.75013 349.875 294.746 349.875
16 355.000 297.310 355.000
17 361.125 300.010 361.125
IS 367.250 302.862 367.25019 373.375 305.860 373.375
20 379.500 308.997 379.500
21 j 85.625 j 11 . i 66 385.625
X x 391.750 ¿15.663 391.750
X j 397.875 319.181 397.875
24 404.000 322.814 404.000
23 415.375 ¿¿'6.675 415.375
2 b 426.750 330.870 426.750
21 438.125 335.384 438.125
28 449.500 340.203 449.500
29 460.875 345.314 460.875
30 472.250 350.703 472.250
31 483.625 7 n  

J JO.J 483.625
32 495.000 362.267 495.000
7 7 503.875 ¿68.363 503.875

Notes : (i) Values of coefficients:
1/Co = 45.00, -(Cj/Cq) = -1.00 and -(C2/C0) = -43.00

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nuaber of data = 257
K = ¿ ¿ . 0 0  hours
T = 3.00 hour5

s = 0.00000
PERIOD 

is 3.00 
hours)

I N F L 0  H 
(observed) 

ia3/sec)
OUTF LOW

(calculated)
U3/S6C)

I NF LOW
(calculated)

U3/sec)
34 512.750 374.583 512.7507C 521.825 380.921 521.625
3¿ 530.500 387.372 530.500
37 539.375 393.930 539.375
38 548.250 400.592 548.250
39 r n  i nc JJ/. 1*J 407.351 557.125
40 5 6 6 . 0 0 0 414.205 566.000
41 5 6 8 . 5 0 0 421.007 ' 563.500
42 571.000 427.618 * 571.000
43 573.500 434.048 573.500
44 578.000 440.300 576.000
45 578.500 448.386 578.500
48 581.000 452.314 581.000
47 583.500 453.089 583.500
48 588.000 463.718 586.000
49 584.250 489.114 584.250
50 582.500 474.192 582.500
51 580.750 478.987 580.750
52 579.000 483.452 579.000
53 577.250 437.659 577.250
54 575.500 491.602 575.500crJJ 573.750 495.292 573.750
56 572.000 498.740 572.000
57 572.375 502.005 572.375
58 572.750 505.141 572.750
59 573.125 508.154 573.125
¿0 573.500 511.050 573.500
¿1 573.875 513.834 573.875
¿2 574.250 516.510 574.250
¿3 574.825 519.085 574.625
¿4 575.000 521.562 575.000
¿5 574.625 523.928 574.625
¿8 574.250 526.173 574.250
¿7 573.875 528.302 573.875
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Nu«ber of data = 257
K = 66 .0 0  hourC
T = 3.00 hours
X = 0 .00000

PERIOD I N F L 0 a 0 U T F L 0 a I N F L 0 8

U 3.00 (observed) (calculated) (calculated)
hours) (ffi3/sec) (§3/sec) (s3/sec)

68 573.500 530.319 573.500
6 ? 573.125 532.230 573.125
70 572.750 534.039 572.75071 572.375 C*T ET *JC| 572.375
72 572.000 537.370 572.000
73 571.875 538.907 571.875
74 571.750 540.369 . 571.750
75 571.625 541.761 571.625
/6 571.500 543.086 571.500
77 571.375 544.346 571.375
78 571.250 545.544 571.250
7? 571.125 546.684 571.125
80 571.000 547.767 571.000
81 584.125 549.092 534.125
82 597.250 550.940 597.250
83 610.375 553.290 610.375
84 623.500 556.119 623.500
85 636.625 559.405 636.625
86 649.750 563.129 649.750
87 662.875 567.271 ¿62.875
38 676.000 571.811 676.000
8? 719.750 577.414 719.750
90 763.500 584.712 . 763.500
91 807.250 593.631 807.250
92 851.000 604.097 851.000
93 894.750 616.043 894.750
94 938.500 629.402 938.500
95 982.250 644.112 982.250
96 1026.000 660.113 1026.000
97 1042.250 676.735 1042.250
98 1058.500 693.342 1058.500
99 1074.750 709.932 1074.750

100 1091.000 726.507 1091.000
101 1107.250 743.068 1107.250
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Nuaber of dataKT
= 257
= 66 .0 0  hours 
= 3.00 hours 
= 0.00000

PERIOD 
(s 3.00 

hours)
I NF L OW

iobserved) 
imo/sec)

OUTF LOW 
(calculated) 

I«3/sec)
I NF L OW 

icakul ated) 
(a3/sec)

102 1123.500 759.615 1123.500103 1139.750 776.149 1139.750
104 1156.000 792.670 1156.000105 1146.625 808.610 1146.625
106 1137.250 823.424 1137.250
10? 1127.875 837.164 1127.875
108 1118.500 849.876 . 1118.500109 1109.125 861.606 1109.125
110 1099.750 872.399 1099.750
113 1090.375 882.295 1090.375
112 1081.000 891.335 1081.000
113 1071.000 899.542 1071.000
114 1061.000 906.940 1061.000
115 1051.000 913.565 1051.000
116 1041.000 919.451 1041.000
117 1031.000 924.631 1031.000
318 1021.000 929.136 1021.000

11? 1011.000 932.997 1011.000

120 1001.000 936.241 1001.000

121 977.875 938.606 977.875
122 954.750 939.837 954.750
123 931.625 939.986 931.625
324 908.500 939.101 908.500
125 885.375 937.227 885.375
126 862.250 934.408 862.250
127 839.125 930.687 839.125
128 816.000 926.104 816.000
12? 799.125 920.835 799.125
130 782.250 915.051 782.250
13! 765.375 908.774 765.375
132 748.500 902.026 748.500
133 731.625 894.327 731.625
334 714.750 887.199 714.750
135 697.875 879.159 697.875
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Nusber of data
K
T

= 257
= 6 6 .0 0  hours 
= 3.00 hours 
= 0.00000

PERIOD 
(x 3.00 

hours)
I N F L 0 H 

(observed) 
(a3/sec)

0 li I F L 0 H 
(calculated) 

(§3/sec)
I N F L 0 H 

(calculated) 
(»3/sec)

136 681.000 870.727 681.000
137 666.375 861.981 666.875
138 652.750 852.996 652.75013? 638.625 843.782 638.625140 624.500 834.350 624.500141 610.375 824.710 610.375142 596.250 814.870 596.250143 582.125 804.839 ' 582.125144 568.000 794.627 568.000
145 564.250 784.471 564.250
146 560.500 774.600 ' 560.500147 556.750 765.002 556.750
148 553.000 755.663 553.00014? 549.250 746.572 549.250
550 545.500 737.719 545.500
151 541.750 729.092 541.750
152 538.000 720.683 538.000
153 537.500 712.552 537.500
154 537.000 704.761 537.000
155 536.500 697.294 536.500
156 536.000 690.137 536.000
157 535.500 683.275 535.500
158 535.000 676.696 535.000
15? 534.500 670.387 534.500
160 534.000 664.337 534.000
161 534.125 658.547 534.125
162 534.250 653.020 534.250
163 534.375 647.744 534.375
164 534.500 642.708 534.500
165 534.625 637.902 534.625
166 534.750 633.314 534.750
167 534.875 628.936 534.875
168 535.000 624.759 535.000
16? 537.000 620.814 537.000
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Number of dataK
T

= 257
= 6 6 .0 0  hours 
= 3.00 hours 
= 0.00000

PERIOD
iv 3 .0 0

hours)
I N F L OW 

fobserved) 
is3/sec)

OUTF LOW
(calculated)

(i3/sec)
I N F L OW

(calculated)
(ft3/sec)

170 539.000 617.133 539.000
171 541.000 613.705 541.000
172 543.000 610.518 543.000
173 545.000 607.562 545.000
174 547.000 604.826 547.000
175 549.000 602.300 549.000
176 551.000 599.976 551.000
177 551.500 597.310 551.500
178 552.000 595.763 552.000
17? 552.500 593.829 552.500
loO • 553.000 592.003 553.000
181 553.500 590.281 553.500
1S2 554.000 588.657 554.000
183 554.500 587.128 554.500
184 555.000 585.689 555.000
185 554.250 584.309 554.250
186 553.500 582.956 553.500
137 552.750 581.630 552.750
188 552.000 580.330 552.000
18? 551.250 579.054 551.250
190 550.500 577.802 550.500
191 549.750 576.572 549.750
192 549.000 575.363 549.000
193 548.375 574.177 548.375
194 547.750 573.017 547.750
195 547.125 571.880 547.125
196 546.500 570.766 546.500
197 545.875 569.673 545.875
198 545.250 568.602 545.250
199 544.625 567.550 544.625
200 544.000 566.517 544.000
201

C7i / n c  JJ/ .CUJ 565.375 537.625
202 531.250 564.000 531.250
203 524.875 562.403 524.875
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Muster ot data
K
T = 66 .0 0  hours 

= 3.00 hours 
= 0.00000

PERIOD 
<s 3.00 

hours)
I M F L 0 K 

(observed) 
(s3/sec)

0 0 f F L 0 H 
(calculated) 

(a3/sec)
I H F L 0 H 

(calculated) 
(s3/sec)

204 518.500 560.593 518.500
205 512.125 558.581 512.125
206 505.750 556.374 505.750
207 499.375 553.983 499.375
208 493.000 551.414 493.000
209 484.875 548.637 484.875
210 476.750 545.623 . 476.750
211 468.625 542.381 468.625
212 460.500 538.923 460.500
213 452.375 535.257 452.375
214 444.250 531.392 444.250
215 436.125 527.339 436.125
216 428.000 523.104 428.000
217 421.500 518.733 421.500
218 415.000 514.267 415.000
219 408.500 509.711 408.500
220 402.000 505.068 402.000
221 395.500 500.343 395.500
222 389.000 495.539 389.000
223 382.500 490.659 382.500
224 376.000 485.708 376.000

373.625 480.779 373.625
226 371.250 475.964 371.250
227 368.875 471.257 368.875
228 366.500 466.654 366.500
229 364.125 462.150 364.125
230 361.750 457.741 361.750
231 ?rn 77cOJ7.J/J 453.421 359.375
232 357.000 449.189 357.000
233 350.000 444.936 350.000
234 343.000 440.561 343.000
235 336.000 436.069 336.000
236 329.000 431.466 329.000
237 322.000 426.757 322.000
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Nusber cf data = 25;
K = 6 6 .0 0  hourC
T
V

= 3.00 hours 
= 0 .0 0 0 0 0

PERIOD I H F L 0 H 0 U I F L 0 8 I NF L OW
(x 3.00 {observed) {calculated) (calculated)

hours) (a3/sec) (a3/sec) U3/sec)
¿ O u 315.000 421.945 315.00023? 308.000 417.037 308.000
240 301.000 412.035 301.000
24! 297.625 407.025 2V7.625
242 294.250 402.088 294.250
243 290.875 397.220 290.875
244 287.500 392.41? 287.500
245 284.125 ¿8 /.681 ' 284.125
246 280.750 383.003 280.750
247 h i .  ¿75 378.384 277.375
248 274.000 373.819 274.000
249 273.625 369.375 273.625
250 273.250 365.111 273.250
25! 272.875 361.020 272.875
252 272.500 357.094 272.500
253 272.125 353.326 272.125
254 271.750 349.708 271.750
255 271.375 346.235 271.375
256 271.000 342.900 271.000

4 - 19
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!aber of dsta = 12?
= 66 .0 0  hour 
= 6 .0 0  hours 
= 0 .00000

s

PERIOD 1 H F L 0 \H 0 U i F l  G H I N F L 0 H
; 6 .0 0 (observed) (calculated) (calcul¿tedi
hours) («3/sec) (mZ'/sec) (aò/sec)

< 0 a ) (3) O )

0 2/4.000 274.000 274.000
1 284.000 274.435 284.000
7 294.000 275.701 294.000

304.000 277.727 304.0004 314.000 280.447 314.000
C
J 324.250 283.810 . 324.250
0 334.500 287.772 334.500
7 344.750 292.281 344.750
Cu 355.000 297.289 355.000
n 367.250 302.840 367.250

10 379.500 308.974 379.500
i! 391.750 315.639 391.750
12 404.000 322.790 404.000
13 426.750 330.841 426.750
14 449.500 340.170 449.500
i c
i W 472.25o 350.666 472.250
16 495.000 362.228 495.000
17 512.750 374.545 512.750
16 530.500 j87.ô34 530.500
1 ? 548.250 400.555 548.250
20 566.000 414.170 566.000
21 571.000 427.590 571.000
7 7 576.000 440.278 576.000
23 581.000 452.297 581.000
24 586.000 483.706 586.000
oc
f J 582.500 474.188 582.500
2 b 579.000 483.454 579.000
27 575.500 491.611 575.500
26 572.000 498.753 572.000
2? 572.750 505.155 572.750
30 573.500 511.065 573.500
31 574.250 516.527 574.250
32 575.000 521.579 575.000
0 O 574.250 526.192 574.250

Notes : (i) Values of coefficients:
1/C0 = 23.00, -(CyCo) = -1.00 and -(C2/C0) = -21.00

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nuaber of data = 129
K = 8 6 .0 0  hourC
T = 6 .0 0  hours
* = 0 .0 0 0 0 0

PERIOD 1 N F L 0 « OUTF LOW I NF L OW(s ¿ . 0 0 (observed) (calculated) (calculated)hours) («3/sec) (s3/sec) fsS/sec)
34 573.500 530.338 573.50035 572.750 534.059 572.7503 6 572.000 537.391 572.00037 571.750 540.389 571.75038 571.500 543.105 571.500
3? 571.250 545.564 571.25040 571.000 547.786 . 571.00041 597.250 550.946 597.25042 623.500 556.114 623.500
43 849.750 563.115 ¿49.75044 876.000 571.790 676.000
45 763.500 584.656 763.50048 851.000 604.012 851.00047 938.500 629.293 938.50048 1026.000 659.985 1026.00049 1053.500 ¿93.226 1058.500
50 1091.000 726.402 1091.000
51 1123.500 759.519 1123.50052 1156.000 792.583 1156.000
53 1137.250 823.369 1137.250
54 1118.500 849.848 1118.500
55 1099.750 872.393 1099.750
58 1081.000 891.348 1081.000
57 1061.000 906.970 1061.000
58 1041.000 919.495 1041.000
59 1021.000 929.191 1021.000

80 1001 .000 936.305 1001.000

81 954.750 939.919 954.750
82 908.500 939.198 908.500
¿3 862.250 934.518 862.250
¿4 816.000 926.223 816.000
¿5 782.250 915.171 782.250
¿ 6 748.500 902.145 748.500
67 714.750 887.317 714.750
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Nueber of data = 129
K = 6 6 .0 0  hourC

I = 6 .0 0  hours
* = 0 .00 000

PERIOD I N F L OW OUTF LOW I NF L OW
0 : 6 .0 0 (observed) (calculated) (calculated)

hour )̂ («3/sec) (ft3/sec) («3/sec)
¿ 8 681.000 870.344 681.000
69 652.750 853.108 ' 652.750
70 624.500 834.457 624.500
71 596.250 814.972 596.250
72 568.000 794.724 568.000
73 560.500 774.683 560.500
74 553.000 755.732 553.000
75 545.500 737.777 ' 545.500
76 538.000 720.731 538.000
77 537.000 704.798 537.000
78 536.000 690.164 536-. 000
79 535.000 676.715 535.000
80 534.000 664.348 534.000
81 534.250 653.024 534.250
82 534.500 642.707 534.500
83 534.750 633.309 534.750
84 535.000 624.749 535.000
85 539.000 617.119 539.000
86 543.000 610.500 543.000
87 547.000 604.804 547.000
88 551.000 599.952 551.000
89 552.000 595.738 552.000
90 553.000 591.979 553.000
91 554.000 588.633 554.000
92 555.000 585.665 555.000
93 553.500 582.933 553.500
94 552.000 580.308 552.000
95 550.500 577.781 550.500
96 549.000 575.344 549.000
97 547.750 572.999 547.750
98 546.500 570.749 546.500
99 545.250 568.586 545.250

100 544.000 566.502 544.000
101 531.250 563.991 531.250
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Number of data = 129
K = 6 6 .0 0  hour5
I = 6 .0 0  hours
- = 0 .00 000

PERIOD I N F L OW OUTF LOW I H F L 0 H
is 6 .0 0 (observed) (calculated) (calculated)

hours) («3/seci 1*3/sec) (o3/sec)
102 518.500 560.590 518.500
103 505.750 556.376 505.750
104 493.000 551.419 493.000
105 476.750 545.633 476.750
106 460.500 538.936 460.500
107 444.250 531.409 444.250
108 428.000 523.124 428.000
109 415.000 514.287 415.000
110 402.000 505.088 402.000
111 389.000 495.559 389.000
112 376.000 485.727 376.000
113 371.250 475.979 371.250
114 366.500 466.666 366.500
115 361.750 457.749 361.750
116 357.000 449.195 357.000
117 343.000 440.569 343.000
118 329.000 431.476 329.000
119 315.000 421.957 315.000
120 301.000 412.047 301.000
121 294.250 402.098 294.250
122 287.500 392.426 287.500
123 280.750 333.009 280.750
124 274.000 373.823 274.000
125 273.250 365.110 273.250
126 272.500 357.090 272.500
127 271.750 349.702 271.750
128 271.000 342.891 271.000
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Nuaber of data = 65
K = 66 .0 0  hours
! = 12 .00  hours
“ = 0.00000

PER 1 GO 1 N F L G H 0 U T F L G H 1 H F t 0 H
(x 12 .00 (observed! (calculated) (calcuiated)

hours)co (*3/sec) (A) U3/secjC33 (e3/sec)C4)
0 274.000 274.000 274.000
1 294.000 275.667 294.000Oi . 314.000 280.389 314.000
J 334.500 287.699 334.500
4 355.000 297.208 355.000
cj 379.500 308.881 379.500
6 404.000 322.693 ’ 404.000
*7 449.500 340.036 449.500
8 495.000 362.071 495.000
9 530.500 387.184 530.500

10 566.000 414.029 566.000
11 576.000 440.191 576.000
12 586.000 463.659 586.000
13 579.000 48j . 466 579.000
14 572.000 498.805 572.000
15 573.500 511.129 573.500
16 575.000 521.649 575.000
1 ; 573.500 530.416 573.500
18 572.000 537.472 572.000
19 571.500 543.185 571.500
20 571.000 547.862 571.000
21 623.500 556.094 623.500
i. ± 676.000 571.703 676.000
23 851.000 603.669 851.000
24 1026.000 ¿59.474 1026.000
25 1091.000 725.979 1091.000
26 1156.000 792.232 1156.000
27 1118.500 849.735 1118.500
28 1081.000 891.404 1081.000
29 1041.000 919.670 1041.000
30 1001.000 936.559 1001.000

31 908.500 939.590 908.500
32 816.000 926.700 816.000
33 748.500 902.625 748.500

Notes : (i) Values of coefficients:
1/C0 = 12.00, -(Cj/Cq) = -1.00 and -(C2/C0) = -10.00

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nusber of data 
K 
T 
x

65
66 .0 0  hours
12.00  hours 
0.00000

PERIOD 
(x 12 .00  

hours)
I NF L OW

(observed)
(®3/sec)

G U T F L 0 H 
(calculated) 

(s3/sec)
I NF LOW

(calculated)
(e3/sec)

34 681.000 871.313 681.000
35 624.500 834.886 624.500
36 568.000 795.113 568.000
37 553.000 756.011 553.000
38 538.000 720.926 538.000
39 536.000 690.271 536.000
40 534.000 664.393 534.000
41 534.500 642.702 534.500
42 535.000 624.710 535.000
43 543.000 610.425 543.000
44 551.000 599.854 551.000
45 553.000 591.879 553.000
46 555.000 585.566 555.000
47 552.000 580.221 552.000
48 549.000 575.268 549.000
49 546.500 570.681 546.500
50 544.000 566.443 544.000
51 518.500 560.577 518.500
cn
wii 493.000 551.439 493.000
53 460.500 538.991 460.500
54 428.000 523.201 428.000
55 402.000 505.168 402.000
56 376.000 485.806 376.000
57 366.500 466.714 366.500
58 357.000 449.220 357.000
59 329.000 431.516 329.000
60 301.000 412.097 301.000
61 287.500 392.456 287.500
62 274.000 373.838 274.000
63 272.500 357.073 272.500
64 271.000 342.853 271.000
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Number of data = 33
K = 66 .00  hour5
T = 24.00 hourc
A = 0.00000

PERIOD I NF LOW OUTF LOW I NF LOW
(x 24.00 (observed) (calculated) (calculated)

hour5 ) CO («3/sec)
CO

(«3/sec)
¿3)

(s3/sec)
0 274.000 274.000 274.000
1 314.000 280.154 314.000
rtA. 355.000 K> -O O

'

C
O

 •—1 O' 355.000
3 404.000 322.299 404.000
4 495.000 361.437 495.000
r■J 566.000 413.457 566.000
6 586.000 463.470 ' 586.000
i 572.000 499.018 572.000
8 575.000 521.935 575.000
9 572.000 537.801 572.000

10 571.000 548.170 571.00O
11 ¿76.000 571.349 6 / 6.000

12 1026.000 ¿57.395 1026.000

13 1156.000 790.812 1156.000
14 1081.000 891.639 1081.000
15 1001.000 937.596 1001.000

16 816.GOO 928.644 816.000

17 681.000 873.215 681.000
18 568.000 796.687 568.000
19 538.000 721.707 538.000
20 534.000 664.566 534.000
21 535.000 624.546 535.000
22 551.000 599.455 551.000
23 555.000 585.161 555.000
24 549.000 574.958 549.000
25 544.000 566.201 544.00026 493.000 551.524 493.000
27 428.000 523.517 428.000
28 376.000 486.127 376.000
29 357.000 449.319 357.000
30 301.000 412.298 301.000
31 274.000 373.898 274.000
32 271.000 342.699 271.000

Notes : (i) Values of coefficients:
1/Cq = 6.50, -((yCo) = -1.00 and -(C2/C0) = -4.50

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Husber of data
KI

PERIOD I NF L OW 0 U r F L 0 H I NFLOW
: 36.00 (observed) (calculated) (calculated)
hours) (a3/sec) u3/sec) (*3/sec)Cn CO ________ f i l ____________

0 274.000 274.000 274.000
1 334.500 286.964 334.500
ri4. 404.000 322.230 404.000
3 530.500 384.381 530.500
4 586.000 458.896 586.000
c
J 573.500 510.691 573.500
6 572.000 537.288 ' 572.000
7 623.500 563.200 623.500e 1026.000 675.293 1026.000
9 1118.500 845.417 1118.500

10 1001.000 937.274 1001.000

n 748.500 910.478 748.500
12 568.000 802.380 568.000
13 536.000 695.074 536.000
14 535.000 626.685 535.000
15 553.000 591.249 553.000
16 549.000 573.999 549.000
17 518.500 556.750 518.500
18 428.000 520.964 428.000
19 366.500 467.944 366.5(>0
20 301.000 410.432 301.000
21 272.500 357.426 272.500

= 66 .0 0  hours 
= 36.00 hours 
= 0.00000

Notes : (i) Values of coefficients:
1/C0 = 4.67, -(Cyq,) = - 1 . 0 0  and -(C2/Co) = -2.67

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Muster of dataK
I

= 17
= ¿¿.00 hours 
= 48.00 hours 
= 0.00000

PERIOD 1 N F L 0 8 0 U T F L 0 H I H F L 0 N
( x  48.00 lobserved) (calculated) (calculated)hours)

O )
l§3/secic-o (fi3/sec)(3) (a3/sec)

0 274.000 274.000 274.000
1 355.000 295.600 355.000
i. 495.000 364.613 495.000
7
v\ 586.000 458.420 586.0004 575.000 523.529 575.000
CJ . 571.000 549.914 571.000
6 1026.000 682.493 ' 1026.000/ 1081.000 380.363 1081.000
8 816.000 916.703 816.000p 568.000 796.861 568.000

10 534.000 665.735 534.000
11 551.000 600.010 551.000
12 549.000 573.338 549.00013 4 9 3 . 0 0 0 545.424 493.00014 3 7 6 . 0 0 0 486.265 376.00015 3 0 1 . 0 0 0 407.457 301.000
16 2 1 1 . 00 0 342.680 271.000

Notes : (i) Values of coefficients:
1/C0 = 3.75, -(Cj/Cq) = -1.00 and -(C2/Cq) = -1.75

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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4.2.2 Further Computations Using Parameter x = 0.45 with 
Various At

Since the parameter x value derived from the September-October 1960 flood 
in the reach of the Murray River from which the data were taken is 0.45, this value 
was adopted to investigate the effect of At in the numerical computation. The time 
steps At used were chosen to cover a wide range. They are, respectively, 3, 6, 12, 
24, 36, 48, 60, 72 and 96 hours while the parameter K value is 66 hours. It 
should be noted that these time steps At of which some of them are larger than the 
K value are only for the use of numerical investigation. In practice, the time step 
At used would always be less than or equal to the K value.

The method of computation is the same as that discussed in the previous 
section. After interpolating the data according to the time step A t, conventional 
downstream routing was applied to obtain calculated downstream hydrograph 
ordinates. Afterwards, this result was used to compute back the upstream 
hydrograph ordinates.

Tables IV.2.3 show the results. It can be noticed from these tables that the 
only time step At giving calculated upstream discharges which agree precisely 
with the observed ones is At = 96 hours. With this large time step, the number of 
data points becomes very few. The time step At = 12 hours apparently gives a 
satisfactory result, but actually it does not since the last few calculated upstream 
discharges do not match the observed ones. The time step At = 72 hours gives 
fairly good result, but again the last few calculated upstream discharges do not 
match precisely the observed ones. If the number of data points were more than 
that shown in the table, the differences would propagate and magnify. The worst 
result is given by time step At = 60 hours, even though the number of data is very 
few, the computation diverges very rapidly. The cause of these results will be 
discussed later in this chapter.



Tables IV.2.3
Results of Computations Using Parameter x = 0.45, 

Various Time Step At and K = 66 hours



Notes
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Nuaber of data = 257
k = 6â.Ôô heur=
l = 3.00 hüurs
x = 0.45000

PERIOD
(s 3.00

hours)(»

I NF LOW
(observed)

(«3/sec) (?)

0 Ü Ï F L 0 M
(calculated)

U3/sec)
O )

I NF L OW
(calculated)

(c3/sec)
G o

0 274.000 274.000 274.000
1 279.000 270.270 279.000r/i. 284.000 267.233 284.000
3 289.000 264.833 289.000
4 294.000 263.021 294.000
5 299.000 261.749 299.000
6 304.000 260.976 ’ 304.000
7 309.000 260.660 309.000
8 314.000 260.767 314.000
9 319.125 261.168 319.125

10 324.250 261.944 324.250
11 329.375 263.066 329.375
12 334.500 264.505 334.500
13 339.625 266.237 339.625
14 344.750 268.238 344.750

' 15 349.875 270.487 349.875
16 355.000 272.964 355.000
17 361.125 274.905 361.125
18 367.250 277.179 367.250
19 7 “> y 7 1C J / J. 0 / J 279.758 373.375
20 379.500 282.618 379.500
21 385.625 . 285.738 385.625
22 391.750 289.096 391.750
23 397.875 292.674 397.875
24 404.000 296.454 404.000r.r x J 415.375 296.503 415.375
26 426.750 297.451 426.750
27 438.125 299.227 438.125
28 449.500 301.764 449.500
29 460.875 305.003 460.875
30 472.250 308.888 472.250
31 483.625 313.367 483.625
32 495.000 318.393 495.000
33 503.875 325.789 503.875

: (i) Values of coefficients:
l/Co= -1.34, -(Cj/Cq) = 111 and -(C2/C0) = 1.23

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Number of dataK
T

= 257
= 66 .00  hours 
= 5.00 hours 
= 0.45000

PERIOD
3.00

hours)
I N F l  0 H 
(observed) 

(a3/seci
0  (J T f L 0 « 

(calculated) 
(s3/sec)

1 H F L 0 N 
(calculated) 

(s3/sec)
34 512.750 333.302 512.750
35 521.625 340.923 521.625
36 530.500 348.643 530.500
37 539.375 356.455 539.375
38 548.250 364.351 548.250
39 557.125 372.326 557.125
40 566.000 380.371 566.000
41 568.500 393.239 ' 568.500
42 571.000 405.283 571.000
43 573.500 416.570 573.500
44 576.000 427.160 576.000
45 578.500 437.107 578.500
46 581.000 446.464 581.000
47 583.500 455.276 583.500
48 586.000 463.588 586.000
49 584.250 474.609 584.250
50 582.500 484.616 582.500
51 580.750 493.690 580.750
52 579.000 501.905 579.000
53 577.250 509.329 577.250
54 575.500 516.025 575.500
55 573.750 522.051 573.750
56 572.000 527.460 572.000
57 572.375 530.715 572.375
58 572.750 533.742 572.750
59 573.125 536.558 573.125
60 573.500 539.180 573.500
¿1 573.875 541.624 573.875
62 574.250 543.904 574.250
63 574.625 546.033 574.625
64 575.000 548.022 575.000
65 574.625 550.443 574.625
66 574.250 552.642 574.250
67 573.875 554.637 573.875



Chapter 4 Upstream Routing Using Conventional ... 4 - 32

Husber of dataK
I
V

¿57
66 .0 0  hours
5.00 hours 
0.45000

PERIOD 
(x 3.00 

hours)
I N P L 0 «
(observed)

(s3/sec)
0 U T F L 0 H 

(calculated) 
(«3/sec)

I N F L O «
(calculated!

(e3/sec)
68 573.500 556.443 573.500
¿9 573.125 558.077 573.125
70 572.750 559.551 572.750
71 572.375 560.878 572.375
72 572.000 562.070 572.000
73 571.875 562.952 571.875
74 571.750 563.753 571.750
75 571.625 564.481 ' 571.625
76 571.500 565.141 571.500
77 571.375 565.739 571.375
78 571.250 566.280 571.250
79 571.125 566.767 571.125
80 571.000 567.207 571.000
81 584.125 557.716 584.125
82 597.250 550.020 597.250
S3 610.375 543.977 610.375
84 623.500 539.455 623.500
85 636.625 536.334 636.625
86 649.750 534.502 649.750
87 662.875 533.857 662.875
88 676.000 534.304 676.000
89 719.750 512.911 719.750
90 763.500 496.688 763.500
91 807.250 485.225 807.250
92 851.000 478.143 851.000
93 894.750 475.096 894.750
94 938.500 475.763 938.500
95 982.250 479.850 982.250
96 1026.000 487.084 1026.000
97 1042.250 517.732 1042.250
98 1058.500 547.237 1058.500
99 1074.750 575.691 1074.750

100 1091.000 603.176 1091.000
101 1107.250 629.769 1107.250



Chapter 4 Upstream Routing Using Conventional ... 4 - 3 3

Nufiber of data
KT

= 257
= 6 6 . 0 0  hours 
= 3.00 hours 
= 0.45000

PERIOD 
(x 3.00 

hours)
I N F L OW
{observed)

(s3/sec)
OUTF LOW

(calculated!
ii3/sec!

I NF LOW
(calculated)

(«3/sec)
102 1123.500 655.541 1123.500
103 1139.750 680.558 1139.750
104 1156.000 704.878 1156.000
105 1146.625 747.676 1146.625
106 1137.250 786.332 1137.250
107 1127.875 821.177 1127.875
108 1118.500 852.512 1118.500
109 1109.125 880.616 ‘ 1109.125
110 1099.750 905.746 1099.750
111 1090.375 928.137 1090.375
112 1081.000 948.007 1031.000
113 1071.000 966.023 1071.000
114 1061.000 981.814 1061.000
115 1051.000 995.559 1051.000
116 1041.000 1007.420 1041.000
117 1031.000 1017.545 1031.000
118 1021.000 1026.073 1021.000

119 1011.000 1033.131 1011.000

120 1001.000 1033.835 1001.000

121 977.875 1053.084 977.875
122 954.750 1064.367 954.750
123 931.625 1072.919 931.624
124 908.500 1073.957 903.499
125 885.375 1082.681 885.374
126 862.250 1084.274 862.249
127 839.125 1083.905 839.124
128 816.000 1081.730 815.999
129 799.125 1073.230 799.124
130 782.250 1064.064 782.249
131 765.375 1054.288 765.374
132 748.500 1043.947 748.499
333 731.625 1033.088 731.624
134 714.750 1021.752 714.748
335 697.875 1009.976 697.873



Chapter 4 - Upstream Routing Using Conventional ...

Huiber of data = 257
K = ¿ ¿ . 0 0  hours
T = 3.00 hours
x = 0.45000

PERIOD 
(x 3.00 

hours)
I N F L OW
(observed)

(«3/sec)
OUTF LOW

(calculated)
(e3/sec)

I NF LOW
(calculated)

(*3/sec)
m 681.000 997.795 680.998
137 666.875 983.191 666.873
133 652.750 968.624 652.748
139 638.625 954.092 638.622
140 624.500 939.593 624.497
141 610.375 925.123 610.372
142 596.250 910.681 596.247
143 582.125 896.264 ' 582.121
144 568.000 881.870 567.996
145 564.250 859.757 564.245
146 560.500 839.102 560.495
147 556.750 819.788 556.744
148 553.000 801.710 552.994
149 549.250 784.768 549.243
150 545.500 768.874 545.492
151 541.750 753.944 541.741
152 538.000 739.901 537.990
153 537.500 724.250 537.489
154 537.000 709.801 536.988
155 536.500 696.460 536.487
156 536.000 684.138 535.986
157 535.500 672.754 535.484
158 535.000 662.234 534.982
159 534.500 652.509 534.481
160 534.000 643.516 533.979
161 534.125 634.731 534.101
162 534.250 626.653 534.224
163 534.375 619.226 534.346
164 534.500 612.399 534.468
365 534.625 606.123 534.539
166 534.750 600.355 534.711
167 534.875 595.055 534.831
168 535.000 590.186 534.952
169 537.000 584.314 536.947

4 - 34



Chapter 4 - Upstream Routing Using Conventional ... 4 - 3 5

Number of data
K
T

= 257
= 66 .0 0  hours 
= 3.00 hours 
= 0.45000

PERIOD 
(x 3.00 

hours)
I H F l  0 U 
(observed) 

(a3/sec)
0 U f F l  0 « 

(calculated) 
(f3/sec)

1 N F L 0 H 
(calculated) 

(s3/sec)
170 539.000 579.067 538.941
171 541.000 574.395 540.935
172 543.000 570.252 542.928
173 545.000 566.597 544.920
174 547.000 563.391 546.912
175 549.000 560.598 548.902
176 551.000 558.186 550.892
177 551.500 557.242 ' 551.380
178 552.000 556.414 551.868
17? 552.500 555.690 552.354
180 553.000 555.064 552.838
131 553.500 554.527 553.321
182 554.000 554.073 553.802
183 554.500 553.694 554.281
184 555.000 553.385 554.757
185 554.250 554.073 553.981
186 553.500 554.646 553.203
187 552.750 555.115 552.421
188 552.000 555.487 551.636
18? 551.250 555.769 550.848
190 550.500 555.970 550.055
191 549.750 556.096 549.257
192 549.000 556.152 548.455
193 548.375 556.050 547.772
194 547.750 555.907 547.083
195 547.125 555.726 546.387
196 546.500 555.510 545.684
197 545.875 555.261 544.972
193 545.250 554.982 544.251
19? 544.625 554.676 543.51?
200 544.000 554.345 542.777
201 537.625 558.280 536.271
202 531.250 561.396 529.752
203 524.875 563.760 523.218



Chapter 4 - Upstream Routing Using Conventionai ... 4 - 3 6

Nueber o-f dataK
T
A

= 257
= 6 6 . 0 0  hours 
= 3.00 hours 
= 0.45000

PERIOD 
(x 3.00 

hours}
I M F L 0  «
(observed)

i«3/sec)
0 U T F L 0 « 

(calculated) 
(i3/sec)

I « F L 0 H
(calculated)

(s3/sec)
204 518.500 565.430 516.667
205 512.125 566.461 510.097
206 505.750 566.905 503.506
207 499.375 566.807 496.892
208 493.000 566.211 490.253
209 484.875 566.462 481.836
210 476.750 566.049 473.388
211 463.625 565.023 * 464.905
212 460.500 563.434 456.384
213 452.375 561.326 447.822
214 444.250 558.741 439.212
215 436.125 555.716 430.551
216 428.000 552.286 421.833
217 421.500 547.271 414.677
218 415.000 542.138 407.451
219 408.500 536.897 400.148
220 402.000 531.556 392.760
221 395.500 526.123 385.277
222 389.000 520.605 377.689
223 382.500 515.010 369.986
224 376.000 509.342 362.155
225 373.625 500.531 358.307
226 371.250 492.231 354.302
227 368.875 484.401 350.124
228 366.500 477.005 345.755
229 364.125 470.006 341.173
230 361.750 463.375 336.356
231 359.375 457.081 331.280
232 357.000 451.098 325.916
233 350.000 448.853 315.609
234 343.000 446.229 304.950
235 336.000 443.259 293.902
236 329.000 439.968 282.424
237 322.000 436.384 270.469



Chapter 4 Upstream Routing Using Conventional ... 4 - 3 7

Nusber of data = 257
K = 66 .0 0  hour£

T = 3.00 hours
V = 0.45000

PERIOD I NF L OW 0 U T F L 0 H I NF LOW
(x 3.00 (observed) (calculated) (caiculated)

hours) (s3/sec) («3/sec) («3/sec)
238 315.000 432.528 257.987
239 308.000 428.422 244.922
240 301.000, 424.087 231.211
241 297.625 416.836 220.412
242 294.250 409.893 208.823
243 290.875 403.233 196.360
244 287.500 396.833 182.930
245 284.125 390.674 ' 168.430
246 280.750 384.736 152.747
247 277.375 379.001 135.755
248 274.000 373.453 117.314
249 273.625 365.840 100.270
250 273.250 358.801 81.453
251 272.875 352.291 60.674
252 272.500 346.268 37.725
253 272.125 340.693 12.374
254 271.750 335.531 -15.634
255 271.375 330.749 -46.582
256 271.000 326.316 -80.782



Notes

Chapter 4 - Upstream Routing Using Conventional ...

Musber of data
KT
v

129
òó .O O  hours 
6 .0 0  hours 
0.45000

PERIOD I K F L 0 H 0 U ï F L 0 ¥ I NF L OW
(x 6 . 0 0 (observed) (calculated) (calculated)

hours)
0 )

(*3/sec)
W

<6-3/sec) 
(3 )

(»3/sec) <*>
. 0 274.000 274.000 274.000

1 284.000 267.206 284.000
2 294.000 262.976 294.000
3 304.000 260.919 304.000
4 314.000 260.702 314.000
5 324.250 261.875 324.250
6 334.500 264.435 ' 334.500
1 344.750 268.168 344.750
8 355.000 272.896 355.000
9 367.250 277.108 • 367.250

10 379.500 282.548 379.500
11 391.750 289.027 391.750
12 404.000 296.388 404.000
13 426.750 297.36! 426.750
14 449.500 301.659 449.500
i c i J 472.250 308.774 472.250
16 4-5.000 318.276 495.000
17 5:2.750 333.198 512.750
18 530.500 348.551 530.500
19 548.250 364.270 548.250
20 5cc.000 380.300 566.000
23 571.000 405.254 571.000
i. L 57c . 000 427.162 576.000
rt 7L o 581.000 446.488 581.000
24 586.000 463.627 586.000
x J 582.500 484.688 582.500
l b 579.000 501.999 579.000
27 575.500 516.133 575.500
28 572.000 527.574 572.000
29 572.750 533.847 572.750
30 573.500 539.277 573.500
31 574.250 543.992 574.250
32 575.000 548.102 575.000
33 574.250 552.718 574.250

: (i) Values of coefficients:
1/C0 = -1.47, -((yCo) = 1.22 and -(C2/C0) = 1.25

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

4 - 38



Chapter 4 - Upstream Routing Using Conventional ...

Nuaber of data = 129
K = 66.00 hours
T = 6.00 hours
x = 0.45000

PERIOD 
(x 6 .0 0  

hours)
I NF L OW

(observed)
(a3/sec)

OUTF LOW 
{calculated) 

(a3/sec)
I NF L OW 

(calculated) 
(a37sec)

34 573.500 556.515 573.500
35 572.750 559.618 572.750
36 572.000 562.132 572.000
37 571.750 563.809 571.750
38 571.500 565.191 571.500
39 571.250 566.324 571.250
40 571.000 567.246 571.000
41 597.250 549.985 597.250
42 623.500 539.367 623.500
43 649.750 534.378 649.750
44 ' 676.000 534.158 676.000
45 763.500 496.367 763.500
46 851.000 477.704 851.000
47 938.500 475.249 938.500
48 1026.000 486.528 1026.000
4? 1058.500 546.310 1053.500
50 1091.000 602.850 1091.000
51 1123.500 655.29? 1123.500
52 1156.000 704.698 1156.000
53 1137.250 786.338 1137.250
54 1118.500 852.651 1118.500
55 1099.750 905.977 1099.750
56 1081.000 948.299 1081.000
57 1061.000 982.147 1061.000

58 1041.000 1007.773 1041.000
59 1021.000 1026.434 1021.000

60 1001.000 1039.192 1001.000

61 954.750 1064.783 954.750
62 908.500 1079.406 908.500
63 862.250 1084.735 862.250
¿4 816.000 1082.190 816.000
65 782.250 1064.479 782.250
66 748.500 1044.320 748.500
67 714.750 1022.086 714.750

4 - 39



Chapter 4 Upstream Routing Using Conventional ... 4 - 4 0

Nuaber of data = 129
K = 66 .0 0  hourc
T = 6 .00  hours
X = 0.45000

PERIOD I N F L 0 H OUTF LOW I NF L OW
(k 6 .0 0 {observed) {calculated) {calculated)

hours) (a3/sec) l«3/sec) \a3/sec)
¿ 8 681.000 998.094 681.000
69 652.750 968.876 652.751
70 624.500 939.805 624.501
71 596.250 910.859 596.251
72 568.000 882.020 568.001
73 560.500 839.174 560.501
74 553.000 801.723 553.002
~i c ' J 545.500 768.846 ' 545.502
76 538.000 739.843 538.002
77 537.000 709.706 537.003
78 536.000 684.018 536.004
79 535.000 662.100 535.004
80 534.000 643.374 534.005
81 534.250 626.506 534.257
82 534.500 612.251 534.508
83 534.750 600.211 534.760
84 535.000 590.047 535.012
85 539.000 578.926 539.015
86 543.000 570.112 543.018
87 547.000 563.256 547.023
88 551.000 558.056 551.028
89 552.000 556.300 552.034
90 553.000 554.964 553.041
91 554.000 553.985 554.051
92 555.000 553.308 555.062
93 553.500 554.585 553.576
94 552.000 555.438 552.093
95 550.500 555.933 550.614
96 549.000 556.122 549.140
97 547.750 555.884 547.921
98 546.500 555.492 546.710
99 545.250 554.968 545.507

100 544.000 554.334 544.315
101

C7I nc/ijoi.iijU 561.418 531.635



Chapter 4 Upstream Routing Using Conventional 4 - 41

Nueber of dataKT
= 129
= 66 .0 0  hourE 
= 6 . 0G hours 
= 0.45000

PERIOD 
(x 6 .0 0  

hours;
I NF L OW

(observed)
<&3/sec)

OUTF LOW 
(calculated) 

(#3/sec)
I NF LOW

(calculated)
(i3/sec)

102 518.500 565.475 518.972
103 505.750 566.965 506.328
104 493.000 566.281 493.708
105 476.750 566.134 477.617
106 460.500 563.527 461.562
107 444.250 558.838 445.550
108 428.000 552.384 . 429.593
109 415.000 542.226 416.951
110 402.000 531.634 404.389
111 389.000 520.675 391.926
312 376.000 509.404 379.583
113 371.250 492.264 375.639
114 366.500 477.036 ' 371.875
115 361.750 463.370 368.333
116 357.000 451.083 365.062
117 343.000 446.230 352.874
118 329.000 439.981 341.092
119 315.000 432.549 329.810
320 301.000 424.114 319.138
121 294.250 409.904 316.464
122 287.500 396.833 314.705
123 280.750 384.727 314.069
324 274.000 373.438 314.806
125 273.250 358.766 323.226
126 272.500 346.220 333.707
127 271.750 335.475 346.711
328 271.000 326.255 362.806



Chapter 4 - Upstream Routing Using Conventionai ... 4 - 4 2

Number o-f data = 65
K = 66 .0 0  hours
T = 12.00  hours

= 0.45000
PERIOD 1 N F l  0 # OUTFLOW i H F L 0 «

(x 12 .00 (observed! (calculated} (calculated)
hour5 ) (fi3/sec) <e3/sec) (ft3/sec)CO CO &

0 274.000 274.000 274.000
1 294.000 262.794 294.000
L 314.000 260.441 314.000
3 334.500 264.149 334.500
4 355.000 272.621 355.000
5 379.500 282.264 379.500
Lu 404.000 296.122 404.000
/ 449.500 301.233 449.500
8 495.000 317.801 495.000
9 530.500 348.180 530.500
10 566.000 380.012 566.000
1) 576.000 427.172 576.000
12 586.000 463.790 586.000
13 579.000 502.381 579.000
14 572.000 528.039 572.000
13 573.500 539.670 573.500
1c 575.000 548.427 575.000
17 573.500 556.806 573.500
18 572.000 562.382 572.000
18 571.500 565.391 571.500
20 571.000 567.404 571.000
21 623.500 539.009 623.500
L L 676.000 533.563 676.000
23 851.000 475.921 851.000
24 1026.000 484.277 1026.000*>c 1091.000 601.539 1091.000
26 1156.000 703.975 1156.000
27 1118.500 853.219 1118.500
28 1081.000 949.48? 1081.000
28 1041.000 1009.207 1041.000
30 1001.000 1040.638 1001.000

31 908.500 1081.219 908.500
32 816.000 1084.047 816.000
33 748.500 1045.824 748.500

Notes : (i) Values of coefficients:
1/Cq = -1.78, -(CyQ,) = 1.51 and -(C2/C0) = 1.28

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)



Chapter 4 - Upstream Routing Using Conventional ... 4 - 4 3

Nuaber of data = 65
K = 6 6 .0 0  hours
T = 12 .00  hours
V = 0.45000

PERIOD I N f LflH OUTF LOW I H F L 8  H
(x 12 .00 (observed) (calculated) (calculated)

hours) <s3/sec) (s3/sec) (a3/sec)
34 681.000 . 999.296 681.000
35 624.500 940.655 624.500
36 568.000 882.622 568.000
37 553.000 801.772 553.000
38 538.000 739.602 538.001
39 536.000 683.531 536.001
40 534.000 642.799 534.001
41 534.500 611.654 ' 534.502
42 535.000 589.486 535.003
43 543.000 569.547 543.004
44 551.000 557.533 551.006
45 553.000 554.559 553.009
46 555.000 552.996 555.013
47 552.000 555.246 552.020
48 549.000 556.006 549.030
49 546.500 555.419 546.546
50 544.000 554.290 544.069
51 518.500 565.658 518.604
52 493.000 566.567 493.156
53 460.500 563.906 460.735
54 428.000 552.780 428.355
c rc< j 402.000 531.949 402.534
56 376.000 509.651 376.805
57 366.500 477.059 367.712
58 357.000 451.017 358.826
59 329.000 440.034 331.750
60 301.000 424.223 305.142
61 287.500 396.830 293.740
62 274.000 373.378 283.399
63 272.500 346.026 286.658
64 271.000 326.008 292.327



Notes

Chapter 4 - Upstream Routing Using Conventional ...

Nufiber of data = 33
K = 66 .0 0  hourE
T = 24.00 hourE

= 0.45000
PERIOD I N F L 0 H OUTFLOW I H F L 0 «

(x 24.00 (observed) (calculated) (calculated)
hours) («3/sec) (63/sec) (s3 / 5ec)to <X> O ) t « )

o 274.000 274.000 274.000
Î 314.000 259.342 314.000
0J. 355.000 271.476 355.000
3 404.000 295.022 404.000
4 495.000 315.825 495.000
5 566.000 378.837 566.000
6 5B6.000 464.508 ' 586.000T
i 572.000 530.007 572.000
0u 575.000 549.774 575.000
c,
7 572.000 563.408 572.000

10 571.000 568.044 571.000
11 676.000 531.034 676.000
12 1026.000 474.806 1026.000
13 1156.000 701.052 1156.000
14 1081.000 954.597 1081.000
15 1001.000 1046.723 1001.000

16 816.000 1091.798 816.000
17 681.000 1004.228 681.001
18 568.000 885.028 568.002
19 538.000 738.492 538.006
20 534.000 640.335 534.013
21 535.000 587.131 535.031TOj.1. 551.000 555.364 551.074
i \ 555.000 551.730 555.174
24 549.000 c c c  cc? 

J J J . J J O 549.410
25 544.000 554.129 544.967
26 493.000 567.786 495.278
27 428.000 554.445 433.367
28 376.000 510.671 388.645
29 357.000 450.716 386.790
30 301.000 424.671 371.184
31 274.000 373.114 439.348
32 271.000 324.964 660.548

: (i) Values of coefficients:
1/C0 = -2.73, -((VO,) = 2,36 and -(C2/C0) = 1.37

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

4 - 44



Chapter 4 Upstream Routing Using Conventionai ... 4 - 4 5

Nuaber of data
KT

22
66.00 hour 5
36.00 hours 
0.45000

PERIOD I NF L OW Ö U I F L 0 « I NF LOW
(x 36.00 (observed} (calculated) (calculated)hours) (a3/sec) (a3/sec) • (a3/sec)

0 ) ________<21 ____ _ C3) (fi )

0 274.000 274.000 274.000
i 334.500 260.964 334.500
2 404.000 294.742 404.000
3 530.500 339.921 530.500
4 586.000 454.313 586.000
r 573.500 544.313 573.500
6 572.000 563.987 * 572.000
7 623.500 558.203 623.500
8 1026.000 514.767 1026.000
9 1118.500 833.775 -1118.500

10 1001.000 1047.861 1001.000

11 748.500 1071.199 748.498
12 568.000 896.147 567.992
13 536.000 685.486 535.968
14 535.000 586.595 534.870
15 553.000 548.510 552.470
16 549.000 552.349 546.839
17 518.500 556.700 509.690
18 428.000 550.874 392.083
19 ¿66.500 482.662 220.069
20 301.000 419.762 -295.987
21 272.500 347.166 -2161.369

Notes : (i) Values of coefficients:
1/C0 = -4.64, -(Cj/Cq) = 4.08 and -(C2/C0) = 1.56

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Huöfaer of dataK
T
v

17
66 .0 0  hourE
48.00 hours 
0.45000

PERIOD 1 N.F L 0 « 0 U T f L 0 « 1 H F L 0 ti
(x 48.00 (observed) (calculated) (calculated)

hours! («3/sec) i«3/sec) (e3/sec)
CO _______lè i_____ ( ? ) C4)

0 274.000 274.000 274.000
1 355.000 266.343 355.000
2 495.000 323.682 495.0ÔÔ
3 586.000 451.453 586.000
4 575.000 559.595 575.000
cj 571.000 572.236 . 571.000
6 1026.000 528.242 1026.000
7 1081.000 919.268 1081.001
8 816.000 1073.060 816.010
9 ' 568.000 891.878 568.094

10 534.000 637.279 534.883
: 11 551.000 553.460 559.315

12 549.000 551.691 627.340
13 493.000 554.842 1231.046
14 376.000 516.674 7329.166
15 301.000 411.784 65807.144
16 271.000 326.434 617407.827

Notes : (i) Values of coefficients:
1/C0 = -10.58, -(CyCo) = 9.42 and -(C2/C0) = 2.16

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nusber of data = 13
K = ¿¿.00 hours
T = ¿0.00 hours
x = 0.45000

PERIOD l H F L 0 H 0 U T F L 0 H  I N F L G H
ts 60-00 {observed) (calculated) (calculated)

hours)
CD

(s3/sec)
GO

(e3/sec) (b3/sec) 
O )

0 274.000 274.000 274.000
1 379.500 379.500 23589.500
2 566.000 566.000 -4577193.999
*7 573.500 573.500 910976463.340
4 571.000 571.000-181284202050.000
5 1091.000 1091.00036075556434000.000
6 1001.000 1001.000-7179035729800000.000
7 ¿24.500 ¿24.5001428628110100000000.000
8 534.000 534.000-284296993900000000000.000
0 553.000 553.00056575101783000000000000.000

in 544.000 544.000-11258445254000000000000000 .D00
< 4i i 402.000 4 02.0002240430605400000000000000000.000
12 301.000 301.000-445845690450000000000000000000.

Notes : (i) Values of coefficients:
1/C0 = 221.00, -(C1/C0) = -199.00 and -(C2/C0) = -21.00

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nusber of data
K
T

11
¿6 .0 0  hours 
72.00 hours 
0.45000

PERIOD I NF L OW 0  U f F L 0  H I « F L 0 H
ix 72.00 (observed) (calculated) (calculated)

' hours) (e3/sec) (a3/sec) (*3/sec)
0 ) a ) (? ) (4)

0 274.000 274.000 274.000
1 404.000 285.328 404.000
2 586.000 419.367 586.000
3 572.000 584.089 572.000
4 1026.000 611.610 1026.000c
j 1001.000 1022.102 1001.000

6 568.000 963.357 * 568.000
-7
/ 535.000 566.765 534.999
6 549.000 536.352 549.011
9 428.000 538.404 427.882

10 301.000 417.392 302.232

Notes : (i) Values of coefficients:
1/Co = 11.48, -(CyCo) = -10.43 and -(Q /C0) = -0.05

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nusber of data = 9
K = 66.00 hours
T = 96-00 hours
V = 0.45000

PERIOD I N F  L 0 M 0 0 I F l  0 H I H F L 0 «
is 96.00 (observed) (c.alculatedl (calculated)

hours) (fi-3/sec) (« 3 /sec) (a3/sec)co ______ ___________ _ G)

0 274.000 274.000 274.000
I 495.000 321.975 495.000
2 575.000 536.381 575.000
3 1026.000 678.264 1026.000
4 816.000 1028.675 816.000
c
J 534.000 725.266 534.000
6 549.000 510.710 549.000
7 376.000 516.759 376.000
8 271.000 333.670 271.000

: (i) Values of coefficients:
1/C0 = 4.61, -(Cj/Cq) = -4.25 and -(C2/C0) = 0.64

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)

4 - 49
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4.2.3 Further Computations with Various K Values
Computations using various parameter x values and time steps At have been 

implemented. In order that the problem of upstream routing discussed herein can 
be analysed more thoroughly, it is essential that the computation using various 
average travel time K values be considered as well.

The K values used in the computations are respectively 6,12, 24, 33 and 66 
hours with time step At = 24 hours and parameter x = 0.45.

Tables IV.2.4 show that all of the K values yield unsatisfactory results, 
except K = 6 hours. This K value almost gives a perfect result. However, 
differences still occur in the last few calculated values even though they are very 
small. These results therefore are consistent with the previous sections, where At 
and x were varied. The overall result is that upstream routing using equation
(4.1.1) gives unsatisfactory results in almost all cases.

It should be noted that in the real case, the value of time step At used in the 
computation should be made less than or equal to the K value. In this section, the 
value of time step At used remains unchanged, i.e.: At = 24 hours, no matter 
what the K value is. This is for the use of numerical investigation only.



Tables IV.2.4
Results of Computations Using Parameter x = 0.45, 

Various K Values and At = 24 hours
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tiusber of data = 33
L = 6 .0 0  hours
I = 24.00 hours
A = 0.45000

PERIOD I N F L OW OUT F L OW I NF LOW
tx 24.00 (observed) (calculated) (calculated)

hours) (e3/secj 1*3/sec) ts3/sec)
0 ) (3)

0 274.000 274.000 274.000
3 314.000 298.314 314.000
X 355.000 347.S41 355.000
3 404.000 388.855 404.000
4 495.000 467.926 495.000r
j 566.000 cc? ccn JJJ.JJi . 566.000
6 586.000 cnc r/7c JCJ* ¿ ¿ J 586.000
/ 572.000 577.925 572.000
8 575.000 570.454 575.000
? 572.000 " 575.761 572.000

10 571.000 569.253 571.000
3) 6 76.000 635.817 676.000
12 1026.000 911.594 1026.000
33 1156.000 1170.074 1156.000
34 1081.000 1102.409 1081.000
1!. 1001.000 1020.199 1001 . 000

3 6 816.000 877.632 816.000
17 681.000 698.895 681.000
3 c 568.000 60 2 . 138 568.000
39 538.000 530.353 538.000
20 534.000 539.917 534.000
21 535.000 531.243 535.000
1 X 551.000 546.862 551.00017 
X J 555.000 555.785 555.000
24 549.000 550.907 549.000
25 544.000 544.87? 544.000
26 493.000 512.502 493.000IT
X / 428.000 442.401 428.000
28 376.000 388.203 376.000
29 357.000 357.512 357.000
30 301.000 322.670 301.000
31 274.000 272.266 274.001
32 271.000 273.162 270.999

Notes : (i) Values of coefficients:
1/C0 = 1.65, -(C yq,) = -1.58 and -(C2/C0) = 0.94

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nuefasr of data 
k 
1

PERIOD
{x 24.00

hours)CO

I N F L OW
{observed)

. (®3/sec) « )

OUT F L OW
{calculated)

(*3/sec) 
&

I N F L OW
{calculated)

{e3/sec)

0 274.000 274.000 274.000
1 314.000 288.194 314.000') 355.000 336.041 355.000

404.000 377.891 404.000
4 495.000 443.870 495.000
5 566.000 535.038 566.000
6 586.000 582.086 ' 586.0007 572.000 582.169 572.000
8 575.000 570.112 575.000
o 572.000 575.354 572.000

10 571.000 570.671 571.000
11 676.000 608.353 676.000
12 1026.000 819.833 1026.000
13 1156.000 1131.984 1156.000
14 1081.000 1136.359 1081.000
15 1001.000 1036.541 1001.000
16 816.000 925.037 816.000
1? 681.000 736.441 681.000
18 568.000 624.807 568.001
1? 538.000 540.862 537.998
20 534.000 535.750 534.005
21 535.000 533.847 534.986
7 / 551.000 541.012 551.038O'*i. o 555.000 555.319 554.900
24 549.000 552.778 549.265
i. J 544.000 546.129 543.302
26 493.000 525.285 494.841
27 428.000 460.562 423.146
28 376.000 400.095 388.797
2 9 357.000 362.263 323.263
30 301.000 335.601 389.943
31 274.000 281.374 39.514
32 271.000 270.795 889.190

= 12.00 hours 
= 24.00 hours 
= 0.45000

Notes : (i) Values of coefficients: ^
I/O , = 2.82, -(Ci/Co) = -2.64 and -(Q /Q ) = 0.82

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Number of data
K
I

7 7
O x)

24.00 hours
24.00 hours 
0.45000

PERIOD I N F L OW 0 U I F L 0 M I N F L OW
24.00 (observed) (calculated) (calculated)

hours) («3/sec) ta3/sec) U3/sec)(O a ) 0 ) W

0 274.000 274.000 274.000
1 314.000 275.905 314.000
O
L. 355.000 314.139 355.000
3 404.000 355.388 404.000
4 495.000 406.018 495.000
cO 566.000 494.144 . 566.000
6 586.000 563.531 586.000
7 572.000 584.263 572.002
8 575.000 572.727 574.960
q 572.000 574.749 572.759

10 571.000 572.083 556.585
11 676.000 576.052 949.884
12 1026.000 687.907 -4177.805
13 1156.000 1016.091 100028.292
14 1081.000 1145.766 -1977492.540
15 1001.000 1080.275 35693898.262
16 816.000 995.965 -678164231.970
17 681.000 818.141 12885136592.000
IS 568.000 682.150--244817581740.000
19 538.000 572.0074651534064400.000
20 534.000 539.429-88379147212000.0'
21 535.000 534.3061679203797000000.«

i. 551.000 535.729-31904872145000000.000
23 555.000 550.46360619257071000(0000.000
24 549.000 554.498-11517658843000000000.000
25 544.000 549.024218835518020000000000.000
26 493.000
27 428.000
28 376.000
29 357.000
30 301.000
31 274.0‘00
32 271.000

541.811-4157874842400000000000.000 
4 92.22978999622004 0000000(00000.000 
428.582-1500992818100000000000000.000 
377.5992851886354 3000000000000000.000 
355.314-541858407310000000000000000.000
302.30110295309739000000000000000000.000 
275.205-195610885030000000000000000000.000

Notes : (i) Values of coefficients:
1/Cq = 21.00, -(Cj/Cq) = -19.00 and -(C2/C0) = -1.00

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nusber of data = 33 
K = 33.00 hours
T = 24.00 hours
ii = 0.45000

PERIOD I NF L OW OUTF LOW I K F L 0
is 24.00 (observed) (calculated) (calculated)

hours) (s3/seci (s3/sec) (i37sec)(O GO m <«)
A 274.0'JO 274.000 274.000
1 314.000 270.219 314.000
0X 355.000 301.194 355.000
3 404.000 339.393 404.000
4 495.000 382.219 495.000
cj 566.000 465.284 566.000
6 586.000 543.565 ’ 586.000
n 572.000 578.668 571.998
n
Ql 575.000 573.076 574.985
n 572.000 574.891 571.857

10 571.000 572.684 569.651
11 b i b . 000 561.418 663.294
12 1026.000 619.543 906.292
13 1156.000 930.802 28.220
14 1081.000 1117.154 -9543.873
15 1001 . 000 1095.937 -99096.492
16 3 ! 6 .000 1037.853 -942207.744
17 681.000 874.015 -8883595.328
18 560.000 731.053 -83698666.882
19 538.000 604.095 -788534359.050
20 534.000 551.860 -7428828232.900
21 535.000 537.549 -69987386269.000
x  X 551.000 534.007- 659354854080.000
23 555.000 547.156-•6211816787800.000
24 549.000 553.967-■ 58521852900000.000
O C  X  J 544.000 550.486-•551337456280000.000
2b 493.000 550.144-5194179193300000.000
X  . 428.000 510.800-•48934635558000000.000
28 376.000 449.805-461015777100000000.000
29 357.000 392.851- 4 34 3253900100000000. 000
30 301.000 369.6Ô6-40918023585000000000.000
31 274.000 317.547-385490853770000000000.000
32 271.000 283.166-3631729622400000000000.000

Notes : (i) Values of coefficients:
1/C0 = -10.58, -(C1/C0) = 9.42 and -(C2/C0) = 2.16

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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Nuaber of data = 33
K = 66.00 hourC
T = 24.00 hourc
V = 0.45000

PERIOD 1 N f L 0 « 0 ü T F i  8  H I NF L OW
(x 24.00 (observed) (calculated) (calculated)

hours) («3/sec) («3/sec) (srt/sec)(0 U ) (3 ) (4)
0 274.000 274.000 274.0001 314.000 259.342 314.000
2 355.000 271.476 355.000
7o 404.000 IQ * n 'j-i 

i. ? J .  vìa 4Ô4.00Ô
4 495.000 7 1 c  n  ‘« c  

0 1 J . C x J 495.000
5 566.000 378.83? 566.0006 586.000 464.508 * 586.000
1 572.000 530.007 572.000
r.C 575.000 549.774 575.0009 572.000 563.408 572.00010 571.000 568.044 571.00011 676.000 531.034 676.00012 1026.000 474.806 1026.000

13 1156.000 701.052 1156.000
14 1081.000 954.597 1081.000
15 1001.000 1046.723 1001.000
It 816.000 1091.798 816.000t ] 681.000 1004.228 681.001
18 568.000 885.028 568.002
IV 538.000 738.492 538.00620 534.000 640.335 534.013
21 535.000 587.131 535.031
7 7
X X 551.000 555.364 551.074
2 3 555.000 551.730 555.174
24 549.000 C C C  CC7

J J J . J J O 549.410
25 544.000 554.129 544.96726 493.000 567.786 495.278
x / 423.000 554.445 433.367
28 376.000 510.671 388.645
29 357.000 450.716 386.790
30 301.000 424.671 371.184
31 274.000 373.114 439.348
7  7 Ox 271.000 324.964 660.548

Notes : (i) Values of coefficients:
1/Co = -2.73, -(Cj/Co) = 2.36 and -(C2/C0) = 1.37

(ii) Column (3) is calculated from column (2) using eq. (2.1.3)
(iii) Column (4) is calculated from column (3) using eq. (4.1.1)
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4.3 INVESTIGATION OF THE CAUSE OF THE INSTABILITY
The existence of error in numerical processes is inevitable. The important 

thing is to attempt to lessen the error as much as possible.
There are three types of error in numerical processes performed by digital 

computer. These are:
a. Round-off error. This is machine made and is caused by the limitations of the 
particular computer.
b. Truncation error. With the truncation of series after only a few terms, a 
generally known error is committed. This error is not machine-caused but it is due 
to the method used in the numerical process.
c. Propagation or inherited error. This is caused by the use of values previously 
calculated by the computer, which already are erroneous owing to either (a) or (b) 
or both errors above, to calculate values at the next time step. Since they are 
already off the correct solution, any new computed points cannot be expected to 
have the correct solution [Grove (1966)].

The method used to solve eq. (4.1.1) is repetitive. Subscript i refers to the 
values which are obtained from the previous routing period. The downstream 
discharges Q are known from the given data and these are obviously fixed, 
therefore they do not have any inherited errors. The upstream discharge variables 
Ii and Ii+1 however are obtained from calculation and are therefore susceptible to 
error. If the previously calculated value of upstream discharge Ij which already 
contains an error is used to calculate the next one (Ii+1), the error is inherited. 
Since the routing is carried out by successively solving equation (4.1.1) for Ii+1 
period by period throughout the flood, errors tend to accumulate or magnify. It 
was suspected that the coefficient which multiplies 1̂ is the cause of error
propagation. Table IV.3.1 gives values of Muskingum and Nash coefficients (for 
the example calculations given in Table IV.2.1).
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Table IV.3.1 Values o f  Muskingum and Nash Coefficients with K = 66 Hours, 
At = 24 Hours and Various Parameter x Values

MUSKINGUM NASH
X c o C, C2 -c 1^0 c o C, q ^ 0
0 .0 0 .1 5 4 0 .1 5 4 0 .6 9 2 -1 0 .1 6 2 0.143 0 .6 9 5 -0 .8 8 60 .1 0 .0 7 6 0 .2 6 1 0 .6 6 4 -3 .4 4 4 0 .0 8 6 0 .2 4 6 0 .6 6 8 -2 .8 6 70 .2 -0 .0 1 9 0 .3 8 9 0 .6 3 0 2 1 .0 0 0 -0 .0 04 0 .3 7 0 0 .6 3 5 8 2 .6 2 60 .3 -0 .1 3 4 0 .5 4 6 0 .5 8 8 4.077 -0 .1 14 0 .5 1 9 0 .5 9 5 4 .5 4 70 .4 -0 .2 7 9 0 .7 4 4 0 .5 3 5 2 .6 6 7 -0 .2 50 0 .7 0 4 0 .5 4 5 2 .8 1 90 .4 5 -0 .3 6 6 0 .8 6 3 0 .5 0 3 2 .3 5 6 -0 .3 30 0 .8 1 4 0 .5 1 6 2 .4 6 50 .5 -0 .4 6 7 1 0 .4 6 7 2 .1 4 3 -0.421 0 .9 3 8 0 .4 8 3 2.227

It can be noticed from Tables IV.2.1 that the calculated hydrograph is 
worst for x=0.2 and best for x = 0.0. If the parameter x values are set in order 
according to the accuracy of the calculated upstream hydrograph, starting from the 
worst to the best, the order will be: 0.2, 0.3, 0.1, 0.4, 0.45, 0.5 and 0.0. There is 
a correlation between this order and the values of -C^Cq given in Table IV.3.1. If 
the parameter x values in that table are also set in order according to the value of 
l-Ci/Col, starting from the largest to the least, the order will be precisely the same 
as that above. The largest value of l-C1/C0l given by x=0.2, gives the worst 
calculated hydrograph. Conversely, the least value of I-Cj/CqI given by x=0.0, 
gives the best calculated hydrograph.

The error propagation in the computation can be described as follows:
If parameter x=0.0 then

Ii+i
Qi+i Qi

Ii+i= 6.5 .Qi+1 - l . I i  - 4.5. Qi
at instant t, if error in I is AI, 
at t+At, the error becomes AI.(-1) = -AI
at t+2.At, the error becomes AI.(-l)2 = AI 
att+3.At, the error becomes AI.(-l)3 = -AI 
at t+n.At, the error becomes AI.(-l)n
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In this case, the absolute value of error remains unchanged. It does not magnify 
but the sign of the error changes repeatedly. This circumstance may cause 
oscillations but, since the error is very small and does not magnify, these 
oscillations do not affect the computation. However in some cases, i.e. if an 
observed downstream hydrograph which is used in the computation to obtain 
calculated upstream hydrograph has even slight oscillations, the circumstance 
above may allow these oscillations to amplify.
If parameter x=0.2 then

I i+i Qi+i
C0 ‘

Ii+i= -54 .Qi+1 + 21. Ii + 34. Qj 
at instant t, if error in I is AI, 
att+At, the error becomes AI. (21) 
at t+2.At, the error becomes AI.(21)2 
at t+3.At, the error becomes AI.(21 )3 
at t+n.At, the error becomes AI.(21)n, 
in this case, any error in I will magnify dramatically.

It is clear that the coefficients relating to Ij affect the instability of the 
process. Parameter x = 0.2 gives the worst result since any error entering to Ii 
can magnify very rapidly due to the very large value of 1-Cj/CqI. Parameter x = 0.0 
gives the best result since the value of \-CJCq\ is equal to 1 therefore any error 
entering to 1} does not magnify. This does not imply that parameter x = 0.0 always 
yields satisfactory results, as it may result in oscillations in the computation since 
the value of -Cj/Co which multiplies Ij is negative. Figure 4.3.1 shows an 
example. The downstream hydrograph ordinates used in the computation are 
observed data taken from ARR87 table 7.1 page 134, rather than values calculated 
from the observed upstream hydrograph.
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0 5 1 0 1 5 20 25 30

time (day)
Figure 4.3.1 Oscillations in Upstream Hydrograph 

Using Param eter x = 0.0

The reason why the computations using parameter x = 0.0 in Tables TV.2 .2  

do not result in oscillations may be explained by noting that the downstream 
hydrograph ordinates used in the computation are those which were calculated 
using the equation for conventional downstream routing. In that equation, the 
multiplying factor of Qi? namely C2, is positive and less than 1.0. Therefore 
no oscillations occurred and any error entering to diminished towards zero. 
Since there was no oscillation in the calculated downstream hydrograph and this 
result was used to calculate back the upstream hydrograph ordinates using 
eq.(4.1.1), the coefficient -Cj/Cq = -1 did not affect the computation and therefore
the calculated upstream hydro graph ordinates agree exactly with the observed 
ones. The result in Figure 4.3.1 was obtained using observed downstream 
hydrograph ordinates. They have slight oscillations (which cannot be detected, 
since the scale in that figure is too small), and these are amplified by the coefficient 
-C1/C0 = -1
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From Table IV.3.1, it can be seen that the coefficient -Cj/Cofor parameter 
x = 0.1 is -3.444. This value is negative and the absolute value I-Cj/CqI is larger 
than 1.0. Any error entering to Ij will therefore magnify, with a sign change at 
each time step. This is the the reason why oscillations and divergence occurred in 
the computation (see Tables IV.2.1 for parameter x = 0.1).

The results in Tables IV.2.3 can be explained in conjunction with the 
coefficient -C j/C q. Table IV.3.2 shows the values of that coefficient 
corresponding to the time steps used.

Table IV .3.2 Values o f  -Cq/C0 with Parameter x = 0.45, K = 66 Hours and 
Various At

At (hours) 3 6 12 2 4 36 48 60 7 2  96
-C j/C o 1 .1 0 6 1 .225 1 .5 0 6 2 .3 5 6 4 .0 7 7 9 .421 -199 -10 .429  -4 .246

According to the value of -Cj/Cq for At = 60 hours, oscillations and very rapid 
divergence will occur. It is the worst case since the value l-CyCol is the largest 
one. Result in Tables IV.2.3 for At = 60 shows that the computation oscillates and 
diverges very rapidly. The only calculated upstream discharges which agree 
precisely with the observed ones are given by At = 96 hours. Seemingly, this is a 
contradiction since the value l-C^Col is larger than 1.0 and it therefore should have 
given a bad result. The reason why it gives a satisfactory result is that the number 
of data points becomes very few (from 33 to 9) since interpolation was used, so 
that any error entering to I; does not have the opportunity to magnify. The time 
step At = 72 hours also gives quite satisfactory result even though the value 
l-C^/Col is larger than 1.0. However, there are some small differences in the last 
few calculated upstream discharges if compared to the observed ones. If the 
number of data were more than that shown in the table, the differences would 
propagate and magnify. In practice, a time step At which is larger than K would
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not be used since it is too coarse and good definition of the hydrograph is not 
possible. The shape of the calculated hydrograph, and especially the peak, are not 
adequately defined.

Table IV.3.3 shows the values of the coefficient -Cj/Cq for various K used 
in the computation of which results are presented in Table IV.2.4.

Table IV.3.3 Values of -C j/C Q with Parameter x = 0.45, At = 24 Hours 
and Various Parameter K values

K (hours) 6 12 2 4 . 33 66
-C i/C 0 -1 .5 81 -2 .6 3 6 -19 9 .421 2 .3 5 6

According to the value of -QJCq for K = 24 hours, the result should be the worst. 
Oscillations and rapid divergence will occur since the value of -Cj/Cq is negative 
and its absolute value is the largest. Result in Table IV.2.4 for K = 24 hours 
precisely show that condition. The only K value which gives adequately 
satisfactory result is K = 6 hours, but as a matter of fact, the calculated upstream 
discharges do not agree exactly with the observed ones since there are some 
differences in the last few discharges. In other words, the error started magnifying 
at almost the end of the computation.

4.4 PR O O F OF THE INSTABILITY
Stability (convergence) of the numerical process can only be achieved by 

selecting a time step At relative to the K value so as to make I-Cj/C qI < 1. 
However, as shown in Tables IV.2.3 (for x = 0.45), this cannot be done, since no 
time step At can make the process converge for any parameter x values other 
than x=0.0. This result can be proved mathematically, either using Muskingum or 
Nash coefficients, as described below.
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4.4.1 Muskingum Coefficients

From equation (2.1.4):

- C l K.x + 0.5.At
Co K.x - 0.5.At

< 1

where : K and T are positive, 
and 0 < x < 0.5

Condition (4.4.1) can be written as:

(4.4.1)

K.x + 0.5.At .-1 < ----------------- < 1
K.x - 0.5.At (4.4.2)

To solve this condition, it is necessary to assume the value of the denominator 
whether >0 or <0, since it affects the mathematical operators.
a. Suppose K.x - 0.5.At > 0 or x > 0.5.At/K then 

condition (4.4.2) can be written as:
-K.x + 0.5.At < K.x + 0.5.At < K.x - 0.5.At 
The first condition: -K.x + 0.5.At < K.x + 0.5.At

-K.x < K.x 
x > 0

The second condition: K.x + 0.5.At < K.x - 0.5.At
since K and At are positive, there is no solution for it. 

From these conditions, it can be concluded that there is no solution 
for this case.

b. Suppose K.x - 0.5.At < 0  or x < 0.5.At/K then
condition (4.4.2) can be written as:
-K.x + 0.5.At > K.x + 0.5.At > K.x - 0.5.At
The first condition: -K.x + 0.5.At > K.x + 0.5.At
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-K.x > K.x 
x < 0

The second condition: K.x + 0.5.At > K.x - 0.5.At
K.x > K.x - At

since K and At are positive, any x will satisfy this 
condition.

From those conditions above, x < 0.5.At/K and x < 0, it can be concluded 
that only x < 0 will satisfy condition (4.4.1). This is the reason why only 
x=0.0 gives a satisfactory result in the samples of the computations (Table 
IV.2.1).

4.4.2 Nash Coefficients

From equation (3.4.9)
-Cl c.A t-K (l-c)
Co At - K(l-c)

<1

where : K and At are positive,
At < K,
0 < x < 0.5, and

-At
c = eK0-x) is always positive

(4.4.3)

Condition (4.4.3) can be written as:
-1 < c.At - K.(l-c) i ----------------- < 1At - K(l-c) (4.4.4)

Again, to solve this equation, it is necessary to assume the value of the 
denominator whether >0 or <0 since it affects the mathematical operators, 
a. Suppose At - K(l-c) < 0 then condition (4.4.4) can be written as:



Chapter 4 - Upstream Routing Using Conventional ... 4 - 6 4

-At + K - K.c > c.At - K + K.c > At - K + K.c 
The second condition: c.At - K + K.c > At - K + K.c

c.At - At > 0 
c > 1

-At
e K (l-x ) >  i

-At

since x lies in [0,0.5], no x will satisfy that condition, therefore it is not 
necessary to consider the first condition. *

b. Suppose At - K(l-c) > 0 then c > 1 - (At/K)
If At /K = 1 then c > 0

-At
e K (l-x ) >  0  

-1
e 1_x > 0

any x in [0, 0.5] will satisfy that condition, therefore that 
condition can be ignored.

If A t/K  < 1 then
-At

eK(l-x) > 1 - ^
K

-At w i  At^K C M  > ln(1 ' K }
since : 0 < x < 0.5, (1-x) is always positive and

At /K < 1, ln(l-At /K) is negative then 
-At1 - x >

x < 1 +

K . l n ( l - ^ )
At

AtK .ln ( l - r )
let a = At/K:
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1 a x < l +7— t—\ ln(l-a)
Since At - K(l-c) > 0, condition (4.4.4) can be written as: 
-At + K - K.c < c.At - K + K.c < At - K + K.c 
The second condition: c.At - K + K.c < At - K + K.c

c.At - At < 0
c < l

-At
e K (l-x ) <  l

-At n
K d ^ y - 0 •

any x < l will satisfy that condition. 
The first condition: -At + K - K.c < c.At - K + K.c

-At + 2K < c.At +2K.c
2K -A t -----------< c
At + 2K
2 K -A t -At

< eKd - x)
At + 2K
t , 2K ‘ At Xln(----------- ) <

2K +A t
-A t

KCl^O
since: * K and At are positive and At < K, ln((2K-At)/(2K+At)) is 

negative,
* x lies in [0, 0.5], (1-x) is always positive then 

-At1 - x >

X < 1 +

K.ln( 2 K ' A t) 
2K + At

At
K.ln( 2^-- At-)

2K +At (4.4.6)
From the first and the second conditions above, condition (4.4.6) should be 
chosen. Let a = At/K, condition (4.4.6) becomes:
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x < 1 + a

(4.4.7)
Both conditions (4.4.5) and (4.4.7) should be taken into account. In order to
know which condition will entirely satisfy condition (4.4.3), they are 
illustrated in graphic (see Fig. 4.4.1).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

a= A t/K

Figure 4.4.1 Graphic f(a) and g(a) vs. a, where :
x = f(a) = 1 +ln(l - a) and x =g(a)= 1 +-

, ,2 - a.ln(—----)2 + a '

It can be noticed from Fig. 4.4.1, condition (4.4.7) satisfies condition (4.4.3). 
It also can be noticed that the value of parameter x which can satisfy condition
(4.4.3) is x < 0.0898 ( 0.0898 is obtained by substituting a = At/K = 1 into
condition (4.4.7)). This is the reason why only x=0.0 gives a satisfactory 
result, if upstream routing is computed by using eq. (4.1.1).
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4.5 SUM M ARY
Upstream routing using a re-arranged form of the conventional downstream 

routing equation is numerically unstable. The only parameter x value which 
reproduces precisely the observed upstream hydrograph is x = 0.0. This result for 
x = 0.0 occurs only when the downstream hydrograph has been calculated from a 
given upstream hydrograph using normal Muskingum routing procedures, i.e. the 
downstream hydrograph contains 'perfect' data. In practical problems, where a 
recorded downstream hydro graph, which is not error free, must be used, 
satisfactory upstream hydrographs cannot be obtained, since very rapid and great 
oscillations will occur, as shown in Figure 4.3.1.

It has been found that the coefficient multiplying Ij is the cause of the 
instability. If its value is negative and its absolute value is much larger than 1.0, 
oscillations and very rapid divergence will occur. If its value is positive and greater 
than 1.0 then monotonie divergence, either increasing or decreasing, will occur.

Satisfactory results can only be obtained by making the absolute value of the 
coefficient relating to Ij equal to or less than 1.0 with the appropriately chosen time 
step At. However, as has been proved, no time step At and parameter x value can 
satisfy that condition, except x = 0.0. In view of this, other techniques for 
upstream routing must be developed and these are covered in the following 
chapter.



Alternative Approaches to Upstream Routing

5.0 INTRODUCTION
It is clear that the upstream routing derived from standard Muskingum 

routing equation gives unsatisfactory results as described in chapter 4. In view of 
this point, this chapter is intended to investigate some alternative approaches to 
upstream routing.

An iterative solution which is based on finite differences is introduced as 
one of the methods. Both first order and second order finite difference 
formulations are applied in conjunction with this method. The method of cubic 
spline fitting combined with the Runge-Kutta method and an alternative approach, 
in which the upstream hydrograph is calculated moving backward in time are also 
investigated.
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5.1 ITERATIVE METHOD
As described in chapter 4, Equation (4.1.1) cannot be used due to its 

instability. An alternative solution has been developed which is still based on the 
equation of conservation of mass [eq.(2.1.1)] but using a different approach. 
Equation (2.1.1) is re-arranged into

= Q i+ dS/dtlj (5.1.1)
This follows a procedure used by Pilgrim and Watson (1967) for a similar
problem in estimating the input from a recorded output, for a radiation ratemeter
involving an electrical storage system.

The derivative in equation (5.1.1) is expressed in central finite difference
form as discussed for example in Salvadori and Baron (1964). The simplest two
point scheme is used [eq.(5.1.2)].

dS/dtli = (S i+1- S i_1)/(2.At) (5 L2)
The storage S at any specified discharge is expressed by the linear relationship 
between upstream discharge I, downstream discharge Q and storage S, i.e.:

S = K[x.I + (l-x).Q] (5.1.3)
as mentioned in chapter 2.

Since eq.(5.1.1) is a differential equation, it is necessary to assume the initial 
value of I (at time i = 0). Therefore, equation (5.1.2) is not used to obtain dSdtl0. 
This assumption of initial value of I is actually dependent on the judgement of the 
hydrologist. Normally, the hydrologist takes equation (5.1.4) into account, 
although the initial discharges do not have to be equal.

Io= Qo (5-1-4)

Difficulty arises in calculating the derivative at the end of the hydrograph (at 
time i = N, the time at which the last downstream discharge was observed) using 
eq.(5.1.2) since the observed downstream discharge at time i = N+l is not 
known. Assumptions or methods for obtaining that derivative are discussed in the
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latter part of this chapter. In this section, it is first assumed that SN+1 = Sj^, 
therefore the derivative becomes

If equations (5.1.1), (5.1.2) and (5.1.3) are combined, they will yield an 
implicit equation, since the storage S is expressed in terms of the upstream 
discharge I, the value of which itself is being sought.

An iterative solution using instantaneous discharges is required. The method 
of solution used is to adopt the downstream hydrograph ordinates Q as the first 
estimate of the upstream hydrograph ordinates I, give an initial value at time i = 0 
to I0 which remains unchanged throughout the iterative process, use equation
(5.1.3) to calculate the values of storage S, use equations (5.1.2) and equation
(5.1.5) to determine the derivative dS/dt, then use equation (5.1.1) to make an 
improved estimate of I. These steps are repeated until successive calculated 
upstream hydrographs converge. A detailed explanation of the procedures with 
help of a flowchart is given in Section 5.1.4.

In the first application of this method, the results of computations were 
unsatisfactory. Oscillations occurred in the estimated upstream hydrograph. These 
oscillations became greater with each iteration. The reason why this occurred was 
that the first derivative dS/dt estimated using eq.(5.1.2) possessed slight 
oscillations. Much more satisfactory results were obtained when those oscillations 
were eradicated by the smoothing algorithm [eq.(5.1.6)].

Superscript * refers to the value which has been or is being smoothed.
The smoothing algorithm is carried out from the derivative at time i = 1 up to 

time i = N -l. Since the value of I at time i = 0 (I0) is assumed, dS/dtl0 is not 
calculated using eq.(5.1.2) but using

dS/dtlN-  (Sjvj - SN.1)/(2.At) (5.1.5)

(5.1.6)
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d S *  
dt 0 ^ 0  - V Q o (5.1.7)

The expression of equation (2.1.1) in the finite difference form of equations
(5.1.1), (5.1.2) and (5.1.5) provides a satisfactory procedure for upstream routing 
in river reaches, and gives much better results than the reverse application of 
normal routing procedures as expressed in equation (2.1.3). Figure (5.1.1) shows 
results of the iterative method including this smoothing algorithm.

Figure 5.1.1 River Reach Routing Using Instantaneous Discharges

5.1.1 C riterion to Term inate the Iteration
As mentioned above, the downstream hydrograph ordinates Q are adopted as 

the first estimate of the upstream hydrograph ordinates I. These results are used to 
estimate the ordinates I at the next iteration. The iteration is repeated until
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successive calculated upstream hydrographs converge. The question of when to 
terminate the iteration arises, and this depends on the convergence criterion 
adopted.

The vector of estimates after k th iteration is denoted as Ixk, I2k,..., IN_i\ 
INk while the (k-1) th iteration results in the vector of estimates denoted as I^"1, 
I2k lN-ik \  In ^ 1* Convergence is most easily measured in terms of the 
relative change in each value of I from one iteration to the next. If the quantities:

di =
Ik . I k-:A1

I
i = 1 .2 , ...,N

(5.1.8)
are computed for each value of i, then convergence can be said to have been 
reached when each dj is equal to or less than some specified small quantity [de 
Vahl Davis (1986)]. In this project, the criterion of convergence is taken as

^  < 0.001 (5.1.9)

The small quantity in (5.1.9) is selected depending on the precision of the 
computation required by the hydrologist. However, the value of di affects the 
total number of iterations, the smaller that quantity is, the more iterations are 
required.

5.1.2 Condition to Converge
Equations (5.1.1), (5.1.2) and (5.1.3) can be combined and yield:

Qi + K x.I2. At*-
*
i+l + (l-x).Q i+1 - x.Ij.i - (l-xJ.Qj.!

(5.1.10)
Superscript * refers to the values which are assumed for the first trial or obtained 
from the previous iteration.
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It is clear that equation (5.1.10) is implicit since the variable being solved 
also appears on the right hand side of the equation. Therefore, it is necessary to 
use an iterative solution in which values of the variable I calculated from a 
previous trial are used in the computation.

It has been mentioned in chapter 4 that the multiplying factor related to the 
unknown variable I affects convergence. Convergence can be reached as long as 
the absolute value of the multiplying factor is less than 1.0. This condition is 
expressed from equation (5.1.10) as

(K.x)/(2.At) < 1 , or '
At > (K.x)/2. (5.1.11)

If this condition is fulfilled, the process of computation should converge. In 
addition, the time step At should be well taken into account. If it is too large, not 
all points on the hydrograph are considered and the peak may be missed. 
However, the larger the time step A t, the fewer the number of iterations required, 
in accordance with eq.(5.1.11).

In practice, the limiting time step At required to converge is somewhat larger 
than that given by condition (5.1.11). This can be noticed more clearly from 
Figure 5.1.2.
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Figure 5.1.2 Graphic x/2 Vs. Min. Time Step/K 
data were obtained from upstream routing calculation

The values in the actual line (Fig.5.1.2) were obtained by trial and error 
computations using the data taken from ARR87 Table 7.1 page 134, and it can be 
seen that the time step required for convergence is somewhat greater than indicated 
by eq. (5.1.11). However, these values can be reduced down to those in 
theoretical line, if a weighting factor is applied, as discussed in the section 5.1.3.

In the particular case when parameter x = 0.0, equation (5.1.10) becomes

2.A r J (5.1.12)
This equation becomes explicit and it can be solved without using an iterative 
solution. There is no error which will magnify, since the variable involved on the 
right hand side of the equation (Q) is fixed once the given outflow hydrograph is 
adopted. Therefore, the condition for choosing time step At in order to converge is 
no longer necessary for this case.
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5.1.3 Weighting Factor (a)
If the upstream hydrograph ordinates at iteration k are combined with those 

at iteration k-1 as a weighted average to make a new estimate of upstream 
hydrograph ordinates (Ia), before commencing iteration k+1, results can be 
dramatically improved, with fewer iterations required. This condition is expressed 
as follows:

rk-l k-L
I a ; = I i +(h  ‘ l i  ) . d (5.1.13)

where i = 0,1,2,...,N and 0 < a  < 1. It was found by numerical experiments that 
the effective a  lies between 0.1 and 0.7.

The other advantage of applying a weighting factor a  in the iterations is that, 
as mentioned in section 5.1.2, the actual limiting time steps At can be reduced 
down to those in the theoretical line given by condition (5.1.11) or even to values 
of At which are less than those in the theoretical line if the appropriate weighting 
factor a  is used. The particular values of At that can be reached should be 
determined by numerical experiments. For example if parameter x = 0.5 and K = 
66 hours, then using condition (5.1.11), At > 16.5 hours. In practice, the 
minimum At which still can make the process converge without weighting (i.e. 
a  = 1) is 21 hours. If a weighting factor a  = 0.4 is applied, At can be reduced 
down to 12 hours which is less than that given by condition (5.1.11).

The question which arises is: what is the optimum a  to be chosen? In this 
context, ’optimum' implies the value of a  which requires the fewest number of 
iterations. It should be determined by numerical experiments. According to the 
experiments using various values of parameter x, with K = 66 hours and At = 
K.x/2 and condition (5.1.9) for terminating the iterations, the optimum a  is close 
to 0.4 (see Figure 5.1.3).
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a
Figure 5.1.3 Graphic oc Vs. Number of Iterations 

for x = 0.2

Other values of parameter x result in similar graphics to that in Figure 5. L3 with 
approximately 20 being the minimum number of iterations. If the computation is 
carried out without weighting (i.e. a  = 1), the minimum time step used in order to 
converge is somewhat greater than that given by condition At = K.x/2 as shown in 
Fig. 5.1.2, and the number of iterations also becomes greater.

5.1.4 Sum m ary of the Com putation Procedure
All of the steps discussed in the previous sections of this chapter can be 

summarized with the help of a flow chart as described in figure 5.1.4.
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8 .

Figure 5.1.4 Flow Chart of the Computation
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Explanation of the steps of the computation
Step 1 : initialize iteration k = 1
Step 2 : give an initial value at time i = 0 to I (I0)which remains unchanged 

throughout the required number of iterations to converge [eq.(5.1.4)] 
and adopt the downstream hydrograph ordinates Q as the first estimate 
of the upstream hydrograph ordinates (IJ

Step 3 : equate Ik_1 (upstream hydrograph ordinates at iteration k-1) with Ia
Step 4 : calculate storage S for all ordinates throughout the flood according to

the given data Q and the values of I obtained in step 3 using equation
(5.1.3).

Step 5 : calculate storage change dS/dt using eq.(5.1.2) for all ordinates,
except for the first and the last ordinates. The value of dS/dt at the last 
ordinate is calculated using eq.(5.1.5) and dS/dt at the first ordinate is 
calculated using eq.(5.1.7).

Step 6 : apply smoothing algorithm using eq.(5.1.6).
Step 7 : calculate new upstream hydrograph ordinates Ik using eq.(5.1.1).
Step 8 : calculate the relative change in each value of I from the previous value

to the new one using eq.(5.1.8).
Step 9 : check the results of step 8, if they are all equal to or less than 0.001,

the upstream hydrograph ordinates I are set equal to the Ik ordinates 
and the process is finished. If not, continue to step 10.

Step 10: use eq.(5.1.13) to make a new estimate of upstream hydrograph 
ordinates I and return to step 3 to get into the next iteration (k+1).

5.1.5 Tests of Computations
Firstly, tests were carried out using samples of computations to check their

stability and convergence. The upstream hydrograph from Australian Rainfall and
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Run-off (ARR87) Table 7.1 page 134 (Pilgrim, I.E. Aust. 1987) was used to 
obtain a downstream hydrograph by applying an iterative method to downstream 
routing (to be discussed in chapter 6). These results were then used to calculate the 
upstream hydrograph using the method outlined in the preceding sections of this 
chapter. Tables V.1.1 and Figures 5.1.5 show results for K = 66 hours, At = 24 
hours, a  = 0.4 and x = 0, 0.1, 0.2, 0.3, 0.4, 0.45 and 0.5. Total iterations' in 
those tables indicates the number of iterations which are required for upstream 
routing to converge. It can be noticed from these results that upstream routing 
reproduces upstream discharges which are almost the same as those observed.



Tables V.1.1 
Samples of Computations
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Nusber of data = 33 
K = 6 6 . ÖÖ hours
T = 24.00 hours
X = 0 , 0 0 0 0 0

alfa = 0.40000
Total iterations = 13

PERIOD I N F L G s OUT F L OW I NF L OW
(x 24.00 (observed) (calculated) (calculated)

hours) (i3/sec) (sS/sec) (s3/sec)
0 274.000 274.000 274.000
1 314.000 281.679 313.839
2 355.000 303.587 354.572
3 404.000 316.062 403.821
4 495.000 359.748 ' 495.436
5 566.000 421.956 566.675
6 586.000 478.863 586.188
1 572.000 506.048 571.509
8 575.000 517.677 574.344
9 572.000 540.789 571.836

10 571.000 565.437 571.427
n 676.000 494.374 676.532
12 1026.000 653.114 1026.127
13 1156.000 844.577 1155.680
14 1081.000 905.357 1080.610
15 1001 .000 973.837 1000.901
It 816.000 930.406 816.215
17 681.000 875.011 681.269
IS 568.000 776.182 568.078
19 538.000 702.896 537.868
20 534.000 655.923 533.825
21 535.000 ¿14.680 534.941
XX 551.000 597.178 551.074
23 555.000 589.002 555.106
24 548.000 572.407 549.040
25 544.000 573.467 543.963
26 493.000 560.154 492.943
27 428.000 529.137 427.976
28 376.000 474.748 376.014
29 357.000 454.544 357.024
30 301.000 410.278 301.012
31 274.000 371.594 273.999
32 271.000 329.236 270,995
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Nuaber of data = 33

K = 6 6 .0 0  hours
T = 24.00 hours
V = 0 .1 0 0 0 0

alfa = Ô.4G0OÔ
T o ta l  i t e r a t i o n s  = 14

PERIOD I N F L O W Q ü T F L  0 W I N F L O W

(x 2 4 . ÔÔ (o b se rve d ) ( c a l c u la t e d ) ( c a l c u la t e d )

h o u r s ) ( a 3 /sec) (æ3/secl ( s3 / se c )

0 2 74 .0 00 274 .000 274 .000

1 314 .0 00 279.629 314 .027

2 355 .000 300 .453 354 .724

3 404 .0 00 310 .063 4 03 .569

4 4 95 .000 351 .753 '  494 .903

5 566 .000 416 .600 5 6 6 . 41B

6 586 .0 00 479.425 586 .553

7 572 .000 508.797 572 .1 50

8 5 75 .000 520.281 574.601

9 - 572 .000 548.051 571 .434

10 57Ì.OOO 566.791 570 .800

11 6 76 .000 475 .995 676 .334

12 1026 .000 631.104 1026.513

13 1156.000 037.065 1156.203

14 1081 .000 912 .332 1080.784

15 1001 .000 991.704 1000.674

16 816 .0 00 953,559 815 .892

17 661 .000 896.455 ¿81 .151

13 568 .0 00 790.375 568 .203

19 538 .000 709.134 jò'ó. DèO

20 534 .000 656 .532 533 .905

21 535 .000 611.400 534 .873

à. 551 .000 592.706 550 .946

23 555 .000 584.761 555 .029

24 549 .0 00 568 .564 549.063

25 544 .000 572.308 544 .049

26 4 93 .0 00 563.106 493 .013

27 4 28 .0 00 532.969 427 .983

28 3 76 .0 00 476.849 375.973

29 357 .000 456.664 356 .9 80

30 3 01 .0 00 412.313 300.991

31 274 .000 370.891 273 .997

32 271 .000 326.434 271.001



Chapter 5 - Alternative Approaches to Upstream Routing 5 - 1 5

Nuaber of data = 33
K = ¿ ¿ . 0 0  hours
T = 24.00 hours
X = 0 .2 0 0 0 0

alfa = 0.40000
Total iterations = 14

PERIOD I N F L OW OUT F L OW I N F L OW
(x 24.00 (observed) (calculated) (calculated)

hours) («3/sec) (i3/sec) ta3/sec)
0 274.000 274.000 274.000
1 314.000 277.011 313.919
2 355.000 296.405 355.182
3 404.000 303.288 404.359
4 485.000 343.752 ' 495.131
r 560.000 412.278 565.721
6 586.000 480.983 585.604
7 572.000 511.419 571.878
8 575.000 523.305 575.205
9 572.000 556.008 572.285

10 571.000 567.283 571.140
il ¿76.000 454.111 675.961
12 1026.000 606.869 1025.882
13 1156.000 830.276 1155.955
14 1081.000 922.2SB 1081.122
15 1001.000 1013.780 1001.172
16 816.000 980.568 816.022
17 681.000 919.787 ¿80.843
18 568.000 804.079 567.816
19 538.000 713.434 537.934
20 534.000 654.811 534.060
21 535.000 ¿06.143 535.103
22 551.000 586.971 551.072
23 555.000 579.729 555.022
24 548.000 564.339 548.988
25 544.000 571.529 543.972
26 493.000 566.874 492.966
27 428.000 537.231 427.972
28 376.000 479.060 375.985
29 357.000 459.027 356.994
30 301.000 414.250 300.996
31 274.000 369.615 274.000
32 271.000 323.049 271.002
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Nuiber ot data = 33
K = 6 6 . 0 Q hours
Tl = 24.00 hours
X = 0.30000
alfa = 0.40000
Total iteration s = 14 ,

PERIOD I « F L OW i0 U T F L Q K I N F L OW
(x 24.00 (observed) (calculated) (calculated)

hours) (b3/ssc) is3/sec) (e3/sec)
0 274.000 274.000 274.000
1 314.000 274.520 314.096
2 355.000 292.143 354.905
3 404.000 294.902 403.681
4 485.000 333.975 ' 494.917
O 566.000 408.347 566.250
6 586.000 484.681 506.144
7 572.000 515.834 571.767
8 575.000 527.865 574.719
8 572.000 566.149 572.14S

10 571.000 564.262 571.575
11 676.000 426.992 676.523
12 1026.000 581.305 1026.051
13 1156.000 826.669 1155.616
14 1081.000 937.171 1000.513
13 1001.000 1040.380 1000.692
l é 816.000 1010.46i 816.013
17 681.000 943.862 681.281
18 568.000 816.749 568.209
19 538.000 715.706 538.081
20 534.000 650.614 533.911
21 535.000 598.597 534.907
22 551.000 579.656 550.965
23 555.000 573.733 554.981
24 549.000 559.078 548.977
25 544.000 571.579 543.989
26 493.000 571.868 493.006
27 428.000 542.085 428.011
28 376.000 481.451 375.997
29 357.000 461.558 356.979
30 301.000 415.904 300.978
31 274.000 367.538 273.994
32 271.000 318.970 271.007
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Nusber of data = 33
K = 6 6 .0 0  hours
T = 24.00 hours
X = 0.40000
alfa = 0.40000
Total iterations = 16

PERIOD I N F L OW OUT F L OW I NF L OW
(x 24.00 (observed) (calculated) (calculated)

hours) (fi3/56C) (eS/sec) iü$3/sec)
0 274.000 274.000 274.000
1 314.000 271.150 314.003n 355.000 286.557 355.0457 404.000 285.704 403.945
4 495.000 324.699 494.822
j 566.000 405.836 565.991
6 586.000 488.201 586.376
7 572.000 ■ 520.695 572.434
8 575.000 534.868 575.042
9 572.000 577.075 571.656

10 571.000 557.234 570.634
11 676.000 393.455 675.B95
12 1026.000 553.925 1026.161
13 1156.000 826.742 1156.229
14 1081.000 958.380 1081.084
15 1001.000 1073.352 1000.887
16 816.000 1044.327 815.816
17 681.000 968.059 680.904
IS 568.000 826.401 568.067
19 538.000 713.968 538.169
20 534.000 643.017 534.118
21 535.000 588.088 534.995
22 551.000 571.306 550.936
23 555.000 567.347 554.941
24 549.000 555.811 548.940
25 544.000 573.026 543.939
26 493.000 57S.259 492.970
27 420.000 547.377 428.005
28 376.000 483.816 376.026
29 357.000 464.094 357.042
30 301.000 417.048 30i . 045
31 274.000 364.507 274.027
32 271.000 314.181 271.003
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Nusber of data = 33
K = 8 6 .0 0  hours
T = 24.00 hours
X = 0.45000
alfa = 0.40000
Total iterations = 17

PERIOD I N F L OW OUT F L OW
(x 24.00 (observed) (calculated)

hours) (fi3/sec) (s3/sec)
0 274.000 274.000
1 314.000 288.450
2 355.000 283.490
3 404.000 280.261
4 495.000 319.890
O 566.000 405.558
8 586.000 492.870
7 ■ 572.000 523.492
8 575.000 538.461
9 ' 572.000 582.129

10 571.000 551.749
11 676.000 374.840
12 1026.000 540.851
13 1156.000 828.387
14 1081.000 971.354
15 1001.000 1091.895
16 S it . 000 1062.150
17 881.000 979.958
IS 568.000 830.254
19 538.000 711.748
20 534.000 637.809
21 535.000 582.993
22 551.000 568.637
23 555.000 563.999
24 549.000 554.001
25 544.000 574.440
26 493.000 582.130
27 428.000 550.260
28 378.000 485.080
29 357.000 465.388
30 301.000 417.344
31 274.000 362.516
32 271.000 311.456

i N F L 0 M 
(calculated) 

(siS/sec)

274.000 
313.997 
354.958 
403.922 
495.090 
586.321 
588.227 
571.S42 
574.689 
571.863 
571.104 
¿76.149 

1028.Ö37 
1155.898 
1080.848 
1000.935 
816.093 
881.1SS 
568.151 
538.011 
533.802 
534.888 
550.925 
554.980
548.977 
544.022 
493.060 
428.057 
376.043 
357.031 
301.008 
273.902
270.978
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Nuæber of data
KT
V

alfa

= 33
= ¿6.00 hours 
= 24.00 hours 
= 0.50000 
= 0.40000

Total iterations = 18
PERIOD I N F L OW

(k 24.00 (observed)
hours) (fi3/sec)

0 274.000
1 314.000
¿ 355.000

404.000
A 495.000
cJ 566.000
6 586.000
i 572.000
8 575.000
9 572.000

10 571.000
11 676.000
12 1026.000
13 1156.000
14 1081.000
15 1001 .000

16 816.000
17 681.000
18 560.000
19 538.000
20 534.000
21 535.000TO¿iL 551.000
23 555.000
24 549.000
25 544.000
26 493.000
27 428.000
28 376.000
29 357.000
30 301.000
31 274.000
32 271.000

OUT F L OW
(calculated)

(§3/sec)

I NF L OW 
(calculated) 

fi3/sec)
274.000 274.000
267.481 313.988
278.901 355.037
274.544 404.103
315.060 ' 495.188
405.784 566,152
496.190 585.916
526.573 57i . 697
543.134 574.760
587.394 572.004
544.242 571.165
353.969 676.150
527.305 1026.029
832.946 1155.923
986.869 1080.820

1112.087 1001.008
1080.735 816.086
891.147 681.081
832.501 568.010
707.923 537.931
631.574 533.902
576.720 534.943
561.955 550.994
560.805 555.011
552.637 549.020
576.523 544.039
586.419 493.043
553.130 428.028
486.191 376.014
466.554 357.000
417.339 300.9S2
360.173 273.977
308.545 270.986



Figures 5.1.5
Graphics of Samples of Computations
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Secondly, the iterative method for upstream routing was applied to recorded 
upstream and downstream hydrographs, to examine the case which occurs in 
practice where the known downstream hydrograph is used to estimate an unknown 
upstream hydrograph. In this test, the upstream plus the downstream hydrograph 
from ARR 87 Table 7.1, page 134 were used. Figure 5.1.6a shows results for 
K = 66 hours, At = 24 hours and x = 0.45. As for conventional Muskingum 
routing from upstream to downstream, the estimated and recorded hydrographs 
cannot be expected to agree exactly because the movement of flood waves in river 
reaches does not exactly conform with the behaviour assumed in the linear 
Muskingum equation. Note however that the method gives calculated hydrographs 
that agree reasonably well with the recorded upstream hydrograph. Figure 5.1.6b 
shows conventional Muskingum downstream routing to estimate the downstream 
hydrograph from a recorded upstream hydrograph. Comparison of Figures 5.1.6a 
and 5.1.6b shows that the upstream routing method developed in this study has 
the same order of accuracy as conventional Muskingum downstream routing.
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Figure 5.1.6a Upstream Routing to Obtain Upstream Hydrograph 
Using Iterative Method
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Figure 5.1.6b Downstream Routing to Obtain Downstream 
H ydrograph Using S tandard Muskingum Equation

Results of computations using the same observed downstream hydrograph, 
K = 66 hours and At = 24 hours but different parameter x values are shown in 
Figs. 5.1.6c. In each case the iterative method works well, with approximately 15 
iterations required to produce an upstream hydrograph.



Figures 5.1.6c
Upstream Routing Using Observed Downstream

Hydrograph
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5.2 ITERA TIV E M ETHOD W ITH  BACKWARD DIFFERENCE AT 
TH E END OF THE HYDROGRAPH

As mentioned in section 5.1, a difficulty arises in calculating the derivative at 
the end of the hydrograph (at time i = N). Equation (5.1.2) cannot be properly 
used to calculate dS/dtlN, since SN+1 is not known. Therefore, an assumption must 
be made. Equation (5.1.5) is one of the assumptions which can be taken into 
account. The other possible assumption is applying a backward finite difference. 
There are two types which have been investigated, backward finite difference 
based on the first derivative and backward finite difference based on the second 
derivative. The procedure of computation is entirely the same as that discussed in 
section 5.1.

First of all, these backward differences are derived prior to their application 
in the computation. The derivation is taken from Salvadori and Baron (1964). 
Given the values

yo> yi» y*-.., yn> yi» y^ yr> yrr> •••» yn-2» yn-i> yn 
of a function y(x) at the pivotal points of its interval of definition, evenly spaced 
by h, the first backward difference of y at i is

Vy; = yi-yi (5.2.1)
The second backward difference of y at i is defined as the difference of the first 
difference and is therefore given by

V(Vyj) = V yi = (yi- yi) - (yi - yii)
= yi-2.yi + yn (5.2.2)

Similarly, the n th backward difference is the difference of (n-1) th difference:
n n-1V yj = V(V yi)

It is well known that the differential operator D = d/dx can be used 
symbolically as if it were a number, in as much as it satisfies formally the 
fundamental laws of algebra. The difference operator V may also be used
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symbolically as a number (or variable), since it satisfies formally the laws of 
algebra, as shown by the following identities:

V ( y i+ y j) =  V y i + V yj = V yj + V yi ;
V(c.yj) = cV yi;

m n s m+nV (V yj) = V ys;
Making use of these properties, it is possible to express the differences of a 
function y in terms of its successive derivatives and, conversely, its derivatives in 
terms of its successive differences. The derivation of these expressions by 
symbolical methods is by far the most efficient.

Consider for this purpose the Taylor expansion of y(x+h) about x:
2 3

y(x+h) = y(x)+ ^-y '(x ) + ^|-y"(x) + -|j-y,''(x) + ...,

which, using the powers of symbol D to indicate the derivatives of y, becomes,2h _2 h3_3y(x+h) = y(x) + ypDy(x) + -^-D y(x) + ^ -D  y(x) + ...
2 3„  h „  h -r-2 , h -r-3 t v , v= (1 +yy-D + ^pD  + + ...)y (x ) (b)

By means of the series expansion for e—x’
2 3

± x  - X X X ,e -  * — \\ + 2! “  3! +
the differential operator on 
symbolically as

hD h V1 + -TT- H— —

the right-hand side of eq.(b) may be written

h3D3
+ ^ r  + = ehD

(5.2.3)
and hence y(x+h) may also be written symbolically as

y(x+h) = e^ .y ix ) (5.2.4)
Setting x = xj and indicating as before y(Xi+h) by yr and y(xj) by yif eq.(5.2.4)
becomes

Similarly, changing h into -h in eq. (5.2.4),
yr = e^.y; (5.2.5)
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y(x-h) = e"hD.y(x) (5.2.6)

yt = e 'hD.y;
and letting, as before, y(x) = y; , and y, = y(x; -h), eq.(5.2.6) becomes

(5.2.7)
The first backward difference V yi [eq.(5.2.1)] may now be written by means of 
eq.(5.2.7) as

V y; = yi - yi = [1 - e-hD].y; 
or, by eq.(5.2.3), as

(5.2.8)

V yi = (hD h V  h3D3 h4D4+1! 2! ' 3 !  4!
hD h V  h3D3- ^ - + . . . ) h D yi

+ . . . ) yi

=  ( 1 ~ +  „2 6! 24 - • (5.2.9)
Equation (5.2.9) gives the expression of Vy* into an infinite series of all the 
derivatives of y at i.

If eq.(5.2.8) is written in purely operational form, by dropping yj on both 
sides of the equation,

V = 1 - e‘hD , (5.2.10)
its 'powers' may be used to evaluate the series expansions for the successive 
differences of a function. Thus, squaring eq.(5.2.10), and making use of 
eq.(5.2.3), the expansion for the second difference V 2 can be obtained in the form

V 2 = (1 - e'hD)2 = 1 + e‘2hD - 2.e‘hD
2hD 4h2D2 8h3D3 1 6 h V= i + a - - T r+ 2! 3! + 4! . . . )

2(1 hD h V  h3D3 h4D4+
1! 2! 3! 4!

or
2 2 2  3 3  7 4 4V = h  .D -h  .D + ^ -h  .D - . . . (5.2.11)

Conversely, to obtain expressions for the derivatives of y in terms of its 
difference, solve eq.(5.2.10) for e'hD :

e-hD = 1 - V (5.2.12)
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and take the natural logarithms of both sides of this equation, obtaining
In e_hD = -hD = In (1 - V)

The series expansion of In (1 +_x) equals
2 3 4  5

, /1 N X  X  X  Xln ( l± x )  = ± x - r ± T - T ± T - .. .

(5.2.13)

therefore eq.(5.2.13) can be written as
2

In e hD= - hD = In (1 - V) = - (V + -^ - + ^
3

+ + . . . )
4

the expansion of the first derivative D into an infinite series of differences becomes
2 3 4

2 3 4 (5.2.14)
The difference expansions (5.2.9), (5.2.10), (5.2.11) and (5.2.14) allow 

the simple derivation of unilateral differentiation formula and of their errors.
For example, solving eqs. (5.2.9) and (5.2.11) for D and D2, respectively,

eqs.(5.2.15) can be obtained.
n  V  l f i 2 h V  h V  
D = T +— - 6 -  + ^ 4 - - ’

D2 = ^ + hD3 
h 2

7 h V
12 + ..

(5.2.15)
from which, taking into account the first term of the series only,

Dyi = ^ (y i-y i)  + ° ( h)»
D2yi = \  (yi - 2.yj + yi]) + 0 (h ) , 

h

(5.2.16a)

(5.2.16b)
Where the symbol O(h) stands for an error ’of the order of h' and is the sum of the 
terms neglected in eqs.(5.2.15).

It can similarly be proved that the approximation of the n th derivative by the 
first term of its backward difference expansion has an error of the order of h.

To obtain formulas with errors of order h2, the first two terms of the 
derivative expansions into differences must be taken into account.
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Thus, eliminating h2D2 between eqs.(5.2.9) and (5.2.11) results in
2v +V = hD 1,3^3

3h D +
or, by eqs.(5.2.1) and (5.2.2),

I ^ i O - y r ^ y j  + yni + CXh2) (5 2 1?)

In general, if the first m terms of the derivative expansions into backward 
differences are taken into account, the corresponding formulas have errors of order 
hm.

5.2.1 Computation Using Backward Difference Based on the 
Second Derivative at the End of Hydrograph

Neglecting the error term, equation (5.2.17) can be adopted to calculate the 
derivative S at the end of hydrograph (at time i = N). That equation becomes

dS
dTN~ ------(3.Sn - 4.SN4 + SN_2)2.At (5.2.18)

Test results indicate that this scheme is less satisfactory than that of 
eq.(5.1.5). The results are very similar to those obtained from section 5.1, except 
for the tails of the hydrograph. The discharges in the tail tend to become smaller as 
the parameter x value increases. Figures 5.2.1 show results using the observed 
downstream hydrograph ordinates taken from ARR87 Table 7.1 page 134.

The other problem which arises is that if various time steps At are used, the 
tails of the hydrographs are inconsistent. For example using the same data above 
with At = 22, 24 and 26 hours, K = 66 hours and parameter x = 0.1, the results
are presented in Figures 5.2.2.

It can be noticed from Figures 5.2.2 that each tail of the upstream 
hydrograph is not consistent with the others. The hydrograph tails do not vary 
consistently as the time step At changes. This circumstance does not occur if the
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same data are evaluated using the scheme discussed in section 5.1, i.e.: 
eq.(5.1.5). Small differences among the tails of the hydrographs occur in this 
case, but these occur only because of the linear interpolation needed to estimate 
discharges for other than 24 hours. The results are shown in Figures 5.2.3.



Figures 5.2.1
Upstream Routing with Backward Difference Based on the 

Second Derivative at the End of Hydrograph Using 
Observed Downstream Hydrograph
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Figures 5.2.2
Calculated Upstream Hydrographs with At = 22, 24 and 26 

Hours Using Backward Difference Based on the Second 
Derivative at the End of Hydrograph
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Figures 5.2.3
Calculated Upstream Hydrographs with At = 22, 24 and 26 

Hours Using Basic Method (Eq. 5.1.5)



Chapter 5 - Alternative Approaches to Upstream Routing 5 - 3 9

i e o o
1500iïOO
1300

12 0 0

11001000
300

500

7 00500
3007 00500
£001000

■ O l i c h i f ' l e  irii/ i t  c i

___  üPî-TRtRH  HŸDRO 'ïROrH

....  D S h Îî ST SES ?; K Ï5 8 B 5 S S F B

K = 5 5 .0 ft  K = 0 .1 0 0  

T = 22.Oh ;  i t i  = O .'fOO

F t r i o d  *>; 2 £ . 0  h o u r s )

0 ^ 3 ^ 3 0 7 3  3 lé Ù i ï  i ï  à  iS 1? ife Ù  26 2Ì l ì  Ó  lk  £g sfc 'à  3Ò 3Ì -4 ik



Chapter 5 - Alternative Approaches to Upstream Routing 5 - 4 0

5.2.2 Computation Using Backward Difference Based on the First 
Derivative at the End of Hydrograph

Another backward difference which can be taken into account for calculating 
the derivative S at the end of hydrograph (at time i = N) is equation (5.2.16a). By 
neglecting the error term and converting the variables used, the equation can be 
written as

¿¡Hn -  ( s n ~ S n -iV ^ 1 (5.2.19)
Results of the test of computation show that this scheme gives very similar 

results to those obtained by using eq.(5.1.5). The slight difference is only at the 
tail of the hydrograph. It can be said that the rest of the ordinates are precisely the 
same. This result is reasonable since the method used is iterative, the last 
calculated ordinate (at time i = N) affects the other ordinates which are relatively 
close to it in time, or in other words, it propagates up to a certain ordinate. Figures
5.2.4 show results of computations using the observed downstream hydrograph 
ordinates taken from ARR87 Table 7.1 page 134 for K = 66 hours, At = 24 hours
and various parameter x values.

This scheme encounters the same problem as that discussed in section
5.2.1 does, if various time steps At are applied for a certain parameter x value. 
Each tail of the hydrograph is not consistent with the others. However, the 
deviation of each tail is not as much as that in Figs. 5.2.2. Figures 5.2.5 show the 
results using K = 66 hours, parameter x = 0.1 and At = 22, 24 and 26 hours.



Figures 5.2.4
Upstream Routing with Backward Difference Based on 

First Derivative at the End of Hydrograph Using 
Observed Downstream Hydrograph
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Figures 5.2.5
Calculated Upstream Hydrographs with At = 22, 24 and 26 

Hours Using Backward Difference Based on the First 
Derivative at the End of Hydrograph
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5.3 ITERATIVE METHOD WITH NEWTON BACKWARD 
FORMULA AT THE END OF HYDROGRAPH

Equation (5.1.2) can be used to calculate dS/dtlN as long as the value SN+1 is 
known. It may be obtained using the assumption made in section 5.1, that SN+1 is 
assumed to be equal to SN. Therefore equation (5.1.2) becomes equation (5.1.5).

There is another way to obtain the value S^+i, namely by applying the 
Newton backward formula. Its role is to predict (extrapolate) the value outside the 
data interval. Firstly, before the iterative computation begins, it is necessary to 
obtain the value QN+1 (downstream discharge at time i = N+l) applying Newton 
backward formula. Since downstream hydrograph ordinates are adopted as the 
first estimate of the upstream hydrograph ordinates I, IN+1 is equal to QN+1. Thus, 
the storage S at time i = N+l can be calculated using eq.(5.1.3) and the derivative 
of S can be calculated using eq.(5.1.2). Secondly, in the iteration process, the 
Newton backward difference formula is applied to obtain the value IN+1 
(upstream discharge at time i = N +l) based on the calculated upstream 
hydrograph ordinates (IN, IN_l5 ...)• The derivative of S at time i = N can be 
continuously calculated using eq.(5.1.2) after storage S has been calculated using 
eq.(5.1.3). •

5.3.1 The Theory of Newton Backward Formula
The Newton backward formula is derived below, prior to the test of 

computation. This is taken from Scheid (1968).
Given a discrete function, that is, a finite set of arguments xk - xk_2 = h , the 
backward differences of the yk values are denoted

V yk = yk-yk-i
and called first differences. The differences of these first differences are denoted 

2V yk = V(V yk) = V yk - Vyk_! = yk - 2.yk.j + yk.2
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and called second differences. In general
n n-1 n-1V yk=V yk-V  yk_i

defines the n th differences.
Backward differences are normally applied only at the bottom of a table, 

using negative arguments as shown in table V.3.1.

Table V.3.1

x y
-4 x -4 y-4

V y . 3
-3 x -3 y-3 V 2y -2

V y . 2 V 3y .i
-2 x -2 y -2 V 2y .i V 4y 0

V y . i V 3y 0
-1 X -1 y-i V 2y 0

V y 0
0 x0 yo

Each difference proves to be a combination of the y values in column three, 
simple example is

3V y0=yo- 3.y_i + 3.y.2-y_3

A

The general result is

where k\ k! 
i) i! (k-i) !

(5.3.1)

The Newton backward form ula, in terms of k, is expressed as
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p (xk) = yo + kV y 0 + k (k + l)
2 !

2V yo + ••• + k .. (k+n-1)
n! V y0 (5.3.2a)

or

P(xk) = yo + X^ k ( k + l ) . . . ( k + i - l )  „ i

i=l i! V y0

where
xk"x o

h
h = the increment of x values in the data.

(5.3.2b)

(5.3.3)

Example. .
* Apply Newton backward formula to the prediction of V 1.35 in table V.3.2.

Table V.3.2

X y ( x )  =  ix V V 2 V 3 V 4 V 5 V 6
-6 1 .0 0 1 .0 0 0 0 0

24 7 0
-5 1 .0 5 1 .0 2 4 7 0

2411
-59

5
-4 1 .1 0 1 .0 4 8 8 1

2357
-54

4
-1

-1
-3 1 .1 5 1 .0 7 2 3 8

2307
-50

2
-2

3
4

-2 1 .2 0 1 .0 9 5 4 4
22 59

-48
3

1

-1 1 .2 5 1 .1 1 8 0 3
22 1 4

-45

0 1 .3 0 1 .1 4 0 1 7

k (in eq. 5.3.2a,b) can be found using equation (5.3.3)
k = (1.35 - 1.30)/0.05 = 1.

By choosing n = 3 and substituting into eq.(5.3.2a), the result will be 
P(1.35) = 1.14017 + 1.(0.02214) + 1.(-0.00045) + 1.(0.00003) = 1.16189,
while the exact solution of V 1.35 is 1.161895.
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5.3.2 The Application of Newton Backward Formula
It is clear that the purpose of applying Newton backward formula is to 

predict (extrapolate) the values of Qn+1 and IN+1 in order to able to obtain the 
derivative of S at time i = N using equation (5.1.2).

When applied to this problem, equation (5.3.2a) becomes
Qn+i = Qn + kVQN+ 2QN+ ... + k - y n-1) V Qn

and
In+i -  In+ kVIN' lN

! ^ ( k + l ) ^ 2,+ 2i— v an + + (k+n-1)
~n\ V IN

where:
k  ^  x k " X Q =  xN + i -  Ì n  _  A t  _

At At
The differences V are calculated using eq. (5.3.1), where

yo = Qn or 
y_i = Qn-i or ^N-i 
y_2 = Qn-2 or JN -2

y.n -  Qn-ii or JN-n
The number of ordinates n which are considered to be involved in the equation is 
dependent on the hydrologist's judgement. According to numerical experiments 
carried out here, computation using the larger n value gives less satisfactory 
results at the tail of hydrograph. This is explained by noting that as more ordinates 
are taken into account, the more uncertain the interpolation is, since the 
hydrograph ordinates do not follow any function which can be expressed precisely 
as a mathematical equation as with the example in section 5.3.1.

Results of computations using n=2 and n=3 are presented in Figures 5.3.1 
and 5.3.2 respectively. The downstream hydrograph ordinates are also taken from 
ARR87 Table 7.1 page 134. The computations used K = 66 hours, At = 24 hours
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and weighting factor a  = 0.4 for various parameter x values. It can be noticed 
from these figures that n = 3 gives poorer results. Negative discharges come out at 
the tail of hydrograph. The larger the parameter x value, the more negative the tail 
is.

The iterative method using the Newton backward formula with n = 2 and the 
iterative method using backward difference based on the second derivative at the 
tail of hydrograph were found to give identical results. To demonstrate this, the 
results of these two methods are shown in Tables V.3.3.

The problem encountered by Newton backward formula with n=2 and n=3 
and various time steps At for a certain parameter x value is the same as that 
encountered by backward difference based on the second derivative. Each tail of 
the upstream hydrograph is not consistent with the others.



Figures 5.3.1
Upstream Routing Using Observed Downstream 

Hydrograph with Newton Backward Formula at the End of
Hydrograph, n=2



Chapter 5 - Alternative Approaches to Upstream Flouting 5 - 5 0



Chapter 5 - Alternative Approaches to Upstream Routing 5 - 5 1

___  ÜP5 IREPstt H VD SD 5R SPK

....  Cu h S S I R E h îî H VDSDSRfiPH

h  -  t-b.ôfi = 0.500 
T = i f  .Oh 5 i f i  - 0.900

,  ........................................................................  • P t r ì t i  (fi £ 9 . 0  h o u r ; )

T V  it t j T T j  j —



Chapter 5 Alternative Approaches to Upstream Routing 5 - 5 2



Figures 5.3.2
Upstream Routing Using Observed Downstream 

Hydrograph with Newton Backward Formula at the End of
Hydrograph, n=3
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Tables V.3.3
Upstream Routing Calculation with Newton Backward 

Formula, n = 2 and Finite Difference Based on the Second 
Derivative at the End of Hydrograph
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Nuafesr of  d a ta  = 33 

K = 66 .00  h ou r s

T = 24.00 hou r s

x = 0 .00000  

a i t a  = 0 .40000  

T o ta l  i t e r a t i o n s  = 15

PERIOD O U T F L O W

(x 24 .0 0 (observed )

h o u r s ) i s 3/sec)

0 274 .000

1 298.000

2 320.000

3 361.000

4 383.000
rj 405.000

6 446.000

7 502.000

8 543.000

9 593.000

10 593.000

11 593.000

12 614.000

13 686.000

14 899.000

15 1100.000

16 1061.000

17 972.000

IS 884.000

19 817.000

20 678.000

21 606.000

22 550.000

23 539.000

24 534.000

25 529.000

26 524.000

27 517.000

28 476.000

29 413.000

30 301.000

31 295.000

32 290.000

I N F L O W I N F L O W

(c a lc u la t e d - ! ) ( c a k u i a t e d - 2 )

(is3/sec) (s3/sec)

274.000 274.000

351.281 351.281

398.209 390.289

439.010 • 439.010

454.409 454.409

499.508 499.508

569.658 569.650

630.883 630.883

654.971 654.971

655.368 655,368

615.811 615.811

645.109 645.109

788.933 788.933

1067.983 1067.983

1334.908 1334.808

1276.327 1276.327

956.238 956.238

770.841 770.841

656.335 ¿5ò.33b

545 .92S 545.928

423.919 423.919

436.949 436.949

461.425 461.425

494.919 494.919

512.667 512.667

512.667 512.667

495.167 495.167

441.042 441.042

325.354 325.354

214.464 214.464

166.460 166.460

250.709 250.709

277.625 277.625

Note :

c a l c u l a t e d - !  i s  ob ta ined  u s in g  Newton Backward F o r su la ,  n=2 

c a l c u i a t e d - 2  i s  ob ta ined  u s in g  Backward f i n i t e  d if fe re n ce  

based on the second d e r iv a t i v e
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Nusher of d ata  

K 

T 

xalts
T o ta l  i t e r a t i o n s

33

¿>¿.00 h ou r s  

24 .00  h o u r s  

0.10000 
0 .40000  

15

PERIOD 0 

(>i 24.00  

h ou r s )

0

1
2
3

4

56
7

8
9

10 
11  
12
13
14

15 
i t
17

18
19
20
21O'“*J, jL

23

24

25 ‘

26 .

27

28

2930
31

32

U T F L 0 H 

(observed ) 

(®3/sec)

274 .000

298.000

320.000

361.000

383.000

405.000

446.000

502 .000

543.000

593.000

593.000

593.000

614.000

686.000
899 .000  1100.000 

1061.000

972.000

884 .000

817.000

678.000

606.000

558.000

539.000

534.000

529.000

524 .000

517.000

476 .000

413.000

301.000

295.000

290.000

I  N F L 0 ë 

( c a l c u l a te d - i )  

(s3/sec)

274.000 

357.513 

400.974 

439.972 

457.835 

504.769 

571.986 

627.546 

646.768 

648.877 

621.833 

669.943 

823.565 

1080.368 

1300.182 

1218.486 

915.447 

752.710 

648.208 

547.668 

437.935 

455.282 

476.099 

503.483 

515.233 

509.516 

485.352 

426.738 

316.152 

220.426 

182.342 

260.653 

273.404

I NFLOW
( c a l c u lated-2)  

(i3/sed
274.000 

357.513 

400.974 

439.972 

457 .S35 

504.769 

571.986 

627.546 

646 .76S 

648.077 

621.033 

669.943 

823.565 

1080.368 

1300.182 

1218.486 

915.447 

752.710 

648.208 

547 .Ó6B 

437.935 

455.282 

476.099 

503.483 

515.233 

509.516 

485.352 

426.738 

316.152 

220.426 

182.342 

260.653  

273.404

Note :

c a l c u l a t e r i - l  i s  ob ta ined  u s in g  Newtcn Backward Fo raa la ,  n=2 

c a l c u l a t e d - 2  i s  ob ta ined  u s in g  Backward f i n i t e  d i f fe re n ce  

based on the  second d e r iv a t i v e



Chapter 5 - Alternative Approaches to Upstream Routing 5 - 5 8

Number of data — 03 

K = 6 6 ,0 0  hours
7 = 2 4 .0 0  hours
x = 0 .20 0 00

a l f a  = 0 .40000

Total iterations = 19
PERIOD 0 U T F L 0 M I N F L O « I N F L O «

(x 24 .00 (ob se rved }  ( c a l c u la t e d - ! ) (ca lc u la te d -2 )

hou r s ) («3/ sec) (ff.3/5EC) (e3/sec)

0 274 .000 274.000 274.000

1 298 .000 363.702 363.702
0i. 320 .000 403.070 403.078

3 361.000 441.217 • 441.217

4 303 .000 461.522 461.522

5 405 .000 509.023 509.023

6 446 .000 572.339 572.339

7 502.000 622.929 622.929

e 543 .000 639.963 . 639.963

9 593 .000 647.276 647.276

Í0 593 .000 633.911 633.911

n 593 .000 696.213 696.213

12 614 .000 849.606 849.606

13 686 .000 1077.172 1077.172

14 899.000 1255.259 1255.259

15 1100,000 1162.896 1162.896

16 1061.000 883.427 883.427

17 972 .000 742.021 742.021

18 884 .000 645.628 645.628

• 19 817 .000 554.100 554.188

20 678 .000 454.371 454.371

21 606.000 472.782 472.782

22 558 .000 488.045 488,045

23 539 .000 508.877 508,877

24 534.000 514.737 514.737

25 529 .000 503.708 503,700

26 524 .000 474.425 474.425

27 5 i 7 .000 414.520 414.520

28 476 .000 311.685 311,685

29 413 .000 229.612 229.612

30 301 .000 195.999 195.999

31 295 .000 262.805 262.805

32 290.000 256.872 256.872

Note :

c a k u l a t e d - 1  i s ob ta ined  u s in g Newton Backward F o r su la ,  n=2

c a l c u l a t e d - 2  i s ob ta ined  u s in g Backward f i n i t e  d if fe re n ce

based  on the  siE-ccno d e r iv a t i v e
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Nusber of data = 33
K = 66 .00  hours
T = 24.00 hours
X = 0.30000
alfa = 0.40000
Total iterations = 21

PERIOD 0 U T F L 0 H I N F L 0 S? I N F L 0 fi
(x 24.00 (observed} (calculated-!) (calculated-2 )

hours) (si 3/sec) (o3/sec) ii3/sec)
0 274.000 274.000 274.000
i 298.000 369.769 369.769
2 320.000 404.6S1 . 404.681
3 361.000 442.679 442.679
4 383.000 465.033 465.033
CJ. 405.000 512.075 512.075
6 446.000 571.384 571.384
7 502.000 618.479 610.479
8 543.000 635.815 ¿35.015
9 583.000 650.088 650.088

10 593.000 648.841 ¿48.341
11 593.000 719.229 719.229
12 614.000 864.664 864.664
i3 ¿36.000 1061.311 1061.31!
14 899.000 1206.250 1206.250
15 1100.000 1113.884 1113.884
It 1061.000 S60.64S 860.648
17 872.000 737.508 737.500
IS 884.000 ¿47.246 647.246
19 817.000 563,510 563.310
20 ¿70.000 471.305 471.305
21 606.000 488.113 488.113nr-xx 558.000 496.S42 496.S42
23 539.000 511.317 511.317
24 534.000 511.851 511.851
25 529.000 496.451 496.45!
26 524.000 463.SSI 463.381r>7
X / 517.000 405.053 405.053
28 476.000 310.489 310.489
29 413.000 238.533 238.533
30 301.000 203.438 203.438
31 295.000 253.831 253.SOI
32 290.000 225.779 225.779

Note : ►
calculated-! is obtained using Newton Backward Foraula, n=2
calcuiated- 2  is obtained using Backward Finite difference

based on the second derivative



Chapter 5 - Alternative Approaches to Upstream Routing 5 - 6 0

Nuaber of data
K
T

= 33
= ¿ ¿ . 0 0  hours 
= 24-00 hours 
= Ô,40000 
= 0.40000alfa

Total iterations = 23
PERIOD OUT F L OW I NF I DI ? I fi F L 0 «

(x 24,00 (observed) (calculated-!) (caIculated-2 )
hours) (sJ/sec) (s3/sec) is3/sec)

0 274.000 274.000 274.000
- i 290.000 375.658 375,658

2 320.000 405.836 405.S36
3 361.000 444.273 . 444.273
4 383.000 468.169 468.169
ru\ 405.000 514.140 514.140
6 446.000 569.902 569.902

' 7 502.000 615.033 615.033
S 543.000 634.276 634.276
9 593.000 655.594 ¿55.594

10 593.000 663.515 663.515
11 593.000 736.434 736.434
12 614.000 869.3S2 869.382
13 ¿86 .000 1037.126 1037.126
14 899.000 1157.986 1157.986
15 1100.000 1073.202 1073.202
16 1061.000 845.960 845.960
17 972.000 737.492 737.492
IS 884.000 651.679 651.679
19 817.000 575.025 575.025
20 678.000 487.383 4S7.383
21 606.000 500.7Ô2 50Û.702p71“»I L 55S.000 502.671 502.671
23 539.000 511.368 ' 511.368
24 534.000 507.340 507.340
25 529.000 483.590 488.590
26 524.000 454.156 454.156
27 517.000 397.452 397.452
28 476.000 309.873 309.S73
29 413.000 243.497 243.497
30 301.000 201.384 201.384
31 295.000 231.711 231.711
32 290.000 179.098 179.098

Note :
calculated--1 is  obtained using Newton Backward Forsula, n=2
calculated--2 is obtained using Backward fin it e difference

based on the seîcond derivative
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Nuaber of data 
K T 
x
alfa

= 33
= 6 6 .0 0  hours 
= 24.00 hours 
= 0.45000 
= 0.40000

Total iterations = 24
PERIOD OUT F L OW I NF LOW I NFLOW

(x 24.00 (observed) (calcuiaied-l) icskulated-2)
hours) (fs3/sec) («3/sec) (s3/sec)

0 274.000 274.000 274.000
1 290.000 378.522 378.522
nL 320.000 406.258 406.250
3 361.000 443.095 . 445.095
4 383.000 469.572 469.572
5 405.000 514.900 514.900
6 446.000 569.145 569.145
7 502.000 613.767 613.767

, S 543.000 634.259 634.259
9 593.000 658.766 658.766

10 593.000 670.054 670.054
11 593.000 742.600 742.600
12 614.000 863.513 868.513
13 686.000 1023.226 1023.226
14 899.000 1135.141 1135.141
15 1100.000 1056.032 1056.032
16 1061.000 841.107 041.107
17 972.000 738.673 738.673
18 884.000 654.575 654.575
19 817.000 580.849 ' 580,849
20 678.000 494.827 484.827
21 606.000 505.926 505.826
nn
X. X 558.000 504.590 504.590
23 539.000 510.659 510.659
24 534.000 504.628 504.628
25 529.000 484.513 484.513
26 524.000 449.456 449.456
27 517.000 393.803 393.803
28 476.000 308.S46 308.846
29 413.000 243.486 243.486
30 301.000 196.067 196.067
31 295.000 215.298 215.298
32 290.000 149.SS7 149.887

Note :
calculated-■1 is obtained using Heston Backward Foraula, n=2
calculated--2 is  obtained using Backward finite difference

based on the second derivative
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Nuaber of data = 33
K = 66.00 hours
I = 24.00 hours
x = 0.50000
alta = 0.40000 
Total iterations = 25

PERIOD 
(x 24.00 

hours)
OUT F L OW I NF L OW I NFLOW 

(observed) (calculated-!) (caIculated-2 ) 
{¡i3/sec) (e-3/sec) (s3/ssc)

0 274.000 274.000 274.000
1 29B.000 381.322 381.322
n 320.000 406.577 406.577
3. 361.000 445.923 - 445.92S
4 383.000 470.876 470.876
5 405.000 515.539 515.539
6 446.000 568.437 568.437
7 502.000 612.776 612.776
S 543.000 634.566 634.566
9 593.000 ¿61.929 661.929

10 593.000 ¿75.832 675.S32
11 593.000 747.204 747.204
12 614.000 865.937 065.937
13 686.000 1008.716 1000.716
14 899.000 1113.467 1113.467
15 1100.000 1040.844 1040.844
16 1061.000 837.607 837.607
17 972.000 740.417 740.417
18 884.000 657.757 ¿57.757
19 817.000 586.654 536.654
20 678.000 501.780 501.780
21 606.000 510.448 510.448
TOXi 558.000 505.909 505.909
23 539.000 509.521 509.521
24 534.000 501.641 501.641
25 529.000 480.296 480.296
26 524.000 444.687 . 444.¿87
27 517.000 389.895 389.S95
2S 476.000 306.855 306.355
29 413.000 241.372 241.372
30 301.000 187.628 187.628
31 295.000 195.258 195.258
32 290.000 116.843 116.843

Note : 
calculated- 1 is obtained using Newton Backward :orguIa, n=2

calculated--2 is obtained using Backward finite difference
based cn the second derivative
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5.4 UPSTREAM ROUTING MOVING BACKWARD IN TIME
In chapter 4, it has been shown that the cause of the instability of equation

(4.1.1) is the coefficient in terms of Cj and C0 If the value of \-Ci/C0\ is larger 
than 1.0, the computation diverges. It has also been proved that only x = 0.0 will 
give satisfactory results.

If equation (4.1.1) is re-arranged to

I . - J - o .  — Il l _ Ci i+1 Ci 1 C i i+1 (5.4.1)
then

Co (-K.x + At/2)
Cl (K.x + At/2)

is always less than 1.0 and any error entering into the calculated Ii+1 value is 
carried forward into the calculation but diminishes towards zero. Therefore, 
equation (5.4.1) is numerically stable.

To solve eq.(5.4.1), it is required that the calculation be carried out 
backward in time, starting from the tail of the hydrograph (the ordinate at time 
i = N) and moving backward to the start of rise of the hydrograph. Seemingly, this 
step is rather unusual, but as long as it can be computed mathematically and the 
concept is valid, it is still acceptable.

A problem which arises with this approach is that the starting discharge (at 
the tail of the hydrograph) may not be known. However, any uncertainty in this 
discharge diminishes rapidly towards zero, since the value of l-Co/Cjl is always
less than 1.0. ,

For a sample of computation, firstly the downstream hydrograph is 
calculated from the observed upstream hydrograph taken from ARR87 Table 7.1 
page 134 using conventional downstream routing [equation (2.1.3)] with K = 
66 hours, At = 24 hours and parameter x = 0.45. Secondly, this result is used to



Chapter 5 - Alternative Approaches to Upstream Routing 5 - 6 4

calculate back the upstream hydrograph using eq.(5.4.1). Figure 5.4.1 shows the 
resulting upstream hydrograph calculated from various assumed starting 
discharges. Convergence is reached rapidly and good upstream hydrograph 
reproduction is obtained.

1200

1 o 20 30
time (day)

Figure 5.4.1 Upstream Routing Moving Backward in Time

This method works very well since there is no error propagation. It can be 
said that satisfactory results can always be obtained.

5.5 THE CUBIC SPLINE AND RUNGE-KUTTA METHODS
If the derivative term in the equation of conservation of mass [eq.(2.1.1)] is 

based on the storage S equation [eq.(5.1.3)], that derivative can be written as 
follows:

dt dt v ’ dt (5.5.1)
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Thus, the equation of conservation of mass:
I - Q = dS

dt
becomes

I - Q = K .x S  + K .( l - x ) .^dt v '  dt
I - K .x .g  = Q + K .( l-x ) .Ç (5.5.2)

On the right-hand side of eq.(5.5.2) are the known variables obtained from 
observed data, while on the left-hand side are the variables for which the solution 
is sought. This ordinary differential equation may be solved numerically by the 
Runge-Kutta. method. Difficulty arises in applying this method, since it requires 
that the right hand side Q variable in eq.(5.5.2) be available as a function, not as a 
set of data points, in order to be able to obtain the Q values and their derivatives at 
any time required in the method of solution. However, this problem can be 
overcome by fitting a Cubic Spline through the ordinates of the downstream 
hydrograph.

In the particular case where parameter x = 0.0, equation (5.5.2) becomes

I = Q + K dQ 
* dt (5.5.3)

thus, it is not necessary to apply Runge-Kutta to solve. It can be solved for I 
straight-forwardly with help of cubic spline to obtain the derivative of Q. If 
parameter x is not equal to 0.0, eq.(5.5.2) can be written as

J _ I _ d I  = 1 t K(l-x) dQ
K.x* dt K . x K . x  * dt (5.5.4)

To solve eq.(5.5.4), both the cubic spline and Runge-Kutta methods have to be 
applied.
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5.5.1 The Cubic Spline
The theory described below is derived from Young (1972).
Suppose that one is interested in determining a function F(x) which 

approximates a given function f(x) in an interval I = [a,b]. One method would be 
to subdivide the interval into N subintervals I2 = [x^x j; I2 = [x^x j; 
In= [xN-i >xn] where a = x0, b = xN, and x0 < xj< ... < xN. One could then 
determine by Lagrangian interpolation, or if the intervals are of equal length, by 
Gregory-Newton interpolation, a polynomial F(x) of degree N or less such that 
F ( x i )  =  f(Xj), i = 0, 1, ..., N. However, for certain functions the approximate 
representation of f(x) by a single polynomial throughout the interval is not 
satisfactory.

It is possible to use a cubic polynomial in each subinterval to obtain a 
function S(x) which interpolates to f(x) at the {xj} in the entire interval. Such a 
function is known as a cubic spline function.

In using cubic spline interpolation, F'(x) and f  (x) are not required to agree 
at the points of interpolation. A function Fk(x) in the interval Ik has to be 
determined such that

Fk(x;) = f(xj), i = k-1, k.
For k = 1 ,2 ,..., N-l, it is also required that

F k (xk-) = Fk+i(x k+)
F k ( x k - ) = F k + l ( x k + )

The procedure involves determining Mk, where
Mk = F k(xk-)= F k+i(xk+)

Since Fk(x) is a cubic polynomial, F^x) is a linear function of x in Ik, i.e.:
F k(x) = Mk_i. xk -x

x k " x k-i

+ Mk. x  - x k-i 

x k " x k-i (5.5.5)
By integrating eq.(5.5.5), it becomes
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T-'  ̂ », (xk-x)2 , », (x-Xk-l)2 ,F k(x) = -M ^ .— -----+ Mt — —------+ Cl2hk
where

hk - x k -x k-i (5 .5 .6 )
and where Cj is a constant of integration to be determined. By integrating again, it 
becomes

3 3
F k(x) = Mk, , (Xk. ;  x) + + C!.x + c26hi 6hi

By letting yk = f(xk), eqs.(5.5.8) is obtained.
hk2

yk - i  =  M k- i - - g - + c i - x k.i + c 2

(5.5.7)

hence,
c i =

y k = Mk --g -+ c i-xk + c 2

<yk-yk-i)-CMk-M k_i)(hk76)

c 2 =

(xk-yk.i - xk_!.yk) - (xk.Mk.j - xk.!.Mk)(hk /6)

(5.5.8)

by substituting in eq.(5.5.7), eq.(5.5.9) is obtained.

F k(x) = Mk_
' 2 l \  / 2 2.̂(xk -x)((xk -x ) - h k0  (X - xk.!)((x - Xk.j) -h kl+ Mk.

6.h, / \
+ £--yk-i(xk - x) + yk(x - xjd)

By differentiating, eq.(5.5.10) is obtained.

6.h.

(5.5.9)

hk2- 3(xk - x)2F k(x) = Mk.!-| k 6 - ^ ------ | + Mk. 3 (x -x k_i) - hk2\

6.ht + jf(yk-yk-i)nk (5.5.10)

If F k (xk- ) = F k+1(xk+) then
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hk ht 1 hk. i ht+i 1
-g"*M k-i +  - y . M k  +  j ^ ( y k  - Y k - i )  =  “ — 3— --M k  “ “ g — -M k + 1+  h ^ yk+1 “ y k ^

(5.5.11)
or

irM yk + i-y^ -ifiy k -yk -i)n k+l  ftk

(k=  1,2, ...,N-1) (5.5.12)
This is a system of N-l linear algebraic equations with N+l unknowns, i.e.: M0, 

..., M n . T wo more equations are needed to solve that system. Arbitrarily, M0 
and can be assumed by taking:

F i( x 0) = 0
F n (xn) = 0 (5.5.13)

-.Mk - l
hk + hk . 1 + -  a Mt + Lk+1 .Mk + l

(Equations (5.5.13) imply that the slopes of downstream Q hydrograph at time i 
= 0 and i = N are assumed to be equal to zero.)
Using eqs. (5.5.13), eq.(5.5.10) gives

hi hi 1-^-.M0 + = ^ -(y i - yo)
[N lN 1- j^ (y N- yN-i) (5.5.14)

Eventually, the system has N+l linear algebraic equations with N+l unknowns. 
The values of M0, Ml5 ..., MN can uniquely determined. This follows since the
determinant of matrix A of the system, does not vanish.

[A][M] = [D]
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A =

hi h i
3

h i
6

h i  + h 2 h 2
6 3 6

• h 2
6

h 2+ h 3
3

h 3

N̂-l N̂-1 + ̂ N hN~6~ 3 T
h N h N

* ~6 T

M 0
Mx

Mn_i
M n

D =

r - ( y i - y < )hi
^-(y2-yi)-r-<yi-yo)h 2 hi

r<y3-y^-r-(y2-yi)h 3 h 2

T ~ ( y  N - y  n -i) - i r ~ ( y  N-i - y  ̂hN hiLN-11-MyN-yN-i)hN

The solution of a system of linear algebraic equations with a tri-diagonal 
matrix can easily be carried out. In this project, that system is solved by using 
Gauss elimination methods. This method is common, hence it is not discussed 
herein.

5.5.2 The Runge-Kutta Method
The theory described below is all derived from Grove (1966).
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This version of the Runge-Kutta method uses terms through the fourth
derivative. The equations are given below:

y  n+1 =  y n +  + 2.k2+ 2.k3 + k 4)

where
(5.5.15)

kt = h.f(xn,yn) 
k 2 = h.f(xn+|-h, Yn+ -̂kj) 
k3 = h.f(xn+ |h , yn+^k2) 
k4 = h.f(xn+h, yn+k3)

(5.5.16)
(5.5.17)

(5.5.18)
(5.5.19)

The differential equation must, of course, be written as y' = f(x,y) with an initial 
condition that x = x0 when y = y0.

Use of the Runge-Kutta method is as follows: compute the four k values 
from (5.5.16), (5.5.17), (5.5.18) and (5.5.19) and substitute into (5.5.15). This 
yields a new point (xn+1,yn+1), which is then re-used as the initial point. The 
process is repeated across the interval of the desired solution.
Example : Solve y' = x - y for the initial condition x = 0, y = 2 with h = 0.1. 
Solution:

xo = 0, y0 = 2, h = 0.1, y' = x - y 
kx = 0.1(0 -2) = -0.2
k2 = 0.1(0.05 - [2 + l/2(-0.2)]) = 0.1(0.05 - 1.9] = -0.185 
k3 = 0.1(0.05 - [2 + l/2(-0.185)]} = 0.1(0.05 - 1.9075] = -0.18575 
k4 = 0.1 (0.1 - (2 - 0.18575)} =0.1[0.1 - 1.81425] =-0.171425 
yi = 2 + l/6[-0.2 + 2(-0.185) + 2(-0.18575) - 0.171425] = 1.8145125 

Now, using x = 0.1 and y = 1.8145125 as the initial point,
kj = -0.17145125 
k2 = -1.5787869 
k3 = -1.5855732 
k4 = 1.4559552
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y2 = 1.6561927
Now

x2 = 0.2, y2 = 1.6561927 
x3 = 0.3, y3 = 1.5224553 
x4 = 0.4, y4 = 1.4109609 
x5 = 0.5, y5 = 1.3195929 
x6 = 0.6, y6 = 1.2464359.

5.5.3 The Application of the Cubic Spline and Runge-Kutta 
Methods

Equation (5.5.4) can be written as

dl
dt

1 q  Kq-x) dQ i J  J
K.x K.x * dt K.x'

or I’(t) = D(t) + c.I 
where

(5.5.20)
c = l/(K.x)

D(t) = - ^ . Q - KS1' x).Q’(t)K . x '  K.x
Equation (5.5.20) is very similar to the example discussed above, i.e.: y' = x - y. 
Hence, the way to solve eq.(5.5.20) is the same as that in the example. The 
difference is that the value of D(t) should be determined by using the spline 
function. The value Q(t) is obtained using eq.(5.5.9) while the value of Q'(t) is 
obtained using eq.(5.5.10). It should be emphasized that since the spline function 
results in a different polynomial equation for every subinterval, it is very essential 
to check thoroughly whether or not the appropriate polynomial equation is used 
according to the corresponding time interval.

Numerical experiments were done using the downstream hydrograph taken 
from ARR87 Table 7.1 page 134 with K = 66 hours, At = 24 hours and various 
parameter x values (0, 0.1, ..., 0.5). Computation shows that only x = 0.0 gives
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adequately satisfactory result, the rest of parameter x values result in divergence, 
even though the very small h value (h = 0.1 hours) and quite large h value (h = At 
= 24 hours) are used (in this context, h is the subinterval of time step At, see 
section 5.5.2).

If parameter x = 0.0, the Runge-Kutta method is not applied. This is because 
eq.(5.5.3) does not have a term dl/dt. The spline function is still applied to 
obtain the value of dQ/dt (and Q) at any time required in the computation. Figure
5.5.1 shows the result for parameter x = 0.0.

Figure 5.5.1 Upstream Routing with Spline Function

Based on experiments, it can be concluded that the Runge-Kutta combined 
with cubic spline fitting methods does not yield satisfactory results, the 
computation diverges rapidly. The only x which makes the computation converge
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is x = 0.0, since the computation does not need the Runge-Kutta method. 
However, the result is not satisfactory, oscillations will most probably occur, as 
can be seen in Fig. 5.5.1.

5.6 SUMMARY
It has been shown that the reverse application of the conventional 

Muskingum routing procedure to obtain an upstream hydrograph yields 
unsatisfactory results (chapter 4). Very rapid divergence occurs since the 
computation is numerically unstable. However, re-arrangement of the formulation 
to use an iterative solution combined with a smoothing algorithm and a weighting 
factor a  can replace that method. Very good estimates of upstream hydrograph I 
are obtained if the correct choice of time step At is applied (section 5.1).

The problem encountered by the iterative method is how to determine the 
derivative storage S at the end of hydrograph (at time i = N). In conjunction with 
that, several approximations which have been investigated indicate that the most 
accurate estimates of I are obtained by assuming the derivative S at time i = N+l to 
be equal to the one at time i = N, so that a central finite difference can be used to 
calculate the derivative S at time i = N. First order backward difference also gave 
satisfactory results, but second order backward difference and Newton backward 
formula did not.

The use of a smoothing algorithm in the iteration process is for removing 
oscillations which are likely to occur in the computation, while the use of a 
weighting factor a  is for accelerating the iteration process so that the required 
number of iterations decreases greatly.

Re-arrangement of the usual finite difference form of the Muskingum 
equation to solve for given Ii+1 (i.e.: upstream routing moving backward in
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time) ensures that the solution converges and very accurate estimates of the 
upstream hydrograph are obtained (section 5.4).

The cubic spline combined with the Runge-Kutta method does not yield 
satisfactory results. According to the numerical experiments, the computation 
diverges for any time step At, except for parameter x = 0, and even this has 
oscillations. It should be noted that if parameter x = 0, only the cubic spline 
(without Runge-Kutta) is applied in the computation since the term dVdt does not 
appear in the equation.
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Downstream Routing Using Iterative Method

6.0 IN TR O D U C TIO N
As discussed in chapter 5, it is clear that the iterative method can overcome 

the inability of upstream routing derived from the standard Muskingum equation to 
give satisfactory results.

This chapter is intended to describe briefly how the iterative method can be 
applied not only for upstream routing but also for downstream routing. Samples of 
computations using both the iterative method and conventional downstream 
routing are compared. The results of the iterative method cannot agree exactly with 
those of conventional downstream routing, since the approaches used are 
different. Nevertheless, the results of both methods have been shown to agree 
reasonably well with the observed downstream hydrograph.
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As has been described in chapter 5, a problem with the iterative method is 
how to determine the derivative of storage S at the tail of the hydrograph (at time 
i = N) since the value of SN+1 is not known. Some approaches were investigated 
in conjunction with that problem. Computations showed that the best results were 
obtained by assuming SN+1 equal to SN. Therefore, in this chapter this assumption 
is adopted. The other approaches, i.e.: backward differences, Newton backward 
formula and Runge-Kutta and cubic spline are no longer discussed.

6.1 COMPUTATION PROCEDURE
The computation procedure of the iterative method for downstream routing is 

the same as that for upstream routing. The procedure is discussed briefly.
The equation of conservation of mass [eq.(2.1.1)J is re-airanged into

Vi i “ a r i (6 . 1 .D
where the subscript i refers to the time i. The derivative of S is expressed in central 
finite differences using the simplest two point scheme

r̂li = (Si+i-SM)/(2.At)dt 1 1 v '  (6.1.2)
while the storage S at any specified discharge is expressed by

S = K.[x.I + (l-x).Q] (6.1.3)
Equation (6.1.1) is not used to calculate the value of Q0 at time i = 0. The

value of Q0 must be given an initial value, since eq.(6.1.1) is a differential
equation. The assumption usually made is

Q0 = I0 (6-1.4)
but any value of Q0 can be used.
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As has been discussed in chapter 5, the storage S at time i = N+l is assumed 
to be equal to that at time i = N (SN+1 = SN), therefore eq.(6.1.2) for calculating 
dS/dtlN becomes

^ ' n = (SN-S N.!)/(2.At)at (6.1.5)
Combining eqs.(6.1.1), (6.1.2) and (6.1.3) yields an implicit equation, 

since the storage S is expressed in terms of the downstream discharge Q, the value 
of which itself is being sought.

The implicit equation is solved using an iterative process with instantaneous 
discharges. The method of solution used is to
- adopt the upstream hydrograph ordinates I as the first estimate of the 

downstream hydrograph ordinates Q, give an initial value at time i = 0 to Q0 
which remains unchanged throughout the iterative process,

- use eq.(6.1.3) to calculate the values of storage S,
- use eqs.(6.1.2) and (6.1.5) to determine the derivative dS/dt
- then use eq.(6.1.1) to make an improved estimate of Q.
These steps are repeated until successive calculated downstream hydrographs 
converge.

For clarity, it is more convenient to describe the steps in the computation 
procedure with help of a flow chart (see Fig. 6.1.1). They are explained below.

Step 1
Initialize iteration k = 1.

Step 2
Give an initial value at time i = 0 to Q (Q0) [eq.(6.1.4)] which remains unchanged 
throughout the required number of iterations to converge and adopt the upstream
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8 .

Figure 6.1.1 Flow  Chart o f the Computation
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hydrograph ordinates as the first estimate of the downstream hydrograph ordinates 
(Qa)-

Step 3
Equate Qk l (downstream hydrograph ordinates at iteration k-1) with Qa.

Step 4
Calculate storage S for all ordinates throughout the flood according to the given 
data I and the values of Q obtained in step 3 using eq.(6.1.3).

Step 5
Calculate storage change dS/dt using eq.(6.1.2) for all ordinates, except for the 
first and the last ordinates. Since the value of Q at time i = 0 (Q0) is assumed, 
dS/dt|o is calculated using

-3-io-vQo (6 .1 .6 )
The value of dS/dt at the last ordinate is calculated using eq.(6.1.5). It should be 
noted that the value of dS/dt|0 is used in the smoothing algorithm (step 6) when
time i = 1.

Step 6
Because oscillations are likely to occur in the estimated downstream hydrograph 
(as discussed in chapter 5), the smoothing algorithm

dS* AS *  0 dS, dS
(6.1.7)
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is applied to eradicate them. The subscript * refers to the value which has been or 
is being smoothed. The smoothing algorithm is carried out from the derivative at 
time i = 1 up to time i = N-l.

Step 7
Calculate new downstream hydrograph ordinates Qk using eq.(6.1.1).

Step 8
Since the upstream hydrograph ordinates I are adopted as the first estimate of the 
downstream hydrograph ordinates to be used to estimate the ordinates Q at the next 
iteration, and the iteration is repeated until successive calculated downstream 
hydrographs converge, it is necessary to adopt a convergence criterion for 
terminating the iteration. If the relative change in each value of Q from one iteration 
to the next is expressed as

d i  =
k k-1Qf-Qi

QT
i = 1 ,2 ,. . . ,  N

(6.1 .8)

where superscript k refers to the value of Q at iteration k and superscript k-1 
refers to the value of Q at iteration k-1, convergence can be said to have been 
reached when each d* is equal to or less than some specified small quantity. In this 
project, as used in chapter 5, the convergence criterion is taken as

di < 0.001 (6.1.9)

Step 9
Check the values of d* obtained from eq.(6.1.8) in step 8 using condition (6.1.9). 
If they are all equal to or less than 0.001, the downstream hydrograph ordinates



Chapter 6 - Downstream Routing Using Iterative Method 6 - 7

are set equal to the Qk ordinates and the process is finished. If not, continue to step
10.

Step 10
In order to improve the results dramatically, with fewer iterations required, the 
downstream hydrograph ordinates at iteration k are combined with those at 
iteration k-1 as a weighted average to make a new estimate of downstream 
hydrograph ordinates (Qa). This condition is expressed as

Qai =Q f’1 + (Q|c-Q?"1)-a ( 6110)
where i = 0,1, 2, ..., N and 0 < a  < 1. It was found by numerical experiments 
that the effective a  lies between 0.1 and 0.7. After calculating a new estimate of 
downstream hydrograph ordinates Q using eq.(6.1.10) return to step 3 to get into 
the next iteration (k+1).
Further explanation about the weighting factor a  is discussed in section 6.3 of this 
chapter.

6.2 CONDITION TO CONVERGE
Equations (6.1.1), (6.1.2) and (6.1.3) can be combined to yield

Qi = Ii- K
2.At

ft *x.Ii+1 + (l-x).Qi+1 - x .IM - (l-x).Qj_!
(6.2. 1)

Superscript * refers to the values which are assumed for the trial or obtained from 
the previous iteration.

Convergence can be reached as long as the absolute value of the multiplying 
factor related to the unknown variable Q is less than 1.0 (as discussed similarly for 
upstream routing). This condition is expressed from eq. (6.2.1) as
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K.(l-x)/(2.At) < 1, or
At > K.(l-x)/2 (6.2.2)

The larger the time step At used in the computation, the fewer the number of 
iterations required. However, if the time step At is too large, not all points on the 
hydrograph are considered and the peak may be missed.

In practice, the limiting time step At required to converge is somewhat larger 
than that given by condition (6.2.2). This can be noticed more clearly from Figure 
6.2 .1.

(l-x)/2
Figure 6.2.1 Graphic (l-x)/2 vs. Min.Time Step/K

The values in the actual line (Fig.6.2.1) were obtained by trial and error 
computations using the data taken from ARR87 Table 7.1 page 134. These values 
can be reduced down to those in the theoretical line, if a weighting factor is 
applied, as discussed in the next section.
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6.3 W EIGHTING FACTOR (a)
As mentioned in section 6.1 step 10, applying a weighting factor a  

[eq.(6.1.10)] can improve the results, with fewer iterations required. The other 
advantage of applying a weighting factor a  (as also mentioned in chapter 5) in the 
iterations is that the actual limiting time steps At can be reduced down to those in 
the theoretical line given by condition (6.2.2) or even to certain values of At which 
are less than those in the theoretical line if the appropriate weighting factor a  is 
used. The particular values of At that can be reached should be determined by 
numerical experiments. For example if parameter x = 0 and K = 66 hours, then 
using condition (6.2.2), At > 33 hours. In practice, the minimum At which still 
can make the process converge without weighting factor (i.e. a  = 1) is 41 hours. 
If a weighting factor a  = 0.4 is applied, the time step At can be reduced down to 
23 hours which is less than that given by condition (6.2.2).

Figure 6.3.1 Graphic a  Vs. Number of Iterations 
for Parameter x = 0.3
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Based on numerical experiments using various values of parameter x, with 
K = 66 hours and At > K.(l-x)/2 and condition (6.1.9) for terminating the 
iteration, the optimum a  which gives the fewest number of iterations is a  = 0.4 or 
a value which is close to 0.4 (see Fig. 6.3.1). Other values of parameter x result in 
similar graphics to that in Fig. 6.3.1 which is given by x = 0.3.

6.4 TESTS OF COMPUTATIONS
Tests of computations have been carried out in chapter 5 using the observed 

upstream hydrograph taken from ARR87 Table 7.1 page 134, see Tables V.1.1 
column 3 and also Figs. 5.1.5 in this thesis.

In order to see the order of accuracy of the iterative method for downstream 
routing compared with that of the standard Muskingum method, results using 
both methods with the observed upstream hydrograph taken from ARR87 Table
7.1 page 134, parameter x = 0.45, K = 66 hours and At = 24 hours are presented
in Fig. 6.4.1.

It can be noticed from Fig. 6.4.1 that the decreasing discharge which occurs 
on day 12 in the hydrograph obtained from the standard Muskingum method, 
occurs in the hydrograph obtained from the iterative method on day 11 and is 
'deeper' than that on day 12. On the other hand, the peak of the hydrograph (the 
magnitude and the time at which it occurs) obtained from the iterative method is 
much closer to the recorded one compared with that obtained from the standard 
Muskingum method. It can be concluded that notwithstanding the decreasing 
discharge on day 11, the result obtained from the iterative method for downstream 
routing agrees as well with the recorded one as does the standard Muskingum 
method.

It should be noted that the decreasing discharge at the start of rise of the 
major peak in the downstream hydrograph occurs for all values of parameter x in
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the range 0<x<0.5. The decreasing discharge becomes ’deeper’ as the parameter x 
value increases.

Figure 6.4.1 Downstream Routing to Obtain Downstream Hydrograph
Using the Standard Muskingum and Iterative Methods

Note : Calculated (1): calculated using the standard Muskingum method 
Calculated (2): calculated using the iterative method

6.5 SUMMARY
It has been shown that the iterative method developed in this study for the 

case of upstream routing can also be applied to downstream routing. It can be 
seen, by comparing the results obtained from the standard Muskingum and 
iterative methods with the observed downstream hydro graph, that the results 
obtained from the iterative method agree reasonably well with the observed 
hydrograph and also with the standard Muskingum method.

In order to converge, the iterative method has a condition for choosing the 
time step At [eq. (6.2.2)]. The number of iterations are reduced if a time step larger 
than this value of At is used. However, if the time step At chosen is too large, the
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shape of the calculated hydrograph is not adequately defined, and the peak may be 
missed.

If a weighting factor a  = 0.4 is used, the iteration converges much faster, 
and a smaller time step can be used.



C o n c l u s i o n s

Conventional application of the Muskingum method, to calculate the flood 
hydrograph at a downstream station on a river from a known hydrograph at an 
upstream station, has been shown to work satisfactorily. However, when the 
method is applied in reverse, to calculate the upstream hydrograph from a known 
hydrograph at a downstream station, the process has been found to be 
computationally unstable and the calculation diverges from the true solution. This 
has been investigated and found to be due to the values of the coefficients 
appearing in the equation.

The computational instability can be overcome by adopting an alternative 
finite difference approximation to the differential equation of conservation of mass, 
and solving the problem iteratively, in which the required values for each trial are 
set equal to the calculated values from the previous trial. The method has been

\
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found to converge to the correct solution, depending on the time At used, and this 
value of At depends on the values of the model parameters K and x. More rapid 
convergence occurs if a smoothing algorithm is applied to the derivative of storageiS and a weighting factor (a) is applied to combine the calculated values from the 
last two trials as a weighted average to yield a new estimate for the subsequent 
trial.

The advantage of applying the weighting factor (a) in the calculations is in 
not only reducing the total number of iterations required but also reducing the 
limiting time step At which still can make the process converge.

Several variations of the iteration method have been investigated, including 
the use of backward differences and the Newton backward formula for estimating 
values at the end of the hydrograph. However best results were obtained when a 
simple two point central difference scheme, plus smoothing and weighting was 
used.

The computational instability of the Muskingum method to calculate the 
upstream hydrograph from a known hydrograph at a downstream station can also 
be overcome if the Muskingum equation is re-arranged to solve for Ij given Ii+1 
(i.e.: moving backward in time). The solution has been found to converge and 
yield very accurate estimates of the upstream hydrograph.

The application of cubic spline combined with the Runge-Kutta method to 
calculate the upstream hydrograph from a known downstream hydrograph does 
not yield satisfactory results. The computations have been found to diverge rapidly 
for any time step At, except for parameter x = 0 when only the cubic spline
(without Runge-Kutta) is applied in the computation.

Computer programs have been developed which allow normal downstream 
routing calculation, upstream and downstream routing using the iterative method,
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and upstream routing moving backward in time. These computer programs contain 
graphical output. Examples of running the programs are given in Appendix A.
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Examples of Running Programs

A.O INTRODUCTION
The aim of these examples is to provide a set of easy to follow instructions 

on how to use the programs, on the function of each program and the data and 
information that each program requires.

The programs are written in Turbo Pascal language and allow for the input 
of upstream and downstream hydrograph data to be used for downstream or 
upstream routing. To describe results of computations more clearly, graphic 
programs are also provided. These programs comprise several sub-programs taken 
from Turbo Graphix Toolbox' by Borland International (1985). Some 
modifications to those sub-programs were made to suit the need of the numerical 
analysis. These graphic programs have some limitations, namely:
- Spline function which is used for fitting polynomials through the observed or 

calculated data points cannot be expected to work satisfactorily when the
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number of data points is very few (e.g. 3 data points). This is because the 
spline function is not fitted to endpoints. To overcome this problem, linear 
curves are used to replace spline function at end intervals.

- The maximum number of data points which can be plotted is approximately 60. 
This limitations is due to the size of matrix used in the spline computation in 
'Turbo Graphix Toolbox'.

All of the programs in the diskette enclosed with this thesis are in machine 
code language. This means that to run the program, it is not necessary to first load 
the Turbo Pascal language into the memory of the computer. The programs can be 
run directly from DOS. The advantage of this is that the program will run much 
faster, because the computer does not have to change the Turbo Pascal commands 
into executable machine code commands while it is running.

A.l HOW TO RUN THE PROGRAM
First of all, if the computer is off, place the diskette in disk drive A and 

switch on the computer. If everything is working correctly, there will simply be a 
prompt like 'A>'. If the computer is already on, place the diskette in disk drive A 
and depress <ctrl><Alt><Del> simultaneously. Now type 'INITIAL' and press 
<RETURN>. This will load the menu program, so on running the program the 
opening screen will look like this:
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Flood Routing Program 
M U S K I N G U M

by :
DEDIBUDIAWAN  

Student id. no. 8900066

Department o f Civil & Mining Engineering 
The University o f  Wollongong 
N.S.W . - A U S T R A L I A

Figure A. 1.1

And then after few seconds,

MUSKINGUM
FLOOD ROUTING PROGRAM

MAIN MENU
[a] Downstream Routing
[b] Upstream Routing 
[Q] Exit to System

Press the appropriate character and <RETURN> ! 
Your choice ? _

Figure A. 1.2

This is the main menu of the programs. Once the user has decided which program 
to use, simply enter the character of the program followed by pressing
<RETURN>.
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A.2 WORKED EXAMPLES
The data used in these examples are the same as those used in the main 

chapters, i.e. the data taken from ARR87 Table 7.1 page 134 (Pilgrim, 
I.E.,Australia, 1987). See chapter 1 in this thesis.
Note: the character(s) written in italics is(are) entered by the user.

A.2.1 DOWNSTREAM ROUTING
If option [a] in Main Menu (Fig. A. 1.2) is chosen, downstream routing 

calculation will be carried out. The following menu will come up:

PROGRAM OF DOWNSTREAM ROUTING

[a] Conventional Muskingum Method
[b] Iterative Method
PR] Return to Main Menu 
[Q] Exit to System

Press the appropriate character and <RETURN> ! 
your choice ? _

Figure A.2.1

There are two methods of downstream routing, namely:
a. Conventional Muskingum method
b. Iterative method.

A.2.1.1 Downstream Routing Using Conventional Muskingum 
Method

If option [a] in the menu above (Fig. A.2.1) is chosen, the following menu 
will come up:
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Downstream Routing Using Conventional Muskingum Method 

M E N U

[a] Store data into a file
[b] Change data
[c] Run program
[d] Graphic
[e] Erase data file
[R] Return to Main Menu 
[Q] Exit to System

Press the appropriate character and <RETURN> !

Your choice ? -

Figure A. 2.2

Below is the description of main options of the menu in Fig. A.2.2.

fal Store data into a file
After choosing [a] in the menu (Fig. A.2.2), the opening screen will be: 
Name o f  data file to store observed upstream hydrograph data : DATA1 <RETURN> 

The next screen is:
The unit o f inflow discharge has to be in m3/sec.
Information:
The things which should be noticed are that
1. Number o f data is unlimited
2. As the last datum, simply write "30303"
3. The value o f alfa (0<alfa<l) plays no part in 

Conventional Muskingum downstream routing
Routing Period T [hours] = 24
Average Travel Time K [hours] = 66  
Parameter x = 0 .0 0
alfa = 0 .4 0

Inflow [ 0] = 27 4  
Inflow [ 1] = 31 4  
Inflow [ 2] = 35 5  
Inflow [ 3] = 40 4

Inflow [30] = 301
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Inflow [31] = 274  
Inflow [32] = 271  
Inflow [33] = 3 0 3 0 3

Note: Inflow [ 0] = 274 denotes the value of inflow at time i = 0 
Inflow [32] =271 denotes the value of inflow at time i = 32 
Inflow [33] = 30303 does not denote the value of inflow at time i = 33. 
This is used for terminating data input. The data in this example are taken 
from chapter 1 Table 1.2.1 column (2) of this thesis.

After Inflow [33] = 30303, the screen will return to the menu in Fig. A.2.2.

[bl Change data
After choosing [b] in the menu (Fig. A.2.2), the opening screen will be: 
Name of file o f  which data will be changed: DATA1 

The next screen is:
INFORMATION
Name o f file o f  which data will be changed: DATA1
PD DATA PD DATA
0 24.000 1 66.000
2 0.000 3 0.400

etc.
(Press <RETURN>)

PD is datum position number on which the change of datum is based. 
After pressing <RETURN>, the next screen will be:

INFORM ATION:
You will change the data in a file nam ed: DATA1 
if  there is no datum changed, give 30303 to PD !
Position number o f datum (PD) which is changed: 2
Old datum • 0-00
N ew  datum : 0 .4 5

D o you want to change more data ? [Y/N] N
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After pressing ’N* and <RETURN>, the program will return to the menu in 
Fig. A.2.2. -

Tel Run Program
After choosing [c] in the menu (Fig. A.2.2), the opening screen will be :

INFORMATION:
You must have the inflow hydrograph data 

stored in a file
if  not, choose [a] in M E N  U  

Do you have an inflow hydrograph data file ? [Y/N] 7
The next line is :

Name o f inflow hydrograph data file : DATA1

The next screen will be:
The current values o f  T, K, x and alfa are:
Routing Period T = 24.00 hours
Average Travel Time K = 66.00 hours
Parameter x = 0.00
alfa = 0.40
Note: The value o f alfa (0<alfa<l) plays no part in this method
D o you want to make any changes to K and x values ? [Y/N] 7

The next lines will be:
N ew  Average Travel Time K [hours] = 66  
N ew  Parameter x = 0 .4 5

In this case, only the parameter x value is changed.
The next line is:

D o you want to change T value ? [Y/N] N

If the answer is 'Y' then the program will ask for the new routing period. Based 
on this new routing period, the data are interpolated. Then, the program will ask 
for a data filename to put these interpolated data. They are needed in the graphic 
program.
The next screen will be:
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Is starting outflow value the same as starting inflow value ? [Y/N] Y

The program will then display the result of the computation:
Q outflow [ 0] = 274.000  
Q outflow [ 1] = 259.342  
Q outflow [ 2] = 271.476  
Q outflow [ 3] = 295.022

etc.
Press any key to continue !

After displaying the result of the computation, the next screen will be:
Total volume of inflow hydrograph = 1583064000.00 m^
Total volume o f outflow hydrograph = 1576724760.40 
Relative difference between these total volumes = 0.400 %
Nam e of data file to store result matrix : BBB

Note: Relative difference between the total volumes above is obtained using:

where:
V,out
Dr

The next screen is:

Dr = . 100%

total volume of inflow hydrograph 
total volume of outflow hydrograph, and 
relative difference between these total volumes

Input & output will be printed ? [Y/N] N

If the answer is 'Y', make sure that the printer is already on. The results of the 
computations including the data used are printed in a tabular form as presented in 
the former chapters.
The last screen of this program is:

Return to MENU ? [Y/N] Y

If the answer is 'N' then it will exit to DOS. Since the answer is 'Y', the program 
will return to menu in Fig.A.2.2, and the next option is ready to be chosen.
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fdl Graphic
This graphic program can be run provided that program [c] has been run to

obtain the result of computation stored in a file.
Below are the instructions after choosing [d] in the menu (Fig. A.2.2).

D o you have RESULT FILE, obtained by 
running program [c] in MENU ? [Y/N] Y

If the answer is 'N', the program will ask the user to return to MENU.
The next screen is:

Was your result file obtained by iterative method ? [Y/N] N  

This question determines whether or not the value of alfa is put in the graphic. In 
this method the value of alfa plays no part so that the answer is 'N*.
The next screen will be:

and then
Name of the calculated outflow data file : BBB

Name of the inflow hydrograph data file used 
for calculation : D A T A 1

It should be noted that if the data have been interpolated according to the new 
value of T before being processed, the name of the inflow hydrograph data file 
must be the name of the file in which the interpolated data are stored (see part 
'[c] Run Program')
The next screen is :

Graphic will be printed ? [Y/N] N

If the answer is 'Y', make sure that the printer is already on.
After a few moments, the screen will display the graphic. To return to text mode, 
simply press any key.
The last screen of this program is:

Return to MENU ? [Y/N] Y
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The program will return to menu in Fig. A.2.1. If the answer is 'N', it will exit to 
DOS.

A.2.1.2 Downstream Routing Using Iterative Method
If option [b] in the menu (Fig. A.2.1) is chosen, the following menu will 

come up:

Downstream Routing Using Iterative Method 

M E N U

[a] Store data into a file
[b] Change data
[c] Run program
[d] Graphic
[e] Erase data file
[R] Return to Main Menu 
[Q] Exit to System

Press the appropriate character and <RETURN> ! 

Your choice ? _

Figure A.2.3

Except option ’[c] Run Program', the other options in Fig. A.2.3 will not be 
discussed any longer since they are similar to those in section A.2.1.1.

[cl Run Program
After choosing [c] in the menu (Fig. A.2.3), the opening screen will be:

INFORMATION :
You must have the inflow hydrograph data 

stored in a file
if  not, choose [a] in M E N U  

Do you have an inflow hydrograph data file ? [Y/N] Y
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The next line is :
Nam e o f inflow hydrograph data file : D A TA I

The next screen will be:
The current values o f  T, K, x and alfa are:
Routing Period T 
Average Travel Time K 
Parameter x 
alfa

= 24.00 hours 
= 66.00 hours 
=  0.00 
= 0.40

D o you want to make any changes to K, x  and alfa values ? [Y/N] Y

The next lines will be:
N ew  Average Travel Time K [hours] = 66
N ew  Parameter x 
N ew  alfa

=  0 .4 5  
= 0 .4 0

Only the parameter x value is changed in this case.
The next lines are :

Based on K and x values in order to converge,
Routing Period T should be > 18.15 hours

Do you want to change T value ? [Y/N] N

If the answer is 'Y' then the program will ask for the new routing period. If the 
new routing period is still < 18.15 hours, the program will warn that it may lead to 
divergence and it will ask the user whether or not to correct the routing period T 
again. Based on the new routing period, the data are interpolated. Then, the 
program will ask for a data filename to put these interpolated data. They are 
needed in the graphic program.
The next screen will be:

Is starting outflow value the same as starting inflow value ? [Y/N] Y 

The program will then display:
Iteration 21

Process has been finished ! 
Press any key to continue !

The next screen will be the result of the computation:
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Q outflow [ 0] = 274.000  
Q outflow [ 1] = 269.450  
Q outflow [ 2] = 283.490  
Q outflow [ 3] = 280.261  
Q outflow [ 4] = 319.690

etc.
Press any key to continue !

After displaying the result of the computation, the next screen will be:
Total volume o f inflow hydrograph = 1583064000.00 
Total volume of outflow hydrograph = 1578855653.00 m^ 
Relative difference between these total volumes = 0.266 %
Name o f data file to store result matrix : BBB

Note: The relative difference between the total volumes above is obtained using 
the same formula given in section A.2.1.1 part '[c] Run Program*.

The next screen is:
Input & output will be printed ? [Y/N] N

If the answer is *Y', make sure that the printer is already on. The results of the 
computations including the data used are printed in a tabular form as presented in 
the former chapters.
The last screen of this program is:

Return to MENU ? [Y/N] Y

If the answer is 'N* then it will exit to DOS. Since the answer is *Y\ the program 
will return to menu in Fig.A.2.3.

A.2.2 UPSTREAM ROUTING
If option [b] in Main Menu (Fig. A. 1.2) is chosen, upstream routing 

calculation is ready to be carried out. The following menu will come up:
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PROGRAM OF UPSTREAM ROUTING

[a] Moving Backward in Time
[b] Iterative Method
[R] Return to Main Menu 
[Q] Exit to System

Press the appropriate character and <RETURN> ! 
your choice ? _

Figure A.2.4

There are two methods of upstream routing, namely:
a. moving backward in time
b. iterative method

The worked examples for storing data into a file, changing data and graphic will 
not be described any longer in this section, since they are similar to those in 
section A.2.1.1. The only option which will be described is '[c] Run Program*. 
The data used in these examples are taken from chapter 1 Table 1.2.1 column (3). 
These data were stored using option [a] in the menu presented later below with file 
name: DATA2.

A.2.2.1 Upstream Routing Moving Backward in Time
If option [a] in the menu (Fig. A.2.4) is chosen, the following menu will

come up:
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Upstream Routing Moving Backward in Time 

M E N U

[a] Store data into a file
[b] Change data
[c] Run program
[d] Graphic
[e] Erase data file
[R] Return to Main Menu 
[Q] Exit to System

Press the appropriate character and <RETURN> ! 

Your choice ? .

Below is the description of option [c] of the menu in Fig. A.2.5.

Icl Run Program
After choosing [c] in the menu (Fig. A.2.5), the opening screen will be:

INFORMATION :
You must have the outflow hydrograph data 

stored in a file
if  not, choose [a] in M E N  U  

Do you have an outflow hydrograph data file ? [Y/N] Y

The next line is :
Name of outflow hydrograph data f i le : DATA2

The next screen will be:
The current values o f  T, K, x and alfa are:

Note: The value o f alfa (0<alfa<l) plays no part in this method 
D o you want to make any changes to K and x values ? [Y/N] Y  

The next lines will be:

Figure A.2.5

Routing Period T 
Average Travel Time K 
Parameter x 
alfa

= 24.00 hours 
= 66.00 hours 
=  0.00 
= 0.40
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N ew  Average Travel Time K [hours] = 66  
N ew  Parameter x = 0 .4 5

In this case, only the parameter x value is changed.
The next line is:

D o you want to change T value ? [Y/N] N

As has been mentioned in the previous section, if the answer is 'Y' then the 
program will ask for the new routing period. Based on this new routing period, 
the data are interpolated. Then, the program will ask for a data filename to put 
these interpolated data. They are needed in the graphic program.
The next screen will be:

Is starting inflow value the same as starting outflow value ? [Y/N] Y

If the answer is 'N', the program will ask for the new starting inflow value. It
should be carefully noted that since this method is moving backward in time, the
starting inflow is the value at the end of hydrograph (at time i = N).
The program will then display the result of the computation:

Q inflow [ 0] = 343.920  
Q inflow [ 1] = 373.235 
Q inflow [ 2] = 415.214  
Q inflow [ 3] = 432.436  
Q inflow [ 4] = 469.265

etc.
Press any key to continue !

After displaying the result of the computation, the next screen will be:
Total volume o f inflow hydrograph = 1579346579.70 m^
Total volume o f outflow hydrograph = 1583020800.00 m-*
Relative difference between these total volumes = 0.232 %
Name o f data file to store result matrix : C C C  

Note: Relative difference between the total volumes above is obtained using:

DrJ V 0*1' . 100%
* out

where: : total volume of inflow hydrograph
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Vout : total volume of outflow hydrograph, and 
Dr : relative difference between these total volumes 

The next screen is:
Input & output will be printed ? [Y/N] N

If the answer is 'Y', make sure that the printer is already on. The results of the 
computations including the data used are printed in a tabular form as presented in 
the former chapters.
The last screen of this program is: -

Return to MENU ? [Y/N] Y

If the answer is 'N' then it will exit to DOS. Since the answer is T ', the program 
will return to menu in Fig.A.2.5.

A.2.2.2 Upstream Routing Using Iterative Method
If option [b] in the menu (Fig. A.2.4) is chosen, the following menu will 

come up:

Upstream Routing Using Iterative Method 

M E N U

[a] Store data into a file
[b] Change data
[c] Run program
[d] Graphic
[e] Erase data file
[R] Return to Main Menu 
[Q] Exit to System

Press the appropriate character and <RETURN> ! 

Your choice ? _

Figure A.2.6
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Below is the description of option [c] of the menu in Fig. A.2.6.

I'd Run Program
After choosing [c] in the menu (Fig. A.2.6), the opening screen will be:

INFORM ATION:
You must have the outflow hydrograph data 

stored in a file
if  not, choose [a] in M E N  U  

Do you have an outflow hydrograph data file ? [Y/N] Y

The next line is :
Nam e o f  outflow hydrograph data file : DATA2

The next screen will be:
The current values o f T, K, x and alfa are:
Routing Period T = 2 4 .0 0  hours
Average Travel Time K = 66.00 hours
Parameter x = 0.00
alfa = 0.40
D o you want to make any changes to K, x and alfa values ? [Y/N] Y

The next lines will be:
New  Average Travel Time K [hours] = 66  
N ew  Parameter x =0.45
N ew  alfa =  0.40

Only the parameter x value is changed in this case.
The next lines are :

Based on K and x values in order to converge, 
Routing Period T should be > 14.85 hours

D o you want to change T value ? [Y/N] N

As has been similarly mentioned in section A.2.1.2, if the answer is 'Y\ the 
program will ask for the new routing period. If the new routing period is still 
< 14.85 hours, the program will warn that it may lead to divergence and it will 
ask the user whether or not to correct the routing period T again. Based on the
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new routing period, the data are interpolated. Then, the program will ask for a data 
filename to put these interpolated data. They are needed in the graphic program. 
The next screen will be:

Is starting inflow value the same as starting outflow value ? [Y/N] Y  

The program will then display:
Iteration 16

Process has been finished ! 
Press any key to continue !

The next screen will be the result of the computation: •
Q inflow [ 0] = 274.000  
Q inflow [ 1] = 378.502 
Q inflow [ 2] = 406.226  
Q inflow [ 3] = 445.065  
Q inflow [ 4] = 469.599

etc.
Press any key to continue !

After displaying the result of the computation, the next screen will be:
Total volume o f inflow hydrograph = 1575918712.50 m^ 
Total volume o f  outflow hydrograph = 1583020800.00 m^ 
Relative difference between these total volumes = 0.449 %
Nam e o f data file to store result matrix : C C C

Note: The relative difference between the total volumes above is obtained 
using the same formula given in section A.2.2.1.

The next screen is:
Input & output will be printed ? [Y/N] N

If the answer is 'Y', make sure that the printer is already on. The results of the 
computations including the data used are printed in a tabular form as presented in
the former chapters.
The last screen of this program is:
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Return to MENU ? [Y/N] Y

If the answer is 'N' then it will exit to DOS. Since the answer is 'Y\ the program 
will return to menu in Fig.A.2.6.
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