
University of Wollongong University of Wollongong 

Research Online Research Online 

University of Wollongong Thesis Collection 
1954-2016 University of Wollongong Thesis Collections 

1991 

The application of expert systems in parenteral nutrition The application of expert systems in parenteral nutrition 

Michael Robinson 
University of Wollongong 

Follow this and additional works at: https://ro.uow.edu.au/theses 

University of Wollongong University of Wollongong 

Copyright Warning Copyright Warning 

You may print or download ONE copy of this document for the purpose of your own research or study. The University 

does not authorise you to copy, communicate or otherwise make available electronically to any other person any 

copyright material contained on this site. 

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, 

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe 

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court 

may impose penalties and award damages in relation to offences and infringements relating to copyright material. 

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the 

conversion of material into digital or electronic form. 

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily 

represent the views of the University of Wollongong. represent the views of the University of Wollongong. 

Recommended Citation Recommended Citation 
Robinson, Michael, The application of expert systems in parenteral nutrition, Master of Science (Hons.) 
thesis, Department of Computer Science, University of Wollongong, 1991. https://ro.uow.edu.au/theses/
2816 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F2816&utm_medium=PDF&utm_campaign=PDFCoverPages




THE APPLICATION OF EXPERT SYSTEMS IN 

PARENTERAL NUTRITION 

A thesis submitted in partial fulfilment of the 

requirements for the award of the degree 

Master of Science (Honours) 

(Computing Science) 

from UN1V:?,S!TY CF 
WOLLOKGOKG 

library 

Y CF I 
:oHQ 1 

THE UNIVERSITY OF WOLLONGONG 

by 

Michael Robinson, BSc., Grad. Dip. Comp. Sci. 

DEPARTMENT OF COMPUTER SCIENCE 
1991. 



0:i.0325 



This is to certify that this thesis has not been submitted for a degree in any other 
University or Institution. 

Michael Robinson 
20th December, 1990. 



ABSTRACT 

Total Parenteral Nutrition (TPN) is a medical technique used to provide a patient's 

nutritional requirements via intravenous feeding. Critically ill patients must have 

adequate nutrition but must also have a stable physiology compensated for or treated 

by drugs. 

Several factors such as the complex nature of the TPN solution, the cost of the 

ingredients and the possible interaction of nutrient and drugs has led to the 

development of small expert system to assist the hospital medical staff in formulating 

the TPN constituents and assist the pharmacy staff in producing the final solution. 

This text will describe a small knowledge-based diagnostic system which when 

combined with conventional programming techniques has led to tangible benefits 

within a hospital Intensive Care Unit and Pharmacy. 

ui 



TABLE OF CONTENTS 

ABSTRACT iii 
TABLE OF CONTENTS iv 
ACKNOWLEDGEMENTS vi 

1.0 INTRODUCTION AND SUMMARY OF TOPIC 1 
1.1 Parenteral Nutrition and Expert Systems 1 
1.2 What is an Expert System? 5 
1.3 Examples of Expert Systems 9 

1.3.1 MYCIN - An Infection-Diagnosing System 11 
1.3.2 XCON - A Planning and Design System 13 

1.4 Objectives and Structure of Study 16 

2.0 ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS 20 
2.1 Introduction 20 
2.2 Principles and Applications of AI 22 
2.3 Expert System Technology 26 

2.3.1 Expert System Concepts and Techniques 30 
2.3.2 Knowledge Representation 32 

2.3.2.1 Semantic Networks 33 
2.3.2.2 Frames 35 
2.3.2.3 Rules 36 
2.3.2.4 Logic 39 

2.3.3 Knowledge Acquisition 41 
2.3.4 Drawing Inferences 43 

2.3.4.1 Reasoning about Uncertainty 44 
2.3.4.2 Control Mechanisms 48 
2.3.4.3 User Interface 51 
2.3.4.4 Comparison with Conventional Programming 52 
2.3.4.5 Programming Languages and Expert System Shells 54 
2.3.4.6 Introduction to 0PS5 55 

3.0 PROBLEM DOMAIN 59 
3.1 Introduction 59 
3.2 Clinical Procedures 60 
3.3 Pharmacy Procedures 62 
3.4 Basic Requirements of the Expert System 65 
3.5 Order Sequence 66 
3.6 Specific Tools Available 67 



4.0 EXPERT SYSTEM IMPLEMENTATION 70 
4.1 Introduction 70 
4.2 Implementation Environment 71 
4.3 System Design 74 
4.4 The 0PS5 Language 78 

4.4.1 Use of atoms, classes and attributes in OPS5 81 
4.5 Knowledge Base 82 

4.5.1 TPN Medical Module 84 
4.5.2 TPN Pharmacy Module 84 
4.5.3 Data Structures 85 

4.6 Communication with Extemal Routines 91 

5.0 ANNOTATED SYSTEM 102 
5.1 Introduction 102 
5.2 Medical Order 103 
5.3 Pharmacy Calculation 115 

6.0 EVALUATION OF PERFORMANCE 121 
6.1 Testing and Evaluation 121 

6.1.1 Comparison with the Human Expert 121 
6.1.2 Specific Performance Criteria 122 

6.1.2.1 Accuracy 124 
6.1.2.2 Completeness 125 
6.1.2.3 Reliability and Consistency 126 
6.1.2.4 Effective Reasoning 126 
6.1.2.5 User-friendliness 127 
6.1.2.6 Run-time Efficiency 128 

7.0 CONCLUSIONS AND FUTURE 130 
7.1 Summary and Conclusions 130 
7.2 The 0PS5 Programming Language 131 
7.3 Expert Systems in a Medical Environment 134 
7.4 Future Research 135 

GLOSSARY 138 

REFERENCES 141 



ACKNOWLEDGEMENTS 

A number of people have contributed to the successful completion of this project. 

For his guidance in research and preparation of this thesis, I would like to thank my 
supervisor Dr. N.A.B. Gray, for his constant support and encouragement throughout 
the course of this research. 

Acknowledgements are also made to the Illawarra Area Health Service staff for their 
helpful assistance. 

Finally, not the least acknowledgement goes to my wife, Rosalind, for her support 
and consideration throughout the course of my research. 



Chapter 1 - Introduction and Summary of Topic 

CHAPTER 1 

INTRODUCTION AND SUMMARY OF TOPIC 

1.1 Parenteral Nutrition and Expert Systems 

Total parenteral nutrition is defined as the provision of a person's nutritional 

requirements via any intravenous catheters, that is, a form of intravenous feeding. 

This technique had its origins with attempts to provide nutrition when the normal 

digestive system was inoperative for prolonged periods but the rest of the patient was 

relatively healthy. More recently, there is an awareness that unhealthy people require 

adequate nutrition and these form a second group of patients. By providing and 

manipulating the nutrients parenterally, when normal oral intake or gut function is 

impaked, the return to health is actively promoted. When the problem is solely the act 

of ingestion, external feeding via naso-gastric tube is used. 

Critically ill patients, usually found in the intensive care unit (ICU) of a hospital, 

comprise the third group. In these patients not only is nutrition vital but manipulation 

of internal body chemistry is one of the central concepts of intensive care therapy. 



Chapter 1 - Introduction and Summary of Topic 

Within the ICU, where frequent monitoring of various parameters is performed, 

immediate adjustment to patient response and alteration of parenteral therapy are an 

integral part of patient management. 

Critically ill patients must have adequate nutrition but also have varying fluid and 

electrolyte physiology, which must be compensated for or treated with drugs. At any 

time, due to the results of laboratory tests or clinical monitoring, components of the 

solutions may have to be changed without altering the effect on other components 

within that solution. 

The following major problems exist with the use of this technique in the ICU :-

1) Unless the pharmacy, where the solutions are made up, is manned 24-

hours a day by a trained pharmacist, (this does not commonly happen in 

practice except in large metropolitan teaching hospitals) then alterations 

to any of the components of a solution in the light of clinical monitoring 

may have to be made by the ICU staff who are not fully trained in 

pharmaceutical practice or ICU staff must wait for the pharmacist on-

call to arrive to prepare the solution. 



Chapter 1 - Introduction and Summary of Topic 

2) The registrar (senior medical officer) has the legal authority to alter 

solutions but whilst authority to alter solutions may be delegated, in 

circumstances in which he is not always immediately available, his legal 

authority cannot be delegated. 

3) Mixing techniques in the phramacy requires very strict adherence to 

written detail which is only learnt by practice. The order of addition 

together with amounts of ingredients must be closely controlled and 

taken into account when ordering. On average, it takes about four weeks 

for a resident medical officer (RMO) to become familiar with the 

reqirements and RMO's are replaced on a rotation basis every ten 

weeks. 

4) TPN solutions are very expensive and have a shelf life when mixed of 

less than 36 hours. 

5) The trained pharmacy staff expressed a need for additional computer-

based productivity aids to complement the pharmacy dispensing and 



Chapter 1 - Introduction and Summary of Topic 

stock control systems currently being implemented. Specifically, the 

main area of productivity gain was in the formulation of TPN solutions. 

6) Some conventional programs had been developed to assist pharmacy 

staff, but these programs were found to be inadequate due to the 

difficulty in making changes to increasingly complex code and the 

overall inflexibility of the programs. 

It was considered that the application of expert systems technologies was an ideal 

way to solve the above mentioned problems and perform functions similar to those 

normally performed by a human expert in that domain. For the TPN applications, it 

was determined that an expert system could support the data analysis aspect of the 

problem in two ways : 

1) By providing a more intelligent interface and thus relieving the expert 

from the necessity of having in-depth knowledge about the mechanisms. 



Chapter 1 - Introduction and Summary of Topic 

2) By capturing the expert's knowledge in a form that is storable and 
transportable, and thus provide the possibility of data analysis without 
the necessity of the expert carrying out the analysis in all cases. 

It has been suggested [MCDONALD83] that data examination tasks within the 
medical environment individually consume minuscule amounts of time but 
collectively they take up much of the physician's day. It has also been suggested that 
to reduce the chance of error due to this "information overload" condition, a round-
the-clock computer-based consultant would be of great assistance. The incorporation 
of expert system technology into diagnostic medicine applications has been 
successfully attempted in many projects since the late 1970s [RAUCH-HINDIN86]. 
The problems encountered in the production of TPN solutions in the pharmacy, 
together with the need to provide consultative medical assistance have led to the 
development of a consultative teaching expert system. 

1,2 What is an Expert System? 

During the past ten years, we have witnessed the emergence of a new computer 
technology called "expert systems". They allow a computer program to use expertise 
to assist in a variety of problems, such as diagnosing failures and designing new 



Chapter 1 - Introduction and Summary of Topic 

equipment. Utilising the results of artificial intelligence work on problem solving, 

expert systems have become a commercially successful demonstration of the power of 

artificial intelligence techniques. Correspondingly, by testing current artificial 

intelligence methods in applied contexts, expert systems provide important feedback 

to the science about the strengths and limitations of those methods. 

The number of commercially available expert systems have grown from a few dozen 

five years ago, to a few thousand today. The CRI Directory of Expert Systems 

[CRI86] and Watermann [WATERMANN86] report on several hundred systems that 

are currentiy in use today. 

Professor Edward Feigenbaum [FEIGENBAUM78] of Stanford University has 

defined an expert system as 

"... an intelligent computer program that uses knowledge and inference procedures to 

solve problems that are difficult enough to require significant human expertise for 

their solution. Knowledge necessary to perform at such a level, plus the inference 

procedures used, can be thought of as a model of the expertise of the best practitioners 

of the field." 

Expert systems are computer systems, comprising both hardware and software that 

mimic an expert's thought processes to solve complex problems in a given field or 



Chapter 1 - Introduction and Summary of Topic 

domain. An expert system manipulates information with the intention of solving a 

particular application problem. What makes expert systems unique is the way they 

approach and solve problems (combining knowledge representation and problem-

solving algorithms) and the different types of problems they can solve (heuristic 

problems versus conventional problems). Expert systems attempt not only to apply 

conventional mathematical and boolean operators but to incorporate human reasoning 

processes such as "rules of thumb" to solving problems. The underlying goal of an 

expert system is to mimic an expert's thought processes in solving a problem. 

Expert systems have the capacity to manipulate problem statements and integrate 

relevant pieces of knowledge from a knowledge base (a collection of information) 

using reasoning techniques, commonly known as heuristics, to emulate the expert. 

Inference 
Mechanism 

User 
Interface 

U S E R 

Figure 1 : Essential Components of an Expert System 



Chapter 1 - Introduction and Summary of Topic 

The diagram shown in Figure 1 highlights the essential components of an expert 

system. These modules represent counterparts to essential factors of human expert 

reasoning: 

1) The Knowledge Base corresponds to the knowledge and experience of 

an expert. 

2) The Global Database contains existing data and hypotheses about the 

problem area. 

3) The Inference Engine accommodates reasoning methods simulating the 

way human experts would apply their knowledge to analyse information 

and reach a decision. 

4) The User Interface provides for communication between the user and 

the system. 

The inference engine or mechanism performs the complex task of combining 

elements from the global database with elements from the knowledge base to produce 

new information in the form of advice. Facts gathered from information supplied by 



Chapter 1 - Introduction and Sunimary of Topic 

the user in response to questions asked by the system and information inferred by the 

system's inference mechanism working on the knowledge base are gathered in the 

specific data collection area, the global database. While collecting information 

supplied by the user into the global database is fairly straightforward, deducing new 

information from the old is subtie and complex. This responsibility belongs to the 

major component of an expert system, the inference mechanism. 

1.3 Examples of Expert Systems 

One of the first practical expert systems was DENDRAL [BUCHANAN84]. Work on 

DENDRAL began in 1965 at Stanford University, and its aim was to enumerate 

plausible structures in the form of atom-bond graphs for organic molecules from the 

information provided by analytical instruments and user-supplied constraints. The 

many possible structures to be explored required the use of exhaustive search in order 

to consider all possible solutions. The domain searched is not an explicit set of known 

organic structures, but an implicit set derived from a theory of how such structures are 

formed. 

There have since been many other expert systems springing from DENDRAL. In the 

drive to create expert systems to model human thought processes, the medical 

consultant MYCIN [SHORTLIFFE76] and the geological expert PROSPECTOR 



Chapter 1 - Introduction and Summary of Topic 

[DUDA80] were specifically designed to represent and explain all the reasonings in 

human terms, in the sense of presenting the sequence of rules used to achieve a 

conclusion. 

In both cases, the principle of generating vast numbers of solutions from some 

theoretical model is inappropriate. Also, it is assumed that no physician would or 

should consider using a proposed therapy, nor would a geologist recommend 

expensive mining operations unless each could justify the conclusions of the relevant 

expert system. 

All artificial intelligence programs, including expert systems, represent and use 

knowledge. The conceptual paradigm of problem solving that underlies all of artificial 

intelligence is one of search (ie., searching among alternative solutions). Although 

this concept is immediately clear and simple, it does not suggest how to search a 

solution space efficiendy and accurately. For large solution spaces, such as the two 

examples described below, the number of possible solutions may be astronomical. 

System Description of Search Space Solutions 

MYCIN : combination of between 1 and 6 organisms > 6 * 1 0 ^ 

from a list of 120 organisms. 



Chapter 1 - Introduction and Summary of Topic 

XCON : arbitrary number of computer system >10200 

components selected from more than 

20,000 catalogue items at between 

50 to 150 items at a time. 

Most expert systems, however, use heuristics to avoid the exhaustive search, much 

the same as human experts. For problem areas in which experts are acknowledged to 

be more efficient and accurate than non-specialists, it is reasonable to assume that 

what the experts know can be retained for use by a computer program. This concept is 

one of the fundamental assumptions of knowledge engineering, the art of building 

expert systems by eliciting knowledge from experts [HAYES-ROTH83]. 

1.3.1 MYCIN - An Infection-Diagnosing System 

MYCIN was one of the earliest expert systems in the medical field. The success it 

achieved in handling such difficult problems made it one of the classic expert 

systems, and its approach to diagnostic problems has become one of the standard 

paradigms for expert system consultation shells. 



Chapter 1 - Introduction and Summary of Topic 

The program was developed strictly as a research system at Stanford University 

during 1970's to aid physicians in the diagnosis and treatment of meningitis 

(infections that involve inflammation of the membranes that envelop the brain and 

spinal cord) and bacteremia infections (involving bacteria in the blood). 

The goal of medical diagnosis is to decide, based on the patient's symptoms and other 

data such as microbiological cultures and the patient's medical history, whether the 

patient has an infectious disease, and if so, what micro-organism might be causing it. 

The treatment problem is formulated in terms of what antibiotics to prescribe. 

When the program is invoked, it initiates a dialogue with the physician and reasons 

about data associated with a patient, laboratory results, symptoms and general 

characteristics. Eventually, MYCIN provides a diagnosis and a detailed drug therapy 

recommendation. 

What makes the type of problem MYCIN is intended to solve more difficult than it 

might at first appear is that patients often develop infections and infectious diseases 

after surgery, while they are still in a weakened state. In such a situation, the infection 

must be quickly eliminated or the patient may die. Physicians will usually consult a 

specialist under such circumstances to decide what to do in time in order to save the 

patient. MYCIN attempts to capture the knowledge of such a specialist. 



Chapter 1 - Introduction and Summary of Topic 

The strategy used by MYCIN to solve diagnosis and therapy problems is a modified 
top-down, or backward-chaining approach. This means that MYCIN starts from the 
goal or hypothesis that is to be achieved; that is, to choose a prescription of 
antibiotics. First, it forms a hypothesis of a possible therapy and then proceeds to 
reason backward to the conditions that would have been true for this to be the correct 
prescription. There are many possible solutions to the problem and MYCIN rules are 
used to search back for the supporting facts. 

1.3.2 XCON - A Planning and Design System 

XCON, named R1 ^ at Carnegie-Mellon University (CMU) where it was originally 
developed, configures Digital Equipment Corporation (DEC) VAX-11 and PDP-11 
computers. Given a customer's order, XCON determines what, if any, substitutions 
and additions need to be made to build a complete and functional computer system. In 
response to user input, XCON produces print-outs showing the components chosen, 
the reasons for adding or deleting others, cable types and lengths, device addresses 
and a series of diagrams showing the special and logical relationships among the 
modules and devices in a computer system. 

I ' F o u r y e a r s a g o I c o u l d n ' t e v e n s a y " k n o w l e d g e 
e n g i n e e r " , now I [MCDERMOTT82] 



Chapter 1 - Introduction and Summary of Topic 

The designer of XCON [MCDERMOTT82] suggested three main factors that 

contribute to making the computer configuration task difficult and are conducive to 

the development of an expert system to perform such a complex task :-

1) Determining completeness of the configuration. Some configurations are 

extensive and sometimes extremely complex. 

2) Equally good configurers tend to configure the same set of components in 

different ways, and so the configurations tend not to be consistent. 

3) It is difficult to keep skilled, experienced configurers, since they tend to be 

promoted. The skills however are an asset and need to be retained. 

To perform its configuration tasks, XCON, like a human configurer, requires two 

kinds of knowledge; component knowledge and configuration constraint knowledge. 

Component knowledge is knowledge about each of the components that a customer 

might order, including information relevant to the computer configuration, such as 

voltage, frequency and how many devices the computer can support. Configuration 

constraint knowledge, in the form of IF-THEN rules, indicate what classes of 

components can or must be associated to form the system configuration. XCON uses 



Chapter 1 - Introduction and Summary of Topic 

its restraint knowledge to limit the number of combinations of components in order to 

form a functionally acceptable computer system. 

XCON uses a different style of reasoning to that used by MYCIN, working forward 

from facts to other facts which they imply. This style of reasoning is called "forward-

chaining". 

The kind of reasoning shown in the MYCIN example is appropriate when you have a 

definite conclusion in mind and want to discover whether it is true. They are often 

called "goal-directed", because they have in mind a particular goal, to prove a certain 

fact. 

In the XCON application however, the possible conclusions cannot be stated 

beforehand. In this case, a different, "data-directed" reasoning method is appropriate. 

The reasoning sequence stops not when a particular fact has been proven, but when as 

many facts as possible have been proven, i.e., the current state of data is matched 

against a rule or knowledge-base and instructions are followed and acted upon until 

all the current data has been checked. 

The XCON rule-based constraint model described above is well suited to be used as a 

methodology for an expert system designed to perform TPN calculations. The TPN 

calculation cannot be subjected to a backward chaining methodology because there 



Chapter 1 - Intrcxiuction and Summary of Topic 

are too many ways of combining the ingredients for each combination to be 
specifiable as a conclusion to be tried. 

The TPN calculation problem conforms to some of the criteria for a good OPS 5 
domain. There a small number of sets of symbolic data (patients and TPN solutions) 
that are fit together according to a set of constraints (medical and pharmacological 
guidelines). Using a brute-force method to enumerate all possible combinations of 
TPN solutions for each patient is infeasible. The heuristic approach, however, 
produces a satisfactory solution by describing the conditions under which the TPN 
solutions may be formulated. 

1.4 Ob jectives and Structure of Study 

The main objective of this study was to show the possibility of developing a 
consultative or teaching application using expert system technology. Building the 
expert system from scratch was considered to be a research topic by itself and so a 
high-level AI language 0PS5 was used to develop the system. The second objective, 
therefore, became the testing of the applicability of OPS5 language to build the 
application. The third objective was to demonstrate the capability of an integrated 
TPN expert system against the human expert. 



Chapter 1 - Introduction and Summary of Topic 

Basically, the following six-step plan was used in the development of the expert 
system :-

1) Select a development tool and implicitly make a commitment to a 
particular consultation paradigm or problem solving scenario. 

2) Identify the problem and analyse the knowledge to be included in the 
system. 

3) Design the system on paper. 

4) Develop a prototype or prototypes and test these by running 
consultations. 

5) Expand the prototype and revise until complete. 

6) Maintain and update system as required. 

Due to the complexity of the TPN ordering and manufacturing process, it was decided 
to separate the study into two sections : 



Chapter 1 - Introduction and Summary of Topic 

1) Create TPN order based on patient details and consultation with the 

physician; and 

2) Calculate the final TPN solution ingredients based on existing 

pharmacological procedures and consultation with the pharmacist. 

Preliminary research was carried out on the theory of expert systems, which is 

documented in Chapter 2. Based on this research, an expert system building tool, 

0PS5, was selected from those available. A brief description of the language is given 

in Chapter 3. 

Chapter 4 describes the system itself, as it has been implemented during the study. 

After describing the implementation environment, the main emphasis is placed on the 

presentation of the interaction between the expert system and the conventional 

programming exterior. Chapter 5 presents an annotated version of selected parts of 

the system. 

Chapter 6 evaluates the performance of the expert system. The concluding Chapter 7 

summarises the research work done for the project. It describes the advantages and 

disadvantages of the method chosen for the implementation. The report ends with 



Chapter 1 - Introduction and Summary of Topic 

recommendations for future work on expert system integration and enhancements for 
other areas of patient management. 



Chapter 2 - Artificial Intelligence & Expert Systems 

CHAPTER 2 

ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS 

2.1 Introduction 

In the fledgling field of computer science known as artificial intelligence (AI) during 

the late nineteen sixties, scientists decided there must be another way to make a 

computer program intelligent. If it was too difficult to make the entire program 

general purpose, then they would concentrate instead on developing techniques to use 

on specialised programs. 

During this period, the AI scientists concentrated on representation (how to formulate 

the problem) and search (how to find a solution). In the early nineteen seventies, it 

was realised that the problem-solving power of a program comes from the knowledge 

it possesses. This realisation led to the development of special-purpose computer 

programs, systems that were expert in some narrow problem area. These programs are 

called expert systems, or for less specific applications, knowledge-based systems. 



Chapter 2 - Artificial Intelligence & Expert Systems 

The field of AI involves the creation of computer systems which exhibit behaviour 

that, when observed within humans, can be deemed to show intelligence. AI 

researchers attempt to uncover the underlying theory of intelligence, to create a 

"science of intelligence". 

But what is meant by the term intelligence? Is it the ability to solve complex 

problems quickly or to solve problems with a high degree of accuracy? 

While both of these are characteristics attributed to beings that are viewed as 

intelligent, are they sufficient? While many humans have an adequate subjective 

concept of what is meant by this term, few can provide a precise definition. Webster's 

Dictionary [WEBSTER76] defines intelligence to be :-

"the available ability... to use one's existing knowledge to meet new situations and to 

solve new problems, to learn, to foresee problems, to use symbols and relationships, 

to create new relationships, to think abstractly." 

This definition presents key elements of intelligent behaviour : the ability to represent 

knowledge and the ability to use that knowledge in problem solving. 



Chapter 2 - Artificial Intelligence & Expert Systems 

2.2 Principles and Applications of AI 

In spite of the fact that computers were originally built as numerical processors, a 
small group of computer scientists continued to explore the ability of computers to 
manipulate non-numerical symbols. Simultaneously, psychologists concerned with 
human problem solving sought to develop computer systems that would simulate 
human behaviour. Over the years, individuals concerned with symbolic processing 
and human problem solving have formed that inter-disciplinary subfield of computer 
science called artificial intelligence (AI). AI researchers are concerned with 
developing computer systems that produce results that we would normally associate 
with human intelligence. 

Chess playing was one of the first AI applications that was successfully implemented. 
It displays one of the fundamental principles of AI, the concept of intelligent search. 
For each move in a chess game, there are many choices. This leads to a combinatorial 
explosion of possibilities through an average game of approximately 40 moves 
(approximately possibilities) [KUMARA86]. Testing all possible alternatives 
cannot be achieved even with today's supercomputer hardware and the search must be 
restricted to be practical. A search-limiting algorithm, such as 'alpha-beta pruning' 
[MCCARTHY83], stops examining possible consequences of a chess move as soon 
as it finds one situation refuting the move and then heuristic rules are employed to 
reject most alternatives. 



Chapter 2 - Artificial Intelligence & Expert Systems 

The most widely studied issues in AI research include 

1) what information a program should have and how to store the 
information in the computer; and 

2) how further conclusions can be drawn from the initial information. 

Mathematical logic provides many powerful methods for both the representation of 
knowledge and ways of reasoning. Logic studies the relationship of implication 
between assumptions and conclusions and gives formalisation to a systematic way of 
reasoning. Additionally, mathematical models representing real-world reasoning 
using fuzzy logic make it possible to simulate the way humans are perceived to reach 
conclusions when confronted with incomplete or imprecise initial information. 

The field of artificial intelligence can be subdivided into several sub-areas : 



Chapter 2 - Artificial Intelligence & Expert Systems 

1) Pattern Matching 

This includes systems that are capable of recognising objects by 
comparison with stored patterns kept within a database. The system 
systems should be able to identify identical and similar objects. 
Changes in lines, colours, intensity are used to categorise specific 
features of objects and correlate the resulting feature vector to the 
feature space stored in the database. In the field of surveying, pattern 
recognition is of interest to identify objects in remotely sensed scanned 
data or scanned maps. 

2) Natural Language Processing 

This includes systems using a grammar syntax and a dictionary with a 
semantics interpreter. The validity of sentences is checked against 
predefined grammar rules, then the semantics interpreter analyses the 
meaning of a sentence. Practical applications include comprehending 
text, language translation and an intelligent interface for database 
queries. 



Chapter 2 - Artificial Intelligence & Expert Systems 

3) Robotics 

This field of research includes machines designed to carry out strenuous 
or dangerous tasks which cannot be performed or it is not desirable to 
be performed by humans. Applications include factory material 
handling, combat and combat support, planetary exploration and 
industrial processing such as welding and painting. Today's robots deal 
with very specialised tasks, but will in the future be easily 
programmable, general purpose systems. 

4) Expert Systems 

This sub-area includes computer programs applied to emulate reasoning 
processes requiring expert knowledge and experience. The systems 
consist of a database of data and knowledge and a system that controls 
the application of this knowledge to analyse the data. Expert systems 
have been successfully employed in areas of expertise such as medical 
diagnosis, mineral exploration and computer configuration. Interaction 
between expert systems and existing large databases is currently a very 
active area of research. 



Chapter 2 - Artificial Intelligence & Expert Systems 

Interaction between these topics are common since any automated system attempting 
to simulate human performance must be able to act intelligently in more than one 
narrowly defined area. For example, most robotic systems use pattern matching as a 
means of analysing visual data. 

2.3 Expert System Technology 

The most successful application of AI is knowledge-based or expert systems. Expert 
systems are knowledge-intensive computer programs. They contain knowledge about 
their speciality and use rules of thumb, or heuristics, to focus on the key aspects of 
particular problems and to manipulate symbolic descriptions in order to reason about 
the knowledge they are given. The systems often consider a number of competing 
hypotheses simultaneously, and they frequently make tentative recommendations or 
assign levels of confidence to alternatives. 

The term "expert system", however, tends to be misleading. The connotations of the 
word "expert" can lead to expectations of infallible performance which we do not 
insist upon in those we call experts. It follows that we should not demand more of our 
expert systems than we ask of human experts (although some expert systems have in 
fact been seen to outperform a human expert in some areas). 



Chapter 2 - Artificial Intelligence & Expert Systems 

It has been recognised that the power of the expert system does not necessarily rest in 
its reasoning power or its architecture, but rather in the structured knowledge that it 
contains. Hence, the term "knowledge-based systems" (KBS) has become an apt 
description for many expert systems projects. In fact, since there is today a bias 
among some expert systems developers that true "experts" can rarely, if ever, be 
cloned in machine form, the new KBS terminology is normally favoured over the 
more popular term of "expert system". The KBS terminology not only reduces the 
sometimes unrealistic expectations suggested by the word "expert", but also points to 
the differences between such systems and conventional programs. In this text, 
however, the terms will be used interchangeably. 

A rule-based system is a knowledge-based system in which some variation of the 
production rule [DAVIS77] is used to encode knowledge. The term "expert system" 
has been used to refer to knowledge-based systems which perform tasks usually 
performed by "experts". The vast majority of these expert systems to date have in fact 
been rule-based systems [WATERMANN86]. 

Enthusiasts see expert systems as a replacement for scarce human experts, the 
embodiment of human wisdom, a repository for the collective knowledge of many 
experts, or tools to enable novices to behave or perform like experts. Many critics of 
expert systems complain that the promises are far more attractive than the resulting 
reality and that the term "expert systems" is seductive and possibly misleading. 



Chapter 2 - Artificial Intelligence & Expert Systems 

During the evolution of expert systems, it has become apparent that data search 
strategies alone, even when augmented with detailed heuristic evaluations, are often 
inadequate for solving real world problems. The complexity of those problems was 
usually such that, without incorporating substantially more problem knowledge than 
had been acquired, the realistic search space size could not be generated. It quickly 
became apparent that for many problems, expert domain knowledge was even more 
important than the search strategy or inference procedure. This realisation has led to 
the field of knowledge engineering, which focuses on ways to bring expert knowledge 
to bear in problem solving. 

One aspect of the knowledge-based approach is that the complexity associated with 
real-world problems is reduced by the more powerful focussing of the search that can 
be obtained with the more commonly used rule-based heuristics. The rule-based 
system is able to reason about its own search effort, in addition to reasoning about the 
problem domain. 

Today's expert systems normally have the following three characteristics : 

1) They deal with a specific, focussed task having a relatively narrow 
range of applicability. 



Chapter 2 - Artificial Intelligence & Expert Systems 

2) Knowledge is kept separate from the reasoning methods used to draw 
conclusions. 

3) They are able to explain their actions and lines of reasoning, if required. 

A 
I 

K E 
N N 
0 G 
W I 
L N 
E E 
D E 
G R 
E I 

N 
G 

PROBLEM 

KNOWLEDGE-BASED SYSTEM 

Figure 2 : Interrelationship between different techniques 



Chapter 2 - Artificial Intelligence & Expert Systems 

AI is a research field concerned primarily with studying problem solving in the 

abstract. Knowledge engineers, on the other hand, focus on replicating the behaviour 

of a specific expert when he or she is engaged in solving a narrowly defined problem. 

The interrelationship between AI, knowledge engineering and conventional 

programming is shown in Figure 2. 

Many regard this shift from the study of generic problem-solving techniques to a 

focus on building systems that contain large amounts of specific knowledge about a 

particular problem as a major conceptual breakthrough in AI in the last fifteen years. 

2.3.1 Expert System Concepts and Techniques 

The diagram below shows the different modules which make up an expert system. 

These modules represent counterparts to essential factors of human reasoning. 

The knowledge base corresponds to the knowledge and experience of an expert, 

whereas the global database contains existing data and hypotheses on the problem 

area. The inference mechanism accommodates reasoning methods simulating the way 

human experts would apply their knowledge to analyse information and reach a 

decision. The user interface provides for a communication path between the user and 

the system. 



Chapter 2 - Artificial Intelligence & Expert Systems 

K n o w l e d g e Base 

(rules/facts) 

Inference Engine 

(inference/control) 

K n o w l e d g e A c q u i s i t i o n 

W o r k i n g M e m o r y 

User Interface 

E x p l a n a t i o n 

Figure 3 : Basic Modules in an Expert System 

The inference mechanism performs the complex task of combining elements from the 

data base with elements from the knowledge base to produce new information in the 

form of advice. Facts gathered from information supplied by the user in response to 

questions asked by the system and information inferred by the system's inference 

mechanism working on the knowledge base are gathered in a specific data collection 

area, the global data base. It is this separation between the knowledge base and the 

inference mechanism which makes expert systems more versatile than conventional 

computer programs. Knowledge and control of the system can be built and 

maintained separately. 



Chapter 2 - Artificial Intelligence & Expert Systems 

The global database provides a working storage during the evaluation of rules. At the 
beginning of an expert system session, the database usually contains a hypothesis to 
be proven and some facts known initially about the problem. The information is 
constantly updated and stored in the database temporarily until the end of the run. 

In programs that combine knowledge from different expert systems, the global 
database is referred to as the blackboard. The information gained or derived from 
different programs is stored and retrieved from here, with the blackboard acting as the 
link of data flow between the systems. 

2.3.2 Knowledge Representation 

There are several standard ways that knowledge can be structured in a program, any 
of which can be used alone or in conjunction with others to build expert systems. 
Each technique has certain benefits, such as making it more easily understood, more 
easily modified or more efficient. The most widely used techniques are :-

1) Semantic Networks 

2) Frames 



Chapter 2 - Artificial Intelligence & Expert Systems 

3) Rules 

4) Lx)gic 

2.3.2.1 Semantic Networks 

In contrast to conventional database mechanisms that represent relatively straight 
forward relationships, knowledge bases contain a system of symbolic data structures 
which have meaning or semantics built in. The semantic network or semantic net is 
one of the oldest and most general representation schemes in AL A semantic network 
is a graphical notation that represents objects (or actions or events) and contains built-
in real-world meaning about the objects. The arcs or links between the nodes 
represent attributes that indicate relationships between the objects shown in the nodes. 

Nodes are used to represent objects and descriptors. Objects may be physical, 
conceptional or abstract entities. Descriptors provide additional information about the 
objects. Links relate the objects and descriptors in the form of is-a to represent a class 
(instance of) relationship or has-a to identify nodes that are properties of other nodes. 
Further links are definitional and others may capture heuristic knowledge. 



Chapter 2 - Artificial Intelligence & Expert Systems 

Those expert systems which can store knowledge as semantic networks also have a 
special part of the inference engine devoted to operations like inheritance. One of the 
first expert systems to use semantic networks was PROSPECTOR [DUDA80]. Part of 
a PROSPECTOR semantic network for mineral classification is shown in Figure 4. 

IS a 
PYRITE 

IS a 
BORNITE 

IS a 
SULPHIDE 

IS a 
OXIDE 

MINERAL 

Figure 4 : Example of a part of a PROSPECTOR semantic 
network for mineral classification. 

PROSPECTOR also has rules like :-

IF pyrite in veinlets is present THEN ... 
IF sulphides are present THEN ... 



Chapter 2 - Artificial Intelligence & Expert Systems 

If the user replies 'yes' to the first conditional statement, then the second conditional 
is automatically true, because from the information contained in the PROSPECTOR 
semantic network shown in Figure 4, the inferencing mechanism can deduce that 
pyrite is in fact a sulphide. 

Factual information may also be represented as object-attribute-value (0-A-V) 
triplets. This scheme is used in MYCIN and is a specialised case of the semantic 
network approach. The exotic links that may exist between nodes in the semantic 
network are replaced with simple relationships. The object-attribute link is a "has-a" 
link and the attribute-value link is a "is-a" link. 

The major advantage of using semantic networks is that they give a good structural 
overview of the relationships involved. They have, however, been criticised over the 
lack of meaning expressed by the arcs and nodes. 

2.3.2.2 Frames 

Another symbolic knowledge representation structure used to represent knowledge in 
knowledge bases is known as frames (or schémas). It is generally considered that both 
frame and semantic nets are frame-based representation methods used to represent 
facts and relationships. Frame-based knowledge representation uses a network of 



Chapter 2 - Artificial Intelligence & Expert Systems 

nodes connected by relations and organised into a hierarchy. Each node in the 

network represents a concept that may be described by values and attributes that are 

associated with that node. Nodes may inherit properties from other nodes according 

their hierarchy within the network. 

In the same way that conventional databases store information in memory areas called 

fields, the frame uses a symbolic representation of an object that contains memory 

areas called slots for all the information associated with the object. Slots, like 

attributes, may store values, but may also contain default values, links to other 

frames, sets of rules or procedures. The inclusion of these additional features allow 

frames to offer a more flexible representation of knowledge at the expense of being 

more complex and more difficult to develop than the simpler 0-A-V or rule-based 

systems. The relationships that can be indicated with hierarchies of frames are similar 

to those shown in semantic networks, but they are different in the way programmers 

view the knowledge - groups of text and pointers instead of graphical nodes and arcs. 

2.3.2.3 Rules 

Although there are many ways to represent knowledge, most expert systems store 

their knowledge in the form of rules and are commonly referred to as rule-based 

systems. Rule-based knowledge representation centres around the use of conditional 



Chapter 2 - Artificial Intelligence & Expert Systems 

statements that specify an action that takes place under a certain set of conditions. In 

some respects, rules are similar to conditional statements in the form of:-

IF (condition...) THEN (action...) 

statements. The left-hand side of the rule is comprised of one or more conditions and 

the right-hand side consists of one or more propositions or consequents. 

The matching of rule IF portions to the facts can produce inference chains. These 

inference chains indicate how the system used the rules to infer its conclusions. 

Rules provide a natural way for describing processes driven by a complex and 

changing environment. A set of rules can specify how the program reacts to the 

changing data without requiring detailed advance knowledge about the flow of 

control. 

The difference between rules and IF-THEN statements is major and has significant 

implications for the building of expert systems. In fact, despite their similarities, 

experience has shown that it is very difficult - often impossible - to develop a 

knowledge-based system using conventional IF-THEN statements. The difficulties 



Chapter 2 - Artificial Intelligence & Expert Systems 

exist because knowledge systems require greater conditionality and greater need to 

make changes during the program development than do conventional software 

systems. Writing programs that satisfy the greater conditionality and flexibility 

requirements of knowledge-based systems is hampered by using conventional 

branching techniques. 

In a conventional program, the flow of control and use of data are pre-determined by 

the program's code and processing takes place in sequential steps, and branches when 

required. Where the problem is data-driven however, where branching is the norm, 

not the exception, rules offer the opportunity to examine the current state of the world 

at each program step and react appropriately. 

A number of deficiencies have arisen with the use of rule-based systems 

[WILLIAMS89], which include restrictions imposed by the knowledge representation 

scheme, the encoding of much implicit knowledge, the knowledge acquisition 

bottleneck [WATERMANN86], and the inability to add in new types of knowledge to 

the system after the system has been developed. 

More sophisticated mechanisms for representing knowledge for use by an expert 

system have thus been sought to store the general knowledge, rules and uncertain 

information that differentiates knowledge-bases from databases. 



Chapter 2 - Artificial Intelligence & Expert Systems 

2.3,2.4 Logic 

Logic is the most well defined way of expressing and reasoning about knowledge. In 

this section, a brief introduction to predicate logic will be presented. 

Propositions are used in logic to express knowledge. A proposition can be either true 

or false and may be combined using connectives. Given two propositions, P and Q, 

the following relationships can be formed 

conjunction : P'̂ Q to express that both P and Q are true. 

disjunction : PvQ to express that either P or Q is true. 

implication : P=>Q to express that Q is true when P is true. 

equivalence : P<=>Q to express that P is equivalent to Q. 

negation : NOT P to express that P is false. 



Chapter 2 - Artificial Intelligence & Expert Systems 

The above rules can be used recursively to form more complex statements. For 
example. 

The sun is round ^ The sun is red-hot 

The sun is red-hot => There is no life on the sun 

Via the ^ elimination inference rule followed by the => elimination inference rule 
provided by logic, we can infer that :-

There is no life on the sun 

This language of propositions together with the rules of inference is called 
propositional calculus. The language has the property that is decidable. That is, there 
is an algorithm which given any complex statement conforming to the syntax rules of 
logic will decide whether the statement is true or false. 



Chapter 2 - Artificial Intelligence & Expert Systems 

2.3.3 Knowledge Acquisition 

The process of extracting knowledge from an expert and structuring the knowledge 
into rules or frames is called knowledge acquisition. The type of knowledge used by 
experts to solve problems is often subjective, partly judgmental and ill-defined. In 
most cases, it is not formulated in a fashion that is easily translatable into a computer 
program. The difficult task of extracting the expert's understanding of a problem and 
representing it as facts and relations in an expert system is often performed by a 
knowledge engineer. 

This transfer of knowledge from an expert to the computer program may be 
represented by the following diagram :-

QUERIES 
1 
V PROBLEMS 

HEURISTICS 
STRATEGIES 

Domain 
Expert 

Knowledge 
Engineer 

Expert 
System 

Domain 
Expert 

Knowledge 
Engineer 

Expert 
System 

ANSWERS 
RULES 

SOLUTIONS 

Figure 5 : Knowledge Transfer 



Chapter 2 - Artificial Intelligence & Expert Systems 

Knowledge engineering relies heavily on the study of human experts in order to 
develop intelligent, skilled programs. As Hayes-Roth and others [HAYES-ROTH83] 
explain 

"The central notion of intelligent problem-solving is that system must construct its 
solution selectively and efficiently from a space of alternatives. When resource-
limited, the expert needs to search this space selectively, with as little unfruitful 
activity as possible. An expert's knowledge helps spot useful data early, suggests 
promising ways to exploit them, and helps avoid low-payoff efforts by pruning blind 
alleys as early as possible. An expert system achieves high performance by using 
knowledge to make the best use of its time." 

The major barrier found in designing the system is the task of assembling and 
codifying the knowledge. Feigenbaum [FEIGENBAUM?8] states that :-

"There are many important problems of knowledge representation, utilisation and 
acquisition that must be solved, but the acquisition problem is the most critical 
'bottleneck' problem.". 



Chapter 2 - Artificial Intelligence & Expert Systems 

Watermann [WATERMANN86] describes that the acquisition bottleneck difficulty 

arises because an expert 

"has the tendency to state (his) conclusions and the reasoning behind them in general 

terms that are too broad for effective machine analysis...the pieces of basic knowledge 

are assumed and combined so quickly that it is difficult for him to describe the 

process." 

2.3.4 Drawing Inferences 

While collecting information supplied by the user into the global data base is fairly 

straightforward, deducing new information from the old is subtle and complex. This 

responsibility belongs to the major component of an expert system, the inference 

mechanism. Inference and control strategies guide a knowledge system as it uses facts 

and rules stored in its knowledge base, and the information it acquires from the user. 

The most common inference strategy used in knowledge systems is the applications 

of a logical rule called modus ponens. This rule says, as we all do without thinking 

about it, tiiat when A is known to be true and if a rule states "if A, then B", then it is 



Chapter 2 - Artificial Intelligence & Expert Systems 

valid to conclude that B is true. Stated differently, if the premise of a rule is true, then 
we are entitled to believe the conclusions. 

2.3.4.1 Reasoning about Uncertainty 

Information used to derive a decision which solves a problem is often afflicted with 
uncertainty. In addition, an expert often has to solve a problem without having a 
sufficient amount of data, using conflicting information or unreliable knowledge for 
interpreting the data. In order to simulate the human decision making process, an 
expert system must have some "feel" for the certainty of its knowledge and must be 
able to cope with these uncertainties on its path of reasoning. 

There are many approaches for representing uncertain knowledge, none of which are 
universally applicable. Three of the most common methods are based on :-

1) Probability-based 

2) Fuzzy Logic 

3) Qualitative. 



Chapter 2 - Artificial Intelligence & Expert Systems 

The most straightforward approach (as used in MYCIN) and the most popular, 

provides a subjective probability for each proposition. Using 'Bayesian inference', the 

probability for a particular event, given some set of observations or conditions, can be 

calculated. Using the notation P(XIY) to mean the subjective probability ox X 

occurring given that Y has occurred, Bayes' rule states :-

P(X) * P(YIX) 
P(XIY) = 

P(Y) 

Approaches which use Bayes' rule as a basis of combining evidence have some 

drawbacks. Firstly, there is no indication of whether the probability was a wild guess 

or a judgment based on experience. The single value tells us nothing about its 

precision. 

Secondly, a single value combines the evidence for and against a proposition without 

indicating how much there is of each. Despite these criticisms, several simple forms 

of 'Bayesian inference' are widely used by many existing expert systems. 

The rules in the knowledge base frequently contain a "pseudo-probabilistic" 

indication of their degree of certainty, called certainty or confidence factors (CF), 

usually on a scale of -1 to +1, 1 to 10 or sometimes 0 to 100. Consider the following 

two rules and their associated certainty factors :-



Chapter 2 - Artificial Intelligence & Expert Systems 

IF winter THEN high temperature on a given day is less than zero degrees 
centigrade (CF=0.8) and 

IF high temperature on a given day is less than zero degrees centigrade THEN 
it will snow (CF=0.3) 

That is, suppose that on a winter day we are 80 percent confident that the temperature 
will remain below freezing, and we are 30 percent confident that on a day when the 
temperature remains below freezing, it will snow. The question that follows would 
naturally be : "How confident are we that it will snow on a given day in winter?" 

One solution is to multiply the certainty factors of the two rules involved. This would 
result in the new rule :-

IF it is a winter day THEN it will snow (CF=0.24) 

Generally, the system for propagating uncertainty can be summarised by :-

If a rule is of the form IF A THEN B (CF=X) and another rule is of the form IF B 
THEN C (CF=Y), then these rules may be combined to generate a third rule of the 
form IF A THEN C (CF=XY). 



Chapter 2 - Artificial Intelligence & Expert Systems 

A second solution for uncertainty propagation works in the following way :-

If a rule is in the form IF A THEN B (CF=X) and another rule is in the form IF C 
THEN B (CF=Y), then these rules combine to generate a third rule of the form IF A 
AND C THEN B (CF=X+Y-XY). 

A third technique combines the certainty factor associated with a rule together with 
the confidence expressed by the user in order to determine an overall level of 
confidence :-

If a rule is of the form IF A THEN B (CF=X) and if the user's confidence in fact A is 
Y, then the confidence in fact B is XY. 

A second approach, used by Prospector [DUDASO], uses two separate values for the 
validity of each proposition, a measure of belief and an independent measure of 
disbelief. The two values are combined to give a single assessment of the proposition 
termed a 'certainty factor'. This method is preferred to the first because it overcomes 
the for and against evidence seen in the previous method. 

Finally, another approach is fuzzy logic. Fuzzy logic is a technique which provides a 
way of representing fuzzy or continuous properties of objects. To accommodate 
informal arguments, fuzzy set theory provides a framework in which membership of a 



Chapter 2 - Artificial Intelligence & Expert Systems 

category is graded rather than simply definite. An example of a fuzzy proposition, 

where x is a large number, for which the fuzzy set may be constructed as : 

Likelihood 

X between 0 and 10 0.1 

X between 10 and 1000 0.2 

X greater than 1000 0.7 

Fuzzy logic takes this a step further by arguing that there is no clear boundary 

between the statement being true and a statement like 'unlikely', 'possible' and 

'likely' as well as 'impossible' and 'certain'. This follows the realisation that human 

experts do not think in terms of numerical certainty factors. A doctor is more likely to 

say, 'Bacteremia is likely' than 'Bacteremia is 0.7 percent certain'. 

2.3.4.2 Control Mechanisms 

There are two primary problems addressed by the control portion of the inference 

engine. Firstly, the knowledge system must have a way to start. Rules and facts must 

be set up in a static knowledge base. Secondly, the inference engine must resolve 



Chapter 2 - Artificial Intelligence & Expert Systems 

conflicts that occur when alternative lines of reasoning emerge. In a rule-based expert 
system, there are several methods of performing this task of deducing conclusions 
from user information matched together with knowledge contained in the knowledge 
base. The most common mechanisms are backward-chaining and forward-chaining. 

In backward-chaining, the inference mechanism guesses at a conclusion and then 
attempts to establish the presence of the conditions necessary to support that guess. 
This is the type of reasoning that humans generally employ in a diagnostic setting. 
In forward-chaining, the inference mechanism compares the information in the global 
data base with the conditional part of a rule in the knowledge base. If the comparison 
reveals a match, then the rule "fires" and the result part of the rule is added to the 
global data base. The process repeats until no matches occur. 

Reasoning in a forward chaining system is described as a "recognise-act" cycle. 
Firstly, the rules that can succeed, given the contents of working memory, are 
recognised. One rule is selected, and then the action or conclusion is asserted into 
working memory. The system then proceeds to the next cycle and checks again to see 
what rules succeed. 

The inference engine is the heart of the expert system. It controls the execution or 
firing of rules leading to a conclusion. In this module, the contents of the global 



Chapter 2 - Artificial Intelligence & Expert Systems 

database are matched against the contents of the rule base. Rules matching the 

elements of the database are fired. 

During the execution sequence of an expert system, more than a single rule may be 

applicable. In this case, a conflict resolution strategy must be used to determine the 

rule to be fired first. These strategies can include the following :-

1) a rule is not allowed to fire more than once on the same data 

(refraction). 

2) rules using more recent data are preferred to rules which match against 

data which has been in the global database for a longer time (recency). 

3) rules with a greater number of antecedents are preferred to more general 

rules (specificity). 

While the task of selecting an inference mechanism is largely related to the choice of 

software for developing the system, it is evident by the nature of the project that the 

solution is more suited to a forward-chaining mechanism or is data-driven. 



Chapter 2 - Artificial Intelligence & Expert Systems 

2.3.4.3 User Interface 

Explanation is one aspect of user interfaces for expert systems. The ability of a 
system to explain how it reached a decision is crucial to making it useable. The 
system needs an ability to justify and explain the advice given for the following 
reasons :-

1) due to limited knowledge bases of expert systems, the user may want to 
know if the system took into account all the knowledge that the user 
may consider relevant. 

2) the user may want to know if the strategies adopted by the system for 
solving the problem are satisfactory. 

3) the user may wish to know if all the relevant data describing the 
problem state are being considered. The explanation facility of expert 
system is particularly important if the users are skeptical of the advice 
offered by the system or if the stakes involved in accepting the system's 
recommendations are particularly high. For example, no conscientious 
medical officer would accept a conclusion or prescription produced by 



Chapter 2 - Artificial Intelligence & Expert Systems 

an expert system if the doctor did not understand and agree with the 
reasoning the system used to reach its conclusion. 

2.3.4.4 Comparison with Conventional Programming 

Although an expert system is developed and run on a computer, several important 
differences exist between expert systems and conventional programs. A typical 
conventional program is run on a complete set of data with the expectation of a 
unique solution to the problem. In contrast, an expert system runs on an incomplete 
set of data and may well produce many solutions to a problem, each with varying 
degrees of confidence. 

Assuming a correctly written program, the outcome or result produced by the 
conventional program is certain; the recommendations produced by expert systems 
may not be. Results from the experts system may only be recommendations with 
associated levels of certainty phrased as "you might have this result" or "you'll 
probably have this result". Similarly, most expert systems include a facility for 
determining and displaying their confidence in the advice they offer. In conventional 
programs, this feature is neither present nor important. 



Chapter 2 - Artificial Intelligence & Expert Systems 

Finally, expert systems are distinguished from conventional programs by their method 

of development. Most software engineers traditionally have opted for a top-down 

approach to software development. The project is broken down into small 

components, each of which may in turn be further modularised. This approach 

requires a view of the overall structure of the problem and an awareness of the 

relationships among the various modules. 

In expert systems development, this overall vision is often blurred, and it is not until a 

certain level of knowledge has been added to the system that the structure of that 

knowledge becomes evident. For this reason, the top-down approach to expert 

systems development is often less effective. A summary of the basic distinctions 

between conventional programs and expert systems is oudined in Figure 6. 

CONVENTIONAL PROGRAM EXPERT SYSTEM 

Requires complete set 
of data 

Can function with 
incomplete set of data 

Uses algorithms Uses heuristics 

Produces unique 
solution 

May produce several 
solutions 

Generates results that 
are certain 

May produce uncertain 
results 

Suitable for top-down 
development methodology 

Suitable for bottom-up 
development methodology 

Figure 6 : Comparison of Techniques 



Chapter 2 - Artificial Intelligence & Expert Systems 

2.3.4.5 Programming Languages and Expert Systems Shells 

In the early years of expert system research, the need for a non-procedural 
programming language was expressed. Many AI applications use a list processing 
language, LISP, developed at the Massachusetts Institute of Technology 
[WINST0N81]. LISP, however, is still a language in which the programmer 
expresses how to do things. In this concern, it is similar to conventional languages, 
such as FORTRAN and BASIC, even though it is much more expressive. 

PROLOG (PROgramming in LOGic), a language developed in the early 1970's based 
on the theories of Kowalski [KOWALSKI79], is based on logic. As stated previously, 
mathematical logic is the fundamental basis upon which artificial intelligence and 
expert systems are built. PROLOG, therefore, lends itself as a natural language for 
building expert systems, with its structuring into clauses of facts rules and questions. 

The inference engine and the user interface are often viewed as one module, a 
program called the expert system shell. The shell can be developed independently 
from the knowledge base and it represents a generic expert system containing only the 
general problem solving knowledge in its knowledge base. Upon this, one can build 
expert systems for different knowledge domains, using a predefined type of 
knowledge representation. Many different shells can be purchased today, significantly 
simplifying the process of building an expert system. 



Chapter 2 - Artificial Intelligence & Expert Systems 

Expert system shells usually feature a rule editor for building and debugging the 
knowledge base and an inference engine for forward and/or backward chaining. 
Ahnost all tools include a why/how utility. 

More sophisticated shells feature different knowledge representation schemes such as 
object description, combinations of frames and rules, graphical interfaces and various 
degrees of natural language processing capabilities. These features are very helpful in 
developing the system and understanding its reasoning processes and very important 
in promoting user acceptance. 

A very important feature of expert system shells is the interfacing capability between 
the system and external databases or programs. Most well accepted shells have 
dedicated interfaces for full integration of database management systems and links to 
several programming languages. 

2.3.4.6 Introduction to 0PS5 

The programming language 0PS5 was chosen to develop the expert system. Several 
reasons led to the selection of this language :-



Chapter 2 - Artificial Intelligence & Expert Systems 

1) The problem in hand, a data-driven search space where numerous 

solutions were possible, and 

2) OPS5 was available in several forms on a number of hardware 

platforms such as ExperOPS on Apple Macintosh and OPS 5 running 

under UNIX and VMS). 

0PS5 is a powerful pattern-matching language which, since its development at 

Carnegie-Mellon in the late 1970's, has been used to develop several large, 

knowledge-based systems. No rule-based language to date has been put to more 

rigorous use. In fact, two 0PS5 systems XCON and XSEL, are in active commercial 

use performing complex tasks daily at Digital Equipment Corporation. 

0PS5 is a production system programming language, specifically designed to test 

Newell and Simon's hypothesis [NEWELL72] that production rules are sufficient to 

explain most human cognitive behaviour. 

The language is difficult to classify. By one analysis, it is a very general 

programming environment, a hybrid system building tool. On the other hand, it is 

generally been used as a production rule, forward-chaining system; and, thus, it tends 



Chapter 2 - Artificial Intelligence & Expert Systems 

to be classified as a narrowly focused tool that can aid a developer in building rule-

based, forward-chaining systems. 

Facts in OPS5 are represented as objects with attributes and values. Rules or 

productions are represented as IF-THEN statements. That is essentially all there is to 

the language. It has a few generic constructs that can be applied a variety of ways. 

The inference engine for 0PS5 is also very simple. The major event in the inference 

process is the "recognise-act" cycle. Rules are compared to the elements in working 

memory until a rule fires and new information is placed in working memory. Then the 

cycle begins again. 

There is a simple conflict resolution scheme, which works as follows. Facts exist in 

an explicit working memory. When the program is started up, there is nothing in 

working memory. Facts are asserted directly into working memory. The basic 

inferencing scheme is forward-chaining, and so each IF clause is checked against 

working memory. If memory contains an attribute and value recognised by the IF 

portion of the rule, then the rule is set to fire. 

All rules that might fire are collected as a group and then evaluated with a conflict 

resolution scheme. The essence of the resolution scheme is that rules that have not 

fired recently are favoured over rules that have fired recently. This is accomplished 



Chapter!-Artificial Intelligence & Expert Systems 

via time tags on facts in working memory. One rule will emerge as a favoured rule, 

and it will be fired. The actions specified by the rule will be taken, and the cycle 

continues, all of the IF portions of the rule set once again being tested against the 

contents of working memory. 



Chapter 3 - Problem Domain 

CHAPTER 3 

PROBLEM DOMAIN 

3.1 Introduction 

A number of patients, during the course of an acute or chronic illness or trauma, are 

unable to ingest or absorb sufficient nourishment via the oral route to promote 

healing, to maintain their normal body weight and body composition or to mount an 

immune response to infection. Thus, the incidence of medical complications increases 

as they become progressively malnourished. 

In the last few years, significant advances have been made in the field of clinical 

nutrition, specifically the elucidation of many of man's specific nutritional 

requirements following surgery, trauma and thermal burns together with the 

formulation of a variety of nutritional solutions containing protein, carbohydrate, fat, 

minerals, trace elements and vitamins to meet these requirements and the 

development of safe and effective methods for delivering these nutritional solutions 



Chapter 3 - Problem Domain 

via the gastrointestinal tract (enteral nutrition) or the central venous route (parenteral 
nutrition). 

Critically ill patients, usually found in the intensive care unit (ICU) of a hospital, 
must often be supplied with all essential nutrients. In these patients not only is 
nutrition vital but manipulation of internal body chemistry is one of the central 
concepts of intensive care therapy. 

As well as being supplied with essential nutrition, critically ill patients must also have 
varying fluid and electrolyte physiology, which must be compensated for or treated 
with drugs. At any time, due to the results of laboratory tests or clinical monitoring, 
components of the solutions may have to be changed without altering the effect on 
other components within that solution. 

3.2 Clinical Procedures 

The appropriateness of total paranteral nutrition therapy for a particular patient is a 
medical decision made by a doctor as part of the patient's overall management. A 
patient may be assessed to require either supplementary parenteral nutrition or total 
parenteral nutrition by a senior medical officer according to a number of set criteria. 



Chapter 3 - Problem Domain 

Following an appropriate protocol, the following information is gathered and 

recorded :-

1) Patient identification details (name, address, date of birth etc.) 

2) Diagnosis and indications for parenteral nutrition (general assessment of 

state of health of patient). At this evaluation, past history and length of 

time without food are considered, the patient's overall state of nutrition 

is evaluated on fairly subjective grounds, but occasionally these may be 

supported by the measurement of serum albumin (a naturally occuring 

protein), total lymphocyte count (blood cells influencing immunity to 

infection), weight, weight loss, skin-fold measurement to confirm body 

fat content and mid-arm muscle circumference size together with weight 

to calculate height and surface area. Biochemical data is also considered 

in detail from the normal blood analysis. The final step in the sequence 

is to assess the patient's basic medical status. The common groupings 

are septic (major infection), stable post-operative, starved, pre-operative 

or any combination of these. Patients may also have underlying medical 

conditions, particularly diabetes or renal failure which will affect the 

basic formulation of the TPN solution. 



Chapter 3 - Problem Domain 

When all the required information is available and reviewed, then the formulation can 
be requested either as a standard solution, influenced by the current biochemical data, 
or, if possible, with reference to earlier biochemical data recorded for the patient. For 
most patients, the former method is the one usually followed. The prescription order 
is written out manually and sent to the hospital pharmacy for production. 

3.3 Pharmacy Procedures 

The next step is the production of a formulation of base solutions and additives, in 
millilitres, for the pharmacist to follow whilst manufacturing the TPN solutions for 
the patient. A label with suitable patient identification data, and the final components 
of the solution in grammes, kilocalories and millimoles is then produced to be affixed 
to the finished product. 

Dispensing hyperalimentation orders in a timely and correct manner can be very 
demanding for staff pharmacists. Using the computer to calculate the amounts of 
amino acid, dextrose and electrolyte solutions can greatly reduce the pharmacy 
response time and ensure greater accuracy in filling the physician's order. Having 
been freed from the task of manually balancing the formula, the pharmacist can spend 
more time checking the order for incompleteness and appropriateness. 



Chapter 3 - Problem Domain 

Normally, the physician's TPN order requests the total amount of each electrolyte 

required along with the desired percent amino acid and dextrose. The formula is then 

based on the following three assumptions :-

1) The total volume is to approximate two litres. 

2) The physician may order whatever percentage amino acid solution 

desired, as long as it is for a volume of 500 millilitres. 

3) The physician may order whatever percentage dextrose solution desired, 

as long as it is for a volume of 500 millilitres. 

The following major problems exist with the use of this technique :-

1) Unless the pharmacy, where the solutions are made up, is manned 24-

hours a day by a trained pharmacist, (this does not commonly happen in 

practice except in large metropolitan teaching hospitals) then alterations 

to any of the components of a solution in the light of clinical monitoring 

may have to be made by the ICU staff who are not fully trained in 



Chapter 3 - Problem Domain 

pharmaceutical practice or ICU staff must wait for the pharmacist on-
call to arrive to prepare the solution. 

2) The registrar (senior medical officer) has the legal authority to alter 
solutions but whilst authority to alter solutions may be delegated, in 
circumstances in which he is not always immediately available, his legal 
authority cannot be delegated. 

3) Mixing techniques in the phramacy requires very strict adherence to 
written detail which is only learnt by practice. The order of addition 
together with amounts of ingredients must be closely controlled and 
taken into account when ordering. On average, it takes about four weeks 
for a resident medical officer (RMO) to become familiar with the 
reqirements and RMO's are replaced on a rotation basis every ten 
weeks. 

4) TPN solutions are very expensive and have a shelf life when mixed of 
less than 36 hours. 



Chapter 3 - Problem Domain 

3.4 Basic Requirements of the Expert System 

The expert system was required as one that allows resident medical officers with 

limited experience to evaluate and classify patients according to set options and 

subsequently prescribe total parenteral nutrition solutions for patients on intravenous 

feeding. The prescription or order would be described in grammes of protein, 

kilocalories of carbohydrate or fat, and millimoles of electrolyte solution. The doctor, 

having classified the patient, would then be given an option to impose either fixed 

amounts of various components available, or broad specifications such as low sodium 

on the formulation of the TPN solution. 

During the next stage, the program should system should prompt the doctor to enter 

the current biochemical profile. A more practical step would be to accept the results 

from an on-line transfer of biochemical data of the patient. Then the formulation 

could be made up either to a predefined standard solution, influenced by the current 

biochemical data or, if possible, with reference to earlier biochemical data which was 

stored within the computer system. 

The system then needs to produce a written prescription order for the doctor to verify 

or amend and then to sign as a written script for the pharmacy. Following this is the 

production of the formulation of base solutions and additives for the pharmacist to 

follow whilst manufacturing the TPN solution for the patient, taking into account pre-



Chapter 3 - Problem Domain 

defined safe levels of prescribing have not been exceeded, checking the availability 

and validity of the ingredients calculated, precipitation problems when various 

components are added in excess of their solubilities, drug compatibility and 

interactions. 

The system was required to allow an experienced or authorised user to alter the preset 

values for standard formulations and add or alter the responses to fixed input medical 

situations at the initiation of a service request. 

3.5 Order Sequence 

The TPN order sequence consists of a number of sequential branching input requests, 

which, when completed, guarantee that the intent of the order has been uniquely and 

completely captured. When the sequence is completed, the system responds by 

displaying the order and requests user verification. At this time, the user may verify 

the order as correct, or may utilise a correction function and re-enter one or any 

number of the items within the order and return to the verification request. 

Eventually, the user must verify each order. During the process of capturing the order, 

the system executes numerous checks upon content of the order. The checks include 

maximum and minimum daily doses (per kilogram of body weight) of each 

medication, maximum fluid rate, potential drug-drug and drug-fluid incompatibilities. 



Chapter 3 - Problem Domain 

The above description of the tasks carried out by both the ICU and Pharmacy staff 
shows that the decision-making process involved is complex and many heuristics are 
involved. This led to the belief that expert system techniques, rather than the 
algorithmic approach, would be suited to the implementation of a systems to advise 
and assist both groups. The ability to perform TPN selection, ordering and 
administering by medical staff is leamt by formal, on-the-job training and experience. 

3.6 Specific Tools Available 

A number of requirements and restrictions which existed in the program development 
area are listed to explain the final selection of the development tools used during the 
lifetime of the project. 

1. The selection of programming languages available were limited to 
assembler (MACRO-32), COBOL, FORTRAN, BASIC on a VAX 
super-minicomputer and BASIC, PASCAL, C, LISP, PROLOG,...on an 
MS-DOS microcomputer. 



Chapter 3 - Problem Domain 

2. There exists a requirement to support multiple users, separated across 

public boundaries, which rules out the ultimate use of small 

microcomputers. 

3. Interpretive languages such as LISP cannot be supported on a 

production VAX system. The suppliers indicate that a limit of six to 

eight LISP users are recommended on the machines of the size in 

question which is required to support sixty users. 

5. Indications are that most diagnosis knowledge system building tools 

will represent knowledge by IF-THEN rules and facts and it will 

incorporate a chaining inference strategy which could be well 

represented using conventional languages available. 

6. In a non-teaching hospital environment, a small system, operational 

within a period of six months is mandatory. An on-going project which 

lasts for five years the size of MYCIN cannot be supported. 

Initially, VAX BASIC was chosen due to the availability of other software 

development tools and the compatability of hardware for future stages of the project. 

0PS5 was then chosen to develop the central controlling function of the system and 



Chapter 3 - Problem Domain 

VAX BASIC used to perform the conventional user and file interface functions and 
the more complex arithmetic. 



Chapter 4 - Expert System Implementation 

CHAPTER 4 

EXPERT SYSTEM IMPLEMKNTATTON 

4.1 Introduction 

Once it has been decided to build an expert system as a problem solving tool, one has 

to think about an effective and efficient implementation in the user's application 

environment. Some of the points that were considered during this evaluation period of 

the project were 

1. the extent and complexity of the problem. 

2. the time and money available for the project. 

3. the existing hardware and software already in the application 

environment. 



Chapter 4 - Expert System Implementation 

4. the tools available for the implementation. 

Normally, choosing a software tool is not just a question of selecting a convenient 
piece of software, or at least it should not be. The tool to be used usually dictates the 
knowledge representation system to be used, and so a decision about knowledge 
representation had to be made first. 

4,2 Implementation Environment 

In the beginning of the project, the building of a system using conventional 
programming languages was considered and attempted. This plan, however, was 
discarded after it proved to be far too time consuming and not efficient or flexible 
enough to develop a prototype from scratch. 

Initially, in the prototyping stage, the rules were written into the BASIC program 
code as complex nested IF-THEN-ELSE statements. This technique used in the initial 
prototype highlighted some problems 



Chapter 4 - Expert System Implementation 

1) Low Flexibility - Having the rules permanently written into the program 
code greatly reduces the abiUty to easily and quickly modify the rules. 

2) Thresholds - There exist numerous threshold limits within the 
deterministic rules. For example, thresholds exist for a serious result, 
defining some abnormality in the data and the reliability of the result. It 
was difficult to incorporate the use of confidence levels. 

3) Contradictions - Sometimes a situation was reached which could not be 
resolved by the system. This requirement for human decision making 
highlighted the on-going problem of the growing domain, since all 
situations which may present themselves had not as yet been extracted 
from the expert and configured within the knowledge base. 

The prototype written in Digital Equipment VAX BASIC was developed to a point 
that indicated that a computer-based solution to the TPN pharmacy calculations was 
in fact possible and gave valuable insights into the mechanisms and data structures 
that could be used in developing the expert system using a language based on a 
production-rule interpreter such as 0PS5. It was then decided that the system would 
be best designed as a central 0PS5 core module supported by a series of dedicated 
interface routines written in conventional programming languages such as VAX 



Chapter 4 - Expert System Implementation 

BASIC or C which were added to enhance the expert system core module. The 

opportunity to develop a practical example using an AI language such as 0PS5 was 

also seen to be an acceptable project from the University of Wollongong perspective. 

The Illawarra Area Health Service has an information systems strategy based on a 

series of Digital Equipment Corporation VAX minicomputers. Both the Pharmacy 

and Intensive Care Unit (ICU) computer-based management systems were already 

implemented on VAX computers within this common resource. Since the interaction 

with the Pharmacy and ICU Departments was a major concern of the project, it was 

decided to use a programming environment running on the same host, that is, develop 

the system for the VAX machines. 

While expert systems shells for PC's can be purchased for a few hundred dollars, the 

price of minicomputer programming languages and expert system shells start at the 

tens of thousands of dollars, not considered justifiable by the Illawarra Area Health 

Service considering that the project was the first of its kind within the health service. 

Since one of the objectives was to determine whether further work should be carried 

out in this area of study and whether an expert system developed using an expert 

system shell or AI programming language, the project had to be done on a low 

budget. 



Chapter 4 - Expert System Implementation 

Considering these factors, the following solution was chosen. The system would be 
built using 0PS5, an AI programming language available for VAX-based VMS, 
UNIX and microcomputers running MS/PC-DOS. A brief description of the language 
is given in a section later in this chapter. 

4.3 System Desien 

The production system approach was chosen for the construction of the expert 
system. The principal reasons for this were 

1) it was the most familiar approach. 

2) had recently acquired OPS5 implementation and were looking for an 
opportunity to construct an expert system using 0PS5. 

3) preliminary discussions with the domain experts within the ICU and 
Pharmacy suggested that forward chaining would be expected to be a 
major control mechanism within the expert system. 



Chapter 4 - Expert System Implementation 

The knowledge of the system is represented by rules. The rules represent relationships 

and are used with either object-value or object-attribute-value representations. The 

premise of the rule is called the expression or an if clause. The conclusion contains a 

single expression or then clause, although it may just as well contain more than one. 

The clauses in the premise are connected with logical operators. 

As the expert system was developed, it became clear that 0PS5 was not suitable for 

certain aspects of the implementation. One such aspect concerned the maintenance of 

all key databases, the amino acid details (containing the elemental components in 

each supplied batch of currently stocked pre-mixed amino acid solutions), electrolyte 

components (containing elemental components of each supplied batch of currently 

stocked electrolyte solutions), order details (containing past and current order details 

and completed TPN formulations) and patient details. 

Originally, most of the relevant data was loaded into the global database directly, and 

while this kept the initialisation of the knowledge base simple, there existed a 

requirement to read in this data from externally maintained database files and to be 

able to maintain these databases efficiently and easily. The patient details resided on 

another central database and the solution batch components changed regularly, 

according to the availability of supply. The file handling facilities offered by OPS 5 

are primitive and not suited to operate in such an environment. Furthermore, it was 

planned to implement a second stage of the project, the physician's ordering module, 



Chapter 4 - Expert System Implementation 

to complement the pharmacy calculation module. The data setup during the execution 
of this module was complex and relatively large and required to be used for written 
reports, more suited to a conventional language environment. 

It was therefore decided that another language would have to be used. Since the 
original was written in VAX BASIC, it was decided to write the database access 
facilities in BASIC. Other aspects of the implementation that proved inconvenient in 
0PS5 concerned the calculation of weights and volumes of ingredients and a user 
interface that would be readily accepted by staff required to use the system. The 
calculations were implemented in BASIC and the user interface was implemented in 
BASIC and TDMS (a form-based screen management system). 

Figure 7 : Expert System Modules 



Chapter 4 - Expert System Implementation 

The overall structure of the expert system is shown in Figure 7. The diagram depicts 

the major modules and their interconnections. It also contains an indication of the 

language in which each of the modules is written. 

The TPN-CONTROL module, the main module handles user interaction and controls 

the overall action of the system. The module LOADER is concerned with the 

maintenance of the databases mentioned above. The UTILITIES module consists of 

routines used by TPN-CONTROL to retrieve records describing a patient, electrolyte 

components, user interaction and selected calculations considered to be inconvenient 

and overly complex when performed in OPS 5. 

As shown in the diagram above, TPN-CONTROL is written in 0PS5, whereas 

UTILITIES and the LOADER modules are written in BASIC and TDMS. The figure 

also shows the way in which the BASIC routines are subordinate to the 0PS5 

modules. The TPN-CONTROL module is the top level of the system and it calls 

routines in the other two modules, with a negligible amount of interaction between 

the BASIC modules. 

The medical and pharmacy sections of the TPN-CONTROL module contain a 

mixture of predefined and volatile data, kept in permanent disk files and entered 

through the keyboard respectively. For example, a 'stable starved' patient category is 

calculated from the weight loss (less than 10% over four to eight weeks), assessed 



Chapter 4 - Expert System Implementation 

appearance (wasted, qualified by determining mid-arm muscle circumference), 

biochemistry (normal with low serum urea) and haematology (folate or B12 

deficiency). 

Based on the patient's category, an initial solution prescription of protein, calories, 

electrolytes and other ingredients (insulin and vitamins) is calculated and a TPN order 

produced. The system data relationships appear as follows :-

Figure 8 : Data Relationships 

4.4 The 0PS5 Language 

The OPS5 language, invented by Charles Forgy, John McDermott, Allen Newell and 

Mike Rychener at Carnegie Mellon University during the late 1970s, is one of the 

best known languages for the development of rule-based expert systems. OPS5 and 

the earlier OPS languages were not originally intended for expert system 



Chapter 4 - Expert System Implementation 

development, but were used in solving other AI problems, in solutions that used 
production systems, such as cognitive modelling for research in psychology and 
cognitive science. However, since John McDermott used OPS5 to build the highly 
successful R1 (also know as XCON) expert system for configuring Digital Equipment 
VAX minicomputers, the language has received considerable attention as one of the 
better known rule-based systems. 

0PS5 is a modest language, offering a small set of features and limited syntax. The 
original development of the language came from the development of a very fast 
pattern matching algorithm, called Rete [FORGY82]. This algorithm was developed 
to offer an efficient method of comparing a large collection of patterns to a large 
collection of objects, for use in a production system - an unordered collection of if-
then statements commonly called productions. 

Generally, 0PS5 uses a data-driven, forward-chaining inference engine. This type of 
reasoning is appropriate when it is possible to provide the system with all the data 
initially so that it can apply as many rules as are appropriate to make inferences on the 
way to a solution. 

The 0PS5 language can be best described as bundles of techniques and mechanisms 
for developing production systems, rather than as a fixed shell for building a 
particular type of expert system. The control mechanism is a basic loop that 



Chapter 4 - Expert System Implementation 

establishes a "recognise-act" cycle. Rules can be used to implement different control 
strategies involving such a loop. The loop runs as follows : 

1) Match: Find all the rules whose antecedent conditions are satisfied by 
the known initial data. 

2) Conflict Resolution: Select one of the rules with satisfied antecedent 
conditions. If there are none, then exit. 

3) Act: Execute the action prescribed in the selected rule's result clause. 

4) Repeat: Return to step 1. 

XCON is implemented as a production system. It uses the "match" as a principal 
problem solving method. It has sufficient knowledge of the configuration domain and 
of the peculiarities of the various configuration constraints that exist at each step of 
the configuration process and it simply recognises what to do. Consequently, little 
search is required in order for it to configure a computer system. 



Chapter 4 - Expert System Implementation 

The forward-chaining solution suits the problem in-hand since there exists a large 

number of data in the initial state from which a solution must be found and there is 

typically no single nor optimal goal state. There is only a set of constraints to which 

the goal must conform. In simple terms, there is an initial state of many facts that 

must be synthesised into a solution. 

4.4.1 Use of atoms, classes and attributes in 0PS5 

A program in OPS5 consists of a declaration section that describes the data objects of 

the program, followed by the production section that contains the rules. During 

execution, data operated on by the program are kept in working memory and the rules 

in production memory. 

Working memory is initialised after the declarations and rules have been loaded. The 

declaration section contains the definitions of the data object types and of all the user-

defined functions that are to be referenced in the rules. 

The 0PS5 language supports two primitive data types, numeric and symbolic atoms. 

The numeric atom may contain integer or floating-point values and a symbolic atom 

is any sequence of characters that is not a number. A sequence is a group of characters 

that may be treated as a single unit. 



Chapter 4 - Expert System Implementation 

The compound data structure type in an 0PS5 program is an element class. It is 

similar to a structure declaration in C or COBOL, or a record declaration in BASIC or 

Pascal. The components of an element class are called attributes. 

Since 0PS5 is not a strongly typed language, the declarations do not include a type 

specification for the values of the attributes of the element class. An element class, C, 

is declared as follows :-

(literalize C 

attribute 1 
attribute2 

attributeN) 

where C is the class name and attributel,...,attributeN are the attribute names and are 

both symbolic atoms. 

4.5 Knowledge Base 

The expert knowledge of the physician and the pharmacist is principally contained 

within the TPN-CONTROL module. This knowledge was obtained from written 



Chapter 4 - Expert System Implementation 

protocols, policy and procedural documents and through many hours of observation 

and questioning. 

Both medical and pharmacy staff were very co-operative, motivated at least in part by 

the belief that it would not be possible to place their hard-won expertise into a 

computer program. The only real difficulties with the knowledge acquisition aspect of 

the project were 

1) Both the medical and pharmacy environments sometimes required deep 

understanding of many associated topics to realise answers to only a 

small problem area. 

2) In some cases it was difficult for the staff to explain the fundamental 

reasoning why a decision was made or were not aware of all the factors 

that they took into account in coming to the decision. 

3) The rapid turnover of staff in the medical area. 



Chapter 4 - Expert System Implementation 

The last problem was a major hurdle to the project from the onset, since the 

knowledge base was required to be completely rebuilt several times to follow 

fundamentally different approaches to the problem 

4.5.1 TPN Medical Module 

When a new TPN order is requested to be entered or an existing order requested to be 

updated, all relevant information about the patient is loaded into the working memory 

of the production system. The productions are then applied, gradually building up a 

patient profile and adjusting the ingredients required to meet with the requkements of 

that profile under controlled conditions until a suitable a final prescription order is 

produced. At the end of the process, the best formulation is presented to the physician 

to be accepted or modified. The order may then be printed and released by the 

physician and become a formal script to be dispensed by the Pharmacy. 

4.5.2 TPN Pharmacy Module 

As in the medical module, when a new TPN order is requested to be entered or an 

existing order requested to be updated, all relevant information about the patient is 

pushed into the working memory of the production system. This module takes the list 



Chapter 4 - Expert System Implementation 

of requirements in terms of groups of additions and calculates the combinations of 
amounts of ingredients required to produce a correct mix of amino acids, fats, 
carbohydrate, vitamins, minerals and trace elements within the volume of solution 
required. 

The pharmacy staff may use this module with or without the medical module, since 
not all TPN formulation orders come from the ICU. Other recipients of TPN 
manufacture are the general wards, maternity and special care nurseries and patients 
offered specialist home care. In this case, the pharmacy staff make up the order 
depending on the medical staff instructions and then calculate the formulation. 

4.5.3 Data Structures 

The working memory of the production system within the TPN-CONTROL module 
contains several elements or classes including :-

1) ORDER_DETAILS, which describes the medical and pharmacy related 
information for each order, 

2) PATIENT_DETAILS, which describes the patient specific information, 



Chapter 4 - Expert System Implementation 

3) BATCH_DETAILS, which describes the addition substance and 

amount for each TPN batch produced, 

4) AMINO.ACID_DETAILS and COMPONENT_DETAILS, which 

contain the elemental component amounts for these ingredients, 

5) ACTIVITY, which is used to control the order in which some of the 

productions are permitted to fire, 

6) EXPLANATION.DETAILS, which is used to give a traceback of how 

the current rule firings were achieved. 

These working memory elements frequently have internal structure, in that they 

consist of attribute-value pairs. For example, the class called ORDER_DETAILS 

contains attributes for the patient medical record number, the date that the order was 

requested, the date that the TPN order was dispensed by the pharmacy and details 

relating to the ingredients that make up the TPN prescription. 

The productions in the TPN-CONTROL module are predominantly concerned with 

the examination of the factors described in the previous chapter. One of these 

productions from the medical section is shown below :-



Chapter 4 - Expert System Implementation 

(p check_patient_type 
{ <This_activity> 
(activity '̂ taskname get_patient_type_task)} 
{ <This_patient_ordei> 
(order_details '̂ mm <entered_mm> ^:ategory nil)} 

— > 

(modify <This_activity> '̂ taskname setup_order) 
(modify <This_patient_order> 

'̂ category (getj)atient_type))) 
Figure 9 : Example Production 

An 0PS5 production consists of a '(p', the name of the production, the left-hand side 
of the production, the '-->' symbol, the right-hand of the production and a closing ')'. 
The left-hand side of a production is a collection of patterns called condition 
elements, each of which is a pattern to match a working memory element. For 
example, the first condition element in the example of code above is :-

{ <This_activity> 
(activity '̂ taskname get_patient_type_task)} 

and this condition element evaluates to 'true' if the working memory contains an 
e lement ' a c t i v i t y ' and the value of its second at t r ibute, ' t a skname ' is 
' get_patient_type_task'. 

{ <This_patient_order> 
(order_details '̂ mm <entered_mm> '̂ category nil) 



Chapter 4 - Expert System Implementation 

The second condition element, 'order_details' succeeds if the working memory 
contains an element denoted by the class variable '<entered_mrn>' with a second 
attribute called 'category* which has an empty value; i.e., it contains the symbolic 
atom 'nir set up when the attribute was initialised. When the symbolic atom 'nil' is 
used to describe the intended value of an attribute, it means that nothing is known 
about that attribute. 

The right-hand side of an 0PS5 production consists of an sequence of commands 
called actions. There are two such actions shown in the example of code in Figure 9. 

The first right-hand side action is :-

(modify <This_activity> '̂ taskname setup_order) 

The first action consists of a modify statement. The modify action is used to change 
specific attributes of a particular element of working memory and update the 
working-memory element unique integer identifier or time tag. The command takes 
the first pattern on the left-hand side of the production associated with the element 
variable '<This_activity>' and creates a copy of the working memory element whose 
contents are identical as the element associated with the element variable 
'<This_act ivi ty>' , except that the second attribute now contains the value 



Chapter 4 - Expert System Implementation 

'setup_order\ The previous element associated with this name is then removed from 
working memory. 

As an alternative to the modify command, one could remove the element first and 
then make a new element. However, usually only a few of the attribute values are to 
be changed, and it is inefficient and cumbersome to have to know and explicitly 
represent all the other attributes and values for the use of the make action. 

The second action is :-

(modify <This j)atient_order> 
\:ategory (get_patient_type))) 

This action calls an external function written in BASIC called 'get_patient_type' to 
modify the specific order_details working-memory element. The external function 
prompts the user for information about the patient so that a patient profile can be 
created. The function returns the patient category. 

The effect of the production described above is to test whether the TPN order under 
consideration is for a patient who has been assessed and assigned a patient type. If the 
patient has not been assigned a patient type then request the user for details to make 
an assessment and record it in the TPN order data structure for further reference. 



Chapter 4 - Expert System Implementation 

Both the medical and pharmacy modules use the ACTIVITY data structure for a 
context-limiting and specificity-ordering conflict resolution strategy based on 
techniques incorporated into XCON. The context-limiting is done by making the first 
clause in each rule conditional on what is currently being performed by the program. 
Specificity ordering enables the module to use rules such as the following for 
switching contexts :-

RULE XYZ: if the current context (activity) is X 
then deactivate the X context 

activate the Y context. 

This rule mechanism has the effect of deleting one item from the context 
designation and then adding another. It fires only if no other rule associated with 
the context triggers, for any other triggering rule would have conditions that are 
a superset of unaccompanied context checking. 

The EXPLANATION_DETAILS data structure holds a list of rule firings. By 
looking into a historical record, a rule-based system can answer questions about 
why a rule was used or how a fact was established. Much of this ability relies 
upon the simple, highly constrained format that the system paradigm imposes on 
its rules. To decide how a given fact was concluded, for example, the system 
need only reflect on the rules it has used. 



Chapter 4 - Expert System Implementation 

4.6 Communication with External Routines 

As mentioned in the previous sections, the BASIC routines contained in the 

other modules are called by the 0PS5 modules. Establishing the correct interface 

between the two languages was much more difficult than originally anticipated 

and it provides a prime example of the practical difficulties that may arise when 

attempting to make use of an 'expert system language' such as 0PS5. Some of 

the difficulties encountered were due to the brevity of the 0PS5 documentation 

and others were because of the complex and tedious nature of the interface 

protocol required. 

(external bas$display_order 
bas$print_label 
bas$store_order 

(literalize activity 
taskname 
subtask 

(literalize order_details 
mm 
order_date 
dispense_date 

order_status 
metabolic_status 

(literalize patient_details 
mm 

;extemal utilities 

; mle cluster 
; sub-group 

; patient medical record number 

; patient condition 



Chapter 4 - Expert System Implementation 

(literalize batch_details ;audit trail 
mm 

(p setup_order 
{ <This_activity> (activity '̂ taskname setup_order)} 
{ <This_patient> (patient_details '̂ mm <mm>)} 
{ <This_order> (order_details '̂ mm <mm> 

'H)rder_date <date> } 
— > 

(modify <This_ordei> '^rder_date <date>) 
(make batch_details '̂ mm <mm> 

dispense_date <date> 
(call bas$display_order) 
(call bas$print_label) 
(call bas$store_order <mm> <date>) 
(modify <This_activity> '̂ taskname complete 

'̂ subtask complete)) 

Figure 10 : Example of 0PS5 code calling BASIC routines 

All communication between OPS5 and the user's external function is via a set of 
OPS5 functions that manipulate a special entity called the result element. The result 
element is a template for a working memory element that has been set up by a make, 
modify or call command. 

The result element contains a vector of fields that is identical to the WME, but that 
sits outside working memory. It is the only interface between the external routine and 
the OPS5 code, since an external routine cannot search working memory nor remove 
or modify WME directly. The 0PS5 code fills the result element with values as 
arguments to send to the external routine, and the external routine fills the result 
element with values, if it is sending a WME back to the OPS5 program. 



Chapter 4 - Expert System Implementation 

Routine Argument Purpose and Return Value 

OPS$CVAN (atom) 

OPS$CVNA (integer) 

OPS$CVAF 

OPS$PNAME 

(atom) 

OPS$CVFA (floating) 

(atom, 
character 
buffer, 
buffer-size) 

OPS$INTERN (character 
buffer size) 

OPS 5 convert atom to number. 
Converts an integer atom to an integer and 
returns the integer. 

OPS 5 convert number to atom. 
Converts an integer to an integer atom and 
returns the atom. 

OPS 5 convert atom to floating. 
Convert a floating-point atom to a floating-point 
number and return the floating-point number. 

OPS 5 convert floating to atom. 
Convert a floating-point number to a floating-
point atom and retum the atom. 

OPS5 print name. 
Fill the character buffer with the 
print-name of the atom and retum 
the number of characters in the 
buffer. 

OPS5 intemal symbol. 
Convert the contents of the 
buffer to a symbolic atom and 
retum the symbolic atom. 

Figure 11 : VAX OPS 5 atom conversion routines. 

Since all 0PS5 values are represented as atoms, in non-LISP implementations of 

OPS5 such as the version used for the project, routines written in other languages 

cannot rely on a shared understanding of the atom, and atom conversion is necessary. 



Chapter 4 - Expert System Implementation 

The OPS5 interface-support routines used for atom conversion that are supplied by 
VAX OPS5 are listed in Figure 11. 

There are four commands that can be called from within the external routine to build 
up the result element or insert its contents into working memory. The first command, 
'ops$reset', clears all the fields in the result element and sets the default insertion 
location to be the first field. The second command, 'ops$tab', controls where the next 
value will be placed. The third command, 'ops$value', puts a value into the result 
element of the current field and increments the pointer to the next field in the current 
class. The final command, 'ops$assert', copies the result element into working 
memory but does not change the contents of the result element. Other commands such 
as 'ops$intern' and 'ops$pname' are used to convert to 0PS5 form and from 0PS5 
form respectively. 

Both external functions and external subroutines can use the 'ops$value' support 
routine to place atoms in the result element. External functions use the 'ops$value' 
support routine to return a single atom back to the OPS5 calling program. External 
subroutines may use the routine to create new working-memory elements available to 
the OPS5 program. This side-effect was found to be difficult to use, often resulting in 
confusing and erroneous results. 



Chapter 4 - Expert System Implementation 

The method of passing arguments to functions differs from that of subroutines. In 

subroutines, the arguments are placed in the result element and are retrieved one at a 

time, whereas in functions, the arguments listed in the function call are mapped 

directly into the external function's parameter list. 

One further interesting aspect of function calls from an OPS 5 routine is that a RHS 

function is expected to put a value in the result element, but it must use the OPS5 

interface-support routine 'ops$value' to do so. This support routine deposits one 

value in the result element in the position that the function appeared in the RHS 0PS5 

pattern. The standard function return is ignored. This means that one has the option of 

writing a function that has no return value at all and makes external OPS5 functions 

unacceptable as standard external functions to be called by other conventional 

languages. 

The arguments that are passed to the function and the value that a function returns 

must evaluate to an atom, a 32-bit longword representing an integer or a number. If a 

call to an external function includes arguments, those arguments must be declared 

external to the function's definition. 

The way in which the interaction between 0PS5 and BASIC must be accomplished is 

illustrated by the example in Figures 10 and 12. Figure 10 contains an extract of 

OPS5 code, consisting of three productions and associated declarations. Among these 



Chapter 4 - Expert System Implementation 

declarations is the indication that there are three external routines known as 
*bas$display_order', 'basSprintJabel' and 'bas$store_order\ The calls to these 
routines are quite simple and are shown at the end of the production known as 
'setup_order\ The parameters required to be transmitted to the BASIC routine, such 
as '<mrn>' and '<date>' are simply included as part of the call statement to the 
'bas$store_order' subroutine outlined in Figure 12. 

SUB BAS$STORE_ORDER 
Definitions of OPS 5 support routines, 
record structures and variable declarations 

! Obtain the medical record number. 
mm = ops$parameter(l% by value) 
! Convert the symbolic atom into a string. 
chars% = ops$pname(mm_location, mm, 8%) 
! Obtain the date and convert into a string. 
date = ops$parameter(2% by value) 
chars% = ops$pname(date_location by value, date, 6%) 
I 
! Perform file update operations. 
! 
EXIT SUB 
Perform error handling. 

END SUB Figure 12 : An outline of the BASIC subroutine 'bas$store_order'. 

The BASIC side of the interface, however, reveals the tedious code which is required 
merely to transfer information into and out of the BASIC routine. This complexity is 
illustrated by the BASIC procedures 'bas$store_order' and 'bas$calculate_amino' 



Chapter 4 - Expert System Implementation 

outlined in Figures 12 and 13. The routine 'bas$store_order' is used to perform file 
output, thereby bypassing the primitive file handling offered by the 0PS5 language 
and 'bas$calculate_amino' performs arithmetic which is difficult and cumbersome to 
code in OPS5. 

LONG FUNCTION BAS$CALCULATE_AMINO (ATOMl, AT0M2) 
Definitions of 0PS5 support routines, 
record structures and variable declarations 

100 ! Obtain the required amino amount, 
if ops$floatingGoc(atoml) by value) 

then 
required_amino = ops$cvaf(loc(atoml) by value) 

else 
required_amino = ops$cvan(loc(atoml) by value) 

end if 
! Obtain the amino present in pre-mix. 
if ops$floating(loc(atom2) by value) 

then 
required_amino = ops$cvaf(loc(atom2) by value) 

else 
required_amino = ops$cvan(loc(atom2) by value) 

end if 
! 
! Perform the calculations. 
! 
! Convert the calculated amino amount result into 
! a floating-point atom. 
atom% = ops$cvfa(calculated_amino_amount by value) 
! Place an atom into the result element's first field, 
call ops$value by value (atom%) 
EXIT FUNCTION 
! Perform error handling. 
END FUNCTION 

Figure 13 : An oudine of the BASIC function 
*bas$calculate_amino'. 



Chapter 4 - Expert System Implementation 

Inconiing parameters to the BASIC routine are packaged in a result element by 0PS5 
and these have to be extracted using calls on 'ops$parameter\ It is also necessary to 
convert these parameters from a symbolic, integer or floating-point atom into the 
corresponding data type suitable for BASIC using a corresponding set of routines 
called 'ops$name', 'ops$cvan' and 'opsScvaf. Where the symbol type of the 
incoming parameter is known, the corresponding conversion may be performed. In 
0PS5, however, numeric symbols may be either symbolic, integer or floating-point 
depending on the existence of the decimal part of the number and so the boolean type 
predicate routines 'ops$symbor, 'ops$integer' and 'ops$floating' must be used to 
determine the atom type and thus perform the correct conversion. There is also 
corresponding routines to convert the three different data types into symbols, integer 
and floating-point atoms. 

SUB BAS$READ_ORDER 
Definitions of 0PS5 support routines, 
record structures and variable declarations 

! Obtain the medical record number. 
mm = ops$parameter(l% by value) 
! Convert the symbolic atom into a string. 
chars% = ops$pname(mm_location, mm, 8%) 
! Obtain the date and convert into a string. 
date = ops$parameter(2% by value) 
chars% = ops$pname(date_location by value, date, 6%) 
I 
! Perform file read operations. 
I 
! Delete the atoms in the result element 



Chapter 4 - Expert System Implementation 

call ops$resetO 
! Convert the numeric string into a symbolic atom. 
atom% = ops$intem(orden:mm by ref, 8% by value) 
! Create atom for class name and put it into the 
! first field of the result element. 
classname$ = "ORDER_DETAILS" 
atom% = ops$intem(classname$ by ref, & 

len(classname$) by value) 
call ops$value by value (atom%) 
! Convert the string nun into a symbolic atom and 
! place it next in the result element 
fieldnames = "MRN" 
atom% = ops$intem(fieldname$ by ref, & 

len(fieldname$) by value) 
call ops$value by value (atom%) 
! Convert the string date into a symbolic atom and 
! find out the position in the WME and place it 
! in the correct position in the result element 
fieldnames = "ORDER_DATE" 
atom% = ops$intem(fieldname$ by ref, & 

len(fieldname$) by value) 
call ops$tab(atom% by value) 
call ops$value by value (atom%) 
! Set up other fields. 
! Copy the contents of the result element to working 
! memory and create a new WME. 
call opsSassertO 
t 
EXIT SUB 
Perform error handling. 

END SUB 
Figure 14 : An outline of the BASIC procedure 'bas$read_order'. 

Since 0PS5 is not a strongly typed language, there is no mechanism for declaring a 
variable or attribute name to be a particular type or to define subtypes of the essential 
primitive types of number or symbolic atom. This feature added further levels of 
complexity to the OPS5 routines, since type mismatches were only detected at run-
time and it is not clearly evident to see an error when applying relational operators to 
values of different types. The test simply evaluates to false. 



Chapter 4 - Expert System Implementation 

The influence of weak data typing most difficult to detect was the external call 
interface to BASIC. An example of this problem is highlighted in the BASIC function 
'bas$get_calculate_amino* shown in Figure 13. 

A further example, showing the code necessary to return values from an external 
BASIC routine is shown in Figure 14. To return information, the result element is 
cleared using 'ops$reset* and its various fields are set correctly using 'ops$value', 
first performing conversions into suitable 0PS5 form using a routine called 
'ops$intern\ When all fields are set up, 'ops$assert' is called to create a new 
working-memory element with the name to be found in the first field of the result 
element. To return multiple results, for example to read multiple records from a file 
and set up working memory elements from each record, the result element must then 
be re-used, employing further calls on 'ops$reset', 'ops$value' and 'ops$assert' to 
create each working memory element. 

It was found that the side-effects that an external BASIC routine has on the working-
memory of an 0PS5 module are frequently extensive, with the BASIC routine using 
'ops$assert' to create working memory elements whose origins are unclear from an 
examination of the OPS 5 code. For example, the working memory element created by 
the call to 'ops$assert' at the end of the procedure 'bas$read_order' shown in Figure 
14 has the name 'order_details', due to the first calls to 'ops$intem and 'ops$value'. 



^h^Pter 4 - Expert System Implementation 

This working memory element is mentioned in several condition elements on the left-

hand side of productions in the 0PS5 module, including the production 

'order_details* in Figure 9, but never appears in the OPS5 code in a situation 

corresponding to the creation of a working memory element of this name, making the 

OPS5 module difficult to understand. The primitive but complex nature of this 

interface between OPS5 and BASIC greatly impairs the understanding of both 

modules and contributed significandy to the development time the project. 



Chapter 5 - Annotated System 

CHAPTER 5 

ANNOTATED SYSTEM 

5.1 Introduction 

After satisfying a standard user identification and password security checks, the user 
is presented with the initial TPN menu offering the following selections :-

ICU / PHARMACY 
PARENTERAL NUTRITION SYSTEM 

1. Order Patient TPN 

2. Check TPN Order and Print 

3. Maintain Data Files 

Enter Selection : 



Chapter 5 - Annotated System 

Selection 1 is designed to be used by the medical staff to assist with creating a TPN 
order containing the basic requirements for the TPN solution, based on the patient 
clinical assessment and laboratory results. A base order is displayed on the screen, for 
amendment, if required. The solution requirements are then stored on file and the 
TPN order printed. 

Selection 2 is designed to be used by the pharamacist to perform the necessary 
calculations to generate a TPN formula, given the basic order details entered by the 
medical staff via selection 1. Details about the components used to make up the TPN 
solution are retrieved from file. When the calculations are complete, the formula is 
displayed on the screen, showing the amounts of each element to be added. If the 
pharmacist accepts the calculated TPN formulation, the order may be printed onto 
adhesive labels, to be attached to the TPN container. 

Selection 3 is used to carry out file maintenance on information relating to the 
composition of the amino acids and other components used in the formulation. 

5.2 Medical Order 

On entry to selection 1 of the main menu, the screen layout shown in Figure 15 is 
displayed. This screen form requests the user to enter the medical record number 



Chapter 5 - Annotated System 

associated with the patient and the date of the order to be produced. The default date 
displayed is the current date. 

The option of selecting a specific date other than the current date is present since both 
medical staff and pharmacy staff have a need to use the copy command ' C to 
duplicate an existing order for a patient. This is due to the fact that it is often a 
common situation to continue a repeating script for similar TPN mixtures as part of a 
patient's treatment over an extended period. In addition, the pharmacy staff are often 
required to prepare TPN mixtures in advance. 

ICU / PHARMACY 
PARENTERAL NUTRITION SYSTEM 

ORDER MRN AND DATE 

M R N 12-34 -56 
D A T E 19-06-90 

Enter action - [Y], [C]opy, [P]atient, [Q]uit 

Figure 15 : Initial Order Selection Screen 



Chapter 5 - Annotated System 

After the medical record number and the date are entered, the command 'P' for 

patient information is entered, and the patient screen as shown in Figure 16 is 

displayed. 

I C U / P H A R M A C Y 

P A R E N T E R A L N U T R I T I O N S Y S T E M 

P A T I E N T D E T A I L S 

M R N 1 2 - 3 4 - 5 6 

S u r n a m e S M I T H 

O t h e r N a m e s F R E D J O H N 

A g e 50 S e x M 

W e i g h t 72 W a r d I C U 

A s s e s s m e n t S T A R V 5 D B E D 

C o n d i t i o n 

C o n f i d e n c e 

E n t e r a c t i o n - [ C ] o n d i t i o n [ 0 ] r d e r [ Q ] u i t : 

Figure 16 : Adding Assessment to Patient Screen 

The medical staff may now add the patient assessment information to the patient 

screen. In Figure 16, the assessment text 'STARV 5D BED' has been entered by the 

physician. The text indicates that the patient was assessed to be starved for less than 



Chapter 5 - Annotated System 

five days and that the patient mobility is static i.e., the patient is bed-ridden. Such 

information is processed by die rule-base, to determine initial order conditions. 

When tiiese assessment details are complete, tiie command ' C is entered. The system 

then retrieves the relevant laboratory information for the patient from an on-line 

laboratory results reporting database. This information, together with the patient 

assessment details entered by the physician is processed by the rule-base in an attempt 

to make an assessment of the patient's metabolic status. The resulting screen is shown 

in Figure 17. 

The patient condition in this example is determined to be normal i.e., stable and 

starved for less than five days. The laboratory results combined with the assessment 

details indicate a certainty factor of 1 i.e., definitely agree. 

The details from a previously generated order may be copied as a basis for a new 

order and the patient details may be checked and amended via the patient screen 

shown in Figure 16 or 17. The ' C command step may be skipped if the physician 

wishes to enter the patient condition directiy. 



Chapter 5 - Annotated System 

I C U / P H A R M A C Y 

P A R E N T E R A L N U T R I T I O N S Y S T E M 

P A T I E N T D E T A I L S 

M R N 1 2 - 3 4 - 5 6 

S u r n a m e S M I T H 

O t h e r N a m e s F R E D J O H N 

A g e 50 S e x M 

W e i g h t 72 W a r d ICU 

A s s e s s m e n t S T A R V 5D B E D 

C o n d i t i o n N O R M 

C o n f i d e n c e 1 

D a t e 1 9 - 0 6 - 9 0 

E n t e r a c t i o n - [ C J o n d i t i o n [ 0 ] r d e r [Q]uit 

Figure 17 : Generate Order from Patient Screen 

There is considerable variance of the initial formula depending on both the patient's 

basic status and the current thinking of the person providing the formulation. There 

are two basic methods by which the formula may be provided, either as a fixed 

projection on the estimated average requirements or as a calculated system on patient 

protein turnover. Although it varies slightly, approximately 50% of the patients have 

a TPN formulation generated by the calculation method and the other half of the cases 

is often done as a teaching exercise for the resident medical staff by the ICU staff 

specialist. 



Chapter 5 - Annotated System 

The patient classification scheme rule-base, built on a combination of laboratory 
result comparisons, together with medical diagnostic rules of thumb, includes rules 
such as :-

RULE: get_metabolic_status::get_lab_results 
IF in correct context 
AND patient information exists for this mm 
AND patient condition is defined 
AND metabolic_status is not defined 
THEN retrieve laboratory results for this mm 
AND set context to next 

In OPS 5, the rule appears as :-

(p get_metabolic_status: :get_lab_resiilts 
{ <This_activity> (activity '̂ taskname get_metabolic_status) 
{ <This_patient> (patient_details '̂ mm <mm> 

'^metabolic_status nil)} 
{ <This_explanation> (explanation_details '̂ rule_counter 

<current_rule_count>)} 
~ > 

(bind <cuiTent_rule_count> compute (current_rule_count> + 1)) 
(modify <This_explanation> '̂ rule_counter <cuiTent_rule_count> 

'̂ current_rule lget_metabolic_status: :getjab_resultsl 
'̂ rule_text IRetrieve lab results in order to calculate 

patient metabolic statusi) 
(call bas$get_labresults <mm>) ;Retrieve lab details, 
(modify <This_activity> '̂ taskname calc_metabolic_status) 
(call bas$display_patient <mm>)) 

This rule firing loads the required laboratory data into the working memory of the 
medical module and sets the context for selection from a series of rules such as the 
following, designed to calculate a possible patient classification and associated 
confidence factor :-



Chapter 5 - Annotated System 

RULE: get_metabolic_status::calculate_normal 

IF in correct context 
AND patient information exists for this mm 
AND metabolic_status is not defined 
AND patient condition is starved less than 5 days 
AND laboratory results <= normal levels 
AND laboratory results > low levels 

THEN patient is NORMAL 
AND confidence is DEHNITELY 
AND set context to next 

In 0PS5, the rule appears as :-

(p get_metabolic_status::calculate_normal 
{ <This_activity> (activity '^taskname calc_metabolic_status) 

Check if status not defined and patient starved 
for 5 or less days. 

{ <This_patient> (patient_details '̂ mm <mm> 
'^metabolic_status nil 
'^starved_days {<> nil 

<=5})} 
Get laboratory test tolerance values. 

{ <This_range> (lab_result_range '^protein_norm <pro_normal> 
'^proteinjow <pro_low> 
'^albumin_norm <:alb_normal> 
'^albuminjow <alb_low> 
'^platelet_norm <pl_normal> 
'^plateletjow <pl_low>)} 

Check if laboratory results are between normal levels and 
low levels for specific biochemistry and haematology tests. 

{ <This_result> (lab_results '̂ mm <mm> 
'^protein { <= <pro_normal> 

> <pro_low> } 
'^albumin {<= <alb_normal> 

> <alb_low> } 
'^platelet {<= <:pl_normal> 

> <pl_low> } )} 
~ > 

(modify <This_patient> (patient_details '^nun <mm> 
'^metabolic.status NORM 
'Confidence 1) 

(call bas$store_patient <mm>) ;Record for screen display, 
(call bas$display_patient <mm>) 
(modify <This_activity> '^taskname setup_required)) 



Chapter 5 - Annotated System 

The patient may be classified into one of the following seven categories :-

CODE CATEGORY 
NORM Normal, stable 
STRES Stressed 
STARV Starved, stable 
RENAL Renal failure 
COMA Hepatic failure 
RESP Respiratory failure 
ORGAN Multiple organ failure 

The patient condition has an associated certainty factor based on the combinations of 
information used to calculate it. This scale of confidence consists of a discrete range 
of values between -1 and +1 as follows :-

VALUE MEANING 
1.0 DEFINITELY 
0.8 ALMOST CERTAIN 
0.6 PROBABLY 
0.3 SLIGHT EVIDENCE 
0.0 IGNORE 

-0.6 PROBABLY NOT 
-0.8 ALMOST CERTAINLY NOT 
-1.0 DEFINI TELY NOT 

The medical staff are now required to make adjustments to the information shown on 
the patient screen relating to the patient's overall appearance and clinical condition. 
For example, the assessment text 'BED' has been entered to indicate that the patient 
is bed-ridden. This fact is used when calculating the energy requirements of the initial 
order. When this step is complete, the command 'O' generates the initial order 
requirements and displays the order form as shown in Figure 18. 



Chapter 5 - Annotated System 

I C U / P H A R M A C Y 

P A R E N T E R A L N U T R I T I O N O R D E R 

M R N 12-- 3 4 - 5 6 S u r n a m e S M I T H W a r d I C U 

D A T E 0 R D E R E D 27--03--89 
A M I N 0 8 0 . .00 g m . 
D E X T R 0 S E 5 0 0 . ,00 g m . 
F A T .00 g m . 
P H 0 S P H A T E 3 0 . 0 0 m m o l . 
S 0 D I U M 7 0 . ,00 m m o l . 
P 0 T A s S I U M 6 0 . ,00 m m o l . 
C A L C I U M ,00 m m o l . 
M A G N E S I U M 5 . ,00 m m o l . 
Z I N C « 08 m m o l . 
I N S U L I N • 00 u n i t s 
T H I A M I N E • 00 m g . 

V I T A M I N _ C • 00 m g . 

M V I 1 2 1 0 . 00 m l . 

F 0 L A T E • 00 m g . 

K 0 N A K I 0 N • 00 m g . 

T R A C E 00 m l . 

I 0 D I D E • 00 u m o l . 

A L B U M E N • 00 m l . 

G I V E N O V E R h r s . V O L U M E 2 0 0 0 m l . 

E n t e r [S] t o s a v e T P N o r d e r 

E n t e r [Y] t o c a l c u l a t e T P N i n g r e d i e n t s 

Figure 18 : Order Requirements Screen 



Chapter 5 - Annotated System 

The order requirements information displayed on the screen may be amended by 

moving the cursor to a selected field and modifying the value. When the order is 

considered to be correct, a command "S" to "save" the order is entered, and the order 

is stored on the order file and printed for a permanent physical record. 

The rule cluster associated with determining energy and protein requirements of the 

patient contains rule sets for each of the patient classifications. For the 'normal, 

starved' patient classification, there exists a rule to determine the mobility of the 

patient in order that adjustments to the energy and protein levels in the initial order 

may relate to the patient's needs. The level of mobility is taken from the assessment 

value in the patient screen data. In the current example, it was determined that the 

patient was bed-ridden and so the associated rule is :-

RULE: calculate_order::normal_patient_bed_ridden 

IF in correct context 
AND patient information exists for this mm 
AND metabolic_status is NORMAL 
AND mobility is BED-RIDDEN 

THEN set protein and energy values 
AND set context to next 



Chapter 5 - Annotated System 

In 0PS5, the rule appears as :-

(p calculate_order: :normal_patient_bed_ridden 
{ <This_activity> (activity '^taskname base_order) 
{ <This_patient> (patient_details '̂ mm <mm> 

'^metabolic_status NORM 
'^mobility BED)) 

{ <This_requirement> (patient_requirement '̂ mm <mm>)} 
- > 

(modify <This_requirement> '̂ mm <mni> 
^protein 0.7 
'^energy 23) 

(modify <This_activity> '^taskname adjust_base_order)) 

Having set up the base protein and energy requirements, the control mechanism 

directs the firing of rules such as the following :-

RULE: calculate_order::adjust_protein 

IF in correct context 
AND patient information exists for this mm 
AND protein and energy values exist 
AND order exists for this mm and date 

THEN set order levels for protein ingredients 
AND set context to next 

In 0PS5, the rule appears as :-

(p calculate_order::adjust_protein 
{ <This_activity> (activity '^taskname adjust_base_order) 
{ <This_patient> (patient_details '̂ mm <mm> 

'^weight <weight> 
'Complication « stress_low 

stress_moderate stress_severe » ) 
{ <This_requirement> (patient_requirement '̂ mm <mm> 

'^protein <protein> 
'^energy <energy> 
'^fat <fat> 
'^drip_rate <drip>)} 



Chapter 5 - Annotated System 

{ <This_order> (required_details '̂ mm <mra> 
'^order_date <required_date>)} 

(bind <required_amino> (compute <weight> * <protein>) 
(modify <This_ordei> '^amino <required_amino> 

Mextrose (compute <required_amino> * 
<energy>) 

'^fat <fat> 
'^drip_rate <drip>) 

(modify <This_activity> '^taskname electrolytes)) 

The final rule set used to calculate the base order for the medical staff consists of 

rules such as the following :-

RULE: calculate_order: electrolytes 

IF in correct context 
AND patient information exists for this mm 
AND an order exists for this mm and date 

THEN set electrolyte values 
AND set context to next 

In 0PS5, the rule appears as 

(p calculate_order: electrolytes 
{ <This_activity> (activity '^taskname electrolytes) 
{ <This_patient> (patient_details '̂ mm <mm> 

'^weight <weight>)} 
{ <This_requirement> (patient_requirement '̂ mm <mm>)} 
{ <This_order> (required_details '̂ mm <mm> 

'^order_date <required_date>)} 
" > 

(modify <This_order> '^potassium (compute 2.5 * <weight>) 
'̂ sodium (compute 1.0 * <weight>) 
'^phosphate (compute 0.3 * <weight>) 
'^magnesium (compute 0.1 * <weight>) 
'̂ zinc (compute 0.02 • <weight>) 
'̂ calcium (compute 0.1 * <weight>) 
^insulin (compute 1.0 * <weight>) 
'^vitamin_c 500 
'^thiamine 100) 

(modify <This_activity> '^taskname display_base_order)) 



Chapter 5 - Annotated System 

5.3 Pharmacy Calculation 

On entry to selection 2 of the main menu, the screen layout shown in Figure 15 is 

displayed. This screen form requests the user to enter the medical record number and 

date of the order to be produced. Only a single order may be produced within any 24 

hour period and so the default date displayed is the current date. 

After the medical record number and the date are entered, if a previously generated 

order exists, the details are displayed as shown in Figure 18. If an existing order does 

not exist, the system creates an empty order record on the order file and the 

pharmacist is required to enter the required order amounts into the relevant fields on 

the screen. The pharmacist then enters additional information such as infusion rate in 

the 'GIVEN OVER' field and the proposed solution volume into the next adjacent 

field, and then finally enters the command "Y" to calculate the ingredients. The 

resultant information is then stored on the order file and the TPN order printed onto 

an adhesive label to be placed onto the TPN mix container. The resulting TPN label is 

shown in Figure 20. 



Chapter 5 - Annotated System 

P A R E N T E R A L N U T R I T I O N O R D E R 

M R N - 123456 

N a m e - B L O G G S / F R E D 

A g e - 57 Sex - M 

B a t c h D a t e - 230490 : A D D I T I V E 

23-Apr-90/ 02:55 P M 

W a r d - ICU 

W e i g h t - 100.00 Kgs 

U N I T S V O L U M E B A T C H 

A m i n o A c i d 80 .00 g m SYNTH-13 2 .0 1040.0 
D e x t r o s e 500 .00 g m D E X T R O S E 5 0 0 .0 1080.0 
F a t 0 .00 g m FAT - 10% 0 .0 0.0 
P h o s p h a t e 15 .00 m m o l KP04 1 .0 10.0 
S o d i u m 35 .00 m m o l N A C L 1 .0 10.2 
P o t a s s i u m 90 .00 m m o l KCL 2 .4 24.2 
M a g n e s i u m 2 .50 m m o l MGS04 0 .3 1.3 
C a l c i u m 0 .00 m m o l C A C L 0 .0 0.0 
Zinc 0 .08 m m o l ZNCL2 2 .0 2.0 
I n s u l i n 80 .00 U n i t INSULIN 0 .8 0.8 
T h i a m i n e 0 .00 m g THIAMINE 0 .0 0.0 
V i t a m i n _ C 500 .00 m g V I T A M I N _ C 1 .0 5.0 
M V I 1 2 10 .00 m l MVI12 1 .0 10.0 
F o l a t e 15 .00 m g FOLATE 1 .0 1.0 
K o n a k i o n 10 .00 m g K O N A K I O N 1 .0 1.0 
T r a c e 0 .00 m l TRACE 0 .0 0.0 
I o d i d e 0 .00 u m l IODIDE 0 .0 0.0 
A l b u m e n 0 .00 m l A L B U M E N 0 .0 0.0 

; W A T E R N o n e R e q ' d 

V o l u m e : 2000 m l 

G i v e n O v e r 20 h o u r s 

O r d e r e d b y - D J M 

P r e p a r e d b y - JJK 

T i m e : a m / p m 

T o t a l V o l u m e 2185.5 

C h e c k e d b y 

: D a t e 23-04-90 

Figure 19 : TPN Label Layout 

52513 

A1525 

The maintenance screens used to modify component levels of the ingredients used in 

manufacturing the TPN solution are shown in Figures 21 and 22. These modules were 

written in VAX BASIC. 



Chapter 5 - Annotated System 

I C U / P H A R M A C Y 

PARENTERAL NUTRITION SYSTEM 

AMINO ACID MAINTENANCE 

SOLUTION : SYNTH-13 

Amino Acid 80.00 gm Sodium 50.00 mmol 
Potassium 20.00 mmol Calcium 2.50 mmol 
Magnesium 1.50 mmol Phosphate 0.00 mmol 
Dextrose 0.00 gm Volume 1040 ml 

Batch Number 82559 

Enter action : 

Figure 20 : Amino Acid Maintenance Screen 

The amino acid and electrolyte component data used in the calculations are loaded 

into specific 0PS5 amino and componentstructures via VAX BASIC subroutines. 

Figure 20 details the ingredients that are contained in 'SYNTH-13', one of the 

standard amino acid premix solutions. 

From the order shown in Figure 18, 80 grammes of amino acid are required in the 

final TPN solution. The amino acid contains 80 grammes of amino acid together with 

specific amounts of additional elements and compounds in a total volume of 1040 

millilitres. All these measures are subtracted from the order requirements values. 



Chapter 5 - Annotated System 

ICU / PHARMACY 
PARENTERAL NUTRITION SYSTEM 

COMPONENT MAINTENANCE 

ADDITIVE : MGS04 

ELEMENT VALUE 

MG 10.00 
S04 10.00 

0.00 
Volume 5.00 
Batch Number 9011423 

Enter action : 

Figure 21 : Additive/Electrolyte Maintenance Screen 

The next item calculated is the amount of dextrose. As with the amino requirement, 
units of 'Dextrose-50' are added to the calculation until sufficient dextrose is 
available to match the order. Since 'DEXTROSE-50' contains 250 grammes of the 
compound dextrose in a volume of 540 millilitres, 1080 millilitres of 'Dextrose-50' is 
required to be added to the solution. 

Further down the order list is 'Magnesium'. The breakdown of the electrolyte additive 
magnesium sulphate is shown in Figure 21. Since the previous addition of the amino 



Chapter 5 - Annotated System 

acid had reduced the 2.5 millimoles of elemental magnesium required, only 1.3 

millimoles of magnesium sulphate was needed to be added. 

The additives are processed in strict order from amino acid to albumin, adding the 

maximum allowable primary element or compound to the required values, at the same 

time reducing the lesser components in the order by the matching elements and 

compounds contained in the additive. The calculations proceed down the list of 

additives shown in Figure 19, until a result is achieved. Demon rules are used to 

watch over the calculations and determine when critical components are out of range. 

The demon rule may be defined as :-

RULE: demon: :negative_amino 

IF any electrolyte values are negative 

THEN print error message "USE ANOTHER AMINO ACID" 
AND remove order WME 
AND set context to start order again 

In 0PS5, the rule appears as :-

(p demon: :negative_amino 

Calculate the required component levels from the amino acid 
electrolytes. If not enough electrolytes are produced, 
trap error and force recalculation. 

{ <This_activity> (activity '̂ taskname calculating 
'̂ subtask amino)} 

{ <This_order> (required_details '̂ mm <selected_mm> 
'̂ order_date <selected_date> 
'^phosphate < 0 '̂ sodium < 0 



Chapter 5 - Annotated System 

' ^ c i u m < 0 '^magnesium < 0 
'^potassium < 0)} 

~ > 
(write (crlf) IToo much of at least electrolyte 

use another Amino AcidI) 
(remove <This_order>) 
(modify <This_activity> '^subtask amino)) 



Chapter 6 - Evaluation of Performance 

CHAPTER 6 

EVALUATION OF PERFORMANCE 

6.1 Testing and Validation 

Having discussed the concepts of the expert system in the previous chapters, it is now 

time to describe the system's performance in order to demonstrate that the developed 

system has achieved its intended goals. 

6» 1,1 Comparison with the Human Expert 

The question can prompt a variety of answers, especially when looked at from the 

sometimes differing perspectives of the developer and the end-user. In part, this 

difference stems from the expectations that are initially set for the performance of the 

expert system. 



Chapter 6 - Evaluation of Performance 

The pharmacy expert sought absolute fidelity, and therefore found that an automated 

version of the person's expertise incomplete and lacking in common sense issues. The 

nature of the pharmacy problem domain was well defined, and consequently, the 

expert's perception of absolute success was correspondingly high. However, as a user, 

the pharmacy expert tended to judge the system differently. That is, the automated 

system was accepted as better than no system, even if it was perceived that a less than 

perfect result may be produced. 

The medical expert was less demanding of the absolute result. The assistance offered 

by the expert system was appreciated where the situation, and consequentiy the result 

was straightforward. The nature of the medical expert system problem was less 

defined and consequently, the medical expert was prepared to accept an adequate 

result. 

6.1.2 Specific Performance Criteria 

There is always a danger of attempting to oversell the concepts of expert systems, and 

so it was considered more practical to take a benefits-oriented approach and focus on 

specific performance criteria such as :-



Chapter 6 - Evaluation of Performance 

1) How useful the system is (in terms of productivity savings etc.) 

2) How easily the system can be integrated into already existing 

(traditional) computing environments. 

3) How the system can be made as user-friendly as possible and offer the 

presentation facilities that most users are familiar (menus, windows 

etc.). 

With this perspective of performance testing and validation in mind, the following six 

specific criteria for testing and validating the expert system were considered :-

1) Accuracy 

2) Completeness 

3) Reliability and Consistency 

4) Effective Reasoning 

5) User-friendliness 

6) Run-time Efficiency 



Chapter 6 - Evaluation of Performance 

6.1.2.1 Accuracy 

Without question, this was considered to be the most important criteria in judging the 

expert system. However, it was considered that the accuracy of the result was slightly 

less important in the medical area (TPN order production) than in the pharmacy area 

(TPN formulation and manufacture), due to the mandatory checks that take place in 

the pharmacy. 

One of the major advantages of a computer-based TPN system was that it guaranteed 

a complete, legible, consistent adhesive label on each container of TPN solution, 

rather than the traditional hand-written label. Prior to implementing any computer-

based TPN system, a small survey was conducted in the pharmacy, in which twenty 

TPN solution labels were examined. Each of the handwritten labels was judged as to 

its completeness. A complete label was defined as one having the names, or a 

reasonable abbreviation or indication, of the drugs added, the amounts added, and an 

indication of the time and date of preparation together with sufficient detail to identify 

the medical and pharmacy staff responsible for the solution production. Of the total of 

twenty mixtures examined, four (20 percent) failed to meet these criteria on one or 

more issue. 

The ability of the system to accurately and consistently perform the required 

calculations was the most important factor from a performance point of view. The 



Chapter 6 - Evaluation of Performance 

necessary calculations are all simple arithmetic operations; however, when numerous 
individuals, subject to varied interruptions and disruptions, attempt to perform such 
calculations, the results are often less than acceptable. 

6.1.2.2 Completeness 

This criteria was related to the concept of accuracy, for as the expert system rule base 
grew in size and complexity, it tended to become more fallible under certain 
conditions. It was felt that most of this problem was related to the fact that a very high 
understanding of pharmacological practice was required together with a high degree 
of reasoning by both the expert and the knowledge engineer. 

The difficulties arose since the knowledge engineer did not have a deep understanding 
of the pharmacy and medical aspects and the pharmacy and medical experts could not 
devote sufficient time to reason through the complex relationships that sometimes 
resulted in erroneous results. As mentioned previously in this chapter, it was accepted 
by both groups of experts that no expert system could ever really be complete, since it 
was accepted that the knowledge would be always changing and expanding. 



Chapter 6 - Evaluation of Performance 

6.1.2.3 Reliability and Consistency 

Other than accuracy, the next most important criteria deemed important by the experts 
was reliability and consistency. Since this expert system was to be used as an 
'assistant' and a teaching aide, it was considered that these two criteria would be in 
some situations (such as when an adequate result was acceptable) more important 
than accuracy. 

6.1.2.4 Effectiye Reasoning 

Normally, testing and validation focus primarily on system logic or the reasoning 
process, as this is the most straightforward area of the system to test. Unlike 
traditional programs, which depend on the programmer to control the logical 
processes within the system, an expert system relies on the structure of the rules and 
the user input to control the system. 

In a rule-based system such as the one developed for the project, rule validation was 
performed by running sample or test cases that represented hypothetical but likely 
situations through the expert system. Using the debugging features of OPS5, a report 
of the rules that fired and a trace of what subgoals were reached was produced and 
checked by an expert to determine if such an expert would have solved the problem 



Chapter 6 - Evaluation of Performance 

the same way, given the same data and circumstances. In particular, what was sought 
was the validity of the result and the order of the rules that fired. That way, not only 
was the accuracy of the system able to be tested and improved, but the expert system 
efficiency could also be assessed. 

6.1.2.5 User-friendliness 

As previously suggested, the user-friendliness of an expert system is often a key 
factor in its success. No matter how accurate, complete, reliable and consistent the 
system may seem from the developer's perspective, it may still be of little use to the 
user if it cannot convey its knowledge or expertise effectively or if it is difficult to use 
and fails to gain sufficient user acceptance. 

Throughout the design of the expert system, an attempt was made to reduce the 
amount of input required from the user and rely on predefined values where possible. 
This feature was practical within the pharmacy module since this department was 
keen to follow defined standards of practice thereby reducing the possibility of 
incorrect results. 

Due to the nature of the problem in the medical module, a certain level of data entry 
was required, which in fact lead to a very low level of user acceptance. On-line access 



Chapter 6 - Evaluation of Performance 

to patient laboratory results and the complete patient demography would have 
reduced a large part of this data entry to an acceptable level. 

In general, most users found the system useable, but at the same time suggested that 
they would prefer to use features normally seen in PC-based expert system shells, 
such as detailed on-line help, explanation reasoning and more visually stimulating 
screen design (windows, shadowed pull-down menus, colour highlighting). 

6.1.2.6 Run-time Efficiencv 

Once the more important elements of the expert system had been tested and validated, 
the run-time efficiency was considered. 
The performance of the system was not considered to be a problem to the expert 
system running on a mid-range minicomputer, however, some time was devoted to 
studying the search strategy. 

As one would expect within the recognize-act cycle of match, conflict resolution and 
act, the match phase accounts for up to 90% of the execution time. This fact is hardly 
surprising since every working memory element is compared to every condition 
element in every rule. For example, given a medium-sized OPS5 program with 100 
working memory elements and 100 rules each containing five condition elements 



Chapter 6 - Evaluation of Performance 

would require 50,000 comparisons, using the 'brute-force' method. This would 

obviously account for much of the execution time. Since OPS5 is based on the 

efficient match algorithm called the RETE match algorithm, a basic understanding of 

the algorithm is essential to an understanding of efficiency in OPS5. 



Chapter 7 - Conclusions and Future 

CHAPTER 7 

CONCLUSIONS AND FUTURE 

7.1 Summary and Conclusions 

An experiment in the application of expert system techniques to the area of patient 

treatment within a hospital has been described. The problem chosen was the task of 

preparing a detailed prescription used to prepare intravenous solutions by a hospital 

pharmacist and the implementation was carried out in 0PS5 and BASIC. This work 

was carried out as the project component of the thesis and as such it was never 

intended that the system would be used "live" by medical or pharmacy staff within the 

Illawarra Area Health Service. The primary motivation for the project was to gain 

some experience with expert system techniques and with the OPS5 language. 

Although the project is finished and the system is never likely to be developed further 

by the Illawarra Area Health Service, it has shown what is possible with an approach 

that had previously never been considered. 



Chapter 7 - Conclusions and Future 

Although planned partly to gain some experience with OPS5, the project has made 
extensive use of an algorithmic language, BASIC. The principle reasons for this were 
the need to search databases efficiently and the limited arithmetic facilities of 0PS5. 
It was also necessary to use BASIC for access to screen management and summary 
reporting facilities. 

In retrospect, it was agreed that developing one module of the system rather than both 
the medical and pharmacy modules would have produced a substantial project 
suitable for research. As has been reported previously, the pharmacy calculation 
module was developed to completion, however, the complexity of the medical 
module restricted its depth of expertise and level of development. 

7.2 The 0PS5 Programming Language 

It was found that 0PS5 had a limited but simple syntax that was easy to learn. The 
difficulty in using 0PS5 was found to lie in becoming accustomed to how the rule 
interpreter functioned and in learning how to write rules that produce meaningful 
results. Despite this complexity, 0PS5 was found to be a good prototyping tool since 
the programmer can concentrate on understanding and representing the domain 
knowledge and less on control statements. 



Chapter 7 - Conclusions and Future 

The language OPS5 was found to be convenient for some aspects of the 

implementation, particularly the encoding of the expertise of the medical staff. For 

example, it was found easy to add further expertise incrementally as testing forced 

further discussions with medical and pharmacy experts to refine the knowledge 

contained in the expert system. The 0PS5 system was sufficiently efficient to operate 

as a practical application. 

The interface between 0PS5 and BASIC (or the VAX operating system in general) 

proved very difficult to master at first and very tedious once mastered. Furthermore, 

the kind of side-effects that the BASIC modules must have on the working memory 

of the OPS5 modules is error-prone and makes the entire expert system difficult to 

understand. 

The lack of standard mechanisms for using certainty factors to express relative 

degrees of belief among hypotheses and the lack of ability to explain the flow of 

reasoning to the user was deemed to be a major deficiency of the language. These 

facilities were required to be developed from scratch leading to unnecessary 

development effort to the project. 

It was shown that the system performed well when compared to the behaviour of 

experienced medical and pharmacy staff. Thus, it is concluded that such an expert 

system could be successfully employed as an advisor in medical related areas. Daily 



Chapter 7 - Conclusions and Future 

repetitive tasks could be delegated to less-skilled staff, releasing the highly-skilled to 

diagnose and manage the more complicated situations. 

0PS5 highlighted some notable differences to most other computer languages that are 

not rule-based. The flow of control in OPS5 is not expressed in explicit control 

statements. The language is data-driven; the rule interpreter chooses the rule to 

execute depending on the data that match the rules. There are no conditional 

statements, calls to 0PS5 subroutines or procedures, nor any iterative loops. When 

the program executes, rather than there being a single thread of control that solves the 

problem, there can be many parallel control paths. It is not useful to trace the paths 

through the program by looking at the code alone. 

The entire state of an OPS5 program is described by the contents of a global working 

memory area which results in all rules are matched against all data. This means that a 

program cannot refer to some specific data which relates to a subset of rules and so 

ignore specific data. The differences in control structures and program state required a 

different approach to be taken during the development of the OPS 5 programs 

compared to more familiar programming techniques used for sequential languages. 



Chapter 7 - Conclusions and Future 

7.3 Expert Systems in a Medical Environment 

The two types of information that medical staff need to make medical-related 
decisions are data and knowledge. Examples of knowledge include the medical 
textbook information and heuristic knowledge acquired from physicians. Most 
knowledge-based systems concentrate on the knowledge half of the problem - how to 
gather it, represent it and reason from it. This type of background information is 
necessary, but not sufficient for doctors to make medical decisions. Diagnosis and 
treatment of patients also require information about the patients themselves. 

Medical knowledge, in general, is low-density knowledge. That is, it is necessary to 
tell a knowledge system a great deal of information to characterise a patient so the 
knowledge system can do useful work. 

There are many medical problems that do not require large amounts of data for their 
resolution. These cases, however, are not generally difficult. The difficulty of the 
diagnosis tends to be directly related to the amount of information required to make a 
diagnosis, and so the only practical knowledge system is one that has automatic 
access to a patient database, where the knowledge system is able to search for all 
available information about a patient rather than request missing information from the 
physician. The usefulness of any medical knowledge system is limited if each 



Chapter 7 - Conclusions and Future 

consultation may require ten minutes of data-entry and dialogue to complete a 
diagnosis. 

During the latter stages of the project, an unexpected advantage to medical 
knowledge-based systems was encountered. The medical staff using the system 
agreed that the knowledge systems tended to take the drudgery out of medicine. It 
seems that some of the physician's jobs are pretty boring, with many tasks considered 
simple and repetitive. Interpreting most test results were considered to be 
straightforward. With a knowledge-based medical consultant around, the physicians 
felt that they would have the challenge of looking at the more interesting cases and 
could concentrate on the more difficult ones. 

7.4 Future Research 

Many of the early, pioneering examples of expert systems such as DENDRAL 
[BUCHANAN79], MYCIN [SHORTLIFFE76], R1 [MCDERMOTT80] and 
PROSPECTOR [GASCHNIG79] were mostly products of universities and research 
laboratories and were developed to solve problems in domains which were 
substantially removed from the main business of commercial information processing. 
The effect of these widely reported expert systems has been to tempt data processing 
professionals to consider analogous applications in their own area for possible expert 



Chapter 7 - Conclusions and Future 

systems development. This atmosphere of cautious optimism has been summed up by 

J.K. Debenham PEBENHAM89], who wrote :-

"It is fair to comment that this search for analogous application areas in main stream 

computing has not always been successful, and this failure to identify worthwhile, 

analogous problem areas has led to the general conclusion that expert systems are still 

'some way down the track'". 

Expert systems will be included as part of the systems developed in the future. Those 

organisations with the foresight to realise this and plan will gain a very competitive 

advantage. This is shown, in part, by the secrecy which currently shrouds expert 

systems development in the insurance and finance industries and the appearance of 

data-base management systems which contain integrated expert system shells. 

The perception of what an expert system is, and what it does still seems to be clouded 

in some sort of mystique, at least in Australia. The slow acceptance of expert system 

technology seems to be due to the fact that many aspects of expert systems contradict 

traditional computing beliefs. 



Chapter 7 - Conclusions and Future 

An expert system gives an "adequate" solution to a problem as opposed to the 
traditional "absolute" solution required in many applications. The expert system often 
has to be prototyped and then modified as new knowledge comes to hand and the 
system may never be completed. Knowledge engineering and expert systems should 
be considered to be just another piece of software, to be maintained just like any other 
system. 



Glossary - Explanation of Terms 

GLOSSARY 

Backward Chaining 

Central Venous 

Domain 

Electrolyte 

Enteral 

Explanation Facility 

Forward Chaining 

Frame 

Heuristic 

A type of system activity that attempts to solve a 
problem by stating a goal and looking into the 
database for the conditions that would cause that 
goal to come about, then reiterating this process, 
using those conditions as the goals and searching 
for their preconditions. 

Via the main blood vessel entering the heart. 

The problem area about which a system has 
knowledge. 

The ionic component of bodily fluids (eg. K+, 
HP03-). 

Passed into the stomach via mouth or nose. 

A feature of many expert systems that tells what 
steps were involved in the process by which the 
system arrived at a solution. 

A type of system that applies operators to a 
current state in order to produce a new state, and 
so on, until a solution is reached. In an expert 
system, a forward-chaining rule detects certain 
facts in the database and takes an action because 
of them. 

A knowledge representation technique based on 
the idea of a frame of reference. A frame carries 
with it a set of slots which can represent objects 
that are normally associated with the subject of 
the frame. The slots can then point to other slots 
or frames, a feature that gives frame-based 
systems the ability to allow one object to inherit 
characteristics from another, and to support 
inferences. 

A process, sometimes a rule of thumb, that may 
help in the solution of a problem, but that does 



Glossary - Explanation of Terms 

Hyperalimentation 
Inference 
Inference Engine 

not guarantee the best solution, or indeed, any 
solution. Because the success of a heuristic is not 
guaranteed, a problem that can be solved by one 
algorithm frequently requires many heuristics. 
The primary effect of heuristics is to eliminate 
the need to examine every possible approach. 
Excess nutrition (less used term for TPN). 
A conclusion based on a premise. 
The part of a rule-based system that selects and 
executes rules. In contrast to algorithms 
embedded in traditional software programs, but 
like the human reasoning process, the conclusion 
that an inference engine will draw from a given 
set of facts is not known in advance. 

Intravenous 
Knowledge Base 

Knowledge Engineer 
Knowledge Representation 

LISP 

Nasogastric 

Into a vein or veins. 
The part of an artificial intelligence system that 
contains structured, codified knowledge and 
heuristics used to solve problems. Artificial 
intelligence systems using such a base are called 
knowledge-based systems. In an expert system, 
the knowledge base generally contains a model of 
the problem, knowledge about the behavior and 
interactions of objects in the problem domain, 
and a level of general-purpose knowledge. 
A person who implements an expert system. 
A structure in which knowledge can be stored in 
a way that allows the system to understand the 
relationships among pieces of knowledge and to 
manipulate those relationships. 
A programming language (LISt Processing) 
designed specifically to manipulate symbols 
rather than numeric data. 
Passage of substances via nose or mouth. 



Glossary - Explanation of Terms 

Parenteral Nutrition 

Pattern Matching 

Physiology 

Production Rule 

PROLOG 

Total Parenteral Nutrition 

Working memory 

Nutritional regimes which provide more 
nutritients than the usual dextrose and saline 
solutions, but not a high energy balanced diet. 

A process performed by an expert system during 
its search through its knowledge base. 

The science of the vital phenomena and organic 
functions of animals and plants. 

A procedural process triggered by a pattern. 
Ru les are c o m m o n l y s tructured in an 
if...then...format. If the pattern is matched, then 
schedule a procedure for execution. 

A programming language (PRO-gramming in 
LOG-ic ) designed primarily to manipulate 
symbols rather than numeric data. PROLOG 
differs from LISP in its approach. PROLOG 
programs use assertions about objects and 
relationships to handle queries about them and 
anwers these queries by consulting its knowledge 
base of relations. 

TPN - Administration of the components of a 
normal diet intravenously, including water, 
amino acids, carbohydrate, fat, vitamins, minerals 
and trace elements. In adults the administration of 
2,000-3,000 kcal (non-protein) per day is implied. 

The dynamic portion of a production system's 
memory. Working memory contains the database 
of the system, which changes as the rules are 
executed. 



Bibliography 

REFERENCES 

[BROWNSTON85] Brownston,L., Farrell ,R., Kant,E. and Martin,N., 
"Programming Expert Systems in 0PS5", Addison-Wesley 
Publishing Company, Reading, Mass., 1985. 

[BUCHANAN79] Buchanan, B.C. and Feigenbaum, E.A., "DENDRAL and 
Meta-DENDRAL : their applications dimension", Joumal of 
Artificial Intelligence", pp5-24. 

[BUCHANAN84] Buchanan, B. G. and Shortliffe, E. H., "Rule-Based Expert 
Systems: The MYCIN Experiments of the Stanford 
Heuristic Programming Project", Reading, Massachusetts, 
Addison-Wesley Publishing Company, 1984. 

[CRI86] Smart,G. and Langeland-Knudsen, J., "The CRI Directory of 
Expert Systems", Learned Information (Europe) Ltd., 1986. 

[DAVIS77] Davis, R., Buchanan, B.G. and Shortliffe, E.H., "Production 
Rules as a Representation for a Knowledge-Based 
Consultation Program", Artificial Intelligence, 8 (1), 1977, 
ppl5-45. 

[DEBENHAM89] Debenham, J.K., "Knowledge Systems Design", Prentice-
Hall, Sydney, 1989. 

[DUDA80] Duda, R. Gaschnig, J. Hart, P. "Model Design in the 
PROSPECTOR Consu l t an t System for Minera l 
Exploration", in Expert Systems in the Micro-Electronic Age 
(D. Michie ed.), ppl53-167, Edinburgh University, 
Edinburgh, 1980. 

[FEIGENBAUM78] Feigenbaum, E.A., "State of the Art Report on Machine 
Intelligence", A. Bond (Ed.), Maidenhead: Pergamon-
Infotech, 1978. 



Bibliography 

[FORGY82] Forgy, C.L. "Rete: A fas t Algori thm for the Many 
Pattern/Many Object Pattern Match Problem", Artificial 
Intelligence, 19 (1982) 17-37. 

[GASCHNIG76] Gaschnig, J., "Preliminary Performance Analysis of the 
Prospector Consultant System for Mineral Exploration", In 
Proceedings of the Sixth International Joint Conference on 
Artificial Intelligence, Tokyo, 1979, pp308-310. 

[HAYES-ROTH83] Hayes-Roth, F., Watermann, D.A. and Lenat, D.B., (eds.) 
"Building Expert Systems", Addison-Wesley Publishing 
Company, Reading, Massachusetts, 1983. 

[KOWALSKI79] Kowalski,R., "Logic for Problem Solving", North Holland, 
New York, 1979. 

[KUMARA86] Kumara , S. Soyster , A.L. and Kashyap, A.L. "An 
Introduct ion to Art i f ic ia l Intel l igence", Industr ial 
Engineering, Vol 18, No 12, 1986, pp9-20. 

[MCCARTHY83] McCarthy, J. "Artificial Intelligence (AI)" Colliers 
Encyclopedia Vol 1,1983, ed.: pp714-716. 

[MCDERMOTT80] McDermott,!., "Rlran expert in the Computer Systems 
domains", AAAI-80, pp269-271. 

[MCDERMOTT82] McDermott, J., "R1 : A Rule-Based Configurer of Computer 
Systems", Artificial Intelligence, 19 (1982), pp39-88. 

[MCDONALD83] McDonald,C.J. et.al. "The Regenstrief Clinical Laboratory 
System", IEEE Proceedings of the Seventh Annual 
Symposium on Computer Applications in Medical Care, 
1983,pp. 254-257. 

[NEWELL72] Newell,A. and Simon,H., "Human Problem-Solving", 
Englewood Cliffs, NJ: Prentice-Hall, 1972. 



Bibliography 

[RAUCH-HINDIN86] Rauch-Hindin, W.B. "Artificial Intelligence in Business, 
Science and Industry Volume I: Fundamentals and Volume 
11: Applications", Prentice-Hall, New Jersey, 1986. 

[SHORTLIFFE76] Shortiiffe, E.H., "Computer-Based Medical Consultations : 
MYCIN", Elsevier, New York, 1976. 

[WATERMANN86] Watermann, D.A., "A guide to Expert Systems", Addison-
Wesley Publishing Company, Reading Massachusetts, 1986. 

[WEBSTER76] Webster's Third New International Dictionary, G. & C. 
Merrian Company Publishers, Springfield, Massachusetts, 
1976. 

[WILLIAMS89] Williams,G.J., "FrameUP: A frames formalism for expert 
systems", Aust. Comp. Journal, Vol. 21, No.l, February 
1989. 

[WINSTON81] Winston,P. and Hom,B., "LISP", Addison-Wesley, Reading, 
Mass., 1981. 



Allbook Bindery 
91 Ryedale Road 
West Rj^e 2114-^ 
Phone:807( 


	The application of expert systems in parenteral nutrition
	Recommended Citation

	tmp.1448332243.pdf.eyi1R

