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Abstract

ABSTRACT

The trajectory analysis of a celestial object orbiting another body is the basis for all other, 

more complex theories of spacecraft motion. It is also highly important for the design and 

construction of spacecraft.

New computer software SATELIGHT is developed for computing the satellite coordinates 

with respect to the Earth centre or to the point on its surface, in orbit plane or in right 
ascension system.

A dynamic model is presented by second order differential equations solved numerically. 

The numerical method used is Runge Kutta IV order. Initial conditions are based on the orbit 

characteristics -  shape and orientation, and are result of mission objectives and constraints 

analysis.

The model is developed gradually. The starting stage is solving the so-called Kepler’s two 

body problem which includes only gravitational force without any perturbing forces. This 

model is further modified for anomalies of the Earth gravitational field, atmospheric drag 

and three body problem -  influence of Moon on the trajectory of the Earth satellite. The 

model for the Three-Body perturbation gives solution for any situation in the space and 

computes change in the orbit inclination angle.

The coordinates are obtained in numerical form with adjustable precision, depending on the 

computer capability. Results could be transferred to the Excel and by using a particular 

program could be imported into ACAD and plotted as a drawing file. This gives great visual 

presentation in two dimensions, with opportunity to effectively compare, measure and 

further manipulate imported data.

This work is primarily concerned with unmanned Earth orbiting spacecraft but the basic 

principles are sufficiently broad to be applicable to any situation. The advantage of this 

software is its flexibility to be modified for any specific situation required by initial or 

environmental conditions.
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NOMENCLATURE
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g -  Earth gravitational field strength

g 0 - acceleration due to Earth gravitational field measured at the equator
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G - Universal gravitation constant, G = 6.67 xKT11 ^ÜL.
kg2

h -  altitude

h -  time step for the numerical method 

i- inclination

i -  unit vector in x direction 

I  -  inertia tensor 

j  -  unit vector in^ direction
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k -  unit vector in z direction 

ml,m2..mn - point masses

M e - mass of the Earth, M E -  5.976 x 1024 

M - mean anomaly 

N -  normal force 

n -  unit normal

O -  origin of the reference frame 

p -  pressure 

Q -  heat

r - radial component or displacement

f  - radial component of velocity, r = —
dt

f  - radial component of acceleration, f  =
dt:
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R -  perturbing or disturbing potential 
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Re -  mean equatorial Earth radius 

R0 - mean Earth radius, R0 = 6378km
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T -  temperature

U -  potential function; potential energy per unit mass 

Vx - velocity component in x direction
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Vesc - escape velocity
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S - declination angle 
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Introduction. Chapter 1

Chapter 1: Introduction

The most important element of any project in modem aerospace vehicle development is 

the engineering simulation model of the flight dynamics of the vehicle.

To describe and predict the resulting motion of the satellite, it is necessary to understand 

the physical processes by which forces cause objects to move. The analysis of the forces 

acting on the satellite starts with the most basic type of motion in the space -  the two 

body problem. This analysis, of the laws that govern motion in a central force field, is 

presented in Chapter 2 of the thesis. The establishment of a mathematical model that 

describes the observed motion concludes in the final stage of Chapter 2. The second 

order ordinary differential equation, projected onto two directions of a right-angled 

rectangular Cartesian coordinate system, is further solved by a numerical method -  

Runge -  Kutta IVth order. To enable the application of the numerical method to this 

problem, a software system named SATELIGHT is developed, in FORTRAN. The 

derivation and discussion of the numerical method, including error analysis and 

improvement of the results, is presented in Chapter 3.

After obtaining the method for computing with the two-body orbit model, the analysis is 

continued in two, more specific, directions:

1. The first one is to incorporate the effect of Aerodynamic Forces into the 

two-body model. The satellites observed here are Earth satellites, and 

Aerodynamic Forces are due to the Earth atmosphere. The intensity of these 

forces varies directly with respect to the Atmosphere characteristics and to 

geometrical features of the satellite.
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Introduction. Chapter 1

2. The second objective is to include gravitational perturbations that have 

significant effects on the satellite trajectory. These derive from the Earth 

Gravitational Field Anomalies and the Moon’s impact on the observed orbit.

The results of this theory are analysed in Chapter 4.

A particular problem that is solved by the software developed is the effect of the 

Gravitational perturbations on geosynchronous orbits. A satellite that is placed in this 

orbit remains above the same point at the Earth’s surface during its rotation. In reality, 

satellites in geosynchronous orbit achieve a mean motion from 0.9 to 1.1 revolutions per 

day. Depending on the satellite purpose, a particular tolerance for the satellite’s orbital 

deviation is specified, which, when exceeded, is corrected by the utilization of firing 

devices -  thrusters. The effects of the gravitational perturbations included in the model 

on the geosynchronous orbit are analysed and discussed in Chapter 5.

The theory of the Atmospheric Drag effects is applied to the International Space Station 

orbital motion, including an analysis of the Air Drag Coefficient. This coefficient 

depends on the geometrical characteristics of the station and is based on the station 

photographs obtained from NASA. The determination of the Aerodynamic Forces 

depends on the evaluation of the air density at a particular altitude. The model of the 

Earth’s atmosphere is also produced as a part of this research and is based on real 

measurements collected by a satellite that already had been in the orbit [7]. A predicted 

degradation of the Orbital Altitude of the International Space Station is also calculated 

and presented in Chapter 5.

The next introductory section is based on the Space Mission Design methods applied at 

NASA [8]. It explains the importance and the purpose of the Spacecraft Dynamics 

Analysis.

2
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1.1. Introduction to the Space Flight Dynamics

One of the most systematic ways to perform an analysis of the proposed space flight and 

to determine the trajectory characteristics is to divide the analysis into four discrete, but 

integrated areas:

1. Mission Design and Analysis

2. Orbit Engineering

3. Attitude Engineering

4. Tracking Network Support

Each of the noted areas is more or less directly related to the space trajectory analysis. 

These relationships are discussed in more details in further text. Trajectory analysis is 

one of the most important aspects of any Space Flight and affects all other Space Flight 

Mission elements.

To make a short overview of the importance of the trajectory construction and later 

satellite trajectory monitoring more general approach is used.

For comparison, another approach is to set the phases as:

1. Launch -  The phase that starts by lift-off and completes by the end of powered 

flight in a preliminary Earth orbit

2. Acquisition -  While in preliminary orbit, the number of corrective manoeuvres 

is performed with the aim to achieve a desired orbit shape and altitude. This is 

also the stage in which all hardware is tested.

3. Mission Operations -  The phase in which vehicle actually fulfils the concrete 

mission for which the flight is intended.

In this case, the 2nd and 3rd phases are based on the trajectory analysis. Many of the 

principles applied in the last two phases are also applicable for the Launch phase -  

example air drag.

3
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1.1.1. Mission Design and Analysis

This could be observed as the initial stage of a flight ‘construction’ procedure, where 

trajectory design, orbit analysis and evolution and finally, an appropriate analysis tool 

are defined.

All of these elements are in some degree directly related to the actual aim of the mission.

These activities are actually contained in the pre-launch preparation phase, and later 

followed by in-flight operational support and ‘proof of concept’ studies for future 

missions.

Throughout the complete mission life cycle, project managers and principal investigators 

provide practical value and expertise. It is very important to maintain close cooperation 

with stakeholders, from conceptualisation, through to the post-mission analysis stage, to 

ensure cost-effective outcomes.

One of the first actions in planning a mission is to determine the type of the orbit to be 

achieved. There are a variety of missions that are designed for a particular application. 

Some of them are represented below:

• Low Earth

• Geosynchronous

• Highly eccentric

• Libration point

• Lunar

• Interplanetary trajectories

Each of these missions requires a special orbit type. These orbits have to be constructed, 

initial conditions selected and the applicable software used for final computation. 

SATELIGHT is developed on the sense to provide a solution for each of the noted 

orbits. Selection of the initial conditions is given in Chapter 4, the software practical 

interpretation results in Chapter 5 and the software development and characteristics in 

Chapters 2 and 3. It could be seen from the above text that all other mission elements 

depend heavily on the orbit type that has to be achieved.

4



Introduction. Chapter 1

Starting by the goal definition, the whole process of developing the mission strategy 

could be subdivided into the following segments:

A. Establishing initial-viable trajectory composed of:

1. Defining scientist’s mission goals

2. Producing a viable trajectory

3. Providing input to subsystem designers (power, thermal, propulsion, 

communications, attitude control)

Some of the special types of trajectory design are:

• Formation Flying -  a new concept created with the aim to fly several satellites in 

formation form to observe object in space with much larger sensors than could be flown 

on a single satellite. This is one of the areas that is developing very fast, with the number 

of new exciting ideas but also with realistic projects already at an advanced stage.

• Constellation Design -  the concept that is based on the idea of making a grid over the 

part of Earth or very often the entire Earth. In other words each point on the Earth’s 

surface should be able to contact one satellite at each point of time. Constellation design 

differs from single orbit construction, but is heavily based on it. Constellation design 

incorporates basic shape of the orbit (circular, elliptic, synchronous, etc) with for 

example dynamic effects of Earth’s gravitational anomalies. Usually there is no single 

answer on observed problem, but an array of constellations with specific properties to 

support various mission constraints.

• Aerobraking -  using a planetary atmosphere to change the orbit of a spacecraft. Some 

of the satellite orbital energy is changed into thermal energy due to the interaction with 

the atmospheric particles. This concept is particularly effective way to mitigate the total 

mass problem, ie. if aerobraking is used the cchemical propulsion system on the 

spacecraft can be much smaller.

A number of characteristics of a given trajectory, segment by segment, affect further 

development. Some of the items provided to scientists and spacecraft designers are:

• Propellant loading studies -  affected by trajectory correction method

• Lifetime analysis -  depends on aero drag analysis

• Trajectory error analysis -  depends on the numerical method applied

• Orbital event analysis -  determined by the aim of the mission

• Eclipse profiles -  affected by the orbital elements

5



Introduction, Chapter 1

• Station contact data -  also affected by the orbital elements

• Launch vehicle dispersion analysis -  affected by parking orbit

• Reentry and disposal orbit planning -  determined by Aerodynamic perturbations/ 

effects and orbit elements characteristics

B. In this stage the trajectory is refined, necessary changes are introduced to the initial 

model and more detailed analysis is applied. The final results are utilised further in the 

appropriate sections. This process is divided into:

1. Design of subsystems/elements

2. Construction

3. Testing

C. The mission trajectory is subject to changes, both planned and contingency. Various 

strategies are applied to cope with the effects of these changes on mission goals. Placing 

the vehicle in a desired orbit completes the final stage and could be divided into:

1. Ascent from the injection orbit to the mission orbit

2. Maintaining the mission orbit

3. End-of-life disposal, which has to meet particular requirements.

This outline of the flight design process indicates how important it is to determine 

precise models of the motion in space. Accurate prediction of the drift from an ideal 

trajectory due to particular perturbing force will largely affect the design stage of the 

vehicle, but also flight control methods.

1.1.2. Mission Analysis Tools

The Mission Analysis Tools define the software systems implied for trajectory design 

and orbit mission analysis.

There are a number of different software systems available commercially, each of them 

developed for particular conditions, and providing a particular accuracy level. In the 

process of selection of the appropriate software, particular emphasis is placed on the 

accuracy of the system, as the trajectory design depends heavily on the developed 

model. Methods based on Numerical Integration give one of the most accurate solutions 

to the problem of motion in the space. One of these, a step-by-step method, is applied in

6
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this project, and used as a base for further software development. Error analysis of the 

method is presented in the Chapter 3.

It is very important to understand and to select the most appropriate software, or a 

combination of the software tools, to solve a given problem for a particular Mission in 

Space.

1.1.3. Orbit Engineering

Orbit Engineering consists of orbit determination prior to launch of the spacecraft, and 

maintaining and controlling the orbit after the launch.

During the first phase, science mission objectives and constraints are analysed, and as a 

result, orbit shape and orientation are determined.

After launch, the satellite transmits data back to the control centre, known as The Space 

Network or The Ground Network. This data is used to compute the distance to the 

spacecraft (range), the rate at which this distance is changing (range rate) and the 

direction in which the tracking station antenna is pointed while it communicates with the 

satellite. The orbit generated from the acquired data from a satellite is compared to the 

theoretical orbit, and based on these results the predicted orbit is further computed.

Besides the position, that is a subject of calculation, the associated velocity at any time is 

also determined.

The predicted orbit is used further for producing so-called scheduling aids. Scheduling 

aids indicate spacecraft environmental conditions (for example sun or shadow, 

interference regions and altitude) as well as all potential station-to-spacecraft contact 

times (view periods). Based on the determined environmental conditions, plans for

7
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scientific data collection can be established. From the estimated station view periods, 

Control Centre or Project Operations Control Centres can select the times needed to 

meet mission communications requirements.

Most of the satellites will experience some orbit transformation during their lifetime. 

These transformations can occur with the aim to correct disturbances due to perturbing 

forces, or simply to achieve desirable orbit shape, size or inclination -  these orbit 

elements are defined in Chapter 2.

Thrusters are the orbit -  adjust engines used to achieve the required orbit transfer. 

Elements that have to be determined for successful orbit change are direction, duration 

and particular times at which thruster firing will occur. Computed thruster firing 

elements are converted into spacecraft-recognizable commands, and transmitted from 

the Project Operations Control Centres to the Tracking Station, and then to the satellite 

for execution.

For the satellites (elliptical or circular orbit) that do not have installed thrusters, or for 

those which have run out of fuel, the orbit cannot be corrected, and the satellite will lose 

its altitude gradually because of the drag of the Earth’s atmosphere (orbit decay). 

Details about methods by which a perturbed orbit could be altered are presented in 

Chapter 5.

Eventually, the satellite will re-enter the Earth’s atmosphere, and one of the most 

important applications of the predicted orbits is to determine the time and the place of 

the re-entry.

1.1.4. Attitude Engineering

Attitude of the satellite is the direction of the orientation with respect to the particular 

object whose position is already defined. To determine the attitude means compute the 

set of parameters that describe satellite orientation with respect to the chosen origin.

8
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The first set of signals sent from the satellite is converted into data and processed 

further. The result of this analysis is the actual position of the satellite at a particular 

time. Attitude control and adjustment of the existing attitude is performed, for example, 

if the latest computed attitude indicates that the satellite has drifted too far to observe its 

current science target, or the satellite must be re-oriented for orbit manoeuvres, or if a 

new target is to be observed.

The desired attitude is transformed into required attitude control commands and 

transmitted to the satellite.

According to NASA [24] one of the most effective ways to approach the Attitude 

Analysis is to subdivide it into the sections concerned with an Attitude Determination 

Error Analysis, Attitude Dynamics Studies, Advanced Attitude Determination 

Techniques, Attitude Sensor Studies and SKYMAP Star Catalog.

1.1.5. Tracking Network Support

Tracking Data is intensively analysed with the aim of assisting in identifying any 

defective tracking equipment. Analysis also includes the data obtained from the 

predicted orbit defined previously. This analysis results in acquisition data that precisely 

indicates where and when tracking stations must point antennas to track a particular 

satellite. Acquisition data is distributed from the Flight Dynamics Facility to all tracking 

stations. Predicted orbit data is sent to stations before a satellite launch. Flight Dynamics 

Facility acquisition support extends throughout a mission lifetime.

For launch vehicles, tracking data and onboard directional and acceleration (inertial 

guidance) data is processed to monitor the powered flight (thrusting) of the rocket. Real 

data, transmitted from the satellite, is continuously compared to the predicted data. The

9
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results are used to further update the acquisition data, based on actual vehicle 

performance.

To provide tracking support for a tracking data and relay satellite, a mini -  control 

centre is utilized. This centre is named the Bilateral Ranging Transponder system, and 

consists of several unmanned ground based transponders at various locations around the 

world. Satellite orbits are accurately computed as the transponder positions are precisely 

known.

1.2. Orbit Properties and Terminology

There are different classifications of the orbits that a heavenly body can move in, under 

the action of the gravitational central force. Which orbit will be obtained depends on the 

initial conditions and the mission requirements.

For example, the classification based on altitude:

• High Altitude Orbits, with the altitude above 800km.

• Low Altitude Orbits, with the altitude from 300 to 800km.

Another classification is based on the orbit shape:

• Elliptical

• Circular (as the special case of the elliptical orbit)

• Parabolic

• Hyperbolic

10



Introduction. Chapter 1

All of the above curves can be constructed by a cone intersected by a plane. The 

properties of the particular orbit type are discussed in Chapter 2, as a part of the section 

on celestial mechanics.

Some special purpose orbits are:

• Polar orbit -  An orbit of a satellite which passes above the Earth’s poles 

during one rotation,

• Sun synchronous orbit - A satellite orbit which always contains the Earth -  

Sun line (special case of the polar orbit). Its orientation is nearly fixed 

relative to the Sun as the Earth moves in its orbit.

• Geostationary orbit -  An orbit in which the satellite remains above the same 

point at the Earth’s surface.

A particular emphasis is placed on the geostationary orbit, which is used as a subject of 

further analysis for determining the sensitivity of a satellite orbit under the atmospheric 

drag and gravitational perturbations.

1.2.1. Orbit Elements

The orbit is completely defined by seven numbers, which are, for the idealized Kepler’s 

model, constant with respect to time. These numbers are known as orbit elements or 

Keplerian elements.

These elements define the shape of the orbit, its position and orientation in space, and 

also, the position of a satellite in that orbit at particular time.

In reality, the shape of the orbit and its orientation change under the action of different 

perturbation forces.

The definition of these seven elements, which are used as the basis for development of a 

general orbit model, is presented below.

11

3 0009 03245273 7



Introduction. Chapter 1

1. Epoch

Epoch is the instant at which the set of other parameters was taken. It is simply the 

number that specifies the time.

2. Orbital Inclination

Every orbit is contained by a flat plane in a space. For an Earth satellite, the orbital 

plane contains the centre of the Earth. Another plane that also contains Earth’s 

centre, but whose position in space is already defined, is the equatorial plane. The 

smallest angle measured between the positive direction of the normal vector of the 

equatorial plane and the satellite’s orbital angular momentum vector is named the 

inclination angle.

Please refer to the Fig. 1.2.1.1. presented below:

Fig. 1.2.1.1. Inclination angle of the orbit
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Orbits with 0 inclination angle are named equatorial orbits -  the orbit plane is almost 

coincident with the equatorial plane. If the inclination angle approaches 90 , the orbit 

is named polar -  the satellite passes over (or nearly over) the North and South poles.

3. Right Ascension of Ascending Node

It was already mentioned that an orbit plane passes through the Earth’s centre and 

intersects the equatorial plane. The intersection of these two planes results in a line, 

in this case named the line o f nodes. Refer to Fig. 1.2.1.2.

DESCENDING 
_______ NODE /  DIRECTION OF MOT

LINE OF 
NODES 1

LINE OF 
NODES 2

i
/

1

ORBIT 
PLANE i

ORBIT PLANE ASCENDING NODE

Fig. 1.2.1.2. The Ascending and Descending nodes

It is seen from the above figure that the orbit plane can intersect the equatorial plane 

in an infinite number of lines and still satisfy the requirement determined by the

13
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inclination angle. The real orbit plane of a particular satellite can have only one of 

these possibilities, therefore the element that will specify the exact position of the 

line of nodes has to be defined.

As both the orbital plane and the equatorial plane pass through the Earth’s centre, 

their intersecting line also passes through the Earth’s centre.

The conclusion is, at this stage, only one point, different than Earth centre, is enough 

to define the line of nodes.

The ascending node is the node where satellite crosses the equator while ‘climbing’ 

from south to north.

Another point, at the opposite end of the line of nodes, named descending node, is 

the intersection of the satellite path from north to south, and the equatorial plane.

By convention, the location of the ascending node is used for the orbit definition. 

One of the methods to specify the ascending node is to use the reference system that 

does not rotate with the Earth. This system is widely used by astronomers and is 

known as the right ascension/declination coordination system.

Right ascension of the ascending node is the angle that lies in the equatorial plane, 

measured from the point defined as the Vernal Equinox, to the ascending node, with 

the apex at the centre of the Earth.

The Vernal Equinox is actually the ascending node of the Sun rising from the south 

to the north in its orbit about Earth. By convention, right ascension of the ascending 

node can take any value between 0° and 360°.

To summarize the first three elements, a short review will be made. At a particular 

instant, there are specific values of an inclination angle and right ascension of 

ascending node, constant in time, which are enough to orient the orbit in space. 

Refer to figure 1.2.1.3. below:

14
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Fig. 1.2.1.3. Orbit defined with the first three elements

The next step is to define the orbit orientation in its plane. The elliptic orbit will be 

taken as the object of interest as the most common case for earth satellite orbits (a 

circular orbit is a special case of the elliptic orbit). The following elements are used 

for definition of orbit shape and orientation in its plane.

4. Argument of Perigee

The point at which the satellite is the closest to the Earth is called its perigee. The 

distance from the centre of the Earth to this point is used as one of the initial 

conditions for software developed in this study. Another characteristic used also as 

the initial condition for trajectory generation is the velocity of the satellite at this 

point.

15
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For an elliptic orbit, the centre of attraction is placed at one of its foci, Figure 

1.2.1.4:

Fig. 1.2.1.4. Elliptic Orbit Geometrical Properties

There are two extreme positions of the orbiting satellite, the one closest to the 

attracting body -  perigee, and the other one that is furthest away -  apogee.

Kepler’s second law states that ‘The radius vector of the orbiting planet with the 

Sun at the origin sweeps out equal areas in equal times’ [20]. This statement is 

illustrated in the Fig. 1.2.1.5.

Kepler’s second law is actually based on the property of the conic section, and is a 

consequence of Kepler’s first law. These laws, that are results of an abundance of 

observations and measurements, are explained and analysed in Chapter 2, as the 

introductory section of Celestial Mechanics.

16
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Apogee

Fig. 1.2.1.5. The Law of areas

Celestial Mechanics has another approach to the problem of planetary motion, but its 

results prove Kepler’s laws to be true.

The dynamic analysis of an orbiting body is also presented in Chapter 2.

For now, it is important to note that the closest point to the Earth has the greatest 

velocity and vice-versa, the farthest point from the Earth’s centre has the lowest 

velocity.

The position of the perigee in the orbit plane is defined by the angle measured from the 

line of nodes (contained by the Equator plane, passing through the Earth’s centre) to the 

line o f apsides.

The line of apsides is on the major axis of the elliptic orbit, containing the perigee and 

apogee, and passing through the Earth centre, obviously lying in the orbital plane.

By convention the argument of perigee is an angle between 0° and 360°.

17
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5. Eccentricity

The most fundamental classification of conic sections is based on their eccentricity.

Ellipse 0 < e < 1 
Circle e = 0

V
Hyperbola e >1 
Parabola e - \

(1.2 .1.1.)
All of the noted conic sections have one common characteristic: The ratio of radius, 

measured from the focus of the section to the point of the locus, and the respective 

shortest distance to the directrix is known as the eccentricity and is always constant for a 

particular shape of the section. The directrix is a line normal to the axis of symmetry of 

the section.

Graphically presented:

Eccentricity of a conic section is expressed mathematically as: 

e ~ r  / d -  const (1.2.1.2)
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From the above figure 

dQ = d + r cos 6 (1.2.1.3)

and

p r
d q d

Therefore,

(1.2.1.4)

= dn = d + rcosO = — + rcos0 = r + re cosO
(1.2.1.5)

e e e

From the last expression, the general equation for a conic section radius-vector is:

. —— T (1.2.1.6)\ + ecosO
r =

As it can be seen from Fig. 1.2.1.6, for 6= 90 , the radius is denoted by p  and is called 

the semi-latus rectum.

The first stated characteristic of conic sections holds here as well, so equation (1.2.1.2) 

is applicable.

PERIGEE
M AJOR AXIS
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Another feature of the ellipse is that, the sum of the distances of any point on its locus, 

from two foci is a constant and equal to 2a -  the major axis of the ellipse.

From (1.2.1.6) it can be concluded that the minimum radius is obtained for 6=0°:

pr — r = —— 
l + e

(1.2.1.8)

The maximum value of the radius is:

r = = ]P e f ° r ¿* = 180 (1.2.1.8)

From Fig. 1.2.1.7.

1 /  ̂ 1 ( p  p  \  p
2 p 2 \ l  + e 1 — e J l - e 2

(1.2.1.9)

Ta ~ rpe = ------ —
ra +rp

(1.2.1.10)

F ’F  = 2 f  = 2a 2 rp= 2pe  ̂ = 2  ae
l - e 2

(1.2.1.11)

b = ^ja2 - f 2 = a y /l-e 2 (1.2.1.12)

The observation for a parabola is very similar to the previous one.

From the theory presented, it is clear that eccentricity determines the shape of the orbit. 

Typically, tracking programs are not programmed to compute orbits different than an 

ellipse or a circle. The software developed here can determine properties of the orbit in a 

two-body problem with any eccentricity. The rest of the programs are used for elliptical 

orbits mainly, but only a small modification is required to adapt them for any other orbit 

shape.

The orbit model, defined with the five elements already described is:
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ASCENDING NODE

Fig. 1.2.1.8. Orbit defined with: inclination angle i, right ascension of ascending node 

RAAN, argument of perigee © and perigee/apogee values (eccentricity) at a particular

instant -  epoch.

These elements could be classified further as:

1. Elements that that define the orbit’s orientation in space:

- inclination angle

- right ascending node

2. Elements that define orientation in orbit plane

- argument of perigee

3. Elements for orbit shape definition:

- eccentricity
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The last classification is emphasised because of its importance for the system 

transformations that will be performed in the one of the following steps.

The next element will determine the size of the orbit.

6. Mean motion

Based on the Kepler’s third law, the velocity and radius vector of the orbiting body -  

satellite are directly related.

In other words, when one of these values is known the other one could be determined. 

For a circular orbit the radius is constant, therefore the orbiting speed is also constant. 

For orbits with e>0 smaller radius means greater speed and vice-versa.

Mean motion is the average speed determined for a particular orbit. For example, 

satellites typically have mean motions in the range of lrev/day to 16 rev/day.

7. Mean anomaly

The last element, named mean anomaly, specifies the position of the satellite in the 

orbit.

The first element described here, epoch, is the particular time that gives a particular set 

of values including the position of the satellite in the orbit. A concept similar to the polar 

angular coordinate used for description of the object position on its trajectory is used 

also for the mean motion in a circular orbit. The mean motion is the angle whose vertex 

is placed at the centre of the Earth -  one of the foci of the orbital plane. It is 0 at 

perigee and 180 at apogee. Its rate of change is constant during the orbiting, as it is 

based on the mean velocity of the satellite. The value of mean motion, by the 

convention, varies from 0° to 360°.
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Some authors include air drag as an eighth element that describes the orbit. In this 

project air drag is not treated as an orbit element, because of two reasons. The first one 

is, the air drag effect on the orbit is studied in greater depth through the following 

chapters of this work. The second reason is, the orbit elements are also known as 

Kepler’s elements, which are automatically associated to the values constant in time. 

The air drag varies during the time and alters other elements to change, therefore does 

not contain the basic definition of these elements.

The alteration of orbit elements by the air drag effects is the main subject of Chapters 3 

and 5.

1.3. Obtaining the Trajectory

The trajectory of the satellite or a spacecraft will mainly depend on the mission 

objective, but there are other factors that, in different ways, have an effect on the final 

trajectory, or have to be chosen in such way as to achieve set goals.

In general, as it was mentioned in first section of this chapter, most missions have in 

common the following three phases:

1. Launch

2. Acquisition

3. Mission Operations

The first phase starts with the appropriate selection of the launching site. Because of the 

Earth’s rotation, the final orbit of the satellite will depend on the latitude and longitude 

of the launching site. For example, in the United States in the past, most launches for 

equatorial orbits occurred from the Eastern Test Range at Cape Canaveral, Florida. For 

polar orbits, rocket launching was performed from the Western Test Range at 

Vandenberg Air Force Base, California.
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This project does not observe the actual dynamics of the flight during the launch phase. 

The acquisition phase starts by separation of the satellite from most of the launch 

vehicle. This phase includes a number of tests, and can last from a few minutes to 

several months. The definition of this phase depends on details of the mission. For 

example, the time and the process for testing and manoeuvring of the satellite for 

communications purposes is different from the satellite involved in collection of 

scientific data.

By completion of all required checks and tests, after a particular time, the proper orbit is 

achieved and normal function of the satellite begins.

To illustrate the whole process of placing a satellite into the orbit, a particular mission 

will be used as an example.

Communication Technology Satellite CTS, was launched from Eastern Test Range at 

23:28 Universal Time (UT) (18:28EST) on Jan 17, 1976. The launch vehicle used was 

Delta 2914.

This project was performed in cooperation with the Canadian Department of 

Communications and the United States National Aeronautics and Space Administration. 

NASA provided the launch vehicle, launch facilities and operational support through the 

acquisition phase of the mission. The satellite itself was built and operated by the 

Canadian Department of Communications. The purpose of the mission was to improve 

communications by tests performed in a high power television relay from portable 

transmitters operating at a frequency of 14 GHz to low -  cost 12 GHz receivers.

The orbit required for achieving this task was geo-synchronous (this type of the orbit is 

discussed later) and the satellite was supposed to remain stationary above a point at the 

equator and at 114° West Longitude.

This location was chosen as it permitted television transmission to remote regions of 

both Canada and Alaska.

The total mass of the CTS spacecraft was 676kg at lift off. About 340kg of this value 

was in the weight of a rocket motor, known as the apogee -  boost motor, required for 

achieving proper orbit.
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1.3.1. The Geometrical characteristics of the satellite

The satellite’s body was approximately cylindrical, 1.88m high and 1.83m in diameter. 

The main source of the power necessary for operating the satellite is solar energy 

converted by solar cells to electric power. Two extendable solar arrays were each 6.20m 

long and 1.30m wide with mass 15kg and power output of 600watts per array. The 

attitude control was performed by utilization of 11 sensors and 3 gyroscopes.

Orbit control equipment included one big apogee boost motor used in the acquisition 

phase, and 18 smaller rocket motors - 2 high thrust and 16 low thrust for both orbit and 

attitude manoeuvres. The trajectory development is presented in the figure below:
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1.3.2. Obtaining the Orbit

CTS was launched into an initial 185km parking orbit. This orbit was maintained for 

about 15 min until the satellite crossed the Equator.

The second manoeuvre was to inject the spacecraft into ‘transfer-orbit’, in this case 

elliptical orbit with its perigee at parking orbit altitude, and apogee at the geo

synchronous orbit altitude (which is almost constant as the orbit is of very small 

eccentricity).

This example clearly indicates the boundaries between the three, earlier defined referred, 

phases of the mission.

The launching phase was completed by the injection of the satellite into the transfer 

orbit.

The injection of the satellite occurred in such way to provide an appropriate velocity 

direction and intensity for achieving elliptical orbit with apogee altitude equal to the 

altitude of the geo-synchronous orbit.

Further transfer from elliptical to geo-synchronous orbit was achieved by firing the 

apogee boost motor at an appropriate time and in a precisely determined direction and 

intensity.

To achieve the required precision for orienting the boost motor, therefore orienting the 

spacecraft, all attitude control sensors had to be tested and calibrated.

This stage required about 6.5 transfer orbits, or about 3 days. The precision of 

positioning apogee boost motor was ±1 . The total angle of rotation from initial 

orientation to the apogee motor firing attitude was 225 . This rotation was performed by 

firing two high thrust rocket motors.

After achieving the desired position of the satellite in the transfer orbit and firing the 

boost motor, the satellite was placed into an orbit of about 23 hours and 15 minutes, so

26



Introduction. Chapter 1

the spacecraft drifted slowly westward relative to the Earth’s surface. When the satellite 

was at a desired longitude, characteristics of motion were altered further by firing 

thrusters, until its period was nearly identical to the Earth’s rotation period.

This orbit refinement was carried out for period of about 9 days and consisted of five 

progressively smaller orbit manoeuvres. The lifetime of the satellite was about 2 years.

1.3.3. Geosynchronous Orbit

Most satellites are placed into geo-synchronous orbits using so called geostationary 

transfer orbit.

Geostationary transfer orbit is an initially elliptic orbit of about 300 by 36000km, perigee 

to apogee size. After achieving this orbit the next transformation leads to new orbit 

whose perigee is placed at 36000km.

In fact, the initial orbit could be defined as the orbit of 300km to 82000km. A series of 

bums are applied further to lower the apogee and raise the perigee, until the final orbit 

(with close to zero eccentricity) of 36000km altitude is attained.

Another possible approach is to use supersynchronous insertion method - the transfer 

orbit scenario that optimizes the combined propulsion capabilities of the launch vehicle 

and the spacecraft.
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Chapter 2: Model of the Motion in the Space Environment

This chapter contains the main principles and laws that have to be followed during the 

construction of the mathematical model for orbital motion in space. It provides the 

necessary theoretical basis, with some analytical solutions, to the dynamic analysis 

that starts with purely physical laws, now observed from a slightly different point of 

view. This analysis provides the final result in the form of a system of 2nd Order DE’s 

that describes the observed motion.

2.1. Celestial Mechanics

Celestial mechanics would be the foundation stone for any space motion-related 

analysis. The simplest and most general approach to define the term celestial 

mechanics would be:

The study o f the movement o f celestial bodies, including the objects launched by man, 

observing the various forces influencing its movement. [14]

The force that has the biggest influence on the motion of the Earth satellite is the 

Earth’s gravitational force. Other gravitational forces present because of different 

celestial bodies, and other non-gravitational forces, are treated as perturbing forces.

To predict motion in space, basic physical laws will be introduced.
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2.1.1. Kepler’s laws

The laws were established in about the 16th century [6], and are based on the accurate 

records that have been collected by Kepler’s teacher, Danish astronomer Tycho Brahe. 

The object of the observation was the planet Mars.

The laws that resulted are the three famous laws [15], outlined below:

1. The orbit of each planet lies in a fixed plane, and is of an elliptical shape, with the 

Sun in one of its foci.

In general, the orbit of the body that is subjected to the central force field is a conic 

section with a focus at the centre of attraction. In reality, due to different perturbing 

forces the position of the orbit plane is not fixed and this will be a subject of further 

analysis.

2. The radius vector of the orbiting planet, with the Sun at the origin, sweeps out equal 

areas in equal times. This law is actually a consequence of the first law, as it states the 

property o f the conic sections.

3. The square of the orbiting period of the planet is proportional to the cube of the 

semi-major axis of that orbit. For two orbiting planets, the square of the ratio of their 

periods is equal to the cube of their major axes ratio.

2.1.2. Newton’s Laws of Mechanics

1. The first law of mechanics states that a body free of any external force 

continues in its state of uniform motion in a straight line (or rest).

2. The second law is mathematically expressed as:

F  = — (mv) (2.1.2.1.)
dt

29



Model of the Motion in the Space Environment. Chapter 2

where mv is the linear momentum of the observed particle.

This mathematical expression, interpreted in words, would be that the rate of 

change of linear momentum is proportional to the applied force, and takes place in 

the direction in which the force acts.

3. The third law of mechanics states that, for every action there is an equal and 

opposite reaction. It is clear the action and reaction forces are collinear, because 

only in that case mechanical angular momentum of an isolated system could be 

conserved.

2.1.3. Newton’s Law of Gravitation

The law of gravitation, developed by Sir Isaac Newton, states that any two particles in 

space attract each other with a force that is proportional to the product of their masses 

and inversely proportional to the square of the distance between them. This force acts 

along the line which joins the particles, Fig 2.1.3.1.

y I

X

Fig. 2.1.3.1. Gravitational force acting on two particles with masses ml and M2, at the

distance d
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Mathematically expressed:

F  = G m lM 2r1 12 ^  3 ''12

12

(2.1.3.1)

where:

Fn -  is a force that particle 2 exerts on the particle 1

rn - is the vector of magnitude |rl21, which defines the position of particle 2 with 

respect to particle 1.

G -  is a constant, named Universal Gravitational constant, equal to 

6.6732xl0'"m3/kgs2

2.2. Discussion and Definition

In order to apply the above laws, and to make the introduction into deeper analysis of 

a satellite motion, it is necessary to define and clarify some terms.

The speeds observed in this case are much smaller than the speed of light, therefore 

Newton Laws of Mechanics could be applied in further analysis. All forces observed 

are behaving as vectors and will be represented according to this statement.

To analyse the motion of the satellite, the first step is to select the appropriate 

reference point, which becomes the origin of the coordinate system used in further 

analysis. The established reference system has to obey the laws previously defined.

The first law of mechanics is obeyed only in Inertial Systems. Such a system moves 

with a constant velocity, or is stationary. If it is noted that it is hard (impossible) to 

specify the body or point in the Universe that is absolutely static, this problem does 

not look trivial.
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The inertial system will obey all of Newton’s Laws of Mechanics, therefore all 

observed forces acting on the body would be balanced. Newton’s second law involves 

only the acceleration of the observed body, but not its velocity. This indicates that the 

absolute velocity of the body can not be determined since there is no way to determine 

which system is in rest.

If one inertial system is defined, all other systems that are stationary or move in a 

straight line with constant velocity with respect to the defined inertial system are also 

inertial systems. The proof for this statement is based on Galileo’s principle of 

relativity and is presented in the Appendix 2.1.

The system that undergoes acceleration is not inertial. An example is a rotating 

system. To apply Newton’s laws in accelerated systems of reference, appropriate 

modifications have to be performed. It was mentioned, in the above text, that in 

inertial systems all forces are balanced. In the non-inertial systems there exists an 

unbalanced force, or acceleration with no apparent force responsible for it. To achieve 

the balance in such systems so called pseudo -forces  are introduced.

In a rotating system one pseudo-force is centrifugal force, which has no physical 

origin, but is a consequence of applying Newton’s laws in a non-inertial system.

To continue further analysis of orbital motion, with Newtonian mechanics theory as a 

base, the systems ‘0 ’ and 7 '  are introduced. Both systems are rectangular Cartesian 

systems with positive orientations. The origins of both systems coincide with the 

centre of the Earth. The plane x0y0 of ‘0 ’ system lies in the equatorial plane, with xG 

axis passing through the point defined as vernal equinox - defined in Chapter 1. It is 

usual practice in astronomy to assume this point as static in space and in time. The 

second axis y0, contained by x0y0 plane is perpendicular to the axis x0. Third axis z0 is 

selected in such way to form right hand orientated rectangular Cartesian system,

referring to Figure 2.2.1. i0, j 0,k0 are the unit vectors attached to the axes of the

inertial system x0, y 0, z0 respectively.
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Fig. 2.2.1. Inertial System ‘O’ with major plane 

containing the Equatorial plane

Point P represents a point on the Earth’s surface, and it is assumed for the time 

t = tQ = 0 , P is stationary with respect to O.

Another system 7 ’ for the initial time t = t0 = 0 coincides with the system ‘0 \  For 

time t - t l system 7 '  rotates with respect to system ‘0 ’ about axis zx = z0 by the

and Q = cok0 figure 2.2.2. The

point P rotates together with the coordinate system 7 ’. Unit vectors ix, j \ , kx are 

attached to the axes of the rotating system xl9y l9 zx respectively.

After time At, the position of the systems could be illustrated as:

, , . irev x Z7t ,
angular velocity (o ---------------where co = Q,
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t Z,

Fig. 2.2.2. The position of the rotating system ‘ 1 ’ with respect to 

the system ‘O’ after a time interval At

The point P is defined as the point fixed to the system 7 therefore rotating with the 

same angular velocity co with respect to the system ‘0 ’.

After time At point P will have a trajectory -  part of a circle with radius rsincp lying in 

the plane perpendicular to the axis of rotation, Fig. 2.2.2.

Position vector of P with respect to xv y x and zx is defined as rx and has a constant 

value with respect to the time.

It could be stated: 

ix = i0 cos cot + j 0 sin cot

j\ = —z"0 sin cot + j 0 cos cot (2.2.1)

K = K

The position vector of the point P is defined in rotating system 7 ’ as:

Fj = XjZ + y j  + zxk (2.2.2)

where x ^ y ^ a r e  the constants. This expression is transformed into:
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rx = Xj (cos coti0 + sin cotjQ) + y x ( -  sin coti0 + cos cotj0) + zx kQ (2.2.3)

therefore

f  -  (Xj cos cot -  y x sin cot)i0 + (Xj sin cot + y x cos cot) j 0 + zjcQ (2.2.4)

d f  — — —
—  = co(-xx sin cot -  y x coscot)i0 + co(xj cos cot + y x sin cot) j 0 + z^k0 
dt

= coxx ( -  sin coti0 + coscotj0) + coyx ( -  coscoti0 -  sin cotj0) (2.2.5)

= m j\  -coyX

Let do -co kx (2.2.6)

rl =x lil + y lj l (2.2.7)

h j  i K
0 0 CO
Xj Ti 0

coyxix +coxj\ (2 .2.8)

-  ar _ _ ____Vp = —  = 6)xr1 (2.2.9)
dt

is the velocity of the point P measured in the inertial system.

From the vectorial product above, it is seen the direction of Vp is along the vector 

perpendicular to the plane defined by the vectors a  and rx. This vector is represented 

by Ar in the Fig. 2.2.2.

Expression 2.2.9 is particularly important because it is used for obtaining the formula, 

which relates the time derivative of the same vector in a system ‘0

2.3. Theory Applied to the Orbital Motion

Assume, the origin of the system 7 ’ is placed at the Earth’s centre, with xyyi plane 

lying in the Equatorial plane with xj axis pointed through the Greenwich. This system
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rotates together with the Earth with the angular velocity coe as defined in the previous 

section.

The origin o f the system ‘2 ’ is also placed at the Earth centre (Kepler’s first law), with 

x2y2 plane coinciding with the satellite’s orbital plane (also Kepler’s first law which 

states that the orbital motion occurs in the ‘fixed’ plane). Axis x2 passes through the 

perigee of the elliptical orbit which is treated as the fixed point in the space 

(perturbations are introduced later). For the time t=0 satellite is placed at the orbit 

perigee, therefore its total velocity is projected along system’s second axis y2 

contained by the orbit plane and perpendicular to the axis x2. Third axis of this inertial 

system z2 is perpendicular to the orbit plane. This system is an inertial system.

Based on (2.2.5) for the satellite moving in the orbital plane about z2 axis with the 

angular velocity cbs it is stated:

COs K (2.3.1)

rx = x j x+yJi (2.3.2)

h k K
w x r x - 0 0 CO = -®yJl +g>xJ ,  (2-3.3)

xt Ti 0

so

dr _
(2.3.4)—  — cox r. 

dt 1

Last expression is a velocity measured in the inertial system.

To develop an expression for an acceleration of the point P seen by the observer 

attached to the inertial frame, more general case will be introduced.

Two systems are defined, xyz and XYZ. Both of these systems are rectangular De 

Cartes coordinate systems. System XYZ is a stationary system, while xyz moves with 

respect to XYZ  system by the motion that involves both, translation and rotation.

State that the motion of P is known with respect to the non-inertial system xyz: 

RP =R0 +R  (2.3.5)
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where Rp represents the radius vector of the point P as seen by the observer placed at 

the origin of the inertial system XYZ. R0 is the vector that describes the position of 

the origin of the moving system xyz with respect to the origin of the fixed system XYZ. 

R is the radius vector of the point P seen from the moving system xyz.

Using the same approach to the one that was defined in the first part of this section, 

unit vectors 1, j  and k are attached to the moving system axes x, y  and z respectively.

R = xi + yj + zk  (2.3.6)

The absolute velocity of the point P is defined with respect to the stationary system 

and is obtained by differentiating vector Rp with respect to the time. From (2.3.6)

•  •  •

Vp = Rp — Ro + R (2.3.7)

From (2.3.6)

-  dx r  dy -r 
R = — i +— J 

dt dt
dz T* di+— k + x —  
dt dt + T dt

dk
+ z —  

dt
(2.3.8)

First term of the expression (2.3.8) describes the change of the radius vector defined in 

the moving system. The second term contains first time derivative of the unit vectors

i , j  and k .

Based on the equation (2.3.4)

i = d) x i

j  = a x j (2.3.9)

k = coxk
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where 3  represents angular velocity of the moving coordinate system xyz relative to 

the fixed system XYZ.

When substituted:

•  •  •

x i + y  j + z k  = x(3 x i )  + y (3  x j )  + z(3  x k)

= 3 x  (xi + yj + zk)  (2.3.10)
•  •  •

xi  + y j + z k = 3 x R

Finally, when the last equation is substituted in the expression for the absolute 

velocity:

•

R = V + 3 x R  (2.3.11)

If VQ = Ro , then:

Vp = V0 +V + 3 x R  (2.3.12)

where

Vp - the velocity of the point P in the XYZ system,

V0 - the velocity of the origin of the xyz system with respect to the system XYZ.

V - the velocity o f P relative to xyz system 

3  - angular velocity of the system xyz relative to the XYZ system 

R - distance from origin of xyz system to P

If the last expression is differentiated again with respect to the time:

• • • 9 •
Ap -  Vp =  VQ + V+ 3x R +  3  x R (2.3.13)
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From the expression for the velocity, follows:

9 • •  • •  • •  •  •  •  •  •

V - { {x i  +y  j  + z k )  + (xi +y j  +zk)  (2.3.14)

The acceleration of P with respect to xyz system is defined by the component:

• •  • •  • •

A = ((xi + y j  + z k )  (2.3.15)

Second term in the equation (2.3.14) could be also defined as:

x i  + y  j+  z k  = x(3  x i ) + y (3  x j )  + z(cb x k)
•  •  •

= 3 x ( x i  + y  j  + z k ) (2.3.16)

Also, from:

V = (xi  +y j  + z k ) 

is derived: » # •
¿oxV = ( x i + y  j + z k )  (2.3.17)

and:

V = A + <5 x V  (2.3.18)

From equation (2.3.11)

3  x R = 3  x V + 3 ( 3  x R) (2.3.19)

The final expression for the acceleration of the point P with respect to the XYZ system 

is:

- * > - * - * .  • •
Ap -  A0 + A + 23 x V  + 3x  R + 3x  (3 x R) (2.3.20)
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where:

23 x V - the Coriolis component of the acceleration 

Ap - acceleration of P with respect to the system xyz

A0 - acceleration of xyz with respect to the system XYZ (to specify the normal and 

tangential components of A the path of P relative to the xyz system must be known).

3  - angular velocity of xyz system relative to XYZ system 

V - the velocity of P relative to xyz system

R - distance from origin of xyz system to the point P

To define Newton’s laws of mechanics in non-inertial frame start from the second 

law:

F  = maabs (2.3.21.)

where

aabs is the acceleration in an inertial frame

m is the mass, defined as an inertial mass which, based on the experimental results by 

Roll and latter by Braginsky and Panov [11], differs from gravitational mass by a 

coefficient of the order of 10'11. Hence, in further analysis both masses will be treated 

as equal.

The same problem is defined and solved by the next polar coordinates theory:

Observe the particle S that moves with translational and rotational motion with respect 

to the stationary system O. There is another system O ’ that is moving on the same 

trajectory as point S, so S remains static with respect to O ’.
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The position of S is defined by r and p  in O and O ’ respectively, Fig. 2.2.3:

Fig. 2.2.3. Particle S is stationary with respect to system O’ 

and moves with respect to the inertial system O

The acceleration of the point S, in inertial system, is expressed as:

_ dV d 2la  ----= —-
dt dt

(2.3.22.)

From the Fig. 2.2.3, absolute position vector of S is: 

r = R  + p  (2.3.23.)

Absolute velocity of S is:

Ÿ _ dr _d R  ^ d p  
abs dt dt dt

(2.3.24.)

^ i s  composed of the rate of change of its magnitude defined by and direction 

defined by Q. x p . .
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Therefore:

Tj  dR ~ _ dpVnh, -  —  + Q x p  + —  
°bs a  H  d t

(2.3.25.)

The component —  + Q x p  describes the velocity of the particle with respect to O 
dt

due to the motion of system O

If the observed particle is a satellite, and the systems O and O ’ have the same 

properties as previously defined systems ‘1 ’ and ‘2 ’ respectively, then R=0 and 

equation 2.2.10. has the form:

x > 4  (2-3.26.)
dt

Assume, at t=0 point S coincides with the point Sp -  orbit perigee. During the time 

interval At point S will move on the fragment of elliptical trajectory with respect to the 

point Sp,Fig. 2.2.4:

Xj

Fig. 2.2.4. The representation of orbit and Earth attached systems
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The velocity of the point Sp relative to 7  ’ (fixed to Earth, rotating with it) is given by 

the component QE x p .  The velocity of the point S with respect to the point Sp is

r d p \
dt )given by ^ ' 2. The expression for the absolute velocity, based on (2.3.26.) is given

by:

V,abs Q . x p  + 'dp ''
\dt J 2

= nE xp+v,rel (2.3.27.)

Therefore:

Vrei = V abs- a Ex p  (2.3.28.)

The last expression defines the velocity of the point S (satellite) seen by an observer in 

‘2’. If  the expression (2.3.28.) is again differentiated with respect to time, next 

expression is obtained:

aabs

dQE
dt

x p  + Q E x dp  | d2p  
dt dt2

(2.3.29.)

By the same analogy leading to (2.3.11.) and (2.3.29.) follows:

= ^ L x p  + £lE x(flE x p ) + 2 Q s x ^ p  + 4 T  (2.3.30.)
dt ' dt dt

All elements in the last expression that are based on the vector product of the vector p  

describe the acceleration component of the point S with respect to the point Sp. These 

two components (in general case for R^O there are three components), are named 

dragging acceleration.

The acceleration in the last expression is further classified as:

- Centripetal acceleration which results from the rotation of the system ‘2 ’ and is 

equal to Qx(Dxp)
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Example 2.3.1:

Earth orbiting the Sun by the angular velocity defined as: 

1 revx 2n
m = (2.3.1.1)

365 x 24 x 60 x 60sec 

Earth’s orbiting radius is:

R = 93million miles = 1.498 xlOn m (2.3.1.2)

Therefore, centripetal acceleration that results from the Earth’s rotation is equal 

to:
iff

m2 R = 0.006----- (2.3.1.3)
sec

Result in (2.3.1.3) is more often defined in units known as milig, therefore 

m2R = 0.6milig (2.3.1.4)

- Tangential acceleration results from the change in rotational velocity with 

respect to the time, and is equal to 2Qxdp/dt.

The acceleration of the point S with respect to the point Sp is given by the last two 

elements in the expression (2.3.30.). The first component is the Coriolis acceleration 

and the second component is therefore the relative acceleration of S with respect to 

‘2 \  From Newton’s second law follows:

F  = maabs = mair + mac + mart, = -F ir - F c + maret (2.3.31.)

m a„,= F  + Fi r + F '= F „  (2.3.32.)

The expression (2.3.32.) states the condition that has to be applied when Newton’s law 

of motion is used in non inertial frame. The total force expressed in (2.3.32.) is the 

sum of an external force and two apparent forces.

2.4. Discussion of Newton’s Gravitational Law

There is the number of assumption, related to the gravitational law, which alter the 

obtained motion model. Some of them are discussed in more details and the

appropriate corrections are included in the final model. The assumption for equality of
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the gravitational and the inertial masses of the observed bodies is the example of the 

assumption that will not be treated further, as the error produced by this action has a 

very low value.

The mass of the Earth is treated as the particle mass, in another words, the total mass 

of the Earth is concentrated at one point -  the centre of the Earth. This assumption is 

further approximated by more real model -  the mass is symmetrically distributed in 

the sphere. There is a mathematical proof that states, no error is produced if the 

symmetrical sphere is observed as a particle. The next step in the improvement of the 

obtained model is to compare real Earth’s mass distribution to the assumed 

symmetrical distribution. This problem is a subject of detailed analysis and is 

incorporated as one of the perturbations into idealised Kepler’s model.

If all existing perturbations are ignored, including perturbations due to gravitational 

forces, the trajectory of the orbiting satellite is ellipse with the Earth in one of its foci 

(Kepler’s first law).

To apply Newton’s law of gravitation, for the start, assume that a satellite and the 

Earth are presented by two particles, on the distance r.

y

Fig. 2.4.1. Newton’s law of gravitation applied to the Earth-satellite system
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After observing possible values of the orbiting radii r, Earth is treated as a sphere and 

a satellite as a particle. If the satellite’s dimensions are compared to the other 

dimensions, masses and distances in the system, following conclusion is, its mass 

could be treated as the particle mass with no further discussion.

The proof for observing Earth as a particle instead of a sphere is based on the method 

by which the observed sphere is divided into an infinite number of infinitesimal 

particles. The force implied by such infinitesimal particle on another observed particle 

(satellite) is:

^  md m  _ , ,
dF = G — — r (2.4.1.)

r

Total force exerted on a satellite is defined by an integral of the equation (2.4.1.). 

Further mathematical procedure is presented in the Appendix 2.4.1.

The conclusion after mathematical analysis is the gravitational field of the sphere with 

a radius rE is the same if the whole mass is concentrated at the centre of the sphere or 

if it is symmetrically distributed in its volume.

Based on the last conclusion, Newton’s law of gravitation is applied on the system 

Earth -  satellite, with the aim to establish the equations of satellite motion.

Another assumption applied to this theory is regarding the invariance of Newton’s 

second law, which holds only if the observed mass in motion is constant. 

Mathematical analysis of this problem is presented in the Appendix 2.4.2.

Since the main terms that will be incorporated into further analysis have been defined, 

and physical laws that will be applied have been discussed and assumptions are stated, 

the next step is to structure all of these into the first and simplest orbital motion model 

-  two body problem.

2.5. Two body problem

Kepler’s laws are actually defined on the two-body problem. From one aspect, this is 

simplified orbital motion analysis that ignores all perturbing effects. From another
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aspect, this motion is just the special case of the motion of n bodies under their mutual 

gravitational attractions.

The analytical solution for the general n-body problem is not defined yet; the two- 

body problem is the only one that has a closed form analytical solution. The bodies 

observed are supposed to posses a spherical symmetry, so they could be treated as 

point masses.

Based on Kepler’s three laws of planetary motion, Newton’s law of Universal 

gravitation and Vis-Viva equation, the basic orbital elements could be determined.

Vis-Viva (living force) equation is represented as:

F 2 = G(M2 + ml
2 n (2.5.1.)

\ r  a j

In 1673 Christian Huygens introduced the quantity l/2m lV 2, and gave to it the name 

Vis-Viva or Living Force [11]. The expression was introduced to explain the motion 

of the compound pedulum. This concept was developed further by Leibnitz, and the 

conclusion was that, the measure of the effect of the force F  is given by: 

FAx=A(l/2mlV2)  (2.5.2.)’

On the other side, analysis based on Galileo-Newton observations led to the 

expression FAt=A(ml V) given as the measure for the same variable.

The controversy was resolved in 1743 by Jean D’Alembert, which proved that both 

measures were correct and not equivalent. This problem is observed in [7] Girvin, H. 

The application of this kinetic energy theory to celestial mechanics leads to the one of 

fundamental relationships of two-body problem (an elliptical orbit):

2 O
V2 = G{M2 + ml]

a )
(2.5.1.)

where:

m-mass of the satellite 

M2-mass of the Earth 

G-Universal constant

r-the distance at a particular time -  orbit radius 

¿/-semi major axis of the elliptical orbit.
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The value of m l is extremely small compared to M2 and it will be ignored in further 

calculations for the sake of clarity. The equation is re-written as:

v1 =gm4 - ~ -
\ r  a )

1 , GM2 GM2— V = -----------------
2 r 2a

1 Tr2 GM2 GM2
2 r 2a

where E is the total energy per unit mass, as the left hand side of the equation contains 

kinetic and potential energy terms.

An important conclusion from the last equation is that, the semimajor axis of the orbit 

is a function of the total energy only, which has great importance for the observation 

of air-drag effect and orbit transfer/correction manoeuvres.

The semimajor axis depends on the speed at which the satellite is injected into the 

orbit, and therefore is in relation to the eccentricity of the orbit.

If the total energy of the launched satellite E , expressed by (2.5.4.), exceeds zero the 

achieved orbit is hyperbolic. If E<0 the trajectory of the satellite is elliptical (or 

circular as a special case of the ellipse). For E=0 the result is a parabolic trajectory -  

the orbit with infinite semimajor axis. The velocity required for the parabolic orbit is 

also known as the escape or parabolic velocity Ve - refer to 2.5.4. Mathematically 

expressed:

Ve=(2GM2/R)m  (2.5.5.)

where R is a new notation for the orbit radius that describes any distance from the 

centre of the spherically symmetric object. A satellite launched with this velocity in 

any direction will escape the gravitational field of the observed attracting body, 

assuming there is no presence of the other forces.

If R=a:

(2.5.2.)

(2.5.3.)

= E  (2.5.4.)
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VC=(GM2/R)m  (2.5.6.)

is the velocity of a circular orbit of a radius R.

The velocity of an orbiting object infinitely far away from the attracting body is 

Vh=(2E)la= (V2-2GM2/R)1/2 (2.5.7.)

where Vt, is the instantaneous velocity of an object in the hyperbolic orbit at arbitrary 

distance R from the centre of the attraction.

Previous analysis proves that the magnitude of the velocity V at some instant, for a 

distance R determines the shape of the orbit.

Orbit properties could be also analysed based on their geometrical characteristics. It 

was mentioned the orbit of central field motion would always be some conical section, 

therefore an ellipse (circle), parabola, hyperbola or even a straight line as a special 

case.

The properties of the conic sections are discussed in Chapter 1.

Combining geometrical analysis and Vis-Viva integral [9], leads to the next 

expressions:

V=(GM2/R)1/2 

V= (GR (2/R- 1/a)) 1/2 

V— (2GM2/R)1/2 

V= (GR (2/R+1/a)) 1/2

The above equations

The injection velocity required for a circular orbit 

The injection velocity required for an elliptical orbit 

The injection velocity required for a parabolic orbit 

The injection velocity required for a hyperbolic orbit 

are designated as (2.5.8.)
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The period of an orbit is one of Kepler’s elements, already explained in Chapter 1. To 

derive the expression that mathematically describes this element, the elliptical orbit 

will be considered.

The area of an ellipse is given by:

A -  abn -  W l -  e2 (2.5.9.)

Areal velocity dA/dt is:

—  = -  JGM 2 p = -  jG M 2a(l - e 2) 
dt 2  2

(2.5.10.)

Period T is equal to:

T _ A _ 2a17t I a 3

~ d A ~  VGA/2a ~ X GM2 
dt

(2.5.11.)

This formula will be used for the analytical determination of the periods of different 

orbits and then compared to the values computed by the SATELIGHT -  program 

developed here.

2.6.Two Body Problem Equations of Motion Referred to an Inertial 

Coordinate System

Newton’s gravitational law, previously defined, states:

-  m\M2 
Fn =G— r—  r,12

12

(2.6.1.)

The particle near the Earth’s surface experiences an accelerating force due to the 

attraction of the Earth’s gravitational field. The acceleration is given by:
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g =
GM 2

Ri
(2 .6.2 .)

The value of this acceleration is accurately measured, and is used for the 

determination of other constants:

R 2Eg = GM 2 = k (2.6.3.)

where:

Re=6366.2km is the adopted value of the Earth’s radius

g=9.81km/s2 is the mean value of the acceleration due to the Earth’s gravity force 

when substituted:

k=GM2= (6366.2)2km2x9.81 xl 0'3km/s2

=397584.6089 km3/s2 (2.6.4.)

A system used to define the position of the observed bodies is attached to the centre of 

the Earth. Its principal plane of reference is the xy plane, which coincides with the 

plane of the satellite’s orbit. This plane is inclined for an angle ‘i’ -  inclination angle 

with respect to the Equatorial plane, x axis is oriented along the line that passes 

through the Earth’s centre and the orbit perigee, therefore at also contains the apogee 

of the orbit. The position of this line is considered to be stationary in the space, y  axis 

is contained by the same orbit plane, as it was defined previously, and is perpendicular 

to the x axis, z axis forms the right-angled rectangular Cartesian system with the other 

two axes and is directed along the vector of angular momentum of the satellite’s 

motion.

The methods for transformation of the results obtained in the orbit plane to the system 

placed at the same origin, but with the xy plane coinciding with the infinitely extended 

Equatorial plane are discussed in Chapter 4.

If Earth is observed as a point mass, (it was proven this could be done with the 

introduction of few assumptions), Newton’s law of gravitation could be applied. The
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values that are used in this law are vectors, therefore they could be projected onto the 

three axes of the defined coordinate system.

The Newton laws, applied to the motion of the satellite in the Earth’s gravitational 

field, referred to the inertial coordinate system, are expressed as:

-  mlM  2
Fn = G — — r.12

and

F  = mìa

(2.6.5.)

(2.6.6.)

The force that acts on the satellite is equalised, therefore:

a = G M l \  (2.6.7.)
rn

The acceleration of the body is equal to the second derivative of its position vector, 

therefore:

~  = GM2r-^- (2.6.8.)
dt2 4  K J

When projected on the three axes of the selected reference system, the equations are:

d zx
~dP~

d 2y  
dt2

d 2z 
dt2

= G M 2 ^ j (2.6.9.)
ri2

= GM2-^r (2 .6 .10 .)
ri2

= G M 24 - (2 .6 .1 1 .)
r!2

where

rn — - \ J ~  *1 ) + (j 2̂ — Ti) + (z2 ~ zi) (2 .6 .1 2 .)
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Based on Kepler’s first law, orbital motion occurs in a plane, therefore the third 

dimension -  z could be completely ignored at this stage.

It is seen that the motion of the two-body problem is represented by the set of the 

three (two) second-order differential equations. The method of solving these equations 

is discussed in the next chapter.

2.7. Equations of motion for «-body problem

The system observed consists of n bodies, according to the Kepler’s first law, all 

contained by the plane xy of previously defined xyz inertial system. This is actually a 

special case of the more general problem. The system is presented in the figure 2.7.1:

Fig. 2.7.1. «-body system in the xy plane of the xyz system
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Force Fu could be projected on the axes of the system, producing two components: 

Fu, = Fu cos W = Fn ^ (2.7.1.)
rn

Fa = Pn sin V  = Fu h  (2.7.2.)y r'12

where

7*12 = (2.7.3.)

In the further analysis only the x component will be observed, with the note that all 

developed theory in the same way applies to the component projected to the y  axis. 

Further:

^12 =
Gm\M2  x2 -  xx

R12.

12

Gm\M 2

7*3'l2

12

(x2 -X j)

(2.7.3.)

(2.7.4.)

By the same analogy, the x component of the force acting on m3 due to the 

gravitational force of the body mi is expressed as:

7)j, - — J — tx,
rn

(2.7.5.)

For the body n could be stated under the action of the force inserted by the body mi 

follows:

(2,7.6.)
In

The total force on body mi in the x direction due to n bodies is:

“ ^12, + ̂ 13, + — +RiIn. (2.7.7.)

which could be arranged as:
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” ( x -  x,)
Fh = ----- -----  (2.7.8.)

7 = 2  r i j

The force inserted on some arbitrary body nii is:

” ( x , - x f.)
—  (2.7.9.)

% r‘J
i * j

Newton’s second law states that the unbalanced force on a body in the x direction is 

given by:

F =m; A
dt2

(2.7.10.)

substituting in (2.7.9.)

d 2x
m.

dr -  = G « ,Z m O , - X,)
i= 1 
7=1
i * j

(2.7.11.)

By repeating the same analogy for y  and z components (the z component in this 

special case is again equal to zero, as all observed bodies lie in the plane) the general 

equation is obtained:

d 2rt
I tt2

= GmiY Jm.
/=i
7=1i*j

(2.7.12.)

It is obvious that the term mi could be cancelled from the both sides of the last 

equation therefore the mass of the observed body does not have any effect on the 

resulting force.

The observed problem is just the special case of the n-body problem as all observed 

bodies are contained by the same plane. This problem is modified further in this 

project with the aim to define the lunar effect on the Earth’s satellite orbit. The 

number of bodies in the system is restricted to three -  Earth, satellite and Moon. The 

problem is solved numerically, therefore there is no need to search for the special case
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that will give closed solution to the analytically formulated problem. The bodies do 

not lay in the same plane, and the resulting force has three components. This problem 

is explained in more details further.

By this section the analysis of the unperturbed orbit and the introduction to the three- 

body problem is completed. The next stage is to incorporate the perturbing effects into 

already established equations of motion.

2.8. Perturbation theory

The motion in the central force field has constant elements that are the set of seven 

defined orbital elements, which do not depend on time.

This model, defined as the two-body motion model, is sufficient for some 

applications, especially if two very close points on the trajectory are observed.

There are other applications that require a more accurate model, especially for the 

long time periods. The major difference between two-body model and real motion are 

so called perturbative elements that deviate the orbit from its theoretical model.

2.8.1. Introduction

The examples of the causes for the perturbing effects are

(1) the force field of the primary body, which is the centre of the attraction, is not 

truly of an inverse square function;

(2) the aerodynamic forces due to the Earth’s atmosphere interaction;

(3) the closeness of a neighbouring celestial body, etc. The dependency of an 

observed motion q, upon perturbing forces cold be represented as:

q = q{Fl,F1,Fz,..I'n) (2 .8 .1 .)
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where Fi are the different perturbing forces. These forces are always functions of the 

satellite position and velocity vectors. In turn, it is stated that, the position and 

velocity vectors of the satellite are actually functionally dependent on the perturbing 

forces. The last statement is actually the basis for the theory developed here to 

incorporate perturbing effects into the model of motion.

One of the methods to express the perturbations of the orbit elements is by utilisation 

of Taylor’s series:

a = an + da„ , N 1 d 2a , x2
dt 2! dr

(2 .8 .2 .)
Taylor’s series is expanded about some value ao. The same approach is used for all 

other elements, where the time derivatives of these elements depend on the perturbing 

force Fi. The development of infinite series, as the example above illustrates, is known 

as a general perturbation method [15]. Another method, applied here, is known as 

special perturbation method and is based on a numerical approach.

The first method gives good results only for a short period of time, if the appropriate 

function is chosen, for example trigonometric terms in a Fourier expansion. This 

method does not produce real fluctuation of orbit elements.

The second method gives more accurate results over longer periods of time and could 

be developed further, to describe the specific kind of motion for specific initial 

conditions. This method is very effective for orbit determination of lunar and 

interplanetary flights, but also for comets and planets.

The process of determining the initial conditions is discussed in Chapter 4, and 

analysis of the numerical method is presented in Chapter 3.

The method used here to treat special perturbations is known as Cowell’s method and 

is based on step-by-step integration of the total acceleration, central forces as well 

perturbations. .

The applied procedure is simple and very straight-forward. In the three-body problem

this method is implemented and used for observation of the orbit’s inclination angle.
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The mathematical expressions, based on SATELIGHT results, for all other orbit 

elements are defined as well.

The equations of motion, that contain perturbation elements, have to be integrated 

twice to give the position of the observed satellite.

This method is mathematically described as:

d 2r
Ht2

+
GM 2 r =

r
-VO + tf (2.8.3.)

where

F-the perturbing potential that includes all perturbing forces which could be defined 

by a potential function

a - includes all perturbing forces which can not be written as the gradient of a scalar 

function.

Prior to actual analysis of a method of solving the final equations of motion, 

perturbing forces are discussed separately.

2.8.2. Short overview of the analytical approach to the perturbation problem 

and discussion on the selected numerical method

One of the best known methods for determining the effect of the perturbations on the 

orbit is presented by Lagrange’s planetary equations [20]. These are six simultaneous 

first-order differential equations, expressing the effects of a perturbing potential on the 

orbital elements. The disadvantages of this method are:

1. They could be applied only on the forces that are derived from a potential 

function, therefore the air drag (and rocket thrust) could not be included.

2. In general, no exact analytical solution of these equations can be obtained
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If the Lagrange’s method is further modified to be solved by a numerical method, and 

compared with the equations solved by Cowell’s method, the only difference was that 

Lagrange’s equations allow a larger integration step. Still, the integration step has to 

be kept reasonably small because of the other factors that do not figure in the 

Lagrange’s equations; therefore it is decided to use Cowell’s method instead.

Another advantage of the selected method is its simplicity.

2.8.3. Anomalies of the Earth’s gravitational field

The assumptions introduced to allow the application of Newton’s law of gravitation 

were already analysed in a previous section of this chapter. It was also shown that this 

law could be applied on the symmetrically mass-distributed sphere. The real shape of 

the Earth does not completely match this description, and therefore some results 

achieved deviate from its true value.

To observe the more accurate variation of g, a short introduction is presented below. 

Some of the equations are repeated, for the sake of clarity and compactness.

2.8.3.I. Introduction

The gravitational force at the Earth’s surface is given by:

F=GM2ml/R2 (2.8.3.1.)

Where

M2 -  is the mass of the Earth, currently estimated as 5.97xl024kg.

R- is the radius of the Earth

G -  the Universal Gravitational Constant, first measured by Cavendish in 1798. Its 

accepted value today is G=6.67xl0~11m3kg'1s"2 in SI units.

The gravitational acceleration experienced by the body is

g=F/ml=GM2/R2 (2.8.3.2.)
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The average density of the Earth, calculated by dividing the mass of the Earth 

(obtained from 2.8 .3.2.) by the volume of the Earth, is represented as:

pe=3g/4nRG=5.52g/cm3 (2.8 .3.3.)

The first value of the density, determined by Cavendish, indicated that the interior of 

the Earth must be of much higher density than the surface rocks.

The moment of Inertia, /, of the Earth is actually the measure of its mass distribution, 

which affects, in high degree, the rotational behaviour of the Earth and its 

gravitational attraction. The value of I  could be determined from the combination of 

measurements including the observation of the perturbation of satellite orbit and 

precession of the Earth’s rotation axis.

I -  the moment of inertia of a uniform sphere is 0.4MR

Ie -  the moment of inertia estimated for the Earth is 0.331 MR ... [59]

The study of seismology provides the best estimates of the density in the interior of 

the Earth [54].

2.8.3.2. Variation in g  over the Earth’s surface

The value of g  measured at the poles is about 9.83m/s and at the Equator 9.78 m/s . 

Total variation is about 0.5%. The main causes of this variation are the Earth’s 

rotation and shape. With the aim to define the relationship that describes the value of g 

as a function of the satellite’s position, the definition of major contributors to this 

variation is presented below: 1

1. Rotation of the Earth. The effect of the Earth’s rotation at its poles is almost 

zero, while at the Equator it has a significant value. There must exist the force 

at the Equator, which keeps a body on the Earth’s surface to rotate with it. This 

force is actually a part of the gravitational acceleration, which could be 

alternatively observed as the apparent ‘centrifugal’ force that reduces gravity.
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The fact of interest here is that, the reduction of gravity depends on latitude. 

The contribution of rotation is to reduce g by 0.0339m/s2 at the Equator.

2. Ellipsoidal shape of the Earth. The Equatorial radius of the Earth is 6378.14km 

and the polar radius is 6356.75km [54]. The difference is about 21km. The 

pole is closer to the centre of the Earth; therefore the value of the gravitational 

acceleration g  measured is greater than the value measured at the Equator by 

about 0.0663 m/s2. The mass shape factor, due to extra mass in the equatorial 

bulge, reduces the last value by 0.0485 m/s2. The overall effect of the 

ellipsoidal shape of the Earth is to reduce g  at the Equator by 0.0178 m/s .

3. Lateral density variation. This effect is the smallest effect of these three and 

represents the deviation in g  at regions of excess or deficit mass, caused by 

contrasts in density. It is a practice to compare the expected and measured 

value of g, take into account the effects of other two elements, and define the 

remaining difference as gravity anomaly [54].

2.8.3.3. Spheroid and Geoid

Gravity studies use the sea level as the reference surface, because it is an equipotential 

surface when undisturbed by winds and tides [55].

To represent and observe any field function, including gravitational, the concept of 

potential is introduced. This approach is much more effective than to explicitly use the 

forces involved. A mass, placed in the gravitational field of an attracting body, gains 

potential energy by virtue of that attraction. The definition of gravitational potential U 

is: ‘The work done by gravity on a body of unit mass in bringing it from infinity to its 

present position, a distance r from the centre of the field.’ [17]

U=GM2/r (2 .8 .3.4.)

The potential is a scalar quantity, whose concept is applied to the gravitational field. 

Earth’s gravitational field is represented by surfaces over which the potential is 

constant, known as equipotential surfaces. The forces that act in these surfaces are 

always perpendicular to them; therefore there is no force component that lies in the
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surface plane. The intensity of the force is determined by the space between the 

equipotential surfaces, which is known as the gradient of the potential. The example 

is, the surface of a liquid. It has to be an equipotential surface; otherwise it would flow 

from one space to another. If the Earth were a uniform, non rotating sphere, the 

gravitational equipotential surface would be a perfect sphere. But Earth is rotating, it 

is not of spherical shape, and its mass is not uniformly distributed, so the real 

equipotential surface is defined as geoid. Its main characteristics are:

- Geoid is defined as sea-level at oceanic regions.

- The value of g  varies over the geoid from 9.78 to 9.83m/s2.

The geoid is warped upward under continental masses due to the attracting material 

above, and is warped downwards over ocean basins. The lowest point of the geoid is 

in the Indian Ocean -  Srilanka (93m below the reference spheroid) and the highest 

point is at Papua New Guinea (76m above the reference ellipsoid). The reference 

spheroid is a mathematical approximation to the shape of the geoid with all the highs 

and lows removed.

2.8.3.4. International Gravity Formula [55]

The international gravity formula provides the value of g  as a function of 

geographical latitude on the reference spheroid; in another words, at sea level. Its 

value was changed between 1967 and 1971, and the current expression used for the 

international gravity formula is:

g-go(l  +  fisin2 (¡)+p2sin2 2 (/>) (2.8.3.5.)

Where

J32=0.0053024 

J32= -0.0000059

go = 9.780318m/s2 is the equatorial gravity
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The error produced by using the spheroid as a reference, instead of geoid, is small 

enough that there is no need to introduce any corrective methods. For illustration, the 

maximum difference between spheroid and geoid is not greater than 93m. The rate of 

change of difference between the two is on the scale of the exploration surveys.

The method of incorporating this formula in the equations of motion is discussed in 

later text.

2.8.4. Atmospheric drag

To make any theoretical approach to analytical determination of atmospheric drag , 

some model of the upper Earth’s atmosphere must be assumed.

The analysis of the effects of the atmospheric drag is performed through the next 

stages:

1. Evaluate the effects during a single revolution

2. Determine long term changes on the orbit properties

2.8.4.I. Aerodynamic forces acting on a satellite

Observe an object that moves with the velocity V relative to the ambient air. This 

motion results in aerodynamic forces, which could be represented as the vectors and 

resolved in the two components. The first component is of the same direction as 

body’s velocity vector, but of the opposite orientation, and is known as air drag.

The second one is perpendicular to the first component and is known as air lift. 

Aerodynamic drag could be represented mathematically as:

D = ^-pV 2SCD (2.8.4.1.)

where:

p  - the density of the ambient air

V -  the relative velocity of the body to the ambient air

S  -  a reference area, which is actually the cross-sectional area of the object 

perpendicular to the direction of motion
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Cd -  the  non-d im ensional drag coefficient

The te rm  l/2pV ind ica tes the  increase  in  p ressu re  w hen  low -speed  air is b rought to 

rest. T his expression  cou ld  be app lied  to  the  very  d ifferen t conditions o f  satellite 

m otion. The second  com ponen t o f  the  aerodynam ic  force does no t pass th rough  the 

centre o f  the  m ass o f  the  observed  body, therefo re  could  be d iv ided  into a  force 

passing th ro u g h  the  cen tre  o f  the  m ass and  the tu rn ing  m om ent M about the  centre o f  

the m ass, is illu stra ted  o n  Fig. 2 .8 .4 .1 .

Fig. 2 .8 .4 .1 . The forces acting on  the  satellite 

The to ta l tu rn ing  m om ent M , it m ay be assum ed, includes to rques due to  the  gravity  

gradient, the  E a rth ’s m agnetic  field, as w ell as aerodynam ic torques. In  practice, the 

turning m om en t o n  a satellite  cou ld  be balanced  i f  a  particu la r app lication  requires 

that, by  so nam ed  contro l-jets. The equ ilib rium  p osition  is as the one show n in the Fig.

2.8.4.1. w ith  an  estab lished  steady  lift L.
In  th is observation  it is assum ed  no such  con tro l is applied  o n  the spacecraft, therefore  

m om ent M w ill tend  to  tum ble  the  satellite  end-over-end. E xperim ents have proved 

that, in such  a  case, the  sate llite  reverses itse lf  once every  5 seconds, thus its value is 

taken  to  be zero  [10]. W ith  regard  to  the  geom etry  o f  the body, the  assum ption  o f  the 

lift force equal to  zero  is fu lly  ju s tified  for the  bod ies o f  the  near -  spherical shape and 

for cy linder w ith  a  leng th /d iam eter ra tio  approach ing  1. E ven  for the ratio o f  l/d m uch 

less th an  1, sp in  abo u t its axis in  a  fixed  d irection , and even  for the  d isc-like satellites 

the effect o f  lift is u sually  neglig ib le . It is im portan t to  em phasise that, th is assum ption  

does no t apply  o n  all satellites, even  i f  they  do satisfy  geom etrical requ irem ents. This 

w ill depend  p rim arily  o n  the  sate llite  m ajo r pu rpose  w ith  a  particu larly  critical effect 

a t satellite re-en try , kno w n  as a  ‘sk ip ’ caused  by  the a ir lift. The equation  for air drag

6 4



Model of the Motion in the Space Environment. Chapter 2

indicates that the drag is directly proportional to the air density, which in turn 

decreases exponentially with the altitude.

The effect of the air drag in the elliptical orbit will be the biggest at its perigee -  the 

point closest to the Earth. The drag is the force opposing the velocity of the spacecraft, 

applied near the perigee, therefore having a similar effect to an impulsive in-plane 

transfer manoeuvre, already explained in the introductory section. The result of this 

effect on the orbit is analysed in Chapter 5.

2.8.4.2.1. Aerodynamic Forces Acting on a Satellite defined with respect to 

the Compressible Flow

The flows that experience high change in the density are named compressible. 

Usually, gases flows would satisfy this description while liquids are treated as 

incompressible. Gas flows at speeds low compared to the speed of sound with 

negligible heat transfer may be considered as incompressible.

Flow characteristic known as Mach number defines the ratio of the flow speed V to 

the local speed of sound c:

JW = — (2.8.4.2.I.)
c

For M<0.3 the max density variation is less than 5% [61] -  therefore the flow is 

treated as incompressible. For M=0.3 in air, at standard conditions, corresponds to a 

speed of about lOOm/s.

To determine what effect gas compressibility has on the satellite motion, two main 

factors are observed:

1. The velocity of the satellite at perigee for up to 2000km altitude

2. The properties of the atmosphere at the particular altitude that will affect the 

speed of the sound.

To proceed with the application of the Mach number to the satellite motion next 

definition is introduced:

Mach number is a key parameter that characterizes compressibility effect in a flow  

and mathematically is described as:

V VM = -  = - j =  (2.8A2.2.)
c \dp_

i d p

and is interpreted as a ratio of inertia forces to forces due to compressibility. Flows for 

which M<1 are subsonic and those with M>1 are supersonic. The most important flow 

for this analysis is hypersonic flow which starts at M~5.
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F or exam ple  the  M ach  n um ber fo r the  sate llite  in  the  o rb it w ith  perigee heigh t o f 

1000km  and ve locity  o f  7 .5km /s:

c =  >IkRT - T heo re tica l p red ic tion  o f the  speed  o f sound  as the function  o f

tem perature, con firm ed  by  the experim ents to  p roduce an e rro r o f  less than 5%  [35]. 

c
k = —  =  1.4 fo r air

Cv

R= 287 Nm/kgK
T=1000K at a ltitude  o f 1000km , accord ing  to  the  data  g iven in  tab le  L -6, p820  [29]

c =  (1 .4 x 2 8 7 — x lO ’ iT )1' 2 -
kgK

c =  6 3 3 .8 7 7 m /s
y

M -  — = 11.83 -  Hypersonic flow 
c

The N ational A erospace  P lane  [35] w ould  cru ise  at M ach num bers approach ing  20.

If a po in t sound  source, tha t em its instan taneous in fin itesim al d isturbances w hich 

propagate  in  all d irections w ith  speed  c, is observed  at any tim e t the location  o f the 

w ave fron t from  the d istu rbance em itted  at tim e tO is represen ted  by  a sphere, w ith 

radius c(t-t0), w hose cen tre  coincides w ith the location  o f the d istu rbance at tim e tO. 
The locus o f lead ing  surfaces o f the sound w aves w ill be  a cone. N o sound w ill be 

heard  in fron t o f  the cone.

2.8.4.2.2. Aerodynamic drag coefficient dependency with respect to the 

Mach number

To determ ine the forces acting on a sate llite  in a supersonic flow  the first step is to 

determ ine the nature  o f the  d istu rbance  propagation . H ere, v>c so the  locus o f lead ing  

surfaces o f the  sound  w aves w ill be a cone, as concluded  in the  p rev ious heading. 

R epresen ted  graphically :

F igure  2 .8 .4 .2 .2 .1 : P ropaga tion  o f sound w aves from  a m oving  source: T he M ach

c o n e
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N ex t step  is to  observe a  hyperson ic  boundary  layer form ed at the  surface o f  a 

m oving  body. T his analysis is m uch  sim plified  by  the  assum ption  th a t the  satellite 

is a  2 -d im ensiona l body, w hose  3rd d im ension  is m uch  sm aller. F o r bo th  observed  

shapes: p la te  and  cy linder th is  assum p tion  does no t deviate  m uch  from  the  reality. 

The concep t o f  the  th in  boundary  layer, w ith in  w h ich  the  effects o f  v iscosity  are 

largely  confined  in  the  flow  o f  a  gas over a  body, estab lished  by P rand tl [66], 

states th a t the  boundary  layer has a  d isp lacem en t tha t changes the effective shape 

o f  the  body. T his change is seen  as an  increase o f  the  body  d im ensions and is a 

resu lt o f  reduced  m ass flux  w ith in  the  boundary  layer. M athem atically  described:

s
p ,u JS~ S ')=  jpudy, <5 -»< »  

0
(2 .8 .4 .2 .3)

L ast expression  ac tually  sta tes th a t the  flow  ex ternal to  the  boundary  layer is 

d isp laced  fo r the  d istance  S* due to  the  d im inu tion  o f  the  m ass flux w ith in  the 

boundary  layer, w here  p rep resen ts  gas density , u re la tive  velocity  and e is the 

subscrip t fo r local va lues at the  edge o f  the  boundary  layer.

O ne o f  the  characteris tics  o f  the  hyperson ic  flow  is a  h igh  tem peratu re  o f  the  w alls 

o f  the  observed  m oving  body, w h ich  a ffec ts  the  density  o f  surrounding  gas and 

therefo re  the  d isp lacem en t th ickness. Still, th is effect does no t have particu lar 

im portance  excep t a t the  o b je c t’s lead ing  edge, w here the  tran sition  o f  the  flow  

ex ternal to  the  boundary  layer causes a n  in itia l com pression  accom panied  by a 

shock  w ave w h ich  becom es very  severe at h igh  M ach  num bers. The com pression  

is fo llow ed  by the  flow  ex p an sio n  w h ich  affects the  build-up  o f  the  boundary  

layer, so n o w  the  in terest is p laced  onto  the  in teraction  be tw een  the external 

s tream  and  the  boundary  layer. P resen ted  graphically:

F igu re  2 .8 .4 .2 .2 .2 : Shock  w ave boundary  layer a t H yperson ic  flow
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The region between the edge of the boundary layer and the shock wave has the 

Mach no. and the pressure that change with s in the same sense as if the flat plate 

is replaced by the shape defined by the boundary layer edge (actually the locus of 

the displacement thickness) in an inviscid hypersonic gas stream. Based on this 

discussion it is assumed for the vehicle half cone to be 0=60°, the angle used in 

further analysis. Finally, the drag of the spacecraft could be divided into the 

following components:

- Wave drag -  due to the presence of shock waves; dependent on the Mach 

number.

- Viscous drag -  due to friction -  Section 2.8.4.4.

- Induced drag -  due to the generation of the lift; here ignored, should be 

observed for the re-entry,

- Base drag -  due to the wake behind the vehicle -  ignored for the case of the 

uncontrolled satellite

- Interference drag-due to the interaction of various flow fields, here neglected, 

should be developed further, especially because of the new discoveries in this 

field, and new data collected about the conditions in the space

- Roughness drag -  due to the surface roughness such as rivets and welds [60]. 

The component wave drag is described based on the theory of a conical body as [61] 

and [66]:

C0„=  (0.083 + ^ X 5 . 7 3 0 ) ' 69
M

where 6 is the vehicle half cone angle in radians, here assumed to be 60 °.

Therefore:

CD„= 1.73

2.8.4.3. The properties of upper atmosphere -  evaluation of p  [36]

The properties of the Earth atmosphere vary exponentially with the altitude. This fact 

would be the starting point for atmosphere properties analysis. There is a direct 

relation between the temperature and the density of the atmosphere. Particular regions 

are introduced and named according to the temperature profile. A mathematical 

expression (the simplest one) that describes the change of the air density as a function 

of altitude is given as:
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p=exp(-mgz/KT) (2.8A 2.)

where:

z-the altitude in km

Quantity KT/mg is known as the scale height where:

m- molecular weight

g- acceleration due to gravity

7-temperature

^-Boltzmann’s constant

This equation could be applied for the heights between 100 and 1000km, with large 

deviations from the real values due to the inaccuracy in the model. The major 

atmospheric constituents below 103km are 0 2, N2, O and He. Minor constituents are 

O3, C 02, H20 , NO, electrons and positive and negative ions. Another kind of 

variations in the density is divided into six types [36]:

1 . diurnal

2 . 27 day period variation

3. seasonal-latitudinal

4. semi-annual

5. 11 -year period variation

6 . geomagnetic

This short introduction is a very brief outline of properties of the atmosphere. The

concrete problem here is to define the method for obtaining the model that will

describe the atmosphere density, necessary to determine the air-drag effects. A

number of analytical methods exist at a moment, but even with all complexity, these

are still based on a number of assumptions. The results obtained deviate from the real

values to a large degree. This is a reason for selecting an approach based on real

values measured by the satellite already in the orbit. This method is also very easy to

improve further, and what is more important, it is based on true values.

Data collected in space are transferred to the Earth, and treated by statistical methods.

There is an appropriate set of values for every particular condition, referring to the

variations mentioned above. Values selected in this work are the average values of a

medium density atmosphere as the most general case. Results of similar measurements

are collected by Mr. Francis S. Johnson and published in the book, ref [36].

The table 2 .8.4.3. gives the density as the function of the altitude, which ranges from 
105km to 2500km:
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No. density (kg/m**3) h (km)

1 2.14E-07 105
2 9.80E-08 110
3 2.45E-08 120
4 6.58E-09 130
5 2.60E-09 140
6 1.40E-09 150
7 9.00E-10 160
8 4.58E-10 180
9 2.67E-10 200
10 1.66E-10 220
11 1.07E-10 240
12 7.10E-11 260
13 4.80E-11 280
14 3.30E-11 300
15 1.38E-11 350
16 6.23E-12 400
17 2.97E-12 450
18 1.48E-12 500
19 4.05E-13 600
20 1.21E-13 700
21 3.85E-14 800
22 1.32E-14 900
23 5.05E-15 1000
24 3.57E-16 1500
25 1.17E-16 2000
26 4.91E-17 2500

Table 2.8.4.3. Atmosphere density values at a given altitudes [36]

2.8.4.4. Evaluation of cross-sectional area

The cross-sectional area of interest is one that is perpendicular to the direction of 

motion. For spherical spacecraft it is easy to determine this area, but there are other 

shapes, mainly cylindrical, that are used for the spaceflights. It was already 

mentioned, if the motion of the spacecraft is uncontrolled, there exists an uncontrolled 

rotation about an axis of maximum moment of inertia, as this is the mode of motion in 

which the rotational energy is a minimum for a given angular momentum.
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Precession of the axis of spin occurs slowly under the influence of the small torques. 

The rate of spin of the satellite decreases with time under the action of magnetic and 

aerodynamic damping. Most of the satellites are cylindrical in shape with ratio 

length/diameter of about 2. It is most likely the axis of maximum moment of inertia to 

be transverse axis. The two possible motions of the satellite, in accordance to the 

previous theory, are:

1 . rotating in the same manner as the airplane propeller

2 . tumbling end-over-end

The first motion has an axis of spin aligned with the direction of motion, and the 

second one moves in a direction that is perpendicular to the axis of spin. In reality 

motion can occur in any angle in between these two extreme modes of motion. If the 

length of a cylinder is designated with 1 and its diameter by d the cross-sectional area 

in the first case is Ixd and in the second one is 2/7i(ld+7td2/4). The mean value of the 

above expressions gives:

(  d '
S - I d  0.818 + 0 .2 5 -

l  l )
(2.8.4.2.)

Particularly interesting is a value of S during perigee pass. In this situation the 

direction of motion of the spacecraft changes while its spin axis stays fixed in 

direction, in space. The change in S would be very small, and S will never reach any 

of the two extreme values. The expression for S will not produce error greater than 

5%. For the satellites 1 to d ratio between 2 and 8 , S remains almost constant. As this 

ratio decreases, expression for S is more true, and for sphere is precisely true.

2.8.4.5.Evaluation of Drag Coefficient Cd

The drag coefficient of the bodies o f various shapes at varying angles to the air flow, 

were determined by Cook (1960) [11].
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To determine value of Cd the number of assumptions were made. The model was 

based on:

1. Satellites with perigee heights between 180 and 500 km

2 . orbital eccentricities between 0 and 0.2

It was clear that, for an altitude from 150 -  200km the ordinary continuum flow theory 

of a conventional aerodynamics produces large error. The approach that gives better 

results is known as free-molecular flow, which is applied when the mean free path of 

the molecules greatly exceeds a linear dimension of the satellite.

An important fact is that, the fully developed free molecular flow does not exist when 

the mean free path of the molecules is less than twice the maximum linear dimension 

of satellite. For an example, the mean free path increases from 2 metres at 120km 

altitude to the 50m at about 160km altitude. The length of the satellites launched vary 

from 1 to 25m, which implies that, the small satellites can experience free-molecular 

flow until almost their last revolution, while large satellites can be in the transition 

region from free -  molecular to an intermediate flow regime for the last day or two of 

their life time. Free molecular flow analysis is based on the next assumptions:

1. The satellite is assumed to be static and the air molecules are flowing past

2. Flowing molecules have a Maxwellian distribution of thermal velocity 

superposed on their uniform velocity v.

3. The molecules hitting the surface, are temporarily captured and then re-emitted

4. Possible collisions between bombarding and re-emitting molecules are 

ignored. The mode of re-emission is of high importance for this problem. It is 

certain that the molecules are not simply reflected from the surface as from a 

mirror, but they behave in accordance to the so-called Knudsen cosine law -  

the number of molecules emitted in directions making angles between 6 and 

6+56 with the normal to the surface being proportional to cos 56
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5. The most uncertain quantity is the temperature of the emission, but it is widely 

adopted that, re-emitted molecule has the same temperature as the surface from 

which is it being emitted.

The values of Cd for a particular shapes are represented in the Table below [32]:

S h a p e C d

S phere 2.10-2.20
Cylinder-Inclined to the air - flow 2.10-2.20
Cylinder-Tum bling end over end 2.15
F la t Plate-Perpendicular to the air-flow 2.20

Cones-W ith semi-apex angle 15-20deg 2.10

Final selection for Cd is 2.2 for the mean area perpendicular to the direction of 

motion, with an error (standard deviation), which will not exceed 5%.

Remembering that the first component of the air drag coefficient was determined in 

section 2 .8 .4 .2.2 by including the geometrical air drag coefficient, total air drag 

coefficient was determined. Based on the analysis not applied at the steady state flight 

of an aerodynamically stable vehicle [62] total coefficient is equal to:

C = 3.73

2.8.4.6.Aerodynamic Drag in terms of velocity -  Conclusion

In the equation for Drag:

D = ^ p V 2SCD (2.8.4.I.)

term V represents the velocity o f the satellite relative to the ambient air. This velocity 

could be further expressed in terms of v — velocity of the satellite relative to the 

Earth’s centre. This velocity is computed by SATELIGHT and is determined in both, 

orbital plane and the system that contains equatorial plane as xy plane (global system). 

The velocity of the air, relative to the Earth’s centre is assumed to be west to east and 

is designated by Va. Therefore:

V=v-VA (2 .8.4.3.)
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Or, in scalar expression

V 2 = v2 + V 2 -  2vVa cosr  (2.8.4.4.)

where y is the angle between Va and v. It is assumed that, the atmosphere rotates with 

angular velocity co about the Earth’s axis, therefore:

VA -r(ocos<¡) (2.8A5.)

where

r-the distance from the Earth’s centre 

r = sjx2 + y 2 (2.8.4.6.)’

(jh The geocentric latitude 

o)- Earth’s rotational speed 1/sec

Because of the properties of the atmosphere, the effect of the air drag is the most 

significant at the heights near the perigee. At this region, the satellite is travelling 

almost horizontally -  its climb angle never exceeds 10° at heights up to 2x0.0lrp 

above perigee, where 0.01=H/rp the angle difference between actual angle y between 

Va and v and assumed angle y’ between Va and the horizontal component Vh of v with 

an error in cosy o í  less than 1% [1 1 ]. 

where

rp - the altitude at the perigee

H  -  a constant whose value varies between 30-50 km for the satellites with perigee 

altitudes in the region of 200 -  300km [32].
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! NORTH POLE

Fig. 2 .8 .4 .2 . The illu stra tion  o f  angles y’ and </>

From  figure 2 .8 .4 .2 . it is concluded: for the  triang le  SLN and based  on  spherical 

trigonom etry:

cosy’cos (/)=cos i (2 .8 .4 .6 .)

and i f  the  e rro r o f  tak ing  cosy equal to  cosy’ is less th an  1%,

VA=rcocosi/cosy’ (2 .8 .4 .7 .)

VACOsy’=rcocosi (2 .8 .4 .8 .)

VACOsy=rcocosi(l+0(0.01)) (2 .8 .4 .9 .)

W hen substitu ted  further:

r / '  2 ^V = v
rco

cos z(l + 0 .0(0 .01)) + r2co2 (co s2 (j) -  c o sz i) (2 .8 .4 .10.)
v

The effect o f  a tm ospheric  ro ta tio n  o n  the  d rag  is sm all and  r2a}<0.005V2 i f  co is o f  

the sam e o rd er as the  E a rth ’s angu lar velocity , the re fo re  the  te rm  r2of is neglected .
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Another approximation is to ignore the variance of the inclination angle z, which 

according to [12] varies by less than 0.3° during satellite’s life.

Finally:

(
V * v  1

V

rco .------cosz0
V )

(2.8.4.11.)

Therefore, a resultant drag force is acting parallel to v and is equal to:

D = —p v / 
2

( rco ^2
(1 ----- -cosz0 Id 0.818 + 0 .2 5 -

V ^ ) l  l J
2.2 (2.8.4.12.)

The element that contains biggest error in the equation is co, as the exact speed of the 

rotation of the atmosphere is both variable and unknown and the accuracy of this 

calculation could be increased if this element is determined by better approximated 

value [32].

2.8.5. Three body problem [32]

This problem is still the most challenging problem in analytic celestial mechanics 

theory. The general solution to this problem, which requires twelve arbitrary 

constants, is not possible. There are special cases that could be observed and solved 

analytically. These cases are:

1. Three bodies placed in a straight line

2 . Three bodies at the vertices of an equilateral triangle

3. The trivial case of the three bodies all at one point

There also exists a solution involving a physically meaningless system of fixed 

masses, set by Euler.
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1. The problem of three bodies in a straight line could be solved analytically if the 

next assumptions are adopted:

a) zero mass of the satellite

b) all other perturbations are neglected except those due to the Moon

c) the orbit of Moon is taken to be circular

This problem can have five different possible cases, presented in the figure 2.8.5.1:

• L,
|

^  Moon

• L 1" . | ' '■

L 4< "  j >  L,

" v* j . ^

W  Earthi

¿L 3

Fig. 2.8.5.1. Lagrangian points (not to scale)

The case in which the satellite is at inferior conjunction, ie, between the Earth and 

Moon on their line of centres, is used as an example. Note that this is not a stable 

point.
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Fig. 2.8 .5.2. Synodic satellite -  Satellite that always lies on the line which passes

through the Earth and the Moon

The appropriate distances, as well as the relative position of the satellite with respect 

to the Earth-Moon system are illustrated below:

Fig. 2 .8 .5.3. Synodic satellite relative distances
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From the above figure and the definition for the centre of masses: 

s/A=Moon mass/Earth mass=0.012 288 800 (2.8.5.1)

The system selected is a rotating system with angular velocity com in rad/min placed at 

the centre of the masses. The forces acting on the satellite are:

k 2m m l

V

k 2m m re 5 v

~ l r ~
+ o)Mm:( n - s ) (2.8.5.2.)

From the vis-viva equation for a circular orbit with r=a\

d s f  _ k 2(mE +mm) 
dt J  jyj A + e

also:

(2 .8 .5.3.)

=

f  ds^ 2 ( S')
\dty

kFmF\ 1 + —
£ 1  a )

(A+sy (A+Sy
^EmE

A
(2.8 .5.4.)

From (2.8.5.1.) and (2.8.5.4.)

k2EmE
n1

M

(1 -r?Y
+

k lml
A

( j l - s ) (2 .8 .5.5.)

1 = g 1 | (7 -g )
i f  rj ( I - 77)2 A

(2 .8 .5.6 .)

Last expression is of 5th order, giving one real solution for rj. Calculated value of rj is

0.84910870 (bearing on mind that total distance from Earth to Moon centre was 

assumed to be unity).

The period of satellite is determined from
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T =
2 m 312

k  E

(2.8.5.7.)

where:

a=60.26818 Earth radii 

kE=0.07436574 

ju=mE+mM=1+0.0122888

2. The example for the triangle solution is the Trojan group of minor planets. This 

group of natural satellites belong to the Jupiter -  Sun system. There are two 

characteristic points in the Jupiter’s orbit about Sun. According to Lagrange, an 

infinitesimal body placed at either of these points will form a stable orbit around the 

Sun in the same period as Jupiter. In 1906 was discovered small planet situated near 

the equilateral triangle point preceding Jupiter by 60° [13]. A small torque applied on 

the planet or spacecraft placed in one of the equilateral triangle points (points L4 and 

L5 on Fig. 2.8 .5.1.) will cause observed body to oscillate about the equilibrium point, 

also known as the libration point. This problem of oscillating bodies near libration 

points could be analysed by the standard methods for the treatment of small 

oscillations in mechanical problems.

Analysis has shown [14] that for a Trojan minor planet, the motion about the 

equilibrium point consists of a vibration with a period of about 147 years and a more 

rapid superimposed oscillation with a period slightly in excess of the period of Jupiter 

(about 11 years).

2.9. Conclusion

The equations o f motion for the system of the three bodies including external 

perturbing forces, presented in its most general form and based on the above theory 

and arranged for numerical computation are.
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m;
d 2ri 
~df

rimim j -^- + Pi
rij

(2.9.1.)

This general equation is further projected on x and y  axes of the rectangular De Cartes 

coordinate system.

Particular perturbing effects are observed for particular altitude values, that is, not all 

three major perturbing forces figure in the same model. There are two different cases 

observed and modelled:

1. Satellites’ orbits with initial perigee value above 2500km. For this type of 

orbit, gravitational perturbations due to the Moon influence on the Earth’s 

satellite trajectory is one of the elements included in the model. The second 

one is the effect on trajectory due to the anomalies of the Earth’s gravitational 

field.

2. For satellites launched into the orbits with the perigee less than 2500km, or for 

the spacecrafts that enter this region after a particular time in space, the major 

perturbing torques are: The anomalies o f Earths gravitational field and the 

air drag.

According to this selection, appropriate equations with discussions are presented in 

the following text.

2.9.1. High altitude satellite motion Model Equations

a. Three-body problem only, excluding gravitational perturbations, 

observing satellite placed in between Moon and the Earth. The shape 

and the altitude of the orbit can vary, according to the mission 

requirements. The problem is solved by program TBP.FOR. More 

details about the initial conditions, method of integration and other
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information regarding the program are provided in Chapter 4. At this 

stage, applied equations of motion are presented as:

Gmf Gm,, ,
—i— (**-**) + —r H * M

'  SE

Gm]

'  SE
( y E -y s )+

'  SM

GmM
O'.M

SM

>

is the first set of equations for satellite motion.

d 2xE 
dt2

d2yE
dt2

GmM , . Gms
('X M  X E ) ”* 3 (XS X E )

rES

(yM ~ y E')  ̂ 3 iys ~ y E)
rEM r ES

'E M

GmM

are the second two equations that describe the motion of the Earth about the centre of 

masses.

d ' xM
dt2

d 2yM
dt2

Gms Gm,
3 ( X S ~  X M  ) 3 CX E ~  X M  )

MS

Gm&

'M S

1 ME

Gm,
■(js - y M) + ^ — (yE - y u )

'ME

are the last two equations that describe the motion of the Moon in the system of three 

bodies: Earth, Moon and a satellite.

The values r,y are represented as:

ru ={(x2 - x lf  + ty2 - y l)2f 2 

r23 = {(xi - x 2f + ( y } - y 2)2)'2 
rl3 =((x3- Xlf  +(y3 - y i )2) ' 2
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Additional observation of the motion of the bodies that move in the space (not in a 

plane, therefore satellite orbit could be of any inclination angle, while the inclination 

angle of the Moon orbit is taken to be about 6°) is presented in Chapter 5.

Only for the comparison to the analytical method, this method will provide a solution 

for any case (not only for the special cases), includes the satellite mass in the 

equations and could be combined with other gravitational and non-gravitational 

perturbing effects. The exact values for particular constants and the values of required 

initial conditions are discussed in Chapter 4.

b. The effects o f  the three-body problem combined with the effects o f  the perturbing 

forces due to anomaly o f Earth’s gravitational field  are incorporated in the equations 

of motion as:

d 2 x Gm Gm.
— j -  = g„ (1 + 0.0053024 sin2 <j> -  (5,9E -  6 sin2 (2«)))) — f - ( x E -  xs ) + (xM -  xs ) 
dt grSE rSM

= go(1 ■+ 0.0053024sin2 4  - (5.9e - 6 sin2(24 ) ) ) ^ r ( y E ~ y s ) + ^ r - i y ^  - Vs) 
d r  grSE rSM

These are the equations that describe the motion of the satellite.

d 2*E
dt2

d yE
dt2

am ‘ ..................' (,%M
EM

GmM

ES

Gm<
(yM - y E ) + —^ ( y s - y E)

EM ES

are the equations for the Earth’s motion, which are not changed compared to the 

previous set of the equations.

d 2xM
dt2

d2yu
d t2

(xs -  xM) + g0 (1 + 0.0053024 sin2 «S -  (5.9£ -  6 sin2 (24))) - f - ( x E -  xu )
i  v o  ivi y o

VMS & M E

'^T-O 's _ >m ) + SoO + 0.0053024sin2^ - (5 .9 £ - 6 s in 2(2^)))— - y u )
r MS %r ME
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are the equations of the Moon’s motion in three-body system, including anomalies of 

Earth’s gravitational field.

2.9.2. Satellite orbits with the altitudes less than 2500km

The effects that alter the motion of the satellites in these orbits are the air drag 

perturbing effects and perturbations due to the anomalies of the Earth’s gravitational 

field.

Air drag is incorporated in the final equations as:

d 2x

~dP

d 2y  

dt2

GmE
~ 7 ~

GmE

1 2x + —pvx 
2 *

1 2 
y + 2 ^

f rco \ d \1 - cos/ ld\ 0.818 + 0 .2 5 - 2.2
V vx

o

J { l )
f rco

>
1- cosz' ld\ 0.818 + 0 .2 5 - 2.2

V vy
0

y 1 -
It is seen from the above equations, the air drag force components are based on the 

satellite velocity components at a particular position, determined in the program. All 

values that depend on the actual latitude of the satellite are also based on the values 

computed in the program, involving a method for space systems transformations 

analysed in the Chapter 4.

To include Earth’s gravitational field anomalies, these equations are modified further 

as:
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d x _ 0 (Jm,
------   g0 (1 + 0.0053024sin2 <j> -  (5.9E  -  6 sin2 (2^)))---- f  x
dt2 gr

1 2
+ -/7V* 

2

r rco . 
1------cos ir

V
Id

d \(
0.818 + 0.25

l  /
2.2

d 2y  

dt2

O o Cjtfl,,
g0 (1 + 0.0053024sin2 (j> -  (5.9E -  6 sin2 (2f)))--- f  y

g r

1 2 
+ 2 ^

r„ rco . 1------ cos*0
V

( d \ld\ 0.818 + 0 .2 5 -
l  l )

2.2

where:

go- equatorial gravity 

(j) - latitude

mE -  mass of the Earth 

ttim-  mass of the Moon

For the definition of other values refer to section 2.8.

The next stage is to choose a numerical method to solve these equations, introduce the 

model for air density, observe the error due to numerical method, and introduce two 

case studies that will be used for the results comparison -  Chapter 3.
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Chapter 3: Numerical Method Analysis

The main numerical method applied for solving the second order differential equations 

of satellite motion is Runge Kutta fourth order step-by-step method. To model 

atmosphere density variation, with respect to the altitude, linear interpolation method is 

used. The error analysis is also included in this section.

3.1. Runge -  Kutta IVth Order numerical method

This method is based on a Taylor series approach, and is applied without requirement 

for the calculation of higher derivatives. A differential equation to be solved is given by

—  = f ( x ,y ) .  The general form of the Runge -  Kutta method, referred to the given 
dx

differential equation, could be represented as:

y M =y,+<l>{x>-’y ,’h)h ( 3 .u .)

where

(j>(xj,yi,h) is actually an incremental function which could be defined as a representative 

slope over observed interval. This function is mathematically defined as:

0 = alkl +a2k2 +...+ankn (3.1.2.)

where
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ax-  are the constants

ki -  Runge Kutta coefficients given as:

K =f (x, y)
K  = f ( x  + b2h ,y  + C2k1)

k„ = / (* , +b„h,y, +C„k„-i) (3-1-3.)

In words, the above equation, could be described as:

New function value is equal to an old value plus the slope multiplied by a step size. 

Graphically:

Fig. 3.1. The principle of Runge-Kutta method

This step by step same formula is used to compute future values of the function, based 

on its previous values.

This method is very efficient for computer calculations, because of the recursive 

relationship of kt coefficients. For example, ki appears in an equation for £2, which 

appears in the expression for k3 and so on. Different numbers of k  factors that are 

applied in the increment function actually determines the particular type of the method.
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For n=l the first order method is derived, which is also known as Euler’s method. For 

the differential equation of the general form 

y ’=f(x,y) (3.1.4.)

Taylor’s series is expanded about a starting value (Xi,yt) as:

(»)
y M = y l + y ’h + ^ - h 1 + ...+ ^-- 

2 n\
■hn + R (3.1.5.)

where

h=xl+1-xt

Rn (« + !)!
(3.1.5.)

where lies somewhere in the interval from xt to xl+].

Expressed in the accordance to the equation (3.1.4.)

yM =y,+ / ( * , ,y,)h+ h2+...+ f{" h"+0(h"*1)
2  n\

(3.1.6.)

where 0 (hn+1) specifies that the local truncation error is proportional to the step size 

raised to the (n+l)th power. For example, for the second order method, the local 

truncation error is 0(h2). Further error analysis, including explanation of the terms 

mentioned above is presented at the end of this chapter.

From the equation (3.1.6.) it is further derived: 

i) first order method:

yi+i =yi+f(Xi,yt)h (3.1 .6.)’

where the first derivative ib=f(Xi,yt) provides a direct estimate of the slope at Xj.
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Graphically:

Fig. 3.2. Uncorrected prediction for the function value

From the above equation and the graph it is seen that, new value o fy  is predicted using 

the slope </> to extrapolate linearly over the step size h. It is obvious, this approach will 

produce a relatively large error.

Runge Kutta methods are based on the assumptions that there are existing values of at 

and ki} already defined, which could improve the accuracy of the solution. It is required 

to determine constants at and kt as the functions of bt and Cl to get as close as possible 

to the Taylor’s series, up to some specified number of terms and without further 

differentiation.

To achieve this, the biggest difficulties are due to excessive algebra and there are too 

many possible solutions. According to this, the solution that will lead to the easier 

further calculations are selected.

This procedure starts with the Taylor’s Theorem For Many Variables [311.
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If f=f(x,y,z) and all its partial derivatives are continuous through order n in 

neighbourhood N, then:

f ( x  + H )= f(x )+ (H -V )f{ x )+± { H - V y f ( x ) +± (H -V y f(x )+ ...+ E„ (3.1.7.)

where

E ,= U H - V y f { x )  (3.1.8.)
n\

x=(x,y,z,...)

H=(Ax, Ay, Az, ...)=(h,k,l,...)

V=(d/dx, d/dy, d/dz,...)

Proof of this theorem is based on Taylor’s theorem for one variable.

The P Theorem

One-variable Taylor’s series, presented below, need to be compared to the terms of 

partial derivatives in Runge Kutta formulas. If the assumption is adopted that the partial 

derivatives exist and are continuous, it follows:

y' = ̂ - = f{x,y)ax
(3.1.9.) 

(3.1.10.)

dy' d f  , d f dy

, ,  d f , d f ,dy =— dx +— dy
dx dy

. \ y =  — —  (3.I.H .)
dx dx dy dx

y  = d + f  d
dx dy

^ = d f_ ^ d y ^ ±
dx dx dy dx

y
d d
dx ^  dy j

f  = Pf (3.1.12.)

(3.1.13.) 

(3.1.14.)y

By substituting (3.1.12.) into (3.1.14.)

(
y  -

d 'Y  d „ dd ^ ^ v.
—  + / —  —  + / —  /  
dx dy y dx dy j

(3.1.15.)

which could be represented as 

y m = P 2f  (3.1.15.)

The final expression is easily generated by mathematical induction, therefore
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/"> = p - > /

where

i d  . d )
P = —  + f —[dx dy j

(3.1.16.)

(3.1.17.)

According to the previous theorem

yM=y,+ ty ,  = y ,+k i (3.1.18.)

y M = y , + ¥ + ^ Q + ^ ( e 2 + fyQ)

+ +fyQ2+fy2Q+3(f,y +ffyy')Q\+0{hi) (3.1.19.)

where:

Q = f , + f f y (3.1.20.)

Q i = f B +Zffv + f 1f „  (3.1.21.)

a = / „ + 3 # » , + 3  f f xyy+ f f m  (3 .1 .2 2 .)

a  = / „  + 4 # ^  + 6 / X ,  + 4 / 3/ w  + / 4/ w  (3.1.23.)

and from binomial expansion:

/  = /  (3.1.24.)

y’ = Q  (3.1.25.)

?  = Q1+ f , Q  (3.1.26.)

y ,v = a  + a a + / / a + 3 (4  + # w ) e  (3.1.27.)

From

/ i2 hl
yn+1 =  + — >£ + •••+ — -ylm)+R2! m!

(3.1.28.)

yn+1 = ^ + ^ + ^ ^ 2  + dr3£3 +tf4*4... (3.1.29.)

K = ¥ n (3.1.30.)
k2=¥(xn+b2h,yn+b2kl) (3.1.31.)

k3=¥(xn+b3h,yn+b,k2) (3.1.32.)
K = ¥ ( xn+Kh,yn+b4k3) (3.1.33.)
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This has to agree with Taylor series up to h4 terms. Based on Taylor’s theorem these 

terms are expanded further as:

k2=h

L = h

f n  +

f n  +

K h ~  +  f n + ~dx dy 2!
b . h - ^ b A -  

dx dy

b3n---- 1-b3k2—
dx dy

, 1 , ,  S , , dfn + — b,h— + b3k2— 
Jn 2! I 3 dx 3 2 dy. + 3!

b2h^- + b2ki^- 
dx dy

, , d db3h----\-b3k2 —
dx dy

L  + ••• (3.1.34.)

(3.1.35.)

k̂  — h f n  +
b,h^-+b,k,^-

dx dy f " + 2\ b ,h f  + b4k,^-
ux uy

\ 2
fn +3!

bth ^ -* b ,k ^
dx dy f  + - (3.1.36.)

The last expressions are further transformed, based on the P theorem, into:

K = ¥n (3.1.37.)

K =¥„  + M 2 t ~ + /v dx dy )
1

/_ + —bth — + / —  
2! {dx dy

d V 1 3 4f  d  r d
fn +T,bl h ^ r + f ^ r3!

V
{dx dy f n

= hfn +b2h2p f „ + u 22h2p 2f n + U i h i p 2f„ 

= hfn + M V + V +

= hfn + b2h2Q + ^ b\h3 (Q2 + f yQ)

+ ^ b l h a(Qi + f ,Q 2 + / ; e  + 3 (/v + ff„ )Q  (3.1.38.) 

In a similar manner:

*, = ¥ „  + M 2e + ^ V 32e 2 + v> A f,Q )

+ { h \ b l Q ,  +3bjb2f yQ2 +6b3b22[fv +ff„lg) + ... (3.1.39.)

\

and:

K  = hfn +bi h2Q + ± (b 4Q2 +2b3b J yQ)

+ f  (*403 +•••) + ••• (3.1.4°.)
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Last expressions are compared with the equation (3.1.19.):

ax+ a2 + a3 + a4 = 1

a2b2 + a3b3 + a4b4 

a2bl + a3b3 + a4b24 

a2b\ + a3b\ + a4b\

\_
2
]_
3
1_
4

a3b2b3 +a4b3b4
6

“3b2 ( M 2 =
1
8

^3  (^2 ) b 3 a 4 (^3 ) b 4

a4b2b3 b4
_1_
24

12

(3.1.37.)

The system has one degree of freedom, therefore it will be chosen ai=l 

Final result is:

y (x n + h) = y(xn) + 7 ^  + 2 £ 2 + 2 £ 3 + k4) 
6

(3.1.38.)

where:

K = hf(x„ ,y„ ) (3.1.39.)

K  = ¥ (* „  + ^K y„  + L , )  (3.1.40.)

k-i = ¥ 0 „  +\ h>y» + \ k2) (3.1.41.)

*4 = ¥  <X +h,y„+k-i) (3-1 -42.)

To apply this method on the equations of a satellite motion, it is further modified for 

solving the system of two differential equations in x and y  direction.

Original equations to be solved are again noted here:
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d 2x 
dt2

d 2y

= -G M 2

= -G M 2

x

- Xl ) 2 + {y2 - y t f y

y

* 2 ' “ ’ (Vi* 2 - * . ) 2 + 0 '2 - J' . ) i ) 3

The final set of equations, prepared for computer application is:

x - x  + h xV x 
y  = y  + hxV y

K = ¥ ( t ,x ,y )  
h = hg(t,x,y)
k2 = h f (t + 0.5h,x + 0.5^,)? + 0.5^)
12 = /zg(7 + 0.5 h, x + 0 .5^, y  + 0.5/j) 
k3 = h f(t + 0.5 /z, x + 0.5 k2 ,y  + 0.5l2)
13 = hg(t + 0.5h,x + 0.5k2,y  + 0.5/2) 
k4 = h f(t + 0.5h,x + 0.5k3,y  + 0.5/3)
/4 = hg(t + 0.5h,x + 0.5k3,y  + 0.5l3)

K = K + ~(K  + 2^2 + + 4̂ )6

Vy =Vy + U li +2l2 +2l3 +li )
o

t = t + h 

f  = -G M X

2 , 2 x + y

g = -G M y
2 , 2 x + y

To apply presented equations next initial values are required: x0,y0,h  Vxo, Vyo and N.

3.2. Linear Interpolation Method

To apply the theory derived for the air drag effects it is necessary to produce some kind 

of a model for the upper Earth’s atmosphere. It had been already discussed why 

numerical approach based on the true data was selected as the method for solving this 

problem.
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The next problem is to select the method that will describe observed model in the most 

appropriate way. Possible methods will approach the same problem from a different 

aspect, and will produce a different kind of error. This statement is illustrated in the 

figure below:

y

Problem
solved by Approximation

O
x

Fig. 3.3. The results of the two different methods applied to a same problem: to 

describe the functional dependency of x to y, based on the table values for a points

given

The method selected in this case is the Interpolation, because of the next properties, 

that are considered as the advantages for this application:

- The variation of the data values in one direction (density) oscillates by very 

small amount for the first eleven points. At the same time for these points 

another dimension (altitude) also oscillates for a relatively small amount. The 

error produced by connecting actual points will not be large, and would be of 

about the same order as if the method of approximation is applied.

- For the points from 11 to 26, the variation in altitude is that large, even the 

approximation would give almost linear dependency.

- The properties o f the upper atmosphere are not clearly defined yet theoretically, 

therefore there is no point in deviating from the measured value with the aim to 

approximate the values in between.
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- Linear interpolation is far simpler than approximation method, therefore is 

much faster for computer application

- If more accurate measurements are applied, it is very easy to improve this 

method by Lagrange polynomial, also explained in this section.

Approximation is the numerical method that provides functional dependency of the 

variables given in the table form. As it is seen from Fig. 3.3. this method approximates 

values that are given by the table -  passes between the values finding the best ‘fit’ line. 

There are given table values for o and/?, as:

Where p=f(o).

If the problem is based on the function value of the argument O, for O between Oi and 

O2, the simplest way to determine required function value is to perform so-known 

linear interpolation. By this method, function f(o) on the region Oi to O2 is represented 

by the first order polynomial:

f(o)&P](o)=a0+aio (x i< x< x2) (3.2.1.)

The coefficients a0 and ai are determined from the requirement that the polynomial has 

to pass through the points M](oj,pi) and M2(o2)p 2)-'

pj=ao+ajOi,

p 2=ao+a1o2 (3.2.2.)

The above equations are solved for ao and ap

ao=pi-o1(p2-pi)/(o2-o1)  and aJ=(p2-pi)/(o2-o1) (3.2.3.)

Therefore:

p=Pi(x)=p1+(p2-pi)(o-o1)/(o2-oi) (3.2.4.)
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The expression 3.2.4. is actually an equation of the straight line that passes through the 

points Mi and M2.

If the solution is applied to the problem altitude -  density, where p=p (density) and 

o=h (altitude), then:

p=P](h)= p i+(p2-pi) (h-hi)/(h2-hi) (3.2.4.)

The model could be improved if instead of linear, higher order interpolation is applied. 

It is possible to describe the whole table o f given values by only one polynomial. High 

order polynomial interpolation gives very large oscillations between data points, so 

they are dangerous to use. This implies that, for n table values, the defined polynomial 

would be of nth order, with n+1 linear equations needed to solve for determining 

coefficients ao to ai . Solution for this system is possible, derived by one of numerical 

methods, but the matrix used in the calculation would be constantly crowded and will 

significantly reduce the available memory of the computer. The solution to this 

problem is to use Lagrange polynomial instead of the ordinary one. Lagrange 

interpolating polynomial, applied on the values given in table 2.8.4.2. has a form:

Pn(h)-Lo(h)po+ Li(h)pi+ ...+ L26(h)p26

where

Lt(h)
(h -  \  )(h -  \  )(h -  hM)...(h -  h26)

(ft, ~K){h>

(3.2.5.)

(3.2.6.)

The most important characteristic of this polynomial is that, it is passing through all 

known points.

At this stage of model development, it is more important to analyse the error due to 

method applied for solving differential equations of motion. Air density model could be 

improved when more details about upper atmosphere properties are revealed.
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3.3. Error Analysis

The numerical method applied for solving ordinary second order differential equations 

produces two types of error:

1. Truncation or discretization errors caused by the characteristics of the method 

employed to approximate required functions.

2. Round-off errors, caused by the limited numbers of significant digits that are 

retained by a computer.

First type of error is composed of two parts.

i) local truncation error results from method applied over a single step.

ii) Propagated truncation error results from the approximations 

produced during the previous step.

Global truncation error is actually the sum of the two.

Local error is directly related to the truncation of the Taylor’s series, which is discussed 

earlier. The conclusion regarding error analysis in this case is:

1. The Taylor series only provide an estimate of the local truncation error. 

Propagated and hence global truncation errors are not related to this approach. 

In the most cases, local error does not exceed 33% of total global error. To 

determine the exact global error, real solution has to be known [50].

2. Approach used here is to analytically determine period of a single orbit and 

compare it to the result obtained numerically.

As an example Kepler’s model orbit is used (because it is possible to analytically 

determine the period of such an orbit, and because at this moment, the only subject of
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concern is the accuracy of the numerical method which is in the first plane if 

perturbations are ignored). Orbit characteristics are:

Perigee 4000km 

Apogee 8000km

From Kepler’s third law:

j>2
GMe

(3.3.1.)

where a -  semimajor axis:

r +r ,
a = ^ ----(3.3.2.)

2

Fig. 3.3.1. Elliptical Orbit 4000/8000km, all dimensions in km
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From the Fig. 3.3.1. 

a= 1 2  366.2 km

T = J ---------------12366.23 = 13677.7685sec * 3.8hours (3.3.3.)
V 399059.852 v ;

For an analytical solution, after one orbit, the value of x is equal to the initial value at 

perigee: xp=10366.2km. The period of the orbit T at the value closest to the xp will be 

determined, and the relative error calculated according to:

relative Error (%) = 100
nT - Tanalyt. compt. n

nT.analyt.

(3.3.4.)

The computed value of T, for the step of integration of 5sec , single precision was:

Orbit 1:

x=10366.2km, y=43.71km 

T=2716*5=13580s, Error=0.716%

Orbit 2:

x=10366.17km, y=54.10km 

T=5431 *5=27155s, Error=0.735%

Orbit 3:

x=10366.22km, y=31.04km 

T=8144*5=40720s, Error=0.765%
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Orbit 4:

x=10366.20km, y=7.78 km 

T=10859*5=54295s, Error=0.762%

Orbit 5:

x=10366.10km, y —18.64 km 

T=13574*5=67870s, Error=0.760%

Orbit 6:

x=10366.10km, y=29.30 km 

T=16289*5=81445s, Error=0.759%

Orbit 7:

x=10366.10km, y=6.56km,

T—19003 *5=95015s, Error=0.763%

Orbit 8:

x=10366.10km, y=16.97 km

T=21718*5=108590s, Error=0.762%

Orbit 9:

x=10366.10km, y=27.70 km 

T=24433*5=122165s, Error=0.761%

Orbit 10:

x=10366.10km, y=4.87 km,

T=27147*5=135735s, Error=0.764%

Errors are presented graphically in the Fig. 3.3.2.
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Fig. 3.3.2. The e rro r in 4000 /8000km  O rbit, 5sec step, due to the num erical m ethod 

app lied  for solving d ifferen tia l equations o f  m otion

Sim ple com pu ter app lication  in Excel, nam ed N um E rro r is p roduced  to calculate the 

relative e rro r observed  above, requ iring  the value o f  T calcu lated  for a  particu lar O rbit

No.

From  the analysis o f  the  local trunca tion  erro r it is seen tha t it is p roportional to  the 

fourth  o rder o f  the in tegra tion  step size. This suggests that, for h igher o rder Runge- 

K utta  m ethods local e rro r is decreased  by the decrease in the step size.

This fact is app lied  on  the p rob lem  o f  satellite  m otion  in the orb it already observed  for 

5sec step  w ith  apogee  to perigee ratio  8000/4000. S tep sizes tha t w ill be observed  are 

2sec, 3 sec and 8sec. R elative e rro r is calcu la ted  for all cases and com pared.
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O r b i t  N o .

Fig. 3.3.3. T he erro r(% ) in 4000 /8000km  O rbit, 2sec step, due to the num erical m ethod 

applied  for solving d ifferen tia l equations o f  m otion

Fig. 3 .3 .4 . The erro r(% ) in 4 000 /8000km  O rbit, 3sec step, due to the num erical m ethod  

app lied  for solving d ifferen tia l equations o f  m otion
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E r r o r  fo r  E l l ip s e  8 0 0 0 /4 0 0 0 k m  s te p  s iz e  8 s e c

0.8400000 

0.8350000 

0.8300000

0.8250000

o 
w

0,8200000 

0.8150000 

0.8100000 

0.8050000

Fig. 3 .3 .5 ..  The erro r(% ) in 4000 /8000km  O rbit, 8sec step, due to  the num erical 

m ethod  applied  for solving d ifferen tia l equations o f  m otion

P rogram  Kepler2precfmalGrTr.f90 w as m odified  in the  sense to  com pute results w ith  

the double p recision . The e rro r determ ined  for the first 10 orbits w ith  the sam e orbital 

e lem ents as in the  p rev ious case (P erigee a ltitude= 4000km , apogee altitude=8000km , H 

= 5sqc,RAAN=  120°, i =  60°, AOP = 9 0 °) w as:

O rbit 1:

x=10366.20km, y =43.58km 

T=2716*5=13580s, Error=0.716%

O rbit 2:

x=10366.20km, y=54.92km 

T=5431*5=27155s, Error=0.735%

O rbit 3:

x=10366.20km, y=32.32km 

T=z8145*5=40725s, Error=0.757%o
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Orbit 4:

x=10366.20km, y=43.09 km

7=10860*5=54300s, Error=0.751%

Orbit 5:

x=10366.20km, y=53.87 km

7=13575*5=67875s, Error=0.751%

Orbit 6:

x=10366.20km, y=31.26 km 

T=16289*5=81445s, Error=0.758%

Orbit 7:

x=10366.20km, y=42.04km,

T=19004*5=95020s, Error=0.757%

Orbit 8:

x=10366.20km, y=52.81 km 

7=21719*5=108595s, Error=0.756%

Orbit 9:

x=10366.20km, y=30.21 km 

T=24433*5=122165s, Error=0.760%

Orbit 10:

x=10366.20km, y=40.98 km,

7=27148*5=135740s, Error=0.759%
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Conclusion:

The decrease in the step size improves accuracy of the method. During a different 

operation performed on the results, it was noted that important element is round-off 

error. For the smaller step sizes, due to the extremely fine scale of next function value 

generation, even small round-off error will cause large deviations from the true value.

Another problem that could arise is due to large difference in values of computed 

variables. If  one of the values becomes extremely small compared to the other 

configuring values, its accuracy will be significantly reduced. This is particularly a case 

with the Three Body Problem. The solution to this problem is known as a step size 

control. The biggest purpose of estimating the error is actually establishing the limits 

when to adjust the step size.

According to the above figures, the step of integration will be increased if the error is 

too small, and decreased if the error is too large.

For example, in the case of Three Body Problem, it is enough to observe only radius 

vectors that describe the positions of the bodies in the system. Adjustable step size is 

defined as [21]:

h —
h

_____________ scale____________

- 2  -2  -2  r + r + r/  1 ̂  l i '  1 '12 23 13

(3.3.5.)

where hscaie is the fixed step value selected at the beginning of the program, and

*12 — "s/^2 _ -*i) (T2 _ Tl)

*23 ~ yj(*3 — X 2 ) 0*3 ~ T2 ) (3.3.6)

rn =V(*i - * 3)2 +(>'1 - y ^ f

The accuracy of the computed results was also increased by increasing the single 

precision to double precision for the program calculations. The average improvement 

was for about 0.03%, for first ten orbits, step 5 sec. For integration steps smaller than 5 

sec the improvement in accuracy would increase further.
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It was particularly interesting to make another approach to results testing, this time 

performed with respect to another software program. The program named WINORBIT 

version 3.6, Satellite Orbital Prediction and Display, author C.D. Gregory was used as a 

reference to which SATELIGHT was compared [63].

It was assumed the analytical solution is at 0 at the error scale. WINORBIT program 

gives solution for the particular satellites, therefore one of them will be chosen, and its 

orbit elements will be used for the orbit generation by SATELIGHT.

Selected satellite is METEOR 3-5.

About Satellite: Weather Satellites Meteor series are LEO, polar-orbiting, satellites 

with cameras for cloud pictures in the visible (VIS) or infrared (IR) bands. Some of the 

satellites from this group are APT (automatic picture transmission) birds, and can be 

received with inexpensive home equipment. Not all satellites are operational at the 

same time.

Meteor 3/5 - APT on 137.85 MHz FM. [25].

Kepler’s Elements: Epoch = 6/01/2000 05:13:15

Mean Anomaly = 197.435

Mean Motion = 13.16889074

SemiMajor Axis = 7574.72 km

Alt. Perigee = 1197.55 km

Alt. Apogee = 1217.88 km

Inclination = 82.5541

Eccentricity = 0.00134

Argument of Perigee = 162.723

R.A. ofNode= 123.6893

Based on the above values the analytical orbit period would be:

T =
An1 f  7563.75 + 7584.08 V 

399059.85 (  2 ,
= 6556.04 sec
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Period determined by WINORBIT, measured at the middles of the intervals during 

perigee pass (as the altitude is determined as the whole number) is 

T=6280sec, Relative Error= 4.21%

Single orbit period determined by SATELIGHT for 5sec step:

T=6540sec, Relative Error=0.24%

The number of steps for which single orbit is completed, for a particular step size is: 

Step Size lsec: N=6556, Relative Error=0.381%

Step Size 2sec: N=3278, Relative Error=0.274%

Step Size 5sec: N=1331, Relative Error=0.397%

Step Size 10sec: N=656, Relative Error=0.609%

Step Size 15sec: N=437, Relative Error=1.144%

The above results prove the previously derived conclusion as valid. Final statements 

that could be still derived from the above observations are:

1. SATELIGHT’s accuracy increases for the step sizes 2 to 5 seconds, compared 

to the analytical solution

2. Lower eccentricity of the orbit, higher accuracy of the results, directly related to 

the discussion of the step size control.

Discussion regarding input conditions and software description is presented in the next 

Chapter.

108



CHAPTER 4

Initial Conditions Definition



Initial Conditions Definition and Software Analysis. Chapter 4

Chapter 4: Initial Conditions Definition and SATELIGHT 
Software Analysis

4.1. Initial conditions definition

The most general case of motion, according to the Chapter 2, is presented by the system 

of the three, second order, differential equations.

First integration of this coupled system results in solution that contains three constants. 

Second integration would produce next three constants, therefore there are six constants 

in total.

These constants are, for a particular time -  epoch time tQ:

X 0, Y0, Z0, dx/dt, dy/dt, dz/dt. Described by the words these are components of the 

position and velocity vectors evaluated at tQ. These elements are not directly observable 

and are the subject of preliminary orbit determination scheme, presented later.

The inertial system, placed at the centre of the Earth, containing equatorial plane and 

already defined at Chapter 2, is used at the final stage of satellite position 

determination. The initial system applied is placed in Earth’s centre with its xy plane 

containing orbit plane, therefore inclined to the equatorial plane for the angle i.

The unperturbed orbit of the satellite lies in the plane, which also contains xy plane of 

the inertial system. For elliptical orbit x axis passes through the orbit perigee. At this
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po in t, satellite  has x  coord inate  equal to  the  perigee  a ltitude determ ined  from  the  

m ission  requ irem en t, and y  coo rd inate  equal to  zero. V elocity  a t any po in t is a  tangen t 

o n  the  tra jec to ry  a t th a t po in t, in  th is  case, because y  po sition  coord inate  is equal to  

zero , to ta l ve locity  w ill be p ro jec ted  in  only  one direction . The velocity  at o rbit perigee 

is no rm al to  the  x axis (m ore p rec ise ly  to  the  rad ius vec to r o f  the  perigee) and  therefore  

its to ta l in tensity  is p ro jec ted  to  the  y  axis. R efer to  the  Fig. 4.1.1.

Fig. 4 .1 . In itial C onditions for e llip tical E llipse

P rog ram  SA T E L IG H T  O rbit requests  nex t elem ents as the  input:

T, X0, Y0, H, N, VX0, VY0.

T is the  epoch  tim e at w h ich  o rb it starts to  generate. This e lem ent is chosen  accord ing  

to the  user requ irem ents. T here  is no restra in t th a t determ ines the  value o f  J ,  apart from  

tha t o ther e lem ents have  to  have its value determ ined  p roperly . F o r the  first orbit, i f  the 

ca lcu la tion  starts  from  the perigee  (it is the  in itia l p o in t a t w h ich  m ission  operations 

start, fo r exam ple) T is equal to  zero , and by  the  com ple tion  o f  the  first o rbit it is equal 

to  the  p e rio d  o f  orbit. I t is calcu la ted  for each  step  o f  in tegra tion  in  the  increm ents equal 

to  the  tim e  step  H. T he p ro g ram  w ill genera te  o rb it from  any  po in t on  the  tra jecto ry , as 

long  as all requested  in itia l e lem en ts are p rov ided . T his fea tu re  is very  usefu l for 

constructing  in te r-p lane ta ry  tra jecto ries, as th ey  are  com posed  o f  d ifferen t o rb it types. T
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should be given in seconds and its final result represents the amount of time that 

satellite spent in the orbit.

X0 is the value equal to Earth radius subtracted to the perigee altitude. This value should 

be provided in km.

Y0 is the value of satellite y  coordinate, and in this case is equal to 0.

H  is the size of the integration step in seconds and could be chosen arbitrarily (it was 

shown the most accurate results are achieved for steps 2-5sec; bigger step reduces 

accuracy but requires less calculation time and less memory).

N  is the number of steps for which an orbit is going to be generated. It is based on 

user’s requirement and the capabilities of the applied computer. If single orbit is 

required, the number of steps is equal to the period divided by a step size:

N=Tp/H (4.1.)

For circular orbit:

T =
4n2R3

GMe
(4.2.)

where R is the radius of circular orbit.

For elliptical orbit:

T =
4tt2o3

GMe

a =
Y • “H Ym in  max

2

(4.3.)

(4.4.)

rm/„=radius vector at perigee 

fW=radius at apogee
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For parabolic and hyperbolic orbits there is no same concept of a period, as these are 

not closed orbits.

VX q for this point (perigee, with x axis passing through it) is equal to zero, as the total 

velocity, perpendicular to the radius vector, is projected to y  axis.

VYo is different for different orbit types, and this is actually the value that will 

determine the shape of the orbit. It is determined from the equations derived at Chapter 

2 :

Circle:

v =
g m e

R
(4.5.)

Ellipse:

'GMt
perigee a

V  ^ m i n  )

a -
r +rmin max

(4.6.)

Parabola:

vperigee
2 GMe 
r .perigee

Hyperbola:

v . >perigee
2  GM,

perigee

(4.7.)

(4.8.)

The velocity is in km/s, input and output.

Results could be transferred to Excel -  the program requires the name of the file before 

than major loop is performed. Name of the file has to satisfy basic FORTRAN 

requirements and could contain any extension including .xls. Excel provides facility for
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graph generation, based on the stored results. The output of the program are values: 

T[s],x[km],y[km], Vx[km/s], Vy[km/s]. Program Orbit is presented in Appendix 4.1.

Another possibility is to apply modified program version, which arranges satellite 

coordinates in LISP accepted format (presented here), so the generated orbit could be 

inserted and viewed in ACAD. This is particularly useful for comparing perturbed 

orbits, as particular orbit sections could be zoomed and directly measured. The 

disadvantage is, the huge amount of transferred data significantly slows a computer.

There is also a number of additional Excel based programs, developed for calculating 

initial conditions, error analysis, etc.

Concrete problem, solved by the above method is:

Perigee altitude: 850km.

For elliptic orbit, apogee altitude: 1500km. Fig. 4.2. is a result of a program Orbit LISP 

as a part of SATELIGHT software, presented in the Appendix 4.2.

Hyperbola

Parabola

Fig. 4.2. Orbits, according to the initial conditions above, transferred to ACAD, 

calculated by SATELIGHT Software developed here
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Ground Track:

The orbit starts to be generated from the point that is just vertically above the launching 

point. The dynamics of the launching phase was not subject of this program.

Ground track of the satellite trajectory depends on the orbit elements/ initial conditions, 

which are actually determined from the task of the mission.

Next elements are defined prior to ground track generation:

1. The world map used to refer the satellite trajectory to is the Mercator projection

2. The relative position in between non-rotating frame, whose x axis passes 

through the vernal equinox (chapter 2), and rotating system attached to the 

rotating Earth, whose x axis passes through the Greenwich, is defined as Mean 

sidereal (equinoctial) time.

Referring to the figure 2.2.2 there exists a unique angle between the axis passing 

through Greenwich prime meridian, and an inertial x axis passing through the vernal 

equinox. This angle is here denoted by 0g and is defined as the sidereal time of the 

Greenwich prime meridian.

Practical calculation of Greenwich sidereal time at 12 midnight, or 0 hours Universal 

Time, is given by formula:

0go~ 99.6909833 ° +36000.7689°Tu+0.00038708 °Tu**2 

where the time is measured in centuries as:
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Tu= (Julian Date -  2415020.0)/36525

Based on The American Ephemeris and Nautical Almanac, U.S. Government Printing 

Office, Washington D.C., Julian day number for years 2000 and 2001 is given as:

Year 2000 Year 2001

January 2541544 2541910

February 2541575 2541938

March 2541604 2541969

April 2541635 2541999

May 2541665 2542030

June 2541696 2542060

July 2541726 2542091

August 2541757 2542122

September 2541788 2542152

October 2541818 2542183

November 2541849 2542213

December 2541879 2542244

Therefore, Greenwich sidereal time is calculated from:

0g= 6go + ( t — t0)d 6/dt

For any other point on the Earth surface, including launching point, local sidereal time 

is given by:

6g— Qgo + X e

where X E is the east longitude, the angle measured eastward in the equatorial plane 

from Greenwich to the observed meridian.
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By this way the position of the launching point of the satellite is defined. For 

simplicity, all calculations in SATELIGHT start from this point. Time of the launch is 

transformed to the Universal Time by application of the above theory.

Let summarise the process of the satellite coordinates generation:

The first satellite coordinates are determined with respect to the inertial orbit plane, 

then by application of space transformations are brought to the rectangular DeCarte’s 

system, with origin at the Earth centre and xy plane contained by equatorial plane, with 

x axis passing through the Greenwich meridian, section 4.2.

Utilising spherical coordinates, satellite position is determined by two angles and 

radius. More precisely, radius of the satellite position is the vector from the Earth’s 

centre to the satellite, and two angles are longitude and latitude of the satellite’s current 

position.

To start to generate ground track of the desired satellite, initial conditions have to be 

supplied to the program. These initial conditions will depend on the mission 

requirements and are calculated for each satellite.

Illustrative Example:

Determine the orbital elements of a satellite that will pass directly over Sydney at an 

altitude 1000km exactly three days after injection.

Injection occurred from Woomera at midnight ( 0 hour) on November 26, 2001.

The coordinates of Sydney are:

(j)=34° - Latitude

X E= 151*14’ - Eastern longitude 

H  = 0 - elevation

Values adopted [20]:

/=  1/298.3 -  flattening of the Earth ellipsoid 

Re = 6378.15 km -  Equatorial radius of Earth 

ke = 0.07436574* (Re)**3/4

116



Initial Conditions Definition and Software Analysis. Chapter 4

dO/dt = 4.375269* 10E-03 rad/min -  sidereal rate of change [20] 

t-tO=4320 min

By applying above equations, next values are determined:

Orbit inclination angle, z= 33.822° 

and RAAN= 55.999°

These two elements are enough to determine the orientation of the orbit, therefore third 

element argument of perigee will be determined arbitrarily as AOP=61 .

To satisfy the altitude requirement of the fly-over problem, semimajor axis of the orbit 

needs to be determined.

Expression used:

a=r/(l-e*cosE)

where:

r-sqrt(rc * *2+Hs * *2+2 *rc *Hs *cos((/)S- (j)S ’)

-(¡>s ’=inv(tan(l-f) **2 tan</>s))

a=9192.992km

Ground track for these initial conditions is represented in the figure 4.1.1.

Program AIRDRAG includes perturbations due to the air drag, explained in Chapter 2. 

Program is composed of:

Main program: ADMAINI.for 

Subroutine: AS3I.for

Subroutine: 1211.for 

Linked to DATA.dat

This software portion contains a model of air density and includes air perturbations 

only for altitudes 100km to 2500km.
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Figure 4.1.1: Orbit elements derivation
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Input required by this application is:

T, X0, Y0, H, N, VXo, VY0 already explained, and Latitude in [deg] and Inclination [deg]. 

Last two values are related to the system transformations and will be explained at the 

end of this chapter.

All programs coupled in Air Drag program set are represented in Appendix 4.3.

Gravitational perturbations due to the anomalies of the Earth gravitational field are 

included in the program ORBITANOM.for, represented in the Appendix 4.4.

Input values are T, XQ, Y0, H, N, VXQ, VY0 and ZB1 -  initial latitude at which satellite 

starts orbiting motion (perigee in most cases).

Three Body Problem is presented in Appendix 4.5. in program named Three Body 

Problem with input values:

7, perigee altitude, apogee altitude -  defined previously

XE, YE -  coordinates of the Earth centre, calculated from the law of centre of masses, 

taken at any moment, according to the application. Program will work if these values 

are taken as zeros.

XMO -  x coordinate of the Moon’s centre, usually taken as 384749.9km 

YMO-y coordinate of the Moon’s centre. For the above value o f XMO, YMO is 0.

H  -  step of the integration

VxE, VyE -  the speed of the Earth, for now taken as zeroes.

VxMO- x component of the speed, according to the position coordinates equal to zero. 

VyMO - y  and also total orbiting speed of the Moon, equal to 1.024km/s 

SM S -  mass of the satellite, could be chosen as 0

RAAN, Inclination and Argument of perigee -  values related to the system 

transformations; they describe initial position of the satellite, as many physical 

properties depend on the satellite position in the space.

N  -  in this case is the number of orbits required, could be chosen arbitrarily. For LISP 

application every new orbit is generated in different colour.
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It could be noted some of the standard input values are not requested in this case. The 

reason is, this time they are calculated as the part of the program. Another advantage of 

this program is, it calculates deviation in an inclination angle after each orbit. This 

opens a possibility for completely new aspect of SATELIGHT utilisation, explained in 

the last section of this chapter.

Program that calculates satellite position referred to the rotating point at the Earth’s 

surface is named GTRTGPH and is represented in Appendix 4.6. Its initial conditions 

do not have new elements, compared to the previous programs.

Last step in software development is final combination of a particular perturbing 

elements.

Combination of Air Drag and anomalies of the Earth’s gravitational field is represented 

in Appendix 4.7.

Combined Three Body Problem with the effects due to the anomalies of the Earth’s 

gravitational field is represented in Appendix 4.8.

4.2. System Transformations

To transform coordinates from the orbit plane to the other system of interest, so named 

Space Transformations are applied. Another transformation is of the Moon orbit plane 

to the satellite orbit plane otherwise all three bodies would be placed in the same plane, 

which is just a special case. This approach gives the opportunity to generalize Three 

Body Problem one step further -  section 4.2.2.

4.2.1. System Transformation from Orbit to Right Ascension System

Transformation from the system coinciding with the orbit plane, in which all 

calculations were referred to, into the system that contains Equatorial plane is 

performed by three rotations:
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1. First rotation is about z axis of the initial system, for the angle a  equal to the 

longitude of the orbit element defined as right ascension of Ascending Node.

2. Second rotation is performed about x’ axis (therefore about perigee-apogee line) 

for the angle of inclination p.

3. Third rotation is performed about z” axis for an angle y equal to the Argument 

of Perigee, with the aim to bring the perigee to its final position.

Transformations from Right Ascension system to the orbit plane system are performed 

by utilisation of matrices:

1.

V cos a sin a 0“ X

Ti = -  sin a cos a 0 y (4.2.1.)

_zi_ 0 0 1 z

2.

*2 1 0 0

y 2 - 0 cos ß sin ß Ti (4.2.2.)

_ z 2 _
0 -  sin ß cos ß \ _z i_

3.

* 3 cos y sin y 0" *2
= -  sin y cos y 0 y 2 (4.2.3.)

_ Z 3 _ 0 0 1 _ Z 2 _

To get reversed system transformations matrices are transposed, by taking care of order 

of multiplication. The final system is:

x3 cos a sin or 0" T "l 0 0 "T
cos y sin y 0" T

X

- -s in  or cos dr 0 0 cos ß sin ß -s in  y cos y 0 y (4.2.4.)

_Z3_ 0 0 1 0 — sin ß cos/?l 0 0 1 z
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After developing the above system:

x3 = (cos a  cos y -  sin a  cos /? sin y)x  + ( -  cos a  sin y  -  sin a  cos /? cos y)y  +
(sin a  sin p )z

y 3 = (sin a  cos y  + cos a  cos p  sin y)x  + ( -  sin a  sin y + cos a  cos p  cos y)y  +
(sin /?cos y)z

z3 = (sin/?sin/)x + (sin/?cosyXy + (cos/?)z (4.2.5.)

Final equations (4.2.5.) are applied in all programs to refer satellite position and 

velocity to the new system. Values requested by the input, RAAN, inclination angle 

and argument of perigee, are therefore the orbit elements specified by user.

4.2.2. System Transformation from Moon Orbit to the Orbit Plane System

The coordinates of the satellite are calculated in the orbit plane. Moon’s orbit plane 

does not coincide with the satellite orbit plane, but the forces of Moon’s gravitational 

field do have effect to the satellite motion. If all three bodies are contained by the same 

plane, satellite would drift from its orbit, for a particular value in the plane, toward 

Moon, and than return to its unperturbed trajectory when the Moon is far enough. If the 

inclination angle of the satellite orbit is for example less than the inclination angle of 

the Moon, satellite orbit will also experience change in the inclination angle, which is 

not in the plane.

It is clear, for a definition of a plane, three points, which could be centres of the 

observed bodies, are enough. It would be, theoretically, necessary to define the system 

that moves in such manner, to contain these points all the time.

In that case, special case of three bodies would be solved in the more general terms. 

Besides the fact it is very hard to define such system, and observe all laws validity in it, 

final results would be again transformed to some more appropriate system of reference.

To avoid complexity, it is much easier if the coordinates of the Moon are at the start

transferred to the Right Ascension System, and than to the Orbit Plane system. Final
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transformation gives three components, two of them affect the motion. Third one is 

normal to the orbit plane, and it is assumed, it does not have any effect on the orbit 

plane. Same transformations are applied to the velocities calculated in the Moon orbit. 

The element that was observed further is inclination angle, recalculated after each orbit 

as:
f

i = arccos
v

xvy - y v x)
H

0 < z < 1 80° (4.2.6.)

It was shown, the inclination angle increased slowly toward Moon. Other orbit 

elements could be calculated in a similar way, from the numerically determined values 

that include different perturbing elements.

This is an excellent tool for observing different effects on different shaped and oriented 

orbits including different spacecraft geometries, masses, etc.

Moon transformations are performed as:

1. Transformation from Moon orbit to Right Ascension system, according to the 

equations:

XMOO=(COS(AM)*COS(GRM)-SIN(AM)*COS(BM)*SIN(GRM))*XMO+

(-COS(AM)*SIN(GRM)-SIN(AM)*COS(BM)*COS(GRM))*YMO

YMOO=(SIN(AM)*COS(GRM)+COS(AM)*COS(BM)*SIN(GRM))*XMO+(-SIN(AM)*

SIN(GRM)+COS(AM)*COS(BM)*COS(GRM))*YMO

ZMOO=(SIN(BM)*SIN(GRM))*XMO+(SIN(BM)*COS(GRM))*YMO

VXMOO=(COS(AM)*COS(GRM)-SIN(AM)*COS(BM)*SIN(GRM))*VXMO+

(-COS(AM)*SIN(GRM)-SIN(AM)*COS(BM)*COS(GRM))*VYMO

VYMOO=(SIN(AM)*COS(GRM)+COS(AM)*COS(BM)*SIN(GRM))*VXMO

(-SIN(AM)*SIN(GRM)+COS(AM)*COS(BM)*COS(GRM))*VYMO

VZMOO=(SIN(BM)*SIN(GRM))*VXMO+(SIN(BM)*COS(GRM))*VYMO

2. Second set of rotations transforms system from Right Ascending to the satellite orbit 

plane system, by the set of next equations:

XM=(COS(GR)*COS(A)-SIN(A)*SIN(GR)*COS(B))*XMOO+(SIN(GR)*COS(B)*

COS(A)+COS(GR)*SIN(A))*YMOO+(SIN(GR)*SIN(B))*ZMOO
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YM=(-SIN(GR)*COS(A)-SIN(A)*COS(B)*COS(GR))*XMOO+(-SIN(GR)*SIN(A)+

COS(B)*COS(GR)*COS(A))*YMOO+(COS(GR)*SIN(B))*ZMOO

ZM=(SIN(A)*SIN(B))*XMOO+(-SIN(B)*COS(A))*YMOO+COS(B)*ZMOO

VXM=(COS(GR)*COS(A)-SIN(A)*SIN(GR)*COS(B))*VXMOO+(SIN(GR)*

COS(B)*COS(A)+COS(GR)*SIN(A))*VYMOO+(SIN(GR)*SIN(B))*VZMOO

VYM=(-SIN(GR)*COS(A)-SIN(A)*COS(B)*COS(GR))*VXMOO+(-SIN(GR)*

SIN(A)+COS(B)*COS(GR)*COS(A))*VYMOO+(COS(GR)*SIN(B))*VZMOO

VZM=(SIN(A)*SIN(B))*VXMOO+(-SIN(B)*COS(A))*VYMOO+COS(B)*VZMOO

By these equations, Moon orbit plane transformations are completed. Next section 

represents formulas that could be used for orbit elements’ change observation.

4.2.3. Orbit Elements derived from numerical results

Radius vector:

r -  ^ x 2 + y2 + z2 (4.2.7.)

Total velocity:

V = J r * + V ,1 +V, 2 (4.2.8.)

Eccentricity is determined from the coupled equations:

(4.2.9.)

ecosE = l ~ — (4.2.10.)
a

Argument of Perigee:

sin {a> + 6 ) - —7 - 7  (4.2.sin {(0  + 6 )
rsin i

(4.2.11.)

v x
cosfry + 0 } — —sin £2 h— cosQ 

r r
(4.2.12.)

H  sin i
(4.2.13.)
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Chapter 5: Practical Interpretation of the Results

5.1. Introduction

Different perturbations have the effect on the different orbit elements. With the aim to 

analyse these changes more effectively short reflection to the analytical method is also 

introduced.

The ‘general perturbations' approach is based on the analytical method, developed 

from the theory o f infinite series. For some special cases it is possible to obtain a closed 

solution.

Special Perturbations are derived from the numerical approach, and are used in this 

project for determining deviations from the ideal satellite trajectory.

In both cases, changes that can occur to a particular orbit element could constantly to 

increase or decrease, or periodically vary (fluctuate) with respect to a chosen reference 

value. Some elements possess only periodic variations, which occur about their mean 

value.
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There are also short period variations and long period variations. For example, due to 

the effect of the Earth’s oblateness next variations can occur:

S h o r t  P e r io d  V a r ia t io n

Fig. 5.1. Character of Perturbing elements

Secular variations are associated with a steady, non-oscillatory continuous drift of an 

element from the adopted epoch value. Short period variations are produced by 

trigonometric functions of linear combinations of v and co.

Long period variations are associated with trigonometric functions of co and multiples 

of co.

According to the above definition, the total variance of an element p represented by the 

hypothetical relation is:

p  -  p 0 +p'0(t-1 0) + kl cos(2co) + k2 sin(2v + 2cy) (5.1.)

where the first element is the adopted epoch mean element, second term is the secular 

variation, the third term -  long period variation and the last term -  the short period 

variation.
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The atmospheric drag effect on the orbits manifests itself as secular variation [28]. The 

change occurs in eccentricity, semimajor axis and inclination.

5.2. The Effect of the Air Drag on the satellite Orbit

To evaluate the effect of the atmospheric drag on a satellite orbit next approach is used: 

The number of single-orbit observations is performed, and as a result a general solution 

for the variation of perigee distance with eccentricity is provided. These two elements, 

and orbit period, are the only subjects of the analysis, as other elements do not vary 

significantly.

This procedure is hard to obtain but gives very accurate results.

For an elliptical orbit, of a high eccentricity, drag effect is the largest on the small orbit 

portion near the perigee. This is due to, as it was already explained, exponential change 

of the air density with respect to the altitude.

The result o f this effect is retardation of a satellite speed at perigee, similar to the jet 

firing for manoeuvring purpose, affects apogee height, while perigee height changes 

much slower. This means that, the orbit contracts, therefore becomes more nearly 

circular, with both e and a elements decreasing steadily.

The argument of perigee and inclination stay constant, because the force of the air drag 

lies within the orbit plane.
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Lowering of the apogee height actually indicates the process of the reduction in the 

total energy of the spacecraft and is named orbital decay.

5.2.1. Case Study The Effects of the Air D rag to the International 

Space Station

F ig . 5 .2 .1 .  In ternational Space S tation  Photo  1
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The International Space Station, refer to the figures 5.2.1. -  5.2.5., is placed in near 

circular orbit of altitude 402km.

Space Station's "Backbone"
Forward

Service Module
R u s s ia n  

T h ird  L a u n c h

Functional Cargo Block (FGB) Node 1 Pressurized Lab Node 2
U S -o w n e d  (R u s s ia n  B u ilt) U S  U S  U S

F irs t  L a u n c h  S e c o n d  L a u n c h  T e n th  L a u n c h  2 0 th  L a u n c h

r S h u ttle  
.— I d o c k s  h e re

T h r u s t  &  A ttitude C o n tro l T h ru s t  &  A ttitu d e  C o n tro l 

Habitat (life support) and Laboratory forfiretthres flights
P re s s u r iz e d  L a b o ra to ry  an d  P re s s u r iz e d  C o n n e c to r  

Connector Life Support to European & Japanese Labs

Fig.5.2.2.

Russian Research Extension to the Space Station
Forward

Node 1 US Lab Node 2

O T3

l ì  1
Research Module I ife Support Module

Shuttle docks here

Universal Docking Module

Research Module

Sovuz-stvle Crew Transport Vehicle (CTV) 
can dock at this port

N o te  th e  "X" a rra n g e m e n t o f th e  resea rc h  

modules, visible in the top view  of the station 
in th e  "In tern atio na l S p a c e  S ta tio n  S ize  

Com parison” diagram (see below).

Fig. 5.2.3.
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International Space Station Size Comparison

M

Fig. 5.2.4. This representation was used as the guide for the shape approximation in air-

drag calculations

Fig. 5.2.5. International Space Station Photo 2
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Fig. 5.2.6. NASA’s workshop

For the circular orbit, of the altitude 402km and for the program ADMAINI initial 

conditions were selected to be:

Orbit Radius = 402km 

H=5sec

RAAN = 30deg

Inclination = -51.6deg, real inclination angle 

AOP = 30deg
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Results represented in the tables 5.2.0.1 and 5.2.0.2 show the variation of the 

perigee/apogee values for 60 successive orbits, for the two basic cases, with respect to 

the shape of the station:

1. Cylinder of the length 89m and diameter 18m. These values are substituted in 

the expression for determination of the cross section (2.8.4.2.). Air drag 

coefficient for cylinder does not change and is equal to 2.2 [32].

2. Flat plate, that actually represents the predominant shape of the solar panels, 

with dimensions 74.1m width, 108.4m length and 0.3m thickness. Air drag 

coefficient for a flat plate is 2.2 [32].

TIME= 0.0 

AltPerigee= 402.0km 

AltApogee= 402.0km 

H= 5.00 

RAAN= 30.00 

INCLINAT! ON=-52.51 

AOP=30.00 

IstOrbitNo 1 

2ndOrbitNo 30 

3rdOrbitNo 60

A L T  P E R IG E E  394.83243 
A L T  P E R IG E E  394.83247 
A L T  P E R IG E E  394.83248 
A L T  P E R IG E E  394.83247 
A L T  P E R IG E E  394.83254 
A L T  P E R IG E E  394.83249 
A L T  P E R IG E E  394.83254 
A L T  P E R IG E E  394.83253 
A L T  P E R IG E E  394.83254 
A L T  P E R IG E E  394.83259 
A L T  P E R IG E E  394.83255 
A L T  P E R IG E E  394.83261 
A L T  P E R IG E E  394.83259 
A L T  P E R IG E E  394.83260 
A L T  P E R IG E E  394.83265 
A L T  P E R IG E E  394.83262 
A L T  P E R IG E E  394.83269 
A L T  P E R IG E E  394.83265

A L T  A P O G E E  413.87586 
A L T  A P O G E E  413.81177 
A L T  A P O G E E  413.74769 
A L T  A P O G E E  413.68361 
A L T  A P O G E E  413.61953 
A L T  A P O G E E  413.55545 
A L T  A P O G E E  413.49138 
A L T  A P O G E E  413.42732 
A L T  A P O G E E  413.36326 
A L T  A P O G E E  413.29920 
A L T  A P O G E E  413.23516 
A L T  A P O G E E  413.17112 
A L T  A P O G E E  413.10708 
A L T  A P O G E E  413.04306 
A L T  A P O G E E  412.97905 
A L T  A P O G E E  412.91505 
A L T  A P O G E E  412.85106 
A L T  A P O G E E  412.78708

131



Practical Interpretation of the Results, Chapter 5

A L T  P E R IG E E  394.83267 
A L T  P E R IG E E  394.83270 
A L T  P E R IG E E  394.83268 
A L T  P E R IG E E  394.83276 
A L T  P E R IG E E  394.83271 
A L T  P E R IG E E  394.83274 
A L T  P E R IG E E  394.83275 
A L T  P E R IG E E  394.83275 
A L T  P E R IG E E  394.83282 
A L T  P E R IG E E  394.83277 
A L T  P E R IG E E  394.83282 
A L T  P E R IG E E  394.83281 
A L T  P E R IG E E  394.83281 
A L T  P E R IG E E  394.83287 
A L T  P E R IG E E  394.83283 
A L T  P E R IG E E  394.83289 
A L T  P E R IG E E  394.83287 
A L T  P E R IG E E  394.83288 
A L T  P E R IG E E  394.83292 
A L T  P E R IG E E  394.83289 
A L T  P E R IG E E  394.83296 
A L T  P E R IG E E  394.83292 
A L T  P E R IG E E  394.83295 
A L T  P E R IG E E  394.83298 
A L T  P E R IG E E  394.83296 
A L T  P E R IG E E  394.83304 
A L T  P E R IG E E  394.83298 
A L T  P E R IG E E  394.83302 
A L T  P E R IG E E  394.83303 
A L T  P E R IG E E  394.83302 
A L T  P E R IG E E  394.83310 
A L T  P E R IG E E  394.83304 
A L T  P E R IG E E  394.83309 
A L T  P E R IG E E  394.83308 
A L T  P E R IG E E  394.83309 
A L T  P E R IG E E  394.83315 
A L T  P E R IG E E  394.83310 
A L T  P E R IG E E  394.83317 
A L T  P E R IG E E  394.83314 
A L T  P E R IG E E  394.83316 
A L T  P E R IG E E  394.83320

A L T  A P O G E E  412.72311 
A L T  A P O G E E  412.65916 
A L T  A P O G E E  412.59522 
A L T  A P O G E E  412.53130 
A L T  A P O G E E  412.46739 
A L T  A P O G E E  412.40350 
A L T  A P O G E E  412.33962 
A L T  A P O G E E  412.27577 
A L T  A P O G E E  412.21193 
A L T  A P O G E E  412.14811 
A L T  A P O G E E  412.08431 
A L T  A P O G E E  412.02053 
A L T  A P O G E E  411.95677 
A L T  A P O G E E  411.89303 
A L T  A P O G E E  411.82932 
A L T  A P O G E E  411.76563 
A L T  A P O G E E  411.70197 
A L T  A P O G E E  411.63833 
A L T  A P O G E E  411.57471 
A L T  A P O G E E  411.51112 
A L T  A P O G E E  411.44756 
A L T  A P O G E E  411.38402 
A L T  A P O G E E  411.32052 
A L T  A P O G E E  411.25704 
A L T  A P O G E E  411.19359 
A L T  A P O G E E  411.13018 
A L T  A P O G E E  411.06679 
A L T  A P O G E E  411.00344 
A L T  A P O G E E  410.94012 
A L T  A P O G E E  410.87683 
A L T  A P O G E E  410.81358 
A L T  A P O G E E  410.75036 
A L T  A P O G E E  410.68718 
A L T  A P O G E E  410.62403 
A L T  A P O G E E  410.56092 
A L T  A P O G E E  410.49785 
A L T  A P O G E E  410.43482 
A L T  A P O G E E  410.37182 
A L T  A P O G E E  410.30887 
A L T  A P O G E E  410.24595 
A L T  A P O G E E  410.18308

Table 5.2.0.1. Altitude in (km) at perigee/apogee of the ISS orbit 

perturbed by the aerodynamic drag, for cylinder

T = 0.0

AltPer= 402.0km 

AltAp= 402.0km 

H= 5.00 

RAAN= 30.00
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INCLINATIONS 1.6 

AOP=30.00 

1 stOrbitNo 1 

2ndOrbitNo 30 

3rdOrbitNo 60

A L T  P E R IG E E  394.83248 
A L T  P E R IG E E  394.83258 
A L T  P E R IG E E  394.83265 
A L T  P E R IG E E  394.83270 
A L T  P E R IG E E  394.83283 
A L T  P E R IG E E  394.83284 
A L T  P E R IG E E  394.83295 
A L T  P E R IG E E  394.83300 
A L T  P E R IG E E  394.83306 
A L T  P E R IG E E  394.83318 
A L T  P E R IG E E  394.83320 
A L T  P E R IG E E  394.83332 
A L T  P E R IG E E  394.83335 
A L T  P E R IG E E  394.83342 
A L T  P E R IG E E  394.83353 
A L T  P E R IG E E  394.83355 
A L T  P E R IG E E  394.83369 
A L T  P E R IG E E  394.83371 
A L T  P E R IG E E  394.83379 
A L T  P E R IG E E  394.83388 
A L T  P E R IG E E  394.83392 
A L T  P E R IG E E  394.83406 
A L T  P E R IG E E  394.83406 
A L T  P E R IG E E  394.83416 
A L T  P E R IG E E  394.83423 
A L T  P E R IG E E  394.83428 
A L T  P E R IG E E  394.83441 
A L T  P E R IG E E  394.83442 
A L T  P E R IG E E  394.83452 
A L T  P E R IG E E  394.83458 
A L T  P E R IG E E  394.83464 
A L T  P E R IG E E  394.83476 
A L T  P E R IG E E  394.83477 
A L T  P E R IG E E  394.83489 
A L T  P E R IG E E  394.83493 
A L T  P E R IG E E  394.83500 
A L T  P E R IG E E  394.83511 
A L T  P E R IG E E  394.83513 
A L T  P E R IG E E  394.83526 
A L T  P E R IG E E  394.83528 
A L T  P E R IG E E  394.83537

A L T  A P O G E E  413.87592 
A L T  A P O G E E  413.81191 
A L T  A P O G E E  413.74789 
A L T  A P O G E E  413.68387 
A L T  A P O G E E  413.61985 
A L T  A P O G E E  413.55583 
A L T  A P O G E E  413.49182 
A L T  A P O G E E  413.42781 
A L T  A P O G E E  413.36380 
A L T  A P O G E E  413.29980 
A L T  A P O G E E  413.23580 
A L T  A P O G E E  413.17181 
A L T  A P O G E E  413.10782 
A L T  A P O G E E  413.04384 
A L T  A P O G E E  412.97987 
A L T  A P O G E E  412.91591 
A L T  A P O G E E  412.85195 
A L T  A P O G E E  412.78801 
A L T  A P O G E E  412.72408 
A L T  A P O G E E  412.66016 
A L T  A P O G E E  412.59625 
A L T  A P O G E E  412.53235 
A L T  A P O G E E  412.46847 
A L T  A P O G E E  412.40461 
A L T  A P O G E E  412.34075 
A L T  A P O G E E  412.27692 
A L T  A P O G E E  412.21310 
A L T  A P O G E E  412.14930 
A L T  A P O G E E  412.08551 
A L T  A P O G E E  412.02175 
A L T  A P O G E E  411.95800 
A L T  A P O G E E  411.89427 
A L T  A P O G E E  411.83057 
A L T  A P O G E E  411.76688 
A L T  A P O G E E  411.70322 
A L T  A P O G E E  411.63958 
A L T  A P O G E E  411.57597 
A L T  A P O G E E  411.51238 
A L T  A P O G E E  411.44881 
A L T  A P O G E E  411.38527 
A L T  A P O G E E  411.32176

Table 5.2.0.2. Altitude in (km) at perigee/apogee of the ISS orbit perturbed by the

aerodynamic drag, for flat plate
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Results indicate that the altitude at perigee stays almost unchanged for the different 

orbits, while the altitude at apogee decreases. These results are in accordance to the 

theory analysed in Chapter 2.

Ground track and altitude are represented graphically on the Figure 5.2.7.

5.3. The Effect of the Earth’s Gravitational Field Anomalies

This effect is very significant for the altitudes 500-600km. The elements a,e and ‘i’ 

experience short period variation, that averages to zero over one complete orbit. Other 

three elements undergo cumulative secular variations in which the average value of the 

parameters changes monotonically. Total energy, the mean values of the semimajor 

axis, the apogee and perigee heights and the eccentricity do not change. To understand 

the causes o f secular variations it is convenient to imagine Earth as a point mass and a 

ring of uniform density in the Equatorial plane, representing the Earth’s Equatorial 

bulge. The example of the rotation of the orbit plane is represented as:

Fig. 5.3.1. Earth’s Oblateness effect on the Orbit
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Figure 5.2.1.a:

ISS Orbit -  Air drag perturbation included
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Practical Interpretation of the Results, Chapter 5

The line of node is also changed, for example, for 1=0 gravitational force is stronger 

than in Kepler’s model, therefore the orbit will ‘curve’ more strongly and angular 

velocity of the satellite will increase.

The effect is, each successive perigee and apogee will occur further around than 

previously and the line of nodes rotates in the direction of the satellite’s motion.

For satellites in polar orbits, the gravitational force reduces while the satellite is above 

the pole, therefore the orbit curve less and line of nodes rotate opposite the direction 

of satellite motion.

In a polar orbit, the net effect is rotation of the line of nodes opposite the direction of 

motion, although the rate of rotation is less than for equatorial orbits [29].

5.4. Third Body Interaction

. The relative importance of the disturbing force increases with the third power of 

satellite distance [31].

Third body, in this case Moon, pulls satellite orbit toward its centre, therefore the 

inclination angle changes. Other elements that experience small changes are a,e,co and

Q.

This effect is particularly interesting to observe when applied on geosynchronous 

orbit.

Geosynchronous Orbit is very sensitive on the so-named tesseral and sectorial 

harmonics, or in other words deviations from Kepler’s orbit due to the ellipticity of
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the  E a rth ’s eq u a to r and the p ea r -  shaped E a rth ’s appearance , respec tive ly , analysed  

in  C hap ter 2.

P rogram  T B P X Y Z L S  so lves th is  prob lem , inc lud ing  the  observation  o f  an  inclination  

angle  change.

T he illu stra tive  exam ple u sed  here is the  G eosynchronous o rb it w ith  nex t 

characteristics:

A ltitude  P erigee=  35796 .86km  

A ltitude  A pogee=  35796 .86km  

H =5sec

R A A N = 322 .923deg  

Inclina tion  A ng le= 30deg  

A O P= 96deg  

N o o f  O rbits= 9

R epresen tations o f  the  G round  T rack  and A ltitude  w ith  respect to  the  tim e and 

longitude are g iven  in  F igures 5.4.1 and 5.4.2.

Geosynchronous Orbit, Moon Perurbation and Earth Oblatness 
included - Altitude (km) vs Longitude (deg)

i
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F igure  5 .4 .1 , T h ird  B ody  (M oon) effect on  the  E a r th ’s sate llite  in  G eosynchronous 

o rb it w ith  R A A N = 322 .9234deg , A O P = 96deg  and  i= 30deg : A ltitude  (km ) vs

L ong itude  (deg)
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. Senesi

1 253 505 757 1009 1261 1513 1765 2017 2269 2521 2773 3025 3277 3529 3781 4033 4285 4537 4789 5041 5293 5545 5797 6049 6301 6553 6805

Tim e * 5sec

Geosynchronous Orbit Moon Pemrbation and Earth Oblatness included - Altitude (km) vs Time (sec*5)

Figure 5.4.2, Third Body (Moon) effect on the Earth’s satellite in Geosynchronous 

orbit with RAAN=322.9234deg, AOP=96deg and i=30deg:

Altitude (km) vs Time (sec*5)

5.5. Ground Track

The coordinates of the Earth satellite were calculated with respect to the inertial 

system, whose xy plane was coincident with the orbit plane, and whose origin was 

placed at the Earth centre.

These coordinates were transformed to the values referred to the rotating rectangular 

coordinate system, attached to the Earth and rotating with it at the same angular speed 

-  Chapter 2.

1 3 7



Figure 5.4.2.1: Moon Perturbation
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Practical Interpretation of the Results, Chapter 5

These values were further transformed into spherical coordinates -  Chapter 4, so the 

values for satellite longitude and latitude were calculated, with respect to the Earth’s 

centre. The third dimension of this system represents the altitude.

Longitude vs Lattitude values are plotted above world’s map, giving the clear 

information for the satellite position at any point of time. The ground tracks were 

represented as the part of result analysis for three particular cases:

1. Air drag perturbed orbit of ISS

2. A sa part of the initial conditions representation for orbit in section 4

3. Geosynchronous orbit.
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C on clu sion  and Further W ork R ecom m endations. Chapter 6

Chapter 6: Conclusion and Further Work 

Recommendations

6.1. Conclusion

The main objective of this work is to analyse the dynamics of motion in space, and to 

develop a method to define the position of a satellite at any time. Some of the physical 

laws applied in this model were discovered centuries ago; the rest of the laws are now 

well understood, and have been applied in many scientific models of spacecraft 

motion. However, the emphasis of this work is to ‘combine’ the existing models and 

the theories in a way that will lead to the most accurate results. A particularly 

interesting part of this work is the way that the three body problem was approached. 

One of the segments of SATELIGHT software developed in this thesis opens a new 

level for calculation of the change in orbital elements due to the perturbation forces.

Improvements to this model could be easily performed each time a new discovery 

regarding perturbation forces is made, or when different conditions are to be 

specified. Solutions can then be obtained for the most general problems of spacecraft 

flight that could occur in reality. The advantage of the method, with regard to the user, 

is that, it could be simply, by selecting appropriate initial conditions, adopted for any 

special purpose.

The introduction of gravitational and non-gravitational perturbations opens a number 

of possible methods for application of numeric mathematics that analytically could 

not be solved.
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This work synthesises few very different fields that after performed analysis lead to 

the software SATELIGHT.

Its results are presented in the different formats, and could be manipulated further 

very effectively.

6.2. Further Work Recommendations

There is the number of possible improvements and directions of development to the 

model and to software, for example:

1. Air Density model improved by the application of Lagrange polynomials and 

more sophisticated initial data

2. Orbital elements could be calculated from the new determined numerical 

values which contain modifications due to the perturbations effects -  similar to 

the method applied to an inclination angle

3. Accuracy of the Runge -  Kutta method could be approved further by 

application of different polynomials (increasing the order) and further error 

analysis

4. Find the solution to reduce memory required for data transfer from FORTRAN 

to ACAD.

5. Include next set of perturbative elements: Solar radiation Pressure, Magnetic 

Disturbances and Micro-meteorites.
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6. Relate the deviations from theoretical trajectory, due to a particular 

perturbation, to the fuel required for orbit correction.

7. Three-dimensional models could be developed further.

8. Observe generation of the Air Drag Coefficient Cd for the different 

geometrical shapes.

9. Develop SATELIGHT for orbit transfer and correction computations (related 

to fuel consumption).
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A p p en d ix  2 .1

Inertial system defined with respect to another inertial system, if the first one is
moving with constant velocity

Let observe inertial system S  and another system SI which translates uniformly with 
velocity V=C9 with respect to the system S.

It has to be proven here, the system SJ is also inertial system.

Note that the time in SI differs only by constant from the time in S.

The transformation of space from system S  to SI can be described mathematically as:

rx - r - V t - R

which, after derivation gives: 

dt dt dt dt

(A U )

(Al.2)

r\ and r are the position vectors of a particle P, with respect to frames origins S I  and 
S  respectively.



A p p en d ix  2.1

R  is the constant vector that defines the position of system SI with respect to system 
S  at time t = 0. The transformation of time from S  to SI is given by:

t ^ t  + T  (A1.3)

where T  is constant time difference between S  and SI.

If for particle P is assumed that there is no external force acting on it, than it could be 
stated:

v;
dr_
dt

and

dr 1 
dt\

Therefore:

(A1.4)

(A1.5)

ysi dr\ dt dr 1 dr -  _ p
F dt dt\ dt dt F

(A1.6)

As both of these velocities are constants, then velocity of the particle P with respect to 
the system SI is constant as well.

1 1
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Proof o f the invariance of Newton’s second law

Consider systems S and SI where it is supposed that S is inertial system, and SI translates 

uniformly with velocity V with respect to S. The time in SI differs only for a constant 

from time in S. It has to be proved, the second law o f mechanics is obeyed in system SI. 

In previous attachment it was proved, the system which moves with constant velocity 

with respect to inertial system is also inertial system, therefore first law is already obeyed. 

Let define the transformations o f space and time from S to SI:

Fig. D2

(D.2.1)

If F is force exerted on the particle P in S, and FI is the force exerted on the same 

particle, but in the system SI, it will be stated the force is invariant, no matter in which 

system is it observed.

rl = r - V t - R  
tl = t + T

V
' dt

V ' =  —  
p dtl

i
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Therefore

F=F1 (D.2.2)

iv)

From (D.2.1), 

r=rl+Vt+R

after differentiating and multiplying by m-mass o f the particle,

m j = m y + m V  (D.2.3)
dt dt

Further, change o f  the linear momentum with respect to the time, from (D.2.3), is

d dr d drl dml
di(mdT)=H (mliT)+viïr (D.2.4)

By comparing mathematical expression (D.2.4) with next relations:

For system S
d , dr

For system SI
d drl dml

Fl = — (ml— ) + V — - 
dt dtr dtl

it can be concluded the second law is invariant only i f  the mass m is constant.
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The proof for P a rtic le  M a ss  assumption

Observe the system composed o f only two particles. The first particle P has a 

mass m l and second particle PI has a unit mass. The distance between them is 

defined by vector r , directed from P to PI. Then the force exerted by P on PI 

is

g = ? , which is recognised as the force due to the gravitation. Now, let

isolate the particle with the unit mass, PI and place it into three-dimensional 

space. At that initial moment, there is no external force acting toward this 

particle.

Now bring another particle P, with the mass m into the space where PI is 

already placed. At this moment there exists definite force acting from P toward 

PI. The conclusion is, the space around P has been changed and the change is 

manifested by the so named, gravitational field.

The strength o f  the field is characterised by the force exerted on the unit mass. 

From this fact it also can be concluded, the gravitational field is a vector field, 

or more precisely force field. To bring this idea closer, the concrete example is 

introduced.

Suppose that a mass P is fixed at the origin o f the three dimensional 

DeCartesian inertial frame. When PI was brought at the point (x,y,z) o f the 

system, where x ,y ,z * 0 , the force F was measured. This force is, as it was 

mentioned before, the force o f gravitational attraction directed toward the 

particle P, with mass M, placed at the origin. Its magnitude is

F(x,y,z) = - ^ j

where

k=GM and r = xi + yj + kz therefore |f| = ^ x 2 + y2 + z 2 . It has to be noted 

that,

i
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the force is not defined at f  = 0 and if  r -> Othen F -» oo. This force field is 

known as an inverse - square force field, and it is illustrated at the Fig. 4.4.2. 

below:

Fig. 2.4.2 Gravitational Force-Field or Vector Field

Let introduce the new terms C onservative F ields and P oten tia l Functions. By  

definition the vector field F defined on a region D is called conservative 

provided that there exists a scalar function f  defined on D such that

F = Vf (2.4.3)

at each point o f  D. In this case f  is called a potential function for the vector 

field F, where,

V (2.4.4)

In other words, a field is conservative if  the line integral J gdr is a function o f
A

the end points only, which implies that j>gd? = 0. The line integral represents 

the work done by the force field, as the particle o f unit mass moves from A to 

B. As the integrand o f this integral is an exact differential it can be stated: 

gdr = -dU  (2.4.5)

U is a scalar quantity called the Potential energy per unit mass, and can be 

expressed in Cartesian coordinates, as it is a function o f position only:

ii
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dU dU au
dU = —  dx + —  dy + — dz 

dx dy dz

Also, it could be stated

(2.4.6)

? = xi + yj + zk 

g = g J  + gyJ + g k

where vectors r and g are projected onto three direction of rectangular system, 

then

gdr = gxdx + gydy + g2dz and combining further

au au au 
8»= - ä T ’ S' = ~ V 8*= " ^

(2.4.7)

which is the same form o f the expression as F = Vf which defines conservative 

field.

For gravitational field

B ? Gm _ B Gm ^ f  1 1 ^
dr = Gm — -  — 

\ r B r j
Jgdf = - (  — rdf = - f
a a t  a r

(2 .4 .8)

Further,

Gm
U = —-----+ C (2.4.9)

where C is chosen to be 0. From the expression (2.4.9) it could be seen the 

potential energy approaches zero as r -> oo.

To find the gravitational force between a sphere and a particle it will be 

assumed the surface of the sphere S encloses its volume V and contains a 

particle o f mass m. By Gauss Theorem,

f VgdV = J g • nds (2.4.10)
V s

Introduce spherical coordinates 

x = psincpcosG
y = psin(psinG (2.4.11)
z = pcosq)

the divergence o f the vector is given by:

V L  =  — — fp 2L  +  — r - r ^ r ( L e sin e ) +  - - - - - - - -  y- ( 2 .4 .12)
p2 dp^K p'  n R in fid fiv 0 1 nsir °  v 7psinÖ dö psinO d(p

in
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If now, L is compared to g from the expression g = f  it follows
r r

g. =g„ = 0 , and

Vg =
( f GmV|

r 2 —

V r 2 ) )

(2.4.13)
1 d , x G 5m 

— — (-Gm) = - — —  
r dr r dr

In equation (2.4.10) the volume element can be represented by dV = r2drdQ, 

where dQ is so-called solid angle, and then

1 dm
1 g • ndS = - G f — — r 2drdQ = -47tGm
s v r dr (2.4.14)

The integral for a number of the particles within S with total mass M is 

J g • ndS = -47iGm (2.4.15)

It can be seen from this expression, g is the field strength due to all particles 

contained in S. Assume now that there is another sphere SI with mass M, 

concentric with S and with radius r, < r . If the density o f SI is a function o f the 

distance from the sphere center and is symmetric (what can be adopted for the 

Earth’s sphere, for the first approximation), then g is directed normal to S, has 

the same magnitude everywhere on S and is directed toward sphere centre. The

surface integral JJ f(x,y,z)dS for |g  • ndS is calculated to be -  47ur2g . I f  gr = gf 

where r is a radius o f sphere S, then

_ xi + yj + zk 
 ̂ ^/x2 + y2 + z2

By comparing

-  47ir2g = - 4 tcGM =>
GM

and finally

(2.4.16)

(2.4.17)

IV
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Therefore, the conclusion is, the gravitational field is the same for a particular 

radius greater than r in both cases, when the whole mass is concentrated at the 

centre o f the sphere, or i f  it is symmetrically distributed in its volume. This 

implies, Newton’s law o f Gravitation can be applied for Earth’s satellites.



Appendix 2.4.

Determination of First and Second Constant of Motion

Let multiply equation (2.5.2) vectorially by r

(2.5.3)
d:r _ ( -G M  

r x — - = r x — :— r 
dt2 V r3 .

From the analytical geometry it is known, the vector product o f two collinear 

vectors is zero, therefore

-  d 2r nrx — = 0 (2.5.4)

The expression (2.5.4) could be expressed in a different way:

d r  dr 
dt V X dt/

=  0

so,

dr -  -
rx  — = r x V  = L = const 

dt (2.5.5)

L is the angular momentum per unit mass o f the particle moving due to exerted 

gravitational field. From the characteristics o f the vectorial product it is known, the 

two vectors form the plane and their vectorial product is perpendicular to that 

plane. From last expression it is obvious, the motion occurs in the plane 

determined by the two vectors, r and V .

To observe the angular momentum of the particle, it is very suitable to introduce 

the polar coordinates in the plane o f motion. The polar coordinates are defined as:

r - radius vector o f  the particle trajectory in the plane o f  motion 

cp - the angle that defines the position o f the radius vector in the plane.

The tangential velocity in polar coordinates is represented by 

dcp
V = r

dt
(2.5.6)

1
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Let introduce new term, flight path angle y , Fig. 2.5.1. This is the angle between 

the velocity vector V o f the satellite and the plane whose normal is collinear with 

radius vector o f the satellite. With so defined flight path angle and the normal 

plane, the new expression for the tangential velocity is 

V^=Vcosy (2.5.7)

V lies in the plane which is normal on the radius vector, and is also a tangent on

the trajectory at that point. Based on (2.5.6) new expression for the magnitude o f  

the angular momentum per unit mass o f the particle is:

|L| = |f x v | = rVcosy = rV, = r2 (2.5.8)

In the case o f the orbiting satellite, velocity can be described by magnitude o f  the 

velocity vector and two angles which determine the direction o f that vector. Set 

first inertial coordinate system X,Y,Z in the centre o f the Earth, Fig.2.5.1, 

represented below,

Fig. 2.5.1. Flight angle representation

The position o f the satellite is defined by the vector r . From another aspect, the 

area swept out by the radius vector f , during the time interval At is given by: 

Fig.2.5.2

u
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AA = ~ r 2 A(p + O(rAcpAr) 12.5.9)

T r  o j e c t o r  y

o t  t r a c t  ion

Fig. 2.5.2 Velocity vector o f the satellite

If equation 2.5.9. is divided by At 0, then

—  = — r2 —  and when compared to (2.5.8) then 
dt 2 dt y  v '

HA 1 . .
~  L (2.5.10)

at 2

In words, the change of the area with respect to the time is proportional to the 

angular velocity which is constant. This statement is in accordance to the second 

Kepler’s law and represents first constant of motion.

Second constant of motion is derived from equation (2.5.2) by scalar multiplication 

dr
with — : 

dt

df d2? GM _ dr
dt dt2 r3 r dt

(2.5.11)

or

dr d f  df GM _ dr
dt d tld tJ  r3 dt

1 d f  df df) GM 1 d 
2̂ dt VdT dt/ = _ r3 2dt

(2.5.12)

(2.5.13)

From the right side o f the last equation, follows:

RH = A (G M /r) (2.5.14)
dt

in
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Therefore

l_d(dr  dr̂ j d ( GMN 
2dtvdt  dtJ dt \  r >

When the last expression is integrated

1 , g m—V ------- = K = const
2 r

The last expression states that the particle posses a constant difference in energy, 

between kinetic energy and potential energy per unit mass, therefore this is the law 

of conservation o f energy.

IV
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Program Orbit



Program  Orbit

PROGRAM orbit

! Runge Kutta method IV order used for orbit calculation 
REAL K 1 ,K 2 ,K 3 ,K 4 ,L I ,L 2 ,L 3 , L4 

C READ (5, *) T,X,Y,H,N,VX,VY 
10 FORMAT (15,2FI0.3,215,2FI0.3)

WRITE(*,' (A\) ')
R EAD(*,*) T
WRITE(*,' ( A\ ) ’ )
R EAD(*,*) X
WRITE(*,’ (A\ ) ' )
R E A D (*,*) Y
WRITE (*, ' (A\) ’)
R E A D (*,*) H
WRITE(*, ' ( A\ ) 1 )
R E A D (*,*) N
WRITE(*, ' (A\ ) ' )
R E A D (*,*) VX
WRITE(*, ' (A\) M
READ ( *, * ) VY

ENTER VALUE T

ENTER VALUE X

ENTER VALUE Y

ENTER VALUE H

ENTER VALUE N

ENTER VALUE VX

ENTER VALUE VY

WRITE (6,21)
21 FORMAT (/,5 X , 'I ’,5 X , ' T',5X,'X ’,5X,'Y\5X,'VX',5X,'VY’,/) 

WRITE (6,22)
22 FORMAT(T2, 'ORBIT')

DO 100 1=1,N 
X=X+H*VX 
Y=Y+H*VY 
K1=H*F(T,X,Y)
L1=H*G (T, X, Y)
K2=H*F(T+0.5*H,X+0.5*K1,Y+0.5*L1)
L2=H*G(T+0.5*H,X+0.5*K1,Y+0.5*L1)
K3=H*F(T+0.5*H,X+0.5*K2,Y+0.5*L2)
L3=H*G(T+0.5*H,X+0.5*K2,Y+0.5*L2 )
K4=H*F(T+0.5*H,X+0.5*K3,Y+0.5*L3)
L4=H*G(T+0.5*H,X+0.5*K3,Y+0.5*L3)
VX=VX+1./6.*(Kl+2.*K2+2.*K3+K4)
VY=VY+1./6.*(Ll+2.*L2+2.*L3+L4)
T=T+H
WRITE (9,23)I,T,X,Y,VX,VY

23 FORMAT (5X, 15, 5E14.6)
100 CONTINUE

STOP
END
FUNCTION F(T,X,Y)
F=(-X)*399059.852/(SQRT(X*X+Y*Y))**3
RETURN
END
FUNCTION G (T,X,Y)
G=(-Y)*399059.852/(SQRT(X*X+Y*Y))**3
RETURN
END

1
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Program Orbit LISP

PROGRAM orbitlsp
! Runge Kutta method IV order used for orbit calculation 
REAL K1,K2,K3,K4,L1,L2,L3,L4 
READ (5,*) T,X,Y,H,N,VX,VY

WRITE(*, ’ (A\) M ' ENTER VALUE T '
READ(*,*) T
WRITE(*,’ (A\) ’) ’ ENTER VALUE X ’
READ(*,*) X
WRITE(*,’ (A\) ’) ' ENTER VALUE Y ’
READ(*,*) Y
WRITE{*,J ( A\ ) 1 ) ? ENTER VALUE H ?
READ(*,*) H
WRITE(*, 1 (A\) ’) ’ ENTER VALUE N f
READ(*,*) N
WRITE(*,' (A\) ' ) ' ENTER VALUE VX '
READ(*,*) VX
WRITE(*, ' (A\ ) ') 1 ENTER VALUE VY 1
READ(*,*) VY

10 FORMAT (15/2FI0.3,215/2FI0.3)
WRITE (6,21)

21 FORMAT (/,5X,'I',5X,'T',5X,'X',5X,' Y ’,5X,?V X ’,5X,'VY',/) 
WRITE (6,22)

22 FORMAT(T2,’ORBIT’)

WRITE (9,33)
33 FORMAT ('(' 'Setq' )

DO 100 1=1,N 
X=X+H*VX 
Y=Y+H*VY 
K1=H*F(T,X/Y)
L1=H*G(T,X,Y)
K2=H*F(T+0.5*H,X+0.5*K1,Y+0.5*L1)
L2=H*G(T+0.5*H,X+0.5*K1,Y+0.5*L1)
K3=H*F(T+0.5*H,X+0.5*K2,Y+0.5*L2)
L3=H*G(T+0.5*H,X+0.5*K2,Y+0.5*L2) 
K4=H*F(T+0.5*H,X+0.5*K3,Y+0.5*L3)
L4=H*G(T+0.5*H,X+0.5*K3,Y+0.5*L3)
VX=VX-+1. / 6. * (Kl+2 . *K2-+2. +K3-+K4 )
VY=VY+l./6.*(Ll+2.*L2+2.*L3+L4)
T=T+H

IF (I.LE.9) WRITE (9,23) I,X,Y

23 FORMAT ('pt'Il ''' ( ' ((F14.3) (F14.3))')')

IF (I.LE.99.AND.I.GT.9) WRITE (9,27)1,X,Y 

27 FORMAT (’p t ’12 " M M ( F 1 4 . 3 )  (F14.3))’) 1)

IF ( I . L E . 999.AND.I.GT.99) WRITE (9,30)1,X,Y 

30 FORMAT C p t ' 1 3  ” , (, ((F14.3) (F14.3))1)')

1



Program Orbit LISP

IF (I.GT.999) WRITE (9,32)I,X,Y 

32 FORMAT (,p t ,I4 ' ' ' ( ' ((F14.3) (F14.3))1)') 

100 CONTINUE

WRITE (9,34)
34 F O R M A T O ' / / /  '(' 'command "line" ')

DO 200 J=1,N

IF (J.LE.9) WRITE (9,35)J 

35 FORMAT (’p t ’Il)

IF (J.LE.99.AND.J.GT.9) WRITE (9,36)J 

36 FORMAT (,p t ,I2)

IF (J.LE.999.AND.J.GT.99) WRITE (9,37)J 

37 FORMAT ('pt'13)

IF (J.GT.999) WRITE (9,38)J

38 FORMAT Cpt'14)

200 CONTINUE
WRITE (9,39)

39 FORMAT ( ' ) ' )
STOP
END

FUNCTION F(T,X,Y)
F=(-X)*399059.852/(SQRT(X*X+Y*Y))**3
RETURN
END

FUNCTION G(T,X,Y)
G=(-Y)*399059.852/(SQRT(X*X+Y*Y))**3
RETURN
END

ii
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Programs

• ADMAINI
• AS3I
•  1211



Program ADMA1NI

PROGRAM admaini
! Runge Kutta method IV order used for orbit calculation

IMPLICIT REAL*8 (A-H,K,L,0-Z) 

REAL K1,K2,K3,K4,L1,L2,L3,L4

C READ (5,* ) t ,x ,y ,H, N, VX, VY, ZB1,ZINCL
W R I T E (*,’ (A\ ) ' ) ' ENTER VALUE T '
R E A D (*,*) T
W R I T E (*,' (A\) ' ) ' ENTER VALUE X '
R E A D (*,*) X
W R I T E (*,’ ( A\ ) ' ) ' ENTER VALUE Y '
R E A D (*,*) Y
W R I T E (*,' ( A\ ) ' ) ' ENTER VALUE H '
R E A D (*,*) H
W R I T E (*,' ( A\ ) ' ) ' ENTER VALUE N  '
R E A D (*,*) N
W R I T E (*,’ ( A\ ) ' ) ' ENTER VALUE VX '
R E A D (*,*) VX
WRITE (*, ' (A\ ) ' ) ' ENTER VALUE VY '
R E A D (*,*) VY
W R I T E (*,' (A\ ) ' ) ' ENTER VALUE LATITUDE '
R E A D (*,*) ZB1
W R I T E (*,' (A\ ) * ) ' ENTER VALUE INCLINATION
R E A D (*,*) ZINCL

10 FORMAT (15/2FI0.3,215,3FI0.3)
WRITE (6,21)

21 FORMAT (/, 5X, ' I ', 5X, 'T',5X, 'X', 5X, ' Y ' , 5X, 'VX', 5X, 'VY', /) 
WRITE (6,22)

22 FORMAT (T2,'ORBIT')

L=1

DO 100 1=1,N

R=(SQRT(X*X+Y*Y))-6366.2 
IF(R.GE.6471.AND.R.LE.8866)GO TO 9

X=X+H*VX
Y=Y+II*VY N
K 1 = H * F (T,X,Y)
L1=H*G(T,X,Y)
K2=H*F(T+0.5*H,X+0.5*K1,Y+0.5*L1) 
L2=H*G(T+0.5*H,X+0.5*K1,Y+0.5*L1) 
K3=H*F(T+0.5*H,X+0.5*K2,Y+0.5*L2) 
L 3 = H * G (T + 0 .5*H,X+0.5*K2,Y + 0 .5*L2) 
K4=H*F(TI0.5*H,Xl0.5*K3,Yl0.5*L3) 
L4=H*G(T+0.5*H,X+0.5*K3,Y+0.5*L3) 
VX=VX+1. / 6. * (Kl+2 .• *K-2+2 . *K3+K4 ) 
VY=VY+l./6.*(L1+2.*L2+2.*L3+L4) 
T=T+H

IF (R.LT.6471.AND.R.GT.8866) WRITE (10,23)T,X,Y,R 
REWIND 9

23 FORMAT (5X,4E14.6)



Program ADM AINI

IF(R.LT.6471.AND.R.GT.8866)GO TO 99

9 CALL AS3I(X,Y,VX,VY,H,ZINCL)
W R I T E (*,*) 1 IT IS INSIDE THE 99 LOOP '

99 L=L+ 1

100 CONTINUE 
STOP 
END

FUNCTION F(T,X,Y)
IMPLICIT REAL* 8 (A-H,K,L,O-Z)

F = (- X )*399059.852/(SQRT(X*X+Y*Y))**3 
RETURN 

END

FUNCTION G(T,X,Y)
IMPLICIT REAL*8 (A-H,K,L,O-Z)

G=(-Y)*399059.852/(SQRT(X*X+Y*Y))**3 
RETURN 

END

□



SUBROUTINE A S 3 I(X, Y, VX, VY, H,ZINCL)

! Runge Kutta method IV order used for orbit calculation 
! INCLUDING AIRDRAG PERTURBATION FOR ALTITUDES 105-2500km 

IMPLICIT R E A L* 8 (A-H,0-Z)

X=X+H*VX
Y=Y+II*VY
R K 1 = H * F 1 ( T , X , Y ,DRAGX)
RL1 = H * G 1 (T, X,Y,DRAGY)
RK2=H*F1(T+0.5*H,X+0.5*RK1, Y + 0 .5*RL1,DRAGX) 
RL2=H*G1(T+0.5*H,X+0.5*RK1,Y+0.5*RL1,DRAGY) 
RK3=H*F1(T+0.5*H,X+0.5*RK2/Y + 0 .5*RL2,DRAGX) 
RL3=H*G1(T+0.5*H,X+0.5*RK2, Y + 0 .5*RL2,DRAGY) 
RK4=H*F1(Tl0.5*H,Xl0.5*RK3,YI0.5*RL3,DRAGX) 
RL4=H*G1(T+0.5*H,X+0.5*RK3,Y+0.5*RL3,DRAGY) 
VX=VX+1./6 . * (RK1+2.*RK2+2.*RK3+RK4)
VY=VY+1./6 . * (RL1+2.*RL2+2.*RL3+RL4)
T=T+H

R=SQRT(X*X+Y*Y)-6366.2 
R1=5QRT(X*X+Y*Y)
VTOT=SQRT(VX*VX+VY*VY)

VXANG=VX/VTOT 
VYANG=VY/VTOT

FI=1-R1*6.63146E-04/VTOT*COS(ZINCL) 
F4=FI*FI

S D = (0.818+0.25/8)/8*10E-6

! SD IS GEOMETRICAL CHARACTERISTIC OF THE SPACECRAFT 
! IN THIS CASE TAKEN AS CYLINDAR, lm LONG l/8m  DIA 
! CALCULATED AS THE PROJECTION OF THE MEAN AREA,

! AS THE SPACECRAFT 
! IS ROTATING IN SPACE

! ANOTHER CHARACTERISTIC THAT DEPENDS ON THE GEOMETRY IS 
! CD - AIRDRAG COEFFICIENT, HERE 2.2 BASED ON EXPERIMENTS

CALL 1 2 1 1 (R,DENSY)
DENSY=2.14E-7

D R A G = 0 .5*DENSY*VTOT*VTOT* F4 *SD* 2.2 
D R A G = 0 .5*1E-9*VT0T*VT0T*F4*SD*2.2 

DRAGX=DRAG*VXANG 
DRAGY= DRAG * VYANG

W R I T E (10,23)T,X,Y,R

FORMAT (5X,4E14.6) 
REWIND 9

RETURN



Program AS3T

END

FUNCTION F I ( T , X , Y,DRAGX)
IMPLICIT R E A L * 8 (A-II,0-Z)
Fl=(-X)*399059.852/ (SQRT(X*X+Y*Y))**3+DRAGX 
RETURN
END .

FUNCTION Gl(T,X,Y,DRAGY)
IMPLICIT R E A L* 8 (A-H,0-Z)

Gl=(-Y)* 3 9 9059.852/(SQRT(X*X+Y*Y))**3+DRAGY
RETURN
END

□



Program 1211

SUBROUTINE 1 2 1 1 (Z,DENSY)
! LINEAR INTERPOLATION USED FOR DETERMINING 
! CHARACTERISTICS OF THE ATMOSPHERE

IMPLICIT REAL* 8 (A-H, K, L, O-Z)
DIMENSION D E N S (26,2)

M1=0

OPE N (UNIT=9, FILE='D A T A . D A T ')
DO 304 J=l,2 
DO 303 1=1,26 
R EAD(9,10) DENS(I,J)

10 FORMAT (El6 .8)

M=M+1
IF(Z.GE.DENS (1-1,2) .AND.Z.LE.DENS (I, 2) )M=M1

303 CONTINUE
304 CONTINUE

C DO 300 1=1,26
C M11=I
C IF(Z.EQ.DENS(1,2))GO TO 91
C 300 CONTINUE

C M=0
C M1=0

C DO 100 1=1,26
C M=M+1
C IF (Z.GE.DENS(1,2) .AND.Z.LE.DENS(1+1,2))M=M1
C 100 CONTINUE

C M=M1

ALTN=DENS (Ml+2,2) -DENS (Ml+1,2)

ALTB=Z-DENS(Ml+2,2)
DENSF=DENS(Ml+2,1)-DENS(Ml+1,1)

C DENSY=ALTB * DENS F*10E 6
DENSY=DENS(Ml+1,1) +ALTB*DENSF/ALTN

C W R I T E (10,231)DENSY,DENS(Ml+2,1),DENS(Ml+1,2),ALTB,DENSF,ALTN,Z,M1

C 231 FORMAT (7E14.6,I5)

C 91 I F (Z .E Q .DENS (Ml1,2))DENSY=DENS(Ml1,1)

RETURN
END

□

i



DATA for D en sity  v s  A ltitu d e

0.000000214
0.000000098
2.45E-08,
6.58E-09,
2.60E-09,
Ì . 40E-09,
9.00E-10, 
4.58E-10, 
2.67E-10,
1.66E-10/
1.07Ë-10,
7.10E-11/
4.80E-11,
3.30E-11,
1.38E-11/
6.23E-12, 
2.97E-12,
1.48E-12,
4.05E-13,
1.21E-13/ 
3.85E-14, 
1.32E-14,
5.05E-15,
3.57E-16,
1.17E-16,
4.91E-17, 
1.05E+02,
1.10E+02/
1.20E+02, 
1.30E+02, 
1.40E+02, 
1.50E+02,
1.60E+02,
1.80E+02,
2.00E+02,
2.20E+02,
2.40E+02,
2.60E+02, 
2.80E+02,
3.00E+02,
3.50E+02/
4.00E+02,
4.50E+02, 
5.00E+02,
6 .00E+02,
7.OOE+02,
8 .00E+02,
9.00E+02,
1.00E+03/ 
1.50E+03,
2.00E+03, 
2.50E+03

i
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Program Orbitanom

PROGRAM orbitanom

! Runge Kutta method IV order used for orbit calculation 
! including anomalies of Earth gravitational field

REAL K l , K 2 ,K 3 ,K 4 ,L I ,L 2 ,L3,L4,LZB2,LZB21,LZB3, LZB31,LZB4,LZB5 
READ (5, * ) T,X, Y,II,N, VX, VY, ZB1

10 FORMAT (I5,2F10.3,2I5,3F10.3)
WRITE (6/21)

21 FORMAT (/,5X,'I'/SX,'T'/SX,'X'/SX,'Y'/SX,'VX'/SX,'VY'/SX,'LAT',/) 
WRITE (6/22)

22 FORMAT(T 2 / ’ORBITANOM’)

DO 100 I=l/N 
X=X+H*VX 
Y=YlH*VY 
K1=H*F(X,Y,LZB5)
L1=H*G(X/Y/LZB5)
K2=H*F(T+0.5*H,X+0.5*K1,Y+0.5*L1)
L2=H*G(T+0.5*H,X+0.5*K1,Y+0.5*L1)
K3=H*F(T+0.5*H/X+0.5*K2,Y+0.5*L2)
L3=H*G(T+0.5*H,X+0.5*K2,Y+0.5*L2)
K4=II*F (T+0.5*11/ X + 0 .5*K3/ Y + 0 .5*L3)
L4=H*G(T+0.5*H/X+0.5*K3,Y+0.5*L3)
VX=VX+1./6 . * (Kl+2.*K2+2-*K3+K4)
VY=VY+l./6 .*(Ll+2.*L2+2.*L3+L4)
T=T+H

ZBl=(ZBl+360./N)*3.14/180 
LZB2=D3IN(ZB1)
LZB21=DSIN(2*ZB1)
LZB3=LZB2*LZB2
LZB31=LZB21*LZB21
LZB4=1+0.0053024*LZB3-0.0000059*LZB31 
LZB5=LZB4*397852.4214

WRITE (9/ 23)I,T,X,Y,VX,VY/LZB4,LZB5/ LZB2,LZB21,LZB3/LZB31 
23 FORMAT (5X,15,11E14.6)
100 CONTINUE

STOP .
END

! 'GRAVITY' is CHANGED ACCORDING TO 
! THE INTERNATIONAL FORMULA

FUNCTION F (X,Y,LZB5) '
REAL LZB5

F=(-X)*LZB5/(SQRT(X*X+Y*Y))**3
RETURN
END

FUNCTION G (X,Y,LZB5)
REAL LZB5

G=(-Y)*LZB5/(SQRT(X*X+Y*Y))**3
RETURN
END

i
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Program Three Body Problem

PROGRAM THREE BODY PROBLEM
! Runge Kutta method IV order used for orbit calculation

DIMENSION R L O N G S (30000),N U M (30000) , SFSLGRT(30000)
REAL K l , K 2 , K 3 , K 4 , L I , L 2 , L3, L4, K1E, K2E, K3E, K4E, LIE, L2E, L3E, 

+L4E, KIM, K2M, K3M, K4M, LIM, L2M, L3M, L4M, LATS, LONGREL, LONGGR

C READ (5,*) T , X , Y, X E , Y E , XM, YM, H , N, V X , V Y , V X E , VYE, VXM,
C +VYM, SMS

W R I T E (*,' (A\) ') 1 ENTER VALUE T '
R E A D (*,*) T

W R I T E (*,' (A\ ) ' ) Ï ENTER VALUE PERIGEE ALTITUDE
R E A D (*,*) AP

W R I T E (*,' (A\) ’) 1 ENTER VALUE APOGEE ALTITUDE
R E A D (*,*) A A

W R I T E (*,' ( A\ ) ’ ) 1 ENTER VALUE XE '
R E A D (*,*) XE
W R I T E (*,’ (A\) ' ) 1 ENTER VALUE YE 1
READ (*,*) YE

W R I T E (*,’ ( A\ ) ' ) V ENTER VALUE XM0 ’
R E A D (*, *) XM0
W R I T E ( * , 1 (A\) M V ENTER VALUE ÏM0 1
READ (*,*) YM0

W R I T E (*,' (A\) *) f ENTER VALUE H '
R E A D (*,*) H

W R I T E (*,' (A\ ) ') V ENTER VALUE VXE '
READ (*,*) VXE
W R I T E ( * , 1 ( A\ ) ' ) 1 ENTER VALUE VYE 1
READ ( *,*) VYE

W R I T E (*,' (A\ ) ’) 1 ENTER VALUE VXM0 '
R E A D (*,*) VXM0
W R I T E (*,' (A\) M 1 ENTER VALUE VYMO 1
R E A D (*,*) VYM0

W R I T E (*,' (A\ ) ' ) f ENTER VALUE SMS '
R E A D (*,*) SMS

W R I T E (*,' (A\ ) ') 1 ENTER VALUE RAAN '
R E A D (*,*) ALFA

W R I T E (*,' (A\ ) ') V ENTER VALUE INCLINATION '
R E A D (*,*) BETA

W R I T E (*,' (A\ ) ' ) 1 ENTER VALUE ARG OF PER '
R E A D (*, *) GAMA
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WRITE(*,' (A\)') * ENTER VALUE ORBIT No. '
READ ( *, * ) N1

C OPEN (Ml )

! CALCULATE THE POSITION OF THE CENTRE OF THE MASS, COMPARE IT WITH 
assu med .

! CENTRE OF THE SATELLITE ORBIT- C N ’N: WHAT ABOUT AXES MODIFICATION?

EMS=5.9761E24 
RMM5=7.3534E22

! THE PART OF THE PROGRAM THAT WILL RECALCULATE VALUES OF THE MOON 
POSITION .

! W.R.T. THE SYSTEM IN SATELLITE ORBIT PLANE CONSISTS OF:
! 1. DEFINE POSITION OF THE MOON IN ITS ORBIT PLANE, IE: X=384749.9km,

Y-0, Z-0 ’
! THERE IS ALSO A  PARTICULAR VELOCITY ASSOCIATED TO THIS POSITION WHICH 

WILL BE .
! TRANSFORMED BY THE SAME EQUATIONS.
! 2. LET IGNORE THE OTHER TWO ROTATIONS, AND PERFORM ONLY THAT ONE FOR THE 
! INCLINATION ANGLE (6.65DEG RELATIVE TO THE EQUATOR, ACCORDING TO THE 

HANDBOOK)
! 3. NEXT ROTATION WOULD BRING THE MOON PLANE COORDINATES TO THE SATELLITE

SYSTEM
! PERFORMED BY THE SAME SPACE TRANSFORMATIONS, BUT WITH TRANSPOSED 

EQUATIONS
! THEORETICAL APPROACH IS IN THE THESIS 'THREE BODY PROBLEM' SECTION 
! ONCE THE INITIAL VALUE IS GIVEN, ONE COMPLETE SATELLITE ORBIT WILL BE 

COMPUTED, AND
! ON THE BEGINNING OF THE NEXT ONE NEW INCLINATION ANGLE WILL BE 

DETERMINED

AL FAI=0 
BETA1=6.65 
GAMA1=0
! MOON ORBIT ELEMENTS

AM=ALFA1*0.01744444 
BM=BETAl+0.01744444 
GRM=GAMA1*0.01744444

XM00= (COS (AM) *COS (GRM) -SIN (AM) *COS (BM) *SIN (GRM) ) *XM0+
+ (-COS (AM) *5 IN (GRM) -SIN (AM) *C05 (BM) *COS (GRM) ) *YM0 
YM00= (SIN (AM) *COS (GRM) +COS (AM) *COS (BM) *SIN (GRM) ) *XM0+ (-SIN (AM) * 

+SIN (GRM) +COS (AM) *COS (BM) *COS (GRM) ) *YM0 
ZM00- (SIN (BM) *SIN (GRM) ) *XM0+ (SIN(BM) *COS (GRM) ) *YM0

VXM00= (COS (AM) *COS (GRM) -SIN (AM) *COS (BM) *SIN (GRM) ) *VXM0+ 
I (-COS (AM) *SIN(GRM) -SIN(AM) *COS (BM) *COS (GRM) ) *VYM0 
VYM00= (SIN (AM) *COS (GRM) +COS (AM) *COS (BM) *SIN (GRM) ) *VXM0+

+ (-SIN (AM) *SIN (GRM) +COS (AM) *COS (BM) *COS (GRM) ) *VYM0

iî
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VZM00= (SIN (BM) *SIN (GRM) ) *VXM0+ (SIN(BM) *COS (GRM) ) *VYM0

X M = (COS(GR)*COS(A)-SIN(A)*SIN(GR)*COS(B))*XM00+(SIN(GR)*COS(B)* 
+COS(A)+COS(GR)*SIN(A))*YM00+(SIN(GR)*SIN(B))*ZMOO 
YM= (-SIN (GR) *COS (A) -SIN (A) *COS (B) *COS (GR) ) *XM00+ (-SIN (GR) *SIN (A) 

++COS(B)*COS(GR)*COS(A))*YM00+(COS(GR)*SIN(B))*ZM00 
ZM=(SIN(A) *SIN(B))*XM00+(-SIN(B)*COS(A))*YMOO+COS(B)*ZM00

VXM= (COS (GR) *COS (A) -SIN (A) *SIN(GR) *COS (B) ) *VXM00+ (SIN(GR) * 
+COS (B) *COS (A) +COS (GR) *5ÌN (A) ) *VYM00+ (SIN (GR) *5IN (B) ) *VZM00 
VYM= (-SIN (GR) *COS (A) -SIN (A) *COS (B) *COS (GR) ) *VXM00+ (-SIN (GR) * 
+SIN(A)+COS(B)*COS(GR)*COS(A))*VYM00+(COS(GR)*SIN(B))*VZM00 
VZM-(SIN(A)*SIN(B))*VXM00+(-SIN(B)*COS(A))*VYMOO+COS(B)*VZM00

Y=0

X=AP+6366.2 
XMl=AA+6366- 2

RMIN=X
RMAX=XM1

N=SQRT(((X+XM1)**3)*1.2411954E-5)/H

VX=Ù

VY=SQRT((0.00981*(6366.2**2)*XM1)/ ( (X+XM1)/2*X)) 
VYM=SQRT((198792.3045*X)/ ( (X+XM1)*XM1))

! try to determine the satellite position for the geosyncronised orbit 
! the initial condiditons are: T=0, (X=42205.1713km, Y=0), XE=0, YE=0,

H=5
' ! N=17280, VX=0, VY=3.06925, VXF.=0, VYF,=0, VXM=0, VYM=1 .024, SMS=0

! the observed orbit is of very high altitude, therefore the effect due to 
! atmospheric drag and gravitational anomalies will be ignored and only

Lunar
! impact will be observed

10 FORMAT (15,6F10.3,215,7 F10.3)
WRITE (6,21) „

21 FORMAT (/, 5X, ’ I 5,5X, 'TT, 5X, ’X ' , 5X, *Y*, 5X, ’V X ’, 5X, *VY*,/)
WRITE (6,22)

22 FORMAT (T2, ’ORBIT')

¡CALCULATE THE PERIOD, SO THE NUMBER OF SUCCESSIVE 
¡TRACKS COULD BE PLOTTED

in
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RPER=SQRT(9.87* (RMIN+RMAX)**3/397584.3246) 
RNUM=RPER/H

M=0 
MI 2=0

NUM=N/RNUM 

WRITE (9,33)
33 FORMAT ('(' ’S e t q ’ )

DO 200 11=1,NI

M12=M12+1 

DO 100 1=1,N 

BR-RNUM/4

M=M+1

X=X+H*VX
y=Y+n*vy
XE=XE+H*VXE
YE=YE+H*VYE
XM-XM+H*VXM
YM=YM+ H * VYM

K1=H*F (T, X, Y, XE, YE, XM, YM)
L1=H*G (T, X, Y, XE, YE,XM, YM)

K1E=H*FE (T, X, Y, XE, YE, XM, YM, SMS)
L1E=II*GE (T , X , Y , X E , Y E , XM, YM, SMS )

K1M=H* FM ( T , X , Y, XE, Y E , XM, YM, SMS )
L1M=II*GM ( T , X , Y, X E , Y E , XM, YM, SMS)

K2=H*F(T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E,YE+0.5*L1E 
+ ,XM+0.5*K1M,YM+0.5*L1M)
L2=H*G(T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E,YE+0.5*L1E 

+,X M + 0 .5*K1M,YM+0.5*L1M)

K2E=H*FE(T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E, Y E + 0 .5*L1E 
+,X M + 0 .5*K1M,YM+0.5*L1M,SMS)
L2E=H*GE(T+0 .5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E,YE+0.5*L1E 

+,XM+0.5*K1M,YM+0.5*L1M,SMS)

K2M=H*FM(T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E,YE+0.5*L1E 
l,XMl0.5*K1M,YMI0.5*L1M,SMS)
L2M=H*GM (T+0.5*H, X + 0 .5*K1, Y + 0 .5*L1, X E + 0 .5*K1E, Y'E+0.5*L1E 

+ , X M + 0 .5*K1M, Y M + 0 .5*L1M, SMS)

K3=H*F(T+0.5*H,X+0.5*K2,Y+0.5*L2,XE+0.5*K2E,YE+0.5*L2E 
+ , XM+0.5*K2M, YM+0.5*L2M) .
L3=H*G(T+0.5*H,X+0.5*K2,Y+0.5*L2,XE+0.5*K2E,YE+0.5*L2E 

+,X M + 0 .5*K2M,YM+0.5*L2M)

IV
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K3E=H* F E (T+0.5*H,X+0.5*K2,Y+0.5*L2,XE+0.5*K2E,YE+0.5*L2E 
+, XM+ 0.5*K2M, YM+ 0.5*L2M, SMS )
L3E=H*GE(T+0.5*H,X+0.5*K2,Y + 0 .5*L2,XE+0.5*K2E, YE+0.5*L2E 

+ , X M + 0 .5*K2M, Y M + 0 .5*L2M, SMS)

K3M=H*FM(T+0.5*H,X+0.5*K2,Y + 0 .5*L2,X E+0.5*K2E,YE+0.5*L2E 
+ , X M + 0 .5*K2M, Y M + 0 .5*L2M, SMS)
L3M=H*GM (T+0.5*H, X + 0 .5*K2, Y + 0 .5*L2,XE+0.5*K2E, YE+0.5*L2E 

+ , XM+0.5*K2M, YM+0.5*L2M, SMS)

K4=H*F(T+0.5*H,X+0.5*K3,Y+0.5*L3,XE+0.5*K3E,YE+0.5*L3E 
+ , X M + 0 .5*K3M, YM+ 0 .5*L3M)
L4=H*G(T+0.5*H/X+0.5*K3,Y+0.5*L3,XE+0.5*K3E,YE+0.5*L3E 

+ , X M + 0 .5*K3M, YM+ 0 .5*L3M)

K4E=H*FE(T+0.5*H,X+0.5*K3,Y+0.5*L3,XE+0.5*K3E,YE+0.5*L3E 
IfXMi0.5+K3E,YMl0.5+L3M,SMS)
L4E=H*GE(T+0.5*H,X+0.5*K3,Y+0.5*L3,XE+0.5*K3E/Y E+0.5*L3E 

+ , X M + 0 .5*K3M, YM+ 0 .5*L3M, SMS )

K4M=H*FM(T+0.5*H,X+0.5*K3,Y+0.5*L3,XE+0.5*K3E,YE+0.5*L3E 
I ,XMl 0.5*K3M, YMl 0.5*L3M, SMS)
L4M=H*GM(T+0.5*H,X+0.5*K3/Y + 0 .5*13,XE+ 0 .5*K3E,YE+0.5*L3E 

+ ,XM+0.5*K3M,YM+0.5*L3M, SMS)

VX=VX+1./6 .*(Kl+2.*K2+2.*K3+K4)
VY=VY+1./6 .*(Ll+2.*L2+2.*L3+L4)

VXE=VXE+1./6 .*(K1E+2.*K2E+2.*K3E+K4E)
VYE=VYE+1 . / 6 . *  (L1E+2.*L2E+2.*L3E+L4E)

VXM=VXM+1./6 .* (K1M+2.*K2M+2.*K3M+K4M)
VYM=VYM+1./6 . * (L1M+2.*L2M+2.*L3M+L4M)

XC= ( ( SMS *X+EMS *XE+RMMS *XM) / (SMS+EMS+RMMS) ) 
YC= ( (SMS*Y+EMS*YE+RMMS*YM) / (SMS+EMS+RMMS) )

A=ALFA*0.01744444 
B=DETA*0.01744444 
GR=GAMA*0.01744444

! ROTATED ORBITAL PLANE TO THE GLOBAL SYSTEM HAS COORDINATES

XGL=(COS(A) *COS(GR)-SIN(A)*COS(B)*SIN(GR))*X+
+ (-COS(A) *SIN(GR)-SIN(A)*COS(B)*COS(GR))*Y 
YGL-(SIN(A) *COS(GR)+COS(A)*COS(B)*SIN(GR))*X+(-SIN(A)*

+SIN(GR)+COS(A)*COS(B)*COS(GR))*Y 
ZGL=(SIN(B)*SIN(GR))*X+(SIN(B)*COS(GR))*Y

! FROM SPHERICAL SYSTEM THE LATITUDE AND LONGITUDE WILL BE 
! DETERMINED, ALSO RADIUS WHICH WILL GIVE ALTITUDE VALUE AS 
!A  FUNCTION OF POSITION, WHICH IS A  FUNCTION OF THE TIME

R-SQRT(XGL*XGL+YGL*YGL+ZGL*ZGL)

L=1

RLONGS(I)=90+57.32498682*DATAN(YGL/XGL)
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IF (R L O N G S (I-1) .G T .RLONGS(I))R L O N G S (I )=RL O N G S ( I ) +18 0 
IF(RLONG5(1-1).GT.RLONGS(I).AND.RLONGS(1-1).G T .300)R L O N G S (I) 

==RLONGS(I)+360

IF(RLONGS{I ) .G T .380)RLO N G S (I )-RLONGS(I ) -540

IF(RLONGS(1-1).GT.RLONGS(I))RLONGS(I-1)=RLMAX 
IF(RLONGS(I).GE.RLMAX)L=Ll1
IF(RLONGS(1-1).GT.RLONGS(I))RLONGS(I)=L*180+2*RLONG8(I)-SO

! THE ABOVE SET OF THREE COMMANDS CAN NOT CALCULATE 
! THE VALUES WHEN RLONGS (I) DECREASES, AS IT USES 
! IF (RLONGS(I).GE.RLMAX)L=L+1

I F (I .G E .BR)RLONGS(I)=RLONGS(I )+90 

I F (I .G E .2 * B R .A N D .I .L E .3 * B R )RLONGS(I )=RLONGS(I )+18 0 

I F (I .G E .3*BR)RLONGS(I )-RLONGS(I )+270

IF(M.GT.146.AND.M.LT.873)RLONGS(I )=RLONGS(I)-180

I F (RLONGS(I).LT.0.AND.RLONGS(1-1).GE.269)RLONGS(I)=360 
++RLONGS(I)

IF(RLONGS(I).GT.0.AND.RLONGS(1-1).LE.360)RLONGS(I)=360 
++RLONGS(I )

LATS=57.32498682*DACOS(ZGL/R)-90

!THE SPHERICAL COORDINATES OF THE POINT W AT THE EAR T H ’S SURFACE ARE

LONGW=XLONGl360*0.000072921152*T/6.28 -
LATW=XLATT

! RELATIVE SATELLITE POSITION WILL DEPEND ON THE RATE OF EARTH 
! ROTATION, THEREFORE EARTH ROTATION AT THE PARTICULAR MOMENT 
! IS GIVEN BY:

EOMEGA=360/(24*60*60) 

i ANGULAR VELOCITY CALCULATED IN DEG/SEC

T=T+H
ELONG=T *360/(24*60*60)+RLONGS(1) 
NUM1=ELONG/360

IF(ELONG.G T .360)ELONG=ELONG-NUMl*360

VI
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! THIS IS THE VALUE OF EARTH POSITION, AT TIME T STARTS FROM 
! ZERO, BUT WHERE THE ZERO IS?
S ZERO SHOULD BE AT PERIGEE, THE POINT WHERE THE TIME STARTS • 
! TO BE MEASURED, THEREFORE THE LONGITUDE DIFFERENCE IS:

ELGRT=RLONGS(1)-ELONG

SFSLGRT(I)=RLONGS(I)-ELONG 
IF(ABS(ELONG-RLONGS(I)).GT.350) 

+SFSLGRT(I)=RLONGS(I)-ELONG+360

LATREL=LATS-LATW 
LONGREL=RLONG5(I)-LONGW 
LONGGR=RLONGS(I)-T*0.0041801847 
LONGREL1=RLONGS(I )-LONGGR

ALT=R-6366.2

! WRITE (9,23)1,T,X,Y,ALT,RLONGS(I),ELONG, SFSLGRT(I) , LATS

WRITE (9,23) T,X, Y, VX, VY,XE, YE, XM, YM, ALT, RLONGS (I) , SFSLGRT (I ) , LATS 
23 FORMAT (5X,13E14.6)

100 CONTINUE

RPER=AP+ 6366.2 
RAP=AAI6366.2

ZB=RAP+RPER
ZRZ=RAP-RPER
R A Z = 1 - (ZRZ/ZB)* (ZRZ/ZB)
IF(ZRZ.EQ.0)GO TO 111
Bl=A C O S ((ABS(X*VY)-ABS(Y*VX))/ S QRT(399059.852*0.5*ZB*RAZ) ) 

111 Bl=ACOS((ABS(X*VY)-ABS(Y*VX))/ S QRT(399059.852*0.5*ZB)) 
SINCL=B-B1

WRITE (*,309) SINCL 
309 FOR M A T ( 5X 'SINCL=' (F10.3))

WRITE (*,3099) XC,YC
3099 FORMAT( 5X »CENT. OF MASS =' (2F10.3))

200 CONTINUE

M121=M121+1

STOP
END

FUNCTION F(T,X,Y,XE,YE,XM,YM)

vii
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F=(XE-X)*398785.2/ (SQRT((XE-X)**2+(YE-Y)**2)**3) 
+ + (XM-X)*4906.92/(S Q R T ((XM-X)**2+(YM-Y)**2)**3)

RETURN
END
FUNCTION G(T, X, Y, XE,YE,XM,YM)
G=(YE-Y)*398785.2/(SQRT( (XE-X)**2+(YE-Y)**2)**3)

+ + (YM-Y)*4906.92/(SQRT((XM-X)**2+(YM-Y)**2)**3)
RETURN
END

FUNCTION FE(T,X,Y,XE,YE,XM,YM,SMS)
FE=(XM-XE)*4906.92/(SQRT((XE-XM)**2l(YE-YM)**2)**3)

+ + (X-XE)*6.673E-20*SMS/(SQRT((XE-X)**2+(YE-Y)**2)**3) 
RETURN 
END
FUNCTION GE (T, X, Y, XE, YE, XM, YM, SMS)
GE=(YM-YE)*4906.92/(SQRT((XE-XM)**2+(YE-YM)**2)**3)

+ + (Y-YE)*6.673E-20*SMS/(SQRT((XE-X)**2+(YE-Y)**2)**3) 
RETURN 
END
FUNCTION FM (T, X, Y, XE, YE, XM, YM, SMS)
FM= (X-XM) *6.673E-20*SMS/ (SQRT ( (XM-X) **2+ (YM-Y) **2) **3) 

+ + (XE-XM)*398785.2/(SQRT((XM-XE)**2+(YM-YE)**2)**3) 
RETURN 
END

FUNCTION GM ( T , X , Y, X E , Y E , XM, YM, SMS )
GM= (Y-YM) *6.673E-20*SMS/ (SQRT ( (XM-X) **2 l (YM-Y) **2) **3) 

+ + (YE-YM)*398785.2/(SQRT((XM-XE)**2+(YM-YE)**2)**3) 
RETURN 
END

□
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Program GTRTGPH

PROGRAM gtrTGPH
DIMENSION JM.QNGS .(30000) yNLIM(30000.) y JSLGRT .(30000.)

! Runge Kutta method IV order used for orbit calculation 
BEAL Ely K2y K3y K4y Lly L2y L3y L4y LAT.S 
REAL LONGW,LATW,LONGREL,LATREL,LONGREL1,LONGGR 
RT.ONGS (T-1 ) =0

C READ (5/ * ) T, X, Y, H, N, VX, VY

c WRITE(*,1(A\)') ’ IS APOGEE INITIAL POINT ENTER 1 FOR YES
•C .READ(*y * ) Y

WRITE(*,'(A\)') ' ENTER VALUE T 1
READ (*r * ■) T
WRITE(*,'(A\)') ' ENTER VALUE PERIGEE ALTITUDE '
READ(*y * ) AP
WRITE(*,' (A\) ') ' ENTER VALUE APOGEE ALTITUDE
READ.(*y *•) AA
WRITE(*, '(A\) ') ' ENTER VALUE OF TIME STEP H
R£AD(*r*) H
WRITE(*, ’(A\ ) ' ) ' ENTER VALUE RAAN '
READ.(*y *.) ALFA
WRITE(*, '(A\) ’) • ENTER VALUE INCLINATION '
•READ (*y *■) ■BE TA
WRITE(*,' (A\) ') ? ENTER VALUE ARG OF PER '
READ.(*y *.) -GAMA
WRITE(*,’(A\ ) ') ' ENTER VALUE ORBIT No. '
READ.(*y *.) Ml

Y=0

X=AP+6366.2 
XM=AA+ 6366.2
RMIN=X
BMAX=EM
N=SQRT(((X+XM)**3)*1.2411954E-5)/H
VX=(3

VY=SQRT((0.00981* (6366.2**2)*XM)/ ( (X+XM)/2*X)) 
VYM=.SQRT.(.( 19.8792.3.045*X.)./.( .(X+XM) *XM).)

C IF (Y .EQ.1)VY=VYM
FORMAT '(I5/2F1Ö. 3/215, 2 F10.3 )10

1



Program GTRTGPH

WRITE (6,21)
21 FORMAT U + -5Xy ' I ' y JSXy ’ T ' y 5.Xy 'X ' y 5 X y ' Y ' y .5Xy ' VX ’ y .5Xy ' VY ' y./.)
' WRITE (6,22)
22 FORMAT(T2,’ORBIT')

•CALCULATE THE PERIOD, SO THE NUMBER OF SUCCESSIVE 
J TRACKS COULD R E  PLOTTED

RPER=SQRT(9.87*(RMIN+RMAX)**3/397584.3246) 
RNUM=RPER/ H

M=0

NUM=N/RNUM

DO 200 11=1,N1 

DO 100 1=1,N 

BR=RNUM/ 4~

‘RN'M+I
X=X+H*VX 
Y=Y.iR*yY 
K1=H*F(T,X,Y)
L1=H*G(T,X,Y)
K2=H*F (T+0.. 5*H, X+0.. 5*K1, Y+0... 5.*L1 ). 
L2=H*G(T+0.5*H,X+0.5*K1,Y+0.5*Ll) 
K3= H * F (T + 0 .L*H,X+0.5*K2, Y + 0 .5*L2) 
L3=H*G(T+0.5*H,X+0.5*K2,Y+0.5*L2) 
K4=II*F.(T+0-5*IIyX+0^5* K3 y Y +.0 - .5 * L3.) 
L4= H * G (T+ 0.5 * H ,X+ 0.5 * R3,Y+ 0.5 * L 3 ) 
VX=VX+1. / 6 . * (Kl+2.*K2+2.*K3+K4) 
VY=VY +1. / 6 . * (Ll+2.*L2+2.*L3+L4)

A=ALFA*0.01744444 
P.=BETA*0- 01744444 
GR=GAMft*0.01744444

•ROTATED ORBITAL. PLANE TO- THE GLOBAL. SYSTEM HAS, COORDINATES.
XGT.= (COS (TV) *COS (GR) -STN (A) *COS (TV) *STN (GR) ) *X+

+ (-COS(A) *SIN(GR)-SIN(A)*COS(B)*COS(GR))*Y 
Y.GL=.(OIN.(A) *.COS .(GR.) +C.QS.(A) *.C.QS.(B.) *5 IN .(.GR.).) *X+.(-.SIN.(A) *
*SIN (GR) +COS (A) *COS (B) *COS (GR) ) *Y 
ZGL=(SIN(B)*SIN(GR))*X+(SIN(B)*COS(GR))*Y
!FROM SPHERICAL SYSTEM THE LATITUDE AND LONGITUDE WILL BE 
J DETERMINED., ALSO RADIUS .WHICH WILL .GIVE ALTITUDE VALUE AS
!A function oF fositton , which is  a  function of' the time '

R^SQRT(XGL*XGL+YGL*YGL+ ZGL* ZGL)

L=1

RLONGS(I)=90+57.32498682*DATAN(YGL/XGL)

ii



Program GTRTGPH

IF(RLONGS(1-1).G T .RLONGS(I))RLONGS(I)=RLONGS(I)+180 
IF .(RL.OFi.GS -( I — 1 ) -GT- RLON G S .{I.) -AND. RLONGS ( I -1.) -GT- .3.0.0.) RLONGS.( I.) 

+=RLONGS (I ) +360 . _

IF (RLONGS. (I )■. GT. 38 0 ) RLONGS ( I ) =RLONGS {I} -54 0

IF(RLONGS(1-1).G T .RLONGS(I))RLO N G S (1-1)=RLMAX 
IF (RLONGS.(J .) - GE-RLM AX .) L=L.i 1

IF(RLONGS(I-1) .G T .R L O N G S (I))RLONGS(I)=L*180+2*RLONg S (I )-90

!• THE ABOVE SET OF THREE COMMANDS CAN NOT CALCULATE 
!THE VALUES WHEN RLONGS (I) DECREASES, AS IT USES 
! IF {RLONGS{I ) .G E .RLMAX)L=L+1

C IF(I.GE.BR)RLONGS(I)=RLONGS(I)+90 .
C IF (I .G E . 2 * B R .A N D .I .LE.3*BR)RLONGS(I)= RLONGS( I ) +18 0

C I F {I .G E . 3*BR>RLONGS {I ) R L O N G S  (I)+270

C IF(M.GT.146.AND.M.LT.873)RLONGS(I)=RLONGS(I)-180

C IF (RLONGS(I).LT.O.AND.RLONGS (T -1 ).G E .269)R L O N G S (I)=360
C ++RLONGS(I)

C IF(RLONGS(I).GT.O.AND.RLONGS(1-1).LE.360)RLONGS(I)=360
C ++RLQN.G5 .(I.)

LATS=57.32498682*DACOS(ZGL/R)-90
ÏTHE SPHERICAL GGGRDI-NATE S GP THÉ POINT W AT THE EARTH ‘ S SURFACE ARE

C LONGW=XLONG+360* 0.000072921152*1/6.28
CE LATW=XLATT

! RELATIVE SATELLITE POSITION WILL DEPEND ON THE RATE OF EARTH 
J ROTATION* THEREFORE F.ARTH ROTATION _AT THE PARTICULAR MOMENT 
! IS GIVEN BY:

C EOMEGA=360/(24*60*60)
Î ANGULAR VÉLOCITÉ CALCULATED IN BÈG/3ÉC 
T-T+H
ELONG=T*360/(24*60*60)
NUM1=ELONG/360

in

IF (ELONG.GT.3 6 0)ELONG=ELONG-NUMl* 3 60



Program GTRTGPH

! THIS IS THE VALUE OF EARTH POSITION, AT TIME T STARTS FROM 
1 .ZERO., BUT. .WHERE THE .ZERO IS 2
i ZERO SHOULD BE AT PERIGEE, THE POINT WHERE THE TIME STARTS 
! TO BE MEASURED, THEREFORE THE LONGITUDE DIFFERENCE IS:

C ELGRT=RLONGS(1 )-ELONG
FSLGET(1 5 »RLONGS(IJ-ELONG-RLONGS( 1 J

C LATREL=LATS-LATW
C I«QNGRFJ.=RI.QNGS.( J.) -I.ÛNGW
C LONGGR-RLÛNGS(I)-T*0.004180184 7
C LONGRELl=RLONGS(I)-LONGGR

ALT=R-6366.2
WRITE {9,23} I,T,X,Y, ALT,RLONGS (I} ,ELONG, FSLGRT (I) , LAIS

23 FORMAT (5X,15,8E14.6)
1.00 .c o n t i n u e

C ELONG=ERTHM 

200 CONTINUE
C I F (N.GT.RPER)GO TO 101

STOP
END

. FUNCTION F (T ,X ,Y J
F= (-X)*399059.852/(SQRT(X*X+Y*Y))**3
RETURN
END
TÜNC1T.ON G (T/’X,Y )
G=(-Y)*399059.852/(SQRT(X*X+Y*Y))**3
RETURN
END

□

IV



APPENDIX 4.7.

Programs that combine Gravitational 
Anomalies with the Air Drag



PROGRAM GRADMAINI
! Runge Kutta method IV order used for orbit calculation 

IMPLICIT REAL* 8 (A-H,K,L,0-Z)
DIMENSION R L O N G S (30000),NUM(30000),SFSLGRT(30000) 
IMPLICIT REAL* 8 (A-H,K, L, O-Z)

REAL K1,K2,K3,K4,L1,L2,L3,L4,LATS
REAL LONGW,LATW,LONGREL,LATREL, LONGREL1,LONGGR
RLONGS(I-1)=0

READ (5/*) T,X,Y,H,N,VX,VY,ZB1,ZINCL

W R I T E (*, ' (A\) ') ' ENTER VALUE T '
R E A D ( *, * ) T

W R I T E (*,' (A\) ') ' ENTER VALUE PERIGEE ALTITUDE
R E A D ( *, * ) AP

W R I T E ( * , 1 (A\) ') ' ENTER VALUE APOGEE ALTITUDE
R E A D (*,*) AA

W R I T E (*,' (A\) ’) ' ENTER VALUE H »
R E A D (*,*) H

WRITE (*, ' (A\) M ' ENTER VALUE RAAN ’
R E A D (*,*) ALFA

W R I T E (*, ' (A\) ') ' ENTER VALUE INCLINATION '
R E A D (*,*) BETA

WRITE (*, ' (A\) ') ' ENTER VALUE ARG OF PER »
R E A D (*,*) GAMA

W R I T E (*, ' (A\) 1 ) ' ENTER VALUE ORBIT No. '
R E A D (*,*) N1

OPEN (Ml)
oII>-•

X=AP+6366 .2
XM=AA+ 6366.2

RMIN=X
RMAX=XM

N = S Q R T (((X+XM)**3)*1.2411954E-5)/H

VX=0

VY=SQRT((0.00981*(6366.2**2)*XM)/((X+XM) /2*X)) 
VYM=SQRT((198792.3045*X)/((X+XM)*XM))



10 FORMAT ( 1 5 , 2 F I0 . 3 , 2 1 5 , 3F10.3)

WRITE (6,21)
21 FORMAT (/, 5X, ' I', 5X, ' T',5X, 'X ' ,5X, 'Y', 5X, ’V X 1,5X, 1V Y ', /) 

WRITE (6,22)
22 FORMAT(T2,’ORBIT')

L=1

!CALCULATE THE PERIOD, SO THE NUMBER OF SUCCESSIVE 
!TRACKS COULD BE PLOTTED

RPER=SQRT(9.87*(RMIN+RMAX)**3/397584.3246) 
RNUM=RPER/H
M=0

NUM=N/RNUM

DO 200 11=1,N1

DO 100 1=1,N
R= (SQRT(X*X+Y*Y))-6366.2
IF(R.GE.105.AND.R.LE.2500)GO TO 9
BR=RNUM/4

M=M+1
X=X+H*VX
Y=Y+H*VY
K1=H*F(T,X,Y,GAN)
L1=H*G (T, X, Y, GAN)
K2=H*F(T+0.5*H,X+0.5*K1,Y+0.5*L1,GAN) 
L2=H*G(T+0.5*H,X+0.5*K1,Y+0.5*L1,GAN) 
K3=H*F(T+0.5*H,X+0.5*K2,Y+0.5*L2,GAN) 
L3=H*G(T+0.5*H,X+0.5*K2,Y+0.5*L2,GAN) 
K4=H*F(T+0.5*H,X+0.5*K3,Y+0.5*L3,GAN) 
L4=H*G(T+0.5*H,X+0.5*K3,Y+0.5*L3,GAN) 
VX=VX+1./6.* (Kl+2.*K2+2.*K3+K4) 
VY=VY+l./6.*(L1+2.*L2+2.*L3+L4)
T=T+H
A=ALFA*0.01744444 

B=BETA*0.01744444 
GR=GAMA*0.01744444
!ROTATED ORBITAL PLANE TO THE GLOBAL SYSTEM HAS COORDINATES

XGL=(COS(A)*COS(GR)-SIN(A)*COS(B)*SIN(GR))*X+
+ (-COS(A)*SIN(GR)-SIN(A)*COS(B)*COS(GR))*Y

YGL=(SIN(A) *COS(GR)+COS(A)*COS(B)*SIN(GR))*X+(-SIN(A)* 
+SIN(GR)+COS(A)*COS(B)*COS(GR))*Y 
ZGL=(SIN(B)*SIN(GR))*X+(SIN(B)*COS(GR))*Y

! FROM SPHERICAL SYSTEM THE LATITUDE AND LONGITUDE WILL BE 
!DETERMINED, ALSO RADIUS WHICH WILL GIVE ALTITUDE VALUE AS

ii



! A FUNCTION OF POSITION, WHICH IS A FUNCTION OF THE TIME 
RG=SQRT(XGL*XGL+YGL*YGL+ZGL* ZGL)

L=1
RLONGS(I)=90+57.32498 682*DATAN(YGL/XGL)

IF (RLONGS(I-1) .GT.RLONGS(I))RLONGS(I)=RLONGS(I)+18 0 
IF(RLONGS(1-1).GT.RLONGS(I).AND.RLONGS(1-1).GT.300)RLONGS(I) 

==RLONGS( I ) + 3 6 0

IF(RLONGS(I) .GT.3 80)RLONGS(I)=RLONGS(I)-54 0

IF(RLONGS(1-1).G T .RLO N G S (I ))RLONGS(I-1)=RLMAX 
IF(RLONGS(I).G E .RLMAX)L=L+1

I F (RLONGS(1-1).GT.RLONGS(I))RLONGS(I)=L*180+2*RLONGS(I)-90
!THE ABOVE SET OF THREE COMMANDS CAN NOT CALCULATE 
!THE VALUES WHEN RLONGS(I) DECREASES, AS IT USES 
! IF (RLONGS(I).GE.RLMAX)L=L+1

I F (I .G E .BR)RLONGS(I )= RLONGS(I )+ 90 

I F (I .G E .2 * B R .A N D .I .L E .3*BR)RLONGS(I)=RLONGS(I )+180 

I F (I .G E .3*BR)RLONGS(I )=RLONGS(I )+270

IF(M.GT.1 4 6 .AND.M.LT.873)RLONGS(I)=RLONGS(I)-180

IF(RLONGS(I) .LT.0.AND.RLONGS(1-1).GE.269)RLONGS(I)=360 
++RLONGS(I)

IF(RLONGS(I) .GT.0.AND.RLONGS(1-1).LE.360)RLONGS(I)=360 
++RLONGS(I )

LATS=57.32498682*DACOS(ZGL/RG)-90
ELONG=T*360/(24*60*60)+RLONGS(1) 
NUM1=ELONG/360

IF (ELONG.G T .3 60)ELONG=ELONG-NUMl*360

! THIS IS THE VALUE OF EARTH POSITION, AT TIME T STARTS FROM 
! ZERO, BUT WHERE THE ZERO IS?
! ZERO SHOULD BE AT PERIGEE, THE POINT WHERE THE TIME STARTS 
! TO BE MEASURED, THEREFORE THE LONGITUDE DIFFERENCE IS:

ELGRT=RLONGS(1)-ELONG
SFSLGRT(I)=RLONGS(I)-ELONG



IF(ABS(ELONG-RLONGS(I)).GT.350) 
+SFSLGRT(I)=RLONGS(I)-ELONG+360

LATREL=LAT S - LATW 
LONGREL=RLONGS(I)-LONGW 
LONGGR=RLONGS(I)-T*0.0041801847 
LONGRELl=RLONGS(I)-LONGGR

ALT=RG-6366.2

IF (R.GE.2500) WRITE
(10,23)I,T,X,Y,VX,VY,ALT,RLONGS(I ),ELONG,SFSLGRT(I ) , LATS 

REWIND 9

23 FORMAT (5X,6E14.6)

IF(R.GE.2500)GO TO 99

9 IF(R.GT.105.AND.R.LT.2500) CALL AS3I(X,Y,VX,VY,H, ZINCL)
I F (R.G E .105.AND.R.L E .2500) W R I T E (*,*) * IT IS INSIDE THE 99 LOOP

99 L=L+1

GAN=9.78*(1+0.0053024*((SIN(LATS))**2)- (5.9E-6)* 
+ (SIN(2*LATS))**2)*(6367.445**2)/ 5 .9761E+24

WRITE (*,3098) GAN
3098 FORMAT( 5X 'g=f(LATITUDE) IS ’ (F10.3))

100 CONTINUE

200 CONTINUE
STOP
END

FUNCTION F(T,X,Y,GAN)
IMPLICIT REAL*8 (A-H,K,L,O-Z)
F=(-X)*GAN*40678.884/(SQRT(X*X+Y*Y))**3 
RETURN 
END

FUNCTION G(T,X,Y,GAN)
IMPLICIT REAL*8 (A-H,K,L,O-Z)
G=(-Y)*GAN*40678.884/(SQRT(X*X+Y*Y))**3 
RETURN 

END



SUBROUTINE AS3I(X,Y,VX,VY,H,ZINCL)

! Runge Kutta method IV order used for orbit calculation 
! INCLUDING AIRDRAG PERTURBATION FOR ALTITUDES 105-2500km 

IMPLICIT REAL* 8 (A-H,0-Z)

X=X+H*VX
Y=Y+H*VY
RK1=H*F1(T,X,Y,DRAGX)
RL1=H*G1( T , X , Y ,DRAGY)
RK2=H*F1(T+0.5*H,X+0.5*RK1, Y + 0 .5*RL1,DRAGX) 
RL2=H*G1(T+0.5*H,X+0.5*RK1,Y+0.5*RL1, DRAGY) 
RK3=H*F1(T+0.5*H,X+0.5*RK2,Y+0.5*RL2, DRAGX) 
RL3=H*G1(T+0.5*H,X+0.5*RK2,Y+0.5*RL2,DRAGY) 
RK4=H*F1(T+0.5*H,X+0.5*RK3,Y+0.5*RL3, DRAGX) 
RL4=H*G1(T+0.5*H,X+0.5*RK3,Y+0.5*RL3, DRAGY) 
VX=VX+1./6 . * (RK1+2.*RK2+2.*RK3+RK4)
VY=VY+1./6 .*(RL1+2.*RL2+2.*RL3+RL4)
T=T+H

R=SQRT(X*X+Y*Y)-6366.2 
R1=SQRT(X*X+Y*Y)
VTOT=SQRT(VX*VX+VY*VY)

VXANG=VX/VTOT '
VYANG=VY/VTOT

FI=1-R1*6.63146E-04/VTOT*COS(ZINCL)
F4=FI*FI

S D = (0.818+0.25/8)/8*10E-6

! SD IS GEOMETRICAL CHARACTERISTIC OF THE SPACECRAFT 
! IN THIS CASE TAKEN AS CYLINDAR, lm LONG l/8m DIA 
! CALCULATED AS THE PROJECTION OF THE MEAN AREA,

! AS THE SPACECRAFT 
! IS ROTATING IN SPACE

! ANOTHER CHARACTERISTIC THAT DEPENDS ON THE GEOMETRY IS 
! CD - AIRDRAG COEFFICIENT, HERE 2.2 BASED ON EXPERIMENTS

CALL 1211(R,DENSY)
DENSY=2.14E-7

DRAG=0.5*DENSY*VTOT*VTOT*F4*SD*2.2 
DRAG=0.5*1E-9*VT0T*VT0T*F4*SD*2.2 

DRAGX=DRAG*VXANG 
DRAGY=DRAG * VYANG

WRITE (10, 23) T,X, Y, VX, VY, R

FORMAT (5X,6E14.6)
REWIND 9

RETURN



END

FUNCTION FI(T,X,Y,DRAGX)
IMPLICIT REAL*8 (A-H,0-Z)
Fl=(-X)*399059.852/(SQRT(X*X+Y*Y))**3+DRAGX
RETURN
END
FUNCTION G1(T, X, Y,DRAGY)
IMPLICIT REAL*8 (A-H,0-Z)

Gl=(-Y)*399059.852/(SQRT(X*X+Y*Y))**3+DRAGY
RETURN
END

□

ii



SUBROUTINE 1211(Z,DENSY)
! LINEAR INTERPOLATION USED FOR DETERMINING 
! CHARACTERISTICS OF THE ATMOSPHERE
IMPLICIT REAL*8 (A-H,K,L,O-Z)
DIMENSION DENS(26,2)

M1=0
OPEN (UNIT=9, FILE=' DATA. DAT ' ) 
DO 304 J=l,2 
DO 303 1=1,26 
READ(9,10) DENS(I,J)
FORMAT(El 6.8)
M=M+1
IF(Z.GE. D E N S (1-1,2).AND.Z.LE.DENS(1,2))GO TO 99

CONTINUE
CONTINUE

DO 300 1=1,26

IF(Z.GT.DENS(1,2) .AND.Z.LT.DENS(1+1,2) ) GO TO 99 
CONTINUE
M=0
M1=0
DO 100 1=1,26 
M=M+1
IF (Z.GE. DENS (1,2) . AND. Z . LE. DENS (1 + 1,2) )M=M1 
100 CONTINUE

M=M1
ALTN=DENS(1,2)-DE N S (1-1,2)

ALTB=Z-DENS(1,2)
DENSF=DENS(I,1)- D E N S (1-1,1)
DENSY=ALTB* DENS F*10E 6 

DENSY=DENS(1-1,1)+ALTB*DENSF/ALTN

W R I T E (10,231)DENSY,DENS(1 + 1,1),D E N S (1,2),ALTB, DENSF, ALTN,Z,Ml

231 FORMAT (7E14.6,I5)

91 I F (Z.EQ.DENS(Mil,2))DENSY=DENS(Mil,1)

RETURN
END



APPENDIX 4.8.

Program that combines Gravitational 
Anomalies with the Moon impact



Combination of Gravitational Perturbations

P R O G R A M  T H R E E  B O D Y  P R O B L E M  G C S

! R u n g e  K u t t a  m e t h o d  I V  o r d e r  u s e d  f o r  o r b i t  c a l c u l a t i o n

D I M E N S I O N  R L O N G S ( 3 0 0 0 0 ) , N U M ( 3 0 0 0 0 )  ,  S F S L G R T ( 3 0 0 0 0 )

R E A L  K l ,  K 2 ,  K 3 ,  K 4 ,  L I , L 2 ,  L 3 ,  L 4 ,  K 1 E ,  K 2 E , K 3 E ,  K 4 E , L I E , L 2 E ,  L 3 E ,  

+ L 4 E ,  K I M ,  K 2 M ,  K 3 M ,  K 4 M ,  L 1 M ,  L 2 M ,  L 3 M ,  L 4 M ,  L A T S ,  L O N G R E L ,  L O N G G R

C R E A D  ( 5 , * )  T , X ,  Y , X E ,  Y E , X M ,  Y M ,  H , N ,  V X ,  V Y ,  V X E ,  V Y E ,  V X M ,
C + V Y M ,  S M S

W R I T E ( * ,  ’ ( A \ )  ' ) ' E N T E R V A L U E T  '

R E A D ( * , * ) T

W R I T E  ( * ,  ' ( A \ )  ' ) ' E N T E R V A L U E P E R I G E E  A L T I T U D E
R E A D  ( * ,  *  ) A P

W R I T E  ( * ,  ' ( A \ )  ' ) ' E N T E R V A L U E A P O G E E A L T I T U D E
R E A D ( * , * ) A A

W R I T E ( * , ' ( A \ )  ' ) '  E N T E R V A L U E X E  ’

R E A D ( * , * ) X E

W R I T E ( * , ' ( A \  ) ' ) ' E N T E R V A L U E Y E  ’
R E A D ( * , * ) Y E

W R I T E ( * , ' ( A \  ) ' ) ' E N T E R V A L U E X M 0  '
R E A D ( * , * ) X M 0

W R I T E ( * ,  ' ( A \ )  * ) 1 E N T E R V A L U E Y M 0  '

R E A D  ( * , * ) Y M 0

W R I T E ( * , ' ( A \  ) ' ) '  E N T E R V A L U E H  '

R E A D  ( * ,  * ) H

W R I T E ( * , 1 ( A \  ) ’ ) ' E N T E R V A L U E V X E  '

R E A D ( * , * ) V X E

W R I T E ( * , ' ( A \ )  ' ) ' E N T E R V A L U E V Y E  '

R E A D ( * , * ) V Y E

W R I T E ( * , ' ( A \  ) ' ) '  E N T E R V A L U E V X M 0  ’

R E A D ( * , * ) V X M 0

W R I T E ( * ,  ' ( A \  ) 1 ) ' E N T E R V A L U E V Y M 0  »

R E A D ( * ,  *  ) V Y M 0

W R I T E ( * , ' ( A \ )  ’ ) ' E N T E R V A L U E S M S  ’

R E A D ( * ,  *  ) S M S

W R I T E ( * ,  ' ( A \  ) ' ) ' E N T E R V A L U E R A A N  1i

R E A D ( * ,  *  ) A L F A

W R I T E ( * , ' ( A \  ) ' ) ’ E N T E R V A L U E I N C L I N A T I O N  '

R E A D ( * ,  * ) B E T A

W R I T E ( * ,  ' ( A \  ) 1 ) ' E N T E R V A L U E A R G  O F P E R  ’

R E A D ( * , * ) G A M A

i



Combination of Gravitational Perturbations

WRITE(*,'(A\)') ' ENTER VALUE ORBIT No.
READ(*,*) N1

C OPEN (Ml)

! CALCULATE THE POSITION OF THE CENTRE OF THE MASS, COMPARE IT WITH 
ASSUMED

! CENTRE OF THE SATELLITE ORBIT- CN'N: WHAT ABOUT AXES MODIFICATION?

EMS=5.97 61E24 
RMMS=7.3534E22

THE PART OF THE PROGRAM THAT WILL RECALCULATE VALUES OF THE MOON 
POSITION W.R.T. THE SYSTEM IN SATELLITE ORBIT PLANE CONSISTS OF:
1. DEFINE POSITION OF THE MOON IN ITS ORBIT PLANE, IE: X=384749.9km,
Y=0, Z=0 THERE IS ALSO A PARTICULAR VELOCITY ASSOCIATED TO THIS 
POSITION WHICH WILL BE TRANSFORMED BY THE SAME EQUATIONS.

2. LET IGNORE THE OTHER TWO ROTATIONS, AND PERFORM ONLY THAT ONE FOR THE 
INCLINATION ANGLE (6.65DEG RELATIVE TO THE EQUATOR, ACCORDING TO THE 
HANDBOOK)

3. NEXT ROTATION WOULD BRING THE MOON PLANE COORDINATES TO THE SATELLITE 
SYSTEM PERFORMED BY THE SAME SPACE TRANSFORMATIONS, BUT WITH 
TRANSPOSED EQUATIONS

THEORETICAL APPROACH IS IN THE THESIS 'THREE BODY PROBLEM' SECTION 
ONCE THE INITIAL VALUE IS GIVEN, ONE COMPLETE SATELLITE ORBIT WILL BE 
COMPUTED, AND AT THE BEGINNING OF THE NEXT ONE NEW INCLINATION ANGLE 
WILL BE DETERMINED

ALFA1=0 
BETA1=6.65 
GAMA1=0
! MOON ORBIT ELEMENTS

AM=ALFA1*0.01744444 
BM=BETA1*0.01744444 
GRM=GAMA1*0.01744444

XM00= (COS (AM) *COS (GRM) -SIN (AM) *COS (BM) *SIN (GRM) ) *XM0+
+ (-COS (AM) *SIN (GRM) -SIN (AM) *COS (BM) *COS (GRM) ) *YM0 
YM00= (SIN (AM) *COS (GRM) +COS (AM) *COS (BM) *SIN (GRM) ) *XM0+ (-SIN (AM) * 

+SIN(GRM)+COS(AM)*COS(BM)*COS(GRM))*YM0 
ZM00=(SIN(BM)*SIN(GRM))*XM0+(SIN(BM)*COS(GRM))*YM0

VXM00=(COS(AM)*COS(GRM)-SIN(AM)*COS(BM)*SIN(GRM))*VXM0+ 
+ (-COS (AM) *SIN(GRM) -SIN(AM) *COS (BM) *COS (GRM) ) *VYM0 
VYM00= (SIN (AM) *COS (GRM) +COS (AM) *COS (BM) *SIN (GRM) ) *VXM0+
+ (-SIN (AM) *SIN (GRM) +COS (AM) *COS (BM) *COS (GRM) ) *VYM0 
VZM00= (SIN (BM) *SIN (GRM) ) *VXM0+ (SIN (BM) *COS (GRM) ) *VYM0

ii
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XM=(COS(GR)*COS(A) -SIN (A)*SIN(GR)*COS(B))*XM00+(SIN(GR)*COS(B)* 
+COS(A)+COS(GR)*SIN(A) )*YM00+(SIN(GR)*SIN(B))*ZM00 
YM= (-SIN (GR) *COS (A) -SIN (A) *COS (B) *COS (GR) ) *XM00+ (-SIN (GR) *SIN (A) 

++COS(B)*COS(GR)*COS(A) )*YM00+(COS(GR)*SIN(B))*ZM00 
ZM= (SIN (A) *SIN (B) ) *XMOO+ (-SIN (B) *COS (A) ) *YMOO+COS (B) *ZM00

VXM=(COS(GR)*COS(A) -SIN(A)*SIN(GR)*COS(B))*VXM00+(SIN(GR)* 
+ C O S (B)*COS(A)+COS(GR)*SIN(A))*VYM00+(SIN(GR)*SIN(B))*VZM00 
VYM=(-SIN(GR)*COS(A)-SIN(A)*COS(B)*COS(GR))*VXM00+(-SIN(GR)* 

+SIN(A)+COS(B)*COS(GR)*COS(A))*VYM00+(COS(GR)*SIN(B))*VZM00 
VZM=(SIN(A)*SIN(B))*VXM00+(-SIN(B)*COS(A))*VYMOO+COS(B)*VZM00

Y=0

X=AP+6366.2 
XMl=AA+6366.2

RMIN=X
RMAX=XM1

N = S Q R T (((X+XM1)**3)*1.2411954E-5)/H

VX=0

V Y=SQRT((0.00981*(6366.2**2)*XM1)/ ( (X+XM1)/2*X)) 
VYM=SQRT((198792.3045*X)/ ( (X+XM1)*XM1))

! try to determine the satellite position for the geosyncronised orbit 
! the initial condiditons are: T=0, (X=42205.1713km,. Y=0), XE=0, YE=0/

H=5,
! N=17280, VX=0, VY=3.06925, VXE=0, VYE=0, VXM=0, V Y M = 1 .024, SMS=0

! the observed orbit is of very high altitude, therefore the effect due to 
! atmospheric drag and gravitational anomalies will be ignored and only

Lunar
! impact will be observed

10 FORMAT (15,6F10.3,215,7F10.3)
WRITE (6,21)

21 FORMAT (/, 5X, ' I ’, 5X, 'T', 5X, 'X*, 5X, 'Y1,5X, 'VX', 5X, ’VY' , /) 
WRITE (6,22)

22 FORMAT(T2,'ORBIT1)

! CALCULATE THE PERIOD, SO THE NUMBER OF SUCCESSIVE 
!TRACKS COULD BE PLOTTED

RPE R = S Q R T (9.87*(RMIN+RMAX)**3/397584.3246)

in
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RNUM=RPER/H

M=0
M12=0

NUM=N/RNUM

WRITE (9,33)
33 FORMAT(’ (' 'Setq' )

DO 200 11=1,N1

M12=M12+1 

DO 100 1=1,N 

BR=RNUM/4

M=M+1

X=X+H*VX
Y=Y+H*VY
XE=XE+H*VXE
YE=YE+H*VYE
XM=XM+H*VXM
YM=YM+H * VYM

K1=H*F(T,X,Y,XE,YE,XM,YM,GAN)
L1=H*G (T, X, Y, XE, YE, XM, YM, GAN)

KlE=H* FE ( T , X , Y , X E , Y E , XM, YM, SMS )
L1E=H*GE (T, X, Y,XE, YE, XM, YM, SMS)

K1M=H* FM (T , X , Y, X E , Y E , XM, YM, SMS )
L1M=H*GM (T, X, Y, XE, YE, XM, YM, SMS)

K2=H*F(T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E,YE+0.5*L1E 
+ , X M + 0 .5*K1M, Y M + 0 .5*L1M, GAN)
L2=H*G(T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E,YE+0.5*L1E 

+,X M + 0 .5*K1M,YM+0.5*L1M,GAN)

K2E=H*FE(T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E,YE+0.5*L1E 
+,XM+0.5*K1M,YM+0.5*L1M,SMS)
L2E=H*GE(T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E,YE+0.5*L1E 

+,XM+ 0.5*K1M, Y M + 0 .5*L1M, SMS)

K2M=H*FM(T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E,YE+0.5*L1E 
+ ,XM+0.5*K1M, YM+0.5*L1M, SMS)
L2M=H*GM(T+0.5*H,X+0.5*K1,Y+0.5*Ll,XE+0.5*K1E,YE+0.5*L1E 

+ ,X M + 0 .5*K1M, Y M + 0 .5*L1M, S M S )

K3=H*F(T+0.5*H,X+0.5*K2,Y+0.5*L2,XE+0.5*K2E,YE+0.5*L2E 
+,XM+0.5*K2M,YM+0.5*L2M,GAN)
L3=H*G(T+0.5*H,X+0.5*K2,Y+0.5*L2,XE+0.5*K2E,YE+0.5*L2E 

+ , X M + 0 .5*K2M, Y M + 0 .5*L2M, GAN)

K3E=H*FE(T+0.5*H,X+0.5*K2,Y+0.5*L2,XE+0.5*K2E,YE+0.5*L2E

IV
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+ / X M + 0 .5*K2M, Y M + 0 .5*L2M, SMS)
L3E=H*GE(T+0.5*H,X+0.5*K2,Y+0.5*L2,XE+0.5*K2E,YE+0.5*L2E 

+,X M + 0 .5*K2M,YM+0.5*L2M,SMS)

K3M=H*FM(T+0.5*H,X+0.5*K2,Y+0.5*L2,XE+0.5*K2E,YE+0.5*L2E 
+ ,X M + 0 .5*K2M,YM+0.5*L2M,SMS)
L3M=H*GM(T+0.5*H,X+0.5*K2,Y+0.5*L2,XE+0.5*K2E,YE+0.5*L2E 

+,X M + 0 .5*K2M,YM+0.5*L2M,SMS)

K4=H*F(T+0.5*H,X+0.5*K3,Y+0.5*L3,XE+0.5*K3E,YE+0.5*L3E 
+,X M + 0 .5*K3M,YM+0.5*L3M,GAN)
L4=H*G(T+0.5*H,X+0.5*K3,Y+0.5*L3,XE+0.5*K3E,YE+0.5*L3E 

+ ,X M + 0 .5*K3M,YM+0.5*L3M,GAN)

K4E=H*FE(T+0.5*H,X+0.5*K3,Y+0.5*L3,XE+0.5*K3E,YE+0.5*L3E 
+,X M + 0 .5*K3E,YM+0.5*L3M,SMS)
L4E=H*GE(T+0.5*H,X+0.5*K3,Y+0.5*L3,XE+0.5*K3E,YE+0.5*L3E 

+,X M + 0 .5*K3M,YM+0.5*L3M,SMS)

K4M=H*FM(T+0.5*H,X+0.5*K3,Y+0.5*L3,XE+0.5*K3E,YE+0.5*L3E 
+,XM+0.5*K3M,YM+0.5*L3M,SMS)
L4M=H*GM (T+0.5*11, X + 0 .5*K3, Y + 0 .5*L3, X E + 0 .5*K3E, Y E + 0 .5*L3E 

+ ,XM+0.5*K3M, YM+0.5*L3M, SMS)

VX= V X + 1 ./6 . * (Kl+2.*K2+2.*K3+K4)
VY= V Y + 1 ./6 . * (Ll+2.*L2+2.*L3+L4)

VXE=VXE+1./ 6 .*(K1E+2.*K2E+2.*K3E+K4E)
VYE=VYE+1./6 . * (L1E+2.*L2E+2.*L3E+L4E)

VXM=VXM+1. /  6 . * (K1M+2 . *K2M+2 . *K3M+K4M)
VYM=VYM+1. / 6 . * (L1M+2 . *L2M+2 . *L3M+L4M)

XC= ( (SMS*X+EMS*XE+RMMS*XM) / (SMS+EMS+RMMS ) ) 
YC= ( ( SMS * Y +EMS * YE+RMMS * YM ) / (SMS+EMS+RMMS) )

A=ALFA*0.01744444 
B=BETA*0.01744444 
GR=GAMA*0.01744444

!ROTATED ORBITAL PLANE TO THE GLOBAL SYSTEM HAS COORDINATES

XGL=(COS(A)*COS(GR)-SIN(A) *COS(B)*SIN(GR))*X+
+ (-COS(A)*SIN(GR)-SIN(A)*COS(B)*COS(GR))*Y 
YGL=(SIN(A)*COS(GR)+COS(A)*COS(B)*SIN(GR))*X+(-SIN(A)*

+SIN(GR)+COS(A)*COS(B)*COS(GR))*Y 
ZGL=(SIN(B)*SIN(GR))*X+(SIN(B)*COS(GR))*Y

!FROM SPHERICAL SYSTEM THE LATITUDE AND LONGITUDE WILL BE 
¡DETERMINED, ALSO RADIUS WHICH WILL GIVE ALTITUDE VALUE AS 
!A  FUNCTION OF POSITION, WHICH IS A  FUNCTION OF THE TIME

R=SQRT(XGL*XGL+YGL*YGL+ZGL*ZGL) .

L=1

R L O N G S (I)=90+57.32498682*DATAN(YGL/XGL)

v
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IF(RLONGS(I—1).G T .RLONGS(I))RLON G S (I )= R L O N G S (I )+180 
IF(RLONGS(1-1).GT.RLONGS(I).AND.RLONGS(1-1).GT.300)RLONGS(I) 

==RLONGS(I)+360

IF(RLONGS(I ).GT.380)RLONGS(I)=RLONGS(I)-540

IF(RLONGS(1-1).GT.RLONGS(I))RLONGS(I-1)=RLMAX 
IF(RLONGS(I).G E .RLMAX)L=L+1
I F (R L O N G S (I-1) .G T .RLONGS(I))RLONGS(I)=L*180+2*RLONGS(I) -90

! THE ABOVE SET OF THREE COMMANDS CAN NOT CALCULATE 
!THE VALUES WHEN RLONGS(I) DECREASES, AS IT USES 
! IF (RLONGS(I).G E .RLMAX)L=L+1

! IF (I .G E .B R )R L O N G S (I )=RLONGS(I)+90

! I F (I .G E .2*BR.AND.I .L E .3*BR)RLONGS(I )= R L O N G S (I )+180

! I F (I .G E .3*BR)RLONGS(I)=RLONGS(I)+270

! IF (M.G T .14 6 .A N D .M .L T .8 7 3)RLONGS(I )=RL O N G S (I )-18 0

! IF(RLONGS(I ).L T .0.AND.RLONGS(1-1).G E .269)R L O N G S (I)=360
! ++RLONGS(I )

! IF(RLONGS(I ).G T .0.AND.RLONGS(I-1 ) .LE.360)RLONGS(I)=360
! ++RLONGS(I )

LATS=57.32498682*DACOS(ZGL/R)-90 

LATSl=LATS/57.32498682

GAN=9.78*(1+0.0053024*((SIN(LATSl))**2)- (5.9E-6)*
+ (SIN(2*LATS1))**2)

!THE SPHERICAL COORDINATES OF THE POINT W AT THE EARTH'S SURFACE ARE

LONGW=XLONG+360* 0.000072921152*T/6.28 
LATW=XLATT

'! RELATIVE SATELLITE POSITION WILL DEPEND ON THE RATE OF EARTH 
! ROTATION, THEREFORE EARTH ROTATION AT THE PARTICULAR MOMENT 
! IS GIVEN BY:

EOMEGA=360/(24*60*60)
! ANGULAR VELOCITY CALCULATED IN DEG/SEC

T=T+H
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E L O N G = T * 3 6 0 / (24*60*60)+RLONGS(1) 
NUM1=ELONG/360

IF (E L O N G .G T .3 6 0)ELONG=ELONG-NUMl* 3 6 0

! THIS IS THE VALUE OF EARTH POSITION, AT TIME T STARTS FROM 
! ZERO, BUT WHERE THE ZERO IS?
! ZERO SHOULD BE AT PERIGEE, THE POINT WHERE THE TIME STARTS 
! TO BE MEASURED, THEREFORE THE LONGITUDE DIFFERENCE IS:

ELGRT=RLONGS(1)-ELONG

S F S L G R T (I )= R L O N G S (I )-ELONG 
I F (ABS(ELONG-RLONGS(I)) .GT.350) 

+SFSL G R T (I )=R L O N G S (I )-ELONG+360

LATREL=LATS-LATW 
LONGREL=RLONGS(I )-LONGW 
LONGGR=RLONGS(I)-T*0.0041801847 
LONGRELl=RLONGS(I )-LONGGR

ALT=R-6366.2

! WRITE (9,23)I,T,X,Y,ALT,RLONGS(I),ELONG,SFSLGRT(I) , LATS

WRITE (9,23)T,X,Y,VX,VY,XE,YE,XM,YM,ALT,RLONGS(I),SFSLGRT(I),LATS 
23 FORMAT (5X,13E14.6)

100 CONTINUE

RPER=AP+ 6378.2 
RAP=AA+ 637 8 .2

ZB=RAP+RPER
ZRZ=RAP-RPER

C IF(ZRZ.EQ.0)GO TO 111
R A Z = 1 - (ZRZ/ZB)* (ZRZ/ZB)

C Bl=ACOS((ABS(X*VY)-ABS(Y*VX))/S Q R T (40650.887*GAN*0.5*ZB*RAZ))
C 111 B l = A C O S ((ABS(X*VY)-ABS(Y*VX))/ S Q R T (40650.887*GAN*0.5*ZB))

SINCL=B-B1

C WRITE (*,309) SINCL
C 309 FORM A T ( 5X 'SINCL=' (F10.3))

WRITE (*,3099) XC,YC
3099 F O R M A T ( 5X 'CENT. OF MASS = ' (2F10.3))

200 CONTINUE

M121=M121+1
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STOP
END

FUNCTION F (T, X, Y, XE, YE, XM, YM, GAN)

F=(XE-X)*40650.887*GAN/(SQRT((XE-X)**2+(YE-Y)**2)**3) 
+ + (XM-X)*4906.92/(SQRT((XM-X)**2+(YM-Y)**2)**3)

RETURN
END
FUNCTION G(T,X,Y,XE,YE,XM,YM,GAN)
G=(YE-Y)*40650.887*GAN/(SQRT((XE-X)**2+(YE-Y)**2)**3) 

+ + (YM-Y)*4906.92/(SQRT((XM-X)**2+(YM-Y)**2)**3)
RETURN
END

FUNCTION FE (T,X, Y, XE, YE,XM, YM,SMS)
FE=(XM-XE)*4906.92/(SQRT((XE-XM)**2+(YE-YM)**2)**3)

+ + (X-XE)*6.673E-20*SMS/(SQRT((XE-X)**2+(YE-Y)**2)**3) 
RETURN 
END
FUNCTION GE (T, X, Y, XE, YE, XM, YM, SMS)
GE=(YM-YE)*4906.92/(SQRT((XE-XM)**2+(YE-YM)**2)**3)

+ + (Y-YE)*6.673E-20*SMS/(SQRT((XE-X)**2+(YE-Y)**2)**3) 
RETURN 
END

FUNCTION FM(T,X, Y, XE, YE, XM, YM, SMS)
FM=(X-XM)* 6.673E-20*SMS/(SQRT((XM-X)**2+(YM-Y)**2)**3) 

+ + (XE-XM)*398785.2/(SQRT((XM-XE)**2+(YM-YE)**2)**3) 
RETURN 
END

FUNCTION GM(T,X,Y,XE,YE,XM,YM,SMS)
GM=(Y-YM)* 6.673E-20*SMS/(SQRT((XM-X)**2+(YM-Y)**2)**3) 

+ + (YE-YM)*398785.2/(SQRT((XM-XE)**2+(YM-YE)**2)**3) 
RETURN 
END

□

vin



5.0. Ground Track Programs



Ground Track: Kepler’s model



O 
O 

O 
O 

O 
O

c

PROGRAM gtrTGPH

DIMENSION R L O N G S(30000),N U M (30000),F S L G R T (30000)

! Runge Kutta method IV order used for orbit calculation 
IMPLICIT REAL*8 (A-H, K,L-M,0-Z)
IMPLICIT R EAL*8 LONGW,LATW,LONGREL,LATREL, LONGREL1, LONGGR 
RLONGS(I-1)=0

IMPLICIT REAL*8 ( A-H,K-M,0-Z )

READ (5,*) T, X, Y, H, N,VX,VY

W R I T E (*,'(A\)') 
R E A D (*,*) Y

' IS APOGEE INITIAL POINT ENTER 1 FOR YES '

W R I T E (*,'(A\)') 
R E A D ( *, * ) T

' ENTER VALUE T '

W R I T E (*/'(A\)') 
R E A D ( *, * ) AP

' ENTER VALUE PERIGEE ALTITUDE 1

W R I T E (*, ' (A\)') 
R E A D ( *, * ) A A

' ENTER VALUE APOGEE ALTITUDE '

W R I T E (*,'(A\)') 
R E A D ( *, * ) H

' ENTER VALUE OF TIME STEP H '

W R I T E (*,'(A\)') 
R E A D ( *, * ) ALFA

' ENTER VALUE RAAN '

W R I T E (*/'(A\)') 
R E A D (*,*) BETA

' ENTER VALUE INCLINATION '

W R I T E (*,'(A \ )') 
R E A D (*,*) GAMA

' ENTER VALUE ARG OF PER '

W R I T E (*,'(A\)') 
R E A D ( *, * ) N1

' ENTER VALUE ORBIT No. '

W R I T E (*,'(A\)') 1 
R E A D (*/*) i2

' ENTER OUTPUT ORBIT No. '

OPEN (UNIT=10,F I L E = 'KEPLER.D A T ',FORM='FORMATTED',STAT U S = 'U NKNOWN')

Y=0

X = A P + 6 3 6 6 .2 
X M = A A + 6 3 6 6 .2

RMIN=X
RMAX=XM

N = S Q R T (((X+XM)**3)*1.2411954E-5)/H



vx=o

VY=SQRT((0.00981*(6366.2**2)*XM)/((X+XM)/2*X))
VYM=SQRT((198792.3045*X)/((X+XM)*XM))
A=ALFA*0.01744444 
B=BETA*0.01744444 
GR=GAMA*0.01744444

XGL1=(DCOS(A) *DCOS(GR)-DSIN(A)*DCOS(B)*DSIN(GR)) *X+
+ (-DCOS(A)*DSIN(GR)-DSIN(A)*DCOS(B)*DCOS(GR))*Y

YGL1= (DSIN(A)*DCOS(GR)+DCOS(A)*DCOS(B)*DSIN(GR))*X+(-DSIN(A)* 
*DSIN(GR)+DCOS(A)*DCOS(B)*DCOS(GR))*Y

RL0NGS1=57.32498682*DATAN(YGL1/XGL1)

C I F (Y .E Q .1)VY=VYM

10 FORMAT (15,2 FI 0.3,215,2FI0.3)
WRITE (6,21)

21 FORMAT (/,5 X , 'I ',5 X , 'T ',5 X , 'X ',5 X , 'Y ',5 X , 'V X ',5 X , 'V Y ',/) 
WRITE (6,22)

22 F O R M A T (T 2 ,'O R B I T ')

!CALCULATE THE PERIOD, SO THE NUMBER OF SUCCESSIVE 
¡TRACKS COULD BE PLOTTED

R P E R = S Q R T (9.87*(RMIN+RMAX)**3/397584.3246) 
RNUM=RPER/H

M=0

NUM=N/RNUM

i3=0

DO 200 11=1,N1 

DO 100 1=1, N 

BR=RNUM/4

M=M+1

X=X+H*VX 
Y=Y+H*VY 
K 1 = H * F (T,X,Y)
L 1 = H * G (T,X,Y)
K2=H*F ( T + 0 .5*H,X+0.5*K1,Y+0.5*L 1 ) 
L2= H * G ( T + 0 .5*H,X+0.5*K1,Y + 0 .5 *L1) 
K3=H*F ( T + 0 .5*H,X+0.5*K2,Y+0.5*L2) 
L3=H*G ( T + 0 .5*H,X+0.5*K2,Y+0.5*L2) 
K 4= H * F ( T + 0 .5*H,X+0.5*K3,Y+0.5*L3)



L4=H*G(T+0.5*H,X+0.5*K3,Y+0.5*L3) 
VX=V X + 1./6 . * (Kl+2.* K2+2.*K3+K4) 
V Y = V Y + 1 ./6 . * (Ll+2.*L 2+2.*L3+L4)

! ROTATED ORBITAL PLANE TO THE GLOBAL SYSTEM HAS COORDINATES

X G L = (DCOS(A)*DCOS(GR)- D S I N (A)*DCOS(B)*DSIN(GR))*X+
+ (-DCOS(A)*DSIN ( G R ) - D S I N (A)*DCOS(B)*DCOS ( G R ) )* Y  

Y G L = (DSIN(A)*DCOS ( G R ) +DCOS(A)*DCOS(B)* D S I N ( G R ) )*X+(-DSIN (A)* 
* D S I N ( G R ) +DCOS(A)*DCOS(B)*DCOS ( G R ) )* Y  

Z G L = (DSIN(B)* D S I N ( G R ) )* X + (DSIN(B)*DCOS ( G R ) )* Y

! FROM SPHERICAL SYSTEM THE LATITUDE AND LONGITUDE WILL BE 
! DETERMINED, ALSO RADIUS WHICH WILL GIVE ALTITUDE VALUE AS 
!A  FUNCTION OF POSITION, WHICH IS A  FUNCTION OF THE TIME

R=SQRT(XGL*XGL+YGL*YGL+ZGL*ZGL)

L=1

c RLONGS=57.324 98 682*DATAN(YGL/XGL)-RLONGS1 

RLONGS=57.32498682*DATAN(YGL/XGL)

IF (XGL.L T .0)RLONGS=l8 O+RLONGS 

IF(RLONGS.G T .180)RLONGS=RLONGS-360

LATS = 5 7 .324 98682*DACOS(ZGL/R)-90

T=T+H
ELONG=T*360/(24*60*60) 
NUM1=ELONG/360

IF (E L O N G .G E .3 6 0)ELONG=ELONG-NUMl* 3 6 0

THIS IS THE VALUE OF EARTH POSITION, AT TIME T STARTS FROM 
ZERO, BUT WHERE THE ZERO IS?
ZERO SHOULD BE AT PERIGEE, THE POINT WHERE THE TIME STARTS 
TO BE MEASURED, THEREFORE THE LONGITUDE DIFFERENCE IS:

C ELGRT=RLONGS(1)-ELONG

FSLGRT=RLONGS-ELONG
IF (F S L G R T .L T .0.A N D .A B S (FSLGRT) .G T .18 0)FSLGRT=FSLGRT+3 60

C LATREL=LATS-LATW
C L O N GREL=RLONGS(I )-LONGW
C LONGGR=RLONGS(I)-T*0.0041801847
C LONGRELl=RLONGS(I )-LONGGR

ALT=R-6366.2



i 3 = i 3 + l

i f ( i l . g e .i 2 .a n d . i 3 .eq.10)WRITE (10,23)T,X,Y,ALT,RLONGS,ELONG, 
+ FSLGRT,LATS
i f (i 3.e q . 10)i3=0

23 FORMAT (5X,8E14.6)

I F (ALT. LT . AP) ALTPER=ALT 
I F (ALT. GT. AP)ALTAP=ALT

100 CONTINUE

C ELONG=ERTHM

WRITE (11,29)altper,altap 
i f (i 3.e q . 10)i3=0

29 FORMAT (5X,2E14.6)

200 CONTINUE
C I F ( N .G T .RPER)GO TO 101

STOP
END
FUNCTION F(T,X,Y)
IMPLICIT R E A L*8 ( A-H,K-M,0-Z )

F = (- X )*399059.852/ (SQRT(X*X+Y*Y))**3
RETURN
END
FUNCTION G(T,X,Y)
IMPLICIT R E A L*8 ( A-H,K-M,0-Z )

G=(-Y)*399059.852/(SQRT(X*X+Y*Y))**3
RETURN
END

i



Ground Track: Air drag perturbed
model - Plate



PROGRAM orbit
! Runge Kutta method IV order used for orbit calculation

IMPLICIT R E A L*8 (A-H,K,L,0-Z)
DIMENSION R L O N G S (30000),NUM(30000),SFSLGRT(30000) 
IMPLICIT R E A L*8 (A-H, K, L, O-Z)

REAL K 1 , K 2 , K 3 , K4 , L I , L 2 , L 3 , L4 ,LATS

RLONGS(I-1)=0

READ (5,*) T,X,Y,H,N,VX,VY,ZB1,ZINCL

W R I T E (*,'(A\)') ' 
R E A D (*,*) T

ENTER VALUE T '

W R I T E (*,'(A\)') ' 
W R I T E (*,'(A\)’) '

FOR CIRCULAR ORBIT ENTER EQUAL ' 
APOGEE AND PERIGEE ALTITUDES IN km '

W R I T E (*,899)
F O R M A T ( / ' ENTER VALUE PERIGEE ALTITUDE
R E A D (*,*) AP

W R I T E (*,'(A\)') ' 
R E A D (*,*) A A

ENTER VALUE APOGEE ALTITUDE '

W R I T E (*, ' (A\)') ' 
R E A D (*,*) H

ENTER VALUE H '

W R I T E (*,'(A\)') ' 
R E A D (*,*) ALFA

ENTER VALUE RAAN '

W R I T E (*,'(A\)') ' 
R E A D (*,*) BETA

ENTER VALUE INCLINATION '

W R I T E (*,'(A\)') ' 
R E A D (*,*) GAMA

ENTER VALUE ARG OF PER '

W R I T E (*,'(A\)') ' 
R E A D ( *, * ) N1

ENTER VALUE ORBIT No. '

W R I T E (*,'(A\)') ' 
R E A D (*,*) 13

FIRST ORBIT NO. FOR OUTPUT '

W R I T E (*,'(A\)') ' 
R E A D (*,*) 14

SECOND ORBIT NO. FOR OUTPUT '

W R I T E (*,'(A\)') ' 
R E A D (*,*) 15

THIRD ORBIT NO. FOR OUTPUT '

OPEN (Ml)
OPEN (UNIT=10,FILE='KAISS.DAT', FORM='FORMATTED',STATUS='UNKNOWN')



WRITE (11,299) T, AP, AA,H,ALFA,BETA,GAMA,13,14,15 
299 FORMAT (/,' T ',F10.1,/,' AltPer \F10.5,/,' AltAp \F10.5,/,' H ', 

+ F 5 .2,/, ' RAAN= ',F 5 .2,/,'INCLINATION»', F 5 .2,/, ' A O P = ',F 5 .2,/,
+ ' IstOrbitNo ',13,/,' 2ndOrbitNo ',13,/,' 3rdOrbitNo ’,13,/)

Y=0

C I F ( A P .EQ.AA)GOTO 59

X = A P + 6 3 6 6 .2 
X M = A A + 6 3 6 6 .2

RMIN=X
RMAX=XM

N = S Q R T (((X+XM)**3)*1.2411954E-5)/H

V Y = S Q R T ((0.00981*(6366.2**2)*XM)/ ( (X+XM)/2*X))
V Y M = S Q R T ((198792.3045*X)/ ( (X+XM)*XM))

59 IF(AP.EQ.AA) RC=AP+6378.14

IF(AP.EQ.AA)VY=SQRT(399059.852/RC)
I F (A P .E Q .AA)VYM=VY

I F ( A P .EQ.AA)X=RC 
I F ( A P .EQ.AA)XM=RC

I F ( A P .EQ.AA)RMIN=RC 
I F (A P .E Q .AA)RMAX=RC

IF(AP.EQ.AA)TC=SQRT(4*9.8696044*RC**3/399059.852) 
IF(AP.EQ.AA)TC1=SQRT(4*9.8696044*RC**3/399059.852)/3600

IF (AP.EQ.AA)WRITE(*, ' (A\) ') ' CIRCULAR ORBIT PERIOD IN HOURS '
IF(AP.EQ.AA)WRITE(*,89) TC,TCI,RC,AP,N1 

89 F O R M A T (4 FI0.2,15)

I F ( A P .EQ.AA)N=TC/H 

VX=0

10 FORMAT (15,2F10.3,215,3FI0.3)

WRITE (6,21)
21 FORMAT (/,5 X , 'I ',5 X , 'T ',5 X , 'X ',5 X , 'Y ',5 X , 'V X ',5 X , 'V Y ',/) 

WRITE (6,22)
22 FORMAT(T2,'ORBIT')

L=1

!CALCULATE THE PERIOD, SO THE NUMBER OF SUCCESSIVE 
!TRACKS COULD BE PLOTTED



RPER=SQRT( 9 . 8 7 * (RMIN+RMAX)**3 /397584 .3246 )

IF(AP.EQ.AA)RPER=RC 
RNUM=RPER/H .

M=0

NUM=N/RNUM

DO 200 11=1,N1

WRITE (11,29) ALTPER,ALTAP
FORMAT (/,5X, 'ALT PERIGEE',F 1 0 .5, 'ALT A P O G E E ',F 1 0 .5,/)

ALT=AP

DO 100 1=1,N

R=(SQRT(X*X+Y*Y))-6366.2
I F (R.G E .105.A N D . R . L E .2500)GO TO 9

BR=RNUM/4

M=M+1

X=X+H*VX
Y=Y+H*VY
K 1 = H * F (T,X,Y,GAN)
L1=H*G (T, X, Y, GAN)
K 2=H*F(T+0.5*H,X+0.5*K1,Y+0.5*L1, GAN) 
L2=H*G(T+0.5*H,X+0.5*K1,Y+0.5*L1,GAN) 
K3=H*F(T+0.5*H,X+0.5*K2,Y + 0 .5*L2,GAN) 
L 3=H*G(T+0.5*H,X+0.5*K2,Y+0.5*L2,GAN) 
K4=H*F(T+0.5*H,X+0.5*K3,Y+0.5*L3,GAN) 
L4=H*G(T+0.5*H,X+0.5*K3,Y+0.5*L3, GAN) 
V X = V X + 1 ./ 6 . * (Kl+2.*K2+2.*K3+K4 ) 
V Y = V Y + 1 ./6 . * (Ll+2.*L2+2.*L3+L4)
T=T+H

A=ALFA*0.01744444 
B=BETA*0.01744444 
GR=GAMA*0.01744444

! ROTATED ORBITAL PLANE TO THE GLOBAL SYSTEM HAS COORDINATES

X G L = (DCOS(A)*DCOS(GR)-DSIN(A)*DCOS(B)*DSIN(GR))*X+
+ (-DCOS(A)*DSIN(GR)- D S I N (A)*DCOS(B)*DCOS(GR))*Y 
Y G L = (DSIN(A)*DCOS(GR)+DCOS(A)*DCOS(B)*DSIN(GR))*X+(-DSIN(A)* 

+DSIN(GR)+DCOS(A) *DCOS(B)*DCOS(GR))*Y 
Z G L = (D S I N (B)*DSIN(GR))*X+(DSIN(B)*DCOS(GR))*Y

! FROM SPHERICAL SYSTEM THE LATITUDE AND LONGITUDE WILL BE 
¡DETERMINED, ALSO RADIUS WHICH WILL GIVE ALTITUDE VALUE AS



!A FUNCTION OF POSITION, WHICH IS A  FUNCTION OF THE TIME 

RG=SQRT(XGL*XGL+YGL*YGL+ZGL*ZGL)

L=1

R L O N G S = 5 7 .324 98682*DATAN(YGL/XGL)

IF (X G L .L T .0)RLONGS=l8 O+RLONGS

IF(RLONGS.G T .180)RLONGS=RLONGS-360

IF( R L O N G S (1-1).GT.RLONGS(I))RLONGS(I)=RLONGS(I)+180 
IF( R L O N G S (1-1).G T .R L O N G S (I ).A N D .R L O N G S (1-1).GT.300)RLONGS(I) 

= = R L O N G S (I )+3 60

IF ( R L O N G S (I ) .GT.380)RLONGS(I)= RL O N G S (I )-540

I F ( R L O N G S (1-1).G T .R L O N G S (I ))R L O N G S (1-1)=RLMAX 
IF(RLONGS(I).G E .R L MAX)L=L+1

I F (R L O N G S (I-1).G T .RLONGS(I))RLONGS(I)=L*180+2*RLONGS(I )-9 0

!THE ABOVE SET OF THREE COMMANDS CAN NOT CALCULATE 
!THE VALUES WHEN RLONGS(I) DECREASES, AS IT USES 
! IF (RLONGS(I).GE.RLMAX)L=L+1

I F (I .G E .BR)RLONGS(I )=RL O N G S (I )+ 90 

I F (I .G E .2*BR.AND.I.L E .3*BR)RLONGS(I )= R L O N G S (I)+180 

I F (I .G E .3*BR)RLONGS(I)=RLONGS(I)+270

IF (M .G T .14 6.A N D .M .L T .87 3)R L O N G S (I )=R L O N G S (I )-18 0

IF(RLONGS(I).LT.0.AND.RL O N G S (1-1).GE.269)RLONGS(I)=360 
++RLONGS(I)

IF(RLONGS(I).GT.0.AND . R L O N G S (1-1).L E .360)RLONGS(I)=360 
++RLONGS(I)

LAT S = 5 7 .324 98 682*DACOS(ZGL/RG)-90

ELONG=T*360/(24*60*60) 
NUM1=ELONG/360

IF (E L O N G .G E .3 6 0)ELONG=ELONG-NUMl* 3 6 0

THIS IS THE VALUE OF EARTH POSITION, AT TIME T STARTS FROM 
ZERO, BUT WHERE THE ZERO IS?
ZERO SHOULD BE AT PERIGEE, THE POINT WHERE THE TIME STARTS 
TO BE MEASURED, THEREFORE THE LONGITUDE DIFFERENCE IS:



ELGRT=RLONGS( 1 ) -ELONG

SFSLGRT=RLONGS-ELONG

IF (S F S L G R T .L T .0.A N D .A B S (S FSLGRT) .G T .18 0)S FSLGRT=S FSLGRT+3 60

C IF (ABS(ELONG-RLONGS(I)) .GT.350)
C +SFSLGRT(I)=RLONGS(I)-ELONG+360

LATREL=LATS-LATW 
L O NGREL=RLONGS(I )-LONGW 
LONGGR=RLONGS(I)-T*0.0041801847 
LONGRELl=RLONGS(I )-LONGGR

ALT= R G - 6366.2

IF (R.GE.2500) WRITE (10,23)T,X,Y,ALT,SFSLGRT,LATS 

REWIND 9

23 FORMAT (5X,6E14.6)

I F (R.G E .2500)GO TO 99 

i2=0

9 IF(R.GT.105.AND.R.LT.2500) CALL A S 3 I (II,i2,15,X,Y,VX,VY,H,
+ ALTPER, ALTAP, ZINCL, ALFA, BETA, GAMA)

C IF(R.GE. 105.AND.R.LE.2500) WRITE(*,*) ' IT IS INSIDE THE 99 LOOP '

99 L=L+1

G A N = 9 .78*(1+0.0053024 * ( (DSIN(LATS))**2)-(5 .9E-6)* 
+ (DSIN(2*LATS))**2)*(6367.445**2)/5.9761E+24

C WRITE (*,3098) GAN
C 3098 F O R M A T ((E10.3))

100 CONTINUE

200 CONTINUE

STOP 
END '

FUNCTION F(T,X,Y,GAN)



IMPLICIT R E A L*8 (A-H, K, L, 0-Z)

F = (- X )*GAN*40678.884/(SQRT(X*X+Y*Y) ) **3 
RETURN 

END

FUNCTION G (T , X , Y ,G A N )
IMPLICIT R EAL*8 (A-H,K,L,O-Z)

G=(-Y)*GAN*40678.884/(SQRT(X*X+Y*Y))**3 
RETURN 

END



SUBROUTINE AS3I(Il,i2,15, X, Y, VX, VY, H,
+ ALTPER,ALTAP,ZINCL,ALFA,BETA,GAMA)

! Runge Kutta method IV order used for orbit calculation 
! INCLUDING AIRDRAG PERTURBATION FOR ALTITUDES 105-2500km 

IMPLICIT R E A L*8 (A-H,L,0-Z) .

A=ALFA*0.01744444 
B=BETA*0.01744444 
GR=GAMA*0.01744444

W R I T E (*,*) ' IT IS INSIDE THE 99 LOOP '

ALTP=ALT

X=X+H*VX
Y=Y+H*VY
R K 1 = H * F 1 (T,X , Y,DRAGX)
R L 1 = H * G 1 (T,X , Y,DRAGY)
RK2=H*F1(T+0.5 *H , X + 0 .5*RK1,Y+0.5*RL1, DRAGX) 
RL2=H*G1(T+0.5*H , X + 0 .5*RK1,Y+0.5*RL1,DRAGY) 
RK3=H*F1(T+0.5 * H,X+0.5*RK2,Y+0.5*RL2,DRAGX) 
RL3=H*G1(T+0.5 * H,X+0.5*RK2,Y+0.5*RL2,DRAGY) 
RK4=H*F1(T+0.5 * H , X + 0 .5*RK3,Y+0.5*RL3,DRAGX) 
RL4=H*G1(T+0.5*H,X+0.5*RK3,Y+0.5*RL3,DRAGY) 
V X = V X + 1 ./6 . * (RK1+2.*RK2+2.*RK3+RK4 )
V Y = V Y + 1 ./6 . * (RL1+2.* RL2+2.*RL3+RL4 )
T=T+H

R=SQRT(X*X+Y*Y)-6366.2 
R1=SQRT(X*X+Y*Y)
VTOT=SQRT(VX*VX+VY*VY)

VXANG=VX/VTOT 
VYANG=VY/VTOT

FI=1-R1* 6.6314 6E-04/VTOT*DCOS(ZINCL)
F4=FI*FI

S D = 7 4 .1*108.4*(0.818+0.25*74.1/108.4)*10E-6

! SD IS GEOMETRICAL CHARACTERISTIC OF THE SPACECRAFT 
! i n  THIS CASE TAKEN AS CYLINDAR, lm LONG l/8m  DIA 
! CALCULATED AS THE PROJECTION OF THE MEAN AREA,

! AS THE SPACECRAFT 
! IS ROTATING IN SPACE

! ANOTHER CHARACTERISTIC THAT DEPENDS ON THE GEOMETRY IS 
! CD - AIRDRAG COEFFICIENT, HERE 2.2 BASED ON EXPERIMENTS

CALL 1 2 1 5 (R,DENSY)

W R I T E (12,289)R , DENSY

FORMAT (5X,2E14.6)



DRAG=0.5*DENSY*VTOT*VTOT*F4*SD*3.93 
D R A G = 0 .5*1E-9*VT0T*VT0T*F4*SD*2.2 

DRAGX=DRAG*VXANG 
DRAGY=DRAG*VYANG

XGL=(DCOS(A)*DCOS(GR)- D S I N (A)*DCOS(B)*DSIN(GR))*X+
+ (-DCOS(A)*DSIN(GR)- D S I N (A)*DCOS(B)*DCOS(GR))*Y 
Y G L = (DSIN(A)*DCOS(GR)+DCOS(A)*DCOS(B)*DSIN(GR))*X+(-DSIN(A)* 

*DSIN(GR)+DCOS(A)*DCOS(B)*DCOS(GR))*Y 
Z G L = (DSIN(B)*DSIN(GR))* X + (DSIN(B)*DCOS(GR)) *Y

RM=SQRT(XGL*XGL+YGL*YGL+ZGL*ZGL)

R L O N G S = 5 7 .32498682*DATAN(YGL/XGL)

IF (XGL.L T .0)RLONGS=l8 O+RLONGS 

IF (R L O N G S .G T .18 0)RLONGS=RLONGS-360

L A T S = 5 7 .324 98 682*DACOS(ZGL/R1)-90

EL O N G = T * 3 6 0 / (24*60*60) 
NUM1=ELONG/360

IF (E L O N G .G E .3 6 0)ELONG=ELONG-NUMl* 3 6 0

SFSLGRT=RLONGS-ELONG
IF (SFSLGRT.L T .0.A N D .A B S (SFSLGRT) .G T .18 0)SFSLGRT=SFSLGRT+3 60 

A L T = R l - 6 3 6 6 .2

I F ( I I .G E . 69)WRITE (10,23)T,X,Y,ALT,RLONGS,ELONG, SFSLGRT, LATS

WRITE (10,23)T,X,
+ Y, ALT,RLONGS,ELONG,SFSLGRT,LATS

I F (A L T .L T .ALT P )ALT PER=ALT 
IF(ALT.GT.ALTP)ALTAP=ALT

1 2 = 1 2 + 1

I F (I 1.g e .I5.A N D .I2.E Q .10) W R I T E (10,23)T, 
+ X,Y,ALT,RLONGS,ELONG,SFSLGRT,LATS

I F (12.E Q .10)12=0

FORMAT (5X,8E14.6)
REWIND 9

RETURN
END



FUNCTION FI(T,X,Y,DRAGX)
IMPLICIT R EAL*8 (A-H,0-Z)
F l = (—X )*399059.852/(SQRT(X*X+Y*Y))**3+DRAGX
RETURN
END

FUNCTION G1(T,X,Y,DRAGY)
IMPLICIT R EAL*8 (A-H,0-Z)

Gl=(-Y)*399059.852/ (SQRT (X*X+Y*Y))**3+DRAGY
RETURN
END



SUBROUTINE 1215(Z,DENSY)
! LINEAR INTERPOLATION USED FOR DETERMINING 
! CHARACTERISTICS OF THE ATMOSPHERE

IMPLICIT R EAL* 8 (A-H,K,L,O-Z)
DIMENSION D E N S (26,2)

M1=0

OPEN(UNIT=9, FILE= 1 D A T A .D A T ')
DO 304 J=l,2
DO 303 1=1,26
R E A D (9,10) DENS(I,J)
FORMAT(El6 .8 )

M=M+1
I F (Z .G E .D E N S (1-1,2).AND.Z.L E .D E N S (1,2))GO TO 99

CONTINUE
CONTINUE

DO 300 1=1,26

I F (Z .G T .D E N S (1,2).A N D .Z .L T .D E N S (1+1,2))GO TO 99 
CONTINUE

M=0
M1=0

DO 100 1=1,26 
M=M+1
IF (Z .G E .D E N S (1,2).AND.Z.LE.DENS(1+1,2))M=M1 
100 CONTINUE

M=M1

B = ( Z - D E N S (1+1,2))* D E N S (1,1)

A = (D E N S (1 ,2)-Z )* D E N S (1 + 1, 1)
C=DENS(I,2)- D E N S (1 + 1,2)
DENSY=ALTB*DENSF*10E6 '

DENSY=(A+B)/C

W R I T E (10, 231)D ENSY,DENS(1 + 1,1),DENS(I,2),ALTB,DENSF,ALTN,Z,M1 

231 FORMAT (7E14.6,I5)

91 I F (Z .EQ.DENS(Mil,2))DENSY=DENS(Mil, 1)

RETURN
END



Ground Track: Air drag perturbed
model - Cylinder



SUBROUTINE AS3I (II, i2,15, X, Y, VX, VY, H,
+ ALTPER,ALTAP,ZINCL,ALFA,BETA,GAMA)

! Runge Kutta method IV order used for orbit calculation 
! INCLUDING AIRDRAG PERTURBATION FOR ALTITUDES 105-2500km 

IMPLICIT REA L*8 (A-H,L,0-Z)

A=ALFA*0.01744444 
B=BETA* 0.01744444 
GR=GAMA*0.01744444

W R I T E (*,*) ' IT IS INSIDE THE 99 LOOP '

ALTP=ALT

X=X+H*VX
Y=Y+H*VY
R K 1 = H * F 1 (T,X , Y,DRAGX)
R L 1 = H * G 1 (T,X,Y,DRAGY)
RK2=H*F1(T+0.5*H,X+0.5*RK1,Y+0.5*RL1,DRAGX) 
RL2=H*G1(T+0.5*H,X+0.5*RK1,Y+0.5*RL1,DRAGY) 
RK3=H*F1(T+0.5*H,X+0.5*RK2,Y+0.5*RL2,DRAGX) 
RL3=H*G1(T+0.5*H,X+0.5*RK2,Y+0.5*RL2,DRAGY) 
RK4=H*F1(T+0.5*H,X+0.5*RK3,Y+0.5*RL3,DRAGX) 
RL4=H*G1(T+0.5*H,X+0.5*RK3,Y+0.5*RL3, DRAGY) 
V X = V X + 1 ./ 6 . * (RK1+2.*RK2+2.*RK3+RK4)
V Y = V Y + 1 ./6 . * (RL1+2.*RL2+2.*RL3+RL4)
T=T+H

R=SQRT(X*X+Y*Y)-6366.2 
R1=SQRT(X*X+Y*Y)
V T O T = S Q R T (VX*VX+VY*VY)

VXANG=VX/VTOT 
VYANG=VY/VTOT

FI=1-R1*6.63146E-04/VTOT*DCOS(ZINCL)
F4=FI*FI

SD=8 9*18*(0.818+0.25*18/89)*10E-6

! SD IS GEOMETRICAL CHARACTERISTIC OF THE SPACECRAFT 
! IN THIS CASE TAKEN AS CYLINDAR, lm LONG l/8m  DIA 
! CALCULATED AS THE PROJECTION OF THE MEAN AREA,

! AS THE SPACECRAFT 
! IS ROTATING IN SPACE

! ANOTHER CHARACTERISTIC THAT DEPENDS ON THE GEOMETRY IS 
! CD - AIRDRAG COEFFICIENT, HERE 2.2 BASED ON EXPERIMENTS

CALL 1 2 1 5 (R,DENSY)

W R I T E (12,289)R,DENSY

FORMAT (5X,2E14.6)



D R A G = 0 .5*DENSY*VTOT*VTOT*F4*SD*3.93 
D R A G = 0 .5*1E-9*VT0T*VT0T*F4*SD*2.2 

DRAGX=DRAG*VXANG 
DRAGY=DRAG*VYANG

X G L = (DCOS(A)*DCOS(GR)-DSIN(A)*DCOS(B)*DSIN(GR) ) *X+
+ (-DCOS(A)*DSIN(GR)- D S I N (A)*DCOS(B)*DCOS(GR))*Y 
Y G L = (DSIN(A)*DCOS(GR)+DCOS(A)*DCOS(B)*DSIN(GR))*X+(-DSIN(A)* 

*DSIN(GR)+DCOS(A)*DCOS(B)*DCOS(GR))*Y 
Z G L = (DSIN(B)*DSIN(GR))* X + (DSIN(B)*DCOS(GR))*Y

RM=SQRT(XGL*XGL+YGL*YGL+ZGL*ZGL)

RLONGS=57.32498682* D A T A N (YGL/XGL) 

IF(XGL.L T .0)RLONGS=180+RLONGS 

IF(RLONGS.G T .180)RLONGS=RLONGS-360

LAT S = 5 7 .32498682*DACOS(ZGL/R1)-90

ELONG=T*360/(24*60*60) 
NUM1=ELONG/360

IF (E L O N G .G E .3 6 0)ELONG=ELONG-NUMl* 3 6 0 

S FS LGRT-RLONGS-ELONG
IF(SFSLGRT.LT.O.AND.ABS(SFSLGRT).GT.180)SFSLGRT=SFSLGRT+360 

A L T =Rl-6366.2

I F (II.G E . 69)WRITE (10,23)T,X,Y,ALT,RLONGS,ELONG,SFSLGRT,LATS

WRITE (10,23)T,X,
+ Y, ALT,RLONGS,ELONG,SFSLGRT, LATS

IF(ALT.L T .ALTP)ALTPER=ALT 
I F (A L T .G T .ALTP)ALTAP=ALT

12=12+1

I F (I 1.E Q .15.A N D .I2 .E Q .10) W R I T E (10,23)T, 
+ X,Y,ALT,RLONGS,ELONG,SFSLGRT, LATS

I F (12.E Q . 10)12=0

FORMAT (5X,8E14.6)
REWIND 9

RETURN
END



FUNCTION FI(T,X,Y,DRAGX)
IMPLICIT R E A L*8 (A-H,0-Z)
Fl= (-X) *399059.852/(SQRT(X*X+Y*Y))**3+DRAGX 
RETURN .
END

FUNCTION G1(T, X, Y,DRAGY)
IMPLICIT REAL*8 (A-H,0-Z)

Gl= (-Y) *399059.852/(SQRT(X*X+Y*Y))**3+DRAGY
RETURN
END



Ground Track: Earth’s oblatness



PROGRAM orbit
! Runge Kutta method IV order.used for orbit calculation

IMPLICIT R EAL* 8 (A-H,K,L,0-Z)
DIMENSION R L O N G S (30000),N U M (30000),SFSLGRT(30000) 
IMPLICIT R E A L*8 (A-H,K,L, O-Z)

REAL Kl, K2, K3, K4, LI, L2, L3, L4, LATS

R L O NGS(I-1)=0

READ (5,* ) T, X, Y, H[,N, VX, VY, ZB1, ZINCL

W R I T E (*,' (A\)') ' ENTER VALUE T '
R E A D (*,*) T

W R I T E (*,' (A\)') ' FOR CIRCULAR ORBIT ENTER EQUAL '
W R I T E (*,' (A\)') ' APOGEE AND PERIGEE ALTITUDES IN km

WRITE(*,899)
F O R M A T ( / ' ENTER VALUE PERIGEE ALTITUDE ')
R E A D (*,*) AP

W R I T E (*,' (A\)') ' ENTER VALUE APOGEE ALTITUDE '
R E A D (*,*) AA

W R I T E (*,' (A\) ' ) ' ENTER VALUE H '
R E A D (*,*) H

W R I T E (*,' (A\)') ' ENTER VALUE RAAN '
R E A D (*,*) ALFA

W R I T E (*,' (A\) 1) ' ENTER VALUE INCLINATION '
R E A D (*,*) BETA

W R I T E (*,' (A\)') ' ENTER VALUE ARG OF PER 1
R E A D (*,*) GAMA

W R I T E (*,' (A\)') ' ENTER VALUE ORBIT No. '
R E A D (*,*) N1

W R I T E (*,' (A\)') ' FIRST ORBIT NO. FOR OUTPUT '
R E A D (*,*) 13

W R I T E (*,' (A\)') ' SECOND ORBIT NO. FOR OUTPUT '
R E A D (*, *) 14

W R I T E (*,' (A\)') ' THIRD ORBIT NO. FOR OUTPUT '
R E A D (*,*) 15

OPEN (Ml)
OPEN (UNIT=10,FILE='K A ISS.D A T ',FORM='FORMATTED',STATUS=' UNKN O W N ')



c
c

WRITE
299

(11,299) T,AP,AA,H, ALFA, BETA, GAMA, 13,14,15
FORMAT(/,' T ',F10.1,/,' AltPer ',F10.5,/,' AltAp ',F10.5,/,' H ' 
F 5 .2,/, ' RAAN= ' , F 5 .2,/, 'INCLINATION»',F 5 .2,/, ' A O P = ',F 5 .2,/,
' IstOrbitNo ',13,/,' 2ndOrbitNo ',13,/,' 3rdOrbitNo ',13,/)

c
c

+
+

Y=0

C IF(AP.EQ.AA)GOTO 59

X = A P + 6 3 6 6 .2 
XM= A A + 6 3 6 6 .2

RMIN=X
RMAX=XM

N = S Q R T (((X+XM)**3)*1.2411954E-5)/H

V Y = S Q R T ( (0.00981*(6366.2**2)*XM)/ ( (X+XM)/2*X))
V Y M = S Q R T ((198792.3045*X)/ ( (X+XM)*XM))

59 IF(AP.EQ.AA) RC=AP+6378.14

IF(AP.EQ.AA)VY=SQRT(399059.852/RC)
I F (A P .E Q .A A )VYM=VY

IF(AP.EQ.AA)X=RC 
I F ( A P .EQ.AA)XM=RC

I F (A P .E Q .AA)RMIN=RC 
I F (A P .E Q .A A )RMAX=RC

IF(AP.EQ.AA)TC=SQRT(4*9.8696044*RC**3/399059.852)
IF(AP.EQ.AA)TC1=SQRT(4*9.8696044*RC**3/399059.852)/3600

c IF(AP.EQ.AA)WRITE(*,'(A\)') ' CIRCULAR ORBIT PERIOD IN HOURS '
c IF(AP.EQ.AA)WRITE(*,89) TC,TCI,RC,AP,N1
c 89 F O R M A T (4F10.2,15)

IF (A P .E Q .AA)N=TC/H

VX=0

10 FORMAT (I5,2F10.3,2I5,3F10.3)

WRITE (6,22)
22 FORMAT(T2,'ORBIT')

L=1

!CALCULATE THE PERIOD, SO THE NUMBER OF SUCCESSIVE 
¡TRACKS COULD BE PLOTTED



RPER=SQRT( 9 . 8 7 * (RMIN+RMAX)**3 /397584 .3246 )

IF(AP.EQ.AA)RPER=RC 
RNUM=RPER/H

M=0

N U M = N /RNUM

DO 200 11=1,N1

WRITE (11,29) ALTPER,ALTAP
FORMAT (/,5X, 'ALT PERIGEE',F10.5,'ALT APOGEE',F10.5,/)

ALT=AP

DO 100 1=1,N

R = (SQRT(X*X+Y*Y))-6366.2
I F (R.G E .105.AND.R . L E .2500)GO TO 9

BR=RNUM/4

M=M+1

X=X+H*VX
Y=Y+H*VY
K1=H*F(T,X,Y,GAN)
L1=H*G(T,X,Y,GAN)
K2=H*F(T+0.5*H,X+0.5*K1,Y+0.5*L1,GAN) 
L2=H*G(T+0.5*H,X+0.5*K1,Y+0.5*L1,GAN) 
K3=H*F(T+0.5*H,X+0.5*K2,Y+0.5*L2,GAN) 
L3=H*G(T+0.5*H,X+0.5*K2,Y+0.5*L2,GAN) 
K4=H*F(T+0.5*H,X+0.5*K3,Y+0.5*L3,GAN) 
L4=H*G(T+0.5*H,X+0.5*K3,Y+0.5*L3,GAN) 
VX=VX+l./6.*(Kl+2.*K2+2.*K3+K4) 
VY=VY+1./6.*(Ll+2.*L2+2.*L3+L4)
T=T+H
A=ALFA*0.01744444 
B=BETA*0.01744444 
GR=GAMA*0.01744444

¡ROTATED ORBITAL PLANE TO THE GLOBAL SYSTEM HAS COORDINATES

XGL=(DCOS(A)*DCOS(GR)- D S I N (A)*DCOS(B)*DSIN (GR) ) *X+
+ (-DCOS(A)*DSIN(GR)-DSIN(A)*DCOS(B)*DCOS(GR))*Y 

Y G L = (DSIN(A)*DCOS(GR)+DCOS(A)*DCOS(B)*DSIN(GR))*X+(-DSIN(A)* 
+DSIN(GR)+DCOS(A)*DCOS(B)*DCOS(GR))*Y 

Z G L = (DSIN(B)*DSIN(GR))*X+(DSIN(B)*DCOS(GR))*Y
! FROM SPHERICAL SYSTEM THE LATITUDE AND LONGITUDE WILL BE 
¡DETERMINED, ALSO RADIUS WHICH WILL GIVE ALTITUDE VALUE AS



O 
O 

O

!A FUNCTION OF POSITION, WHICH IS A  FUNCTION OF THE TIME 

RG=SQRT(XGL*XGL+YGL*YGL+ZGL*ZGL)

L=1

RLO N G S = 5 7 .324 98682*DATAN(YGL/XGL)

IF (XGL.L T .0)RLONGS=l8 O+RLONGS

IF(RLONGS.G T .180)RLONGS=RLONGS-360

IF (R L O N G S (I-1) .G T .RLONGS(I))R L O N G S (I )=R L O N G S ( I ) +18 0 
I F ( R L O N G S (1-1).G T .R L O N G S (I ) .AND.RLONGS(1-1).G T .300)R L O N G S (I ) 

==RLONGS(I)+360

C IF(RLONGS(I).G T .380)R L O N G S (I )=RLONGS(I)-540

I F (RLONGS(1-1).GT.RLONGS(I))RLONGS(1-1)=RLMAX 
I F (RLONGS(I).GE.RLMAX)L=L+1

IF(RLONGS(1-1) .GT.RLONGS(I))RLONGS(I)=L*180+2*RLONGS(I) -90
!THE ABOVE SET OF THREE COMMANDS CAN NOT CALCULATE 
!THE VALUES WHEN RLONGS(I) DECREASES, AS IT USES 
! IF (RLONGS(I).GE.RLMAX)L=L+1

I F ( I .GE.BR)RLONGS(I)=RLONGS(I)+90 

IF (I .G E .2 * B R .A N D .I .L E .3 *BR)RLONGS(I )= R L O N G S (I )+18 0 

I F (I .G E .3*BR)RLONGS(I )=R L O N G S (I )+270

IF (M .G T .14 6.A N D .M .L T .873)R L O N G S (I )= R L O N G S (I )-18 0

I F ( R L O N G S (I ) .LT.0.A N D . R L O N G S (1-1).G E .269)R L O N G S (I )=360 
++RLONGS(I)

IF( R L O N G S (I ) .GT.0.A N D . R L O N G S (1-1).L E .360)R L O N G S (I )=360 
++RLONGS(I)

L A T S = 5 7 .324 98682*DACOS(ZGL/RG) -90

ELONG=T *360/(24*60*60) 
NUM1=ELONG/360

IF (ELONG.GE.3 60)ELONG=ELONG-NUMl*360

THIS IS THE VALUE OF EARTH POSITION, AT TIME T STARTS FROM 
ZERO, BUT WHERE THE ZERO IS?
ZERO SHOULD BE AT PERIGEE, THE POINT WHERE THE TIME STARTS 
TO BE MEASURED, THEREFORE THE LONGITUDE DIFFERENCE IS:



O 
O

E L G R T = R L O N G S (1)-ELONG 

S FS LGRT=RLONGS-ELONG

I F ( S F S L G R T .L T .0. A N D .ABS(SFSLGRT) . G T .180)SFSLGRT=SFSLGRT+360

IF(ABS(ELONG-RLONGS(I)) .GT.350) 
+S F S L G R T (I )= R L O N G S (I )-ELONG+360

LATREL=LATS-LATW 
LO N G R E L = R L O N G S (I )-LONGW 
LONGGR=RLONGS(I)-T*0.0041801847 
L O N G RELl=RLONGS(I )-LONGGR

A L T = R G - 6 3 6 6 .2

IF (R.GE.2500) WRITE (10,23)T,X,Y,ALT,SFSLGRT,LATS 

REWIND 9

23 FORMAT (5X,6E14.6)

IF(R.GE.2500)GO TO 99 

i2=0

9 I F (R .G T .105.A N D .R .L T .2500) CALL AS3I(II,i2,15,X,Y,VX,VY,H,
+ ALTPER, A L T A P , ZINCL, ALFA, BETA, GAMA)

C IF(R.GE.105.AND.R.LE.2500) WRITE(*,*) ' IT IS INSIDE THE 99 LOOP '

99 L=L+1

GAN= 9.78*(1+0.0053024*((DSIN(LATS))**2)-(5.9E-6)*
+ (DSIN(2*LATS))**2)*(6367.445**2)/5.9761E+24

C WRITE (*,3098) GAN
C 3098 F O R M A T ((E10.3))

100 CONTINUE

200 CONTINUE

STOP
END

FUNCTION F (T ,X ,Y ,G A N )



IMPLICIT REAL*8 (A-H,K,L, 0-Z)

F=(-X)*GAN*40678.884/(SQRT(X*X+Y*Y))**3 
RETURN 

END

FUNCTION G(T,X,Y,GAN)
IMPLICIT REAL*8 (A-H,K,L,O-Z)

G=(-Y)*GAN*40678.884/(SQRT(X*X+Y*Y))**3 
RETURN 

END



Ground Track: Three Body Problem



PROGRAM THREEBODYPROBLEMGROUNDTRACK 
! Runge Kutta method IV order used for orbit calculation

IMPLICIT R E A L*8 (A-L,0-Z)

DIMENSION R L O N G S (30000), N U M (30000),SFSLGRT(30000)
REAL Kl, K2, K3,K4,LI,L2,L3,L4,K1E,K2E,K3E,K4E,LIE,L2E, L3E 
REAL L4E, KIM,K2M,K3M,K4M,L1M,L2M,L3M,L4M,LATS

REAL LATS1

W R I T E (*,' (A\ ) ' ) ' ENTER VALUE T '
R E A D (*,*) T

W R I T E (*,' (A\) ') ' ENTER VALUE PERIGEE ALTITUDE
R E A D (*,*) AP

W R I T E (*,' (A\) ') ' ENTER VALUE APOGEE ALTITUDE
R E A D (*,*) AA

W R I T E (*,' (A\) ') ' ENTER VALUE XE 1
R E A D (*,*) XE
W R I T E (*,' (A\) ') ' ENTER VALUE YE '
R E A D (*,*) YE

W R I T E (*,' (A\),’) ' ENTER VALUE XM0 '
R E A D (*,*) XM0
W R I T E (*,' (A\)') ' ENTER VALUE YM0 '
R E A D (*,*) YM0

W R I T E (*,' (A\) ') ' ENTER VALUE H ’
R E A D (*,*) H

W R I T E (*,' (A\) ') ' ENTER VALUE VXE '
R E A D (*,*) VXE
W R I T E (*,' (A\)') ' ENTER VALUE VYE '
READ (*,*) VYE

W R I T E (*,' (A\) ') ' ENTER VALUE VXM0 '
R E A D (*,*) VXM0
W R I T E (*,' (A\) ') ' ENTER VALUE VYM0 '
R E A D (*,*) VYM0

W R I T E (*,' (A\ ) ') ' ENTER VALUE SMS '
R E A D (*,*) SMS

W R I T E (*,' (A\)') ' ENTER VALUE RAAN '
R E A D ( * , * ) ALFA

W R I T E (*,' (A\ ) ') ' ENTER VALUE INCLINATION '
R E A D (*, *) BETA



WRITE (*, ' (A\) ') ' ENTER VALUE ARG OF PER '
R E A D (*,*) GAMA

W R I T E (*,'(A\)') ' ENTER VALUE ORBIT No. '
R E A D (*/*) N1

W R I T E (*,'(A\)') ' ENTER OUTPUT ORBIT No. '
R E A D ( *, * ) 121

open (unit=1 0 ,
file= ' tbpdblprecSETgrtr. DAT ', f orm= ' formatted ', status= ' unknown ' )

! CALCULATE THE POSITION OF THE CENTRE OF THE MASS, COMPARE IT WITH 
ASSUMED

! CENTRE OF THE SATELLITE ORBIT- CN'N: WHAT ABOUT AXES MODIFICATION?

EMS=5.9761E24 
R M M S = 7 .3534E22

i3=0

! THE PART OF THE PROGRAM THAT WILL RECALCULATE VALUES OF THE MOON 
POSITION

! W.R.T. THE SYSTEM IN SATELLITE ORBIT PLANE CONSISTS OF:
! 1. DEFINE POSITION OF THE MOON IN ITS ORBIT PLANE, IE: X=384749.9km,

Y=0, Z=0
! THERE IS ALSO A  PARTICULAR VELOCITY ASSOCIATED TO THIS POSITION WHICH 

WILL BE
! TRANSFORMED BY THE SAME EQUATIONS.
! 2. LET IGNORE THE OTHER TWO ROTATIONS, AND PERFORM ONLY THAT ONE FOR THE 
! INCLINATION ANGLE (6.65DEG RELATIVE TO THE EQUATOR, ACCORDING TO THE 

HANDBOOK)
! 3. NEXT ROTATION WOULD BRING THE MOON PLANE COORDINATES TO THE SATELLITE

SYSTEM
! PERFORMED BY THE SAME SPACE TRANSFORMATIONS, BUT WITH TRANSPOSED 

EQUATIONS
! THEORETICAL APPROACH IS IN THE THESIS 'THREE BODY PROBLEM' SECTION 
! ONCE THE INITIAL VALUE IS GIVEN, ONE COMPLETE SATELLITE ORBIT WILL BE 

COMPUTED, AND
! ON THE BEGINNING OF THE NEXT ONE NEW INCLINATION ANGLE WILL BE 

DETERMINED

ALFA1=0 
BETA1=6.65 
GAMA1=0
! MOON ORBIT ELEMENTS

A M = A L F A 1 * 0 .01744444 
BM = B E T A 1 * 0 .01744444 
GRM=GAMA1*0.01744444

X M 0 0=(DCOS(AM)*DCOS(GRM)-DSIN(AM)*DCOS(BM)*DSIN(GRM))*XM0+ 
DCOS(AM)*DSIN(GRM)-DSIN(AM)*DCOS(BM)*DCOS(GRM))*YM0



YMOO= (DSIN (AM) *DCOS (GRM) +DCOS (AM) *DCOS (BM) *DSIN (GRM) ) *XMO+ (
DSIN (AM) *DSIN (GRM) +DCOS (AM) *DCOS (BM) *DCOS (GRM) ) *YMO

ZMOO= (DSIN (BM) *DSIN (GRM) ) *XMO+ (DSIN (BM) *DCOS (GRM) ) *YMO

VXMOO=(DCOS(AM)*DCOS(GRM)-DSIN(AM)*DCOS(BM)*DSIN(GRM))* V X M 0 + ( 
DCOS (AM) *DSIN (GRM) -DSIN (AM) *DCOS (BM) *DCOS (GRM) ) *VYM0

VYM00= (DSIN (AM) *DCOS (GRM) +DCOS (AM) *DCOS (BM) *DSIN (GRM) ) *VX M 0 + (- 
DSIN (AM) *DSIN (GRM) +DCOS (AM) *DCOS (BM) *DCOS (GRM) ) *VYM0

VZM00= (DSIN (BM) *DSIN (GRM) ) *VXM0+(DSIN(BM) *DCOS (GRM) ) *VYM0

X M = (DCOS(GR)*DCOS(A)-
DSIN (A) *DSIN (GR) *DCOS (B) ) *XM00+ (DSIN (GR) *DCOS (B) *DCOS (A) +DCOS (GR) *DSIN (A) ) *YMOO+ 
(DSIN(GR)*DSIN(B))*ZM00

YM= (-DSIN(GR)*DCOS(A)-DSIN(A)*DCOS(B)*DCOS(GR))*XM00+(- 
DSIN (GR) *DSIN (A) +DCOS (B) *DCOS (GR) *DCOS (A) ) *YM00+ (DCOS (GR) *DSIN (B) ) *ZM00 

ZM= (DSIN (A)*DSIN(B))*XM00+(-DSIN(B)*DCOS(A))*YMOO+DCOS(B)*ZM00

VXM=(DCOS(GR)*DCOS (A) -
DSIN (A) *DSIN (GR) *DCOS (B) ) *VXM00+ (DSIN (GR) *DCOS (B) *DCOS (A) +DCOS (GR) *DSIN (A) ) *VYM0 
0 + (DSIN(GR)*DSIN(B))*VZM00

VYM= (-DSIN(GR)*DCOS(A)-DSIN(A)*DCOS(B)*DCOS(GR))*VXM00+(- 
DSIN (GR) *DSIN (A) +DCOS (B) *DCOS (GR) *DCÔS (A) ) *VYM00+ (DCOS (GR) *DSIN (B) ) *VZM00 

VZM= (DSIN (A)*DSIN(B))*VXM00+(-DSIN(B)*DCOS(A))*VYMOO+DCOS(B)*VZM00

Y=0

X = A P + 6 3 6 6 .2 
X M l = A A + 6 3 6 6 .2

RMIN=X
RMAX=XM1

N = S Q R T (((X+XM1)**3)*1.2411954E-5)/H

VX=0

VY=SQRT((0.00981* (6366.2**2)*XM1)/ ( (X+XM1)/2*X)) 
VYM=SQRT ((198792.3045*X)/((X+XM1)*XM1))

! try to determine the satellite position for the geosyncronised orbit 
! the initial condiditons are: T=0, (X=42205.1713km, Y = 0 ) , XE=0, YE=0,

H=5,
j n =17280, VX=0, VY=3.06925, VXE=0, VYE=0, VXM=0, VYM=1.024, SMS=0

! the observed orbit is of very high altitude, therefore the effect due to 
! atmospheric drag and gravitational anomalies will be ignored and only

Lunar
! impact will be observed



10 FORMAT (15,6F10.3,215,7FI0.3)
WRITE (6,21)

21 FORMAT (/,5 X , 'I ',5X, 'T ' ,5X,'X',5 X , 'Y ' ,5X,'VX', 5X, 'V Y ' ,/) 
WRITE (6,22)

22 FORMAT(T2,'ORBIT')

! CALCULATE THE PERIOD, SO THE NUMBER OF SUCCESSIVE 
!TRACKS COULD BE PLOTTED

R P E R = S Q R T (9.87*(RMIN+RMAX)**3/397584.3246)
RNUM=RPER/H

M=0
M12=0

NUM=N/RNUM

! WRITE (9,33) '
! 33 F O R M A T ('(' 'Setq' )

DO 200 11=1,N1

M12=M12+1 

DO 100 1=1, N 

BR=RNUM/4 

M=M+1

X=X+H*VX
Y=Y+H*VY
XE=XE+H*VXE
YE=YE+H*VYE
XM=XM+H * VXM
YM=YM+H*VYM

K1=H*F(T,X,Y,XE,YE,XM,YM,GAN)
L1=H*G(T,X,Y,XE,YE,XM,YM,GAN)

K1E=H*FE(T,X,Y,XE,YE,XM,YM,SMS)
L1E=H*GE(T,X,Y,XE,YE,XM,YM,SMS)

K1M=H*FM(T,X,Y,XE,YE,XM,YM,SMS)
L1M=H*GM(T,X,Y,XE,YE,XM,YM,SMS)

K2=H*F(T+0.5*H,X+0.5*K1,Y+0.5*L1,X E + 0 .5*K1E,YE+0.5*L1E, X M + 0 .5*K1M,YM+0.5*L 
1M,GAN)

L 2 = H * G (T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E,YE+0.5*L1E, XM+0.5*K1M,YM+0.5*L 
1M, GAN)

K2E=H*FE(T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+0.5*K1E, YE+0.5*L1E, XM+0.5*K1M,YM+0.5 
*L1M,SMS)



L2E=H*GE(T+0.5*H,X+0.5*K1,Y+0.5*L1,XE+O.5*K1E,YE+O.5*L1E, XM+O . 5 * K1M,YM+O.5 
*L1M,SMS)

K2M=H*FM(T+0.5*H,X+0.5*K1, Y+O. 5*L1, XE+O. 5*K1E, YE+O. 5*L1E, XM+O. 5*K1M, YM+O. 5 
*L1M,SMS)

L2M=H*GM(T+O.5*H,X+O.5*K1,Y+O.5*L1,XE+O.5*K1E,YE+O.5*L1E,XM+O.5*K1M,YM+O . 5 
*L1M,SMS)

K 3=H*F(T+O. 5*H,X+O.5*K2,Y+O.5*L2,XE+O.5*K2E,YE+O.5*L2E,XM+0.5*K2M,YM+O . 5*L 
2M, GAN)

L3=H*G(T+O.5*H,X+O.5*K2,Y+O.5*L2,XE+O.5*K2E,YE+O.5*L2E,XM+O.5*K2M,YM+O . 5*L 
2M,GAN)

K3E=H*FE(T+O.5*H,X+O . 5*K2,Y+O.5*L2,XE+O.5*K2E,YE+O.5*L2E,XM+O.5*K2M,YM+O.5 
*L2M,SMS)

L3E=H*GE(T+O.5*H,X+O.5*K2,Y+O.5*L2,XE+O.5*K2E,YE+O.5*L2E, X M + O .5*K2M,YM+O.5 
*L2M,SMS)

K3M=H*FM(T+0.5*H,X+0.5*K2,Y+O.5*L2,XE+O.5*K2E,YE+O.5*L2E, XM+O.5*K2M,YM+O. 5 
*L2M,SMS)

L3M=H*GM(T+O.5*H,X+O.5*K2,Y+O.5*L2,XE+O.5*K2E,YE+O.5*L2E, XM+O . 5*K2M,YM+O.5 
*L2M,SMS)

K4=H*F(T+O. 5*H,X+O.5*K3,Y+O.5*L3,XE+O.5*K3E,YE+O.5*L3E,XM+O.5*K3M,YM+O . 5*L 
3M/GAN)

L4=H*G(T+O.5*H,X+O.5*K3,Y+O.5*L3,XE+O.5*K3E,YE+O.5*L3E,XM+O.5*K3M,YM+O . 5*L 
3M,GAN)

K4E=H*FE(T+O.5*H,X+O.5*K3,Y+O.5*L3,XE+O.5*K3E,YE+O.5*L3E,XM+O.5*K3E,YM+O.5 
*L3M,SMS)

L4E=H*GE(T+O.5*H,X+O.5*K3,Y+O.5*L3,XE+O.5*K3E,YE+O.5*L3E, X M + O .5*K3M,YM+O . 5 
*L3M,SMS)

K4M=H*FM(T+O.5*H,X+O.5*K3,Y+O.5*L3,XE+O.5*K3E,YE+O.5*L3E,XM+O.5*K3M, YM+O . 5 
*L3M,SMS)

L4M=H*GM(T+O.5*H,X+O.5*K3,Y+O.5*L3,XE+O.5*K3E,YE+O.5*L3E,XM+O.5 *K3M,YM+O.5 
*L3M,SMS)

VX=V X + 1 ./6 . * (Kl+2.*K2+2.*K3+K4) 
V Y = V Y + 1 ./6 . * (Ll+2.*L2+2.*L3+L4)

VXE=VXE+1./6 .*(K1E+2.*K2E+2.*K3E+K4E) 
VYE=VYE+1./6 .*(L1E+2.*L2E+2.*L3E+L4E)

VXM=VXM+1./6 .*(K1M+2.*K2M+2.*K3M+K4M) 
VYM=VYM+1./6 .*(L1M+2.*L2M+2.*L3M+L4M)

XC=((SMS*X+EMS*XE+RMMS*XM)/(SMS+EMS+RMMS)) 
YC=((SMS*Y+EMS*YE+RMMS*YM)/(SMS+EMS+RMMS))

A=ALFA*0.01744444 
B=BETA*0.01744444 
GR=GAMA* 0.01744444

¡ROTATED ORBITAL PLANE TO THE GLOBAL SYSTEM HAS COORDINATES

X G L = (DCOS(A)*DCOS(GR)- D SIN(A)*DCOS(B)*DSIN(GR) ) *X+(-DCOS(A)*DSIN(GR) -  

D S I N (A)*DCOS(B)*DCOS(GR))*Y



YGL= (DSIN (A) *DCOS (GR) +DCOS (A) *DCOS (B) *DSIN (GR) ) *X+ (
DSIN (A) *DSIN (GR) +DCOS (A) *DCOS (B) *DCOS (GR) ) *Y

ZGL= (DSIN(B)*DSIN(GR))*X+(DSIN(B)*DCOS(GR))*Y

! FROM SPHERICAL SYSTEM THE LATITUDE AND LONGITUDE WILL BE 
!DETERMINED, ALSO RADIUS WHICH WILL GIVE ALTITUDE VALUE AS 
!A  FUNCTION OF POSITION, WHICH IS A  FUNCTION OF THE TIME

R=SQRT(XGL*XGL+YGL*YGL+ZGL*ZGL)

L=1

R L O N GS=57.32498682*DATAN(YGL/XGL)
I F (XGL.L T .0)RLONGS=l8 O+RLONGS 
I F (R L O N G S (I ) .G T .18 0)RLONGS=RLONGS-360

L A T S = 5 7 .32498682*DACOS(ZGL/R)-90

LATSl=LATS/57.32498682

G A N = 9 .78*(1+0.0053024*((DSIN(LATSl))**2)-(5.9E-6)* (DSIN(2*LATS1))**2)

!THE SPHERICAL COORDINATES OF THE POINT W AT THE EARTH'S SURFACE ARE

LONGW=XLONG+360*0.000072921152*T/6.28 
LATW=XLATT

RELATIVE SATELLITE POSITION WILL DEPEND ON THE RATE OF EARTH 
ROTATION, THEREFORE EARTH ROTATION AT THE PARTICULAR MOMENT 
IS GIVEN BY:

EOMEGA=360/(24*60*60)

! ANGULAR VELOCITY CALCULATED IN DEG/SEC 

T=T+H
ELONG=T*360/(24*60*60)
NUM1=ELONG/360

IF (ELONG.GE.3 6 0)ELONG=ELONG-NUMl* 3 6 0

THIS IS THE VALUE OF EARTH POSITION, AT TIME T STARTS FROM 
ZERO, BUT WHERE THE ZERO IS?
ZERO SHOULD BE AT PERIGEE, THE POINT WHERE THE TIME STARTS 
TO BE MEASURED, THEREFORE THE LONGITUDE DIFFERENCE IS:

ELGRT=RLONGS(1)-ELONG 

S F S L G R T (I )=RL O N G S (I )-ELONG
IF(ABS(ELONG-RLONGS(I)) .GT.350) S F SLGRT(I )= R L O N G S (I )-ELONG+360 
IF(SFSLGRT(I).L T .0.A N D .ABS(SFSLGRT(I)).G T .180)SFSL G R T (I )= SF S L G R T (I )+360



LAT RE L=LAT S-LATW 
LONGREL=RLONGS(I)-LONGW 
LONGGR=RLONGS(I)-T*0.0041801847 
LONGRELl=RLONGS(I)-LONGGR

ALT=R-6366.2
WRITE (9/23)I/T/X,Y/ALT/RLONGS(I),ELONG,SFSLGRT(I),LATS

i3=i3+l

if(i21.ge.il.and.i3.eq. 20)WRITE (10,23)ALT,SFSLGRT(I) , LATS

if(i 3.eq.20)i3—0 

23 FORMAT (5X,3E14.6)

100 CONTINUE

RPER=AP+6378.2 
RAP=AA+6378.2

ZB=RAP+RPER
ZRZ=RAP-RPER

! IF(ZRZ.EQ.0)GO TO 111
RAZ=1-(ZRZ/ZB)* (ZRZ/ZB)

! Bl=ACOS ( (ABS (X*VY) -ABS (Y*VX) ) /SQRT (4 0650.887*GAN*0.5*ZB*RAZ) )
! Ill Bl=ACOS((ABS(X*VY)-ABS(Y*VX))/SQRT(40650.887*GAN*0.5*ZB))

SINCL=B-B1

! WRITE (*,309) SINCL
! 309 FORMAT( 5X 'SINCL=' (F10.3))

WRITE (*,3099) XC,YC .
3099 FORMAT( 5X 'CENT. OF MASS =' (2F10.3))

200 CONTINUE

M121=M121+1

STOP
END
FUNCTION F(T,X,Y,XE,YE,XM,YM,GAN)
IMPLICIT REAL*8 (A-L,0-Z)
F=(XE-X)*40650.887*GAN/(SQRT((XE-X)**2+(YE-Y)**2)**3)+ (XM- 

X)*4 906.92/(SQRT((XM-X)**2+(YM-Y)**2) **3)
RETURN
ENDFUNCTION G(T,X,Y,XE,YE,XM,YM,GAN)
IMPLICIT REAL*8 (A-L,0-Z)



G= (YE-Y) *4 0650.887*GAN/ (SQRT ( (XE-X) **2+ (YE-Y) **2)**3)+ (YM- 
Y) *4 9 0 6 . 9 2 / (SQRT((XM-X)**2+(YM-Y)**2)**3)

RETURN
END

FUNCTION FE (T, X, Y, XE, YE, XM, YM,SMS)
IMPLICIT R E A L *8 (A-L,0-Z)
FE= (XM-XE) *4906.92/ (SQRT ( (XE-XM) **2+ (YE-YM) **2) **3) + (X-XE) *6.673E 

20*SMS/(SQRT((XE-X)**2+(YE-Y)**2)**3)
RETURN
END
FUNCTION GE(T,X,Y,XE,YE,XM,YM,SMS)
IMPLICIT REAL*8 (A-L,0-Z)
GE= (YM-YE) *4906.92/ (SQRT ( (XE-XM) **2+ (YE-YM) **2) **3) + (Y-YE) *6.673E 

20*SMS/(SQRT((XE-X)**2+(YE-Y)**2)**3)
RETURN
END

FUNCTION FM(T,X,Y,XE,YE,XM,YM, SMS)
IMPLICIT REA L *8 (A-L,0-Z)
FM= (X-XM) *6.673E-20*SMS/ (SQRT ( (XM-X) **2+ (YM-Y) **2) **3) + (XE- 

XM) * 3 98785.2/(SQRT((XM-XE)**2+(YM-YE)**2)**3)
RETURN
END

FUNCTION GM(T,X,Y,XE,YE,XM,YM,SMS)
IMPLICIT REAL*8 (A-L,0-Z)
GM= (Y-YM) *6.673E-20*SMS/ (SQRT ( (XM-X) **2+ (YM-Y) **2) **3) + (YE- 

YM) * 398785.2/(SQRT((XM-XE)**2+(YM-YE)**2)**3)
RETURN
END
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