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Beam Element Verification for 3D Elastic Steel Frame Analysis 

Lip H. Teh 

L.Teh@civil.usyd.edu.au 

Department of Civil Engineering, University of Sydney, Sydney, NSW 2006, Australia 

Abstract 

The paper describes the attributes that should be possessed by a benchmark example for 

verifying the beam elements used to carry out 3D linear buckling analysis and 3D second-order 

elastic analysis of steel frames. Based on the attributes described, the paper proposes a suite of 

benchmark examples selected from the literature. The necessary features of a beam element 

required to pass the proposed benchmark problems are given, and beam elements that possess 

these features are cited. The paper also explains the merits of linear buckling analysis examples, 

and provides a commentary on two well-known examples. 

Keywords: 3D second-order analysis, beam element, benchmarking, buckling analysis, elastic 

instability, lateral buckling, large displacement analysis, nonlinear frame analysis, 

steel frames, thin-walled structures 

1. Introduction 

In the past decade, there has been more widespread use of 3D frame analysis programs in 

civil engineering design offices to determine the buckling loads and the member forces of steel 

framed structures. In most cases, the use of 3D analysis has been necessitated by the topology of 

the designed structure that does not permit the use of 2D analysis, such as in the case of a sports 
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stadium. More recently, however, 3D frame analyses have also been carried out on multi-storey 

multi-bay rectangular frames such as high-rise storage rack frames. The fact that this type of steel 

structure is generally composed of open sections rather than tubular sections, the latter normally 

used in space roof trusses and offshore structures, has important implications for the frame 

stability that are not generally well understood by practising engineers. In design practice, either 

linear buckling analysis or second-order elastic analysis is performed to assess the frame stability. 

The elastic buckling behaviour and the second-order effects due to geometric non-

linearity of steel plane frames are well understood and well documented in the literature [1-4]. 

Commercial frame analysis programs that can handle most or all of these two stability aspects of 

planar (2D) steel structures have also been available for many years. For the purpose of verifying 

a 2D beam element or a 2D frame analysis program, there are many well established and well 

defined benchmark examples [5-7]. However, neither situation is true for 3D beam elements or 

3D frame analysis programs. Although 3D linear elastic analysis is a fairly straightforward 

extension of 2D analysis, at the member level there may be 3D couplings between axial, flexural 

and torsional deformation modes that control the buckling behaviour of open sections. The 

comment of Springfield [8] that few commercial frame analysis/design programs could deal with 

out-of-plane buckling of beams or beam-columns by other than empirical means is still largely 

true today, except for the more expensive general-purpose finite element analysis packages such 

as ADINA [9] and ABAQUS [10]. The comment is even more apt in the case of flexural-torsional 

buckling of a compression member, although there are specialised computer programs such as 

PRFELB [11] and ConSteel [12] that are capable of flexural-torsional buckling analysis. This is 

despite the fact that limit states involving 3D member buckling modes are a practical reality [13-

15]. 
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To the author’s knowledge, hitherto there is not a unified source that defines and justifies 

benchmark examples for verifying a 3D beam element used in the analysis and design of steel 

frames. From the practical point of view, a basic test of a proposed beam element or computer 

analysis program is whether it is validated by well defined benchmark examples [16]. Although 

the use of benchmark examples may not always resolve complex theoretical questions such as 

those discussed by Teh & Clarke [17-18], a well defined benchmark example helps identify the 

shortcomings of an element and safeguards against the use of computer analysis programs that 

are not sufficiently accurate for their purposes. 

This paper discusses the attributes that should be possessed by a benchmark example for 

verifying the beam elements used to carry out 3D linear buckling analysis and 3D second-order 

elastic analysis of steel frames. Following the description of the essential and the desirable 

attributes of a benchmark example, the merits of linear buckling analysis examples vis-à-vis 

geometrically nonlinear analysis examples are discussed. A suite of benchmark examples selected 

from the literature are then proposed. Examples involving non-prismatic members, local buckling 

or distortional buckling are not included. This paper also provides a commentary on two popular 

examples that have been used to verify 3D beam elements in the literature. 

2. Essential and desirable attributes of a benchmark example for 3D beam elements 

The essential and the desirable attributes of a benchmark example for verifying 3D 

second-order beam elements used to analyse steel frames are listed in the following. The first five 

attributes are essential, and the last two are desirable: 

i. The example clearly exhibits a specific member characteristic (or characteristics) which is 

unique to 3D problems, such as flexural-torsional buckling and warping torsion. 
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ii. When a certain 3D beam element fails the example, the reason or reasons for its failure can 

be identified so that the element can be refined if desired. This is an important attribute as the 

3D beam elements (or stability function based beam-columns) used in many commercial 

frame analysis programs are direct extensions of 2D beam elements. 

iii. The manner in which the example should be analysed is clearly prescribed. A 3D beam 

element that does not properly account for flexural-torsional coupling may be able to detect 

the flexural-torsional buckling load of a structure if geometric imperfections corresponding to 

the buckling mode are introduced into the geometrically nonlinear analysis model. This issue 

is discussed in details in Sections 3 and 4.9. 

iv. The example has an experimental validation. In the absence of experimental validation, the 

example should be validated by the classical beam-column theory or an alternative analysis 

method that, in turn, has been validated experimentally for a similar problem or a problem of 

a higher degree of complexity. 

v. The example is sufficiently documented so that the computer modelling can be performed by 

independent parties. 

vi. The tested characteristic represents a fundamental structural behaviour that may be 

encountered in practice. 

vii. The example requires minimal modelling efforts and analysis time. 

A suite of benchmark examples should cover a reasonably comprehensive range of 3D 

buckling modes and nonlinear responses of steel members under various combinations of loading 

and boundary conditions. Section 4 proposes such a suite of benchmark examples within the 

context of elastic analysis. 
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3. Linear buckling analysis examples vs geometrically nonlinear analysis examples 

This section aims to point out the advantages of linear buckling analysis examples over 

geometrically nonlinear analysis ones in verifying the ability of a beam element to properly 

capture the 3D instability phenomena of steel frames. This section also explains why it is 

important that a beam element be able to detect structural instability without the use of geometric 

imperfections or load perturbations. 

A geometrically nonlinear analysis may miss the lowest buckling mode of a structure 

even if the decomposed tangent stiffness matrix contains a negative pivot signifying instability 

[19]. This shortcoming is not due to the beam element, but is due to the load incrementation 

strategy used in the nonlinear analysis algorithm. In this case, it cannot be ascertained whether 

the element is able to detect the lowest buckling mode. On the other hand, in a linear buckling 

analysis, such an ability of the element is not masked by the shortcoming of the load 

incrementation strategy. 

Conversely, if geometric imperfections or perturbation loads conducive to the bifurcation 

buckling mode are introduced to the model, the nonlinear analysis may detect the lowest buckling 

mode even though a linear buckling analysis using the same element fails to detect that mode. In 

analysing the cantilevered right-angle frame depicted in Fig. 1, Leung & Wong [20] used the 3D 

beam element described by Meek & Tan [21], which is a direct extension of the 2D beam element 

presented by Jennings [22] with the addition of uniform torsion. Such a 3D beam element has 

been shown by Teh & Clarke [24] to fail to predict the lateral (flexural-torsional) buckling load of 

the cantilevered right-angle frame in a linear buckling analysis. However, by introducing a small 

perturbation force at the tip to induce the well-known lateral buckling, Leung & Wong [20] were 
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able to simulate the lateral buckling in their geometrically nonlinear analysis, as shown in Fig. 2. 

In this case, the bifurcation problem dissolves into a normal large displacement problem, and 

there is no issue concerning the singularity of the tangent stiffness matrix at the bifurcation point. 

However, the use of perturbation forces or geometric imperfections to detect the lowest 

buckling load in a geometrically nonlinear analysis is not always feasible without an eigenmode 

analysis of the structure tangent stiffness matrix. The appropriate mode is not always obvious or 

well-known, while random imperfections do not guarantee that the lowest buckling mode will 

always be detected. The space dome depicted in Fig. 3 has been analysed by many researchers, 

yet most of them did not detect its flexural-torsional buckling mode [18]. Leung & Wong [20], 

who detected the well-known flexural-torsional buckling mode of the cantilevered right-angle 

frame of Fig. 1 through the use of a perturbation force corresponding to that mode, did not model 

the little known flexural-torsional buckling mode of the space dome, which they also analysed. 

As is the case with many other researchers, Leung & Wong [20] traced the unstable primary path 

of the space dome beyond the bifurcation point. The primary and the secondary equilibrium paths 

are shown in Fig. 4. 

There is no doubt that geometrically nonlinear analysis examples have an important role 

in verifying 3D beam elements, especially for problems involving significant pre-buckling 

deformations. However, in the context of steel frame analysis and design, more importance 

should be given to linear buckling analysis examples in verifying 3D beam elements than is the 

case in the literature. This contention also holds for inelastic beam elements as linear buckling 

analysis examples serve to isolate any fundamental flaws in the element formulation, which is 

distinct from the theory of plasticity. 
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4. Proposed benchmark examples 

4.1 Flexural-torsional buckling of a centrally loaded, simply supported unequal angle column 

A doubly-symmetric I-section column generally buckles in the flexural mode. This 

buckling mode is so well known that many practising structural engineers consider this buckling 

mode only in designing steel columns. Some steel structures standards such as AS 4100 [26] only 

account for the flexural buckling mode explicitly in their design rules specified for a compression 

member, although there is a provision for local buckling which coincides with torsional buckling 

for certain sections. The perception that compression members can buckle in the flexural mode 

only may be reinforced by the traditional use of 2D buckling analysis in designing steel frames. 

Although this perception is justified for most steel columns used in civil engineering structures, it 

is not valid for those with low torsional rigidities and significant shear-centre eccentricities. 

In addition to the flexural buckling mode, a thin-walled open section column with a low 

torsional rigidity may buckle in the torsional mode under concentric compression due to the so-

called Wagner effect [27]. The elastic torsional buckling load is 
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in which Iy is the second moment of area about the minor axis, Iz is the second moment of area 

about the major axis, A is the cross-sectional area, ys is the shear-centre eccentricity measured 

parallel to the minor axis, and zs the shear-centre eccentricity measured parallel to the major axis. 

For a section in which the shear-centre and the centroid do not coincide with each other, 

there is an interaction between the flexural and the torsional buckling modes under concentric 

compression, resulting in the flexural-torsional buckling mode [13, 28-29]. The flexural-torsional 

buckling load xyzP  is the solution to the cubic equation 
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in which Py is the flexural buckling load about the minor axis and Pz is the flexural buckling load 

about the major axis. 

An example of a column section that is subject to the flexural-torsional buckling mode is 

the unequal angle section depicted in Fig. 5. In practice, the warping constant Cw of an angle 

section is assumed to be zero. The classical buckling loads of this section are plotted against the 

variable lengths of the centrally loaded, simply supported column in Fig. 6. The appropriate way 

to verify a 3D beam element (or beam-column) against this example is to carry out a series of 

linear buckling analyses using variable lengths of the simply supported column, without 

introducing geometric imperfections into the models. 

It can be shown that the oft-cited 3D beam element described by Meek & Tan [21], which 

is a direct extension of the 2D beam element presented by Jennings [22], only predicts the 

flexural buckling loads Py about the minor axis over the whole range of the column lengths. This 
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beam element neglects the Wagner effect and therefore cannot detect the torsional buckling load 

Px [24], let alone the flexural-torsional buckling load Pxyz. Such a beam element (or beam-

column) is widely used in commercial 3D frame analysis programs. 

The ability to detect the torsional buckling mode of an isolated column should not be 

confused with the ability to detect the torsional buckling mode of a column as part of a 3D 

framed structure. For instance, the beam element described by Meek & Tan [21] is able to detect 

the apparent torsional buckling mode of such columns. However, what is actually detected is the 

torsional buckling mode of the frame as a whole. The associated frame buckling load may be 

higher than the frame buckling load predicted using the element which accounts for the Wagner 

effect [15]. 

It can also be shown that the stability function based beam-columns such as that presented 

by Kassimali & Abbasnia [30] cannot detect the flexural-torsional buckling load Pxyz as it does 

not account for the coupling between axial, flexural and torsional deformation modes. 

The cubic beam elements presented by Conci [31] and Lin & Hsiao [32] are able to 

predict the flexural-torsional buckling loads Pxyz plotted in Fig. 6 over the whole range of the 

column lengths, using two elements [4]. The necessary features of such a beam element are: 

• account for the Wagner effect, 

• account for the shear-centre eccentricities, and 

• account for the interaction between axial, flexural and torsional deformation modes. 
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4.2 Flexural-torsional buckling of a centrally loaded, simply supported lipped angle column 

The previous example involves an angle section which is assumed to have no torsional 

warping rigidity (Cw equal to zero). A 3D beam element that does not account for torsional 

warping may be able to predict the flexural-torsional buckling loads of such sections accurately. 

However, most open sections such as I-sections, channel sections, and lipped angle sections (see 

Fig. 7 for an example) possess significant torsional warping rigidities that may dominate the 

corresponding St. Venant torsion rigidities [13-15, 27-28, 33-34]. Although the steel members in 

most building frames are not subjected to primary torques, the inclusion of torsional warping in 

the beam element is important for the linear buckling analysis of a structure composed of such 

sections. 

Wagner & Pretschner [27] conducted a series of laboratory tests on centrally loaded and 

simply supported (both ends are prevented from twisting but are free to warp) lipped equal angle 

section columns. Due to the lips, the torsional warping rigidity is significant for relatively short 

columns. The Young’s modulus of the material is E = 72.5 GPa. The geometric properties of the 

mono-symmetric section are: 2mm5.56A , 4mm9550zI , 4mm2750yI , 

2kNmm392GJ , 6mm60000wC  and mm6.13sz . 

The classical flexural-torsional buckling load Pxz of a mono-symmetric column is 
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The classical solutions and the buckling loads obtained in the laboratory tests [27] are 
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plotted in Fig. 8. For this mono-symmetric section, the flexural-torsional buckling mode is so 

dominated by the torsional buckling mode that their buckling loads are practically the same. 

The solution obtained by neglecting the warping constant Cw in Equation (1), denoted Pv, 

is also shown in the figure.  It can be seen that, even though both ends of the simply supported 

column are free to warp, the flexural-torsional buckling loads of the shorter columns are 

significantly affected by the torsional warping rigidity. For a beam element to predict the 

flexural-torsional buckling loads of these columns accurately, the finite element formulation must 

account for torsional warping of the cross-section, in addition to the Wagner effect and shear-

centre eccentricity. Such beam elements, which possess fourteen nodal degrees of freedom, have 

been presented by Conci [31] and Lin & Hsiao [32], among others. 

4.3 Flexural-torsional buckling of a simply supported doubly-symmetric I-section beam-column 

The first two examples involve columns that buckle in the flexural-torsional mode under 

concentric compression due to shear-centre eccentricity. For a doubly-symmetric section, there is 

no shear-centre eccentricity and therefore no interaction between the flexural and the torsional 

buckling modes under concentric compression. A doubly-symmetric I-section column generally 

buckles in the flexural mode about the minor axis. However, an I-section beam that is bent about 

the major axis may buckle in the flexural-torsional mode (often called lateral buckling). 

The lateral buckling (uniform) moment of a simply supported doubly-symmetric I-section 

beam (both ends are restrained against twisting but are free to warp) is 
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Under combined compression and bending, the lateral buckling moment decreases with 

increasing axial load. Likewise, the axial load at which lateral buckling takes place under a given 

bending moment about the major axis is naturally less than the Euler buckling load about the 

minor axis. Under a uniform bending moment 'zM , the critical load of a centrally loaded and 

simply supported beam-column is 
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Figure 9 plots the critical loads Pxy of a 5-metre simply supported doubly-symmetric I-

section beam-column having the following section properties: 2mm11400=A , 

48 mm1043.1 ×=zI , 47 mm1084.4 ×=yI , 46 mm1004.1 ×=J  and 611 mm1013.7 ×=wC . The 

steel material properties are E = 200 GPa and G = 80 GPa. The critical loads are plotted against 

the uniform bending moments 'zM , expressed as ratios of the lateral buckling moment xyM . 

The beam element described by Meek & Tan [21] is unable to predict the critical loads Pxy 

plotted in Fig. 9, for the simple reason that torsional warping is neglected in their formulation. On 

the other hand, although Kassimali & Abbasnia [30] include the warping constant in the torsional 

stiffness of their stability function based beam-column, their formulation cannot deal with a 

buckling problem where the member ends are free to warp due to the neglect of the warping 

degree of freedom. 

A cubic beam element that is able to reproduce the results plotted in Fig. 9 can be found 

in the well-known textbook by McGuire et al. [34], as demonstrated in [14] for a similar problem. 
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At each node of this beam element, there are three translational degrees of freedom, three 

rotational degrees of freedom and one warping degree of freedom. 

4.4 Flexural-torsional buckling of a doubly-symmetric I-section cantilever 

The first three examples concern the flexural-torsional instability of a column or a beam-

column under compression. Perhaps a better known form of flexural-torsional instability is the 

lateral buckling of a flexural member bent about the major axis, such as that of the doubly-

symmetric I-section cantilever shown in Fig. 10. 

The transverse shear force at the tip of the cantilever shown in Fig. 10 acts at the centroid 

of the cross-section. Beam elements such as those described by Conci [31] and McGuire et al. 

[34] are able to predict the lateral buckling load of this structure. However, in practice, the load 

may act on the top flange rather than at the centroid (more precisely, the centre of twist). In such 

a case, the lateral buckling load may be significantly reduced due to the additional torque 

sympathetic to the lateral buckling mode [13, 36]. This reduction cannot be predicted by the 3D 

beam elements described by Conci [31] and McGuire et al. [34] since load eccentricities are not 

considered in their formulations. Beam elements that account for load eccentricities have been 

presented by Lin & Hsiao [37], Pi et al. [38] and Kim et al. [39], among others. 

Anderson & Trahair [36] presented a series of laboratory test results of doubly-symmetric 

I-section cantilevers loaded at the centroid or at the top flange. The relevant material properties 

are: E = 65.1 GPa and G = 26.0 GPa. The geometric properties are: 2mm349=A , 

45 mm1020.3 ×=zI ,  44 mm1064.1 ×=yI , 4mm886=J  and 67 mm1014.2 ×=wC . The lateral 

buckling loads obtained in the laboratory tests, Htest, are shown in Table 1. Also shown in the last 
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column of the table are the buckling analysis results obtained by Lin & Hsiao [37] using their 

cubic beam element, which accounts for load eccentricities. 

It can be seen from Table 1 that the inclusion of the effect of off-centre transverse shear 

loading is important in the design of a beam structure where the load can displace freely, such as 

in the case of a crane beam. 

4.5 Flexural-torsional buckling of a tee cantilever 

It is seen in Example 4.4 that off-centre transverse shear loading reduces the lateral 

buckling load of an I-section beam due to the additional torque sympathetic to the lateral 

buckling mode. This fact is not controversial as it is intuitively acceptable. However, it is less 

obvious that the lateral buckling load of a mono-symmetric I-section beam bent in the plane of 

section symmetry will be lower if the compression flange is the smaller flange rather than the 

larger flange. This phenomenon is closely related to the Wagner effect associated with the 

torsional buckling of a column. 

Anderson & Trahair [36] presented a series of laboratory test results of tee cantilevers 

loaded in various ways, as depicted in Fig. 11. These results are useful in verifying the ability of a 

beam element to simulate the combined effects of section mono-symmetry and load eccentricity 

on the lateral buckling load of a flexural member. The relevant material properties of the tee 

section are: E = 65.1 GPa and G = 26.0 GPa. The section properties are: 2mm253=A , 

45 mm1045.1 ×=zI ,  43 mm1022.8 ×=yI , 4mm571=J  and mm4.22=sy . Table 2 lists the 

laboratory test results [36] and the finite element analysis results [40]. 
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4.6 Post-buckling path of an I-section cantilever 

The first five examples are buckling analysis examples which serve to verify the ability of 

a beam element to capture 3D instability modes at the member level. They do not verify the 

ability of the beam element to simulate geometrically nonlinear behaviour of steel members, 

which is important for advanced analysis of frames [4, 6, 8]. 

Woolcock & Trahair [35] presented the laboratory test results of an I-section cantilever 

including the elastic post-buckling paths. A gravity load was applied at the cantilever tip, at the 

centroid of the cross-section (see Fig. 10). The relevant material properties are:  E = 64.1 GPa 

and G = 25.5 GPa. The section properties are: 2mm286=A , 45 mm1035.2 ×=zI , 

43 mm1058.5 ×=yI , 4mm681=J  and 66 mm1011.7 ×=wC . The self-weight is 31063.7 −×  

N/mm. The equilibrium path of the 3300 mm long cantilever measured in the laboratory test [35] 

is shown in Fig. 12. This equilibrium path was matched perfectly by Lin & Hsiao [37]. 

It is instructive to note that the post-buckling path of the cantilever is stable. It is therefore 

not feasible to assume in a nonlinear analysis that a beam immediately loses all its moment-

carrying capacity when it buckles laterally, especially in the context of advanced analysis which 

seeks to predict the behaviour and strength of a frame accurately. The moment capacity of a 

compact beam bent about the major axis, whether elastic or inelastic, cannot be lower than its 

moment capacity about the minor axis. 

4.7 Post-buckling path of a continuous beam structure 

Example 4.6 involves a cantilever that is loaded at the centroid, as shown in Fig. 10. 

However, in practice, a beam load may be applied on the top flange of the I-section rather than at 
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the centroid. Woolcock & Trahair [41] conducted a series of laboratory tests on a two-span 

continuous beam where the loads were applied on the top flanges, as depicted in Fig. 13. The 

material and section properties are the same as in Example 4.6. The equilibrium paths obtained 

by Woolcock & Trahair [41] in their laboratory tests agree very well with their theoretical 

predictions. For the sake of clarity, only the theoretical paths are plotted in Fig. 14. 

It can be seen from Fig. 14 that, as the member subjected to the load H1 buckled laterally, 

the adjacent member also “buckled” laterally even though it was subjected to a load only half the 

lateral buckling load. 

4.8 Geometrically nonlinear analysis of an angle cantilever under torsion 

The first seven examples involve flexural-torsional instability of thin-walled open section 

members under compression or bending about the major axis. However, a higher order coupling 

between flexure and torsion also manifests in, say, the nonlinear response of an angle member 

loaded in torsion. This is despite the indication that the linear flexural buckling torque of an angle 

member is very high [42]. 

Gregory [43] conducted a laboratory test on an angle cantilever loaded with a torque at 

the tip. The material properties of the specimen are: E = 89.6 GPa and G = 33.4 GPa. The 

geometric properties of the equal angle section are: 2mm0.28=A , 4mm773=zI , 

4mm122=yI , 4mm62.8=J , and mm36.5=sz . The cantilever is 178 mm long. The 

deflections of the shear-centre at the tip obtained in the laboratory test are shown in Fig. 15. 

These deflections were closely predicted by Attard [44] and Hsiao & Lin [40]. 
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In order to trace the deflections of the shear-centre at the cantilever tip accurately, a 

beam element must account for the second-order bending effect of torsion in a section where the 

centroid and the shear-centre do not coincide with each other. This effect is related to the 

shortening effect of torsion (and therefore, to the Wagner effect) but appears to be neglected in 

many 3D second-order beam elements that account for shear-centre eccentricities [31, 39]. In 

order to account for this effect, the third order terms of the twist rate must be included in the 

element formulation [35, 40, 43-44]. The ability to model this effect is of a higher order than the 

ability to predict the flexural buckling of a torsion member [42]. 

4.9 Cantilevered right-angle frame 

All the preceding examples involve a single member or a two-span beam. For such 

problems, the intricate issue concerning the rotational behaviour of nodal moments in space and 

its implication on flexural-torsional buckling analysis does not arise [17-18, 23-24, 34]. The issue 

only arises in a framed structure in which the members are connected non-collinearly, such as the 

cantilevered right-angle frame depicted in Fig. 1. 

Spillers et al. [45] conducted a laboratory test on a structure similar to that depicted in 

Fig. 1. Owing to the impractical dimensions of the original structure described by Argyris et al. 

[23], the material and section properties used in the laboratory test were modified to: E = 74.5 

GPa, G = 27.6 GPa, 4mm4162=zI , 4mm9.59=yI , and 4mm240=J . The centroidal length 

of the clamped member is 270 mm, and that of the loaded member is 267 mm. The lateral 

buckling load was found in the laboratory test to be approximately 110 N. 

The beam elements described by Meek & Tan [21] and Conci [31], and the stability 

function based beam-column described by Kassimali & Abbasnia [30] are unable to predict the 
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lateral buckling load of the cantilevered right-angle frame in a linear buckling analysis. The 

reason is that the rotational behaviour of the nodal moments of the beam element in space has not 

been properly taken into account in the geometric stiffness matrix [18, 24]. This shortcoming 

cannot be remedied by the use of more elements per member. 

If a geometric imperfection or a perturbation force corresponding to the lateral buckling 

mode of the angle frame is used in the geometrically nonlinear analysis, then the beam element or 

beam-column described by Meek & Tan [21] and Kassimali & Abbasnia [30] will be able to 

predict the lateral buckling load accurately provided a sufficient number of elements are used. In 

this case, the bifurcation problem dissolves into a normal large displacement problem, and there 

is no issue concerning the singularity of the tangent stiffness matrix at the bifurcation point. 

Alternatively, in order to predict the lateral buckling load and mode of the cantilevered 

right-angle frame in a linear buckling analysis, their geometric stiffness matrices need only a 

simple modification to account for the rotational behaviour of the nodal moments in space [24]. 

The inclusion of the proper rotational behaviour of the nodal moments results in an asymmetric 

tangent stiffness matrix [18, 24, 40, 45-48]. However, the tangent stiffness matrix may be 

symmetrised as the asymmetric part vanishes at equilibrium (which also means that it is 

irrelevant to a linear buckling analysis), resulting in much less computational efforts and memory 

requirement [18, 24, 48-49]. The ability to predict the buckling mode from the singularity of the 

structure tangent stiffness matrix without the use of geometric imperfections or perturbation 

forces is important as the geometric imperfections or perturbation forces conducive to the lowest 

buckling mode are not always apparent, while random imperfections are not a fool-proof means. 
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5. Well-known examples 

5.1 Hexagonal frame 

The hexagonal frame depicted in Fig. 16 was tested by Griggs [50] and has been analysed 

by many researchers. The laboratory test was a valuable exercise in studying the behaviour of 

shallow space frames, and can be used as a debug example to verify nonlinear frame analysis 

programs. This type of space frames is also a useful vehicle for illustrating the more subtle 

aspects of structural analysis and design [51]. 

However, the hexagonal frame should not be mistaken as a rigorous benchmark example 

for verifying a newly proposed 3D beam element or beam-column. Due to the frame topology, 

the loading condition and the section symmetry, all the members behave essentially as planar 

(2D) beam-columns rather than spatial beam-columns. Furthermore, there is no 3D instability 

mode at the member level. The sloping members of the hexagonal frame behave in a manner 

similar to the Williams’ toggle [52], which buckles in a snap-through mode in a 2D plane. 

5.2 Curved cantilever 

The curved cantilever shown in Fig. 17, first analysed by Bathe & Bolourchi [53], is 

perhaps the most popular example for verifying 3D nonlinear beam elements. It is recommended 

as a benchmark problem by NAFEMS (National Agency for Finite Element Methods and 

Standards, UK), and has been analysed as such by many computational mechanics researchers 

[54-58]. 

It can be seen from Table 3 that the predictions of the vertical deflection of the cantilever 

tip given by various beam elements are close to the original one given by Bathe & Bolourchi 
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[53]. As such, this example provides a simple and effective means to check a computer 

program for nonlinear 3D frame analysis at the fundamental level. 

For the purpose of demonstrating the rigor of a geometrically nonlinear 3D beam element, 

this example should be complemented by other examples. It can be seen from Table 3 that the tip 

deflection obtained by Crisfield [46] using the linear elastic, small strain beam element cast in the 

Co-rotational framework is very close to those obtained by Simo & Vu-Quoc [49] using the finite 

strain beam theory. Importantly, the two beam elements derived by Kouhia & Tuomala [25], 

which predict very different buckling loads for the cantilevered right-angle frame depicted in Fig. 

1, predict similar deflections for the present curved cantilever. 

6. Concluding remarks 

The paper has described seven attributes that should be possessed by a benchmark 

example for verifying a 3D second-order beam element used in the analysis and design of steel 

frames. Based on these attributes, the paper proposes nine benchmark examples selected from the 

literature, all of which except for two have laboratory test results that were reasonably matched 

by theoretical predictions. The two linear buckling analysis examples which do not have 

experimental validation are based on the well established beam-column theory. 

The member characteristics exhibited by the proposed benchmark examples are unique to 

3D problems only, and cannot be captured by a number of 3D beam elements (or stability 

function based beam-columns) available in the literature. The necessary features that must be 

possessed by a beam element to pass the benchmark tests have been described in the paper. 
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It has been pointed out that the hexagonal frame widely used for verifying 3D second-

order beam elements may not be an appropriate benchmark example. 

Finally, although the examples proposed in the paper do not involve material inelasticity, 

it is suggested that a 3D second-order inelastic beam element should first pass the benchmark 

tests using these examples. Almost all the important 3D phenomena such as those associated with 

the Wagner effect, torsional warping, axial-torsional-flexural coupling, shear-centre eccentricity, 

load eccentricity, second-order bending effect of torsion, and rotational behaviour of nodal 

moments in space is not caused by material inelasticity, although they may interact with each 

other. The current theoretical impediment at the member level, if it still exists, to rigorous 3D 

advanced analysis of steel frames is not so much with the beam element formulation as with the 

theory of plasticity [59-60]. 
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Fig. 1 Cantilevered right-angle frame subject to flexural-torsional buckling [23] 
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Fig. 2 Detecting “bifurcation” buckling by means of perturbation [20] 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Space dome subject to flexural-torsional buckling [25] 
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Fig. 4 Primary and secondary equilibrium paths of space dome 
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Fig. 5 Unequal angle section 
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Fig. 6 Buckling loads of simply supported unequal angle columns 
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Fig. 7 Lipped angle section 
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Fig. 8 Buckling loads of simply supported lipped equal angle columns  
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Fig. 9 Buckling loads of simply supported doubly-symmetric I-section beam-columns 
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Fig. 10 Lateral buckling of a doubly-symmetric I-section cantilever [35] 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Tee cantilevers loaded in various ways [36] 
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Fig. 12 Load-deflection graph of cantilever [35] 
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Fig. 13 Two-span continuous beam with top-flange loadings [41] 
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Fig. 14 Lateral displacements of two-span continuous beam [41] 
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Fig. 15 Deflections of the angle’s shear-centre under clock-wise torque 
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Fig. 16 Hexagonal frame [50] 



 

 

 

Fig. 17 Curved cantilever [53] 
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Table 1 Lateral buckling loads of doubly-symmetric I-section cantilevers 

 

Length (mm) Location of Point Load Htest (N) [36] HFEM (N) [37] 

1270 
Centroid 597 614 

Top flange 406 408 

1651 
Centroid 323 331 

Top flange 257 242 
 



Table 2 Lateral buckling loads of tee cantilevers 

 
 

Length (mm) Transverse Load Arrangement Htest (N) [36] HFEM (N) [40] 

1270 

Fig. 11(a) 149 150 

Fig. 11(b) 168 175 

Fig. 11(c) 202 185 

Fig. 11(d) 374 375 

1651 

Fig. 11(a) 94 97 

Fig. 11(b) 108 112 

Fig. 11(c) 130 121 

Fig. 11(d) 191 200 

 



Table 3 Analysis results of curved cantilever 

 
 

 Vertical deflection of tip  

[46] 53.7 

[20] 53.6 

[25a], [54], [55] 53.5 

[49], [53] 53.4 

[56], [57] 53.3 

[25b] 53.2 

[58] 53.0 
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