
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Science, Medicine & Health - Honours 
Theses University of Wollongong Thesis Collections 

2010 

Fracture and modification of Patella shells: Distinguishing human working Fracture and modification of Patella shells: Distinguishing human working 

Brent Koppel 
University of Wollongong 

Follow this and additional works at: https://ro.uow.edu.au/thsci 

University of Wollongong University of Wollongong 

Copyright Warning Copyright Warning 

You may print or download ONE copy of this document for the purpose of your own research or study. The University 

does not authorise you to copy, communicate or otherwise make available electronically to any other person any 

copyright material contained on this site. 

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, 

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe 

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court 

may impose penalties and award damages in relation to offences and infringements relating to copyright material. 

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the 

conversion of material into digital or electronic form. 

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily 

represent the views of the University of Wollongong. represent the views of the University of Wollongong. 

Recommended Citation Recommended Citation 
Koppel, Brent, Fracture and modification of Patella shells: Distinguishing human working, Bachelor of 
Science (Honours), School of Earth & Environmental Sciences, University of Wollongong, 2010. 
https://ro.uow.edu.au/thsci/92 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/thsci
https://ro.uow.edu.au/thsci
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/thsci?utm_source=ro.uow.edu.au%2Fthsci%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages


Fracture and modification of Patella shells: Distinguishing human working Fracture and modification of Patella shells: Distinguishing human working 

Abstract Abstract 
The role of stone tool production has long been used as a proxy for cognitive development in early human 
cultures. In the context of South‐east Asia (SEA) and Australia a lack of ‘advanced’ examples of lithic 
technologies seen elsewhere in the world has led to the labeling of SEA and Australian cultures as simple 
and undeveloped. Arguments have been raised in an attempt to refute this claim, including the 
replacement of stone as a medium for artefact production with shell. 

The differentiation between cultural and taphonomic modification in shell has been problematic, due 
largely to a lack of understanding of taphonomy the morphologies different species of shell on a micro 
scale and subsequently the fracture mechanics of molluscan shell under specific forces. The 
identification of artefactual shell specimens is sometimes based on little more than a hunch. 

This project attempts to determine the difference between the resulting fracture patterns of cultural and 
taphonomic damage using high and low powered microscopy. The resulting fracture patterns from 
use‐wear experimentation was compared to controlled fracture experimentation using low powered light 
microscopy and high powered scanning electron microscopy. The results show a variety of fracture 
patterns as well as a distinct difference in fracture patterns between the two sets of experiments. When 
these results are then compared to archaeological specimens from Golo cave in Gebe Island, a previously 
excavated site in the Maluku island group in Indonesia, similar fracture patterns are observed indicating 
the presence of culturally modified shell in the Golo Cave assemblage. 

This project highlights the significance of micro scale analysis in the identification of shell artefacts as 
well as providing insight into the differing forms of mechanical failure in molluscan shell as well as 
depicting the suitability of shell as a medium for artefactual use 

Degree Type Degree Type 
Thesis 

Degree Name Degree Name 
Bachelor of Science (Honours) 

Department Department 
School of Earth & Environmental Sciences 

Advisor(s) Advisor(s) 
Katherine Szabó 

Keywords Keywords 
limpet shells, scutellastra flexuosa, shell tools, pleistocene, Southern Asia 

This thesis is available at Research Online: https://ro.uow.edu.au/thsci/92 

https://ro.uow.edu.au/thsci/92


a 
  

 

 

 

 

 

FRACTURE AND MODIFICATION OF 
PATELLA SHELLS: DISTINGUISHING HUMAN 

WORKING 
 

Brent Koppel 

3280470 

 

Supervisor: Dr. Katherine Szabó 

 

 

 

 

(Revised by the author May, 2011) 



b 
  

ABSTRACT 

The role of stone tool production has long been used as a proxy for cognitive development in 

early human cultures. In the context of South‐east Asia (SEA) and Australia a lack of ‘advanced’ 

examples of lithic technologies seen elsewhere in the world has led to the labeling of SEA and 

Australian cultures as simple and undeveloped. Arguments have been raised in an attempt to 

refute this claim, including the replacement of stone as a medium for artefact production with 

shell.  

 

The differentiation between cultural and taphonomic modification in shell has been problematic, 

due largely to a lack of understanding of taphonomy the morphologies different species of shell 

on a micro scale and subsequently the fracture mechanics of molluscan shell under specific 

forces. The identification of artefactual shell specimens is sometimes based on little more than a 

hunch.  

 

This project attempts to determine the difference between the resulting fracture patterns of 

cultural and taphonomic damage using high and low powered microscopy. The resulting fracture 

patterns from use‐wear experimentation was compared to controlled fracture experimentation 

using low powered light microscopy and high powered scanning electron microscopy. The results 

show a variety of fracture patterns as well as a distinct difference in fracture patterns between 

the two sets of experiments. When these results are then compared to archaeological specimens 

from Golo cave in Gebe Island, a previously excavated site in the Maluku island group in 

Indonesia, similar fracture patterns are observed indicating the presence of culturally modified 

shell in the Golo Cave assemblage.  

 

This project highlights the significance of micro scale analysis in the identification of shell 

artefacts as well as providing insight into the differing forms of mechanical failure in molluscan 

shell as well as depicting the suitability of shell as a medium for artefactual use.  
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The specific aims of this research project are as follows: 

1) Investigate the nature of non‐lithic technologies in Island Southeast Asian early modern 

human assemblages. 

2) Establish criteria for isolating early modern human modification of molluscan shell  

a. Determine natural structure/microstructure of Patella flexuosa and how the shells 

respond to different forces 

b. Conduct a variety of human modification experiments to create a framework for 

interpretation of worked or potentially worked shell surfaces. 

3) Utilising the results and understandings generated in 2 (a) and (b), analyse early shell 

material from the archaeological site of Golo Cave, Gebe Island, Molucca island group, 

Indonesia. 

4) Contextualise the results of analysis from Golo Cave into wider regional and global 

issues of non‐lithic tool use by early modern humans. 

This project aims to document fracture and fragmentation tendencies, as well as traces of 

human working of Patella flexuosa.  Specifically designed experiments will attempt to recreate 

both natural breakage environments and active modification by early modern humans (EMH). 

The central objective is to identify criteria that allow us to distinguish between natural and 

cultural modification of shells, and thus clearly identify worked shell in the archaeological 

record.  These new criteria will be tested on the early modern human (~32,000 – 28,000 ka BP) 

shell assemblage from Golo Cave.  Based on prior results (Szabó et al. 2007), it is anticipated that 

a variety of approaches to shell‐working will be identified that will significantly contribute to our 

understandings of non‐lithic technologies in early modern human culture. 

Chapter 2 discusses the background in archaeological concepts while at the same time 

contextualizes the case study of Golo Cave and why the site is relevant. Chapter 3 introduces the 

target species that will take part in this study, and explains their ecology as well as defining 
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features and structural morphologies that characterize the specimens. Chapter 4 outlines the 

experimental method that was undertaken in collecting sample species, cataloguing and 

accessioning, as well as taphonomic assessments. Also in Chapter 4 is an explanation of the 

different experiments, such as XRD and INSTRON analyses as well as the experimental working 

tests that will be undertaken to best achieve the aims of the research project. Chapter 5 

presents the results from the experiments described in Chapter 4. Chapter 6 discusses the 

results, interprets them and places them in their place in the global archaeological community. 
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One of the defining features that make humans more than just an animal is the ability to 

manipulate our surroundings for our own personal gain an advantage (Oakley, 1958). One of the 

most fundamental aspects of this concept is the modification of raw materials into tools. While 

not solely confined to humans and hominins, as seen in the use of twigs and sticks for the 

extraction of insects by the great apes and sea otters using collected rocks to break open 

molluscs (Clark, 1971), the cognitive process of looking at a raw material and exhibiting creative 

thought to modify it for a specific purpose or ultimate goal is uniquely human. By far the most 

studied form of hominin tool and tool production focuses upon stone as a medium. 

While modern day cultures that are reliant upon stone tools still exist (Clark, 1971 and Oakley 

1958), most stone tool technologies are associated with prehistoric hominin and human cultures 

and, as such, have become the most common proxy for determining the level of cultural 

technological complexity, and therefore cognitive development of prehistoric humans and their 

cultures. Over time, stone tools and related artefacts have taken the form of scrapers and 

cleavers, to more ‘advanced’ spear tips and arrowheads. Stone tools that have been chipped 

into shape are generally made from rocks whose crystal structure is microscopically small 

leading to a constant and regular, conchoidal fracture (‘isotropic’). This structure is seen in 

cryptocrystalline rocks and is exhibited in chert, flint and some basalt (Oakley, 1958) as well as 

volcanic glass such as obsidian (Barton et al., 1998) and minerals like vein and crystal quartz 

(Smith et al., 1991). This consistency is ideal for tool formation and reduction in general as 

fracture is predictable and regular, exhibiting conchoidal breakage patterns and generating 

sharp edges. Larger grained rocks such as sandstone and rocks with a much larger crystal matrix 

are unable to form such sharp usable edges but are also utilised, particularly as grinding tools as 

opposed to cutting, chopping and scraping functions. 

Until the 1860’s, the concept that man had not existed on Earth earlier than approximately 4004 

BC had not been considered by the present academic community (Oakley, 1958). Historical 
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interpretations were largely based on historic and biblical records. For example, about 1690, a 

pointed piece of flint lying adjacent to the bones of an elephant was explained by antiquarians 

as “a British weapon made of a flint lance like unto the head of a spear” (Oakley, 1958, pg. 3). It 

was then reasoned that the flint blade was used by a Briton while attacking a war elephant 

utilised by the Roman emperor Claudius. It was not until 1797 when John Frere recognized the 

implication of chipped flint pieces buried 12 feet below the surface of a brick quarry (Oakley, 

1958). These chipped flint pieces were quoted by Frere as “used by people who had not the use 

of metals” (Oakley, 1958, pg. 4) and were termed Cromerian industries (Clark, 1971). 

Counterarguments were made in response to Frere’s finds, describing the discovery as stones 

fractured under natural processes, such as glacial movement (Oakley, 1958). Thus, these 

inferred artefacts, termed eoliths, from the “Cromerian industry” were not considered with any 

certainty at least, as tools modified by man, but merely chance fractures from natural processes 

such as wave action and soil creep (Oakley, 1958). Further discoveries of eoliths continued well 

into through the 19th century and into the 20th century (Trigger, 2006). 

While not often mentioned in modern day studies, and largely discredited, eoliths represent the 

possibility of the earliest examples of ancestral man’s manipulation of his environment 

(O’Connor, 2003). Whether or not eoliths were formed by naturally occurring processes or 

actively modified by early hominins has endured as one of the major archaeological 

conundrums. It is commented that the overall simplicity of ancestral man’s first attempt at tool 

making, when compared with stones that have been fractured through natural processes such as 

soil creep and the effects of glaciation, would render them indistinguishable from each other 

(Trigger, 2006 and Oakley, 1958). It is here that the distinction between tool‐user and tool‐

maker is drawn. There is irrefutable evidence of contemporary cultures in South Australia that 

still utilise rocks as tools that have fractured under natural processes and, by chance, formed 

shapes and edges suitable specific purposes (Oakley, 1958, Allchin, B., 1957 and White, 1977). It 

is also a known concept in archaeology that finding the first or last of anything, for example the 
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link between man and the apes famously referred to as ‘The Missing Link’, is infinitely unlikely. 

So pinpointing the precise artefact that can safely and with confidence be labeled as the first 

stone tool modified by ancestors of present day humankind is nigh impossible.  

This seemingly grey area of identifying irrefutable hominin artefacts exists today. Olduvai Gorge 

in northern Tanzania saw the first conclusive examples of hominin formed artefacts (Clark, 

1971), in the form of stone chipped to a sharpened edge. First discovered by a German 

entomologist and then properly studied by the Leakey family in the early 1930’s, this site proved 

to have great archaeological importance as it represented the first example of tool production 

by ancestral man. Further excavations throughout central Africa have yielded similar examples 

of artefacts and have been dated to approximately 2.6 to 2.5 million years old. (Semaw et al, 

1997). While still very simple in their form, the claim of the artefacts being made by hominins 

can be said with some certainty as they were found adjacent to remains of fireplaces and living 

areas. Attributed to the hominin Homo habilis (Clark, 1971), these artefacts have been named 

after the location where they were discovered; Oldowan technology. Artefacts sharing similar 

structural forms have also been discovered in central Africa, and have thus been categorised into 

the group of Oldowan technology. Since then, the term Oldowan technology has been used to 

describe all stone tools sharing similar morphological features to the original finds in Olduvai 

Gorge.  

Modern day intellectual nature drives us to categorise things that we find, and place them in 

their allotted place in an overarching, continuous and usually temporal progression. This is very 

true for archaeological artefacts discovered and collected. The knowledge of where this tool‐

making behaviour originated, how it has developed and the transition points between industries 

has been the focus of a lot of attention since the early beginnings in archaeology. Since the 

Olduvai Gorge discovery, artefacts that typically show novel and more complex production 

techniques have been grouped, once again into categories of tools sharing similar morphological 
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features. These new categories have, like the Olduvai Gorge discovery, been named after the 

location they were found, like the Acheulian industry, named after St. Acheul in France and 

Moustierian industries named after Le Moustier, also in France.  

Graham Clark took this concept of categorising similar lithic technologies and attempted to apply 

it on a global scale (1971). This created a simple model by which the technological complexity of 

prehistoric cultures could be gauged simply by identifying and comparing similar morphological 

features of the associated lithic artefacts. Seeking to do away with the traditional terminology 

which he saw as an unnecessary number of labels describing technologies at the same level of 

complexity, Clark created an overarching set of criteria that could be to define morphological 

variances of lithic artefacts, whatever their provenance. Clark suggested that despite being 

separated by vast distances, generalities could be identified in the methods by which the 

artefact was created, thus making them comparable based on a sliding‐scale of complexity 

(Foley and Lahr, 2003). These groupings of technologies are termed ‘Modes’ (Clark, 1971) with 

Mode 1 technology being the simplest through to Mode 5, representing the most ‘advanced’ 

lithic technologies. The Oldowan technology can thus be labeled Mode 1. The five ‘Modes’ and 

their defining characteristics are shown on the following page.  

Despite the general simplicity of Clark’s model, he does make the comment that this overarching 

global classification system could not be global in its application; “...although these modes were 

homotaxial they were by no means universal.” (Clark, 1971, page 30). He recognises that, over 

time, and as ancestral humankind spreads across the world, hominins were required to adapt to 

a broader range of environments and a broader range of materials that these environments 

provide. A difference in raw material selection for tool production between two separate 

cultures would lead to different morphological features despite being at the same relative level 

of technological complexity (Clark, 1971, page 30). Clark also comments on the importance of 

competition. One culture in direct competition with another was considered to be a factor in  
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MODE COMMON 
NAME DESCRIPTION PICTURE 

1 Oldowan 
Industry 

Earliest examples of tool creation. 
Created by striking a 

hammerstone against rounded 
stone, commonly river-rolled 

pebbles creating one sharpened 
edge and often a sharp point  

2 Acheulean 
Industry 

Also known as a biface or 
handaxe that displays flake scars 
on both sides. Typically, the tool 

is symmetrical along 
anterior/posterior axis. 

Retouching/resharpening of the 
edge has been identified in some 

specimens 
 

3 Mousterian 
Industry 

Replacing the Acheulean 
technologies, a core is prepared 
by flaking to a predetermined 
shape, and then a large flake is 

struck from the core. What 
separated this technology is that 
the flake is the desired item, as 

opposed to the core. 
 

4 Aurignacian 
Industry 

Characterised by blades instead of 
flakes, which by definition need 
to be more than twice as long as 

they are wide. Like Mode 3 tools, 
blades are struck from blade cores 

with a softer hammerstone. 
 

5 Magdelenian 
Industries 

Similar to the blades from 
Aurignacian technologies in both 

form and production, but on a 
much smaller scale (typically 
12mm). What separates this 
technology is the hafting of 
multiple tools to form one 

composite artefact such as an 
arrow or harpoon.  

 

 

Table 2.1 : Descriptive table of Graham Clark’s ‘Modes’.  
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driving technological advancement as one tries to out‐compete the other. With cultures in 

remote locations, inaccessible to others, older and simpler technologies would survive due to 

the lack of competition and the lack of any real need to develop beyond the very basic (Clark, 

1971).   

Even with the passage of time, as well as Clark himself describing the limitations of his 

categorisation model and a continued tradition of research, Clark’s system continues to be 

utilised in the description of lithic artefacts in contemporary studies (e.g. see Mellars, 2006 and 

Foley and Lahr, 2003). This consistent labeling of prehistoric cultures by method of Clark’s modes 

has, explicitly or implicitly, become a proxy for describing the technological, and by extension 

cultural complexity of the given prehistoric culture.  

The Movius Line is a theoretical division of central 

Asia, running through north‐western India first 

noted by Hallam L. Movius. The Movius Line 

represents a noted lack of advanced stone tool 

artefacts to the east, compared to more 

sophisticated examples of stone artefacts to the 

 west in Europe and Africa. East of the line simple  

chopping tools with isolated examples of bifaces being discovered, but the progression to higher 

order tools such as microliths and advanced core technology is not apparent (Mellars, 2006). 

Since its discovery, the Movius Line has led to the assumption by contemporary archaeologists 

that cultures east of the line, especially south east Asian cultures,  were not as developed as 

those west of the Movius Line. Paul Mellars mentions the lack of upper Paleolithic technologies 

in the Australasian record and refers to this as an enigma (Mellars, 2006). Movius himself refers 

to cultures east of the line as “a marginal region of cultural retardation” (Movius, 1969). Going 

one step further, Graham Clark refers to the lithic technologies of Australian prehistoric cultures 

Fig. 2.1 : Map showing the extent 
of the hypothetical ‘Movius Line’. 
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as “...crude and colourless” and “...issued from the most unenterprising parts of the late 

Pleistocene world” (Clark, 1968). These sentiments are shared by not only these academics, as 

J.P. White refers to a large number that have published similar articles and opinions (White, 

1977) which depicts an overall bias towards the argument of the underdeveloped south east 

Asian region in the archaeological community.  

Arguments attempting to explain the lack of advanced lithic artefacts in the Southeast Asian 

region include J.P. White’s principle of last effort. He states “If wooden spears and fire could kill 

off Australia’s Pleistocene megafauna, what is the conceivable necessity for stone spear points?” 

(White, 1977, pg. 26). This statement was a direct response to a quote from Graham Clark 

implying that the “cult of excellence” has driven man to perfect his creations (Clark and Piggot, 

1965). White continues to argue that majority of elaborate stone tools are unnecessary from a 

utilitarian perspective as their less sophisticated predecessors were suitable for the job (White, 

1977). Paul Mellars raises an alternative theory for the lack of advanced lithic artefacts in the 

Southeast Asian region. He states that there is a lack of high quality, cryptocrystalline rock 

throughout the south east Asian region which is required for higher order stone tools (Mellars, 

2006), and despite localised areas of suitable materials, cultures would have to adapt to what is 

more available. Thereby decreasing the dependence of stone as a resource and somewhat 

stunting the progressive complexity that would otherwise have developed. Other arguments 

include the lack of specialisation in Southeast Asian and Australasian tools as further fuel‐to‐the‐

fire in the debate of the simple cultures of the region (Hayden, 1977). There is also arguments 

for the failure in recognising alternative forms of tool production, seen in Hayden’s (1977) study 

of tool production and the identification of ground edge axes, compared to the traditionally 

thought European method of percussion chipping and pressure flaking. Arguments derived from 

the discovery of bifacial hand‐axes in river terraces in China have implied that cultures were 

more advanced than initially thought, though the discoveries are not substantial enough to 

entirely refute the Movius Line concept (Keates, 2002). 
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Mellars’ argument of the replacement of stone as the primary medium for artefact production 

has become an important issue in this topic. One of the most argued responses to the labeling of 

Southeast Asian cultures as less developed than their western counterparts is the replacement 

of stone as the primary medium for stone tool production. Mellars writes that towards the 

upper Paleolithic, hominins started increasingly started utilising bone and antler for artefact 

production (Bar‐yosef, 2002). Probably the most convincing theory that follows on from this line 

of argument is the use of bamboo as the primary medium for artefact production. Bamboo is 

abundant in the regions in question, and structurally, it contains up to 70% pure silica (Jones, 

Milne and Sanders, 1966). This gives the plant structural stability and when split, gives the edge 

a glass‐like sharpness that could very plausibly cut through animal flesh (Jahren et al., 2007). As 

well as this, bamboo in a South East Asian context is an incredibly abundant resource so 

procurement of bamboo material is simple (Choi and Driwantoro, 2007). This line of argument is 

one of the most plausible; however the perishable nature of plant material makes preservation 

within the archaeological record and therefore archaeological proof near impossible. Intuition 

and ethnographic information is really the only basis for this argument. It has also noted that 

little direct forms of archaeological evidence, such as microwear have been found and a 

dependence on negative evidence being established (Szabó, Brumm and Bellwood, 2007). 

Recently, the argument over the replacement of stone as the primary resource for stone artefact 

production has begun to include shell. It has been said that the most probable colonisation route 

followed by the first settlers into Southeast Asia and Australasia would have generally been a 

coastal route (Mellars, 2006). Thus the settling cultures would have had to adapt to the primary 

exploitation of coastal resources such as fish, shellfish and marine mammals with a minor 

dependence on hunting larger game (Mellars, 2006).  

The position of mollusc shell as a medium for artefact production is widely known though is 

nearly entirely restricted to ornamental and decorative use. The excavation in Blombos Cave, 
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Southern Africa yielded 41 Nassarius kraussianus shells showing consistent perforations in the 

dorsal lip of the shell were found. This form of perforation occurs very rarely in a natural context 

which implies that the perforations were deliberately created. The discoveries at this site, which 

included other artefacts such as engraved ochre tablets, are undisputedly the earliest examples 

of symbolic behaviour in ancestral man (Henshilwood et al., 2004). Other studies describing shell 

use for ornamental purposes are abundant (Bouzouggar et al., 2007, Vanhaeren and d’Errico, 

2006; Balme and Morse, 2006 among others). This notable bottle‐necking of focus draws 

attention away from shell being used as an alternative to the traditional mediums of artefact 

production in fields outside of the ornamental.  

Recent excavations in Indonesia have yielded the earliest example of modified shell, coming 

from the Molluccan site of Golo Cave, found on Gebe Island in eastern Indonesia (Bellwood et 

al., 1998). At this site, dated at 28– 32 thousand (uncalibrated) years old, reduced Turbo 

mamoratus shell and flaked T. mamoratus opercula were found as well as cut sections of 

Nautilus pompilius shell (Szabó et al., 2007). The operculum of the T. mamoratus exhibits 

removal of sequential flakes from the shell edge in a clockwise direction (Szabó, 2010). No clear 

evidence of flake utilisation has been noted which implies that the operculum itself was created 

for a purpose (Szabó et al., 2007). The shell of the limpet Patella flexuosa is one of the most 

abundant shell species in the Golo Cave assemblage (Szabó, 2010). Wear and fracture patterns 

seen in some of the P. flexuosa specimens are not consistent with breakages expected through 

natural environmental process such as wave action or compaction after burial, which leads to 

the conclusion that they were possibly used for some purpose (Szabó, 2010). 

Stiner’s analysis into the ecology of Homo neandertalensis revealed shell artefacts that used as 

tools in a similar fashion to that of stone (Stiner, 1994). The shell of the marine clam Callista 

chione has shown evidence of modification through the application of pressure to achieve a 

desirable fracture (Stiner, 1994). This modified shell was then utilised as a simple scraper (Stiner, 
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Fig. 2.2 : Examples of potentially worked shell artefacts, as well as map describing location of Gebe Island (adapted from Szabó, 2010 and Szabó et al. 2007)
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1994). This implies that the Mousterian cultures of the time recognised that other materials 

besides stone could be used and modified for specific use (Stiner, 1994). Stiner later goes on to 

say that a lack of publication into the use of shell as a tool creates a false impression that the 

resource is not used for that purpose at all. As well as this, she states that despite some 

examples being recognised little to no systemic taphonomic study or framework for 

identification is being undertaken (Stiner, 1994).   

A study conducted by Choi and Driwantoro outlines the use of shell as a raw material for tool 

production based on hypothesised cut marks on preserved animal bones. They argue that clam 

shells were used in the butchering of animals by the hominin Homo erectus (Choi and 

Driwantoro, 2007). Several points about this study highlight the view the way the contemporary 

archaeological community views shell as a raw material. At the forefront are the incorrect 

assumptions being made of shell structure, particularly microstructure, variation in form 

between taxa and even incorrect or vague identification of molluscs as well as assumptions in 

fracture patterns and fragmentation. 

Molluscan shell is a highly variable material. While it can be easy to think of shell as a 

homogenous material, it is actually made of several layers, which are in turn comprised of 

various microstructures and organic matrices. Indeed the term shell in a material context should 

be deconstructed into three categories; macrostructure, microstructure and organic content 

throughout the overall shell structure. Each of these categories play a vital role in the 

overarching composition that is a mollusc shell and each will affect the nature of the shell’s 

breakage patterns and mechanical strength. 

The macrostructure of a molluscan shell is the most obvious and characteristic part of the 

organism. Comprised of calcium carbonate in the form of a ratio of calcite and aragonite 

(Chateigner et al., 2000) as well as an amount of organic material that varies between species 



16 
  

(Watabe, 1988), the macrostructure of the shell is the first line of defence against predators and 

also as a means to prevent dessication (Branch, 1985). The morphology of the shell also serves a 

specific purpose in terms of mechanical strength. Mollusc shells, especially in limpets, are 

designed to be significantly stronger in certain orientations (Currey, summarised in Vermeij, 

1993). As the shell’s main purpose is to prevent damage to the internal tissue of the animal, and 

as the vast majority of striking or crushing attacks from predators occur from the external 

inwards, compressional strength is much higher versus tensional strength (Currey, summarised 

in Vermeij, 1993), meaning pushing of the shell is much less likely to yield a break than force 

applied in the opposite direction. This directional strength is achieved through a number of 

different factors, some being shell thickness, elevation, surface area‐to‐volume ratio and others. 

Other features such as spines, vertices and ridges all serve to strengthen the shell (Vermeij, 

1993). 

At the microscopic level of the molluscan shell structure is an underlying series of arrangements 

layered on top of each other creating the overarching shell structure. Often there is more than 

one microstructure utilised in the shell (Watabe, 1988) and these microstructures all play a part 

in how the overall shell structure reacts to forces. For example, a striking force on a T. 

mamoratus shell creates a crack that easily travels through the outer prismatic layer parallel to 

the prism structures, but is stopped almost immediately as it reaches the inner nacreous layer 

(Currey, 1988). This is due to the orientation of the microstructure’s crystal matrix. The prismatic 

crystals run parallel with the direction of force, so the crack follows a path of least resistance, 

whereas the nacreous layer is comprised of offset blocks cemented with organic proteins forces 

the crack to take a much more arduous route, thereby halting the progression of the crack 

(Currey, 1988). In saying this however, the strength in the nacreous layer is dependent on the 

direction of force and the condition of the organic material cementing the crystal matrix 

together. Nacreous microstructures easily fall apart into sheets should the organic content of the 
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microstructure degrades or decomposes, whereas a prismatic microstructure, and the relatively 

low organic content in it retains its structural integrity even after millennia (Sazbó, 2010). 

It is apparent that molluscan shell tissue is a complex material, and this should be taken into 

account when using it for detailed scientific analysis. The study conducted by Choi and 

Driwantoro (2007) however, shows little emphasis on the microstructure of the target taxa, even 

though the entire study is based on microscopic traces left on bone. Indeed, a number of 

assumptions concerning shell as a raw material in the study further question the reliability of 

their results. Assumptions such as the generic use of the term ‘clam’ throughout the paper, and 

the substitution of one of the species of shell for a North American species (Choi and 

Driwantoro, 2007), despite the fact that the analysis is based on a south east Asian context. 

These assumptions highlight the current viewpoint of shell as a raw material in the 

contemporary archaeological community. While experimentation into the mechanical strength 

and properties of shell microstructures has been undertaken (Currey, 1988, Watabe, 1988, 

Carter and Clark, 1985, Currey and Taylow, 1974, Bruet et al, 2005, Currey, 1980, 1980), little 

application of this knowledge has been applied in an archaeological context. 

As mentioned previously, the 

excavation of Golo Cave headed 

by Peter Bellwood uncovered 

shell specimens that have 

probably been used, if not 

modified for use as tools. Golo 

Cave is located on Gebe Island, 

between Halmahera and the  

western end of New Guinea, in  Fig. 2.3 : Map showing location of Gebe Island and 
Golo Cave (Szabó et al., 2007) 
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Maluku Utara Province, eastern Indonesia (Szabó et al, 2007). The cave itself is located in 

uplifted coral, approximately 60 metres from the shoreline and 8 metres above sea level. 

Approximately 7 m2 of material was excavated and sieved with the main excavation reaching a 

depth of 240cm (Szabó et al, 2007). Due to the difficulty in discerning natural sedimentary 

horizons, arbitrary 5cm spits were utilised in the excavating of material (Szabó et al, 2007). Four 

phases of occupation was identified for the cave using AMS radiocarbon dating of various 

materials including charcoal and marine shell. The range of ages over the four phases of 

occupation are 32,210±320 yeas BP for the first occupation to the most recent being 3,230±80 

years BP. Initial colonisation of this area is credited most likely to that of Homo sapiens as 

opposed to earlier hominins such as Homo erectus or Homo floresiensis of which there is no 

evidence of them reaching the area (Szabó et al, 2007). 

Of the material excavated, a broad range of artefacts were identified. Towards the earlier 

occupational phases of Golo Cave, between 150 and 240cm deep in the excavated site, 51 

examples of stone artefacts were collected, the most common being flake shatter comprising 

27% of the total number (Szabó et al, 2007). Very simple in morphology, the stone artefacts 

seem to have been made for use as sharp edged cutters or scrapers. No evidence of intentional 

retouching or the creation of formal tool types. In comparison, worked pieces of the pearl oyster 

Pinctada margaritfera, the chambered nautilus Nautilus pompilius and the snail Turbo 

mamoratus, among others were found. Concentrated at a stratigraphic area similar to that of 

the stone artefacts mentioned previously is a collection of pieces of the operculum of T. 

mamoratus that shows evidence of intentional shaping.    
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These operculum specimens and flakes are concentrated towards the very bottom and therefore 

oldest parts of the assemblage, between 195 – 235cm and 32,210±320 years BP. In the deposits 

above 195cm, only one example of worked T. mamoratus operculum and one amorphous shell 

fragment are found, though these have been presumed to be reworked through the assemblage. 

Analysis of the edge of the shaped opercula shows that flakes were removed from the edge in a 

unidirectional fashion creating a steeply angled edge in the same direction as the spiral shape of 

the operculum. As well as the opercula, the actual shell of T. mamoratus from two specimens 

were also recovered (Szabó, 2010). These shells show evidence of reduction around the aperture 

and the apex, leading to the creation of a sharp point. This form of reduction was most likely 

achieved with a sharp point (Szabó, 2010). 

Shell fragments of Nautilus pompilius were also found. These fragments show evidence of 

working in the form of at least one cut edge well as bevelling and regularity of the edge (Szabó, 

2010). In contrast to the various limpet species found in the Golo assemblage which in all 

probability were collected as a food resource, the Nautilus could not have been collected for this 

reason. The basic ecology of Nautilus species consists of palegic existence in the open ocean. 

Fig. 2.4 : Reduced T. marmoratus operculum and flakes from 
Golo Cave (Szabó et al., 2007) 
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Specimens only rise to the surface once dead and one washed up on the shoreline the flesh is 

either spoiled or been scavenged by crabs or birdlife. Using this reasoning, the Nautilus shells 

must have been collected for the use of their shells. 

Patella flexuosa is another shell specimen found in the Golo Cave 

assemblage. While most of the samples identified are either 

complete or fractured concentrically around naturally occurring 

growth lines, a number of specimens show wear patterns and 

fracture not conducive with natural processes such as sand 

abrasion, wave  action  or  movement  within  the  s tratigraphic  

profile.  Areas around  the  shells  perimeter  show  very  regular  

rounding. This stands in contrast with the naturally irregular edge 

of the P. flexuosa shell. This localised rounding of the edge has 

been thought of as being created through scraping of material. 

Should this hypothesis prove correct and these rounded P. flexuosa  

Specimens  prove  artefactual,  the implications of  this  conclusion  

will provide an excellent example of the utilisation of midden shell as a raw material in artefact, 

specifically tool production. 

  

Fig. 2.5 : Potentially 
worked Patella flexuosa 

specimen from Golo Cave 
(Szabó et al., 2007) 
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3.1 - LIMPET ECOLOGY 

The limpet is one of the most common of 

organisms found in marine and shoreline 

environments. Members of Phylum: Mollusca 

and Class: Gastropoda, limpets are 

characterized by a conical shell that covers 

the internal body mass of the animal.  Most 

limpets grow no bigger than 6 centimetres 

though  have  been  known  to  grow to  up to  

35 centimetres in specific species such as Patella mexicana (Branch, 1985 and Abbott and Dance, 

1986). The limpet is found below the high tide mark along rocky coasts across all of the world’s 

oceans. The limpet is often found adhering to rocks by a thick muscle called the foot which is 

also the animal’s mode of locomotion through controlled, coordinated contractions. Adhesion to 

the substrate is achieved not through suction force as commonly thought, but through a pedal 

mucus that is excreted and acts as an adhesive. This greatly increases the holding power of the 

animal, but also significantly reduces mobility (Denny and Gaines, 2007). Feeding is conducted 

with an organ called the radula, which is likened to a tongue. This chitonous ribbon is comprised 

of teeth which are used to scrape algae towards the animal’s oesophagus for consumption.  

Limpets commonly form home scars, which are gouges or depressions in the rocky substratum 

that the limpet shell grows to suit exactly. It is also known for the limpet to erode a section of 

rock with the shell or radula to create a depression. This home scar is important as it provides a 

first line of defence against desiccation during low tide when the limpet is entirely exposed to 

the sun and dry wind. By sealing off all contact that the moist internal body mass has with agents 

of dessication, like wind and sun, drying out is a much reduced risk. It has been stated that 

limpets which are denied their home scar suffer a much higher mortality rate during low tide as 

Fig. 3.1 : Patella vulgata on rocky 
shoreline. 
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a result of desiccation (Branch, 1985). The importance of the home scar is such that in some 

species, like Scurria stipulate experience a 33% mortality rate if the animal is denied access to its 

home scar after a single tide cycle (Branch, 1985). 

One of the defining features of the limpet is the conical shell. The shell is constantly growing 

with the limpet and can be repaired when damaged. The shape of the shell is perfectly suited for 

the high energy environments that the limpet inhabits. While the general shape of the limpet 

shell is the same, there are slight adaptations between species which are better suited to 

specific environments and conditions. The location of the apex of the shell is just such an 

environmental adaptation. Limpets which adhere to substrates which are not fixed in place and 

sway freely, such as kelp, have an apex that is located much closer to the posterior of the 

organism (Vermeij, 1993). This is due to the direction of water current that the limpet 

experiences and the structural adaptation that followed to reduce the amount of force that 

water flow has on the shell, termed drag. The substrate sways in time and direction with the 

water current, leading to a unidirectional water flow at any point on the structure, or the shell 

constantly orientated in the direction of water flow (Vermeij, 1993). The stretched and 

streamlined shape of these “swaying” limpets greatly reduces drag and therefore the forces that 

are exerted on the animal. The effects of the streamlined shell are reversed however, should the 

direction of flow change (Vermeij, 1993). 

In limpets which adhere to rocky substrata the water flow is less predictable, as water flow is 

travelling in a number of directions over a period of time, which is dependent on the topography 

of the surrounding area. Because of this constantly changing direction of flow, and the inability 

of the limpet to alter its orientation to maintain a relatively constant direction of flow in time for 

the next change in flow direction, rock dwelling limpets have developed a more centralized apex 

(Vermeij, 1993). This shape best suits the constant assault of water flow from all directions. 
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There are other adaptations that are employed in an attempt to further reduce the drag in high 

energy marine environments. The elevation of the shell also affects the forces experienced by 

the limpet. The height of the shell is indicative of the environmental energy levels. The higher 

the elevation, the greater the surface area for water flow to contact, and thus the greater the 

drag that the animal is subjected to. The opposite is true for limpets with a much lower shell 

elevation, which experience lower forces brought on by drag in environments with high levels of 

water energy (Vermeij, 1993). The texture of the limpet shell is also thought to have an effect on 

the level of drag caused by water flow. Small ribs or nodules on the external shell surface 

decrease the turbulence over the shell and reduce the low pressure system that develops behind 

the shell, therefore reducing the suction force that pulls on the limpet’s shell.  

The shape of the shell also protects against water loss. Being primarily located above the low 

tide mark, and below the high tide mark, limpets experience a period of time when they are not 

submerged for part of the tidal cycle. During this time, the limpet is exposed to the full force of 

the sun, wind and other agents that advance desiccation. Limpets have thus developed 

adaptations that combat water loss and increase their chance of survival (Branch, 1985). One of 

the simplest of these adaptations is increasing shell height. This increase in height leads to an 

increase in volume in the shell which is used to store water. Some species such as the Patella 

vulgata further this principle by increasing the angle of the shell to the substrate to a more 

perpendicular position as the animal matures, which slows the increase in shell circumference. 

This not only assists in the increase in shell height, but also the reduction of the ratio of shell 

height to surface area of the substrate that the animal is contacting. This decreases the amount 

of water loss even more. 

Coupled with water loss, heat energy is a problem for limpets that are not immersed in water. 

The heat energy that collects in the rocky substrate from the sun is transferred into the limpet 

through the foot which is in almost permanent contact with the rock. This increase in body 
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temperature can be fatal as rocks exposed to sunlight can reach temperatures of up to 60° 

Celsius (Denny and Gaines, 2007). Specific species such as Scurria stipulata and Siphonaria gigas 

elevate their shell and curl the foot over, allowing air flow into the shell cavity. While this does 

reduce the temperature of the animal by up to 5° Celsius (Denny and Gaines, 2007), it also 

dramatically increases the effects of desiccation, however the positive aspects of this behaviour 

appear to outweigh the negatives. It has also been stated that the texture of the shell affects 

thermoregulation in limpets. Limpets with sculptured shell surfaces are more prevalent in 

warmer, sunnier environments than limpets who exhibit smooth shells (Branch, 1985).  

Limpets predominantly consume algae, which is scraped off the substrate with a toothed, rope 

like organ called the radula. These scraping tools are not uniform throughout limpet species. 

Patellid limpets (Family: Patellidae) have a radula that contains larger, but fewer individual 

teeth. These teeth have a higher concentration of iron oxide towards the tips which greatly 

increases their strength. The hardened teeth are capable of removing not only the surface algae, 

but also the surface of the rock which contain algal sporelings.  Other limpet taxa, such as the 

siphonarids (Family: Siphonariidae) do not have similarly hardened teeth as seen in patellid 

limpets, and as such are only capable of remove surface algae (Vermeij, 1978).  

As can be inferred, limpets have a direct effect on the algal populations in an environment. In 

controlled experiments, when limpets are removed from an environment, there is a large 

increase in algal density (Vermeij, 1978; Branch, 1985). The individual effects that each species 

of limpet are, like the radula, not the same. This mainly comes down to the extent to which each 

limpet species feeds. As mentioned earlier, patellid limpets are capable of consuming not only 

existing algal colonies, but also the sporelings released by algae. This has a detrimental effect on 

algal populations as existing colonies are being attacked as well as new colonies failing to be 

established (Vermeij, 1978). This is then compared with other limpet species, such as the 

siphonarids, who only graze on existing algal colonies. These species generally have little to no 
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effect on algae densities and the abundance of colonies. This is only a generalisation however, as 

the patellid limpet Acmaea scutum does not have a major effect on algal densities, while the 

siphonarid Siphonaria gigas does (Branch, 1985).  Not all algae are negatively affected by limpet 

predation. Some encrusting coralline types of algae rely on limpets to control the populations of 

foliose algae (Denny and Gaines, 2007) which would otherwise have smothered them (Branch, 

1985). 

Alternative and more energetic methods of feeding occur in Patella argenvillei. This species 

raises its shell in a mushroomed stance, and slams itself down when it senses a piece of kelp 

sliding underneath. The limpet maintains its grip then relying on the combination of wave action 

tugging at the captured kelp and sharp serrations along the edge of the shell to eventually tear 

off the captured section of kelp from the rest of the organism. This leaves the captured piece of 

kelp with the limpet which then consumes its prize (Denny and Gaines, 2007).  Cooperative 

‘hunting’ has also been noted with P. argenvillei, in which multiple individuals clasp onto a single 

kelp leaf. This is an example of how higher densities of individuals are an advantage compared to 

species who scrape algae of rock (Denny and Gaines, 2007).  

Most limpets have a homing response to a fixed site on the rock platform. This homing site is the 

location of its home scar. As the limpet matures, the shell grows to conform tightly to the 

contours of the home site. Over time, the animal also erodes a depression into the rock (Morton, 

1958). All these factors come together to form what is called a home scar. The behavioural 

adaptation of a home scar is thought to be a way to reduce desiccation, as well as a way to 

prevent predation. This is due to the increased effort and energy required to remove an animal 

that is embedded into the rock compared with one that is merely overlying the rock surface 

(Morton, 1958). 

 The complexity of this homing response is seen in research undertaken which test the homing 

abilities of limpets. Experiments have been undertaken which involve rotating the scar, as well 
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as a portion of the rock surrounding the scar to which the limpet will successfully re‐orientate 

itself with the scars new position (Morton, 1958). It was initially thought that pheromones or 

other chemical trails were laid down by the limpet as it left its home scar, and that these trails 

were followed until it reached its home site (Denny and Gaines, 2007). This has been disproven 

as experiments undertaken showed that limpets can return from a different route and still 

successfully locate its home scar (Morton, 1958 and Denny and Gaines, 2007). This concept of 

homing implies a sense of appreciation for topography or spatial memory that cannot be 

explained with our current understanding of the animal’s sensory organs (Morton, 1958). 

Another specialized behaviour seen in some limpet species is farming of algal colonies. This 

behaviour is usually restricted to the physically larger species of limpets, though is apparent in 

Patella flexuosa (Lindberg, 2007). These limpets have developed intimate relationships with algal 

colonies in the immediate vicinity of their home scar to the point of developing a protective 

mind‐set of their algal colony. Limpets have been known to territorially defend their algal colony 

against other grazers by thrusting itself into intruders until they retreat (Denny and Gaines, 

2007).  

While the term ‘farming’ may be criticized, it actually proves fairly accurate. Limpets maintain 

their patch of algae in much the same manner as a gardener tends to their vegetable patch. 

Limpets control unwanted algal species by selectively grazing them away from the main body of 

the garden. Fertilizing also occurs through their ammonia rich excreta, and watering also occurs 

during exposed periods by the slow release of stored fluids from inside the shell cavity (Denny 

and Gaines, 2007). The limpet also grazes the algae patch, keeping the algae in a short, but fast 

growing stage of development where the tissues are highly nutritious. This behaviour of farming 

creates a sustainable and highly efficient and productive food source for the animal, and 

accurately suits the label ‘farming’ (Denny and Gaines, 2007). 
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Like the vast majority of marine and coastal organisms, predation is a constant reality. The 

limpet is no exception. Animals that readily prey on limpets include starfish, crabs, predatory 

whelks, fish and only recently humans. Of course the first line of defence against predators is the 

shell. Dropping the shell to the rock surface proves a much greater challenge for predators to pry 

the animal loose. This behaviour of clamping against the substrate is even more effective when 

the limpet is in its home scar, as the shell fits so tightly to the substrate. Fatal attacks are much 

more likely away from the home scar, when the clamping response cannot achieve a perfect fit 

on unfamiliar ground (Branch, 1985). Another structural adaptation to prevent predation is size. 

Adhesion power not only increases with size, but the proportion of predators that are physically 

large enough to eat a limpet of increased size decreases. A behaviour seen in large specimens is 

retaliation against predators. By raising the shell and bringing it down on the predator is one way 

in which a retreat response can be achieved (Branch, 1985). This retaliation only works however, 

on smaller predators such as whelks that do not move faster than the limpet.  

Ways to combat predation are not exclusively active responses. Passive responses prove just as 

effective. Camouflage is effective though is restricted to predators that rely on sight to identify 

prey. Engaging almost exclusively nocturnally where a reduced activity in predators is 

experienced. This is not reliable as most limpet activity is defined by tides, particularly the 

coming of high tides (Branch, 1985). Possibly the most effective method to reduce predation is 

for the limpet to make itself undesirable to predators. Some siphonarids are poisonous, and 

predators such as fish, whelks and birds, refuse to attack these siphonarids even when they are 

readily available (Denny and Gaines, 2007). Relying on the desirability of other species, while not 

by definition a response or adaptation is another way that some species avoid predation. The 

predatory whelk Morula marginalba actively attacks Patelloida latistrigata while largely ignoring 

other species, such as Cellana tramoserica (Denny and Gaines, 2007). 
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3.2 - MOLLUSCAN SHELL 

The shell of mollusc species serve a number of roles, as mentioned previously in this chapter. 

First and foremost in its roles is the protection of the soft tissue of the animal itself. Molluscan 

shell tissue is generally comprised of an outer organic layer termed the periostracum (Watabe, 

1988). This thin layer of organic materials not overly strong and in older animals this layer is 

completely removed due to attritional erosion and other forces the animal is exposed to. A 

centre prismatic layer called the outer ostracum and an inner layer that is either porcelainous or 

nacreous depending on the microstructure, termed the inner ostracum (Scott and Kenny, 1998) 

form most of the shell by weight and volume. Overall the shell is calcium carbonate (CaCO3) 

however there is always a proportion of proteinaceous material in the shell structure which 

forms the organic material of the periostracum and forms part of the shell’s microstructure. This 

proportion has been placed at between 0.1% and 5% by weight (Currey, 1980). The relative 

thicknesses of the previously mentioned layers differ, though it has been noticed that the 

thickness of the periostracum is thicker in freshwater molluscs (Scott and Kenny, 1998). New 

shell, referring to all three layers, is created from the outer edge of the mantle and new shell is 

continued to be deposited throughout the animal’s life. Rate of growth is not constant as the 

amounts of calcium carbonate needed for shell growth is entirely dependent on the 

environment and absorption calcium carbonate occurs through feeding on algae and absorption 

through the ambient environment (Day et al, 2000). Growth lines are also apparent on nearly all 

molluscs.  

3.2.1 - MICROSTRUCTURES 

Molluscan shell tissue is not a homogenous material. The forms that are observed are arranged 

into several distinct categories dependent on the crystallographic structures that naturally form. 

Each of the microstructures discussed are apparent in more than one of the six orders that make 
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up the class Mollusca (Currey, 1980). Significant amounts of study have been conducted on the 

nature of microstructures in molluscan fauna (Watabe, 1988, Bruet el al, 2005, Chateigner et al, 

2000, Currey, 1980 and 1988, Carter and Clark, 1985, Day et al, 2000, Kaplan, 1998 and others). 

In the average mollusc shell there are millions of individual crystals formed. Differences in crystal 

arrangement, both within the individual layers and the separate layers combined create a 

material much stronger together compared with their individual constituents (MacClintlock, 

1967). While up to ten separate microstructures have been identified (Kobayashi and Samata, 

2006, Watabe, 1988, MacClintlock, 1967), the major recurring forms are described below. 

 

3.2.1a - Nacre 

Nacre, also known as mother‐of‐pearl, is pre‐ dominantly aragonitic and forms the middle or 

inner  layer of molluscan shell (Watabe, 1988). While composed of weak constituent materials, 

nacre as a material provides good mechanical performance including stiffness, strength and 

impact resistance (Bruet el al. 2005). Referred to as having a ‘brick‐and‐mortar’ structure  

(Bruet el al. 2005, Carter and Clark, 1985), consisting of hexagonal mineral tablets surrounded by 

a thin (0.05µ) layer of organic material that acts as a cement holding the structure together 

(Watabe, 1988, Scott and Kenny, 1998). Individual tablets are approximately 10µ in diameter 

and between 0.2‐2µ thick (Watabe, 1988). The 

nacreous microstructure is laid down parallel 

between the inner ostracum layer and the 

shell edge itself (Bruet et al, 2005). It has been 

noted that nacre as a complete structure has 

strength that is of 3‐4 orders of magnitude 

higher than that of homogenous calcium 

carbonate (Kaplan, 1998). Nacre can be one of 

Fig. 3.2 : Nacreous microstructure under 
high powered scanning electron microscope 
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 several different forms, all sharing the same basic pattern of the ‘brick‐and‐mortar’ structure 

yet differ in the stacking of nacreous tablets; 

‐ Sheet nacre sees the nacre tablets developing in offset positions from the tablets 

immediately below (Watabe, 1988). 

‐ Columnar nacre exhibits the crystal tablets stacked on top of each other forming 

regular vertical columns. Immature layers of nacre of the very innermost layer of the 

shell form steep cone shaped columns (Chateigner et al, 2000).  

‐ Lenticular nacre is another structure that occurs occurs when the central portion of 

the nacre tablet expands forming a lens shape (Watabe, 1988).  

3.2.1b - Prismatic 

Prismatic microstructures uniformly oriented prisms encased in an organic sheath of 

approximately 5µ (Watabe, 1988). The aragonitic or calcitic prisms can be quite large, between 

10‐200µ across and may be several millimetres long (Currey, 1980, MacClintlock, 1967). Typically 

a polygonal shape is exhibited Watabe, 1988). Four major subdivisions have been recognised; 

‐ Simple prismatic layer (Watabe, 1988) is the simplest form of the prismatic 

microstructure. Each prism is comprised of stacks of disc shaped subunits 

surrounded by organic matrix 

sheets (Watabe, 1988). It has been 

noted that the difference between 

aragonitic and calcitic based prisms 

is the former exhibits diverging 

longitudinal striations, giving a 

feather‐like appearance while the 

latter exhibits transverse striations 

(Watabe, 1988).  
Fig. 3.3 :  Prismatic microstructure under 

high powered scanning electron  
microscope 
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‐ Fibrous prismatic microstructure is a rather specialised variety of the prismatic 

microstructural form seen only in Mytilus edulis and other acmaeid molluscs 

(Watabe, 1988, MacClintock, 1967).Layers with this structure are composed of 

prisms that have a high length‐width ratio (Watabe, 1988) with a rather constant 

diameter (Maclintock, 1967). Being so specialised, fibrous prismatic microstructure 

has been classified as an independent from by a number of authors (MacClintock, 

1967, Kobayashi, 1971 and others). 

‐ Composite prismatic structures are composed of a collection of separate prisms, 

individually made out of elongate rectangular rods (Kobayashi and Samata, 2006). 

Large horizontal prisms, termed first‐order prisms are in turn comprised of second‐

order prisms radiating out in three dimensions towards the depositional surface 

from the central longitudinal prism (Watabe, 1988). Growth bands are also apparent 

(Watabe, 1988 and Kobayashi and Samata, 2006). 

‐ Spherulitic prismatic structures, also known as radiated prismatic layer (Watabe, 

1988), is characterised by prisms having elongate substructures radiating in three 

dimensions originating from a single point (Watabe, 1988). 

3.2.1c - Foliated 

A predominantly calcitic layer comprised of 

lamellae consisting of elongated parallel 

crystals uniformly dipping over large areas of 

the depositional surface (Watabe, 1988). 

Very similar in form to the nacreous 

microstructure in terms of individual crystal 

tablets laid in a regular fashion forming an 

overlapping blades resembling a shingled roof Fig. 3.4 : Foliated microstructure under 
high powered scanning electron  

microscope 
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 (Watabe, 1988). Individual crystal tablets are approximately 2‐4µ in size (Kobayashi and Samata, 

2006). Where nacreous and foliated microstructures differ is in the organic content. Where 

nacreous microstructures are comprised of approximately 5% weight of organic material, foliate 

microstructures have about 0.5‐0.6% of total weight comprising of organic material (Watabe, 

1988 and Bruet et al, 2005). As mentioned earlier, dipping is also an important characteristic. 

When viewed in vertical section it looks similar to crossbedding in geological terms (Kobayashi 

and Samata, 2006). 

 3.2.1d - Crossed Lamellar 

One form that crossed lamellar microstructures can take is simple crossed lamellar. This 

structure is comprised of three separate orders of lamellae coming together to make up the 

overall crossed lamellar microstructure. Each lamellae has a near rectangular for, with the long 

axis oriented parallel to the shell surface with the short axes in a predominantly vertical  

position (Watabe, 1988). Elongate crystals, termed crystallites (Kobayashi and Samata, 2006) 

measuring approximately 10µ wide and 0.3‐2µ wide form the third‐order lamellae. These third‐

order lamellae are surrounded by a homogenous or a fibrous organic matrix membrane 

(Watabe, 1988). These third‐order lamellae 

come together to form second‐order lamellae, 

which in turn bundle together to form first‐

order lamellae which then go on to make up the 

structure of the layer (Kobayashi and Samata, 

2006). Third‐order lamellae join together in a 

parallel fashion forming a steeply angled block 

like second‐order lamellae which then gets  

deposited in sequential sequence inclined in  

Fig. 3.5 : Crossed lamellar microstructure 
under high powered scanning electron 

microscope 
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opposite directions, near 90° (Currey, 1980), from each other forming first‐order lamellae. This 

produces the criss‐cross pattern that characterises the crossed lamellar microstructure (Watabe, 

1988). 

Complex crossed lamellar is still predominantly comprised of crystallites, however instead of 

forming blocks, they are arranged in such a way to form cones that are laid down perpendicular 

to the depositional surface or form acicular second‐order lamellae having different dip directions 

(Watabe, 1988). The diameter of these cones is no more than 200µ with an incline of 45°. Each 

crystallite has a width of approximately 0.5µ (Kobayashi and Samata, 2006). 

 3.2.1e - Homogenous 

When no particular structural pattern occurs, the microstructure is said to have a homogenous 

form. This microstructure consists of minute crystals of either aragonite or calcite and should not 

be larger than 5µ in diameter (Watabe, 1988). Currey (1980) referred to this microstructure as 

“really a very fine scrabble”. The organic matrix is also identified as tenuous (Currey, 1980). It 

should also be noted that de‐ 

pending on the author, the grained structure 

that is sometimes apparent in homogenous 

microstructures is independent of true 

homogenous structures, claiming that the 

larger grain size is enough to separate it into its 

own microstructural category (Watabe, 1985), 

though this is dependent on authors. 

 

 

Fig. 3.6 : Homogenous microstructure 
under high powered scanning electron 

microscope 
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3.3 - TARGET TAXA 

The target taxa chosen for this study are Patella flexuosa, Patella peronii, Cellana tramoserica, 

Cellana solida and Siphonaria diemenensis. This selection of species is based on a number of 

factors described below. 

Species: Patella (=Scutellastra) flexuosa 

Family: Patellidae 

Microstructure: Inner radial crossed lamellar (Chateigner et al, 2000); however MacClintock 

(1967) identifies predominantly cross foliate microstructures throughout Patella spp. 

Specimens collected from west Java, Indonesia and Bohol Islands, the Philippines. P. flexuosa has 

been chosen for experimentation because this species makes up a large number of limpet 

remains discussed early last chapter in Golo Cave, Indonesia (Szabó, 2007). As the species that 

exhibits the probable working patterns using this species in experimentation and analysis was a 

logical choice (Szabó, 2007). One note to make, average shell size of P. flexuosa that make up the 

Golo Cave midden assemblage are notably bigger than the size of contemporary specimens 

(Branch, 1985). While an argument can be made that puts forward that the samples that make 

up the Golo Cave assemblage are larger than normal, we argue that while contemporary P. 

flexuosa specimens are notably smaller, a regression in animal size may have occurred due to 

reliance on the animal as a food resource and subsequent over collection.  

As well as these reasons, being a tropical molluscan species the study will be able to discern 

differences between temperate and tropical shell specimens and the potential differing of 

fracture mechanics between the two regions. 
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Species: Patella (=Scutellastra) peronii 

Family: Patellidae 

Microstructure: Inner radial crossed lamellar (Chateigner et al, 2000); however MacClintlock 

(1967) identifies predominantly cross foliate microstructures throughout Patella spp. 

Patella peronii was selected as it shares a common heritage with P. flexuosa at a genus level. 

Structurally it is typically a limpet so in a morphological sense it is similar to P. flexuosa while at 

the same time having defining structural features on its own. Collection of specimens occurred 

along rocky parts of coastline between Headland’s Beach, Coledale and North Beach, North 

Wollongong, New South Wales. Size ranges up to 52mm length, though is commonly found to be 

35mm (Beechey, 2004). 

Species: Cellana tramoserica 

Family: Nacellidae 

Microstructure: Inner irregular complex crossed lamellar with nacreous interior (Chateigner et 

al, 2000). 

Living on all rocky shores apart from the locations of highest wave energy, Cellana tramoserica is 

one of the most abundant limpet species found on the south coast of New South Wales (Koppel, 

Pers. obs). Collected between Headland’s Beach, Coledale and North Beach, North Wollongong, 

New South Wales, C. tramoserica grows up to 65mm long, though is commonly around 50mm 

(Beechey, 2004). Still a true limpet, C. tramoserica is related to P. flexuosa and P. peronii at an 

Order level. 

Species: Cellana solida 

Family: Nacellidae 

Microstructure: Inner irregular complex crossed lamellar with nacreous interior (Chateigner et 

al, 2000). 
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Cellana solida shares the same distribution as the previously mentioned C. tramoserica and P. 

peronii. As before, specimens were collected between Headland’s Beach, Coledale and North 

Beach, North Wollongong, New South Wales. Related to C. tramoserica at a Family level and P. 

flexuosa and P. peronii at an Order level is still classified as a true limpet. While possessing some 

degree of variability in shell morphology, when compared with C. tramoserica, C. solida exhibits 

a thicker, more robust shell with a more even length‐elevation ratio (Koppel, Pers obs).  

Species: Siphonaria diemenensis 

Family: Siphonariidae 

Microstructure: Presently unknown 

Collected on rocky shorelines between Headland’s Beach, Coledale and North Beach, North 

Wollongong, New South Wales, S. diemenensis represents the smallest size range of the target 

taxa, having a size range of 10‐26mm in length (Koppel, Pers. Obs.). Of the species of gastropod 

selected for this research project, S. diemenensis is the only one that is not a true limpet. Where 

true limpets have gills under the mantle cavity, Siphonariids are air‐breathers and respiration is 

achieved with a lung (Stanisic, 1998). This species was selected as an example of convergent 

evolution. While being quite removed from the previously mentioned species in a taxonomic 

sense, all have a calcium carbonate shell with rather similar morphological features, all inhabit 

the same environments and all function in a strikingly similar way not usually expected with 

species only joined at the Class level. 
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As of yet, there is no standard methodological approach for confidently identifying worked shell. 

Identification of shell tools by analysts is usually based on their own knowledge, experience and 

intuition (Szabó, in press). The overarching trend seen in studies that involve shell as a raw 

material is that conclusions are drawn on a very individual and case‐by‐case basis. Study needs 

to be undertaken in an attempt to create a broadly applicable methodology in shell tool 

identification. Very little controlled experimental work has been conducted in regards to 

recognising the effects shell has on other material in the context of tool production, or of 

observing the traces of working on the shell itself. While some studies have employed an 

experimental approach (e.g. Choi and Driwantoro, 2007; Spennemann, 1993a, b), fundamental 

issues with the assumptions used and/or a general lack of control mean that the analysis and 

identification of shell artefacts utilised as tools remains problematic. 

This thesis will attempt to pilot a new method for the identification of culturally‐modified shell. 

By conducting a series of experiments focused on use‐wear, controlled breakage experiments 

and followed by detailed scanning electron microscopy (SEM) analysis, patterns should emerge 

that would ultimately allow us to discern a difference between natural breakage patterns and 

breakage/wear patterns formed through cultural use.  Understandings gained from the 

experimental work will then be applied to the archaeological Patella flexuosa specimens from 

Golo Cave (Szabó et al., 2007), Indonesia, which have been detailed previously. 

Use‐wear analysis, which is the central core to this study, has received a lot of attention in the 

archaeological literature and has been the focus of a number of studies.  Significant research 

into use‐wear has been conducted; dominantly on lithic artefacts (Lawn and Marshall, 1979; 

Kealhofer et al., 1999 and Andrefsky Jr., 2005). However these will not be consulted based on 

the now hopefully clear basis that shell does not act in the same way as stone as implied by 

some studies (e.g. Cleghorn, 1977 and aspects of Smith 1991). The forces acting upon the 
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material will cause stone and shell to react differently, thus creating different patterns. It is this 

fact that means that the wear patterns exhibited on shell are going to diverge from those seen 

on stone, and thus interpretations will generally not be transferrable between the two materials. 

For these reasons, this thesis has not drawn upon the use‐wear literature in archaeological lithic 

studies, so as to avoid potential bias and unwarranted assumption. 

The experiments undertaken in this thesis involve the working of a variety of materials believed 

to be relevant in a Southeast Asian context and temporally appropriate to the artefactual 

evidence found at Golo Cave. It should be stated at the outset that materials were chosen not 

only for their regional relevance, but also because they presented a variety of textures for 

working.  It is recognised that any potential ‘matches’ between experimental and archaeological 

specimens do not necessarily indicate the working of that particular material, but such matches 

potentially inform upon the type and texture of material being worked.  While emphasis is 

placed on using materials as authentic as possible to a Southeast Asian context, most of the 

materials cannot be exactly replicated.  Contemporary shell specimens cannot be expected to be 

identical with specimens found at Golo Cave. As well as this, the constantly changing 

morphological characteristics that species experience over time will also affect characteristics 

between the separate time periods.  

The experimentation stage of the research project has been broken up into a number of stages, 

each having a specific aim; 

 

4.1 - COLLECTION 

Initial gathering of samples began with a mass collection of all limpet species obtained from 

rocky beaches between Coledale and North Wollongong beach, on the New South Wales 

Southeast coast. The collected specimens were sorted by species with the most abundant 

species forming the assemblages that would eventually be used in the experimental part of this 
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research project as detailed below. Specimens were collected dead with all size classes gathered, 

as well as whole and fragmented shells, to allow the best representation of naturally occurring 

assemblages of shell. Specimens were only cleaned under running water, and were not refined 

in any way prior to analysis and experimentation. 

Collection of the target shell species was conducted along rocky portions of coastline between 

Scarborough and North Wollongong beach, on the south east coast of New South Wales, 

Australia. Based on the rather broad range of limpet species that inhabit this piece of coast, the 

target taxa were isolated to three species of limpet; Cellana tramoserica, Cellana solida and 

Patella peronii. To allow a direct comparison to the Golo Cave shell assemblage, Patella flexuosa 

specimens were acquired from west Java, Indonesia and Bohol Island, Philippines. Siphonaria 

diemenensis, of family Siphonariidae was also chosen to be part of this study. While not a true 

limpet S. diemenensis is an excellent example of convergent evolution. While only being related 

at the class level (Gastropoda), S. diemenensis and the above mentioned limpet species all share 

a common habitat of rocky coastline, all have a shell made of calcium carbonate and all share 

remarkably similar morphology. Where they differ is the limpet species use gills in respiration 

whereas the Siphonariidae use a lung to absorb oxygen (Denny and Gaines, 2007). 

This combination of species gives three different genera (Cellana, Patella and Siphonaria) as well 

as a range of microstructures, as seen in the table above. As mentioned earlier, the location of 

the shell, be it tropical or temperate in climate will often affect the aragonite to calcite ratio of 

the shell and his will in turn effect the response of the shell to force.  For further details 

regarding aragonite‐calcite ratios, please refer to the x‐ray diffraction in Chapter 5. 

 



42 
  

 

 

 

 

 

 

 

 

Species Microstructure Temperate/Tropical 

Cellana solida 
Inner irregular complex crossed 
lamellar with nacreous interior 

(Chateigner et al, 2000). 
Temperate 

Cellana tramoserica 
Inner irregular complex crossed 
lamellar with nacreous interior 

(Chateigner et al, 2000). 
Temperate 

Patella peronii 

Inner radial crossed lamellar 
(Chateigner et al, 2000), however 

MacClintock (1967) identifies 
predominantly cross foliate 
microstructures throughout 

Patella spp. 

Temperate 

Patella flexuosa 

Inner radial crossed lamellar 
(Chateigner et al, 2000), however 

MacClintock (1967) identifies 
predominantly cross foliate 
microstructures throughout 

Patella spp. 

Tropical 

Siphonaria 
diemenensis 

Unknown as of yet – investigated 
as a part of this research 

Temperate 

Table 4.1 :  Summary of the target species for this study, 
presently identified microstructures and the type of climate the 

animal inhabits 
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4.2 - ACCESSIONING, MORPHOMETRIC ANALYSIS AND 

TAPHONOMIC ASSESSMENTS 

Specimens collected were sorted by species and each given a unique accession code and stored 

separately. This was done for ease of recognition and recollection when needed for 

experimentation or reference, and for general organization. A total of 353 individual shell 

specimens were collected spread over five species excluding the` Golo Cave samples. 

Proportions of the total sample assemblage are displayed in the graphs and charts on the 

following page. 

Each individual shell was then measured, recording length, width, elevation and the distance of 

the apex from the posterior edge. These measurements were then put through the statistics 

program ‘Primer 6’ in an attempt to see if there is a notable difference in measurements 

between the five species that make up the sample.  
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Proportion of Specimens 

Cet ‐ 23%

Ces ‐ 23%

Pap ‐ 15%

Paf ‐ 9%

PafGC ‐ 23%

Sid ‐ 7%

 

  

Species Accession Code Quantity 
Cellana tramoserica Cet 82 

Cellana solida Ces 80 
Patella peronii Pap 52 

Patella flexuosa Paf 31 
Patella flexuosa (Golo Cave) PafGC 81 

Siphonaria diemenensis Sid 27 
 Total 353 

Table 4.2 : Quantities of each of the target species being used in this 
project 

Fig. 4.1 : Bar graph depicting the quantities of each of the target 
species being used in this project 

Fig. 4.2 : Pie chart depicting proportion of species being used in the 
project 
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Fig. 4.3 : Diagram above shows scatter plot of limpet specimens graphed 
where height, width and shell elevation are variables. As can be seen 
species cluster for the most part in species similar groups. ANOSIM 

analysis indicates a large significance between species (Significance level 
of sample statistic 0.1%). 

 

Fig. 4.4 : Diagram above shows distribution of limpet species in a classic bell curve shape, 
indicating an even sampling of specimens and morphological characteristics. 
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As the shells that were collected are going to be subjected to controlled force, any faults, flaws 

or features that have altered the general morphology of the shell will affect the shell’s reaction 

to said force. Taphonomy is the study of factors that affect material remains after 

death/deposition, and in the case of the mollusc shells, this may include wave action causing 

cracks and fractures, sand blasting and water‐rolling causing attrition (Day et al., 2000).  Animals 

such as annelid worms and certain species of molluscs and sponges bore into mollusc shell 

weakening the structure (Scott and Risk 1988), while calcareous adhesions in the form of worm 

casts and barnacle plates are common in the collected assemblage (Denny and Gaines, 2007; 

Pers. Obs Koppel, 2010). Regardless of the type of modification the shell experiences, any 

alteration will affect the strength and mechanical properties of the shell. In attempt to classify at 

the outset what damage has occurred to the shell prior to collection, each shell used in an 

experiment was taphonomically assessed with any damage or adherent structure on the shell 

surface noted and recorded (refer to appendix 1). 

 

 4.3 - X-RAY DIFFRACTION (XRD) ANALYSIS 

As mentioned earlier, molluscan shell is comprised of either calcite or aragonite. The ratio of 

these two forms of calcium carbonate in the shell is to some degree tied to the latitude in which 

the shell lives, with tropical shells generally having a higher proportion of aragonite to calcite 

compared to temperate species whose structure is more calcite dominated. As a mix of 

temperate and tropical limpet species and one species from the Siphonariidae are present in the 

research project, x‐ray diffraction (XRD) analysis will identify various elements and chemical 

compounds present in the shell, and once defined and isolated, can pinpoint the quantities of 

calcite versus aragonite in the shell. 

Specimens were prepared by first crushing whole shells into smaller fragments. Grinding down 

samples with a mortar and pestle occasionally adding acetone to reduce the shell fragments into 
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a powder with the consistency of talc is necessary for XRD analysis. The samples were then 

processed by José Abrantes of the School of Earth and Environmental Sciences at the University 

of Wollongong and results interpreted with assistance from Associate Professor Brian Jones. 

4.4 - CONTROLLED FRACTURE EXPERIMENTS 

4.4.1 – INSTRON EXPERIMENTATION 

At the heart of this research project is wear patterns and fragmentation in limpet shells. With 

this in mind it is necessary to identify a base‐line of reference for shell fracture. Controlled 

fracture experiments were conducted with an INSTRON static‐testing machine, care of the 

Materials Engineering Department of the University of Wollongong. Designed to apply and 

measure force and moment of fracture of an object, an INSTRON static‐testing machine, in this 

project’s case, places compressive force on the shell in the form of two flat level stages that 

come together.  Compression automatically stops at the moment of structural failure. By 

orientating the shell on the stage in various directions, fracture can be forced that is solely the 

result of this compressive force. The shell samples are placed at the following prior to 

compression and diagrammed below; 

 

1. Dorsal to Ventral compression 

2. Anterior to Posterior compression        

3. Dextral to Sinistral compression 
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Fig. 4.5 : Diagram describing INSTRON controlled fracture 
experiments and shell and stage orientations 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

 

 

 

 

 

 

Dorsal to Ventral Compression 
Arrow indicates direction of 

compression 

Dextral to Sinistral 
Compression  

Arrow indicates direction of 
compression 

Anterior to Posterior 
Compression 

Arrow indicates direction of 
compression 
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This form of experimentation is useful as all of the fracture patterns generated in the 

compression process can be identified with certainty to one of the three directions tested. As 

well as the fractures generated, the software attached to the INSTRON machine provides 

information of the force applied to the shell in Newtons before catastrophic failure. 

4.4.2 - USE-WEAR EXPERIMENTATION 

At the very core of this study is the hypothesized evidence of use‐traces on shell artefacts within 

the Golo Cave assemblage (Szabó et al. 2007; Szabó in press). Since no current standardised 

criteria for identifying worked shell exists, one will begin to be established here. Using materials 

considered relevant to a Southeast Asian context, and temporally appropriate to that of the 

chronological placement of the earliest Golo Cave deposits, six different materials were chosen 

for experimentation; yam (Dioscorea alata), taro (Colocasia esculenta), bamboo (Bambusa sp.), 

coconut (Cocos nucifera), pork flesh and bone (family Suidae), and haematite. These different 

substances all have distinct textures, as outlined in the table below, and are hypothesized here 

to affect shell differently throughout the experimentation process. Pork flesh is not necessarily 

relevant to a Golo Cave context as pigs were not present until the Neolithic or post‐neolithic of 

Gebe Island (Flannery, 1995; Flannery, 1998). It was selected based on the fact that no other 

substance has a series of textures quite like flesh, from the musculature of the flesh itself, the 

hard, regular form of the bone and the elastic and tough skin. This would provide a useful 

contrast in potential wear patterns for later comparison with archaeological specimens outside 

of Golo Cave.  Presumably, also, the earliest inhabitants of Golo Cave were processing and eating 

non‐aquatic fauna, and pig stands in as a proxy for these presently unknown prey species. 

TEXTURE SUBSTANCE 
Soft and fibrous Yam, Taro 
Hard and fibrous Bamboo, wet and dry 

Soft and not fibrous Coconut, Pork skin 
Hard and not fibrous Haematite, Pork bone 

Muscular Pork flesh 

Table 4.3 : 
Description of 
textures of 
substrates being 
used in use-
wear 
experiments 
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4.4.1a - Taro 

The taro plant (Colocasia esculenta) is a tropical aroid in the Family: Araceae that is generally 

harvested for its edible corm (ASPCA, 2010). It is a staple food within Oceanic cultures and is 

believed to be one of the earliest cultivated plants (Jackson et al, 2006). In its raw state, the 

corm is toxic due to the presence of calcium oxalate crystals in the skin and flesh which are an 

irritant and can cause severe reactions upon consumption. The cooking process removes the 

toxic components rendering it safe to eat. Taro is generally boiled or baked when cooked and 

the entire plant is known to be edible, including leaves and stem (ASPCA, 2010). 

It has been suggested that C. esculenta may have had a natural range that included the Solomon 

Islands as well as New Guinea and Southeast Asia (Spriggs, 1997). Residue analysis of stone tool 

artefacts have led to the theory that cultivation of the large corm variety and targeted collection 

was conducted to some extent by humans (Spriggs, 1997). 

Aim  

‐ To determine the suitability of five species of limpet shells as a tool for food processing, 

specifically with regards to the peeling of small and large corm taro (Colocasia 

esculenta), as well as analyzing the wear patterns and fragmentation associated with the 

peeling of the taro. 

Method  

- Study specimens 

The specimens used include five species of limpet; Cellana tramoserica, Cellana solida, 

Patella peronii, Patella flexuosa and Siphonaria diemenensis. These mollusc species were 

utilized in the peeling of small corm and large corm taro (Colocasia esculenta).  

Six individual specimens of each of the five species of shell were selected based on the 

overall quality of the shell in regards to erosion, existing fractures and evidence of 
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bioerosion and adhesions. This was done through taphonomic assessments of each 

individual shell specimen and will allow maximum comparability of results.   

- Experimental design 

Preparation of the taro was relatively simple. Cutting the ends of the specimen ensured 

that the shell samples were exposed only to the flesh of the tuber. The taro specimens 

were washed and dried with the outer skin still remaining on the fruit. 

The shells were held with the thumb located on the ventral surface at the apex and the 

index finger wrapping over the anterior dorsal surface around the apex. The shell’s 

anterior edge was the exposed to the flesh 

of the taro corm. 

The experiment was then broken up into 

two separate parts based on the direction 

of the scraping action; towards the body of 

the holder, and away from the body of the 

holder. Each of these directions is then bro‐ 

ken up into the number of strokes the shell contacted the taro; 20, 40 and 100 strokes 

for each species of shell.  

The shells used in the experiments were then catalogued, individually bagged, and then 

organized according to species. Following this, each shell sample was then 

photographed under a low‐power light‐microscope, and then selected samples were 

viewed under a scanning electron microscope (SEM). 

These images were then analysed and the patterns observed were interpreted following 

the principles of fractography (Hull, 1999) as well as any other visible signs of alteration. 

 

 

Fig. 4.6 : Depiction of taro use-
wear experiment 
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4.4.1b - Coconut 

The coconut (Cocos nucifera) is synonymous with the tropical environment. A member of the 

Arecaceae family, it is the only accepted species in the genus Cocos (Mellars, 2006). The coconut 

itself is made up of three distinct parts; exocarp, mesocarp and endocarp. The exocarp makes up 

the outer section of the coconut, also called the husk. The mesocarp is the brown shell, which is 

the hardest part of the coconut. The white flesh inside is called the endocarp, which is the edible 

part. While in contemporary western cultures only the flesh is utilized, in a traditional context 

nearly every part of the coconut, including the tree itself has been utilized by native cultures 

(Spriggs, 1997). 

Aim  

‐ To determine the suitability of the five species of limpet shells as a tool for food 

preparation, specifically with regards to the coconut (Cocos nucifera), as well as 

analyzing the wear patterns and fragmentation that is associated with the scraping, 

scooping and cutting of coconut flesh. 

Method  

- Study specimens 

The specimens being studied are five species of limpets; Cellana tramoserica, Cellana 

solida, Patella peronii, Patella flexuosa and Siphonaria diemenensis. These mollusc 

species were utilized in the scraping, scooping and cutting of coconut flesh. 

Nine individual specimens of the five species of shell were selected based on the overall 

quality of the shell in regards to erosion, existing fractures and evidence of bioerosion 

and adhesions with the most pristine specimens being selected. This was done through 

taphonomic assessments of each individual shell specimen prior to experimentation. By 

selecting the specimens with the least taphonomic alteration, maximum comparability 

of results can be achieved. 
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- Experimental Design 

Three coconuts were obtained for experimentation. Preparation of the coconut involved 

breaking into mesocarp by first using a saw to create a groove and structural weak point, 

and hitting the mesocarp against the corner of a wall, splitting the coconut into two 

halves. Once access to the endocarp was achieved, the coconut water was drained and 

any debris removed. 

The experiment was then broken up into three separate parts; scraping towards the 

body of the holder, away from the body of the holder and the cutting of the coconut 

meat based on three different methods in which coconut flesh can be separated from 

the mesocarp. By using three separate directions, the edge of the shell was also exposed 

to three different directions of force and wear separately, as well as the flow of removed 

material and how it contacts and potentially affects the shell surface. Each of these 

actions was then broken down further into the number of strokes the shell contacted 

the coconut; 20, 40 and 100 strokes for each species of shell.  

The shells were held with the thumb located on the ventral surface at the apex and the 

index finger wrapping over the anterior dorsal surface around the apex. The shell’s 

anterior edge was the exposed to the meat of the coconut . 

The shells used in the experiments were 

then catalogued, individually bagged, and 

then organized under species. Following 

this, each shell sample was then 

photographed under a low‐power light‐

microscope, and selected samples were 

then imaged under scanning electron  

microscope (SEM). The patterns observed were interpreted following the principles of 

fractography (Hull, 1999) as well as any other visible signs of alteration. 

Fig. 4.7 : Depiction of coconut use-
wear experiment 
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4.4.1c - Bamboo 

Bamboo is one of the most prevalent plant taxa of the Southeast Asian region and represents a 

major part of Asian and Southeast Asian culture. It is used for many different purposes such as 

building, storage, tools and as a food resource (West and Louys, 2007). The large scale utilisation 

of this resource is easily explained by the ease in which it is incorporated into specific purposes 

and its extensive abundance. 

Bamboo plays a rather large role in regional archaeological theorizing, and especially in the 

subject matter of this research project. The ‘Bamboo Theory’ is at the forefront of explanations 

of the replacement of stone as a raw material in artefact production (Mellars, 2006). This theory 

however, cannot be proven or disproved based on the perishable nature of the material and its 

inability to be preserved in the archaeological record. In addition to numerous historical and 

ethnographic references, recent studies have concluded that bamboo is indeed suitable for use 

as a raw material for artefact production (West and Louys 2007). Chemical and structural 

analysis of bamboo reveal it as being comprised of up 70% silica, and when split cleanly can have 

a very sharp edge (West and Louys, 2007). Experimentation using bamboo as a tool conducted 

by West and Louys (2007) have yielded surprising results of bamboo knives being more than 

adequate for defleshing animal bones and cutting through flesh. While not as effective as lithic 

tools in retaining a sharp edge, the bamboo knives had a longer cutting surface and are arguably 

easier to produce. 

Aim 

‐ To determine the suitability of five species of limpet shells as a tool the removal of 

cellulose material in bamboo allowing access to fibrous material inside the plant’s stem, 

as well as analysing the wear patterns and fragmentation that is associated with this 

process on the shells. 



55 
  

Method  

- Study specimens 

The specimens being studied are five species of limpets; Cellana tramoserica, Cellana 

solida, Patella peronii, Patella flexuosa and Siphonaria diemenensis. These mollusc 

species were utilized in the rubbing of the surface of bamboo. 

Twelve individual specimens of the five species of shell were selected based on the 

overall quality of the shell in regards to erosion, existing fractures and evidence of 

bioerosion and adhesions with the most pristine specimens being selected. This was 

done through taphonomic assessments of each individual shell specimen prior to 

experimentation. By selecting the specimens with the least taphonomic alteration, 

maximum comparability of results was ensured. 

- Experimental design 

One four metre long length of bamboo (cf. Bambusa vulgaris was obtained, and cut into 

a series of smaller lengths at least one segment (culm‐node to culm‐node) long. 

Preparation of the bamboo involved splitting the culm lengthways to create two halves. 

Not only did this double the number of lengths, but it also allowed access to the inner 

culm pith of the bamboo plant. This would provide another to be experimented upon in 

contrast to the green outer layer. Depending on desired final use, the bamboo can be 

soaked to soften the culm prior to modification and use.  Given this possibility, half of 

the bamboo samples were soaked in water for several days in an attempt to best utilise 

the potential methods used by cultures at the time and replicate possible actions. 

The actual experimentation was conducted using a rubbing action more than a cutting, 

scooping, scraping or peeling action used in previous experiments. This means that the 

shell edge was in constant contact with the bamboo surface with a backward and 

forward motion constituting one stroke. As mentioned previously, the bamboo lengths 
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were split allowing access to the inner structure of the plant, which were utilised in 

experimentation in the same way as the green outer layer. This experiment was then 

further broken down into three sections based on the number of strokes per shell 

specimen; 20, 40 and 100 strokes for each species.  

 

 

 

 

 

The shells were held with the thumb located on the ventral surface at the apex and the 

index finger wrapping over the anterior dorsal surface around the apex. The shell’s 

anterior edge was the exposed to the inner and outer surface of bamboo  

The shells used in the experiments were then catalogued, individually bagged, and then 

organized under species. Following this, each shell sample was then photographed 

under a low‐power light‐microscope, and then selected samples were viewed under a 

scanning electron microscope (SEM). 

These images were then analysed using low‐powered light microscopy followed by 

scanning electron microscopy and the patterns observed were interpreted following the 

principles of fractography (Hull, 1999) as well as any other visible signs of alteration. 

 

 

 

Fig. 4.8 : Depiction of bamboo (interior and 
exterior) use-wear experiment 
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4.4.1d - Haematite 

Haemetite is the mineral form of iron (III) oxide. Ranging in colour from blacks and greys to reds, 

this mineral has played a major role in prehistoric cultures all over the world. While the mineral 

in its raw form was rarely used, when ground 

and added to clay it forms a coloured material 

that has been extensively used as a decorative 

medium throughout the world and history 

(e.g. Mellars, 2006; Szabó et al., 2007; 

Henshilwood and Marean, 2003). Ochre is 

significant in an archaeological context as it 

represents one of the very first example of  

‘modern human behaviour’ and the use of arbitrary symbols in Blombos Cave where an 

engraved piece of ochre was found (Henshilwood et al., 2002). Ochre has since been used more 

and more in symbolic acts such as a medium for rock art and body paint (Henshilwood and 

Marean, 2003), decoration of symbolic pieces and in burial rituals (Szabó et al., 2007 and 

Einwögerer et al., 2006). 

 

Aim 

‐ To determine the suitability of shell as a raw material for the reduction of haematite 

into a powder suitable for ochre production, as well as analysing the 

wear/fragmentation patterns associated with this task on shells. 

 

 

 

Fig. 4.9 : Picture of hematite block, cut in 
half prior to experimention 



58 
  

Method 

‐ Study Specimens 

The specimens being studied are five species of limpets; Cellana tramoserica, Cellana 

solida, Patella peronii, Patella flexuosa and Siphonaria diemenensis. These mollusc 

species were utilized in the scraping of the surface of a haematite node. 

Three individual specimens of the five species of shell were selected based on the 

overall quality of the shell in regards to erosion, existing fractures and evidence of 

bioerosion and adhesions with the most pristine specimens being selected. This was 

done through taphonomic assessments of each individual shell specimen prior to 

experimentation. By selecting the specimens with the least taphonomic alteration, 

maximum comparability of results was ensured. 

- Experimental Design 

A node of raw haematite was made available from the School of Earth and 

Environmental Sciences geology bulk specimen collection, University of Wollongong. 

Preparation of the haematite sample involved cutting the rough shaped rock with a 

diamond saw leaving a smooth face. Like the bamboo experiment, a rubbing action was 

used as opposed to specific cutting, scooping or scraping. The experiment was then 

broken down into three sections for each shell dependent on the number of strokes the 

shell was used; 20, 40 and 100 with one stroke constituting a forward and backwards 

motion with the shell edge in constant contact with the substrate. 

The shells were held with the thumb located on the ventral surface at the apex and the 

index finger wrapping over the anterior dorsal surface around the apex. The shell’s 

anterior edge was the exposed to the surface of the haematite.  
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The shells used in the experiments were then catalogued, individually bagged, and then 

organized under species. Following this, each shell sample was then photographed 

under a low‐power light‐microscope, and selected samples were then viewed under a 

scanning electron microscope (SEM). 

These images were then analysed using low‐powered light microscopy followed by 

scanning electron microscopy and the patterns observed were interpreted following the 

principles of fractography (Hull, 1999) as well as any other visible signs of alteration. 

 

4.4.1e Yam 

Yam is the common name for species in the genus Dioscorea (family Dioscoreaceae). This 

herbaceous vine forms a staple for many cultures both present and past. While the sweet potato 

is commonly associated with yams, they are not related at the family level (Christensen, 2002). 

Dioscorea species were traditionally thought to have been introduced from Southeast Asia into 

Sahul. It has also been suggested that New Guinea was a secondary dispersal route for D. 

esculenta and D. alata (Fullagar et al., 2006). Throughout history, yams have been a staple in the 

diet of many hunter gatherer cultures, and this remains true today (Bellwood, 1997), and 

agricultural practices such as clearing patches of forest floor encouraging yam vine growth have 

been noted. 

Aim 

‐To determine the suitability of five species of limpet shells as a tool for food processing, 

specifically the removal of the outer skin of yam (Dioscorea esculenta) allowing access to 

the flesh inside, as well as analysing wear patterns associated with this task on the 

shells. 
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Method 

‐ Study Specimens 

The specimens being studied are five species of limpets; Cellana tramoserica, Cellana 

solida, Patella peronii, Patella flexuosa and Siphonaria diemenensis. These mollusc 

species were utilized in the peeling of the yam. 

Three specimens of each of the target species were selected based on the overall quality 

of the shell in regards to erosion, existing fractures and evidence of bioerosion and 

adhesions. This was done through taphonomic assessments of each individual shell 

specimen with samples selected based on minimal taphonomic alteration to ensure 

maximum comparability of results. 

- Experimental Design 

Purple yam specimens were obtained from a Pacific Island food store in Sydney.  

Preparation of the yam involved cutting the end of each specimen creating a uniform 

face for the shell to move against. The experiment was then broken down into three 

sections for each shell dependent on the number of strokes the shell was used; 20, 40 

and 100 with one stroke constituting a single motion either towards or away from the 

body with the shell edge in constant contact with the substrate. 

The shells were held with the thumb located 

on the ventral surface at the apex and the 

index finger wrapping over the anterior dorsal 

surface around the apex. The shell’s anterior 

edge was the exposed to the surface of the 

yam.  
Fig. 4.10 : Depiction of yam use-wear 

experiment 
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The shells used in the experiments were then catalogued, individually bagged, and then 

organized under species. Following this, each shell sample was then photographed 

under a low‐power light‐microscope, and then selected samples were viewed under a 

scanning electron microscope (SEM). 

These images were then analysed using low‐powered light microscopy followed by 

scanning electron microscopy and the patterns observed were interpreted following the 

principles of fractography (Hull, 1999) as well as any other visible signs of alteration. 

4.4.1f – Pork 

Pork (Family: Suidae) is recognized as not relevant to a Golo Cave context. Mammals were not 

introduced to the area until well after the cultures inhabiting the cave had moved away 

(Flannery, 1995). It was included in the scientific analysis because of the range of textures that 

are apparent in the leg structure; being bone, flesh and skin. Shell material will be tested against 

these materials and the wear patterns that occur recorded. 

Aim  

‐ To determine the suitability of five species of limpet shells as a tool for food processing, 

specifically with regards to the slicing of animal skin, the cutting of flesh and the scraping 

of bone, as well as analysing the wear patterns and fragmentation associated with this 

processing. . 

Method  

- Study specimens 

The specimens used include five species of limpet; Cellana tramoserica, Cellana solida, 

Patella peronii, Patella flexuosa and Siphonaria diemenensis. These mollusc species were 

utilized in various actions associated with the processing of pork. 
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Nine individual specimens of the five species of shell were selected based on the overall 

quality of the shell in regards to erosion, existing fractures and evidence of bioerosion 

and adhesions. This was done through taphonomic assessments of each individual shell 

specimen and allowed maximum comparability of results.   

- Experimental design 

A whole pork leg was obtained that had large amounts of flesh, skin and bone which 

allowed experimentation on a large number of textures that fall under the category of 

pork.  

The shells were held with the thumb located 

on the ventral surface at the apex and the 

index finger wrapping over the anterior dorsal 

surface around the apex. The shell’s anterior 

edge was the exposed to a part of the pork leg 

that was being tested; either flesh, bone or 

skin. 

The experiment was then broken up into two 

separate parts based on the direction of the 

scraping action; towards the body of the 

holder, and away from the body of the holder. 

Each of these directions was then broken  up  

in to  the  number  of  strokes the  

shell contacted the pork; 20, 40 and 100 

strokes for each species of shell. The direction  

in which the shells were moved is dependent 

on the material being tested. Both flesh and 

Fig. 4.11 : Depiction of pork (skin, 
flesh and bone) use-wear 

experiments 
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skin involved cutting actions whereas for bone a rubbing action was utilised. This was to 

represent cutting into and through flesh and skin, and defleshing bone. For the cutting 

action, one stroke constituted one motion towards the body with the shell contacting 

the skin for the dur‐ 

ation of the stroke. This is the same for flesh. 

One stroke in rubbing pork bone constitutes a forward and backwards motion with the 

shell in contact with the bone for the duration of the stroke. 

The shells used in the experiments were then catalogued, individually bagged, and then 

organized under species. Following this, each shell sample was then photographed 

under a low‐power light‐microscope, and then selected samples were viewed under a 

scanning electron microscope (SEM). 

These images were then analysed and the patterns observed are interpreted following 

the principles of fractography (Hull, 1999) as well as any other visible signs of alteration. 

 

4.5 – LOW AND HIGH POWERED MICROSCOPY 

Following the experimentation, each shell that was used was analysed under a low‐powered 

stereoscopic light microscope with magnification capabilities of up to 45 times.  This allowed 

observation of the dorsal and ventral shell surface, with any form of chipping or fragmentation 

that had occurred during the course of the experiments being noted. Using the taphonomic 

assessments conducted previously in conjunction with the light microscope, modifications that 

occurred in the process of experimental working could be isolated with a high degree of 

certainty. Samples from the Golo Cave assemblage were also analysed under a low‐power light 

microscope. 

After the low‐powered visual analysis of the shell samples, a selection of the experimental shell 

sample, as well as Patella flexuosa samples from the Golo Cave assemblage, were selected for 
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scanning electron microscopy (SEM), once again care of the University of Wollongong’s Faculty 

of Engineering. Due to restraints on booking times and limitations in funds, not every specimen 

could be viewed with SEM. By first analysing samples under a low‐powered microscope, those 

that showed the most distinct fragmentation, fracture or other evidence of use were selected 

for SEM analysis. SEM allowed the most detailed view of the results of the experimentation 

process, including micro‐abrasion, micro‐chipping and striations as well as seeing in high 

resolution the effect of force on the microstructure of shells. SEM analysis also allowed the 

identification of the microstructure of S. diemenensis which was hitherto unreported. 
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Chapter 5 

Results 
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5.1 - ACCESSION DATA 

Specimens collected were sorted by species and each given a unique accession code and stored 

separately. This was done for ease of recognition and recollection when needed for 

experimentation or reference, and for general organization. A total of 353 individual shell 

specimens were collected spread over five species excluding the Golo Cave samples. 

The diagram depicts the differentiation among species based on length, width and elevation of 

apex from the margin. This supports the notion that species are different in their morphology 

and using this data it can be said with confidence that the sample species are well represented 

and cover a broad morphological range. Points positioned closer to each other have similar shell 

morphologies 

 

 

 

 

Fig. 5.1 : Diagram above shows scatter plot of limpet specimens graphed 
where height, width and shell elevation are variables. As can be seen 
species cluster for the most part in species similar groups. ANOSIM 

analysis indicates a large significance between species (Significance level 
of sample statistic 0.1%). 
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5.2 – XRD Analysis 

As mentioned in a previous chapter, molluscan shell is made of calcium carbonate in the mineral 

form of calcite and aragonite. The ratio of these two minerals that come together to create the 

overall composition of the shell is not a uniform value between genera. The ratio is influenced by 

a number of factors, in particular, whether the animal is a tropical or temperate species 

(Vermeij, 1993). In limpets, tropical species have a higher proportion of aragonite versus calcite, 

and the reverse is true for temperate species. By utilising x‐ray diffraction (XRD) analysis, the 

ratios of calcite and aragonite can be identified (Watabe, 1988).   

As well as this, it has been known for calcium carbonate crystals, regardless of form to 

recrystallise. This may happen at times of extreme heat or pressure and is also associated with 

burial in the archaeological record. Recrystallisation will alter the ratios of aragonite to calcite 

and as such affect the way the shell would react to certain forces. Conducting XRD analysis is a 

way of recognising whether shell has undergone recrystallisation. 

The tables and graphs on the following page present the ratios of calcite and aragonite present 

in each of the target species of this research project. S. diemenensis is a temperate species yet is 

comprised of 97% aragonite. It is important to note, as mentioned previously, S. diemenensis is 

not a true limpet, so some characteristics may not apply. 
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Table 5.2 C. solida   
Comment: Ces016    
Results: Contrast Corrected Weight % 
Chi square                2.16 
# ID Phase   Weight% 
1 10 Calcite 1 58.2 
2 97 Aragonite 41.8 

Table 5.1 C. tramoserica   
Comment: Cet016    
Results: Contrast Corrected Weight % 
Chi square        2.23 
# ID Phase Weight% 
1 10 Calcite 1 77.2 
2 97 Aragonite 22.8 

Table 5.3 P. peronii   
Comment: Pap049    
Results: Contrast Corrected Weight % 
Chi square                           2.12 
# ID Phase Weight% 
1 10 Calcite 1         31.9 
2 97 Aragonite         68.1 

Table 5.4 P. flexuosa   
Comment: Paf006    
Results: Contrast Corrected Weight % 
Chi square  2.66 
# ID Phase Weight% 
1 10 Calcite 1 26.5 
2 97 Aragonite 73.5 

Table 5.5 S. diemenensis   
Comment: Sid019    
Results: Contrast Corrected Weight % 
Chi square  2.46 
# ID Phase Weight% 
1 10 Calcite 1 2.1 
2 97 Aragonite 97.9 

Table 5.6 P. flexuosa (Golo Cave sample) 
Comment: PafGCxxx 
Results: Contrast Corrected Weight % 
   2.48 
# ID Phase Weight% 
1 10 Calcite 1 40 
2 97 Aragonite 60 

Table 5.1-5.6 : Results of XRD analysis of the 5  target species and Golo Cave 
archaeological specimen 
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Fig. 5.3 : Graph of XRD results of C. solida with aragonite 
and calcite crystals labeled 

Fig. 5.2 : Graph of XRD results of C. tramoserica with aragonite 
and calcite crystals labeled 
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Fig. 5.4 : Graph of XRD results of P. peronii with aragonite and 
calcite crystals labeled 

Fig. 5.5 : Graph of XRD results of P. flexuosa with aragonite and 
calcite crystals labeled 



71 
  

0

100

200

300

400

500

5 10 15 20 25 30 35 40 45 50 55 60 65 70

C
ou

nt
s 

 Degrees 2-theta 

Patella flexuosa (Golo Cave sample) 

C A A 

A 

C 

C 
A 

A A 

A 

C 
C 

0

100

200

300

400

500

5 10 15 20 25 30 35 40 45 50 55 60 65 70

C
ou

nt
s 

 Degrees 2-theta 

Siphonaria diemenensis 

C 

A 

A 

A 

C 

C 

A A 

A 

C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 

 

Fig. 5.6 : Graph of XRD results of S. diemenensis with aragonite 
and calcite crystals labeled 

Fig. 5.7 : Graph of XRD results of P. flexuosa (Golo Cave 
specimen)  with aragonite and calcite crystals labeled 
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The series of tables on page 68 are the results from the XRD analysis of the 6 shell 

samples. The column labeled ‘Weight%’ describes the proportion of calcite to aragonite 

in the tested sample as a percentage by weight.  

The graphs on the previous pages (Fig. 5.2 to Fig. 5.7) are a graphical representation of 

the data presented in the tables related to the XRD analysis conducted where each peak 

represents either aragonite or calcite in the sample. Peaks labeled with ‘A’ are aragonite 

and peaks labeled ‘C’ are calcite. It is worth noting that the values for contemporary P. 

flexuosa specimens and the P. flexuosa specimens from the Golo Cave assemblage are 

nearly identical. This implies that the archaeological specimens from Golo Cave have not 

undergone recrystallisation and are thus suitable for direct comparison with the 

contemporary specimens. 
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5.3 – INSTRON Results 

INSTRON experimentation was utilised for a number of reasons; first and foremost is creating a 

baseline of fracture patterns in controlled conditions. An INSTRON machine will continually 

apply increasing amounts of force to an object until the point that structural integrity fails, 

resulting in fracture and fragmentation. Natural taphonomic processes are complex and a large 

number of factors are in play at any one time. By applying force in a controlled setting, such as 

experimentation with an INSTRON machine, fracture patterns relating to a specific amount or 

direction of strain will yield reduction patterns relating to that force alone.  

The diagrams represented below are graphical representations of such an event. Where the line 

tracking the amount of force being applied returns to the zero level, a point of structural failure 

has been observed. Five of the target specimens were each subject to such a test with three of 

each species experiencing a different direction of force, as described in Chapter 3. After the 

point of structural failure has been attained, the specimens are then analysed in an attempt to 

interpret the reduction patterns observed.    
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Cellana tramoserica 
 
Cet091 – Dorsal to ventral compression 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.8 : Results of INSTRON controlled fracture experiment of 

C. tramoserica  with pictured breakage patterns 
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Cet092 – Anterior to posterior compression 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 5.9 : Results of INSTRON controlled fracture experiment of 
C. tramoserica with pictured breakage patterns 



76 
  

Cet066 – Dextral to sinistral compression 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.10 : Results of INSTRON controlled fracture experiment of 

C. tramoserica with pictured breakage patterns 
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C. tramoserica showed a diverse range of fracture patterns during the INSTRON stage of 

experimentation. Damage was nearly total in all cases except for Cet092 which only fragmented 

slightly at the shell posterior, causing it to slip off of the stage and end testing. Large amounts of 

shatter was recorded, especially Cet091 in which most of the nacreous apex material 

fragmented into small pieces, as seen in the picture above. The irregular complex crossed 

lamellar portion of the apex remained intact, though was still removed from the rest of the shell.  

Interestingly, seen in Cet066, bioerosion does not influence the direction of fracture. A hole 

penetrating the shell surface, as seen above does not appear to be a zone of weakness, and 

hence the crack does not travel this path which goes against traditional understanding as 

outlined by Zuschin (2003) and others. Multilayer cracking at shell margin as well as different 

cracking directions is also apparent. Different directions of cracking as well as multilayer cracking 

were also seen in Cet091 and Cet092   respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



78 
  

Cellana solida 
 

Ces006 – Dorsal to ventral compression 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.11 : Results of INSTRON controlled fracture experiment of 
C. solida with pictured breakage patterns 
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Ces020 – Anterior to posterior compression 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.12 : Results of INSTRON controlled fracture experiment of 

C. solida with pictured breakage patterns 
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Ces051 – Dextral to sinistral compression 
 
 

 
 
 
 
  
 
 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.13 : Results of INSTRON controlled fracture experiment of 

C. solida with pictured breakage patterns 
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Reduction in C. solida samples that were used in INSTRON experimentation exhibited little 

fragmentation, and minor fracture. The majority of the reduction in the INSTRON samples came 

in the form of edge damage with one large crack in Ces006 running in a radial direction from the 

shell margin to the apex with the shell remaining whole. Differential fracture can also be seen in 

this example. Round fracturing of the shell margin, seen in Ces020 is also an example of minor 

damage seen. Compression along the medial margin has forced bending/shearing fracture on 

Ces051. Here the nacreous ventral layer has separated and has almost chipped off. What seems 

to be becoming a trend in fracture patterns with shell bearing a nacreous interior, a separation 

between the nacreous and overlying prismatic layer is once again apparent, 
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Patella peronii 
 

Pap075 – Dorsal to ventral compression 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.14  : Results of INSTRON controlled fracture experiment 
of P. peronii with pictured breakage patterns 
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Pap073 – Dextral to sinistral compression 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.15 : Results of INSTRON controlled fracture experiment of 
P. peronii with pictured breakage patterns 
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The ‘Dorsal‐Ventral’ compression test caused complete destruction of the apex of Pap075. The 

apex fractured concentrically while one crack travelled radially, splitting between the layers. 

Fragmentation of Pap073 consisted of a fracture running parallel to the shell margin in a 

concentric fashion, suddenly terminating in a radial direction back to the shell edge. This caused 

dislodgement of a large portion of the anterior edge. Concentric fracture is also seen in Pap073, 

though the edge of these cracks is rougher than that of Pap075.  

Pap074 was used in the INSTRON experiment, but was later identified as a different species. This 

means that the results for the anterior‐posterior compression experiment are not relevant to 

this study anymore and therefore incomparable. This experiment will be repeated at a later time 

to complete the study. 
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Patella flexuosa  

 
Paf029 – Dorsal to ventral compression 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.16 : Results of INSTRON controlled fracture experiment of 
P. flexuosa with pictured breakage patterns 
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Paf030 – Anterior to posterior compression 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.17 : Results of INSTRON controlled fracture experiment of 
P. flexuosa with pictured breakage patterns 
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Paf031 – Dextral to sinistral compression 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.18 : Results of INSTRON controlled fracture experiment of 
P. flexuosa with pictured breakage patterns 
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Fracture in P. flexuosa was varied on a macro scale. Paf029 suffered only edge chipping on its 

margin in the ‘Dorsal‐Ventral’ compression experiment. As well as this, a radial crack originating 

from the apex towards the shell margin is clear. Paf030 was tested using ‘Anterior‐Posterior’ 

compression, and all the damage that occurred was minor chipping at the posterior edge. No 

other cracks or damage are visible. In contrast, Paf031 in ‘Dextral – Sinistral’ compression 

suffered complete destruction. Each fragment displays both concentric and radial fracture and 

little shell shatter or debris outside of the five large pieces is apparent. 

 

On a micro scale, fracture is characterised by rough and sharp breaks, as well as shearing in 

between layers. The organic content of the shell structure also plays a part in its fracture 

patterns. Seen in where cracks and fractures clearly form in planes of weakness designated by a 

higher organic content (Watabe, 1988). Seen in Paf030, breakage along growth lines parallel to 

the shell margin, as well as differential breakage between the rib and furrows of the dorsal 

surface is also apparent. The crossed lamellar microstructure of P. flexuosa is clearly visible in 

Paf031. 
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Siphonaria diemenensis 
 

Sid 050 – Dorsal to ventral compression 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.19 : Results of INSTRON controlled fracture experiment of 
S. diemenensis with pictured breakage patterns 
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Sid051 – Anterior to posterior compression 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.20 : Results of INSTRON controlled fracture experiment of 
S. diemenensis with pictured breakage patterns 
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Sid052 – Dextral to sinistral compression 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.21 : Results of INSTRON controlled fracture experiment of 
S. diemenensis with pictured breakage patterns 
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A diverse range of fracture patterns occur in the fracture patterns of S. Diemenensis, however 

the trend leans more towards radial breakage than concentric breaks with seemingly less 

structural integrity at the apex. Sid050 is characterised by a series of fragments that have been 

removed from the main structure with a combination of a radial crack changing to a concentric 

direction then returning to a radial orientation towards the shell margin. Sid051 has fractured 

via two radial cracks joining at the apex. Sid052 exhibits minor edge chipping towards its 

posterior. 

Sid050 exhibits differential fracture as well as shearing between layers seen in Concentric 

fracture patterns as well as tearing structures are seen in Sid051 and in respectively. Branching 

cracks are also apparent in Sid052. 
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            5.4 ‐ EXPERIMENTAL WORKING RESULTS 
 
Fig. 5.22 : Ces022 – Soaked Bamboo (30x Magnification) 

 
 
 
 
 
 
 
 
Edge chipping 
and concentric 
cracks running 
along ventral 
layer. 
 
 
 
 
 
 

 

 

 

Fig. 5.23 : Pap071 – Soaked Bamboo (7x Magnification) 
 
 
 
 
 
 

Rounded facet 
across shell 
margin as well 
as incipient 
cracking parallel 
to margin 
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Fig. 5.24 : Cet038 – Soaked Bamboo (30x Magnification) 

 
 
 
 
 
Crack 
seemingly 
following 
furrow of 
shell as well 
as differential 
breakage 
between 
layering 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 5.25 : Sid048 – Soaked Bamboo (12x Magnification) 

 
 
 

 

 
Edge wear 
and 
rounding, 
especially on 
edges of ribs. 
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Fig. 5.26 : Paf021 – Dry Bamboo (15x Magnification) 

 

 

 

 
Differential 
breakage in 
minor edge 
chipping and 
cracks 
running 
parallel to 
shell edge 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 5.27 : Cet087 – Dry Bamboo (20x Magnification) 

 
 
 
 
 
 
 
 
 
Heavy edge 
rounding with 
intense, 
untidy 
fractures 
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Fig. 5.28 : Paf026 – Haematite (20x Magnification) 
 
 

 
 
 
 
Very little 
damage though 
obvious residue 
left on rib 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
Fig. 5.29 : Cet088 – Haematite (15x Magnification) 

 
 
 
 
 
 
 
 
 
 
Edge wear as 
well as 
differential 
cracking 
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Fig. 5.30 : Paf003 – Taro (7x Magnification) 
 
 
 
 
 
 
 
Edge 
chipping and 
removal of 
periostra‐
cum from 
furrows while 
ridges remain 
relatively 
untouched 
 
 
 
 
 
 

 
 
 
 
 
Fig. 5.31 : Cet043 – Taro (30x Magnification) 

 
 
 
 
 
 
 
 
Differential 
breakage 
patterns 
between 
shell’s 
structural 
layering 
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Fig. 5.32 : Sid002 ‐ Taro (15x Magnification) 
 
 
 
 
 
 
 
 
Differential 
breakage 
patterns 
between 
shell’s 
structural 
layering 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 5.33 : Pap010 – Taro (22x Magnification) 
 

 

 
 
 
 
 
 
 
Radial 
scratches 
and incipient 
cracking 
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Fig. 5.34 : Pap059 – Pork (45x Magnification) 
 

 
 
 
 
 
 
 
 
Fracturing 
with no 
particular 
orientation 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 5.35 : Paf016 – Pork (7x Magnification) 
 

 

 

 

 
 
 
 
Differential 
chipping of 
shell edge 
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      Fig. 5.36 : Paf014 – Pork (45x Magnification) 

 
 
 
 
 
 

 

Edge 
rounding 
and 
chipping 
along 
edge 
 
 
 
 
 
 
 

 
 
 
  
     Fig. 5.37 : Ces029 – Pork (20x Magnification) 
 

 

 

 

 
River 
cracks 
(Hull, 
1999) 
running 
parallel to 
shell 
margin 
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Fig. 5.38 : Ces078 – Pork (7x Magnification) 

 

 
 
 
 
Differential 
breakage 
between 
layers of shell 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 5.39 : Cet040 – Pork (15x Magnification) 

 

 

 

 

 
Cup shaped 
chips across 
dorsal edge 
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Fig. 5.40 : Sid042 – Yam (15x Magnification) 
 

 
 
 
 
 
 
 
 
Heavy 
concentric 
cracks 
around shell 
margin 
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5.5 – Scanning Electron Microscopy (SEM) 

While light powered microscopy is useful in the analysis of fracture and wears patterns, scanning 

electron microscopy (SEM) is the best way to view high resolution images and micro traces. As 

the core of this research project is wear patterns and comparing different structures on a 

number of scales, SEM was a logical addition to the experimentation process. Imaging specimens 

that have previously been used in the experimental stages of the research project using SEM, a 

magnification of up to 330 times was achieved giving great detail in imaging micro features and 

identification of features invisible to the naked eye.  
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Fig. 5.41  
SEM; Cet038 – Soaked 
bamboo use‐wear 
experiment (120x) 
Possible gouges or 
striations towards w 
 
 
orking edge 
 
Boundary between 
worked and not 
worked edge. (Worked 
below, un‐ worked 
above) 
 
 
  
Scoring/Striations 
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Fig. 5.42  
SEM; Paf030 – INSTRON 
experiment; Anterior‐
Posterior orientation 
(37x) 
 
 
 
Sheared surface. 
Topmost layer removed 
showing pristine 
crystallographic 
structure underneath. 
 
Tearing of the edge 
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Fig. 5.43 :  
SEM; Paf026 – 
Hematite use‐wear 
experiment (37x) 
 
 
 
 
This is the sample of P. 
flexuosa being rubbed 
against hematite. Note 
the distinct lack of 
edge damage besides 
very minor examples 
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Fig. 5.44 :  
SEM; Paf026 – 
Hematite use‐wear 
experiment (95x  
 
 
 
 
 
 
Residual particles 
(white spots) from the 
hematite experiment 
mentioned on the 
previous page 
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Fig. 5.45 :  
SEM; PafGC063 – Golo 
Cave archaeological 
specimen (100x)  
 
 
 
Very straight and 
regular edge. 
 
 
Grooves perpendicular 
to edge may indicate 
working 
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Fig. 5.46 :  
SEM; PafGC040 – Golo 
Cave archaeological 
specimen (130x) 
 
 
 
 
 
 
Very straight and 
regular edge. 
 
Pressure induced cracks 
with a regular 
orientation along edge 
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Fig. 5.47 :  
SEM; PafGC062 – Golo 
Cave archaeological 
specimen (45x) 
 
 
 
Image of natural 
fracture patterns. All 
fragmentation has 
occurred along planes of 
weaknesses naturally 
generated with crystal 
growth as can be seen 
through shearing 
through cleavage 
planes. 
 
Fracture running 
parallel to others 
 
All fractures running in 
the same direction 
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Fig. 5.48 :  
SEM; PafGC062 – Golo 
Cave archaeological 
specimen (130x) 
 
 
 
Tearing of 
microstructure 
indicates that the 
organic content of the 
shell was still good, 
which implies that this 
shell was fragmented 
when it was either alive, 
or not long after its 
death. 
Preservation of this 
feature is also very 
good in regards to it 
being one of the Golo 
Cave archaeological 
specimens. This quality 
of preservation means 
that the archaeological 
specimens are directly 
comparable to the 
contemporary 
specimens in this study. 
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Fig. 5.49 :  
SEM; Paf016 – Pork  
use‐wear experiment 
(17x) 
 
 
 
 
 
Very irregular 
chipping/crushing of 
edge. 
Possible reflection on 
the difference in 
texture in bone 
between macro and 
micro structure.  
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Fig. 5.50 :  
SEM; Sid052 – INSTRON 
experiment; Dextral‐
Sinistral orientation 
(130x) 
 
 
 
 
Microstructure of 
S.diemenensis. 
Notice third order 
lamellae of one layer 
overlying another at 
perpendicular angles, 
with this pattern 
repeating itself along 
the fractured edge. This 
indicates a crossed 
lamellar microstructure. 
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What can be discerned from the SEM analysis is the sheer variety of micro features that are 

apparent in the sample assemblage of this research project. Specifically referring to the 

Golo Cave samples, tearing features (PafGC062) and natural fracture edges (PafGC062) were 

identified as well as edge wear that does not resemble any natural taphonomic processes 

(PafGC040). This clear distinction between natural and potentially culturally modified edge 

wear and fracture that does not resemble any form of taphonomic effect on shell builds a 

strong argument for an alternate source of such wear patterns, and at the forefront of this 

argument is shell utilised as a raw material for use as a tool. 
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5.6 – Results in Summary 

What can be discerned from the results of this chapter is the range of diversity in fracture 

and reduction patterns in the limpet species through the experimentation process. Through 

controlled fracture experiments using INSTRON machinery and software, and use‐wear 

experiments, a broad range of results were achieved relating to archaeological situations; 

with INSTRON experimentation serving as a proxy for taphonomic compaction and the use‐

wear experiments representing expedient usage of a by‐product of food procurement. This 

now creates a basic reference point to compare the results of the experimentation process 

and determine if indeed a significant difference between taphonomic and cultural 

modification exists in the samples from Golo Cave, Indonesia. 

Reduction patterns observed from the INSTRON experimentation is dominated by 

catastrophic failure events resulting in fragmentation of large pieces of the shell. This was 

particularly apparent in ‘Dorsal‐Ventral’ compression where force was constantly applied 

until catastrophic failure resulted in the release of energy, as opposed to ‘Sinistral‐Dextral’ 

compression where relatively minor chipping occurred on the shell margin causing the shell 

to slip off the stage. This was a limiting factor in this stage of experimentation as 

compression is stopped when the machine’s software detects a sharp drop in resistance, 

which can be catastrophic failure, or merely chipping of the shell margin. 

What can be inferred from the INSTRON experiment results is that fracture occurs along 

existing planes of weakness. These planes occur as existing features in the crystalised 

structure, interaction between adjacent microstructures or morphological features in the 

shell itself such as the muscle scar being thinner than the surrounding shell or taphonomic 

features weakening the shell’s structure. These fracture patterns are seen in the shell 
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specimens bearing nacreous layers (C. tramoserica and C. solida) where the inner nacreous 

layer fragments almost entirely and separating from the prismatic outer layer. The 

orientation of the individual calcium carbonate crystals is very different between these two 

microstructures, causing a natural weak point at their contact. This is best represented by 

Cet091 where the nacreous interior fragments into nearly a powder, and Cet051 where the 

nacreous interior layer remains intact, but peels away from the prismatic outer layer. 

The other shell specimens still show this pattern of fracturing happening along planes of 

weakness, predominantly along the concentric growth lines around the apex, best seen in 

Pap075, Cet091, Pap073 and Paf031. This concentric fracture does also turn into radial 

fracture towards the shell margin forming a removed shell fragment. The results of the 

INSTRON experimentation on S. diemenensis led to a greater degree of radial fracture than 

all four other species. This is explained by the radial ribs of S. diemenensis shell being more 

prominent than the others, making natural channels for cracks to run down leading to 

detaching of a fragment. This is seen in the ‘Dorsal‐Ventral’ and ‘Dextral‐Sinistral’ 

compression of S. diemenensis. 

Microscopically, these patterns are also reflected in the SEM picture of Sid052 (Fig. 5.50), 

where the microstructure of S. diemenensis becomes apparent. What is seen is the 

fracturing of the crossed‐lamellar microstructure along planes of crystal growth. As well as 

this, the notable separation between the different orders of lamellar layers; another plane 

of weakness is apparent. Paf030, while appearing quite ragged and rough, does have some 

uniformity in its fracture patterns, with the orientation of cracks and separation of crystals 

along consistent axes. 
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These patterns are in contrast to those seen in the use‐wear experiments. While total 

catastrophic failure was less common than the INSTRON experimentation, fracture and 

fragmentation was definitely observed. What the experimental working shows is localised 

damage to the shell and a number of breakage patterns observed on the one specimen.  

Interestingly, the material the shell was being used on does not necessarily yield predictable 

results. For example, the rubbing experiment of bamboo with P. flexuosa (Paf021) created 

more fragmentation when compared with the hematite experiment and shell of the same 

species Paf026. This result highlights the fact that not all materials react as we expect. While 

a more substantial explanation may exist for this occurrence, it was not followed into in this 

study.  
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In the previous chapter, a combination of light microscopy and SEM was used to recognise and 

identify examples of fracture and modification. Using these imaging techniques, detailed high 

resolution images were obtained detailing the fracture and wear patterns created during the 

experimentation process. Coming out of the results of this research project is the observation of the 

large amount of variation in fracture and modification features and structures in shell. This variation 

ranged in structural features observed to the amount and intensity of fracture and modification in 

the shell samples. 

Within the Golo Cave assemblage with specific regards to P. flexuosa, variation exists on both a 

macro and micro scale. Firstly and most obviously was the variation in complete and fragmented 

samples. Within the fragmented assemblage differentiation could be made over shell samples that 

had been broken taphonomically and those that had been culturally modified. As seen in the SEM 

pictures, a broad range of microtraces became apparent, such as the very regular and fine line of 

pafgc040 that in all probability was modified by man to the rough, naturally fractured surface seen in 

pafgc062. All of these microtraces tell of different causing forces and as much can be learned by 

identifying what it is not than what it is.  

 While the focus in this research project is on modified shells, equal attention was paid to those that 

did not exhibit signs of modification. The action of a number of taphonomic processes was apparent 

throughout the assemblage such as compaction‐breakage, bioerosion and burning as well as what is 

now contested to be definitive cultural modification. 

Using the data gathered from the experimental work and light microscope and SEM analysis, there is 

definitely a strong argument that a portion of the P. flexuosa specimens from the Golo Cave 

assemblage are culturally modified, and all the various elements of this project contributed valuable 

aspects to their interpretation The XRD analysis demonstrated that the archaeological P. flexuosa 

sample was not recrystallised, with the aragonite to calcite ratio in the shell of archaeological P. 

flexuosa is near identical to that of contemporary specimens. 
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Thus, despite being over 32,000 years old (Szabó et al., 2007), the modern and archaeological shells 

are chemically and structurally comparable. There is also clear evidence on the archaeological P. 

flexuosa specimens being collected and used either live, or shortly after death. The loss of the 

organic fraction of the shell microstructure begins shortly after the death of the animal.  The SEM 

picture of the archaeological P. flexuosa specimen (PafGC062) shows a distinct tearing fracture that 

only occurs when a relatively high organic content of the shell is present. Were it to have been an 

‘old shell’ or one that has gone through stages of chemical degradation like bleaching from the sun 

reducing the organic content organic content, then the fracture pattern would have been more likely 

to resemble standard multi‐directional cross‐lamellar fracturing uninfluenced by the presence of 

organic matter. 

Of particular note is the fact that some of the SEM pictures shell that had very straight, regular 

edges; specifically PafGC040 and PafGC063. Naturally occurring fractured edges, like the ones seen 

in PafGC062 follow existing planes of weakness that orientate themselves in the same direction as 

the shell’s microstructure (Currey, 1980).  This tendency was clearly shown in the results of the 

INSTRON experiments. However, with the archaeological specimens PafGC040 and PafGC063, the 

edge is incredibly regular and flat, with minimal undulation, chipping or serration. Instead, a well‐

rounded edge that crosses the lamellae of the P. flexuosa shell’s crossed‐lamellar layers can be seen. 

Such damage is not within the limits of the natural fracture tendencies of the shell.   

The morphology of edge modification results from a combination of two major factors; the 

properties of the material being worked and the material properties of the tool with which the 

working is being undertaken. While extensive study has been done related to shell, its structural 

abilities and limitations, and particularly on shell microstructure (Currey, 1980; Watabe, 1988; 

Chateigner et al., 2000; Bruet et al., 2005 Kobayashi and Samata, 2006 and others) the vast majority 

of these studies have been set in an engineering context. Very little study in this field has been 
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applied to the field of archaeology, but presents a valuable baseline for the recognition of natural 

fracture tendencies. 

As discussed in Chapter 2, lithic artefacts have been pivotal in discussions of human behavioural 

evolution on a global scale (Clark, 1971; Foley and Lahr, 2003). So in the context of Southeast Asia, 

the general simplicity of the region’s lithic artefacts lead to a label of cultural and technological 

simplicity.  Once again, as discussed in Chapter 2, there are arguments against that claim (White, 

1977; Brumm and Moore 2005), and one is the replacement of stone as the primary medium of 

artefact production with other materials – most notably bamboo (Mellars, 2006). Szabó et al. (2007) 

raised the possibility of shell as a largely unrecognised alternative raw material in the region, but 

there is debate as to whether shells are an effective raw material for tools (Semenov, 1964). 

Now speaking from experience, and based on the experiments conducted within this research 

project, it is apparent that shell is more than suitable for some applications, but is entirely 

ineffective in others. In the experimental working, the shells were largely able to effectively 

complete the allotted task, but resulting traces of these actions on the shell itself were variable. For 

example, the peeling of the soft and fibrous taro had a small effect on the shell, namely the removal 

of the periostracum layer and some minor edge chipping especially on highly ornamented shell like 

P. flexuosa. Despite this, large corm taro could be peeled quickly and effectively.  Equally, with the 

scraping haematite experiment, P. flexuosa shell was more than capable of removing significant 

amounts of material from the rock itself with minimal damage to the shell margins, as seen in 

Chapter 5 and in the SEM analysis of the same chapter. That experiment alone should be enough in 

demonstrating how underestimated shell as a raw material really is. Shells also seem to excel at 

peeling materials, such as yam and taro. Conversely, shell failed to do any real damage to the 

bamboo, both inside and out and proved largely ineffective in butchering the leg of pork. 

With regards to acquisition of shell, the use of limpet scrapers in the Golo Cave setting seems to 

represent casual artefact use. P. flexuosa was one of the dominant species in the midden, suggesting 
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its primary subsistence function.  No P. flexuosa showed signs of shaping or working to create a 

specific shape prior to use, and thus it has been inferred that P. flexuosa shell specimens were used 

in their raw state and probably in passing (Szabó et al., 2007). This is in contrast to Turbo mamoratus 

opercula which, based on their ecology, one would have to go well out of one’s way to acquire these 

specimens (Szabó et al. 2007). It is therefore reasoned that P. flexuosa specimens are sourced from 

midden material in an act that resembles recycling. In saying this however, there is some form of 

systematic approach in the selection of P. flexuosa for use as a tool. In the Golo Cave assemblage, no 

other species of limpet exhibit the same wear patterns seen in P. flexuosa. It can thus be concluded 

that P. flexuosa specimens are selectively chosen based on a then established understanding of 

varying levels of effectiveness that specific species have at specific jobs. 

Throughout the experimentation process, I demonstrated that it is possible to peel yam and taro 

with a limpet shell. I also demonstrated that it was possible to extract a substantial amount of 

powdered haematite using the anterior edge of a limpet shell. As well as this, it was also 

demonstrated that heavier use does not necessarily lead to greater degrees of modification. Twenty 

strokes against bamboo and a faceted edge was developing, whereas the same number of strokes 

against the haematite left a chipped edge only visible with SEM. This then prompts questioning 

about the extent and nature of working that meant that the archaeological specimens of P. flexuosa 

developed such a flat and clearly modified edge. The surprisingly minimal degree of modification to 

the shell seen in much of the experimental work suggests that the Golo specimens isolated were 

heavily worked indeed. 

These various observations lead to a number of important conclusions.  Firstly, the presence of the 

modified P. flexuosa in the Golo Cave deposits expands the repertoire of shell artefact use at the 

site.  Secondly, the experimental work has demonstrated that unmodified P. flexuosa shells are a 

highly suitable tool for some tasks and not others.  Thirdly, the surprisingly minimal amount of 

modification on most of the experimental specimens suggests that shell tool use may be very easy to 
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overlook where present.  Fourthly, an understanding of the precise nature of the microstructure of 

the shell and the shell’s reaction to different forces has been shown to be critical in pinpointing and 

interpreting working. It is hoped that this pilot study will form the basis of a new method of 

investigating and interpreting shell use and modification.  
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Appendix 1: Written taphonomic assessment sheet 

Accession number:              

Species: 

Location and date collected: 

 

Length (Anterior to posterior): 

Width (Left to right): 

Elevation: 

Location of apex: 

 

Taphonomic notes 

- Chipping/Fragmentation 

 

 

- Erosion 

 

 

- Adhesions 

 

 

- Other comments 
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Appendix 2: Diagrammatic taphonomic assessment sheet used with Appendix 1  

 

Accession number: 
 
 
        Dorsal                                                                                      Ventral 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Dextral                Sinistral 
 
 
 
 

 

 

 

 

1 2 

3 4 

1 2 

3 4 

2 4 1 3 
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Appendix 3: Example of completed written taphonomic assessment 
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Appendix 4: Example of completed diagrammatic taphonomic assessment attached to 
written assessment on previous page. 
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