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MTD method for better prediction of sea surface temperature

Abstract
A class of incremental learning procedures known as the Modified Temporal Difference (MTD) method is
introduced in this paper for fixed-step prediction problems which uses the functional features of Multilayer
Perceptron. The method is applied for weekly prediction of the Sea Surface Temperature (SST) from
oceanographic data. Temporal Difference (TD) methods suggest how each output of a temporal sequence
must be changed, whereas a back-propagation algorithm decides which part(s) of a network to change in
order to influence its output and reduce the overall error. In other words, TD methods and back-propagation
address temporal credit and structural credit assignment issues, respectively. While the two methods address
different sides of the same issues they are quite compatible and easily combined. A new scheme is formed by
combining the advantage of back-propagation and TD methods catering to fixed-step problems and is named
as the MTD method. The back-propagation algorithm is modified to propagate the temporal error. For
prediction problems, the exponential recency has not been found suitable due to its large negative slope. In
this paper a weighing scheme is introduced in which alterations are made to past predictions according to a
newly proposed recency factor. The stochastic method, back-propagation algorithm, TD and MTD methods
are applied to predict the SST values in the Arabian Sea, the Bay of Bengal and Central Indian Ocean and a
comparative study is made. From the study it is observed that the proposed alternative recency factor in the
MTD method leads to better prediction than the exponential recency.
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Abstract 

 
 
 
 
A class of incremental learning procedures known as Modified Temporal Difference 

(MTD) method is introduced in this paper for fixed step prediction problems which uses 

the functional features of Multilayer Perceptron. The method is applied for the weekly 

prediction of the Sea Surface Temperature (SST) from the oceanographic data. Temporal 

Difference (TD) methods suggest how each output of a temporal sequence must be 

changed, whereas back-propagation algorithm decides which part(s) of a network to 

change in order to influence its output and reduce the overall error. In other words, TD 

methods and back-propagation address temporal credit and structural credit assignment 

issues respectively. While the two methods address different sides of the same issue, they 

are quite compatible and easily combined. A new scheme is formed by combining the 

advantages of back-propagation and TD methods catering to fixed step problems and is 

named as the Modified Temporal Difference (MTD) method. The back-propagation 

algorithm is modified to propagate the temporal error. For prediction problems, the 

exponential recency has not been found suitable due to its large negative slope. In this 

paper a weighing scheme is introduced in which alterations are made to past predictions 

according to a newly proposed recency factor. The stochastic method, back-propagation 

algorithm, TD and MTD methods are applied to predict the Sea Surface Temperature 
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(SST) values in the Arabian Sea, the Bay of Bengal and the Central Indian Ocean and a 

comparative study is made. From the study it is observed that the proposed alternative 

recency  factor  in  the  MTD  method  leads  to  better  prediction  than  the  exponential 

recency. 

Keywords: Sea Surface Temperature, Temporal Difference Method, Back-Propagation, 

Multilayer Perceptron, and Recency Factor. 

 
 
 

I. Introduction 
 
 
 
 
Conventional prediction has been approached by the techniques of stochastic modelling 

and design. Research in this area has forked into two broad categories of analysis - the 

Kendall [1] and the Wiener [2] approaches. Cox [3] has reviewed processes with long 

range dependence with emphasis on their connections with second order time series 

analysis. These models are dependent on the time span in which they are operating and 

concentrate mainly on structure and development rather than on predictions. Though the 

Wiener model gives comparatively good results, it has not been widely applied owing to 

its difficult mathematics. 

 
 
 

Temporal Difference (TD) learning is a technique developed by Sutton [4] and provides a 

class of incremental learning procedures specialized for prediction problems. It is proven 

that for most real world predictions, TD methods require less memory and less 

computation than conventional methods and they produce more accurate predictions. The 

hallmark of this technique is its sensitivity to changes in successive prediction rather than 
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to overall error between prediction and the actual outcome. Any prediction problem can 

be cast in the supervised learning paradigm by taking the first item to be the data based 

on which the prediction must be made and the second item to be the actual outcome, 

namely what the prediction should have been. This type of predictions cannot be directly 

employed for making prediction for a fixed time later. Although this involves a sequence 

of predictions, TD methods cannot be used because each prediction is of a different event 

and there is no desired relationship between them. Hence, they need to use functional 

features of Multilayer Perceptron and as a result, extra layers, nodes and non-linearities 

of the latter have to be accommodated. Though Multilayer Perceptron has the capability 

to perform mapping of any nonlinear input-output relation and satisfy some of the criteria 

like adaptibility and fault tolerant characteristics of its architecture, it by itself, might not 

yield solutions for the problem of prediction. 

 
 
 

The exponential decay function that determines the weightage to successive predictions 

in TD methods induces a forgetting of learning laws and does not lead to optimal 

predictions. Further, they decide which part of the network to change so as to influence 

the network's output to reduce the overall error. They are referred to as the temporal and 

structural credit assignment issues respectively. Since back-propagation and TD methods 

address different sides of the same issue, they are perfectly compatible and easily 

combined. For example, Anderson [5] has implemented such a combination of back- 

propagation and TD methods, successfully applying it to both broom-stick balancing task 

and the "Towers of Hanoi" problem. However, both these domains provide only variable 

step problems. Narendran et. al. [6] have designed a scheme wherein the advantages of 
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back-propagation and TD methods have been combined in a single model for monthly 

rainfall prediction. They have assumed the value to be predicted as a real valued scalar 

and each prediction was assumed to be a function of only its preceding observation but 

these suppositions could be done away with. In [10] Narendran et. al. have obtained new 

levels of accuracy in daily and weekly rainfall predictions. They used a combination of 

back-propagation and TD methods to predict the quantum of yearly rainfall. Separate 

mechanisms for both structural and temporal credit assignment issues have been adopted. 

Sutton [8] has shown clearly that learning to predict is very important since it determines 

the outcome of the future event based on the current observations of the state of the 

environment. For making prediction for a fixed time later, such as the weekly prediction 

of Sea Surface Temperature (SST) from oceanographic data, both the temporal credit 

assignment and structural credit assignment issues have to be addressed. That is, it should 

be decided how each output of a temporal sequence of outputs needs to be changed and 

also which part of a network should be changed so as to influence the output in order to 

reduce the overall error. 

 
 
 

In this paper, a particular TD procedure is introduced by relating it to a classical 

supervised learning procedure, namely, the Widrow-Hoff rule [9]. However, TD 

procedures cannot be used in making prediction for a fixed amount of time later, since 

each prediction is of a different event and there is no clear desired relationship between 

them. Back-propagation cannot be directly applied to the problem of prediction, since it 

needs to know the outcome for the back-propagation of error. But it is not available till a 

certain amount of time elapses resulting in large storage requirements. A new scheme is 



5  

designed in this paper wherein the advantage of back-propagation and TD methods have 

been combined in a single model which caters to fixed step problems. Conventionally the 

weightage to successive predictions in TD methods is achieved by an exponential decay 

function [6]. However for a fixed step prediction, such as, for example, prediction of 

SST, the exponential recency is not appropriate, since it has a large negative slope and 

hence an alternative recency which leads to better prediction is proposed. One of the most 

important parameters in the climatic changes and oceanographic studies is the SST [10]. 

The stochastic, back-propagation, TD and MTD methods are used to predict SST values 

in the Arabian Sea, the Bay of Bengal and the Central Indian Ocean. It is observed from 

the experimental results that the statistical methods suffer from their lack of adaptability 

and unsuitability while back-propagation gets entangled into local minima problems. TD 

methods are inappropriate for prediction for fixed time later because of large negative 

slope in the weighing scheme, and hence MTD methods are shown to yield better results 

for the weekly prediction of SST. 

 
 
 

II. Temporal Difference (TD) and Modified Temporal Difference (MTD) Methods 
 
 
 
 
There are two kinds of prediction learning problems namely the single-step and multi- 

step. In single-step problems, all information about the correctness of each prediction is 

revealed at once. In multi-step problems, only partial information relevant to its 

correctness is revealed at each step. In single-step problems, data naturally comes in as 

"observation-outcome  pairs".  These  problems  are  ideally  suited  to  the  pair-wise 

supervised learning approach. In the above case, TD methods cannot be distinguished 
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from supervised learning methods. However, TD methods show much improvement over 

conventional  methods  in  multi-step  problems.  It  is  shown  that  the  two  procedures 

produce exactly the same weight changes but that the TD procedure can be implemented 

incrementally and therefore requires far less computational power. This is more widely 

used as a conceptual bridge to a larger family of TD procedures, which produce different 

weight changes than any supervised learning method. 

 
 
 

II.A Learning Procedures for Temporal Difference Methods 
 
 
 
 
In multi-step problems, the experience comes in as observation-outcome sequences of the 

form X1,X2,X3,…Xm,z where each X is a vector of observations available at time t in the 

sequence, and z is the outcome of the sequence. The components of each X are assumed 

to be real-valued measurements (or) features and z is assumed to be a real-valued scalar. 

For each observation-outcome sequence, the TD method produces a corresponding 

sequence of predictions p1,p2,p3, …pm each of which is an estimate of z. Here each pt is 

assumed to be a function of all preceding observation vectors up through time t. 

 
 
 

In general, all learning procedures will be expressed as rules for updating W. Let us 

assume that W is updated only once for each complete observation-outcome sequence 

and thus does not change during a sequence. For each observation, an increment to W, 

denoted by Wt  is determined. After a complete sequence has been processed, W  is 

changed by the sum of all increments as, 

 
m 

W  W   Wt 

t 1 

 

(1) 
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The Prototypical supervised learning procedure is 
 

Wt 
  z  pt  w pt 

(2) 

 
where  is a positive parameter affecting the rate of learning, and the gradient wpt is the 

vector of partial derivatives of pt with respect to each component of W. 

 
 
 

Another instance of the prototypical supervised learning procedure is the "generalized 

delta rule" or back-propagation algorithm [11]. It is noted that all Wt  in equation  (2) 

depends on z and thus cannot be determined until the end of the sequence  when  z 

becomes known. Thus all observations and predictions made during a sequence must be 

remembered until all the Wt's are computed. The key is to present the error z- pt  as a sum 

of changes in predictions; that is, 

 
 

z  pt 

m 

   pk 1  pk 


k t 

 

(3) 

 
Substituting the value of Wt from Equation (2) in (1) and simplifying, we get 

 
W  W  Wt 

(4) 

 
 

where, 
 

Wt 

t 

   pt 1  pt 
  w pk 

k 1 

 

(5) 

 
This equation can be computed incrementally, since each prediction depends only on a 

pair of successive predictions and the sum of all past values for wpt. The  procedure 

given by equation (5) is referred to as the TD(1) procedure [4]. It is also  shown that 

TD(1) produces the same weight changes per sequence, as the  Widrow-Hoff rule on 

multi-step problems. 
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t w k 

Instead  of  sensitivity  to  overall  error  between  predictions  and  the  final  outcome, 

sensitivity to changes in successive predictions is the speciality of TD methods. As stated 

in the previous case, in response to an increase (decrease) in prediction from pt to pt+1, an 

increment W(t) is calculated that increases (decreases) the predictions for some (or all) 

of the preceding observation vectors X1, X2, …Xt. The procedure given by equation (5) is 

a  special   case  in   which   all   those  predictions   are   altered   to   an   equal   extent. 

Conventionally, the weightage to successive predictions in TD methods is achieved by an 

exponential function. This induces a forgetting of learning laws and  does not lead to 

optimal predictions. An exponential weighing scheme with recency  has been used in 

which alterations to past predictions are made in k steps and are weighed according to 
k

 

for 0    1. That is, 

 

W (t )    p 

 

 
t 1 

t 

 p  t k 
  p 

1 

 

(6) 

k 

 
The  gradient  wpk   is  the  vector  of  partial  derivatives  of  pk   with  respect  to  each 

component of W. Equation (6) represents the TD() family of learning procedures. If we 

now make  = 1, then equation (6) becomes 

 
t 

W (t )    pt 1  pt   w pk 

k 1 

 

(7) 

 
An important advantage of equation (7) compared to the exponential form is that it can be 

computed incrementally. 

 
 
 

For   1, TD() produces weight changes in the same way as the supervised learning 

method. The difference is the greatest in the case of TD(0) (where  = 0), in which the 
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weight increment is determined only by its effect on the prediction associated with the 

 
most recent observation: 

 

Wt 
   pt 1  pt  w pt 

(8) 

 
This is similar to the well known supervised learning procedure, 

 

Wt 
  z  pt  w pt 

(9) 

 
which is a gradient descendant procedure. 

 
 
 
 
III. Shortcomings of TD Methods and BP Algorithm for Fixed Step Prediction 

 
 
 
 
Though   TD   methods   have   substantial   improvement   over   conventional   learning 

paradigms, they still fall short of the requirement necessary for real world prediction 

problems. They are restricted to variable step problems. They cannot be used for making 

direct prediction for a later time because each prediction relates to a different event with 

no  desired  relationship  between  them.  The  above  formulation  of  TD  methods  is 

applicable to linear or simple nonlinearities with only one processing element. Obviously, 

for real - world prediction, they need to use the functional features of Multilayer 

Perceptron and hence the extra layers, nodes and nonlinearities of the latter need to be 

accommodated. Thus TD methods have to be slightly modified if they are to be utilized 

for real world prediction problems. Also backpropagation cannot be used for direct 

prediction because it is essential to know the outcome for the backpropagation of error. 

But it is not available till a certain amount of time elapses resulting in large storage 

requirements. 
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IV. Modified Temporal Difference (MTD) Methods 
 
 
 
 
The object of combining backpropagation and TD methods is to get accurate credit 

assignment. By backpropagation we learn which part(s) of a network to change in order 

to influence its output and reduce the overall error. TD methods suggest how each output 

of a temporal sequence should be changed. In other words, backpropagation and TD 

methods address structural credit assignment and temporal credit assignment [12] issues 

respectively. While the two methods address different sides of the same issue, it is 

significant to note that they are quite compatible and easily combined. The key 

requirement is that the gradient wpk should be compatible. 

 

 
 

IV.A   Prediction by a Fixed Interval 
 
 
 
 
For making prediction for a fixed time later, three key steps have to be followed. This is 

demonstrated for weekly prediction of SST in the three oceans mentioned earlier. 

i) The problem is embedded in a larger class of problems to produce an approximate 

sequence of predictions. 

In each month t, not only p4(t) is formed, but also p3(t), p2(t) and p1(t) are formed, where 

each p(t) is an estimate of SST  weeks later. 

ii)        Recursive equations that express the desired relationship between predictions at 

 
different times in the sequence are written down. 
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w 

The above formulation provides overlapping sequences of interrelated predictions, for 

example, p4(t), p3(t+1), p2(t+2) and p1(t+3) all of the same event in this case, of the SST 

in week (t+4). 

If the predictions are accurate, then 
 

p (t )  p (t  1), 1    5 (10) 

 
where, p0(t) is defined as the actual outcome at time t. 

 
iii) An update rule is constructed that uses a mismatch in the recursive equations to 

derive weight changes towards a better match. The update rule for weight vector 

W used in [4] to compute p(t) is rewritten as, 

 
 

W   p 

 

 
 1 

 

t  1  p

t 

(t ) t k 
   p 

k 1 

 

(k ) 
 

(11) 

 
 
 
 

IV.B   Backpropagating Temporal Errors - Vector Representation 
 
 
 
 

In a Multilayer Perceptron, wp(k) is calculated by a backpropagation algorithm  as 

described below. 

 
 
 

The backpropagation algorithm has been modified so that it backpropagates the temporal 

error [13] rather than the conventional error. Let us assume that the predictions take 

vector values, i.e., p(k) = Ul.i where Ul.i is the output of the ith node in layer l and values 

of  can be varied. The value of Ul.i is given 

by 

 
 Nl 1 



U l .i   f  Wl .i. jU l 1. j 
 (12) 

 i 0 
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where f .
 

is the sigmoid nonlinearity. As a result, the partial derivatives of the error 

 
measure with respect to each connection weight are computed in a backward propagation 

sweep through the network. 

Hence, for the weights in the final layer 
 

p k  


Wl .i. j 

U l .i 

Wl .i. j 

 

 U l .i 

 

1  U 

 
 
l .i 

 

U l 1. j 

 
(13) 

 
because of sigmoid nonlinearity. For weights in the preceding layer, we have 

 

p  k 
Wl 1.i. j 

 
p k 
U l 1.i 

U l 1.i 

Wl 1.i. j 

 
(14) 

 

 

Then the partial derivative of p(k) with respect to each weight in the network is obtained 

 
by using the chain rule as follows: 

 

p  k 
Wl 1.i. j 

 

 Wl .i. jU 

 
 
l 1.i 

 

1  U 

 
 
l 1.i 

 

U l 2.i 

 
(15) 

 
Similarly for the earlier layer, 

 

p  k  Nl 1  p
 k  U l 1.

 
U l 2.i

 

    k (16) 
Wl 2.i. j k 0 U l 1.k Wl 2.i Wl 2.i. j 

 
This process is continued and the partial derivatives in the update rule are obtained. 

 
 
 
 
V. Studies on Recency Factors 

 
 
 
 
In conventional procedure, the weightage to successive predictions in TD methods is 

achieved by an exponential decay function. But exponential recency is not suited for 

prediction for a fixed time later, since it has a large negative slope. So an alternative 
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1   t  k 

recency factor which leads to better predictions and still retains some functional 

advantages of the original function is proposed. 

 
 
 

A weighing scheme is a scheme in which alterations to past predictions are made 

according to 
k
. In this paper a new weighing scheme 1/(1 + k) is used in the place of 


k
. The use of 1/(1 + k) instead of 

k 
has sevaral advantages. 

i)         The value of the function is by definition  < 1. Hence the range of possible 

 
values is not restricted to the range (0 - 1). 

 

ii) It provides lesser slope than the conventional 
k
. This proves to be advantageous 

for the real world problems, because the weightage of successive predictions does 

not decrease in an exponential manner. 

iii)       With the introduction of an intermediate function, the new weighing scheme can 

 
be expressed as follows. 

 
t 1

 

W t     pt 1  pt  *  w pk 

k 1 

(17) 

 
which is obtained from Equation (6). 

 
 
 
 

The  in 
k  

and that in 1/(1 + k) have different meanings. For example, the   in  
k 

represents the value of the function at k = 1 whereas the  in 1/(1 + k) represents the 

value of the function at k = (1 - )/
2
. Thus these two instances of  should be interpreted 

differently. The advantage of this is that both TD and MTD represent a decaying function 

whose values at k = 0 are 1, 1 and , 1/(+1) at k = 1 respectively. This helps for a direct 

comparison of these two methods. Therefore, a common parameter can be defined as 
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 =  in the TD methods and,              = 1/(1 + ) in the MTD methods. 

 
Figures  1  and  2  illustrate  the  different  weighing  schemes  for  

k   
and  1/(1  +  k) 

respectively. The k values and  values are taken along the x and y axes respectively and 

the graph is plotted for specific values of  namely 0.9, 0.7, 0.6,  0.3 and 0.1. It is 

observed from the above Figures that MTD method provides lesser  slope than the TD 

methods for the corresponding values of k. The differences between 
k 

and 1/(1 + k) are 

more significant for low values of , and hence MTD methods are better for prediction of 

SST in such domains. This method is proved to be a natural choice for the above problem 

since a gradual reduction in weightage is desired rather than exponential decay. 
 
 
 
 

 
 

Fig.1: Weighing scheme for Conventional TD Learning 
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Fig.2: Weighing scheme for Modified TD Learning 
 
 
 
 
VI. Experimental Results 

 
 
 
 
The proposed MTD method is applied to predict the SST of the Arabian Sea, the Bay of 

Bengal and the Central Indian Ocean. Also, Stochastic, TD and BP methods are used to 

predict the same. The results are compared with the actual temperatures. 

 
 
 

VI.A  Calculation of SST 
 
 
 
 
The Sea Surface Temperature (SST) is one of the most important parameters in the 

climatic changes and oceanographic studies. This section presents a brief description of 

the retrieval of SST from NOAA-AVHRR Data. The Advanced Very High Resolution 

Radiometer (AVHRR) is a scanning radiometer flown onboard NOAA series of satellites 

and operates primarily at five spectral regions (channels 4 and 5 are of same band). 
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Processing of AVHRR Data for the retrieval of SST involves several steps namely 

Radiometric calibration, SST conversion, geometric correction, etc. [10]. Oceanographic 

data [14] contains five channels 1, 2, 3, 4 & 5 and only channels 4 and 5 are used to find 

SST [15]. The various steps involved in the preparation of SST are (i) Calibration 

Correction, (ii) Geometric Correction, and (iii) Atmospheric Correction. 

 
 
 

In Calibration correction, the SST data measured in radians is converted into digital 

count. There are two types of geometric correction namely panoramic correction and 

ELP/GCP where ELP and GCP are the Earth Location Point and Ground Correction 

Point respectively. The earth revolves in the West-East direction, whereas the sensor 

revolves in North-South direction. An object viewed in the earth by the sensor may be 

slightly dislocated as the earth is rotating and hence necessary corrections have to be 

made. 

 
 
 

The Atmospheric Correction is very essential due to the presence of clouds. There are 

four methods available for the elimination of clouds. 

(i)        Spatial Coherence Test 

 
This test is being carried out for channels 4 & 5 separately. First pixel of size 3 x 3 is 

taken and standard deviation is computed. If it is 0.2 then cloud is formed. This process is 

repeated for the remaining pixels and the cloud is removed. 

(ii)       Thin Cerus Test 

 
The Brightness temperature for each pixel in channels 4 & 5 is computed. 

If (BT4 - BT5) > 2.5 then it means cloud is present. 
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(iii)     Cross Cloud Check 

 
Here only channel 5 data is considered and if the brightness temperature BT5 < 280 then 

it indicates the formation of cloud. 

(iv)      Reflectance Test 

 
For finding the reflectance, the channel 2 data is taken. A parameter called 'Absorb' is 

defined as, 

Absorb = (Energy reflected from the surface)/(Energy incidence on the surface). 

 
If 'Absorb' of channel2 > 12% then it indicates the presence of cloud. The Sea Surface 

 
Temperature (SST) is calculated as in [13]. 

 
SST = a1T4 + a2(T4 - T5) + a3(T4 + T5) + (Sec - 1) + a4 

 
where a1, a2, a3 & a4 are constants. 

 
 
 
 

The errors present in the data are deleted and the refined data is in the form of 1
0 

x 1
0 

weekly average data. Normally land is marked as 1 and cloud is marked as 0. Generally 

SST values vary from 20
0
C to 35

0
C. The processing of NOAA - AVHRR Data for the 

retrieval of SSTs has been undertaken at the National Remote Sensing Agency (NRSA), 

Hyderabad, India since 1986, and was made operational in early 1981 with a support of 

Department of Ocean Development (DOD), Government of India. 

 
 
 

The backpropagation, TD and MTD methods are used to predict the SST values in the 

three oceans under study. The 1
0 

x 1
0  

weekly average SST data for a given latitude and 

longitude is fed as an input and the output value is predicted for the following week. This 

is shown in Fig.3. Four Physical variables namely surface stress in kg/m
2
, daily wind 
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speed in km per hour average for a week, density of sea water in kg/m
3 

and SST in 
0
C. In 

order  to  account  for  the  fixed  step  problem,  an  additional  input  namely  week  is 

introduced into the 2 hidden-layer Multilayer Perceptron. 

 
 
 

The training set consists of SST data for three years (1990-1992). The algorithms are 

repeatedly presented in the training set until the convergence of the weight vector. The 

performance of the algorithms is evaluated by using a test set which consists of 2 years 

data following the training set. 

 
 
Fig.3: Network showing the prediction of SST for the oceanographic data. 

 

- At the input layer, 1
0  

x 1
0  

weekly average SST data for a particular latitude and 

longitude is fed as an input to the network. The output is the predicted temperature. 

 
 
 

The surface waters in the Indian Ocean experience little annual temperature variation and 

stay relatively cool throughout the year. During the winter monsoon months of November 

to February, a broad zone of maximum SST occurs in the equatorial belt from which 

temperature decreases Northwestward into the Bay of Bengal and the Arabian Sea [16]. 
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The SST pattern characteristics of the Asian summer monsoon evolves gradually from 

March  to  June,  being  partially  dependent  on  the  establishment  of  the  South-West 

monsoon flow itself. Other distinctive features of the summer monsoon include relatively 

cool water throughout the western Bay of Bengal and an equatorial SST maximum in the 

Central Indian Ocean. With the weakening of cross-equatorial temperature in October, 

the cold surface water of the coasts of Arabian Sea, and Southern India disappears. The 

changes in SST in all the three oceans during the winter and summer monsoon by 

considering the SST values for the months of December and May are shown in Fig. 4, 5, 

6  and  7  respectively.  For  comparison,  the  SST  calculated  using  the  conventional 

stochastic method is also shown in the Figs. 4 and 6. In the Figures, a few test samples of 

the SSTs are shown for different region of the Arabian Sea, Indian Ocean and Bay of 

Bengal. Actual SST values obtained from AVHRR Satellite are given for various region 

in the Figures. In the test samples shown in the Figures, the SST values are in the order of 

Actual, Stochastic and BP (Figures 4 and 6) and in the order of Actual, TD and MTD 

(Figures 5 and 7). 

 
 
 

The transition to the Asian Winter Monsoon Pattern is also marked by cooling in the Bay 

of Bengal, the Arabian Sea and the concomitant redevelopment of a broad zone of 

maximum SST in the equatorial belt. Tables 1, 2 and 3 illustrate the comparison of 

weekly composited NOAA-AVHRR derived SSTs with those of Sea truth observations 

for the three different oceans namely the Arabian Sea, the Bay of Bengal and the Central 

Indian Ocean. It is observed that the MTD values more nearly coincide with the AVHRR 

values than the BP and TD values. 
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VI.B Performance Evaluation of Stochastic, BP, TD and MTD Methods 
 
 
 
 
The  stochastic  techniques  are  really  two  different  procedures  namely  the  Wiener 

approach and the auto-regressive scheme. Auto-regressive approach advocates a class of 

linear   stochastic   models   of   auto-regressive   nature   not   necessarily   stationary.   A 

distribution item is included that designates a class of independent identically distributed 

random variables with zero expectation and positive finite variance. It deals with the 

simultaneous solution of large sets of normal equations to extract the relevant parameters 

which are determined on the least squares minimization principle. 

 
 
 

In backpropagation algorithm, the training inputs have to be compiled beforehand i.e., the 

observations are reconstructed into the form (X1, Y1) (X2, Y2) (X3, Y3) etc. This is 

because the algorithm needs to know the actual outcome for backpropagation of the error 

and it is not available till a certain amount of time elapses. Thus extra preprocessing is 

needed and as a result it repeatedly gets entangled into local minima problems [17]. To 

overcome this, a momentum term and several reinforcing variables that supplement the 

original factors are added to the input layer of the Multilayer Perceptron. Second order 

and third order terms are used to form these variables. 

 
 
 

TD methods demonstrated faster learning than the backpropagation algorithm described 

above. The  value is varied from 0 to 0.9 in steps of 0.1 and the learning rate is selected 

to yield the lowest error for a specific value of  of 0.3. The exponential recency is not 
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appropriate for prediction for a fixed time later since it has a large negative slope as 

illustrated in the weighing scheme. 

 
 
 

MTD method uses an alternative recency factor 1/(1 + k) instead of the conventional 

exponential term. The weighing schemes for the conventional TD and  MTD methods 

provide a direct comparison of these two methods. Both TD() and MTD() represent a 

decaying function whose value at k = 0 is 1 and  at k = 1. It  is clear that the MTD 

method provides a lesser slope than TD methods for  corresponding values of . The 

performance of Stochastic, Backpropagation, TD and MTD methods and their optimum 

predictions are also studied and compared. 

 
 
 

VII.  Conclusion 
 
 
 
 
The structural and temporal credit assignment issues in making prediction for a specified 

time later have been addressed. TD methods or backpropagation algorithm cannot by 

itself address both the issues. The relative shortcomings of both are discussed in detail. It 

is thus found that a new technique, designed by combining backpropagation and TD 

methods with proposed recency factor, produces better prediction for a fixed time later. 

For  the  weekly  prediction  of  SST,  recursive  equations  consisting  of  overlapping 

sequences of interrelated predictions at different times are formed. The above factors 

describe the SST pattern characteristics of the summer and winter monsoon in the three 

oceans namely the Indian Ocean, the Bay of Bengal and the Arabian Sea. 
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By combining back-propagation and TD methods, a new scheme is designed for making 

prediction for a specified time later. Two such networks are developed - one trained with 

the conventional back-propagation algorithm and the other with Modified Temporal 

Difference (MTD) methods. The back-propagation algorithm has been modified so that it 

back-propagates the temporal error rather than the conventional error. The changes in the 

SST throughout the year in the Arabian Sea, the Central Indian Ocean and the Bay of 

Bengal are studied. A weighing scheme is introduced in which alterations to past 

predictions are made according to both exponential decay function and the proposed 

recency factor. The root mean squared error values are arrived at by considering actual 

values and the values obtained by other means like stochastic method, back-propagation 

algorithm, TD and MTD methods. 

 
 
 

The Modified Temporal Difference method has been successfully used to predict the Sea 

Surface Temperature in the three oceans. The choice of an alternative recency factor in 

this  method  leads  to  better  prediction  than  the  exponential  decay.  It  is  found  that 

statistical methods lack adaptability and backpropagation methods suffer from local 

minima problems. And TD methods also suffer from inappropriate prediction for a fixed 

time later since it has a large negative slope in the weighing scheme. It is proven that the 

proposed MTD method yields better prediction for a fixed time later. 
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Fig.4: Changes in SST in all the three Oceans during the winter monsoon (December) 

(Actual, Stochastic and Backpropagation values). 
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Fig.5: Changes in SST in all the three Oceans during the winter monsoon (December) 

(Actual, TD and MTD values). 
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Fig.6:  Changes  in  SST  in  all  the three Oceans  during  the summer monsoon  (May) 

 
(Actual, Stochastic and Backpropagation values). 
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Fig.7:  Changes  in  SST  in  all  the three Oceans  during  the summer monsoon  (May) 

(Actual, TD and MTD values). 
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Table 1: Comparison of Weekly Composited NOAA-AVHRR Derived SSTs with those 

of Observations Obtained by Using Different Methods for the Arabian Sea 

 
Sl. No. Date Latitude Longitude BP TD MTD AVHRR 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

10.5.93 
10.5.93 

10.5.93 

10.5.93 

10.5.93 

17.5.93 

17.5.93 

17.5.93 

17.5.93 

17.5.93 

24.5.93 

24.5.93 

24.5.93 

24.5.93 

24.5.93 

31.5.93 

31.5.93 

31.5.93 

31.5.93 

31.5.93 

16.00 
15.00 

14.00 

13.00 

12.00 

16.00 

15.00 

14.00 

13.00 

12.00 

16.00 

15.00 

14.00 

13.00 

12.00 

16.00 

15.00 

14.00 

13.00 

12.00 

52.00 
53.00 

54.00 

55.00 

56.00 

52.00 

53.00 

54.00 

55.00 

56.00 

52.00 

53.00 

54.00 

55.00 

56.00 

52.00 

53.00 

54.00 

55.00 

56.00 

26.5 
24.8 

27.3 

27.6 

27.2 

27.9 

26.9 

27.5 

27.6 

28.2 

26.7 

27.4 

28.0 

27.4 

27.8 

28.0 

28.9 

28.7 

28.8 

28.9 

27.6 
26.8 

28.5 

28.0 

28.4 

28.6 

28.2 

28.4 

28.9 

29.1 

27.6 

27.9 

28.4 

28.2 

28.7 

28.8 

29.0 

29.1 

29.2 

29.4 

28.7 
28.6 

29.0 

28.7 

29.0 

29.2 

29.1 

29.5 

29.6 

29.8 

28.5 

28.7 

29.6 

29.1 

29.2 

29.2 

29.5 

29.5 

29.7 

29.9 

28.8 
28.8 

29.4 

29.0 

29.2 

29.4 

29.3 

29.8 

29.9 

30.0 

28.9 

29.0 

29.8 

29.5 

29.4 

29.4 

29.7 

29.8 

29.8 

30.2 

Average 27.62 28.44 29.2 29.46 

Standard Deviation 1.60 0.63 0.412 0.404 
 

Table 2: Comparison of Weekly Composited NOAA-AVHRR Derived SSTs with those 

of Observations Obtained by Using Different Methods for the Bay of Bengal 
Sl. No. Date Latitude Longitude BP TD MTD AVHRR 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

10.5.93 
10.5.93 

10.5.93 

10.5.93 

10.5.93 

17.5.93 

17.5.93 

17.5.93 

17.5.93 

17.5.93 

24.5.93 

24.5.93 

24.5.93 

24.5.93 

24.5.93 

31.5.93 

31.5.93 

31.5.93 

31.5.93 

31.5.93 

16.00 
15.00 

14.00 

13.00 

12.00 

16.00 

15.00 

14.00 

13.00 

12.00 

16.00 

15.00 

14.00 

13.00 

12.00 

16.00 

15.00 

14.00 

13.00 

12.00 

70.00 
71.00 

72.00 

73.00 

74.00 

70.00 

71.00 

72.00 

73.00 

74.00 

70.00 

71.00 

72.00 

73.00 

74.00 

70.00 

71.00 

72.00 

73.00 

74.00 

29.2 
29.5 

29.6 

29.7 

29.8 

29.5 

29.0 

29.4 

29.2 

29.5 

29.4 

29.4 

29.7 

29.4 

29.6 

28.8 

28.9 

28.8 

29.0 

29.4 

29.6 
29.8 

29.8 

29.8 

30.0 

29.8 

29.4 

29.6 

29.5 

29.7 

29.8 

29.7 

29.8 

29.8 

29.9 

29.2 

29.3 

29.2 

29.6 

29.7 

29.9 
30.0 

30.0 

30.0 

30.2 

30.0 

29.9 

30.0 

29.8 

30.0 

30.0 

30.0 

30.1 

30.0 

30.1 

29.4 

29.6 

29.7 

29.8 

30.0 

30.1 
30.1 

30.2 

30.1 

30.3 

30.1 

30.1 

30.3 

30.0 

30.3 

30.2 

30.1 

30.2 

30.1 

30.3 

29.8 

29.9 

30.0 

30.1 

30.3 

Average 29.34 29.65 29.93 30.13 

Standard Deviation 0.30 0.22 0.18 0.13 
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Table 3: Comparison of Weekly Composited NOAA-AVHRR Derived SSTs with those 

of Observations Obtained by Using Different Methods for the Central Indian Ocean 

 
Sl. No. Date Latitude Longitude BP TD MTD AVHRR 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

10.5.93 
10.5.93 

10.5.93 

10.5.93 

10.5.93 

17.5.93 

17.5.93 

17.5.93 

17.5.93 

17.5.93 

24.5.93 

24.5.93 

24.5.93 

24.5.93 

24.5.93 

31.5.93 

31.5.93 

31.5.93 

31.5.93 

31.5.93 

21.00 
20.00 

19.00 

18.00 

17.00 

21.00 

20.00 

19.00 

18.00 

17.00 

21.00 

20.00 

19.00 

18.00 

17.00 

21.00 

20.00 

19.00 

18.00 

17.00 

89.00 
90.00 

91.00 

92.00 

93.00 

89.00 

90.00 

91.00 

92.00 

93.00 

89.00 

90.00 

91.00 

92.00 

93.00 

89.00 

90.00 

91.00 

92.00 

93.00 

26.0 
26.1 

26.8 

27.1 

27.0 

26.5 

26.3 

27.0 

27.3 

27.8 

26.7 

26.9 

26.8 

27.5 

27.3 

26.5 

26.6 

26.8 

27.6 

27.8 

26.7 
26.8 

27.0 

27.9 

27.8 

27.0 

26.9 

27.8 

27.9 

28.0 

27.0 

27.1 

27.5 

28.0 

27.9 

26.9 

27.0 

27.0 

28.0 

28.0 

27.0 
27.1 

27.5 

28.4 

28.6 

27.2 

27.2 

28.0 

28.4 

28.4 

27.4 

27.6 

27.9 

28.5 

28.5 

27.5 

27.6 

27.5 

28.4 

28.5 

27.3 
27.4 

27.9 

28.7 

28.9 

27.7 

27.9 

28.2 

28.7 

28.7 

27.7 

27.9 

28.2 

28.7 

28.7 

27.7 

27.9 

27.9 

28.6 

28.7 

Average 26.92 27.41 27.86 28.17 

Standard Deviation 0.50 0.49 0.54 0.48 
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