University of Wollongong

Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2009

Application and evaluation of shoreline segmentation mapping approaches to assessing response to climate change on the Illawarra Coast, South East Australia

Pamela A.O. Abuodha University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Abuodha, Pamela A.O, Application and evaluation of shoreline segmentation mapping approaches to assessing response to climate change on the Illawarra Coast, South East Australia, PhD thesis, School of Earth and Environmental Sciences, University of Wollongong, 2009. http://ro.uow.edu.au/theses/852

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

APPLICATION AND EVALUATION OF SHORELINE SEGMENTATION MAPPING APPROACHES TO ASSESSING RESPONSE TO CLIMATE CHANGE ON THE ILLAWARRA COAST, SOUTH EAST AUSTRALIA

A thesis submitted in fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

From

THE UNIVERSITY OF WOLLONGONG

By

PAMELA ATIENO ODHIAMBO ABUODHA BSc (Hons), MSc University of Nairobi, Kenya

SCHOOL OF EARTH AND ENVIRONMENTAL SCIENCES September 2009

Dedication

This PhD thesis is dedicated to my late mother Mama Priscah Adhiambo Aluoch for her death wish, to my late father Mzee Joshua Wandere Odame for educating a girl child and to my late husband Dr. Joseph Odhiambo Zedekia Abuodha who died during the course of my PhD studies.

And to all my "fathers", "mothers", "brothers" and "sisters" who I have met and will still meet for the rest of my walking life.

Certification

I, Pamela Atieno Odhiambo Abuodha, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Earth and Environmental Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution.

Table of Contents

		Dedication	ii
		Certification	iii
		Table of Contents	iv
		List of Figures	Х
		List of Tables	xiii
		List of Appendices	xiv
		Abstract	XV
		Acknowledgements	xvii
1.0		Introduction	1
	1.1	Impacts of climate change on coastal systems	1
	1.2	Definitions of terms	2
	1.3	The need for tools to assess coastal sensitivities	5
	1.4	Research Aims and Objectives	7
	1.5	Organisation of this thesis	7
2.0		Coastal Sensitivity Assessment Tools	9
	2.1	Aims of this chapter	9
	2.2	Introduction	9
	2.3	A review of tools and methods to assess coastal sensitivity	10
	2.3.1	Bruun Rule (BR)	10
	2.3.2	The Common Methodology (CM)	13
	2.3.3	Synthesis and upscaling of sea-level rise vulnerability assessment	16
	2.3.4	Dynamic and Interactive Vulnerability Assessment (DIVA) tool	17
	2.3.4.1	The IPCC SRES Storylines	18
	2.3.5	The Coastal Impact Module (CIM) of SimCLIM	19
	2.3.6	Coastal Vulnerability Index (CVI)	20
	2.3.7	Geomorphic Stability Mapping (GSM) approach	25
	2.3.8	Community Vulnerability Assessment Tool (CVAT)	28
	2.4	Summary of tools	29

	2.5	Segmentation of the Shoreline	31
	2.6	Selection of tools to assess sensitivity of the study area	31
	2.7	Selection of a study site	32
	2.8	Chapter Summary	33
3.0		Illawarra coast	35
	3.1	Introduction	35
	3.2	Geological setting	37
	3.3	Barrier types	41
	3.4	Climate change and storm effects	43
	3.5	Beach State and morphological model of Illawarra beaches	47
	3.6	Human impact	49
	3.7	Chapter summary	52
4.0		Application of the DIVA Tool to the Illawarra Coast	53
	41	Aims of this chapter	53
	4.2	Introduction	53
	4.3	Methodology of the DINAS-COAST project	55
	4.4	A description of variables for segment 11105	57
	4.4.1	Input variables for segment 11105	59
	4.4.2	Initial values for segment 11105	60
	4.5	Comparison of the GLOBE and SRTM datasets for segment 11105	62
	4.5.1	Area X variable for segment 11105	62
	4.5.2	Projections for for segment 11105 for the period 2000-2100	65
	4.6	Output from DIVA model for segment 11105	67
	4.7	Discussion	75
	4.8	Chapter summary	77

5.0		Application of Geomorphic Stability Mapping (GSM)	79
		Approach to the Illawarra Coast	
	5.1	Aims of the chapter	79
	5.2	Introduction	79
	5.3	Geomorphic stability mapping (GSM) of the Illawarra coast	80
	5.3.1	Mapping of the intertidal landform	81
	5.3.2	Mapping of the backshores landform	83
	5.3.3	Mapping of the backshores profile	86
	5.3.3.1	Illustration of mapping of sandy sensitivity	90
	5.3.4	Mapping of segment exposure	92
	5.3.5	Mapping of rock types	96
	5.4	Sensitivity of the Illawarra coast to climate change	98
	5.4.1	Mapping of sandy sensitivity of Open Ocean sandy shores	99
	5.4.2	Mapping of coastal re-entrant sandy shores	100
	5.4.3	Mapping the sensitivity of hard rock sea cliffs	101
	5.4.4	Overall sensitivity of the Illawarra coast using GSM approach	103
	5.5	Improvements to the Tasmanian mapping	107
	5.6	Chapter summary	111
6.0		Interpretation of rates of shoreline change	115
	6.1	Aims of this chapter	115
	6.2	The Digital Shoreline Analysis System (DSAS)	116
	6.3	Delineating shoreline change from aerial photography	117
	6.4	MIKE Marine Danish Hydraulic Institute (DHI) tool	122
	6.4.1	Photogrammetric dataset	123
	6.5	Calculation and presentation of rates of shoreline change	124
	6.5.1	Rates of shoreline change for sandy shores backed by plains	124
	6.5.1.1	Bulli Beach	124
	6.5.1.2	Wollongong Beach	127
	6.5.2	Rates of shoreline change for sandy shores backed by dunes	131

	6.5.2.1	Corrimal Beach	131
	6.5.2.2	Towradgi Beach	134
	6.5.2.3	Perkins Beach	137
	6.5.3	Rates of shoreline change for sandy shores backed by bedrock	140
	6.5.3.1	Fishermans Beach	141
	6.5.3.2	Stanwell Park Beach	144
	6.5.3.3	Woonona-Bellambi Beach	147
	6.5.4	Rates of shoreline change for sandy shores backed by artificial	151
		structures	
	6.5.4.1	Coledale Beach	151
	6.5.4.2	Warilla Beach	154
	6.5.4.3	Thirroul Beach	157
	6.5.5	Summary of rates of shoreline change for the selected 11 beaches	161
	6.6	Calculations and presentation of beach and dune volume	161
	6.6.1	Corrimal Beach photogrammetric transects	161
	6.6.2	Wollongong Beach photogrammetric transects	167
	6.6.3	Warilla Beach photogrammetric transects	172
	6.7	Discussion	179
	6.7.1	Limitations	182
	6.8	Chapter summary	183
7.0		Application of a Coastal Sensitivity Index to the Illawarra	185
		Coast	
	7.1	Aims of this Chapter	185
	7.2	Introduction	185
	7.2.1	Previous CVI application to the Illawarra beaches	186
	7.2.1.1	Geologic variables	187
	7.2.1.2	Physical process variables	190
	7.2.1.3	The Pilot Coastal Vulnerability Index (CVI)	190
	7.2.1.4	Results	190
	7.3	Improved CSI used to assess the Illawarra	194

7.3.1	Structural variables	194
7.3.1.1	Sensitivity classes for rock type variable	194
7.3.1.2	Sensitivity classes for the geomorphic variable	194
7.3.1.3	Sensitivity classes for barrier type variable	195
7.3.1.4	Sensitivity classes for shoreline change variable	196
7.3.1.5	Sensitivity classes for segment exposure variable	197
7.3.1.6	Sensitivity classes for coastal slope variable	197
7.3.2	Sensitivity classes for process variables	198
7.3.2.1	Sensitivity classes for relative sea-level rise variable	198
7.3.2.2	Sensitivity classes for mean wave height variable	199
7.3.2.3	Sensitivity classes for mean tidal range variable	199
7.4	A summary of the sensitivity classes for the Illawarra coast	200
7.5	Sensitivity mapping for the Illawarra variables	201
7.5.1	Sensitivity mapping of the rock type variable	205
7.5.2	Sensitivity mapping of the geomorphology variable	207
7.5.3	Sensitivity mapping of the barrier type variable	209
7.5.4	Sensitivity mapping of the shoreline change variable	212
7.5.5	Sensitivity mapping of the segment exposure variable	214
7.5.6	Sensitivity mapping of the coastal slope variable	216
7.5.7	Sensitivity mapping of the three process variables	219
7.6	Coastal sensitivity index (CSI) for the Illawarra coast	221
7.7	Discussion	225
7.7.1	Limitations	226
7.8	Chapter summary	227
	Evaluation of the tools used to assess the sensitivity of the	229
	Illawarra coast	
8.1	Aims of this chapter	229
8.2	Introduction	229
8.3	Shoreline segmentation	230
8.4	Scale of mapping	232

8.0

	8.5	Improving the functionality of the DIVA, GSM and CSI tools	232
	8.6	Evaluation of the sensitivity assessment tools	236
	8.7	Chapter summary	241
9.0		Conclusions and Future Directions	243
	9.1	Introduction	243
	9.2	Study area	243
	9.3	Line-map format	243
	9.4	Coastal Sensitivity tools applied in this thesis	245
	9.4.1	The Dynamic Interactive Vulnerability Assessment tool	245
	9.4.2	The Geomorphic Stability Mapping Approach	246
	9.4.3.	The Coastal Sensitivity Index tool	247
	9.5	Scale of the study	248
	9.6	Limitations of the three tools	248
	9.7	Future improvements	249
		References	251

Appendices

269

List of Figures

Figure 1.1	A conceptual framework for coastal vulnerability assessment	3
Figure 1.2	Framework for identifying vulnerability and its components	5
Figure 2.1	The Bruun Rule of shoreline erosion	11
Figure 2.2	Shoreline segmentation in the DIVA tool	18
Figure 2.3	Schematic illustration of the four IPCC SRES storylines	19
Figure 2.4	Relative Coastal Sensitivity for USA.	22
Figure 2.5	Descriptive variables for a coastal zone	25
Figure 2.6	Example of the Tasmanian shoreline geomorphic mapping	27
Figure 2.7	Sample of CVAT mapping procedure	29
Figure 3.1	Location of the Illawarra coast	36
Figure 3.2	The geology of the three major provinces in the southeast Australia	38
Figure 3.3	A simplified geological map of the Illawarra coast	39
Figure 3.4	Some examples of rock types on the Illawarra coast	40
Figure 3.5	An example of the effects of storms on the Illawarra coast	46
Figure 3.6	Beach state and morphological model for SE Australian beaches	48
Figure 3.7	A sample of effects of mining on the Illawarra coast	50
Figure 3.8	A sample of effects of seawalls on the Illawarra coast	51
Figure 4.1	Comparison of segment 11105 and the extent of the study area	54
Figure 4.2	The DIVA model 1.0	56
Figure 4.3	A part of the presentation pane in the DIVA model	56
Figure 4.4	Segment 11105 Australia and its variables	61
Figure 4.5	A comparison of the Area X parameter	62
Figure 4.6	Distribution of Area X values for the south coast NSW	63
Figure 4.7	Elevation map of the Illawarra coast	64
Figure 4.8	A comparison of outputs for number of people actually flooded,	66
	coastal floodplain area and number of coastal floodplain population	
Figure 4.9	A comparison of output for relative sea-level rise change, coastal	68
	floodplain area and coastal floodplain population	
Figure 4.10	A comparison of output for people actually flooded, total wetland	70
	area and net loss of wetland area	

Figure 4.11	A comparison of output for low unvegetated wetland area,	73
	saltmarsh area and wetland nourishment cost.	
Figure 4.12	A comparison of output for sea dike height, total cost of sea dike	74
	built and protection level	
Figure 5.1	Intertidal landform categories sensitivity classes	82
Figure 5.2	The backshores landform categories sensitivity classes	84
Figure 5.3	Coastal slope categories classes from a 25 m DEM	87
Figure 5.4	The backshores profile categories sensitivity classes	88
Figure 5.5	An illustration of the segmentation of Open Ocean sandy shores	91
Figure 5.6	Rose diagrams for the Illawarra coast	93
Figure 5.7	Segment exposure categories sensitivity classes	94
Figure 5.8	Rock types landform categories sensitivity classes	97
Figure 5.9	Overall geomorphic stability mapping for the Illawarra coast	104
Figure 6.1	Method of delineation of the HWL position	119
Figure 6.2	11 beaches of the Illawarra coast for historical shoreline change	121
Figure 6.3	Bulli Beach transects obtained using DSAS	125
Figure 6.4	Bulli Beach rate of change statistics	126
Figure 6.5	Topographic map of Wollongong Beach	128
Figure 6.6	Wollongong Beach rate of change statistics	129
Figure 6.7	Corrimal Beach transects obtained using DSAS	132
Figure 6.8	Corrimal Beach rate of change statistics	133
Figure 6.9	Topographic map of Towradgi Beach	135
Figure 6.10	Towradgi Beach rate of change statistics	136
Figure 6.11	Topographic map of northern part of Perkins Beach	137
Figure 6.12	Perkins Beach rate of change statistics	139
Figure 6.13	Fishermans Beach transects obtained using DSAS	142
Figure 6.14	Fishermans Beach rate of change statistics	143
Figure 6.15	Topographic map of Stanwell Park Beach	144
Figure 6.16	Stanwell Park Beach rate of change statistics	145
Figure 6.17	Topographic map of Woonona-Bellambi Beach	148
Figure 6.18	Woonona-Bellambi Beach rate of change statistics	149

Figure 6.19	Coledale Beach transects obtained using DSAS	152
Figure 6.20	Coledale Beach rate of change statistics	153
Figure 6.21	Topographic map of Warilla Beach	155
Figure 6.22	Warilla Beach rate of change statistics	156
Figure 6.23	Topographic map of Thirroul Beach	158
Figure 6.24	Thirroul Beach rate of change statistics	159
Figure 6.25	Photogrammetric profile data for Corrimal Beach	163
Figure 6.26	Block 1 profile 9 at Corrimal Beach	164
Figure 6.27	Corrimal Beach time series analysis for subaerial beach and dune	165
Figure 6.28	Corrimal time series analysis for average subaerial beach and dune	166
Figure 6.29	Photogrammetric profile data for Wollongong Beach	168
Figure 6.30	Wollongong profiles for transects backed by plains and dune	169
Figure 6.31	Wollongong time series analysis for subaerial beach and dune	170
Figure 6.32	Wollongong Beach time series analysis for average subaerial beach	171
	and dune	
Figure 6.33	Photogrammetric profile data for Warilla Beach	173
Figure 6.34	Warilla Beach profiles	175
Figure 6.35	Warilla Beach time series analysis for subaerial beach and dune	176
Figure 6.36	Warilla time series analysis for average subaerial beach and dune	177
Figure 7.1	Relative CVI for six Illawarra beaches.	192
Figure 7.2	GIS mapping of shoreline grids	203
Figure 7.3	Transferring data from the GSM to CSI	204
Figure 7.4	GIS mapping of rock type sensitivity	206
Figure 7.5	GIS mapping of geomorphology sensitivity	208
Figure 7.6	GIS mapping of barrier type sensitivity	210
Figure 7.7	GIS mapping of shoreline change sensitivity	213
Figure 7.8	GIS mapping of segment exposure sensitivity	215
Figure 7.9	GIS mapping of slope (in degrees) sensitivity	217
Figure 7.10	GIS mapping of physical process variables	220
Figure 7.11	GIS mapping of coastal sensitivity index (CSI)	223
Figure 8.1	The comparison of the sensitivity of the Illawarra coast	235

List of Tables

Table 2.1	The seven-step Common Methodology	15
Table 2.2	Summary of coastal sensitivity indices	24
Table 2.3	Summary and comparison of the methods and tools	30
Table 4.1	Subset of coastal variables included in the DIVA database	58
Table 4.2	Input variables extracted from the DIVA database	60
Table 5.1	A summary of intertidal landform sensitivity classes.	83
Table 5.2	A summary of backshore landform sensitivity classes.	85
Table 5.3	A summary of backshore profile landform sensitivity classes.	89
Table 5.4	A summary of segment exposure together sensitivity classes.	95
Table 5.5	A summary of the rock types sensitivity classes.	98
Table 5.6	GIS queries for open ocean sandy shores	99
Table 5.7	GIS queries for coastal re-entrants	101
Table 5.8	GIS queries for sea cliffs	102
Table 5.9	Summary of GIS geomorphic stability mapping for the Illawarra	106
Table 5.10	Summary of the variables mapped on the Illawarra coast.	109
Table 5.11	Illawarra mapping compared to the Tasmanian mapping	110
Table 6.1	Scale and dates of aerial photographs	118
Table 6.2	Estimated photogrammetric model accuracy	123
Table 6.3	Rate of change statistics for mainly sandy shores backed by plains	130
Table 6.4	Rate of change statistics for mainly sandy shores backed by dunes	140
Table 6.5	Rate of change statistics for sandy shores backed by bedrock	150
Table 6.6	Rate of change for sandy shores backed by artificial structures	160
Table 6.7	Summary of shoreline change trends for the 11 studied beaches	162
Table 6.8	Subaerial beach and dune volume at Corrimal Beach	166
Table 6.9	Subaerial beach and dune volumes at Wollongong Beach	172
Table 6.10	Subaerial beach and dune volumes at Warilla Beach	178
Table 7.1	Coastal vulnerability index (CVI) variables for the Illawarra coast	191
Table 7.2	Coastal sensitivity index classes for the Illawarra coast	201
Table 7.3	A summary of the GIS mapping of rock type variable	207
Table 7.4	A summary of the GIS mapping of geomorphology variable	209

Table 7.5	A summary of the GIS mapping of barrier type variable	211
Table 7.6	A summary of the GIS mapping of shoreline change variable	214
Table 7.7	A summary of the GIS mapping of segment exposure variable	216
Table 7.8	A summary of the GIS mapping of profile (coastal slope) variable	218
Table 7.9	A summary of the GIS mapping of mean wave height variable	219
Table 7.10	A summary of the GIS mapping of mean tide range variable	221
Table 7.11	A summary of the GIS mapping of coastal sensitivity index (CSI)	225
Table 8.1	Weighting of the DIVA, GSM and the CSI tools	240

List of Appendices

Appendix 1	Fact-find sheet of coastal vulnerability and sensitivity	269
	assessment methods and tools	
Appendix 1.1	Fact find sheet for the Bruun Rule	269
Appendix 1.2	Fact find sheet for the IPCC Common Methodology	270
Appendix 1.3	Fact find sheet for the Synthesis and Upscaling of Sea-level	271
	Rise Vulnerability Assessment Studies (SURVAS)	
Appendix 1.4	Fact find sheet for the Dynamic Interactive Vulnerability	272
	Assessment (DIVA) tool	
Appendix 1.5	Fact find sheet for the Coastal Impact Module (CIM) of the	273
	SimCLIM	
Appendix 1.6	Fact find sheet for the Coastal Sensitivity Index (CSI) tool	274
Appendix 1.7	Fact find sheet for the Geomorphic Stability Mapping	275
	(GSM) approach	
Appendix 1.8	Fact find sheet for the Community Vulnerability	276
	Assessment Tool (CVAT)	
Appendix 2	The GSM approach attribute table for the Illawarra	277
	coast	
	Key to Appendix 2	284
Appendix 3	The CSI attribute table for the Illawarra coast	285
	Key to Appendix 3	288

Abstract

Climate change, particularly sea-level rise, threatens many coastal systems around the world. Coastal managers and decision-makers require information that enables them to assess the vulnerability of the coastlines to the range of impacts and to develop cheap, simple, generic tools, prompting the need to develop tools that can be used to study the impacts of climate change and sea-level rise on the coastal zones. This thesis examines tools that are available to assist in determining sensitivity of the coast, and then describes strengths and weaknesses of three different coastal assessment tools that adopt a GIS (Geographical Information System) approach to assess sensitivity of the shoreline, segmenting it on the basis of different variables. Each tool is applied to one case study section of the coast, the Illawarra region in southern New South Wales, Southeast Australia. The three tools are Dynamic Interactive Vulnerability Assessment (DIVA) tool, Geomorphic Stability Mapping (GSM) approach and the Coastal Sensitivity Index (CSI).

The DIVA tool uses a global shoreline database (DINAS-Coast) and can be run using sealevel rise and the socio-economic scenarios in timesteps to the year 2100. The DIVA tool incorporates, socio-economic variables, and provides a vulnerability assessment. The Illawarra coast is represented by a single segment (segment 11105), and the tool is not designed for use at such a fine segment scale. The GSM approach, based on vulnerability mapping of the Tasmanian coast, segments the coast on the basis of form and fabric. It involves a user-defined set of segments that are divided where any of the variables change alongshore. In applying GSM approach to the Illawarra coast, several fields have been redefined and new classes of shoreline landforms identified, of which open ocean sandy shores backed by plains and dunes were scored with the highest sensitivity. After mapping the relative sensitivity of the Illawarra coast on the basis of the GSM approach, a timeseries of aerial photographs was used to assess the pattern of historical shoreline change. The Digital Shoreline Analysis System (DSAS) tool was employed to describe rates of shoreline change of the high water line (HWL) and the vegetation line indicators for 11 beaches, and MIKE Marine DHI was used to calculate the subaerial beach and dune sediment volumes from 1938 to 2001 for 3 beaches, in order to determine to what extent modelled sensitivity corresponded with observed patterns of change.

This historical reconstruction provided further data from which to derive the CSI, modifying the CVI method that has been used in many developed countries. Where previous assessments have used six or seven variables, this analysis of the Illawarra coast used nine variables, of which six were structural variables (rock type, geomorphology, barrier type, shoreline change, segment exposure, coastal slope), and three were process variables (relative sea-level rise, mean wave height and tidal range).

The patterns of change on the Illawarra coast are highly variable, many beaches were found to have accreted when the vegetation line was mapped over time, but different trends and different rates are observed from one beach to another and in some cases within the same beach. Each of the tools involves a level of generalisation, and their application is intended only as a first stage in assessment of shoreline vulnerability. Applying the three tools to the one case study enabled an evaluation of their relative strengths and weaknesses on the basis of several different criteria. The results from this study are useful to decision-makers and local councils in undertaking a more detailed, site-specific assessment for the Illawarra coast in the near future.

Acknowledgements

I am greatly indebted to Professor Colin Woodroffe of the School of Earth and Environmental Sciences (SEES) of the University of Wollongong (UOW) for his proficient supervision of my PhD study and of this thesis; and for his continued and unwavering support during my studentship at the UOW. Thank you Prof. Woodroffe and "How are our beaches?" The Head of School, Professor Lesley Head and the School Secretary Wendy Weeks are acknowledged for administrative and logistic support. Work on Geographical Information Systems (GIS) would not have been possible without the guidance of Dr. Ava Simms, Former Associate Research Fellow of the SEES, UOW and to John Marthick and Heidi Brown of the School's Spatial Teaching Laboratory. I also owe my heartfelt gratitude to Richard Miller for his assistance in Cartographic techniques. Field work for this PhD research was successful because of the involvement of Javier Leon, Paolo Abbale, Pat Macquarie, Dr. Ava Simms, Mrs. Olive Cotter, Marty Hazelwood, Gareth Davies, Terry Lachlan and my daughters Nora Abuodha, Magdaline Abuodha and Monica Betty Abuodha. Thank you and I very much appreciate your support.

Professor Athanasios Vafeidis of the Institute of Geography at the Christian-Albrechts University, Kiel, Germany is acknowledged for useful discussions and for providing updated SRTM data for Segment 11105 Australia that was utilised in the application of the DIVA tool for the assessment of the Illawarra coast. Chris Sharples of the University of Tasmania held several useful discussions with me on the Geomorphic Stability Mapping (GSM) approach, or 'Smartline', as it is nationally known, that was key to the mapping of the geomorphic landforms along the Illawarra coast. Thank you, Sharples. Professors Elizabeth Pendleton and Emily Himmelstoss of the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) at Woods Hole kindly provided assistance with application of the CSI and DSAS tools, respectively. Photogrammetry data for the delineation of historical rates of shoreline change was provided by David Hanslow and Robert Clout of the Department of Environment and Climate Change (DECC) at Newcastle, to whom I am highly appreciative.

The Australian Greenhouse Office (AGO) in Canberra is acknowledged for its support for this PhD study and for publishing our initial work on "International assessments of the vulnerability of the coastal zone to climate change, including an Australian perspective" that was key to this PhD study. I am especially grateful to Dr. Gina Newton in this regard. Mrs Virginie Schmelitschek of the UOW, Dr. Ava Simms, Harry Cotter (My Australian dad) and Dr. Thomas Dzeha (formerly of Macquarie University) had the onus of reading drafts of this PhD thesis and are therefore acknowledged for their helpful suggestions.

I appreciate the kind support of Professor Colin Murray-Wallace, formerly Head of the SEES at the UOW for making the domiciling of my children to Australia possible after the death of my husband in Kenya. Professor Salwa Woodroffe of the UOW is acknowledged for moral support and for being the sister that I never had. Former Principal of St. Mary's Star of the Sea College, Mrs. Fay Gurr and the entire staff of the college are acknowledged for embracing my girls into the St. Mary's family, which has been a stabilising factor for my PhD candidature. My Kenyan parents of Australian origin Mr. Harry Cotter and Mrs. Olive Cotter have been a source of moral and spiritual inspiration for me at Wollongong. I am equally thankful to my sweet daughters Nora, Lina and Betty without whose love and support this PhD would have been a nullity.

This study has taken place with a study leave from employment at the Kenya Marine and Fisheries Research Institute (KMFRI), Mombasa, Kenya and the support of the director Dr. Johnson Kazungu is highly acknowledged. David Price and Jose Abrantés ensured my regular biscuit at tea time in the school, David, having taught me how to brew tea in a cup!! Last but not least I would like to acknowledge all those people that may have directly or indirectly assisted me in making good of my stay in Australia and in finalising my PhD candidature at the UOW.

Funding of this PhD was from the Australian Government Endeavour Award International Postgraduate Research Scholarship (IPRS). The SEES is acknowledged for its support, tuition waiver and award of Bursary especially after the expiration of the IPRS scholarship and to God for giving me the good health during this period.