University of Wollongong

Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2009

Numerical modelling of mining subsidence, upsidence and valley closure using UDEC

Walter Keilich University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Keilich, Walter, Numerical modelling of mining subsidence, upsidence and valley closure using UDEC, PhD thesis, School of Civil, Mining & Environmental Engineering, University of Wollongong, 2009. http://ro.uow.edu.au/theses/862

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

NUMERICAL MODELLING OF MINING SUBSIDENCE, UPSIDENCE AND VALLEY CLOSURE USING UDEC

A thesis submitted in fulfillment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

Walter Keilich, BE Hons (Mining)

SCHOOL OF CIVIL, MINING AND ENVIRONMENTAL ENGINEERING

2009

THESIS CERTIFICATION

I, Walter Keilich, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Civil, Mining and Environmental Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged below. The document has not been submitted for qualifications at any other academic institution.

Walter Keilich

9/09/2009

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

	THES	SIS CE	RTIFICATION	i
	TABI	LE OF	CONTENTS	ii
	LIST	OF FIG	GURES	vii
	LIST	OF TA	BLES	xiv
	LIST	OF SY	MBOLS	xvi
	ABST	RACT		xviii
	ACK	NOWL	EDGEMENTS	XX
	PUBI	JCATI	ONS ARISING FROM RESEARCH PROJECT	xxii
1	INTR	ODUC	TION	1
	1.1	PROB	LEM STATEMENT AND OBJECTIVE	1
	1.2	METH	IODOLOGY	3
	1.3	OUTC	COMES AND POTENTIAL APPLICATIONS	4
2	MINI	E SUBS	IDENCE IN THE SOUTHERN COALFIELD	5
	2.1	INTR	ODUCTION	5
	2.2	SUBS	URFACE MOVEMENT	6
		2.2.1	Zones of movement in the overburden	7
		2.2.2	Caving in the Southern Coalfield and its	
			significance on subsidence development	8
	2.3	SURF	ACE DEFORMATIONS	9
		2.3.1	Angle of draw	13
		2.3.2	Extraction area	14
		2.3.3	Stationary and dynamic subsidence profiles	16
	2.4	SOUT	HERN COALFIELD GEOLOGY	17
		2.4.1	The Sydney Basin	17
		2.4.2	The Southern Coalfield	19
			2.4.2.1 Illawarra Coal Measures	20
			2.4.2.2 Narrabeen Group	26

3

		2.4.2.3 Hawkesbury Sandstone	29
2.5	CURF	RENT PREDICTION TECHNIQUES USED IN	
	THE S	SOUTHERN COALFIELD	29
	2.5.1	New South Wales Department of Primary	
		Industries Empirical Technique	30
		2.5.1.1 Overview of method	30
		2.5.1.2 Maximum developed subsidence for	
		single longwall panels	32
		2.5.1.3 Maximum developed subsidence for	
		multiple longwall panels	33
		2.5.1.4 Maximum strains	36
		2.5.1.5 Maximum tilt	37
		2.5.1.6 Radius of ground curvature	38
		2.5.1.7 Location of inflection point	38
		2.5.1.8 Goaf edge subsidence	39
	2.5.2	The Incremental Profile Method	40
		2.5.2.1 Overview of method	40
2.6	SUM	MARY	45
VALI	LEY CI	LOSURE AND UPSIDENCE	47
3.1	INTR	ODUCTION	47
3.2	CURF	RENT MODELS	49
	3.2.1	Horizontal stress model	49
	3.2.2	Empirical predictions	51
	3.2.3	Limitations	62
	3.2.4	Recent developments	64
3.3	ALTE	ERNATIVE MODEL	65
	3.3.1	Kinematics of a particle moving along a known	
		path	67
	3.3.2	Adaptation to blocks moving along a known path	72
3.4	REQU	JIRED WORK PROGRAM	77
3.5	SUM	MARY	77

4

5

DEVE	ELOPM	IENT OF A NUMERICAL MODELLING	
APPR	ROACH		78
4.1	INTRO	DUCTION	78
4.2	MODE	ELLING PRINCIPLES	78
4.3	LITER	RATURE REVIEW	79
	4.3.1	Coulthard and Dutton (1988)	79
	4.3.2	Johansson, Riekkola and Lorig (1988)	80
	4.3.3	Alehossein and Carter (1990)	80
	4.3.4	Brady et al. (1990)	81
	4.3.5	Choi and Coulthard (1990)	82
	4.3.6	O'Conner and Dowding (1990)	83
	4.3.7	Coulthard (1995)	84
	4.3.8	Bhasin and Høeg (1998)	85
	4.3.9	Alejano et al. (1999)	86
	4.3.10	Sitharam and Latha (2002)	88
	4.3.11	CSIRO Petroleum (2002)	89
4.4	SUMN	ARY	90

SINGLE LONGWALL PANEL MODELS WITH NO RIVER

VALI	LEY	92
5.1	INTRODUCTION	92
5.2	NUMERICAL MODELLING STRATEGY	92
5.3	MATERIAL PROPERTIES FOR INTACT ROCK	93
5.4	PROPERTIES OF THE BEDDING DISCONTINUITIES	99
5.5	VERTICAL JOINTS AND PROPERTIES	101
5.6	IN-SITU STRESS	103
5.7	MESH GENERATION	104
5.8	CONSTITUTIVE MODELS	106
5.9	BOUNDARY CONDITIONS	106
5.10	HISTORIES	106
5.11	MODEL GEOMETRY AND INITIAL TEST MODELS	106
5.12	RESULTS	117
5.13	SUMMARY	156

6	SINGLE LONGWALL PANEL MODELS WITH RIVER			
	VAL	LEY		157
	6.1	INTRO	DDUCTION	157
	6.2	MOD	ELLING STRATEGY	157
	6.3	INITL	AL MODELS AND MESH DENSITY ANALYSIS	158
	6.4	RIVE	R VALLEY MODELS	178
	6.5	RESU	LTS	187
		6.5.1	Subsidence without valley excavation	189
		6.5.2	Tilt without valley excavation	193
		6.5.3	Subsidence/upsidence at base of valleys	196
		6.5.4	Valley closure at shoulders	208
		6.5.5	Valley closure at base	218
		6.5.6	Valley base yield	221
	6.6	COMI	PARISON TO EMPIRICAL DATA	226
	6.7	PARA	METRIC STUDY	240
	6.8	COMI	PARISON TO BLOCK KINEMATICS	245
	6.9	SUMN	ARY	248
7	APPI	LICATI	ON OF VOUSSOIR BEAM AND PLATE	
	BUC	KLING	THEORY	250
	7.1	INTRO	DDUCTION	250
	7.2	APPL	ICATION OF VOUSSOIR BEAM THEORY	250
	7.3	APPL	ICATION OF PLATE BUCKLING THEORY	252
	7.4	SUMN	ARY	253
8	SUM	MARY,	CONCLUSIONS AND RECOMMENDATIONS	256
	8.1	SUMN	MARY	256
		8.1.1	Review of problem	256
		8.1.2	The block movement model	257
		8.1.3	Numerical modelling	258
		8.1.4	Application of analytical solutions	260
	8.2	CONC	CLUSIONS	260
	8.3	LIMI	TATIONS OF THE STUDY	261
	8.4	RECO	MMENDATIONS	262

LIST OF REFERENCES	264
APPENDIX A	273
APPENDIX B	288
APPENDIX C	302
APPENDIX D	327
APPENDIX E	352

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Water level reduction in river valley affected by longwall mining	2
1.2	Unsightly cracking of rock bars in river valley affected by	
	longwall mining	2
2.1	Relationship between panel width, goaf angle and effective span	6
2.2	Overburden movement above a longwall panel	7
2.3	Cross section of longwall panel with microseismic event location	9
2.4	Characteristics of trough subsidence	12
2.5	Sub-critical, critical and super-critical trough shapes	15
2.6	Stationary subsidence profiles	16
2.7	Dynamic subsidence profiles	16
2.8	Idealised stratigraphic column of the Southern Coalfield	20
2.9	Formation of a subsidence trough above an extraction panel	31
2.10	Relationship between W/H ratio and S_{max}/T for single panels	32
2.11	Relationship between W/H and S_{max}/T for multiple panels	34
2.12	Relationship between pillar stress factor (W _L H/P _W) and S _{max} /T	
	for multiple panel layouts	35
2.13	Relationship between W/H ratio and K1	36
2.14	Relationship between W/H ratio and K2	37
2.15	Relationship between W/H ratio and K3	37
2.16	Relationship between maximum strain and minimum radius of	
	curvature	38
2.17	Location of inflection point	39
2.18	Goaf edge subsidence	39
2.19	Typical incremental subsidence profiles, NSW Southern Coalfield	l 41
2.20	Incremental subsidence profiles obtained using the Incremental	
	Profile Method	43
2.21	Prediction curves for maximum incremental subsidence	43

3.1	Buckling of rock bars resulting in low angle fractures	47
3.2	Buckling of rock bars leading to vertical cracks	48
3.3	Reduction in creek water level due to mining	48
3.4	Notch effect on horizontal stress field	50
3.5	Strata buckling mechanism due to in-situ horizontal stress	50
3.6	Possible failure mechanisms in the bottom of a valley	51
3.7	Distance measurement convention for valley closure and	
	upsidence predictions	52
3.8	Valley closure versus transverse distance from the advancing go	oaf
	edge	54
3.9	Valley closure adjustment factor versus longitudinal distance	55
3.10	Valley closure adjustment factor versus valley depth	56
3.11	Valley closure adjustment factor versus maximum incremental	
	subsidence	57
3.12	Upsidence versus transverse distance from the advancing goaf	
	edge	58
3.13	Upsidence adjustment factor versus longitudinal distance	59
3.14	Upsidence adjustment factor versus valley depth	60
3.15	Upsidence adjustment factor versus maximum incremental	
	subsidence	61
3.16	Original and amended plan for mining near the Nepean River	63
3.17	New conceptual model for upsidence and valley closure in the	
	hogging phase	66
3.18	Position	68
3.19	Radius of curvature	68
3.20	Velocity	69
3.21	Time derivative	70
3.22	Time derivative components	70
3.23	Acceleration	72
3.24	Magnified block displacements on curved slope	73
3.25	Area of contact between rotating blocks	73
3.26	Length of an arc	74
3.27	Exaggerated view of valley tilt and resulting closure	75
3.28	Components of valley tilt	75

5.1	Typical mesh configuration for all models	105
5.2	Thickness of stratigraphic units grouped according to mine	110
5.3	Model 1 geometry	112
5.4	Model 2 geometry	113
5.5	Model 3 geometry	114
5.6	Model 4 geometry	115
5.7	Subsidence profiles for different damping options	116
5.8	Superimposed model results for S_{max}/T	119
5.9	Superimposed model results for $S_{\text{goaf}}/S_{\text{max}}$	120
5.10	Superimposed model results for K1	121
5.11	Superimposed model results for K2	122
5.12	Superimposed model results for K3	123
5.13	Superimposed model results for D/H	124
5.14	Development of maximum subsidence in Model 1	127
5.15	Subsidence profile for Model 1	128
5.16	Strain profile for Model 1	129
5.17	Tilt profile for Model 1	130
5.18	Yielded zones and caving development in Model 1	131
5.19	Detailed view of yielded zones in Model 1	132
5.20	Yielded zones and joint slip in Model 1	133
5.21	Development of maximum subsidence in Model 2	134
5.22	Subsidence profile for Model 2	135
5.23	Strain profile for Model 2	136
5.24	Tilt profile for Model 2	137
5.25	Yielded zones and caving development in Model 2	138
5.26	Detailed view of yielded zones in Model 2	139
5.27	Yielded zones and joint slip in Model 2	140
5.28	Development of maximum subsidence in Model 3	141
5.29	Subsidence profile for Model 3	142
5.30	Strain profile for Model 3	143
5.31	Tilt profile for Model 3	144
5.32	Yielded zones and caving development in Model 3	145
5.33	Detailed view of yielded zones in Model 3	146
5.34	Yielded zones and joint slip in Model 3	147

5.35	Development of maximum subsidence in Model 4	148
5.36	Subsidence profile for Model 4	149
5.37	Strain profile for Model 4	150
5.38	Tilt profile for Model 4	151
5.39	Yielded zones and caving development in Model 4	152
5.40	Detailed view of yielded zones in Model 4	153
5.41	Yielded zones and joint slip in Model 4	154
6.1	Y-displacements on the surface and at the base of various rock	
	units	161
6.2	Geometry of initial river valley models	163
6.3	Finite different zoning used in valley models	164
6.4	Vertical displacements at base of Bulgo Sandstone	166
6.5	Subsidence profile comparison for varying cycles (N)	167
6.6	Yielded zones for $N = 30,000$ cycles	168
6.7	Model with bedding in upper 70 m of Hawkesbury Sandstone	170
6.8	Model with bedding and joints in upper 70 m of Hawkesbury	
	Sandstone	171
6.9	Subsidence profile comparison for bedding and joints	172
6.10	Yielded zones in a river valley model with bedding	173
6.11	Yielded zones in a river valley model with bedding and joints	174
6.12	Beam buckling in Model 7	176
6.13	Beam buckling in Model 8	177
6.14	Typical river valley model	181
6.15	Translation plane at base of valley	182
6.16	Translation plane below base of valley	183
6.17	Translation plane at base of valley (bedding and joints)	184
6.18	Translation plane below base of valley (bedding and joints)	185
6.19	Translation plane below base of valley (joints in beam)	186
6.20	Subsidence prior to valley excavation (no bedding and joints in	
	upper 70 m of Hawkesbury Sandstone)	191
6.21	Subsidence prior to valley excavation (bedding and joints in upper	
	70 m of Hawkesbury Sandstone)	192

6.22	Tilt prior to valley excavation (no bedding and joints in upper	
	70 m of Hawkesbury Sandstone)	194
6.23	Tilt prior to valley excavation (bedding and joints in upper 70 m	
	of Hawkesbury Sandstone)	195
6.24	Subsidence at base (no bedding and joints in upper 70 m of	
	Hawkesbury Sandstone)	199
6.25	Exaggerated block deformations when valley is 0 m from	
	longwall centreline (no bedding and joints in upper 70 m of	
	Hawkesbury Sandstone)	200
6.26	Exaggerated block deformations when valley is 50 m from	
	longwall centreline (no bedding and joints in upper 70 m of	
	Hawkesbury Sandstone)	201
6.27	Exaggerated block deformations when valley is 100 m from	
	longwall centreline (no bedding and joints in upper 70 m of	
	Hawkesbury Sandstone)	202
6.28	Block deformations and shear when valley is 0 m from longwall	
	centreline (no bedding and joints in upper 70 m of Hawkesbury	
	Sandstone, joints in beam)	203
6.29	Subsidence at base (bedding and joints in upper 70 m of	
	Hawkesbury Sandstone)	204
6.30	Block deformation and shear when valley is 100 m from longwall	
	centreline (bedding and joints in upper 70 m of Hawkesbury	
	Sandstone)	205
6.31	Horizontal stress when valley is 100 m from longwall centreline	
	(no bedding and joints in upper 70 m of Hawkesbury Sandstone)	206
6.32	Horizontal stress when valley is 100 m from longwall centreline	
	(bedding and joints in upper 70 m of Hawkesbury Sandstone)	207
6.33	Valley closure at shoulders (no bedding and joints in upper 70 m	
	of Hawkesbury Sandstone)	209
6.34	Valley closure at shoulders (bedding and joints in upper 70 m of	
	Hawkesbury Sandstone)	210
6.35	Exaggerated displacements above longwall centreline, plane at	
	base	211
6.36	Exaggerated displacements, plane at base	212

6.37	Exaggerated displacements, plane below base	213
6.38	Example of negative valley closure due to boundary conditions	215
6.39	Tensile areas around valley located 350 m from longwall	
	centreline, plane at base	216
6.40	Valley closure when translation plane is at the base of the valley,	
	350 m from longwall centreline	217
6.41	Valley closure at base (no bedding and joints in upper	
	Hawkesbury Sandstone)	219
6.42	Valley closure at base (bedding and joints in upper 70 m of	
	Hawkesbury Sandstone)	220
6.43	Yield in model when valley is 0 m from longwall centreline	
	(plane below base, bedding and joints in upper 70 m of	
	Hawkesbury Sandstone)	222
6.44	Yield in model when valley is 50 m from longwall centreline	
	(plane below base, bedding and joints in upper 70 m of	
	Hawkesbury Sandstone)	223
6.45	Yield in model when valley is 0 m from longwall centreline	
	(plane below base, no bedding and joints in upper 70 m of	
	Hawkesbury Sandstone)	224
6.46	Yield in model when valley is 100 m from longwall centreline	
	(plane below base, no bedding and joints in upper 70 m of	
	Hawkesbury Sandstone)	225
6.47	Closure at shoulders, no bedding and joints in upper 70 m of	
	Hawkesbury Sandstone, translation plane at base	227
6.48	Closure at base, no bedding and joints in upper 70 m of	
	Hawkesbury Sandstone, translation plane at base	228
6.49	Closure at shoulders, no bedding and joints in upper 70 m of	
	Hawkesbury Sandstone, translation plane below base, no joints in	
	beam	229
6.50	Closure at base, no bedding and joints in upper 70 m of	
	Hawkesbury Sandstone, translation plane below base, no joints in	
	beam	230

6.51	Closure at shoulders, no bedding and joints in upper 70 m of		
	Hawkesbury Sandstone, translation plane below base, joints in		
	beam	231	
6.52	Closure at base, no bedding and joints in upper 70 m of		
	Hawkesbury Sandstone, translation plane below base, joints in		
	beam	232	
6.53	Closure at shoulders, bedding and joints in upper 70 m of		
	Hawkesbury Sandstone, translation plane at base	233	
6.54	Closure at base, bedding and joints in upper 70 m of Hawkesbury		
	Sandstone, translation plane at base	234	
6.55	Closure at shoulders, bedding and joints in upper 70 m of		
	Hawkesbury Sandstone, translation plane below base	235	
6.56	Closure at base, bedding and joints in upper 70 m of Hawkesbury		
	Sandstone, translation plane below base	236	
6.57	Upsidence at base (from Table 6.9)	237	
6.58	Upsidence at base (from Table 6.10)	238	
6.59	Upsidence at base (from Table 6.11)	239	
6.60	Valley closure at top of valley as a function of joint friction angle	241	
6.61	Valley closure at bottom of valley as a function of joint friction		
	angle	242	
6.62	Valley closure at top of valley as a function of joint cohesion	243	
6.63	Valley closure at bottom of valley as a function of joint cohesion	244	
6.64	Comparison of valley wall closure at shoulders between the		
	UDEC models and the block kinematic solution	247	
7.1	Critical plate thickness for buckling	254	
7.2	Simple buckling in the field	255	

LIST OF TABLES

TABLE	TITLE	PAGE	
2.1	Stratigraphic units of the Illawarra Coal Measures in the		
	Southern Coalfield	21	
2.2	Interval between Wongawilli and Balgownie Seams	25	
5.1	Estimation of Young's Modulus	95	
5.2	Estimation of tensile strength		
5.3	Estimation of Poisson's Ratio		
5.4a	Material properties for stratigraphic rock units		
5.4b	Material properties for stratigraphic rock units (continued)	98	
5.5	Bedding plane spacing	100	
5.6	Joint normal and shear stiffness	100	
5.7	Bedding plane properties	101	
5.8	Vertical joint spacing	102	
5.9	Vertical joint properties	103	
5.10	Horizontal to vertical stress ratios	103	
5.11	Details for various mines used in the derivation of the empiric	al	
	subsidence prediction curves	109	
5.12	List of models	111	
5.13	Thickness of stratigraphic units (m) for each model, in descen	ding	
	order	111	
5.14	Finalised width and depth of models	111	
5.15	Results from single longwall panel flat terrain models	117	
6.1	Subsidence results from initial river valley models	165	
6.2	Subsidence results with bedding and joints ($N = 30,000$)	169	
6.3	Mesh density analysis results	175	
6.4	No bedding and joints in the upper 70 m of Hawkesbury		
	Sandstone, translation plane at base	187	

6.5	No bedding and joints in the upper 70 m of Hawkesbury	
	Sandstone, translation plane below base, no joints in beam	188
6.6	No bedding and joints in the upper 70 m of Hawkesbury	
	Sandstone, translation plane below base, joints in beam	188
6.7	Bedding and joints in the upper 70 m of Hawkesbury Sandstone,	
	translation plane at base	189
6.8	Bedding and joints in the upper 70 m of Hawkesbury Sandstone,	
	translation plane below base	189
6.9	Upsidence between models in Table 6.4 and Table 6.5	196
6.10	Upsidence between models in Table 6.4 and Table 6.6	196
6.11	Upsidence between models in Table 6.7 and Table 6.8	197
6.12	Additional models for parametric study and results	240
6.13	Valley wall closure comparison	246
6.14	Valley closure comparison	246
7.1	Analytical and numerical deflection of the Bulgo Sandstone	252

LIST OF SYMBOLS

А	=	Cross sectional area (m ²)
C_1	=	Closure from one side of valley (m)
c	=	Cohesion (MPa)
D	=	Distance of inflection point relative to goaf edge (m)
Е	=	Young's Modulus (GPa)
+E _{max}	=	Maximum tensile ground strain (mm/m)
-E _{max}	=	Maximum compressive ground strain (mm/m)
G	=	Shear Modulus (GPa)
G_{max}	=	Maximum ground tilt (mm/m)
Н	=	Depth of cover (m)
ITS	=	Indirect Tensile Strength (MPa)
JCS	=	Joint Wall Compressive Strength
JRC	=	Joint Roughness Coefficient
Κ	=	Bulk Modulus (GPa)
K1	=	Tensile strain factor
K2	=	Compressive strain factor
K3	=	Tilt factor
K4	=	Radius of ground curvature factor
1	=	Length of plate (m)
$\mathbf{P}_{\mathbf{W}}$	=	Pillar width (for multiple panel layouts) (m)
ϕ_1	=	Tilt of block adjacent to valley (radians)
¢	=	Friction angle (°)
Φ	=	Abutment angle (°)
θ	=	Change in tilt between two blocks
q	=	Constant (0.5 for both ends of plate clamped)
\mathbf{R}_1	=	Depth of valley (m)
R _{min}	=	Minimum radius of ground curvature (km)
r	=	Radius or height of valley wall (m)
\mathbf{S}_{goaf}	=	Goaf edge subsidence (m)
\mathbf{S}_{max}	=	Maximum developed subsidence (mm)
S	=	Length of arc (m)

σ_{c}	=	Unconfined Compressive Strength (MPa)
σ_{α}	=	Axial stress required for buckling (MPa)
$\sigma_{\rm H}$	=	Horizontal stress (MPa)
Т	=	Extracted seam thickness (m)
t	=	Thickness of plate (m)
UCS	=	Unconfined Compressive Strength (MPa)
υ	=	Poisson's Ratio
UTS	=	Uniaxial Tensile Strength (MPa)
VL2F	=	20 cm field sonic velocity
W	=	Width of underground opening (m)
W_{L}	=	Panel width + pillar width (m)
x ₁	=	Distance between block corners (m)
y 1	=	Subsidence at corner of block (m)
y ₁₁	=	Subsidence at corner of block (m)

ABSTRACT

Ground subsidence due to mining has been the subject of intensive research for several decades, and it remains to be an important topic confronting the mining industry today. In the Southern Coalfield of New South Wales, Australia, there is particular concern about subsidence impacts on incised river valleys – valley closure, upsidence, and the resulting localised loss of surface water under low flow conditions. Most of the reported cases have occurred when the river valley is directly undermined. More importantly, there are a number of cases where closure and upsidence have been reported above unmined coal. These latter events are especially significant as they influence decisions regarding stand-off distances and hence mine layouts and reserve recovery.

The deformation of a valley indicates the onset of locally compressive stress conditions concentrated at the base of the valley. Compressive conditions are anticipated when the surface deforms in a sagging mode, for example directly above the longwall extraction; but they are not expected when the surface deforms in a hogging mode at the edge of the extraction as that area is typically in tension. To date, explanations for valley closure under the hogging mode have considered undefined compressive stress redistributions in the horizontal plane, or lateral block movements and displacement along discontinuities generated in the sagging mode. This research is investigating the possibilities of the block movement model and its role in generating compressive stresses at the base of valleys, in the tensile portion of the subsidence profile.

The numerical modelling in this research project has demonstrated that the block movement proposal is feasible provided that the curvatures developed are sufficient to allow lateral block movement. Valley closure and the onset of valley base yield are able to be quantified with the possibility of using analytical solutions. To achieve this, a methodology of subsidence prediction using the Distinct Element code UDEC has been developed as an alternative for subsidence modelling and prediction for isolated longwall panels. The numerical models have been validated by comparison with empirical results, observed caving behaviour and analytical solutions, all of which are in good agreement. The techniques developed in the subsidence prediction UDEC models have then been used to develop the conceptual block movement model. The outcomes of this research have vast implications. Firstly, it is shown that valley closure and upsidence is primarily a function of ground curvature. Since the magnitude of curvature is directly related to the magnitude of vertical subsidence there is an opportunity to consider changes in the mine layout as a strategy to reduce valley closure. Secondly, with further research there is the possibility that mining companies can assess potential damage to river valleys based on how close longwall panels approach the river valley in question. This has the added advantage of optimising the required stand off distances to river valley and increasing coal recovery.

ACKNOWLEDGEMENTS

There are many people that I would like to thank for their advice and support over the past six years:

- My principal supervisor Associate Professor Naj Aziz from the School of Civil, Mining and Environmental Engineering, University of Wollongong. My association with Naj began when I commenced my undergraduate mining engineering degree in 1998, and he has been the driving force behind my decision to undertake further study. I would like to thank Naj for his continued support and motivation which has gained my admiration and respect.
- My secondary supervisor Associate Professor Ernest Baafi from the School of Civil, Mining and Environmental Engineering, University of Wollongong. Ernest's advice on numerical modelling, particularly in the early stages of the project was invaluable.
- Dr Ross Seedsman from Seedsman Geotechnics for his financial support, invaluable technical advice and guidance. Without Ross's help, I doubt this project would be where it is now, let alone finished.
- The Australian Coal Association Research Program for their financial support in the first eighteen months of the research project.
- Dr Michael Coulthard from MA Coulthard and Associates. Michael's extremely helpful technical advice on UDEC quite often got the ball rolling again when all seemed lost.
- Johnson Lee, my research partner for the first eighteen months of this project.
 Johnson's advice on numerical modelling helped me avoid many traps that befall those who are new to the art of numerical modelling.
- The staff at Strata Control Technology for providing access to their drill cores and logs.
- The staff at Metropolitan Colliery for allowing me access to sensitive areas above longwall panels. This experience gave me an appreciation of the enormity of the problem that I was researching.

- The staff at the CSIRO Exploration & Mining (Queensland Centre for Advanced Technologies) for cultivating a further interest in mining geomechanics, giving me time to work on the project and providing excellent computing facilities.
- The staff at Snowden Mining Industry Consultants who encouraged me to finish the project and provided the resources to do so.

Last but not least I would like to thank my family and friends that helped me through what was sometimes a very testing and difficult period. Your support and patience never ceased to amaze me, and for that I remain grateful.

PUBLICATIONS ARISING FROM RESEARCH PROJECT

The outcomes of this research work have resulted in the publication of four papers in mining/geotechnical conferences and one industry based report. Another conference paper and a journal article are in preparation at this time.

- Keilich, W & Aziz, N I 2007, 'Numerical modelling of mining induced subsidence', *Proceedings IMCET 2007*, Ankara, Turkey, June 2007.
- Keilich, W, Seedsman, R W & Aziz, N I 2006, 'Numerical modelling of mining induced subsidence in areas of high topographical relief', *Proceedings of the AMIREG* 2006 – 2nd International Conference, Hania, Greece, September 2006.
- Keilich, W, Seedsman, R W & Aziz, N I 2006, 'Numerical modelling of mining induced subsidence', *Proceedings of the Coal 2006 - 8th Underground Coal Operator's Conference*, Wollongong, NSW, July 2006.
- Keilich, W, Lee, J W, Aziz, N I & Baafi, E Y 2005, 'Numerical modelling of undermined river channels – a case study', *Proceedings of the Coal 2005 – 6th Underground Coal Operator's Conference*, Brisbane, QLD, April 2005.
- Aziz, N I, Baafi, E Y, Keilich, W & Lee, J W 2004, 'University of Wollongong Report on ACARP Project 22083 – Development of Protection Strategies, Damage Criteria and Practical Solutions for Protecting Undermined River Channels', ACARP Research Project No. 22083, Australian Coal Association Research Program, Brisbane, Queensland, Australia.