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ABSTRACT 
 

Ground subsidence due to mining has been the subject of intensive research for several 

decades, and it remains to be an important topic confronting the mining industry today. 

In the Southern Coalfield of New South Wales, Australia, there is particular concern 

about subsidence impacts on incised river valleys – valley closure, upsidence, and the 

resulting localised loss of surface water under low flow conditions. Most of the reported 

cases have occurred when the river valley is directly undermined. More importantly, 

there are a number of cases where closure and upsidence have been reported above 

unmined coal. These latter events are especially significant as they influence decisions 

regarding stand-off distances and hence mine layouts and reserve recovery. 

 

The deformation of a valley indicates the onset of locally compressive stress conditions 

concentrated at the base of the valley. Compressive conditions are anticipated when the 

surface deforms in a sagging mode, for example directly above the longwall extraction; 

but they are not expected when the surface deforms in a hogging mode at the edge of 

the extraction as that area is typically in tension. To date, explanations for valley closure 

under the hogging mode have considered undefined compressive stress redistributions 

in the horizontal plane, or lateral block movements and displacement along 

discontinuities generated in the sagging mode. This research is investigating the 

possibilities of the block movement model and its role in generating compressive 

stresses at the base of valleys, in the tensile portion of the subsidence profile.  

 

The numerical modelling in this research project has demonstrated that the block 

movement proposal is feasible provided that the curvatures developed are sufficient to 

allow lateral block movement. Valley closure and the onset of valley base yield are able 

to be quantified with the possibility of using analytical solutions.  To achieve this, a 

methodology of subsidence prediction using the Distinct Element code UDEC has been 

developed as an alternative for subsidence modelling and prediction for isolated 

longwall panels. The numerical models have been validated by comparison with 

empirical results, observed caving behaviour and analytical solutions, all of which are in 

good agreement. The techniques developed in the subsidence prediction UDEC models 

have then been used to develop the conceptual block movement model.  



 
Abstract 

 xix

The outcomes of this research have vast implications. Firstly, it is shown that valley 

closure and upsidence is primarily a function of ground curvature. Since the magnitude 

of curvature is directly related to the magnitude of vertical subsidence there is an 

opportunity to consider changes in the mine layout as a strategy to reduce valley 

closure. Secondly, with further research there is the possibility that mining companies 

can assess potential damage to river valleys based on how close longwall panels 

approach the river valley in question. This has the added advantage of optimising the 

required stand off distances to river valley and increasing coal recovery. 
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