University of Wollongong

Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2005

Automatic aircraft recognition and identification

Jijoong Kim University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Kim, Jijoong, Automatic aircraft recognition and identification, PhD thesis, School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, 2005. http://ro.uow.edu.au/theses/499

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

AUTOMATIC AIRCRAFT RECOGNITION AND IDENTIFICATION

by

JIJOONG KIM

B.Eng. (Hons) (The University of Adelaide) 1993M.Eng.Sc. (The University of Adelaide) 1995

School of Electrical, Computer and Telecommunications Engineering

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy from UNIVERSITY OF WOLLONGONG August, 2005

© Copyright by Jijoong Kim, 2005

Certification

I, Jijoong Kim, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Signature of Author

Date

Table of Contents

Τa	able o	of Contents		iii
Li	st of	Tables		vi
\mathbf{Li}	st of	Figures		ix
A	bstra	\mathbf{ct}		xxi
A	cknov	wledgements	x	xiii
1	Intr	oduction		1
	1.1	Design Objectives		2
	1.2	Definitions and Basic Assumptions		4
	1.3	System Description		6
	1.4	Contributions of the Thesis		7
	1.5	Outline of the Thesis	•	9
2	Airo	craft Recognition Techniques: A Review		15
	2.1	Syntactic/Semantic Grammar Techniques		16
	2.2	Global Matching Techniques		20
		2.2.1 Moment Invariant Techniques		20
		2.2.2 Fourier Descriptor Techniques		22
	2.3	Local Matching Techniques		24
		2.3.1 Pose Clustering		25
		2.3.2 Alignment		27
		2.3.3 Geometric Hashing		27
		2.3.4 Particular Systems		30
	2.4	Knowledge-Based Vision Systems		37
		2.4.1 COBIUS		38
		2.4.2 ACRONYM		40

		2.4.3 TRIPLE System	43
		2.4.4 Das and Bhanu	45
3	Fea	ture Extraction and Generation of Aircraft Hypothesis	51
	3.1	Review of Line Extraction Methods	52
	3.2	Proposed Edge Detection	54
	3.3	Clutter Rejection and Contour Extraction	58
	3.4	Line Extraction and Organisation	65
		3.4.1 Linear Approximation of Contours	65
		3.4.2 Extension of Collinear Lines	66
		3.4.3 Line Significance	72
		3.4.4 Line Description	72
		3.4.5 Polarised Lines and Grid Lines	73
		3.4.6 Endpoint Proximity Line Linking	76
	3.5	Two-Line Grouping	78
		3.5.1 Detection of Wing Candidates	79
		3.5.2 Detection of Nose Candidates	84
		3.5.3 Two-line Grouping Organisation	89
	3.6	Four-Line Grouping	91
	3.7	Generation of Aircraft Hypothesis	94
	3.8	Neural Networks for Extracting Line-Groupings and Aircraft Hypotheses	100
		3.8.1 Configuration of the Neural Networks	101
		3.8.2 Analysis of the Neural Networks	105
	3.9	Discussion	107
4	Ger	eric Aircraft Recognition	109
	4.1	0	110
			110
			115
			119
		01 0	121
	4.2		129
	4.3		133
	4.4	Evidence Score Optimisation	137
	4.5	Experimental Results of the Selected Aircraft Images Shown in Section	
			141
	4.6		145
	4.7		147

5	Air	craft Pose Estimation and Identification	157
	5.1	Review of Matching Metrics	159
		5.1.1 Integrated Squared Perpendicular Distance	159
		5.1.2 Distance Ratio Standard Deviations	161
		5.1.3 Circular Distribution of Matched Pixels	163
		5.1.4 Distance Transform \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	164
		5.1.5 Hausdorff Distance \ldots	167
		5.1.6 Averaged Dot Product of Contour Direction Vectors	169
		5.1.7 Discussions on Fitting Metrics	170
	5.2	Model Generation and Pose Estimation	173
	5.3	Model and Image Alignment	178
	5.4	Proposed Fitting Metrics	182
	5.5	Fitting Optimisation and Best Match Finding	185
	5.6	Model Matching Results	193
	5.7	Summary	195
6	Per	formance Analysis	203
	6.1	Implementation	204
	6.2	Computational Complexity	205
	6.3	Generic Recognition Performance	213
	6.4	Matching Performance	217
	6.5	Qualitative Performance Comparisons with Other Systems	220
	6.6	Concluding Remarks	221
7	Cor	nclusions	223
	7.1	Summary	223
	7.2	Discussion	224
	7.3	Suggestions for Future Work	227
А	Des	cription of Input Parameters to the Neural Networks Featur	e
		ractors	229
Bi	bliog	graphy	233

List of Tables

1.1	Simplified representation of aircraft domain knowledge	5
2.1	Example of semantic information attached to production rules	18
2.2	An example of 2-D table for an efficient pose clustering. The resolutions	
	(bin widths) for $s,\theta,\bigtriangleup x$ and $\bigtriangleup y$ are 0.2, 20, 5 and 5 respectively	34
3.1	Line description.	73
3.2	The neural network configurations and the mean error rates in detec-	
	tion of wings, noses, wing pairs and aircraft hypotheses	104
3.3	Test of the neural networks on the spurious features that survived the	
	rule-based approach. As shown in the third column, $30\text{-}40\%$ of those	
	features are successfully rejected by the neural networks	107
4.1	Scores obtained in the process of aircraft evidence accumulation. The	
	first 6 scores are dedicated to the aircraft part detection, and the re-	
	maining evidences (in the $7^{th} - 18^{th}$ entries) are introduced in order to	
	help distinguish between the aircraft and clutter hypotheses	139
6.1	Comparison of the total number of lines with and without the use of	
	the clutter removal algorithm for images with dense clutter. $\ . \ . \ .$	205
6.2	Computational complexity of aircraft recognition and identification	
	processes.	210
6.3	Performance evaluation using real aircraft and clutter images	216

6.4	Recognition rates in the eight imaging categories. Note that for the	
	multiple aircraft category, the denominator 42 is the total count of	
	aircraft in 17 multiple aircraft images	216
6.5	Matching performance parameters	219
6.6	Performance expectations of other methods such M.I (moment invariant)[36,
	15], F.D (Fourier Descriptor)[123], Das et al.[32], and Hsieh et al.[56],	
	under different imaging conditions. The question mark means $maybe$.	221

List of Figures

Real aircraft images with blurring and noise	10
Real aircraft images with camouflage	10
Real aircraft images in clutter background	10
Multiple aircraft in the image	10
Partly occluded aircraft images	11
Aircraft with protrusions - engine protrusions for (a) and (b), and	
missile protrusions for (c) and (d)	11
Aircraft with shadows - shadows on aircraft shown in (a) and (b),	
background shadow casted by aircraft shown in (c) and (d). $\ \ .$	11
Functional flow diagram.	12
Feature hierarchy for generation of an aircraft hypothesis. The aircraft	
hypothesis (nose-wingpair association) is at the top. The lower level	
features are four-line groupings, two-line groupings and lines. By using	
pointers, the system can access any low level feature of hypothesis, H_i .	13
(a) Aircraft represented by its skeleton, (b) primitives, (c) structure	
generated by using a string grammar, and (d) the skeleton that can be	
generated by the grammar $L(G) = \{abc^n d n \ge 1\}$	17
The projected angles α and β determine the rotation (pitch and roll)	
of the model vertex-pair projected onto the image plane. \ldots . \ldots	30
Framework of knowledge/model based aircraft recognition	38
COBIUS image understanding architecture [9]	39
	Real aircraft images with camouflage

2.5	Generalised Cylinder representation of an aircraft and the projected	
	images in terms of ribbons and ellipses	42
2.6	Multi-strategy machine learning approach for aircraft target recognition.	44
2.7	Framework of the qualitative object recognition system [33, 32]	46
2.8	Convexity test on a line pair. For any two lines, L_i and L_j , we de-	
	termine two extra lines (green dashed) by joining the end points of ${\cal L}_i$	
	and L_j . If these lines are contained in the segmented region (shaded)	
	then the convexity test is passed	47
2.9	3 or 4-line grouping process to generate symbolic aircraft features. The	
	shaded circles represent the proximal region of independently detected	
	corners. Any group of three lines (on the left) must satisfy the following	
	conditions: (i) the two lines, L_i and L_j , are non-parallel, (ii) the third	
	line, L_k , is in between L_i and L_j , (iii) the line intersections occur near	
	independently detected corners, and (iv) the third line, L_k , is shorter	
	then at least one of L_i and L_j . In addition, a group of four lines (on	
	the right) must satisfy the following conditions: (i) the two lines, L_i	
	and L_j , are non-parallel, and the other two, L_h and L_k , are parallel,	
	(ii) the parallels form the opposite sides of the trapezoid, (iii) the line	
	intersections occur near the detected corners, and (iv) the parallel lines,	
	L_h and L_k , are shorter than the non-parallels, L_i and L_j	48
3.1	Eight directional edge masks in angular steps of 22.5 degrees. These	
	edge masks have an elongated rectangular shape to detect long weak	
	edges.	56
3.2	Sliding search window to check for detecting dense clutter. The pixels	
	in all of the four quadrants need to be dense and randomly oriented if	
	the region under the window is to be tagged as $clutter$	60
3.3	Detection of randomly oriented dense clutter regions. The clutter re-	
	gions shaded. The clutter-aircraft borders are correctly included in the	
	non-clutter region so that the wing edges can be extracted. \ldots \ldots	61

3.4 Results of dense clutter removal process. The first column \rightarrow original	
images, the second column \rightarrow edge images prior to the clutter removal	
algorithm, and the third column \rightarrow edge images after clutter removal.	62
3.5 Results of dense clutter removal process (continued). The first column	
\rightarrow original images, the second column \rightarrow edge images prior to the	
clutter removal algorithm, and the third column \rightarrow edge images after	
clutter removal. \ldots	63
3.6 Contour labelling process. The current pixel searches for a contour	
pixel to inherit the label from. The direction of search is defined the	
orientation of the current pixel	64
3.7 If a contour has at least 30% of its pixels in non-clutter region, the	
contour is accepted	65
3.8 Straight line extraction process, similar to that of Lowe [79]. This	
algorithm generates a line approximation which is visually plausible	66
3.9 Line representation. Note that the symbol \sharp represents a number	66
3.10 Generation of an extended line - gap width, angular deviations and	
length differences form the basis to extend the lines. Note that these	
two lines L_i and L_j are not removed from the line database. They are	
used later in the line-grouping and evidence collection processes	69
3.11 Intensity means collected in the vicinity of the line pair. The intensity	
information is used to supplement the line extension decision	71
3.12 (a) Line features prior to the line extension process (b) Line extension	
and prioritisation outcome - extended lines (red dotted line), $significant$	
lines (blue), and <i>non-significant</i> lines (green).	71
3.13 Histograms of the line orientations are shown in the right column. The	
images in the left column show clutter lines that are predominantly	
oriented along one or two directions.	75
$3.14\;$ Forming a line link based on the endpoint proximity property is shown	
in (a), and a recursive line search to check if two lines are linked via a	
line chain is shown in (b). \ldots \ldots \ldots \ldots \ldots \ldots \ldots	77

A wide variety of nose shapes and intensities	80
Two-line grouping process	81
Wing candidate detection conditions - examples of accepted cases (a)	
and (d), and commonly arising failed cases (shown in red lines)	82
Gradient distribution curve for the region enclosed by a two-line group-	
ing. To pass the intensity check, the $10\%,20\%,30\%$ percentiles must	
be less than preset thresholds (ie., majority of the populations must	
be on the left corner).	83
A typical nose configuration	84
Incorrect nose configurations in (a), (g), (l) are subject to further ver-	
ification. Resulting accepted and rejected configurations are shown in	
blue and red, respectively. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	85
Any nose candidate in close proximity to image borderlines, which is	
oriented in such a way that a large portion its projected silhouette is	
placed outside the image borderlines	86
Location of the nose tip. If the nose tip is not visible, then it location	
is estimated at the midpoint of nose edges' intersection and midpoint	
of nose edges' inner endpoints	86
Multiple two-line grouping configurations generated from single phys-	
ical nose	87
Wing/Nose Representation. Leg1 and Leg2 are the two lines forming	
the two-line grouping. Note that the symbol \sharp refers to a number	90
Resulting wing and nose candidates from the two-line grouping process	
on the image of Figure 3.4(a). In (a), line pairs are shown in blue, and	
red lines are used to show which two lines are paired. [(b) 80 nose	
candidates and (c) 513 wing candidates]	90
Formation of four-line groupings (wing-pair candidates). Commonly	
encountered failed configurations are shown as red lines in (b)	93
Three point collinearity property both in space and in the image	94
	Two-line grouping process

3.28	Four-line grouping representation. The two slots <i>right</i> and <i>left wing</i> hold the wing numbers which form the wing-pair. Note that the symbol	
	# refers to a number.	95
3.29	Extraction of multiple wing-pairs due to wing edge fragmentation. This figure shows 3 possible boomerang wing pairs arising from one wing pair, one of whose edges contain 2 segments.	95
3.30	Resulting wingpair candidates from the four-line grouping process on the image in Figure 3.4(a). The blue lines are constituent lines of four line groupings. Red and green lines are introduced to show how the blue lines are grouped together . [(b) triangle wing candidates, (c) diamond wing candidates, and (d) boomerang wing candidates]	96
3.31	Nose to wing-pair matching. The nose must be within the search re- gion, must be facing the wing-pair, and the skewness must not be severe.	99
3.32	In the feature parameter space (2-D for illustrative purpose) the blue circles represent aircraft feature parameters and the red squares rep- resent clutter feature parameters. (a) Use of single thresholds forms simple decision boundaries that pass many clutter features, and (b) the neural networks can generate complex shaped decision boundaries.	101
3.33	Plot of log-sigmoid function.	102
3.34	ROC curves for detection of (a) wings, (b) noses, (c) wing-pairs and (d) aircraft hypotheses	106
4.1	Typical commercial and military aircraft, and the parts that needed to be detected for evidence score accumulation.	111
4.2	Detection of fuselage edges and assessment of their coverage	113
4.3	Scale factor $(f_L \text{ or } f_R)$ which is inversely proportional to the divided angular width of the fuselage search region, expressed in terms of $\angle (C - ER C - P_r)$ and $\angle (C - ER C - P_r)$	115
	$FP, C - P_L$) and $\angle (C - FP, C - P_R)$	115

4.4	The detected fuselage boundary lines connect the nose to the wing	
	leading edges via connected chains. Such a nose-to-wing connection	
	provides the strong fuse lage boundary evidence	116
4.5	Locating tail fin edge lines: (a) geometric constraints in terms of lo-	
	cation, length and orientation, (b)intensity-based constraints applied	
	both in the foreground and background regions, (c) skewed symme-	
	try constraints applied to tail fin leading edges (ie., $\cot \lambda_1 + \cot \lambda_2 =$	
	$\cot \lambda'_1 + \cot \lambda'_2$)	118
4.6	Detection of wingtip edges	120
4.7	The wing leading edges must overlap when rotated about FP . The	
	overlapping portion is shown in red. The same rule applies to the	
	trailing edges of the wing-pair	122
4.8	Regions of interest for intensity level comparisons. The differences of	
	the mean intensity values between each pair of regions $(F1 \text{ and } F2)$,	
	$(R1 \text{ and } R2) \text{ and } (M1 \text{ and } M2) \text{ are expected to be small.} \dots$	123
4.9	The background intensity is computed from the shaded periphery re-	
	gion. We assume this periphery region contains mainly the background	. 124
4.10	Background intensity histograms obtained from the shaded perimeter	
	region (refer to Figure 4.9) of aircraft images with different clutter	
	levels: (a) clean, (b) light clutter, and (c) heavy clutter. P_M is the	
	count of pixels in the bin corresponding to the peak, and P_T is the	
	total pixel count in the histogram. The ratio P_M/P_T roughly indicates	
	the clutter level	124
4.11	Finding of rear fuselage lines and clutter lines: Potential rear fuselage	
	edges for a boomerang shaped wing-pair are detected between the wing	
	trailing edges, and are shown in blue. Detection of many lines crossing	
	the gap between the wing edge's inner point (eg., $PT2$) and the fuselage	
	axis weakens the confidence of the hypothesis. Clutter lines are shown	
	in red	125

4.12	A spurious aircraft hypothesis coincidentally generated from dense	
	clutter, is likely to contain many clutter lines in the hypothetical fuse-	
	lage region.	125
4.13	Clutter evidence score plot as function of the clutter count. If the	
	clutter count within the fuse lage region (refer to Figure 4.12) exceeds	
	7, then the score becomes negative	126
4.14	Deviation of FP from the fuselage axis, expressed as θ_{FP} . Any air-	
	craft with coplanar wings and fuse lage will display a small θ_{FP} value.	
	Spurious hypotheses usually show larger θ_{FP} values, therefore the pa-	
	rameter, $\theta_{FP},$ is used in interpretational conflict resolution process. $% \theta_{FP}$.	127
4.15	Intensity comparisons between regions of R1 and R2. A spurious air-	
	craft hypothesis, often generated as wing-fuselage combinations, will	
	show a large intensity difference between the two regions	128
4.16	Spurious hypothesis which is accidentally formed where three or more	
	wings are the extended lines of clutter edges	129
4.17	Aircraft-hypothesis representation. The two slots $Killed$ and $Killed_by$	
	are used during the interpretational conflict resolution process. The	
	slot $Weight$ contains the sum of the four line lengths. Note that the	
	symbol \sharp refers to a number	130
4.18	Commonly encountered scenarios of interpretational conflicts due to	
	part sharing. Incorrect wing edges in the spurious wing candidates are	
	shown in red.	132
4.19	Shadow regions casted by wings ((a) are mostly covered by the wings,	
	or (b) are separated from the wings). The shadow wings have their	
	symmetry axis roughly aligned with the aircraft fuse lage axis. $\ . \ . \ .$	134
4.20	Interpretational conflicts arising from shadow casted by the wings	135
4.21	Examples of some competing aircraft candidates. Green lines corre-	
	spond to nose legs, red lines to wing edges and tips, blue line to fuselage	
	axis, and cyan line to wing symmetry axis	138

4.22	Histogram of the fuselage coverage score of the winning hypotheses
	using a sample base of 300 real aircraft images
4.23	Blur image 1, Score = 757
4.24	Blur image 2, Score = $[879 \ 510]$
4.25	Blur image 3, Score = 737 14
4.26	Blur image 4, Score = 64714
4.27	Camouflage 1, Score = 810. $\dots \dots \dots$
4.28	Camouflage 2, Score = $690.$
4.29	Camouflage 3, Score = 612
4.30	Camouflage 4, Score = $686.$
4.31	Dense clutter, Score = $620.$
4.32	Dense clutter, Score = $730.$
4.33	Polarised clutter, $Score = 746$ 15
4.34	Structured clutter, Score = $724. \ldots 15$
4.35	$Multiple aircraft 1, Scores = [917 \ 903 \ 843]. \dots \dots$
4.36	Multiple aircraft 2, Scores = [834 733 706] 15
4.37	Multiple aircraft 3, Scores= $[834\ 714\ 686\ 674]$
4.38	$Multiple aircraft 4, Scores = [783 717]. \dots \dots$
4.39	Partial occlusion 1, Score = 825 15
4.40	Partial occlusion 2, Score = 713 15
4.41	Partial occlusion 3, Score = 725 15
4.42	Partial occlusion 4, Score = 766 15
4.43	Protrusions 1, Score = 963. $\dots \dots \dots$
4.44	Protrusions 2, Score = 831
4.45	Protrusions 3, Score = 797. $\dots \dots \dots$
4.46	Protrusions 4, Score = 726. $\dots \dots \dots$
4.47	Shadow problem 1, Score = 731 15
4.48	Shadow problem 2, Score = 69515
4.49	Shadow problem 3, Score = 86315
4.50	Shadow problem 4, Score = 692 15

4.51	Examples of spurious hypotheses from non-aircraft images when the	
	rule-based line grouping method is used. The spurious hypothesis in	
	(f) survives as its score exceeds the threshold. However, with the neural	
	network based line grouping method, this spurious hypothesis fails to	
	form	156
5.1	5 Military jets considered in the experiment	158
5.2	Endpoints on a image segment projected onto an infinitely extended	
	model segment. The perpendicular distance at any point along the	
	image segment is given as $d(t)$	160
5.3	Projected model and image boundaries used for calculation of the dis-	
	tance ratio standard deviation	162
5.4	Circular distribution of matched pixels, (a) good match between the	
	model and image boundaries, (b) poor match resulting in an uneven	
	distribution of points	163
5.5	A binary edge image (on the left) and its Euclidean Distance Transform	
	(on the right). \ldots	165
5.6	Computation of the Chamfer distance - model edge image (template)	
	is superimposed on the DT image, and the values in the shaded (blue)	
	entries read the distance between the model edges and the image edges.	165
5.7	Hausdorff distance shown for two point sets of ellipses. The ellipse pair	
	on top are better fitted, and result in the smaller $H(A, B)$	168
5.8	Examples of one-to-many and many-to-many mappings. (a) One model	
	line is mapped to many image line fragments (eg., $c \rightarrow \{8,9\}, d \rightarrow$	
	$\{10, 11, 12\}$). (b) When a curve is approximated with a series of	
	straight line segments, the resulting mapping is likely to be many-	
	to-many	171
5.9	Simplified 3-D model of an F16: blue \rightarrow horizontal, red \rightarrow vertical. The	
	origin of the 3-D coordinate system is at the intersection of wing leading	
	edges FP	174

5.10	Model to image projection. Translation and scaling are ignored to	
	simplify the diagram. The $\mathbf{x'}\text{-}\mathbf{y'}$ axes are the projections of the rotated	
	X-Y axes. Note $\mathbf{v_1'}$ and $\mathbf{v_2'}$ can also be expressed as $\mathbf{v_1}$ and $\mathbf{v_2}$ if	
	measured with respect to the image reference frame (ie., $\mathbf{x}\textbf{-}\mathbf{y}$ frame)	175
5.11	Generation of transformed model silhouette	180
5.12	Filtered phase map: discrete orientations are displayed in different	
	colours	182
5.13	Proximity weight - ranging from 0 to 1 for each pixel pair	184
5.14	Overlay of the 3-D cosine taper function along the projected model	
	boundary. The red colour is equivalent to 1, and blue colour in the	
	background is equivalent to $0. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	184
5.15	Search for the closest image pixel having a similar orientation to the	
	current model pixel. The distance between the two pixels is d_m	185
5.16	Histogram of the angles between the wing leading edges (a), and his-	
	togram of the angles between the wing trailing edges (b). These angles	
	are taken from the winning aircraft hypotheses of the 300 real aircraft	
	images	186
5.17	Incorrectly estimated position of RP , and the resulting rotational shift	
	of the wing symmetry axis	187
5.18	Poor outline matching due to relatively large transformation errors	188
5.19	Various RP s in a grid for iteratively determining the correct transform	
	parameters	188
5.20	Match with the highest match score after considering all RP s in the	
	grid	189
5.21	Model Hierarchy for efficient model search	190
5.22	Efficient two-step model fitting process	192
5.23	Model matching for F111 with shadow (match score = 64%)	196
5.24	Model matching for F111 with grid clutter (match score = 66%)	197
5.25	Model matching for F16 with occlusion and protrusion (match score $=$	
	75%)	198

5.26	Model matching for JSF with clutter and occlusion (match score = 72%)	.199
5.27	Matching for Mirage with camouflage and protrusions (match score $=$	
	78%)	200
5.28	Matching for F18 with shadows (match score = 68%)	201
6.1	Number of line groupings extracted by the rule-based method: N_N	
	(blue), N_W (red), N_{4G} (black) and N_H (green) versus line count N_E	
	(x-axis)	206
6.2	Number of line groupings extracted by the neural network based method: $% \left({{{\rm{D}}_{{\rm{D}}}}} \right)$	
	N_N (blue), N_W (red), N_{4G} (black) and N_H (green) versus line count	
	N_E (x-axis)	206
6.3	Distribution curves of the number of line groupings, N_E (top left), N_W	
	(top right), N_{4G} (bottom left) and N_H (bottom right), obtained via	
	the rule-based approach from the cluttered aircraft images	207
6.4	Plots of total line counts. The curve represents the number of the	
	extended lines as a function of the unextended lines (prior to the line	
	extension process).	211
6.5	Plot of N_W curves obtained from real aircraft images, using the rule-	
	based two-line grouping extraction algorithm. The red and black curves	
	represent N_W with and without intensity checks, respectively	212
6.6	Plot of N_W curves obtained from non-aircraft clutter images, using the	
	rule-based two-line grouping extraction algorithm. The red and black	
	curves represent ${\cal N}_W$ with and without intensity checks, respectively	213
6.7	ROC curves for the generic recognition of aircraft. The red curve is	
	obtained when the rule based method is used for the extraction of	
	line-groupings and the blue curve is obtained using the neural networks	.215
6.8	Model match score: Correct match (blue asterisk) and false match (red	
	circle or red cross). A red circle represents a correct aircraft hypothesis	
	matched to a wrong model. A red cross represents a spurious aircraft	
	hypothesis matched to one of the models	218

6.9	ROC curve: trade off between true and false match rates as the thresh-	
	old varies	219

Abstract

Aircraft recognition remains a challenging problem despite a great deal of effort to automate the recognition process. The majority of the aircraft recognition methods assume the successful isolation of the aircraft silhouette from the background, and only a few have actually addressed real world concerns, such as occlusion, clutter and shadows. This thesis presents an automatic aircraft recognition system, which shows improved performance with complex images. This system assumes from the start that the image could possibly be degraded, contain occlusions, clutter, camouflage, shadows and blurring. It is designed to tolerate and overcome the degradations at various analysis stages. The first part of the thesis focuses on the generic aircraft recognition problem using a generic description of aircraft parts and the geometric relationships that exist among them. The system implements line groupings in a hierarchical fashion, progressively leading towards a generic aircraft structure. A voting scheme is used to consolidate line groupings belonging to an aircraft while discouraging the formation of spurious line groupings. The aircraft *identification* process is carried out in the second part of the thesis, where the generically recognised aircraft is matched to model candidates. Model matching is carried out via pixellevel silhouette boundary matching. The system is tested on numerous real aircraft, scaled-down model aircraft and non-aircraft images with adverse image conditions. The developed system achieves a recognition rate of 84% at a false alarm rate of 7% on real aircraft images, and an correct matching rate of about 90% and a false matching rate of 7% on the generically recognised aircraft from model aircraft images.

Acknowledgements

I would like to express my sincere gratitude to my principal supervisor Prof. Abdesselam Bouzerdoum for his guidance and enthusiasm over the years. His cheerful attitude and encouragement will be dearly missed.

I am also deeply grateful to Dr. Hatem Hmam, for his constant guidance, advise and friendship. Without his daily probing, criticisms and suggestions, I could not have completed this journey.

I cannot thank enough my wife Christine Jang for putting up with me, and cheering me up whenever I hit dead ends. This thesis is dedicated to her.

I thank Dr. Carmine Pontecorvo for proofreading the first draft of my thesis and being a good friend for so many years.

I am indebted to my family for their love and prayers, and Dr. Farhan Faruqi, Mr. Ashley Martin and other colleagues for their patience and support.