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ABSTRACT 
 

Conventional semiconductor electronics is based on the charge of the electron. For a 

long time the spin of the electron has been ignored in the field of conventional 

electronics. Spintronics, also called spin electronics, magnetoelectronics or 

magnetotronics, is a newly emerging field in solid state physics and information 

technology. One of the major challenges for semiconductor spintronic devices is to 

develop suitable novel spin-polarized magnetic semiconducting materials that will 

effectively allow spin-polarized carriers to be injected, transported, and manipulated. 

Therefore, searching for new materials has become crucial from the viewpoints of both 

fundamental research and practical applications.  

 
Diluted magnetic semiconductors (DMS) are one of the most promising candidates for 

spintronic application. The research on the DMS materials which has been carried out 

worldwide in the past decade has been reviewed in this thesis. A DMS material can be 

realized when a conventional host semiconductor, such as GaAs, ZnO, etc., is doped 

with magnetic impurities, usually transition metal (TM) ions. For practical application, 

DMS material should favorably be ferromagnetic (FM) at room temperature. Early 

studies on DMS materials showed that FM can be induced in Mn doped III-V 

semiconductors. However, these materials are not suitable for practical applications as 

their Curie temperatures are quite low. On the other hand, some theoretical works 

predicted room temperature ferromagnetism in TM doped oxide semiconductors. This 

fact has boosted research in the field of DMS materials. The number of reports on 

observations of room temperature FM in Co, Mn, Ni, and Cr doped ZnO and TiO2 

semiconducting oxides is constantly growing. 

 

The aim of this thesis was to study the doping effects of transition metal ions on the 

structure, transport, and diluted magnetic properties of various host oxide 

semiconductors. The oxide semiconductors investigated in this work are: ZnO, CuO, 

Ga2O3, and In2O3. A search for room temperature ferromagnetic semiconductors was the 

key point of this research. In addition, we have tried to understand and explain the 
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possible origins of the magnetic properties of the samples produced, because at the 

present time there is no firm theoretical model that could explain magnetism in DMS 

materials. 

 

The majority of the samples studied in this research were prepared by a conventional 

solid state synthesis technique. We have carried out X-ray diffraction and electrical-

magnetic transport measurements to determine the crystal structure, electrical and 

magnetic properties of our samples. In order to investigate the valence state of transition 

metal ions in the prepared materials, X-ray absorption near edge spectroscopy analysis 

was used.  

 

The major results from this PhD study are: 

(1) Polycrystalline Co-doped ZnO oxide samples were prepared with Co doping 

levels varying between 1 and 10%. All samples were found to be paramagnetic without 

any trace of ferromagnetism at room temperature and were insulators. Introduction of In 

ions into the system decreased the electrical resistivity of the samples. The spin state 

assessment revealed that strong spin-orbital coupling is present in In containing samples. 

Valence state assessment showed that in ZnO Co is present in the 2+ valence state. 

  

(2) Mn doped CuO bulk samples showed a ferromagnetic transition at 80 K. All the 

samples prepared were insulating. In and Zn were used as charge donors. It was found 

that the In solubility limit in CuO lattice is very limited, less than 1%. The magnetic 

properties that were measured showed a large decrease in the magnetic susceptibility of 

(Mn,Zn) and (Mn,In) co-doped CuO samples. This could be attributed to the formation 

of large amounts of antiferromagnetic impurities and phase segregation in the samples. 

Valence state assessment showed that Mn is present in the 2+ valence state, eliminating 

the possibility of a double exchange interaction mechanism in this system. 

 

(3) Various transition metal ions, such as Mn, Fe, Cr, and Ni, were doped into In2O3 

and indium-tin oxide (ITO). In contrast to the reported data, our Fe doped In2O3 samples 

were paramagnetic. Paramagnetism was also observed in Cr doped In2O3. Mn doped 
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In2O3 samples were insulators with a Curie temperature of 46 K, while Mn doped ITO 

samples were typical semiconductors with the same Curie temperature. Furthermore, 

these samples showed a large positive MR effect below the ferromagnetic transition 

temperature, reaching 20% at a temperature of 5 K. Ni doped In2O3 and ITO samples 

were also found to be ferromagnetic at room temperature. Electrical transport properties, 

though, were different in nature. Ni doped In2O3 was found to be a typical 

semiconductor, while the electrical conductivity of Ni doped ITO was found to be 

characteristic of metallic materials. 

 

(4) (Fe,Mn) co-doped In2O3 and ITO samples were ferromagnetic at room 

temperature, being both conducting and insulating depending on the host semiconductor. 

The change in lattice parameter a was very dependent on the ratio of Mn to Fe in the 

system, with decrease in lattice parameter a as Fe content increased. The maximum 

saturation magnetization was found for an In1.80Mn0.12Fe0.08O3 sample, which reached 

0.35 μB/(Mn,Fe) ions at a temperature of 300 K. (Mn,Fe) co-doped In2O3 samples were 

insulating at room temperature, while (Fe,Cr) co-doped In2O3 samples were both 

conducting and ferromagnetic at room temperature. In addition, (Fe,Cr) co-doped 

samples showed a large positive MR effect, i.e. 5% at 5 K. On the contrary, despite 

being good conductors, (Mn,Fe) co-doped ITO samples did not exhibit similar MR 

features. 

 

(5) (RE,Fe) co-doped In2O3 polycrystalline samples were semiconducting and 

showed giant positive magnetoresistance at 5 K. The obtained magnetoresistance in 

(Eu,Fe) co-doped In2O3 reached 80 % at 5 K. This value is the largest reported MR 

value for any diluted magnetic semiconductor. In addition (RE,Fe) co-doped samples 

showed clear ferromagnetic hysteresis behavior at 300 K. TEM studies of these samples 

revealed that particles are well formed and are about 100 nm in size.  

 

Based on the results, among the transition metal doped oxide semiconductors studied, 

In2O3 and ITO are the most promising candidates for diluted semiconductor materials 

with possible practical applications in spintronic devices.  



 

vi 

 

Contents 
Introduction ............................................................................................................ 2 

Chapter 1. Literature review 

1. Introduction.................................................................................................... 7 

 1.1. Semiconductor materials............................................................................... 8 

 1.2. Basic principles of semiconductivity ............................................................ 9 

 1.2.1. Band structure of semiconductors............................................................... 10 

 1.2.2. Doping of semiconductors .......................................................................... 11 

 1.2.3. Charge transport in semiconductors............................................................ 13 

 1.2.4. Hall Effect ................................................................................................... 15 

 1.3. Magnetism and magnetic materials .............................................................. 16 

 1.3.1. Spin and orbital states of the electron, Brillouin function .......................... 17 

 1.3.2. Magnetically ordered states ........................................................................ 22 

 1.4. Spintronics: concept, materials, and applications ......................................... 25 

 1.5. Progress in recent research on DMS materials ............................................. 28 

 1.5.1. Ferromagnetism in oxide semiconductors .................................................. 29 

 1.5.2. Transition metal doped oxide semiconductors............................................ 32 

 

Chapter 2. Experimental techniques and procedures 

2. Introduction.................................................................................................... 45 

 2.1. Fabrication of samples, experimental procedures, and chemicals ................ 46 

 2.2. Equipment for experimental work ................................................................ 53 



 

vii 

 2.2.1. Structural and physical characterization of samples ................................... 53 

 2.2.2. Electric and magnetotransport characterizations ........................................ 55 

 2.2.3. Magnetic measurements.............................................................................. 57 

 2.2.4. XANES for valence determination ............................................................. 58 

 

Chapter 3. Transition metal doped ZnO 

3. Introduction.................................................................................................... 60 

 3.1. Experiments .................................................................................................. 61 

 3.2. Results and discussion .................................................................................. 63 

 3.2.1. Phase formation and purity of TM-doped ZnO .......................................... 63 

 3.2.2. Magnetic properties of TM-doped ZnO...................................................... 76 

 3.2.3. The spin state assessment of Co ions: classical Curie-Weiss law versus 

modified Curie-Weiss law.......................................................................... 85 

 3.2.4. Co valence state .......................................................................................... 93 

 3.3. Summary ....................................................................................................... 94 

 

Chapter 4. Transition metal doped In2O3 and ITO 

4. Introduction.................................................................................................... 96 

 4.1. Experiments .................................................................................................. 97 

 4.2. Results and discussion .................................................................................. 98 

 4.2.1. Transition metal doped In2O3...................................................................... 99 

 4.2.1.1. Structural characterization...................................................................... 99 

 4.2.1.2. Morphology and chemical composition ................................................. 105 



 

viii 

 4.2.1.3. Magnetic properties of TM doped In2O3................................................ 108 

 4.2.1.4. Transport properties of TM doped In2O3 ............................................... 116 

 4.2.1.5. Transition metal valence state ................................................................ 120 

 4.2.2. Transition metal doped ITO........................................................................ 121 

 4.2.2.1. Structural characterization...................................................................... 122 

 4.2.2.2. Morphology and chemical composition ................................................. 124 

 4.2.2.3. Magnetic properties of TM doped ITO .................................................. 127 

 4.2.2.4. Transport properties of TM doped ITO.................................................. 131 

 4.2.3. Rare earth and Fe co-doped In2O3 .............................................................. 136 

 4.3. Summary ....................................................................................................... 142 

 

Chapter 5. Effects of TM doping into CuO 

5. Introduction.................................................................................................... 144 

 5.1. Experiments .................................................................................................. 145 

 5.2. Results and discussion .................................................................................. 146 

 5.2.1. Structural characterization of TM doped CuO............................................ 146 

 5.2.2. Morphology and chemical composition...................................................... 151 

 5.2.3. Magnetic properties..................................................................................... 152 

 5.2.4. Valence state studies ................................................................................... 157 

 5.3. Summary ....................................................................................................... 159 

 

Chapter 6. Conclusions and recommendations 

 6.1. Conclusions................................................................................................... 160 



 

ix 

 6.2. Further work.................................................................................................. 163 

Bibliography............................................................................................................ 165 

List of own publications ...................................................................................... 180 



 

x 

List of Figures 

 
1.1. Band structure of a) an insulator, b) a semiconductor, and c) a conductor.... 11 

1.2. Effect of a magnetic field on the energy levels of the two electron 

states with 1 1 and 
2 2s sm m= + = − ................................................................ 20 

1.3. Magnetization M of several paramagnetic salts containing Gd3+, Fe3+, 

and Cr3+ plotted versus 0H
T

μ . ...................................................................... 22 

1.4. Summary of the temperature dependence of the magnetization M and 

the magnetic susceptibility χ or reciprocal susceptibility χ--1 in various 

types of magnetic materials........................................................................... 25 

1.5. Schematic view of a magnetic random access memory (MRAM). ............... 27 

1.6. A schematic representation of magnetic percolation in an oxide based 

diluted magnetic semiconductor. .................................................................. 31 

1.7. Crystal structure of ZnO. ............................................................................... 33 

1.8. Observation of room temperature ferromagnetism in Mn-doped ZnO 

thin films. ...................................................................................................... 34 

1.9. Schematic illustration of the effect of interstitial Zn on magnetic 

properties and M-H loops for “FM switched on” and “FM switched 

off” states. ..................................................................................................... 37 

1.10. ZFC and FC curves of Mn-doped CuO. Inset shows reciprocal 

magnetization as a function of temperature. ................................................. 39 

1.11. Observation of RT ferromagnetism in Mn-doped Cu2O................................ 40 

1.12. Crystal structure of In2O3............................................................................... 41 

1.13. Anomalous Hall Effect in Cr-doped ITO....................................................... 43 

2.1. Fabrication of polycrystalline samples via the conventional solid state 

synthesis technique........................................................................................ 48 

2.2. Sample fabrication process using “rapid oxalate” decomposition 

technique. ...................................................................................................... 49 

2.3. A schematic view of the experimental procedures. ....................................... 50 



 

xi 

2.4. The families of samples that were characterized by various structural, 

electric and magnetic properties measurements............................................ 51 

2.5. The process of photoelectron scattering, and identification of the 

XANES region in the XAS spectrum. .......................................................... 59 

3.1. Heating times and temperatures applied during a) calcination, b) “rapid 

oxalate” decomposition, and c) sintering of the samples.............................. 62 

3.2. a) X-ray diffraction patterns of Zn1-xCoxO samples. Impurity phase 

Co3O4 is indicated by . b) Dependence of lattice parameters a and c 

on Co content (x). Inset represents unit cell volume (V) as a function of 

Co content (x)................................................................................................ 64 

3.3. X-ray diffraction patterns of Zn1-x-yCoxMgyO prepared by a 

conventional solid state synthesis technique. MgO and CoO impurities 

are indicated by  and , respectively. ........................................................ 66 

3.4. X-ray diffraction patterns of Zn1-x-yCoxMgyO samples prepared by a 

“rapid oxalate” decomposition technique. MgO and CoO impurities 

are indicated by  and , respectively. ........................................................ 67 

3.5. Lattice parameters a and c versus doping level for Zn1-x-yCoxMgyO 

samples prepared by a conventional solid state synthesis............................. 68 

3.6. Lattice parameters a and c versus doping level for Zn1-x-yCoxMgyO 

samples prepared by a “rapid oxalate” decomposition technique................. 68 

3.7 X-ray diffraction patterns of Zn1-yCo0.15MgyO prepared by the “rapid 

oxalate” synthesis technique. ........................................................................ 70 

3.8. Dependence of lattice parameters a and c on the Mg doping level (y) 

for Zn1-yCo0.015MgyO samples. ...................................................................... 71 

3.9. a) X-ray diffraction patterns for Zn1-xCo0.075InxO samples prepared by 

the “rapid oxalate” synthesis technique. b) Dependence of lattice 

parameters a and c on indium content (x) for Zn1-xCo0.075InxO samples. 

Inset shows unit cell volume (V) versus (x). ................................................. 72 

3.10. Rietveld refinement pattern for Zn0.91Co0.075In0.015O sample......................... 73 

3.11. Electrical resistivity (ρ) as a function of indium content (x) for Zn1-

xCo0.075InxO samples...................................................................................... 76 



 

xii 

3.12. Dependence of a) molar magnetic susceptibility (χ) and b) inverse 

molar magnetic susceptibility (1/χ) on temperature (T) for Zn1-xCoxO 

samples.......................................................................................................... 77 

3.13. Magnetization (M) versus applied magnetic field (H) for Zn1-xCoxO 

samples at 10 K. ............................................................................................ 78 

3.14. a) Molar magnetic susceptibility (χ) and b) inverse molar magnetic 

susceptibility (1/χ) as a function of temperature (T) for Zn1-x-

yCoxMgyO samples. ....................................................................................... 80 

3.15. Magnetization (M) as a function of applied magnetic field (H) at 10 K 

for Zn1-x-yCoxMgyO samples. ........................................................................ 81 

3.16. a) Molar magnetic susceptibility (χ) and b) inverse molar magnetic 

susceptibility (1/χ) versus temperature (T) of Zn1-yCo0.15MgyO samples.

....................................................................................................................... 82 

3.17. Dependence of magnetization (M) on applied magnetic field (H) at 10 

K of Zn1-yCo0.15MgyO samples...................................................................... 83 

3.18. Dependences of a) molar magnetic susceptibility (χ), b) inverse molar 

magnetic susceptibility (1/χ) on temperature (T), and c) magnetization 

(M) as a function of applied magnetic field (H) at 10 K for Zn1-

xCo0.075InxO samples. .................................................................................... 84 

3.19. Application of Curie-Weiss fitting to the 1/χ curve for Zn0.83Co0.17O 

sample. .......................................................................................................... 87 

3.20. Spin states and electronic configurations of Co2+ ion in tetrahedral 

crystal field splitting. LS – low spin state; HS – high spin state................... 89 

3.21. Inverse molar magnetic susceptibility (1/χ) versus temperature (T) of 

Zn1-xCoxO samples. The curves were fitted according to the Curie-

Weiss law. ..................................................................................................... 91 

3.22. XANES spectra for a) Zn1-xCoxO and b) Zn1-yCo0.15MgyO samples. 

Spectra of reference samples for Co2+ and Co3+ are also shown. ................. 93 

4.1. X-ray diffraction pattern of 2- 3In TM Ox x (x = 0.1) samples. The most 

intense peaks from NiO and Cr2O3 impurities are indicated with ◊. ............ 100 



 

xiii 

4.2. Dependence of lattice parameter a on the ionic radius (ri) of the 

transition metal ion in 2- 3In TM Ox x  (x = 0.1) samples. ................................. 101 

4.3 X-ray diffraction patterns of 1.90 0.10 3In Mn O samples prepared in 

different atmospheres. ................................................................................... 102 

4.4. Rietveld refinement of x-ray diffraction pattern for sample with x = 

0.08. Insets: right shows a magnified view of the Rietveld refinements 

for samples with different x; left shows the dependence of lattice 

parameter a on the Mn content x................................................................... 104 

4.5. SEM micrographs of a) In1.9Mn0.1O3, b) In1.9Fe0.1O3, c) 

In1.8Mn0.08Fe0.12O3, and d) In1.8Mn0.12Fe0.08O3 samples. ............................... 106 

4.6. Magnetic susceptibility (χ) versus temperature (T) of In1.9TMxO3 

samples with TM = (a) Mn, (b) Fe, (c) Cr, and (d) Ni. Insets represent 

the inverse magnetic susceptibility (1/χ) data vs. (T). .................................. 109 

4.7. Magnetization (M) versus applied magnetic field (H) of In1.9TM0.1O3 

samples at a) 300 K; b) 10 K......................................................................... 111 

4.8. a) Dependence of magnetization (M) on temperature (T) for various 

TM doped In2O3 samples; b) magnetization (M) vs. applied magnetic 

field (H) for In1.8Fe0.1Cr0.1O3 sample. Inset shows an enlargement of 

the selected area of the M-H loops................................................................ 112 

4.9. Molar magnetic susceptibility (χ) as a function of temperature (T) for 

2- 3In Mn Fe Ox- y x y  samples.............................................................................. 113 

4.10. Magnetization (M) vs. applied magnetic field (H) for 2- 3In Mn Fe Ox- y x y  

samples at a) 10 K; b) 300 K......................................................................... 115 

4.11. Electrical resistivity (ρ) as a function of temperature (T) for various 

TM-doped In2O3 samples.............................................................................. 116 

4.12. Fittings of logarithm of electrical resistivity (ρ) versus temperature (T) 

for TM doped In2O3 samples: (a) NNH; (b) VRH conduction models......... 118 

4.13. Magnetoresistance (MR) at various temperatures for In1.8Fe0.1Cr0.1O3 

sample. .......................................................................................................... 119 



 

xiv 

4.14. X-ray absorption spectra for a) Mn L-edge and b) Fe L-edge in 

In1.90TM0.10O3 samples. ................................................................................. 120 

4.15. X-ray diffraction patterns of In1.84TM0.1Sn0.06O3 samples. ............................ 122 

4.16. a) X-ray diffraction patterns for In1.80-xMn0.12Fe0.08SnxO3 samples; b) 

dependence of lattice parameter a on Sn content (x). ................................... 123 

4.17. SEM images of a) In1.84Mn0.1Sn0.06O3 and b) In1.84Fe0.1Sn0.06O3 samples ..... 125 

4.18. TEM image of In1.74Mn0.12Fe0.08Sn0.06O3 sample........................................... 125 

4.19. SEM pictures of In2O3 single crystals taken from a) top and b) side. ........... 126 

4.20. a) SEM picture of Mn-Fe-Sn “spheres”; b) x-ray diffraction pattern for 

the same sample. ........................................................................................... 127 

4.21. a) Magnetization (M) versus temperature (T) for TM doped ITO 

samples. The inset shows a magnified view of the bottom part of the 

graph; b) Molar magnetic susceptibility (χ) vs. temperature (T) for Mn 

doped ITO samples. ...................................................................................... 128 

4.22. Magnetization (M) vs. temperature (T) for In1.80-xMn0.12Fe0.08SnxO3 

samples.......................................................................................................... 129 

4.23. Magnetization (M) as a function of temperature (T) for a) Mn-doped 

ITO at 10 K; b) (Mn,Cr) co-doped ITO at 300 K. Inset shows the 

dependence of the saturation magnetization (Ms) on Sn content (x)............. 130 

4.24. Dependence of electrical resistivity (ρ) on Sn content (x) at 300 K for 

In1.80-xMn0.12Fe0.08SnxO3 samples. ................................................................. 131 

4.25. Dependence of electrical resistivity (ρ) on temperature (T) for a) TM 

doped ITO samples; b) Ni-doped ITO sample.............................................. 132 

4.26. Magnetoresistance (MR) measured at various temperatures for 

In1.84Mn0.1Sn0.06O3 sample............................................................................. 135 

4.27. X-ray diffraction patterns for In1.98-xFe0.02RExO3 samples. InREO3 and 

RE2O3 impurities are indicated by ◊.............................................................. 137 

4.28. a) Molar magnetic susceptibility (χ) as a function of temperature (T) 

for In1.98-xFe0.02RExO3 samples; b) M-H loops at 300 K for the same 

samples.......................................................................................................... 138 



 

xv 

4.29. a) Electrical resistivity (ρ) vs. temperature (T) for In1.93Fe0.02RE0.05O3 

samples; magnetoresistance (MR) measured at various temperatures 

for b) In1.93Fe0.02Eu0.05O3, and c) In1.93Fe0.02Nd0.05O3; d) illustration of 

negative MR in In1.93Fe0.02Eu0.05O3............................................................... 140 

4.30. TEM micrographs of a) (Eu,Fe) co-doped and b) (Nd,Fe) co-doped 

In2O3 sample particles. TEM-EDS spectra for the corresponding 

particles are shown in the bottom parts of the figure. ................................... 141 

5.1. X-ray diffraction patterns for Cu1-xMnxO samples. Cu1.4Mn1.6O4 

impurities are identified with ◊. .................................................................... 147 

5.2. Dependence of lattice parameters a) a, b) b, c) c, and d) the β angle on 

Mn doping content (x) in Cu1-xMnxO samples. ............................................. 148 

5.3. X-ray diffraction patterns of Cu0.9-xMn0.1MxO, where M = Zn(In). 

Characteristic CuO peaks are indicated by (*). In and Zn based 

impurities are indicated by (◊) and ( ), respectively. ................................... 149 

5.4. SEM micrographs of Cu0.9Mn0.1O prepared at a) 950 ºC, b) 970 ºC; and 

Cu0.85Mn0.1In0.05O prepared at c) 950 ºC, d) 970 ºC. .................................... 152 

5.5. Molar magnetic susceptibility (χ) as a function of temperature (T) for 

Cu1-xMnxO samples. ...................................................................................... 153 

5.6. Dependence of magnetization (M) on the applied magnetic field (H) at 

10 K for Cu1-xMnxO samples......................................................................... 155 

5.7. a) Molar magnetic susceptibility (χ) as a function of temperature (T) 

for some “single” and “double” doped CuO samples. Inset shows 

magnified view of χ-T curves at low temperatures; b) Magnetization 

(M) vs. applied magnetic field (H) for “single” and “double” doped 

CuO samples. ................................................................................................ 157 

5.8. XANES spectra for Cu1-xMnxO samples........................................................ 158 

 



 

xvi 

List of Tables 
 

1.1. List of some common semiconductors. ......................................................... 8 

1.2. Electronic properties of various transparent oxide semiconductors, where 

ρ, n, μ, and Eg denote resistivity, carrier density, mobility, and energy 

gap at room temperature, respectively. ......................................................... 29 

2.1. The list of reagents used in this study............................................................ 52 

3.1. Ionic radii of various ions used in this study. ................................................ 63 

3.2. Crystallographic data for Zn1-xCo0.075InxO samples calculated by the 

Rietveld method. ........................................................................................... 74 

3.3. Chemical compositions of the samples as determined by SEM-EDS spot 

analysis. The raw values are normalized by the Co content. ........................ 75 

3.4. Calculated Curie-Weiss temperatures (Θ) and effective magnetic 

moments (μeff) of Co ions in Zn0.93Co0.17O as a function of the 

temperature range (T) (Fig. 3.19) used for the Curie-Weiss fittings............. 88 

3.5. The calculated Curie-Weiss temperatures (Θ) and effective magnetic 

moment (μeff) per Co ion for (Mg,Co) and (In,Co) co-doped samples. ........ 92 

4.1. Chemical compositions of the samples as determined by SEM-EDS spot 

analyses and aerial element mappings. ......................................................... 106 

4.2. Θ, μeff, and estimated spin states of magnetic ions obtained from 

modified Curie-Weiss law fits on the 1/χ(T) curves shown in Fig. 4.6. ....... 110 

5.1. Lattice parameters a, b, and c for Cu0.91Mn0.09O, Cu0.85Mn0.1In0.05O, and 

Cu0.85Mn0.1Zn0.05O samples........................................................................... 150 

5.2. Effective magnetic moments (μeff), Curie-Weiss temperatures (Θ), and 

Mn spin states in Cu1-xMnxO samples. .......................................................... 154 

 



 

xvii 

List of Symbols and Abbreviations

 
A Cross section area Fig Figure 
Å Angstrom FM Ferromagnetism 
AC Alternating Current g Gram 

B, B
→

 Magnetic induction ge Spectroscopic splitting factor 

BJ(y) Brillouin function gJ Landé spectroscopic factor 
BMP Bound magnetic polaron GM Granulated Metal 
C Curie constant; Celsius GMR Giant Magnetoresistance 
cm Centimetre h Hour 

DC Direct Current H
→

, H Magnetic field 

DMS Diluted Magnetic Semiconductor HS High Spin 
DS Degenerate Semiconductor i Initial state of carrier hopping 
e Electron I Current 
e.g. Exempli gratia, in Latin meaning 

“for example 
i.e. Id est, in Latin meaning “that is” 

EDS Energy Dispersive Spectroscopy 
ICDD International Centre for 

Diffraction Data 
EF Fermi energy IS Intermediate Spin 
Eg Energy gap at room temperature ITO Indium Tin Oxide 
emu Electro-magnetic unit j Final state of carrier hopping 

Eq Equation J
→

 The total angular momentum 

et al. Et al ii, in Latin meaning “and 

others” 
K Kelvin 

eV Electronvolt k, kB Boltzmann constant 

exp Exponential 
l The orbital angular momentum 

quantum number 

FC Field Cooled 
il

→

 The orbital angular momentum 

 



 

xviii 

L Distance between voltage 

contacts 
PC Personal Computer 

L
→

 The total orbital angular 

momentum 
PPMS Physical Property Measurement 

System 

LED Light Emitting Diode R Electrical resistance 

LS Low Spin RE Rare Earth 

m Mass ri Ionic radius 

M Magnetization rij, R Distance between “i” and “j” in 
carrier hopping model 

min Minute sR  Anomalous Hall coefficient 

lm  The magnetic quantum number RT Room Temperature 

mm Millimetre OR  Ordinary Hall coefficient 

MPMS Magnetic Property Measurement 
System is

→

 The spin angular momentum 

MR Magnetoresistance S Siemens 
MRAM Magnetic Random Access 

Memory S
→

 
The total spin angular 

momentum 

Sm  The spin quantum number sec Second 
n The principal quantum number, 

charge carrier density 
SEM Scanning Electron Microscopy 

N The number of atoms 
SRRC Synchrotron Radiation Research 

Centre 
NA Avogadro’s number T Temperature 
N(EF) Density of states at Fermi energy T Tesla 
NNH Nearest Neighbor Hopping TC Curie temperature 

Oe Oersted 
TCR Temperature Coefficient of 

Resistivity 

PC Personal Computer 
TEM Transmission Electron 

Microscopy 
PPMS Physical Property Measurement 

System 
TM Transition Metal 



 

xix 

 

TN Néel temperature 
ρΔ  Difference of electrical 

resistivity 

V Volt μ Charge carrier mobility, micro 

V Voltage, Volume μ
→

 Magnetic moment 

VRH Variable Range Hopping μB Bohr magneton 

W Hopping energy μeff Effective magnetic moment 

wt% Weight percent 
lμ

→

 

Associated magnetic moment 

of an electron with an orbital 

angular momentum 

XAFS X-ray Absorption Fine 

Structure 
lzμ  Projection of magnetic moment 

along direction of applied 

magnetic field 

XANES X-ray absorption near band 
edge spectroscopy sμ

→

 
Associated magnetic moment 

of an electron with spin angular 

momentum 

XAS X-ray absorption spectroscopy 0μ  Magnetic permeability 

XPS X-ray Photoemission 

Spectroscopy 

2θ Diffraction angle in x-ray 

diffraction 

XRD X-ray Diffraction Θ Curie-Weiss temperature 

ZFC Zero Field Cooled ρ Electrical resistivity 

α Wave function decay factor Hρ  Electrical resistivity under 

applied magnetic field 
χ  Magnetic susceptibility xyρ  Hall resistivity 

χ--1, (1/χ) Reciprocal magnetic 

susceptibility 
0ρ  Electrical resistivity in zero 

magnetic field 
χ0 Temperature independent 

magnetic susceptibility 
σ Electrical conductivity 

  

  



 

xx 

 

Ω Ohm   

º Degree   

ºC Degrees Celsius   

 Plank constant   

 

 

 

 

 

 


	Studies on diluted oxide magnetic semiconductors for spin electronic applications
	Recommended Citation

	Copyright warning
	Title page
	Declaration
	Acknowledgements
	Abstract
	Contents
	List of figures
	List of tables
	List of symbols and abbreviations

