University of Wollongong

Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2009

Exploring novel radiotherapy techniques with Monte Carlo simulation and measurement

Heidi Nettelbeck University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Nettelbeck, Heidi, Exploring novel radiotherapy techniques with Monte Carlo simulation and measurement, Doctor of Philosophy thesis, School of Engineering Physics - Faculty of Engineering, University of Wollongong, 2009. https://ro.uow.edu.au/theses/3024

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Exploring novel radiotherapy techniques with Monte Carlo simulation and measurement

Heidi Nettelbeck

A thesis submitted in fulfilment of the requirements for the award of the degree

Doctor of Philosophy

School of Engineering Physics University of Wollongong Australia 2009

Thesis supervisors: Doctor George J. Takacs and Professor Anatoly B. Rosenfeld

ABSTRACT

This work is the first comprehensive investigation of potential changes in the radiobiological effectiveness of clinical photon beams caused by a redistribution of electrons in a magnetic field. It is also a fundamental study of both the influence of magnetic fields on the peak-to-valley dose ratio of microbeams and the accuracy of theoretical modelling for dose planning in Microbeam Radiation Therapy (MRT).

The application of a strong transverse magnetic field to a volume undergoing irradiation by a photon beam can produce localised regions of dose enhancement and dose reduction. Results from Monte Carlo PENELOPE simulation show regions of enhancement and reduction of as much as 111% and 77% respectively for magnetic fields of 1 to 100 T applied to Co⁶⁰, 6, 10, 15, and 24 MV photon beams. The dose redistribution is shown to occur predominantly through an alteration in the lower energy electron population, which may correspond to a change in the relative biological effectiveness.

In MRT, an experimental and theoretical investigation of the influence of transverse and longitudinal magnetic fields on the lateral dose profile and peak-to-valley dose ratio (PVDR) of microbeams is presented. Results show that longitudinal magnetic fields greater than 10 T are needed to produce an effect. Strong transverse magnetic fields, on the other hand, have no influence on microbeam profiles. The radiation response of the edge-on MOSFET and its ability to measure dose profiles of monoenergetic and polyenergetic microbeams are also investigated.

Simulations investigating the dependence of microbeam dose profiles on the accuracy of beamline modelling (i.e. synchrotron source, multislit collimator, and beam divergence) are also presented. Results show the asymmetric collimator construction is responsible for a 10% variation in the full-width at half-maximum of microbeams which affects the PVDR. Modelling the distributed source and beam divergence increases the penumbral dose by almost 30%. The influence of the collimator alignment, interaction medium, and the height of scoring regions on the PVDR are also investigated.

CERTIFICATION

I, Heidi Nettelbeck, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in School of Engineering Physics, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Heidi Nettelbeck

April 14, 2009

ACKNOWLEDGEMENTS

I would like to acknowledge my supervisors, Doctor George Takacs and Professor Anatoly Rosenfeld and thank them for their guidance throughout the course of this project. In particular, I thank George for his assistance with the Monte Carlo aspects of this work, and Anatoly for sharing his in-depth knowledge of radiation dosimetry.

My appreciation also extends to Doctor Michael Lerch at the Centre for Medical Radiation Physics, University of Wollongong, and the scientists on the ID-17 biomedical beamline at the European Synchrotron Radiation Facility in Grenoble, France, for their assistance with the magneto-MRT experiments. I would also like to acknowledge Terry Braddock and Brad Oborn for constructing the magnet devices used in these experiments, and Doctor José Fernández-Varea for identifying the origin of a spurious peak in the simulated electron spectra.

I also thank the postgraduate students and staff in the School of Physics for their lively discussions and friendship over the years. I have fond memories of mountain and beach runs with George and Neil, and music sessions in the lab. Finally, I thank my friends and family for their ongoing encouragement. A special thank you to Daniel for his unfailing patience and support, and God for carrying me to the end.

TABLE OF CONTENTS

	P	age
LIST O	F TABLES	vii
LIST O	F FIGURES	viii
PUBLI	CATION LIST	xix
CHA	PTER	
1	Introduction	1 1 4 5
2	Radiation transport and the Monte Carlo PENELOPE code	7 7 13 14 14 15 16
3	Influence of a transverse magnetic field on the dose distribution in photon beam radiotherapy3.1Introduction3.2Simulation methods3.3Simulation results3.3.1Effect of the magnetic field strength3.3.2Effect of the photon beam energy3.3.3Effect of the depth and thickness of magnetic field3.4Discussion3.5Conclusion	19 19 23 29 29 33 34 40 45
4	 Effect of a transverse magnetic field on the electron distribution of high- energy photon beams 4.1 Introduction 4.2 Simulation methods 4.3 Simulation results and discussion 4.3.1 Influence of a magnetic field on electron spectra below 1 MeV 4.3.2 Influence of a magnetic field on electron spectra below 10 keV 4.3.3 Influence of a magnetic field on electron spectra below 1 keV 4.3.4 Effect of magnetic field on the <i>w</i>-values of electrons 4.3.5 Effect of magnetic field on the spatial distribution of electrons 	47 47 50 55 58 61 65 72 78

	4.4	Conclusion	94
5	MO	SFET dosimetry in Microbeam Radiation Therapy (MRT) 9	97
	5.1	Introduction	97
		5.1.1 Microbeam Radiation Therapy (MRT)	97
		5.1.2 MOSFET dosimetry in MRT)2
		5.1.3 MRT at the ESRF ID-17 biomedical beamline 10)6
	5.2	Experimental and simulation methods)9
	5.3	Results and discussion	14
		5.3.1 Radiation response of MOSFET dosimeters	14
		5.3.2 Measured and simulated dose profiles of microbeams 11	17
		5.3.3 Measured and simulated peak-to-valley dose ratios (PVDRs) 12	27
	5.4	Conclusion	36
6	Маа	mote MDT, influence of a magnetic field on migrahaam profiles 12	20
0		Introduction	29 20
	0.1	Introduction	29 40
	0.2	Materials and methods	+2 42
		6.2.1 Magneto-MRT with a langitudinal magnetic field	+Z
		6.2.2 Magneto-MRT With a longitudinal magnetic field 14	+4 5 4
	62	0.2.5 Magneto-MRT Monte Carlo simulations	54
	0.3	Results and Discussion	55
		6.3.1 Effect of a langitudinal magnetic field on microbeam profiles 11)) (1
	61	0.5.2 Effect of a longitudinal magnetic field on microbeam profiles 10	21 60
	6.4		39
7	A M	Ionte Carlo study of the influence of MRT beamline components on	
	micr	obeam profiles	71
	7.1	Introduction	71
	7.2	Materials and Methods	74
	7.3	Results and discussion	78
		7.3.1 Effect of the beam divergence	78
		7.3.2 Effect of the multislit collimator	79
		7.3.3 Effect of the source model	81
		7.3.4 Effect of the multislit collimator lateral offset	34
		7.3.5 Effect of the simulation model	87
		7.3.6 Effect of the multislit collimator alignment	95
		7.3.7 Effect of the collimator design)3
		7.3.8 Effect of the interaction medium)5
		7.3.9 Effect of the height of scoring regions)9
	7.4	Conclusion	11
8	Con	clusion 21	15
0	Con		15
1	APPE	NDICES	
А	Higł	a current pulser for the magnet coil in magneto-MRT experiments 22	23
דת	FED	ENCES 20	77

LIST OF TABLES

Table

3.1	Range of electrons in water as a function of energy.	22
3.2	Comparison of the maximum DPF for a 15 MV beam with $B = 1$ to 100 T.	31
3.3	Comparison of the minimum DPF for a 15 MV beam with $B = 1$ to 100 T.	31
3.4	Comparison of the maximum DPF for a 15 MV beam with $B = 1$ to 100 T	
	using bin depths of 0.1 and 0.2 cm	32
3.5	Comparison of the minimum DPF for a 15 MV beam with $B = 1$ to 100 T,	
	and bin depths of 0.1 and 0.2 cm	33
3.6	Comparison of the maximum DPF for different photon beams with $B = 5$ T.	33
3.7	Comparison of the minimum DPF for different photon beams with $B = 5$ T.	34
4.1	Binding energies of hydrogen and oxygen	50
4.2	Energies and probabilities of Auger electron production in water	71
6.1	Peak and valley doses and PVDR of the central peak (peak 2) in an ar-	
	ray of three microbeams. Peak and valley doses were measured with	
	Gafchromic film at 0.1 and 0.2 cm depth (in perspex) in the presence and	
	absence of a 1 T longitudinal magnetic field, B	163

viii

LIST OF FIGURES

Figure		Page
2.1	Cross sections for photon interactions in water. Data extracted from the NIST XCOM Photon Cross Sections database	. 8
2.2	Angular distribution of Compton scattered photons calculated from the Klein-Nishina cross section. A plot of the intensity of a scattered photon of 0.1, 0.5, 1, 5, 10, and 15 MeV interacting with a free electron at the	. 0
2.3	centre of this graph	. 11
3.1	duced from Compton scattered photons of 0.1, 0.5, 1, 5, 10, and 15 MeV. Energy dependence of the range, mean free path, and radius of curvature	11
3.2	water) as a function of energy is based on the data in table 3.1 Effect of a slice of 5 T transverse magnetic field (7 to 9 cm depth) on the:	. 21
2.2	(a) depth-dose, and (b) dose perturbation factor (DPF) of a 10 MV beam (direction of magnetic field is out of the page).	. 24
3.3	Figure (a) and (b) show the input photon beam spectrum used for simulations with 6 and 10 MV beams, respectively.	. 26
3.3	Figure (c) and (d) show the input photon beam spectrum used for simulations with 15 and 24 MV beams, respectively.	. 27
3.4	Dose distribution of a 15 MV beam (in water) subjected to a slice of 1, 2, 5, 10, 20 and 100 T transverse magnetic field (7 to 9 cm depth), using	
3.5	bin depths of: (a) 0.2 cm, and (b) 0.1 cm. Effect of the elastic scattering parameters C_1 and C_2 ($C = C_1 = C_2$) on the dose deposition of a 15 MV beam (in water) subjected to a 2 T transverse	. 30
3.6	magnetic field (7 to 9 cm depth)	. 32
3.7	Subjected to a slice of 5 T transverse magnetic field (7 to 9 cm depth). Dose distribution of a 15 MV beam with a slice of 5 T transverse mag-	. 34
3.8	netic field (2 cm thick) applied at different depths in the water phantom. Effect of the magnetic field thickness. Figures (a) and (b) show the effect on the depth-dose of a 15 MV beam when a 2, 5 and 10 T transverse	. 35
2.0	magnetic field is applied at 7.5 to 8.5 cm and 7 to 9 cm depth (i.e. 1 cm and 2 cm thick) in water, respectively.	. 36
3.8	Effect of the magnetic field thickness. Figures (c) and (d) show the effect on the depth-dose of a 15 MV beam when a 2, 5 and 10 T transverse magnetic field is applied at 6.5 to 9.5 cm and 6 to 10 cm depth (i.e. 3 cm	
3.9	and 4 cm thick) in water, respectively	. 37
	effect of a 5 T transverse magnetic field of different thicknesses (1 to 4 cm) on the depth-dose (in water) of a 6 and 10 MV beam respectively.	. 38

 4 cm) on the depth-dose (in water) of a 15 and 24 MV beam re 3.10 Influence of a magnetic field on the mean distance an electralong the beam direction from its origin at 6.9 cm depth. 3.11 Secondary electron spectrum of a 15 MV photon beam at different (5.5 to 10.5 cm) in water. 4.1 Relationship between relative biological effectiveness (RBE) linear energy transfer (LET) for cell killing, where the three c respond to different levels of cell survival, or surviving fraction 4.2 Figure (a) plots the absorption and scattering contributions to total attenuation of water. Figure (b) plots the PENELOPE atom electric cross sections of hydrogen (K shell) and oxygen (K, L L₃ shells). 4.3 First generation electron spectra for polyenergetic and monom photon beams (in water). Figure (a) plots the first generation 	spectively. 39 on travels \dots 41 ent depths \dots 42 and mean urves cor- n (SF). \dots 48 wards the nic photo- $1, L_2, and$ \dots 51 penergetic
 3.10 Influence of a magnetic field on the mean distance an electr along the beam direction from its origin at 6.9 cm depth. 3.11 Secondary electron spectrum of a 15 MV photon beam at different (5.5 to 10.5 cm) in water. 4.1 Relationship between relative biological effectiveness (RBE) linear energy transfer (LET) for cell killing, where the three c respond to different levels of cell survival, or surviving fraction 4.2 Figure (a) plots the absorption and scattering contributions to total attenuation of water. Figure (b) plots the PENELOPE atom electric cross sections of hydrogen (K shell) and oxygen (K, L L₃ shells). 4.3 First generation electron spectra for polyenergetic and monomality in the first generation. 	on travels $\dots \dots $
 along the beam direction from its origin at 6.9 cm depth. 3.11 Secondary electron spectrum of a 15 MV photon beam at differ (5.5 to 10.5 cm) in water. 4.1 Relationship between relative biological effectiveness (RBE) linear energy transfer (LET) for cell killing, where the three c respond to different levels of cell survival, or surviving fraction 4.2 Figure (a) plots the absorption and scattering contributions to total attenuation of water. Figure (b) plots the PENELOPE atom electric cross sections of hydrogen (K shell) and oxygen (K, L L₃ shells). 4.3 First generation electron spectra for polyenergetic and monomality in the first generation. 	ent depths ent depths and mean urves cor- (SF) 48 wards the nic photo- $1, L_2, and$ 51 penergetic
 3.11 Secondary electron spectrum of a 15 MV photon beam at different (5.5 to 10.5 cm) in water. 4.1 Relationship between relative biological effectiveness (RBE) linear energy transfer (LET) for cell killing, where the three correspond to different levels of cell survival, or surviving fraction 4.2 Figure (a) plots the absorption and scattering contributions to total attenuation of water. Figure (b) plots the PENELOPE atom electric cross sections of hydrogen (K shell) and oxygen (K, L L₃ shells). 4.3 First generation electron spectra for polyenergetic and monomic photon heams (in water). Figure (a) plots the first generation 	ent depths and mean urves cor- n (SF) 48 wards the nic photo- $1, L_2, and$ 51 penergetic
 (5.5 to 10.5 cm) in water. 4.1 Relationship between relative biological effectiveness (RBE) linear energy transfer (LET) for cell killing, where the three c respond to different levels of cell survival, or surviving fraction 4.2 Figure (a) plots the absorption and scattering contributions to total attenuation of water. Figure (b) plots the PENELOPE atom electric cross sections of hydrogen (K shell) and oxygen (K, L L₃ shells). 4.3 First generation electron spectra for polyenergetic and monomality plots the parts. 	and mean urves cor- n (SF) 48 wards the nic photo- $1, L_2, and$ 51 penergetic
 4.1 Relationship between relative biological effectiveness (RBE) linear energy transfer (LET) for cell killing, where the three c respond to different levels of cell survival, or surviving fraction 4.2 Figure (a) plots the absorption and scattering contributions to total attenuation of water. Figure (b) plots the PENELOPE atom electric cross sections of hydrogen (K shell) and oxygen (K, L L₃ shells). 4.3 First generation electron spectra for polyenergetic and mono photon heams (in water). Figure (a) plots the first generation 	and mean urves cor- (SF) 48 wards the nic photo- 1, L ₂ , and 51 penergetic
 linear energy transfer (LET) for cell killing, where the three c respond to different levels of cell survival, or surviving fraction 4.2 Figure (a) plots the absorption and scattering contributions to total attenuation of water. Figure (b) plots the PENELOPE atom electric cross sections of hydrogen (K shell) and oxygen (K, L L₃ shells). 4.3 First generation electron spectra for polyenergetic and mono photon heams (in water). Figure (a) plots the first generation 	urves cor- (SF) 48 wards the nic photo- 1 , L_2 , and 51 penergetic
 respond to different levels of cell survival, or surviving fraction 4.2 Figure (a) plots the absorption and scattering contributions to total attenuation of water. Figure (b) plots the PENELOPE atom electric cross sections of hydrogen (K shell) and oxygen (K, L L₃ shells). 4.3 First generation electron spectra for polyenergetic and mono photon heams (in water). Figure (a) plots the first generation 	$\begin{array}{cccc} n (SF). \dots & 48 \\ wards the \\ nic photo- \\ 1, L_2, and \\ \dots & 51 \\ \text{benergetic} \\ n = 1 \\ b$
 4.2 Figure (a) plots the absorption and scattering contributions to total attenuation of water. Figure (b) plots the PENELOPE atom electric cross sections of hydrogen (K shell) and oxygen (K, L L₃ shells). 4.3 First generation electron spectra for polyenergetic and mono photon heams (in water). Figure (a) plots the first generation 	wards the nic photo- $_1$, L_2 , and 51 benergetic
 total attenuation of water. Figure (b) plots the PENELOPE ator electric cross sections of hydrogen (K shell) and oxygen (K, L L₃ shells). 4.3 First generation electron spectra for polyenergetic and mono photon heams (in water). Figure (a) plots the first generation 	nic photo- $_1, L_2, and$ $\dots \dots 51$ benergetic
 electric cross sections of hydrogen (K shell) and oxygen (K, L L₃ shells). 4.3 First generation electron spectra for polyenergetic and mono photon heams (in water). Figure (a) plots the first generation 	L_2 , and L_2 , and L_3 = 51 penergetic
 4.3 First generation electron spectra for polyenergetic and mono photon beams (in water) Figure (a) plots the first generation 	benergetic
4.3 First generation electron spectra for polyenergetic and mono photon beams (in water) Figure (a) plots the first generation	benergetic
nhoton beams (in water) Figure (a) plots the first concretion	
photon beams (in water). Figure (a) plots the first generation	a electron
spectra for Co^{60} , 6, 10, and 15 MV beams. Corresponding elec	tron spec-
tra for 1, 5, 10, and 15 MeV monoenergetic photon beams are	shown in
figure (b)	56
4.4 Secondary electron spectra (all generations) for a 15 MV beam	with depth
(in water). Figures (a) and (b) plot the electron spectra in the	presence
and absence of a slice of 5 T transverse magnetic field (7 to 9 c	m depth),
respectively	57
4.5 Normalised electron spectra (below 1 MeV) for a 15 MV be	am. Fig-
ures (a) and (b) plot a ratio of the electron population in the	presence
and absence of a 2 and 5 T transverse magnetic field (7 to 9 c	m depth),
respectively.	59
4.5 Normalised electron spectra (below 1 MeV) for a 15 MV be	am. Fig-
ures (c) and (d) plot a ratio of the electron population in the pre	sence and
absence of a 10 and 20 T transverse magnetic field (7 to 9 c	m depth),
respectively.	$\ldots \ldots \ldots 60$
4.6 Secondary electron spectra (below 10 keV) for a 15 MV be	am. Fig-
ures (a) and (b) plot the electron spectra in five depth regions in $(5, 1)$	the pres-
ence and absence of a 5 1 transverse magnetic field (7 to 9 c	m deptn),
4.7 Normalized electron anostro (helew 10 heV) for a 15 MV her	03
4.7 Normalised electron spectra (below 10 kev) for a 15 MV bea	uill. A ra-
absence of a 5 T transverse magnetic field (7 to 0 cm depth)	sence and 64
4.8 Patio of electron spectra (below 10 keV) for a 15 MV beam as	a function
of magnetic field A ratio of the electron population in five den	th regions
in the presence and absence of a 1 2 3 4 5 10 and 20 T	transverse
magnetic field (7 to 9 cm denth)	64
49 Photon spectra (below 10 keV) for a 15 MV beam Figures (a) and (b)
plot the photon spectra with and without a 5 T transverse mag	netic field
(7 to 9 cm depth), respectively	66
4.10 Electron spectra (below 1 keV) for a 15 MV beam. Figures (a) and (b)
plot the electron spectra with and without a 5 T transverse mag	netic field
(7 to 9 cm depth), respectively	nene nen

4.11	Normalised electron spectra (below 1 keV) for a 15 MV beam. Figures (a) and (b) plot a ratio of the electron population in the presence	
	and absence of a 2 and 5 T transverse magnetic field (7 to 9 cm depth), respectively.	68
4.11	Normalised electron spectra (below 1 keV) for a 15 MV beam. Fig-	00
	ures (c) and (d) plot a ratio of the electron population in the presence	
	respectively.	69
4.12	Spectra of atomic relaxation electrons and photons (in water) for a 15 MV	0,7
	beam. Figures (a) and (b) plot the spectra of atomic relaxation electrons	
	with and without a 5 T transverse magnetic field (7 to 9 cm depth), re-	70
4.13	Mean <i>w</i> -values of first generation electrons of the following photon beams:	70
	(a) Co^{60} , 6, 10, and 15 MV, and (b) 0.1, 0.5, 1, 5, 10, and 15 MeV	73
4.14	Distance travelled by electrons before they are deviated from their initial	71
4.15	Distance electrons travel in water before the angle of deviation from their	/4
	initial trajectory exceeds 25.8, 45.6, 60, and 90 degrees (i.e. $w = 0.9$,	
	0.7, 0.5, and zero). A plot of the accumulative electron population as a function of distance travellad from the origin is shown in forward (a). (b)	
	and (c) for 0.1, 0.5, and 1 MeV electrons, respectively.	75
4.15	Distance electrons travel in water before the angle of deviation from their	
	initial trajectory exceeds 25.8, 45.6, 60, and 90 degrees (i.e. $w = 0.9$, 0.7, 0.5, and 1.1, 0.5, and 1.1, 0.5, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5	
	function of distance travelled from the origin is shown in figures (d). (e).	
	and (f) for 5, 10, and 15 MeV electrons, respectively	76
4.16	Population and mean <i>w</i> -values of first generation electrons for 15 MV	
4 17	Magnetic field's influence on the interaction depths of electrons starting	//
,	at 6.9 cm depth. Figure (a) plots the electrons' mean <i>z</i> -ranges as a func-	
	tion of magnetic field. A ratio of the mean z-ranges with and without	
	magnetic field is shown in figure (b), and a ratio of electrons with final positions downstream of their initial position $(z > z_{++})$ to those with	
	final positions upstream ($z < z_{start}$) is plotted in figure (c).	80
4.17	Magnetic field's influence on the lateral ranges of electrons starting at	
	6.9 cm depth. Figure (d) plots the mean y-ranges of electrons as a func- tion of magnetic field. A ratio of the mean y-ranges with and without	
	magnetic field is shown in figure (e), and a ratio of electrons with nega-	
	tive final y-positions ($y < 0$) to those with positive final y-positions ($y > 0$)	
1 10	is plotted in figure (f).	81
4.10	at 7.5 cm depth. Figure (a) plots the electrons' mean z-ranges as a func-	
	tion of magnetic field. A ratio of the mean z-ranges with and without	
	magnetic field is shown in figure (b), and a ratio of electrons with final	
	final positions upstream $(z < z_{start})$ is plotted in figure (c).	84
	$1 \qquad 1 \qquad $	

4.18	Magnetic field's influence on the lateral ranges of electrons starting at	
	7.5 cm depth. Figure (d) plots the mean y-ranges of electrons as a func-	
	tion of magnetic field. A ratio of the mean y-ranges with and without	
	magnetic field is shown in figure (e), and a ratio of electrons with nega-	
	tive final y-positions ($y < 0$) to those with positive final y-positions ($y > 0$)	0.5
4.40	is plotted in figure (f).	. 85
4.19	Magnetic field's influence on the interaction depths of electrons starting	
	at 8.5 cm depth. Figure (a) plots the electrons' mean z-ranges as a func-	
	tion of magnetic field. A ratio of the mean z-ranges with and without	
	magnetic field is shown in figure (b), and a ratio of electrons with final	
	positions downstream of their initial position ($z > z_{start}$) to those with	
4.40	final positions upstream ($z < z_{start}$) is plotted in figure (c)	. 88
4.19	Magnetic field's influence on the lateral ranges of electrons starting at	
	8.5 cm depth. Figure (d) plots the mean y-ranges of electrons as a func-	
	tion of magnetic field. A ratio of the mean y-ranges with and without	
	magnetic field is shown in figure (e), and a ratio of electrons with nega-	
	tive final y-positions ($y < 0$) to those with positive final y-positions ($y > 0$)	00
1 20	Is plotted in ligure (1).	. 89
4.20	of 8.0 cm depth. Figure (a) plots the electrons' mean z ranges as a func-	
	tion of magnetic field. A ratio of the mean z ranges with and without	
	tion of magnetic field. A fatto of the mean z -ranges with and without magnetic field is shown in figure (b), and a ratio of electrons with final	
	magnetic field is shown in figure (b), and a fatto of electrons with final positions downstream of their initial position $(z > z_{-})$ to those with	
	positions upstream $(z < z_{start})$ is plotted in figure (c)	01
1 20	Magnetic field's influence on the lateral ranges of electrons starting at	. 91
4.20	8.9 cm denth. Figure (d) plots the mean y-ranges of electrons as a func-	
	tion of magnetic field. A ratio of the mean y-ranges with and without	
	magnetic field is shown in figure (e) and a ratio of electrons with nega-	
	tive final y-positions ($y < 0$) to those with positive final y-positions ($y > 0$)	
	is plotted in figure (f)	92
5.1	Schematic diagram of a <i>p</i> -MOSFET (Metal-Oxide-Semiconductor Field	.) [
011	Effect Transistor) dosimeter.	. 103
5.2	Schematic diagram of the MOSFET reader. The MOSFET dosimeter is	
	read out under a constant current I_D with the gate and source grounded.	
	The threshold voltage, V_{th} , measured across the MOSFET is proportional	
	to the dose deposited in the SiO_2 gate oxide	. 104
5.3	The dose response of MOSFET dosimeters to effective radiation energy.	
	The dose response (in free-air geometry) was normalised to that obtained	
	with 6 MV X-rays from a medical linear accelerator.	. 106
5.4	X-ray energy spectrum for MRT measured at the ESRF ID-17 biomedical	
	beamline	. 107
5.5	Schematic diagram of the MRT setup at the ESRF ID-17 beamline	. 108
5.6	Scanning electron microscope image of the REM TOT500 RADFET chip	
	$(1 \times 1 \times 0.5 \text{ mm}^3)$, which shows the two low-sensitive MOSFETs, Q2	
	and Q3, and two high-sensitive MOSFETs, Q1 and Q4. The direction of	
	the X-ray microbeam is indicated by the arrows.	. 110
5.7	Illustration of the MOSFET configuration used to scan the dose profiles	
	of monoenergetic microbeams, where the beam direction is into the page.	112

5.8	Radiation response of MOSFET dosimeters. Figure (a) plots the nor- malised response of a MOSFET(H) dosimeter subjected to 43×0.15 s	
5.8	ter to 19×0.03 s irradiations with a 50 keV beam is shown in figure (b). Radiation response of MOSFET dosimeters. Figure (c) plots the nor-	. 115
	malised response of a MOSFET(H) dosimeter subjected to 20×0.15 s pulses of irradiation with a 50 keV beam. The response of a MOSFET(H)	
	dosimeter to 25×10 s irradiations with a 100 keV beam is shown in figure (d)	. 116
5.9	Dose profiles of monoenergetic microbeams measured at 1.1 cm depth	
	dose profile of the central peak in an array of 24 microbeams (peak 12)	
-	for 30 and 50 keV beams, respectively.	. 118
5.9	Dose profiles of monoenergetic microbeams measured at 1.1 cm depth (in perspect) with a MOSEET(L) dosimeter Figures (c) and (d) show the	
	dose profile of the central peak in an array of 24 microbeams (peak 12)	
5 10	for 70 and 100 keV beams, respectively.	. 119
5.10	obtained with the ESRF white beam and measured with a MOSFET(H)	
	dosimeter at 1.1 cm depth (in perspex)	. 120
5.11	Comparison of the dose profile of the central peak in an array of 24 mi- crobeams (neak 12) measured with a MOSEET at 1.1 cm depth (in per-	
	spex) for the white beam and monoenergetic beams of 30, 50, 70, and	
5 10	100 keV.	. 121
3.12	crobeams (peak 12) obtained at 1.1 cm depth (in perspex) for the white	
	beam and monoenergetic beams of 30, 50, 70, and 100 keV	. 122
5.13	Simulated penumbral and valley dose of a single microbeam, and the cen- tral microbeam (neak 12) in an array of 24 microbeams. Figures (a) and	
	(b) plot the dose profile of a single microbeam and peak 12, respectively,	
	at 1.1 cm depth (in perspex) for the white beam and monoenergetic beams of $20, 50, 70, \text{ and } 100 \text{ beV}$	100
5.14	Simulated microbeam profile showing the dose distribution according to	. 123
	the type of initial photon interaction. Figures (a) and (b) plot the dose	
	contributions of a single microbeam at 1.1 cm depth (in perspect) for mo- noenergetic beams of 30 and 50 keV respectively	124
5.14	Simulated microbeam profile showing the dose distribution according to	
	the type of initial photon interaction. Figures (c) and (d) plot the dose contributions of a single microbeam at 1.1 cm denth (in perspect) for me	
	noenergetic beams of 70 and 100 keV, respectively.	. 125
5.15	Comparison of the Continuous Slowing Down Approximation (CSDA)	100
5.16	Photon interaction cross sections in silicon	. 126 . 128
5.17	Measured PVDR of the central microbeam in an array of 24 (peak 12) cal-	
	culated from peak and valley doses obtained at 1.1 cm depth (in perspex) for 30, 50, and 70 keV beams and the white beam (maximum intensity of	
	83 keV)	. 129

5.18	Simulated PVDR of the central microbeam in an array of 24 (peak 12)	
	calculated from the theoretical dose profiles at 1.1 cm depth (in perspex)	
	for 30, 50, 70, and 100 keV beams and the white beam (maximum inten-	
5 10	sity of 83 keV)	130
5.19	Measured PVDRs of microbeams 12, 17, and 22 (in an array of 24 mi-	
	crobeams) for the 50 keV and white beams, calculated from peak and	
	valley dose measurements obtained with a MOSFE1 at 1.1 cm depth (in	120
5 20	Simulated DVDDs of microheams 12, 17, and 22 (in an array of 24 mi	132
5.20	Simulated PVDRs of Iniciobeanis 12, 17, and 22 (in an array of 24 ini-	
	ratical dosa profiles obtained at 1.1 cm denth (in perspect). The 50 keV	
	measured DVDPs (meas 50 keV) are also shown for comparison	133
5 21	Simulated PVDRs for an array of 24 microheams, calculated from the	155
J.21	theoretical dose profiles obtained at 1.1 cm depth (in perspect) with the	
	white beam and 30, 50, 70, and 100 keV monoenergetic beams	134
5.22	Measured and simulated PVDRs with depth (in perspect) for the central	151
0.22	peak in an array of three microbeams (peak 2) produced with a white	
	beam. The measured PVDRs were obtained at 0.9, 1.9, and 2.8 cm depth,	
	and the theoretical PVDRs at various depths up to 1.2 cm	134
5.23	Simulated peak and valley doses for the central peak in an array of three	
	microbeams (peak 2) up to 2.8 cm depth (in perspex). Peak and valley	
	doses have been normalised to their maximum values	135
6.1	Impact of different types of interaction on the lateral dose profile of a	
	single microbeam (25 μ m wide) obtained with the ESRF white beam.	
	Curve 1 plots the microbeam profile comprising all interaction contribu-	
	tions. Curves 2, 3, and 4 plot the profile with supression of the photo-	
()	electric effect, Compton scattering, and electron tracking, respectively	140
6.2	Simulated first generation electron spectrum of the ESRF white beam (in	1 / 1
62	perspex).	141
0.5	experiments (direction of magnetic field is towards the handle). The mag	
	net device (right) was mounted on the goniometer stage, where a perspect	
	nhantom containing a MOSFET was wedged between the magnet noles	
	(left)	143
6.4	Illustration of the 1 T longitudinal magnetic field device used for magneto-	110
	MRT experiments. A 0.3 cm diameter hole was drilled through the centre	
	of the permanent magnets to allow the passage of microbeams parallel to	
	the direction of magnetic field.	144
6.5	Scatter contributions from different magnet materials. Figure (a) plots	
	the depth-dose profile of a pencil beam simulated with different magnet	
	materials (NdFeB, perspex, and air) in three regions along central axis:	
	air cavity 1, perspex phantom, and air cavity 2. Figure (b) plots the depth-	
	dose profile with perspex replacing the air in cavity 2	147
6.6	Effect of magnet scatter contributions on the radial dose. Figure (a) plots	
	a ratio of the radial dose with and without NdFeB magnets, at the follow-	
	ing depths: 2.48 cm (exit of air cavity 1), 2.60 and 2.90 cm (1 and 4 mm	
	(a) plots the componenting radial data with perspective data instants in the formation of the component in t	
	(c) plots the corresponding radial dose with perspex magnets instead of NdEaP, and perspex replacing the air in cavity 2	110
	1 Not cb , and perspect replacing the arr in cavity 2	14ð

6.7	Photo of the 2 T longitudinal magnetic field device used for magneto-	
	permanent magnets with steel focus cones and a U shaped iron circuit to	
	maximise magnetic flux	150
68	MATLAB simulation of the magnetic flux produced by the longitudinal	. 150
0.0	magnetic field device. A maximum field of 2.2 T was calculated between	
	the focus cones, which were separated by 1 cm	. 151
6.9	Photos of the magnet coil used for magneto-MRT experiments. The 828-	
	turn copper coil was mounted on the goniometer (left), where the cylin-	
	drical perspex phantom (housing the MOSFET) was inserted into the air	
	core and secured to a perspex block behind the coil (right)	. 153
6.10	Oscilloscope output verifying the synchronisation of the current pulse	
	(i.e. pulsed magnetic field) and the rectangular diode pulse (i.e. beam	
6 1 1	delivery).	. 153
6.11	Oscilloscope output verifying the coincidence of the pulsed current (i.e.	
	discharge of capacitors) and magnetic field. Delay between the current	
	ing irradiation of the target	154
6 1 2	Lateral dose profile of an array of three microbeams measured with a	. 154
0.12	MOSFET at 0.9 cm depth (in perspex) in the presence of a 1 T transverse	
	magnetic field.	. 156
6.13	Effect of a 1 T transverse magnetic field on the valley dose of an array	
	of three microbeams. Figures (a) and (b) plot the dose profiles of valley	
	regions V_{12} and V_{23} (i.e. left and right of the central microbeam, peak 2)	
	respectively, measured with a MOSFET at 0.9 cm depth (in perspex) in	
	the presence and absence of magnetic field.	. 157
6.14	Valley dose for an an array of three microbeams measured with a MOS-	
	FET at 0.9, 1.9, and 2.8 cm depth (in perspex). Figures (a) and (b) plot	
	the dose at the centre of valleys V_{12} and V_{23} (i.e. left and right of the	
	a 1 T transverse megnetic field	150
6 14	Peak dose and PVDR for the central microheam in an array of three mi-	. 130
0.14	crobeams (peak 2) measured with a MOSFET at 0.9 1.9 and 2.8 cm	
	depth (in perspex), in the presence and absence of a 1 T transverse mag-	
	netic field, is shown in figures (c) and (d) respectively. The PVDR was	
	calculated using the dose at the centre of peak 2 and valleys V_{12} and V_{23}	
	on either side	. 159
6.15	Simulated effect of a transverse magnetic field on the dose profile of an	
	array of three microbeams. A plot of the microbeam array scored between	
	0.8 and 1.0 cm depth (in perspex) in the presence and absence of a 2 and	1.61
(1)	100 T transverse magnetic field.	. 161
6.16	Dose profile of an array of three microbeams measured with Galchromic film at $0.1, 0.2, 0.7, 1.1$ and 1.2 are depths (in parametric) in the change of	
	magnetic field	162
6 17	Peak dose of the central microheam in an array of three microheams	. 102
0.17	(peak 2) with depth. A plot of the peak dose measured with Gafchromic	
	film at depths (in perspex) of 0.1, 0.2, 0.3, and 0.4 cm in the presence of	
	a 1 T longitudinal magnetic field, and 0.1, 0.2, 0.7, 1.1, and 1.2 cm in the	
	absence of magnetic field.	. 163

6.18	Effect of a 1 T longitudinal magnetic field on the peak and valley doses of	
	an array of three microbeams. Figures (a) and (b) show the peak and val-	
	depth (in perspect) in the presence and absence of magnetic field	164
6 1 9	Simulated effect of a longitudinal magnetic field on the dose profile of a	. 104
0.17	single microbeam. A plot of the profile scored between 1.0 and 1.2 cm	
	depth (in perspex) in the presence and absence of a 2, 10, 20, 50, and	
	100 T magnetic field.	. 166
6.20	Simulated effect of a longitudinal magnetic field on the dose profile of	
	an array of three microbeams. Figure (a) shows the dose profile of the	
	array scored between 1.0 and 1.2 cm depth (in perspex) in the presence	
	and absence of a 2, 10, 20, 50, and 100 T magnetic field. A ratio of the	
	dose profile with and without magnetic field is plotted in figure (b)	. 168
6.21	Simulated effect of a longitudinal magnetic field on the PVDR of an ar-	
	ray of three microbeams. A plot of the PVDR of the central microbeam	
	against magnetic field strength, using the dose profiles scored between	1(0
71	1.0 and 1.2 cm depth (in perspex). \dots	. 169
/.1	identical tungsten air stacks mounted in an aluminum frame. Each stack	
	(right) contains 125 parallel 100 µm wide 8 mm deep apertures with	
	$400 \ \mu m$ centre-to-centre spacing.	. 173
7.2	Illustration of the lateral offset of the multislit collimator stacks. Fig-	. 170
	ure (a) illustrates the adjustment of microbeam width by laterally mov-	
	ing one stack relative to the other (as indicated by arrows). Figure (b)	
	shows an enlargement of a single collimator element, comparing the pho-	
	ton transmission through the central collimator aperture (C) and the fifth	
	apertures to the left and right of centre (L5 and R5 respectively)	. 176
7.3	Illustration of the effect of multislit collimator alignment. Figure (a)	
	shows the multislit collimator rotated through a small positive angle (with respect to the beam). Figure (b) shows an enlargement of a single colli	
	mator element comparing the photon transmission through the central	
	aperture (C) and the fifth apertures to the left and right of centre (L5 and	
	R5 respectively).	. 178
7.4	The influence of the beam divergence (i.e. source to target distance). Fig-	
	ure (a) compares the dose profile of a single microbeam scored between	
	1 and 2 cm depth (in water) with and without beam divergence (Diverge	
	and On Phantom, respectively). A ratio of the Diverge and On Phantom	
	profiles is shown in figure (b).	. 180
7.5	The effect of the multislit collimator. Figure (a) plots a ratio of the dose	
	profile of a single microbeam obtained with and without the multislit	
	A ratio of the corresponding MSC and NoMSC profiles obtained with a	
	distributed source (Dist src) is plotted in figure (b). All dose profiles were	
	scored between 1 and 2 cm depth in water	182
7.6	The effect of the source model. Figure (a) compares the dose profile of a	. 102
	single microbeam obtained with a point source (Pt src) to that produced	
	by a distributed source (Dist src), using the multislit collimator (MSC).	
	The dose profiles were scored between 1 and 2 cm depth (in water), where	
	a ratio of the profiles is plotted in figure (b)	. 183

7.7	The effect of the multislit collimator (MSC) lateral offset. Figures (a)	
	and (b) compare the dose profile of the central microbeam (C single)	
	with those obtained for the 5th and 12th microbeams to the left and right	
	of centre, respectively (i.e. in LHS array and RHS array)	. 185
7.7	The effect of the multislit collimator (MSC) lateral offset. Figures (c) and	
	(d) compare the dose profiles of the 5th and 12th microbeams on either	
	side of centre, respectively (i.e. L5 single with R5 single and L12 single	
	with R12 single).	. 186
7.8	The effect of the simulation model. Figure (a) compares the dose profile	
	of the central microbeam simulated with the single-beam and full array	
	models (C single and C full, respectively) and scored between 1 and 2 cm	
	depth in water. A ratio of these C profiles, and those obtained for the L12	
	and R12 microbeams at either edge of the array, are shown in figure (b).	. 189
7.9	Effect of the simulation model. Figure (a) shows the dose profile of a	
	single microbeam used by the superposition model. Figure (b) plots the	
	dose profile of the sup and full arrays obtained with the superposition and	
	full array models, respectively, where a ratio of these profiles is shown in	
	figure (c). All profiles were scored between 1 and 2 cm depth (in water).	. 191
7.10	The effect of the simulation model. Figure (a) plots a ratio of the sup	
	and full array dose profiles of the L12 and R12 microbeams at the left	
	and right edges of the array, respectively. Figure (b) compares the central	
	microbeam profile in the full array (C full) with those at the left and right	
	edges of the array (L12 full and R12 full, respectively)	. 193
7.11	The effect of the simulation model. Figure (a) compares the PVDRs of	
	microbeams in the sup array and full array. A ratio of the peak and valley	
	doses and PVDRs of microbeams in the sup and full arrays is plotted in	
	figure (b)	. 194
7.12	The effect of the multislit collimator alignment on the dose profile of an	
	array of 25 microbeams. Figures (a), (b), and (c) compare the dose profile	
	of the full array with and without collimator rotations of $\pm 0.05^{\circ}, \pm 0.1^{\circ}$,	
	and $\pm 0.2^{\circ}$ respectively.	. 196
7.13	The effect of the multislit collimator alignment on the dose profile of	
	the central microbeam. Figures (a), (b), and (c) compare the dose pro-	
	file of the central microbeam (C) produced with and without collimator	
	rotations of $\pm 0.05^{\circ}$, $\pm 0.1^{\circ}$, and $\pm 0.2^{\circ}$ respectively.	. 197
7.14	The effect of positive angles of collimator rotation on the dose profiles	
	of microbeams. Figures (a), (b), and (c) compare the dose profile of the	
	central microbeam (C full) with those at the left and right edges of the	
	array (L12 full and R12 full) for collimator rotations of 0.05, 0.1, and	
	0.2° respectively.	. 198
7.15	The effect of negative angles of collimator rotation on the dose profiles	
	of microbeams. Figures (a), (b), and (c) compare the dose profile of the	
	central microbeam (C full) with those at the left and right edges of the	
	array (L12 full and R12 full) for collimator rotations of -0.05, -0.1, and	
	-0.2° respectively.	. 200

7.16	The effect of the multislit collimator alignment on the peak and valley	
	doses of microbeams. Figures (a) and (b) respectively compare the peak	
	and valley doses of a microbeam array (normalised to dose in the central	
	microbeam) with and without collimator rotations of $\pm 0.05^{\circ}, \pm 0.1^{\circ}$, and	
	0.2° . The dose profile obtained with a -0.2° rotation is not shown owing	
	to poor statistics.	201
7.17	The effect of the multislit collimator alignment on the PVDRs of mi-	
	crobeams. Figure (a) compares the PVDRs of a microbeam array ob-	
	tained with collimator rotations of $\pm 0.05^{\circ}$, $\pm 0.1^{\circ}$, and $\pm 0.2^{\circ}$. A ratio of	
	the PVDRs with and without collimator rotation is plotted in figure (b).	202
7.18	The effect of the multislit collimator design on microbeam profiles. Fig-	
	ure (a) compares the dose profile of the central microbeam produced with	
	the dual stack collimator (C full) with those at the left and right edges of	
	array (L12 full and R12 full). The corresponding microbeam profiles	
	obtained with a single stack collimator are shown in figure (b).	204
7.19	Effect of the alignment of the single stack collimator on the dose profiles	
	of microbeams. Figures (a) and (b) plot the dose profiles of the central	
	microbeam (C full) and the L12 full and R12 full microbeams (at the left	
	and right edges of the array) produced with the single stack collimator	
	rotated through 0.05 and -0.05° , respectively.	206
7.20	Effect of the interaction medium on microbeam profiles. Figure (a) com-	
	pares the dose profile of the central peak in an array of 25 microbeams	
	(C full) scored between 1 and 2 cm depth in water (H_2O) and polymethyl	
	methacrylate (PMMA). A ratio of the dose profiles is shown in figure (b).	208
7.21	Single microbeam profile showing the dose distribution according to the	
	type of initial photon interaction in water (H_2O) and polymethyl methacry-	
	late (PMMA) for a 100 keV beam, where CS = Compton scattering,	
	PE = Photoelectric effect, and Total = contributions from CS, PE, and	
	Rayleigh scattering.	209
7.22	Effect of the height of scoring regions on the valley dose of microbeams.	
	Comparison of the valley dose of the central microbeam (C full) in five	
	lateral slices (each 0.2 cm high) to the total valley dose in all slices (i.e.	
	0 to 1 cm).	210
7.23	Effect of the height of scoring regions on the PVDR of microbeams. A	
	ratio of the PVDR in five individual lateral slices (each 0.2 cm high) to	
	the total PVDR integrated over all slices (i.e. 0 to 1 cm).	210
A.24	Circuit diagram of the pulse time delay. Discharge of the capacitor bank	
	was initiated with a trigger signal generated from either a manual trigger	
	button on the control panel or by an external transistor-transistor logic	
	(TTL) input pulse	224
A.25	Circuit diagram of current pulser. When a current of 200 A was pulsed	
	through the coil, a magnetic field of about 2.5 T was estimated at the	
	centre of the coil's air core.	225
A.26	Test results for the magnet coil. Charging the capacitor bank to 300 V	
	enabled a discharge current of around 200 A to be pulsed through the	
	coil. This corresponded to a peak flux of 1.3 T at the centre of the coil's	
	surface.	226