University of Wollongong

Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2007

Synchronizing data stream processing

Mohammad Siddique Fawad Qureshi University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Qureshi, Mohammad Siddique Fawad, Synchronizing data stream processing, M.Comp.Sc.-Res. thesis, Information Technology and Computer Science, University of Wollongong, 2007. http://ro.uow.edu.au/theses/649

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Synchronizing Data Stream Processing

A thesis submitted in fulfillment of the requirements for the award of the degree

Master of Computer Science (Research)

from

UNIVERSITY OF WOLLONGONG

by

M. S. Fawad Qureshi

B.Sc Computer Science – University of Sindh M.Sc Computer Science – University of Sindh

SITACS School of Information Technology and Computer Science

2007

© Copyright 2007 by M. S. Fawad Qureshi All Rights Reserved

Certification

I, M. S. Fawad Qureshi, declare that this thesis, submitted in fulfillment of the requirements for the award of Master of Computer Science, in the School of Information Technology and Computer Science, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

M. S. Fawad Qureshi

Date: 30 March 2007

Table of Contents

Chapter 1

Intr	oduction	2	
1.1	The Problem	3	
1.2	Strategy and Objectives	4	
1.3	Outline of the Thesis		
Ch	apter 2		
Bac	kground and Related Work	7	
2.1	Data Stream Processing	7	
2.2	Adaptive Query Processing	11	
2.3	Continuous Query Processing	15	
2.4	Synchronization Techniques	17	
Ch	apter 3		
Dat	a Stream Processing Networks	21	
3.1	Network Model	21	
	3.1.1 Components	22	
	3.1.2 Computation	23	
	3.1.3 Operations	24	
3.2	Windows	26	

	3.2.1	Multiple Operations on a Window	27
3.3	Visual	ization	27
	3.3.1	Sample Networks	27
	3.3.2	Translation	30
Cha	apter 4	4	
Syn	chroniz	zation Problems	32
4.1	Data P	Processing Techniques	32
4.2	Motiva	ating Examples	33
	4.2.1	Example 1	33
	4.2.2	Example 2	35
	4.2.3	Example 3	35
4.3	Transa	actional Interpretation of Data Stream Network	38
	4.3.1	Merge and Split	40
4.4	Revise	ed Motivating Examples	41
Cha	apter :	5	
Syn	chroniz	zation Strategy and Correctness	44
5.1	Synch	ronization Assistants	44
	5.1.1	Collector	44
	5.1.2	Regulator	45
5.2	Synch	ronization Rules	46

5.3	Soluti	on	48	
	5.3.1	Solution1	48	
	5.3.2	Solution 2	49	
	5.3.3	Solution 3	49	
	5.3.4	Merge and Split	50	
5.4	Correc	ctness	50	
	5.4.1	Transactional Interpretation of Rules	51	
	5.4.2	Theorem	52	
Chapter 6				
Conclusion				

References	58

List of Figures

Chapter 3

Figure 3.1: Upon arrival, a group of data items s is recorded to a window	22
over an input stream	
Figure 3.2: An edge from a writer to a window represents a write	23
Figure 3.3: An edge from a window to an operation represents a read	23
Figure 3.4: An operation with a group of data items as input and produces groups of data items as output	24
Figure 3.5: A writer records contents of a data item into a window	25
Figure 3.6: A situation where merge is performed on two groups of data items	26
Figure 3.7: A situation where many operations read from a window	27
Figure 3.8: A data stream processing network for relational algebra expression $[(r \bowtie s) - t]$	28
Figure 3.9: A data stream processing network for an arithmetic expression $[(a + b) - (y + z)]$	29

Chapter 4

Figure	4.1:	Dataflow	processing	network	for	a	relational	algebra	34
express	ion of	example 1		•••••	••••	• • • •	•••••		
Figure 4	4.2: D	ataflow pro	cessing netv	vork for an	aritl	hm	etic express	sion of	

example 1	34
Figure 4.3: Dataflow processing network for a relational algebra	36
expression of example 2	
Figure 4.4: Dataflow processing network for an arithmetic expression of example 2	36
Figure 4.5: Dataflow processing network for a relational algebra expression of example 3	37
Figure 4.6: Dataflow processing network for an arithmetic expression of example 3	37
Figure 4.7: Dataflow processing network for a relational algebra expression with sequences of transactional operations	39
Figure 4.8: Dataflow processing network for an arithmetic expression with sequences of transactional operations	39
Figure 4.9: A situation where a transaction splits into two sub transactions	40
Figure 4.10: Schedule for data stream processing network of figure 4.7	41
Figure 4.11: Serialization graph for T_i and T_j , where T_i is accessed by T_j	42
Figure 4.12: Serialization Graph for schedule of figure 4.10 contains a cycle	43

List of Tables

List of Publications

Publications arising from this thesis:

Qureshi, M. S. F. and Getta, J. R. (2007): Synchronizing Data Stream Processing. *Proc. IASTED International Conference on Parallel and Distributed Computing and Networks*, Innsbruck, Austria, 233 – 238.

Peer-reviewed proceedings of an international conference.

Abbreviations

AQP	Adaptive Query Processing
ART	Average Response Time
CQL	Continuous Query Language
CQP	Continuous Query Processing
DBMS	Data Base Management System
DSMS	Data Stream Management System
DSP	Data Stream Processing
DSPN	Data Stream Processing Network
MDR	Maximum Data Rate
PQP	Pipelined Query Processing
QoS	Quality of Service
QP	Query Processor
SPE	Stream Processing Engine
STREAM	Stanford Stream Data Manager
SQL	Structured Query Language
TQL	Tapestry Query Language
XML	Extended Markup Language

to my beloved father Haji Muhammad Saleem Qureshi

•

Abstract

Synchronization of data stream processing has a significant impact on performance of systems where processing of long sequences of data items needs to be done simultaneously. In earlier works on stream processing, synchronization has been discussed to a limited extent or has been completely overlooked. This work describes a formal model of synchronization in a data stream processing network. We use a notation of data stream processing networks to identify circumstances that necessitate synchronization. We also express processing of groups of data items in terms of database transactions within a data stream processing network. A technique similar to timestamp ordering of database transactions is used to solve the problems. A solution is presented as a set of rules that govern processing of groups of data items. A proof of correctness has been provided for the strategy used to solve the problems.

Acknowledgments

I would like to thank my supervisor Dr. Janusz R.Getta for his invaluable guidance, support, and patience. He helped me in defining a suitable problem for my thesis, and always provided productive suggestions in the course of the writing process.

My special thanks to Professor John Fulcher and Dr. Heather Jamieson for their encouragement during the revision process.

I would like to thank my family and friends for their continuous support and help in the best way possible.