University of Wollongong

Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2009

Effects of a static magnetic field on biological samples

Peter Lazarakis University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Lazarakis, Peter, Effects of a static magnetic field on biological samples, Master of Science (Research) Physics thesis, School of Engineering Physics - Faculty of Engineering, University of Wollongong, 2009. https://ro.uow.edu.au/theses/3033

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Effects of a Static Magnetic Field on Biological Samples

by

Peter Lazarakis

A thesis submitted in partial fulfilment of the requirements for the award of the degree of

Master of Science (Research) Physics

from

UNIVERSITY OF WOLLONGONG SCHOOL OF ENGINEERING PHYSICS

September 1, 2009

Acknowledgements

I would like to thank my supervisor George Takacs for all the help and advice throughout this time. Also the many people that helped with organising the use of various equipment and facilities - Lisa Seymour in the Biology department for teaching me all about growing cells, Martin Carolan and Peter Metcalfe who helped get me access to the hospital facilities and gave advice whenever needed and also in particular Rodney Vickers who was always willing to help with problems with the Bomem - which occurred unfortunately often.

Abstract

FTIR spectroscopy uses the absorbed light in an IR beam to determine the composition of a sample. This study was done using FTIR techniques to determine the damage done or alterations caused when a magnetic field was applied to a biological sample (cell cultures).

The effects of magnetic fields on biological samples is an area that is not very well understood with little reliable data available.

Various experiments investigating the influence of a magnetic field on cell growth, the chemical bonds in cells and the effects during irradiation were performed. Consistently it was seen that the largest changes to the cell were found in hydrogen bonds, most commonly in water. Though perhaps this may not normally create any significant biological impact when a biological sample is irradiated, as in radiotherapy, the chemical and physical structure of water is quite important.

Contents

1	Intr	Introduction	
	1.1	Biological Effects of Radiation	1
	1.2	Possible Effects of Magnetic Fields on Biological Samples un-	
		der Irradiation	7
	1.3	DNA	8
	1.4	Bacteria and Mammalian Cells	9
2	Exp	perimental Methods	16
	2.1	FTIR Spectroscopy / Vibrational Spectroscopy	18
		2.1.1 Specifications of Spectrometer Used	20
		2.1.2 Applications	21
		2.1.3 Aqueous Solutions	24
	2.2	Growing Cell Cultures	26
	2.3	Cell Irradiations	27
	2.4	Biological Data	30
	2.5	Physical Data	32
3	Res	ults and Analysis	40
	3.1	Preliminary Data	40
		3.1.1 Noise	40
		3.1.2 Peak Identification	47

Cor	nclusio	ns	83
4.2	Irradia	ation of Biological Samples in a Magnetic Field	78
4.1	Biolog	ical Changes Induced By Magnetic Fields	73
Dise	cussion	l	73
	3.4.2	Magnetic Fields Influence On Growth Rate	70
	3.4.1	Cell Samples in A Magnetic Field	64
	ples .		64
3.4	Physical Effects of Magnetic Fields Applied to Biological Sam-		
3.3	High Dose Rate Irradiations		58
3.2	Low D	Oose Rate Irradiations	54
	3.1.9	Verification	50
	3.1.8	DNA Peaks	50
	3.1.7	Large Absorption from 3000 to 3700 $\rm cm^{-1}$ \ldots .	50
	3.1.6	2300 to 2400 cm ⁻¹	50
	3.1.5	Small Peaks Around 1700 to 1900 cm^{-1}	49
	3.1.4	Large peak around 1600 to 1700 $\rm cm^{-1}$ \ldots	49
	3.1.3	800 to 1500 cm^{-1}	48

4

 $\mathbf{5}$

List of Figures

1.1	Comparison of clonogenic survival of NALM6 cells following	
	irradiation in the presence of a 1.3 T magnetic field and with-	
	out a magnetic field at x-ray beam energies of a) 75 kV and	
	b) 300 kV. Figure from [33] by C. Abdipranoto.	2
1.2	Mammalian DNA [17]	11
1.3	Bacterial DNA [17]	12
1.4	DNA Chemical Structure [17]	14
2.1	Typical survival curves of mammalian and bacterial cells $\ . \ .$	18
2.2	Spectrum of sample holder	21
2.3	Schematic of experimental setup shown from side on view	29
2.4	Schematic of experimental setup shown from top view looking	
	down on setup	29
2.5	Plate of JM109 cell cultures grown from different densities to	
	determine survival fraction	32
2.6	Sample Holder	34
2.7	Glass Slide	37
2.8	70 μ m thick Mylar	37
2.9	0.4 mm thick Polypropylene	38
2.10	Spectrum of empty sample holder with two sheets of $80\mu\mathrm{m}$	
	thick polypropylene	38

2.11	1 Figure from Jung [1] (referenced as Figure 2. in Jung) showing		
	the IR spectrum of both protein and water. Changes to clearly		
	identifiable peaks observed here are used to identify physical		
	alterations induced	39	
3.1	U937	41	
3.2	U937 Interferogram	42	
3.3	U937 Edited Interferogram	43	
3.4	U937 Edited Spectrum		
3.5	U937 Edited Spectrum Noise	45	
3.6	Variation in low transmission window regions	46	
3.7	PK15 and Second Derivative	47	
3.8	Verification - two samples of PK15 cells from the same culture	51	
3.9	Verification - two samples of PK15 cells from different cultures	52	
3.10	10 Variation in the number of scans taken impact on S/N ratio.		
	Note the 1000 scan spectrum has been offset by 0.3 units from		
	the bottom axis	53	
3.11	JM109 Survival Rates - Initial Orthovoltage Irradiation \ldots .	54	
3.12	2~ JM109 Survival Rates - Orthovoltage Irradiation with magnet		
	setup	55	
3.13	JM109 Magnet Effects on Irradiation	57	
3.14	Linac Irradiation Setup	59	
3.15	GaF sample reading	60	
3.16	GaF control sample	61	
3.17	GaF sample line section	62	
3.18	GaF control graph	63	
3.19	Ratio of BG with magnet to BG without magnet	65	

3.20	Ratio of sample holder with magnet to sample holder without	
	magnet	66
3.21	PK15 with and without magnet in sample holder \ldots .	67
3.22	PK15 after magnet removed from sample holder	68
3.23	JM109 with and without magnetic field in sample holder $\ . \ .$.	70
3.24	JM109 Growth Rates as Influenced by Exposure to a Magnetic $% \mathcal{M}(\mathcal{M})$	
	Field Before Incubation	71
4.1	JM109 10 Gy Magnet and No Magnet 1700 $\rm cm^{-1}$ peak zoom with areas highlighted (Note curves are not offset, data seen	
	as recorded)	80

List of Tables

1.1	Rough guide to make up of bacteria and mammalian cells by	
	Naumann [7]	10

Notations and Abbreviations

Deoxyribonucleic Acid	[DNA]
Double Strand Break	[DSB]
Fourier Transform Infrared	[FTIR]
Hydrogen	[H]
Linear Quadratic No Thres	hold [LQ]
Oxygen Enhancement Ratio	o [OER]
Relative Biological Effective	eness [RBE]
Single Strand Break	[SSB]