University of Wollongong Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2007

Development of advanced electrode materials for use in rechargeable lithium batteries

Scott A. Needham University of Wollongong, scottn@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Needham, Scott A, Development of advanced electrode materials for use in rechargeable lithium batteries, PhD thesis, Institute for Superconducting and Electronic Materials, University of Wollongong, 2007. http://ro.uow.edu.au/theses/696

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Development of Advanced Electrode Materials for use in Rechargeable Lithium Batteries

A thesis submitted in fulfillment of the requirements for the award of

DOCTOR OF PHILOSOPHY

by

SCOTT ANDREW NEEDHAM, BEng (Hons 1), MMgmt

Institute for Superconducting and Electronic Materials and the Faculty of Engineering

2007

© 2007 Scott Andrew Needham All Rights Reserved

Declaration

I, Scott Andrew Needham, declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the Institute for Superconducting and Electronic Materials, in the Faculty of Engineering, University of Wollongong, is wholly original work unless otherwise referenced or acknowledged. This thesis has not been submitted for qualifications at any other academic institution.

Reedham

Wollongong, Australia December 2006

For Anita, Benjamin and Oliver

Acknowledgements

I thank the Director of ISEM, Professor Shixue Dou, for providing the support and financial assistance for my PhD project, but especially for introducing me to the intriguing field of rechargeable lithium batteries. I am particularly grateful to my academic supervisors, Dr. Guoxiu Wang and Prof. Huakun Liu, for their guidance, availability, and open-mindedness throughout my research. They were ever vigilant to provide me with additional learning opportunities by supporting my attendance at specialized training courses and international conferences. I also express my gratitude to my unofficial academic supervisor, Dr. Andrzej Calka, for his insightful discussions on the finer points of mechanical milling and electric discharge assisted milling. I am also indebted to the Australian Research Council (ARC) for their financial support in the form of an Australian postgraduate award, ARC Linkage project LP0453766, and the Centre of Excellence program.

I thank all the hard working technical and administrative staff of the Faculty of Engineering and ISEM that "greases the wheels of the research machine". A staff member's most cherished reward is often the satisfaction in ensuring that a device can be built, a machine runs efficiently, or that a system operates smoothly. I have made many new friends at ISEM, both accomplished academics and talented students. This has made my tenure at ISEM an absolute pleasure, and I wish everyone the best of luck in their chosen pursuits. In particular, I thank my friend Germanas Peleckis – it has been a real life journey – and we must continue to believe that every cloud has a silver lining.

Finally, words cannot express my gratitude for the unwavering support of my family. I thank my mother and father, John and Gail Needham, and my parents-in-law, Done and Rajna Stefoski, for their constant support and interest in my studies. But most of all, I thank my beautiful wife Anita and my two baby boys, Benjamin and Oliver. They have shared the highs and lows of research and provided me with the strength, understanding and love to enable the completion of this thesis. My PhD studies have also been marked by the passing of my Nanna, Enid Muir, and Grandfather, Bill Needham – You both will exist forever in my heart.

Abstract

Batteries are a necessary companion to most portable electronic devices, and the rechargeable lithium battery is the most energy dense and lightest of all the competing battery types. These features make it the most likely battery to be used in future electronic devices, which will be smaller and have increased functionality. Therefore, the performance of the rechargeable lithium battery must continue to be improved in terms of capacity, rate capability, and cycle life. This thesis contributes to this goal by developing new materials and novel synthesis techniques for application in advanced rechargeable lithium batteries.

A significant contribution to the ever-growing collection of works on the doping of LiCoO₂ and LiFePO₄ structures in an attempt to raise their practical storage capacities is presented. The practical capacity of these materials can sometimes be increased by aliovalent doping due to the formation of charge-carrying holes, which impart a higher electrical conductivity. In the case of LiCoO₂ doped with Mg, V and Mo prepared by traditional solid-state methods, the lithium storage capacity was not improved compared to the un-doped LiCoO₂. This was attributed to the formation of lithium-containing secondary phases, which resulted in a lithium deficient primary phase and a higher concentration of Jahn-Teller Co⁴⁺ ions. These effects disrupted the intercalation framework and produced a poor electrochemical performance. In contrast, work on the doping of titanium into LiFePO₄ confirmed that a complete solid solution could be formed using a sol-gel method, despite several previous works suggesting that the aliovalent doping of this structure was impossible. Doping 1 mol% titanium into the LiFePO₄ structure improved the capacity to only 5 % less than the theoretical maximum attainable capacity. The mechanism for this improvement was related to increased *p*-type semiconductivity in the material.

A novel materials synthesis technique, electric discharge assisted mechanical milling (EDAMM), was applied for the first time to the preparation of functional oxides. $LiCoO_2$ and $LiFePO_4$ cathode materials and $SrTi_xCo_{1-x}O_3$ (x = 0, 0.1, 0.2, 0.5), which has possible magnetic applications, were synthesized in a matter of minutes with either microsized or nanosized powder morphologies. The electrochemical performance of the cathode materials

was shown to be comparable to those delivered by powders synthesized by traditional solidstate techniques. $SrTi_xCo_{1-x}O_3$ powders could be formed as complete solid solutions with interesting magnetic properties. The EDAMM method shows commercial potential, as it can synthesize a wide range of functional oxide powders in high quantities. Concerning the synthesis of novel materials, this work also reports on the first ever formation of uniform and aligned NiO nanotubes. The nanotubes were up to 60 µm long, had an outer diameter of 200 nm and a wall thickness of 20-30 nm. Compared to nanocrystalline NiO, the nanotubes delivered a 30 % increase in the discharge capacity after repeated cycling. Electrochemical impedance spectroscopy suggests that this improvement was due to kinetic advantages.

Finally, unique carbon-based SnSb and transition metal oxide nanocomposite materials formed by various chemical techniques are shown to offer promise as anode materials due to their high capacity and excellent cycle life. The use of SnSb alloys has previously been hindered by their poor cyclability, which is caused by volume changes during cycling that result in a loss of electrical contact. Physically mixing carbon in a 1:1 weight ratio with the active material does not improve the cyclability of the electrode, but improves the realized capacity by increasing the electrical conductivity. A superior method of utilizing carbon in a composite form is to synthesize a SnSb-CNT powder, in which the SnSb is chemically bonded onto the carbon nanotube (CNT) nano-network. These powders demonstrated a high reversible capacity and stable cyclability. This method is an effective and promising option to address the problem of volume changes in all high capacity alloys. The Co₃O₄-C composite powders were produced by spray pyrolysis of a sugar-metal ion solution. The capacity in cells was > 800 mAh g⁻¹ for over 50 cycles, which solved the capacity fade problems. The improved electrochemical properties were related to the presence of a carbon sheath formed during processing, which acted to prevent excessive electrolyte reduction and retard the development of a thick solid electrolyte interphase (SEI). A disordered C matrix was also formed throughout the bulk powder during processing, which assisted in cushioning the volume changes associated with the electrochemical reaction.

Table of Contents

1.	Intro	duction	1
2.	Literature review		6
2.1	Rechargeable Lithium Batteries		6
	2.1.1	A Brief History	6
2.2	Funda	imental Considerations	10
	2.2.1	Principles of Operation	10
	2.2.2	The Cell Voltage	11
2.3	Catho	de Materials	13
	2.3.1	Lithium Cobalt Oxide	14
		2.3.1.1 Structural and Electrochemical Properties	14
		2.3.1.2 Doping of LiCoO ₂ Compounds via Solid-State Methods	18
		2.3.1.3 Alternative Synthesis Methods	20
	2.3.2	Lithium Iron Phosphate	22
		2.3.2.1 A Shifting Ideology	22
		2.3.2.2 Structural and Electrochemical Properties	23
		2.3.2.3 Effect of Dopants	26
		2.3.2.4 Alternative Synthesis Methods	27
2.4 Anode M		e Materials	28
	2.4.1	Carbon	28
		2.4.1.1 Forms of Carbon	29
		2.4.1.2 Lithium Intercalation and Failure Mechanisms	32
		2.4.1.2.1 Dependence on Carbon Type	32
		2.4.1.2.2 Electrolyte Considerations	34
		2.4.1.3 Composites using Carbon from Agricultural Sources	36
	2.4.2	SnSb Metal Pnictide	37
		2.4.2.1 Crystal Structure	39
		2.4.2.2 Reactions with Lithium and Synthesis Techniques	41
		2.4.2.1 Crystal Structure2.4.2.2 Reactions with Lithium and Synthesis Techniques	39 41

	2.4.3	Transition Metal Oxides	45
		2.4.3.1 Reactions of Co ₃ O ₄ with Lithium	47
2.5	Nanos	structures	49
	2.5.1	Synthesis of Nanotube Materials via the Template Method	52
2.6	Batter	y Electrolytes	54
	2.6.1	Organic Solvents	54
	2.6.2	Lithium Salts and Other Active Components	55
3.	Expe	rimental	56
3.1	Overv	iew	56
3.2	Metho	ods of Synthesis	57
	3.2.1	Solid-State	57
	3.2.2	Sol-Gel	57
	3.2.3	Electric Discharge Assisted Mechanical Milling	58
	3.2.4	Nanoscale Templating	60
	3.2.5	Reductive Precipitation	61
	3.2.6	Spray Pyrolysis	62
3.3	Metho	ods of Characterization	63
	3.3.1	Structure and Morphology	63
	3.3.2	Particle Surface Area Measurements	64
	3.3.3	Electrical Conductivity	65
	3.3.4	Magnetic Measurements	66
	3.3.5	XAFS and XANES	66
3.4	Electr	ochemical Assessment	69
	3.4.1	Electrode Fabrication and Test Cell Assembly	69
	3.4.2	Galvanostatic Charge/Discharge Cycling	70
	3.4.3	Cyclic Voltammetry	71
	3.4.4	Electrochemical Impedance Spectroscopy	71
4.	LiM _x	Co _{1-x} O ₂ Compounds Prepared <i>via</i> a Solid-State Method	73
4.1	Introd	uction	73

4.2	Experimental		
4.3	Results and Discussion		
	4.3.1 Structural and Morphological Characterization	74	
	4.3.2 Electrochemical Properties	83	
4.4	Summary	85	
_			
5.	The Effect of Titanium Doping on LiFePO ₄ Prepared <i>via</i> a	86	
	Sol-Gel Method		
5.1	Introduction	86	
5.2	Experimental	87	
5.3	Results and Discussion	88	
	5.3.1 Structural and Morphological Characterization	88	
	5.3.2 Electrochemical Properties	95	
5.4	Summary	97	
6.	Functional oxides Prepared via a Novel Electric Discharge	98	
6.	Functional oxides Prepared <i>via</i> a Novel Electric Discharge Assisted Mechanical Milling Method (EDAMM)	98	
6. 1	Functional oxides Prepared <i>via</i> a Novel Electric Discharge Assisted Mechanical Milling Method (EDAMM) Introduction	98 98	
6. 6.1 6.2	Functional oxides Prepared <i>via</i> a Novel Electric Discharge Assisted Mechanical Milling Method (EDAMM) Introduction Experimental	98 98 99	
6. 6.1 6.2 6.3	Functional oxides Prepared <i>via</i> a Novel Electric Discharge Assisted Mechanical Milling Method (EDAMM) Introduction Experimental Results and Discussion	98 98 99 100	
6. 6.1 6.2 6.3	Functional oxides Prepared <i>via</i> a Novel Electric Discharge Assisted Mechanical Milling Method (EDAMM) Introduction Experimental Results and Discussion 6.3.1 Synthesis and Characterization of LiCoO ₂	98 98 99 100 100	
6. 1 6.2 6.3	Functional oxides Prepared via a Novel Electric DischargeAssisted Mechanical Milling Method (EDAMM)IntroductionExperimentalResults and Discussion6.3.1Synthesis and Characterization of LiCoO26.3.2Electrochemical Properties of LiCoO2	98 98 99 100 100 103	
6. 6.1 6.2 6.3	Functional oxides Prepared via a Novel Electric DischargeAssisted Mechanical Milling Method (EDAMM)IntroductionExperimentalResults and Discussion6.3.1 Synthesis and Characterization of LiCoO26.3.2 Electrochemical Properties of LiCoO26.3.3 Synthesis and Characterization of LiFePO4	98 99 100 100 103 104	
6. 1 6.2 6.3	Functional oxides Prepared via a Novel Electric DischargeAssisted Mechanical Milling Method (EDAMM)IntroductionExperimentalResults and Discussion6.3.1 Synthesis and Characterization of LiCoO26.3.2 Electrochemical Properties of LiCoO26.3.3 Synthesis and Characterization of LiFePO46.3.4 Electrochemical Properties of LiFePO4	98 99 100 100 103 104 106	
6. 6.1 6.2 6.3	Functional oxides Prepared via a Novel Electric DischargeAssisted Mechanical Milling Method (EDAMM)IntroductionExperimentalResults and Discussion6.3.1Synthesis and Characterization of LiCoO26.3.2Electrochemical Properties of LiCoO26.3.3Synthesis and Characterization of LiFePO46.3.4Electrochemical Properties of LiFePO46.3.5Synthesis and Characterization of SrTi1-xCoxO3	 98 98 99 100 100 103 104 106 108 	
6.16.26.3	Functional oxides Prepared via a Novel Electric DischargeAssisted Mechanical Milling Method (EDAMM)IntroductionExperimentalResults and Discussion6.3.1 Synthesis and Characterization of LiCoO26.3.2 Electrochemical Properties of LiCoO26.3.3 Synthesis and Characterization of LiFePO46.3.4 Electrochemical Properties of LiFePO46.3.5 Synthesis and Characterization of SrTi1-xCoxO36.3.6 Magnetic Properties of SrTi0.5Co0.5O3	 98 98 99 100 100 103 104 106 108 110 	
 6.1 6.2 6.3 	Functional oxides Prepared via a Novel Electric DischargeAssisted Mechanical Milling Method (EDAMM)IntroductionIntroductionExperimentalResults and Discussion6.3.1 Synthesis and Characterization of LiCoO26.3.2 Electrochemical Properties of LiCoO26.3.3 Synthesis and Characterization of LiFePO46.3.4 Electrochemical Properties of LiFePO46.3.5 Synthesis and Characterization of SrTi1-xCoxO36.3.6 Magnetic Properties of SrTi0.5Co0.5O3Scalaulity and Commercialization of EDAMM	 98 98 99 100 100 103 104 106 108 110 112 	
 6.1 6.2 6.3 6.4 6.5 	Functional oxides Prepared via a Novel Electric DischargeAssisted Mechanical Milling Method (EDAMM)IntroductionExperimentalResults and Discussion6.3.1 Synthesis and Characterization of LiCoO26.3.2 Electrochemical Properties of LiCoO26.3.3 Synthesis and Characterization of LiFePO46.3.4 Electrochemical Properties of LiFePO46.3.5 Synthesis and Characterization of SrTi1-xCoxO36.3.6 Magnetic Properties of SrTi0.5C00.5O3Scalability and Commercialization of EDAMMSummary	 98 99 100 100 103 104 106 108 110 112 113 	

7.	NiO Nanotubes Prepared <i>via</i> a Nanoscale Templating Method	114
7.1	Introduction	114

7.2	Experimental		114
7.3	Result	s and Discussion	115
	7.3.1	Structural and Morphological Characterization	115
	7.3.2	Electrochemical Properties	117
	7.3.3	Electrochemical Impedance Spectroscopy	121
7.4	Summ	ary	122
8.	SnSb	-Carbon Composites Prepared via a Reductive	123
	Preci	pitation Method	
8.1	Introd	uction	123
8.2	Exper	imental	124
8.3	Result	s and Discussion	125
	8.3.1	Structural and Morphological Characterization of SnSb Alloys	125
	8.3.2	Electrochemical Properties of SnSb-C	126
	8.3.3	Summary on SnSb-C	130
	8.3.4	Structural and Morphological Characterization of SnSb-CNT	130
	8.3.5	Electrochemical Properties of SnSb-CNT	134
	8.3.6	Summary on SnSb-CNT	137
9.	Tran	sition Metal Oxide-Carbon Composites Prepared via	138
	the S	pray Pyrolysis Method	
9.1	Introd	uction	138
9.2	Exper	imental	138
9.3	Results and Discussion		139
	9.3.1	Structural and Morphological Characterization	139
	9.3.2	Electrochemical Properties	142
	9.3.3	Electrochemical Impedance Spectroscopy	144
9.4	Summary		147

10.	Conclusions and Recommendations	148
11.	References	150
	List of Symbols and Abbreviations	168
	List of Materials and Chemicals	172
	List of Figures	174
	List of Tables	182
	List of Author Publications	183