University of Wollongong Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2007

Structure and function of the mammalian small heat shock protein Hsp25

Amie Michelle Morris University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Morris, Amie Michelle, Structure and function of the mammalian small heat shock protein Hsp25, PhD thesis, School of Biological Sciences and Chemistry, University of Wollongong, 2007. http://ro.uow.edu.au/theses/744

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Structure and Function of the Mammalian Small Heat Shock Protein Hsp25

Amie Michelle Morris, B. Sc. (Hons)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

> School of Biological Sciences and Department of Chemistry University of Wollongong Wollongong, Australia

2007

Declaration

This thesis is submitted in accordance with the regulations of the University of Wollongong in fulfilment of the degree of Doctor of Philosophy. It does not include any material previously published by another person except where due reference is made in the text. The experimental work described in this thesis is original and has not been submitted for a degree to any other University.

Amie Morris

Acknowledgements

I would like to thank my supervisors Mark Walker, John Carver and Teresa Treweek for their expertise, insight and guidance.

I would also like to thank Madge and Wilford for their advice and help with obtaining results from complicated equipment.

Most sincere thanks to Teresa, who gave me so much support on so many levels. Tezza, I can always count on you for those important self-esteem boosts and constant reminders that life will return to "normal" at the end of all of this. You have always been there for me and have been an amazing guide throughout my entire time as a research student.

To all of the Walker labrats and the upstairs posse – Anna, Carola, Christine, Coley, Corky, Elise, Fay, Gill, Jake, Justin, Kara, Martina, Tam, Tracey and Vidiya – thankyou all for the fun times and support. Thankyou to my former office buddy Arezou for being there through the ups and downs of writing and to Yoke, Michael and Ana for being around for those vital distractions.

To Heather and Riley, thankyou both for understanding.

To Martin and Pauline, thankyou for accepting me into your family and for all your support and food.

My most heartfelt thanks to Mum and Dad who are always there for me. I couldn't have made it through any of this without you.

Finally, thankyou to Jesse for understanding and always believing in me.

Contents

List of	Figures			vii
List of	Tables			x
List of	Abbreviat	ions		xii
List of	Publicatio	ons and Pres	entations	xiv
Abstra	ct			XV
Chapt	er 1: In	troduction		1
1.1.	Protein F	olding		2
	1.1.1.	The Off-Fo	lding Pathway	4
	1.1.2.	Protein Mis	folding Diseases	5
1.2.	Molecula	r Chaperone	2S	7
	1.2.1.	Hsp70		9
	1.2.2.	Hsp60		11
	1.2.3.	Hsp100		
	1.2.4.	Hsp90		
1.3.	Stress ar	nd the Heat	Shock Response	15
1.4.	Small He	at Shock Pro	oteins	
1.5.	Structure	e of sHsps		20
	1.5.1.	Primary Str	ucture	20
		1.5.1.1.	The α -Crystallin Domain	23
		1.5.1.2.	The N-Terminal Domain	23
		1.5.1.3.	The C-Terminal Extension and IXI Motif	
	1.5.2.	Higher Ord	er Structure	
	1.5.3.	Secondary	Structure	25
	1.5.4.	Tertiary Str	ructure	
	1.5.5.	Quaternary	Structure	27
		1.5.5.1.	Oligomeric Models	31
		1.5.5.2.	Subunit Exchange	33
	1.5.6.	Structural 7	Fransitions	
1.6.	Chapero	ne Activity o	f sHsps	
	1.6.1.	In Vivo Cha	aperone Activity of sHsps	43
1.7.	sHsps ar	nd Disease		45
	1.7.1.	sHsps in Co	onformational Diseases	45
	1.7.2.	Diseases Ca	aused by sHsps	48

Chap	ter 2: M	aterials an	d Methods	. 52
2.1.	Material	s		53
2.2.	General	Molecular T	echniques	53
	2.2.1.	Preparatio	n of Electrocompetent Cells	53
	2.2.2.	Electrotra	nsformation of Electrocompetent E. coli	54
	2.2.3.	Preparatio	n of Bacterial Stocks	54
	2.2.4.	Sodium Do	odecyl Sulphate Polyacrylamide Gel	
		Electropho	presis	55
2.3.	DNA Ma	nipulation T	echniques	56
	2.3.1.	Extraction	of Plasmid DNA	56
	2.3.2.	Restrictior	Enzyme Digestions	57
	2.3.3.	Agarose G	el Electrophoresis	57
2.4.	DNA Se	quence Anal	ysis	58
	2.4.1.	Sequencin	g Primers	58
	2.4.2.	Sequencin	g Polymerase Chain Reaction	59
	2.4.3.	Precipitati	on of Amplified DNA	60
	2.4.4.	Sequencin	g Electrophoresis	61
2.5.	Site-Dire	ected Mutag	enesis	61
	2.5.1.	Mutagenic	Primers	62
	2.5.2.	Mutagenic	Polymerase Chain Reaction	62
	2.5.3.	Transform	ation into XL1-Blue Supercompetent Cells	64
	2.5.4.	Screening	for Mutants	65
2.6.	Express	ion Vectors	for Hsp25 and α B-Crystallin	66
2.7.	Express	ion and Puri	fication of Wildtype and Mutant Hsp25	66
	2.7.1.	Expression	n of Wildtype and Mutant Hsp25	67
	2.7.2.	Purificatio	n of Wildtype and Mutant Hsp25	68
		2.7.2.1.	Cell Lysis	68
		2.7.2.2.	Anion-Exchange Chromatography	68
		2.7.2.3.	Size-Exclusion Chromatography	69
	2.7.3.	Nanoscale	Electrospray Ionisation Mass Spectrometry	70
		2.7.3.1.	Peptide Sequencing	71
2.8.	Express	ion and Puri	fication of Wildtype α B-Crystallin	71
2.9.	Charact	erisation of	Wildtype and Mutant Hsp25	72
	2.9.1.	Far-UV Cir	cular Dichroism Spectroscopy with	
		Temperate	ure Studies	73
	2.9.2.	Fluorescer	nce Studies	75
		2.9.2.1.	Intrinsic Tryptophan Fluorescence	75
		2.9.2.2.	ANS Binding Fluorescence	75

	2.9.3.	Size-Exclusion Fast Protein Liquid Chromatography	
	2.9.4. 2.0.5	Chaperone Activity Access	/6 حح
	2.9.5.	2.9.5.1 Thermal Stress Assays	·····// 77
		2.9.5.1. Inclinal Suess Assays	
2 10	Uniform	¹⁵ N-I abelling of Wildtype and Mutant Hsp25	70
2.10.	Nuclear	Magnetic Resonance Spectroscopy of Wildtype and Mu	tant
	Hsp25		
	2.11.1.	¹ H- ¹ H Nuclear Magnetic Resonance Spectroscopy	
	2.11.2.	¹ H- ¹⁵ N Nuclear Magnetic Resonance Spectroscopy	81
2.12.	Interacti	ions between Hsp25 and α B-crystallin	82
Chap	ter 3: Si	te-Directed Mutagenesis of Hsp25	
3.1. Daria	Sequenc	ce Analysis of the C-Terminal Extension of SHSps	
Desig	n of Hsp2:	5 Mutants	
3.Z. 2.2	Cito Dire	or Mulagenic Primers	
ג. גע	Screenin	acted Mutagenesis Reactions	
э.т.	Scieeriii		
Chap	ter 4: Ex	pression and Purification of Hsp25 and	
Chap	ter 4: Ex αE	cpression and Purification of Hsp25 and 3-Crystallin	
Chap 4.1.	ter 4: Εx α E Expressi	cpression and Purification of Hsp25 and 3-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype	98
Chap 4.1.	ter 4: Ex αE Expressi αB-Cryst	Apression and Purification of Hsp25 and 3-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin	 98 99
Chap 4.1. 4.2.	ter 4: Ex αE Expressi αB-Cryst Purificat	Apression and Purification of Hsp25 and 3-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype	 98 99
Chap 4.1. 4.2.	ter 4: Ex αE Expressi αB-Cryst Purificati αB-Cryst	Apression and Purification of Hsp25 and 3-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin	
Chap 4.1. 4.2.	ter 4: Ex αE Expressi αB-Cryst Purificati αB-Cryst 4.2.1.	Apression and Purification of Hsp25 and 3-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin Nanoscale Electrospray Ionisation Mass Spectrometry	
Chap 4.1. 4.2. Chap	ter 4: Ex αE Expressi αB-Cryst Purificati αB-Cryst 4.2.1. ter 5: Ch	Apression and Purification of Hsp25 and 3-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin Nanoscale Electrospray Ionisation Mass Spectrometry naracterisation of Wildtype and Mutant Hsp25	
Chap 4.1. 4.2. Chap 5.1.	ter 4: Ex αE Expressi αB-Cryst Purificati αB-Cryst 4.2.1. ter 5: Ch Compari	Apression and Purification of Hsp25 and 3-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin Nanoscale Electrospray Ionisation Mass Spectrometry naracterisation of Wildtype and Mutant Hsp25 ison of Unmodified and Modified Hsp25	
Chap 4.1. 4.2. Chap 5.1. 5.2.	ter 4: Ex αE Expressi αB-Cryst Purificati αB-Cryst 4.2.1. ter 5: Ch Compari Far-UV (Apression and Purification of Hsp25 and 3-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin Nanoscale Electrospray Ionisation Mass Spectrometry naracterisation of Wildtype and Mutant Hsp25 ison of Unmodified and Modified Hsp25 Circular Dichroism Spectroscopy with Temperature Stud	
Chap 4.1. 4.2. Chap 5.1. 5.2. 5.3.	ter 4: Ex αE Expressi αB-Cryst Purificati αB-Cryst 4.2.1. ter 5: Ch Compari Far-UV 0 Intrinsic	Apression and Purification of Hsp25 and B-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin Nanoscale Electrospray Ionisation Mass Spectrometry haracterisation of Wildtype and Mutant Hsp25 ison of Unmodified and Modified Hsp25 Circular Dichroism Spectroscopy with Temperature Stud Tryptophan Fluorescence	
Chap 4.1. 4.2. Chap 5.1. 5.2. 5.3. 5.4.	ter 4: Ex αE Expressi αB-Cryst Purificati αB-Cryst 4.2.1. ter 5: Ch Compari Far-UV (Intrinsic ANS Bin	Apression and Purification of Hsp25 and B-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin Nanoscale Electrospray Ionisation Mass Spectrometry haracterisation of Wildtype and Mutant Hsp25 ison of Unmodified and Modified Hsp25 Circular Dichroism Spectroscopy with Temperature Stud Tryptophan Fluorescence	
Chap 4.1. 4.2. Chap 5.1. 5.2. 5.3. 5.4. 5.5.	ter 4: Ex αE Expressi αB-Cryst Purificati αB-Cryst 4.2.1. ter 5: Ch Compari Far-UV 0 Intrinsic ANS Bind Size-Exc	Apression and Purification of Hsp25 and B-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin Nanoscale Electrospray Ionisation Mass Spectrometry haracterisation of Wildtype and Mutant Hsp25 ison of Unmodified and Modified Hsp25 Circular Dichroism Spectroscopy with Temperature Stud Tryptophan Fluorescence	
Chap 4.1. 4.2. Chap 5.1. 5.2. 5.3. 5.4. 5.5. 5.6.	ter 4: Ex αE Expressi αB-Cryst Purificati αB-Cryst 4.2.1. ter 5: Ch Compari Far-UV 0 Intrinsic ANS Bind Size-Exc Thermos	Apression and Purification of Hsp25 and B-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin Nanoscale Electrospray Ionisation Mass Spectrometry haracterisation of Wildtype and Mutant Hsp25 ison of Unmodified and Modified Hsp25 Circular Dichroism Spectroscopy with Temperature Stud Tryptophan Fluorescence ding Fluorescence ilusion Fast Protein Liquid Chromatography stability Studies	
Chap 4.1. 4.2. Chap 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7.	ter 4: Ex αE Expressi αB-Cryst Purificati αB-Cryst 4.2.1. ter 5: Ch Compari Far-UV 0 Intrinsic ANS Bind Size-Exc Thermos Chapero	Apression and Purification of Hsp25 and B-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin Nanoscale Electrospray Ionisation Mass Spectrometry haracterisation of Wildtype and Mutant Hsp25 ison of Unmodified and Modified Hsp25 Circular Dichroism Spectroscopy with Temperature Stud Tryptophan Fluorescence ding Fluorescence ilusion Fast Protein Liquid Chromatography stability Studies	98 99 99 100 100 106 112 113 dies119 124 129 133 142 149
Chap 4.1. 4.2. Chap 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7.	ter 4: Ex αE Expressi αB-Cryst Purificati αB-Cryst 4.2.1. ter 5: Ch Compari Far-UV (Intrinsic ANS Bind Size-Exc Thermos Chapero 5.7.1.	Apression and Purification of Hsp25 and B-Crystallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin ion of Wildtype and Mutant Hsp25 and Wildtype tallin Nanoscale Electrospray Ionisation Mass Spectrometry haracterisation of Wildtype and Mutant Hsp25 ison of Unmodified and Modified Hsp25 Circular Dichroism Spectroscopy with Temperature Stud Tryptophan Fluorescence ding Fluorescence clusion Fast Protein Liquid Chromatography stability Studies ne Activity Assays	98 99 100 100 106 112 113 dies119 124 129 133 142 149 150

Chapt	er 6: Nuclear Magnetic Resonance Spectroscopy of	
	Wildtype and Mutant Hsp25	174
6.1.	Expression and Purification of ¹⁵ N-Labelled Wildtype Hsp25	176
6.2.	¹ H- ¹ H and ¹ H- ¹⁵ N Nuclear Magnetic Resonance Spectroscopy	179
6.3.	Longitudinal and Transverse ¹⁵ N Relaxation Studies	187
Chapt	er 7: Interactions Between Hsp25 and α B-Crystallin	192
7.1.	Thermostability Studies of Hsp25 and α B-Crystallin Mixtures	194
7.2.	Chaperone Activity Assays of Hsp25 and α B-Crystallin Mixtures	197
	7.2.1. Thermal Stress Assays	197
	7.2.2. Reduction Stress Assays	199
Chapt	er 8: Conclusions and Future Directions	. 202
Apper	ndix A: Supplementary Information	209
A.1.	List of sHsp Accession Numbers and Organisms	210
A.2.	Amino Acid Properties	212
A.3.	Sequence Analysis of Representative Globular and Intrinsically-	
	Disordered Proteins	213
Chapt	er 1. Buffers and Solutions	214
Chapt	er 2. References	219

List of Figures

Chapter 1: Introduction

Figure 1.1:	Protein folding funnel 3
Figure 1.2:	Protein folding and off-folding pathways
Figure 1.3:	Protein folding by the Hsp70 and Hsp60 systems
Figure 1.4:	Sequence alignment of some major sHsps from various
	organisms 22
Figure 1.5:	Dimeric structures of Hsp16.9 and Hsp16.5 28
Figure 1.6:	sHsps and the off-folding pathway
Figure 1.7:	Flexible regions of the C-terminal extensions of Hsp25,
	Hsp27 and the α -crystallins
Figure 1.8:	Interactions between human sHsps found in muscle
Chapter 2:	Materials and Methods
Figure 2.1:	Plasmid map of pAK3038-Hsp25 showing the approximate
	positions of sequencing primers 59
Figure 2.2:	Overview of the site-directed mutagenic procedure
Figure 2.3:	Plasmid map of pAK3038 67
Figure 2.4:	Equation for calculating mean residue ellipticity
Figure 2.5:	Equation for calculating T_1 and T_2 ¹⁵ N relaxation constants 83
Figure 2.6:	Equation for calculating the standard error of a ratio
Chapter 3:	Site-Directed Mutagenesis of Hsp25
Figure 3.1:	Alignment of the C-terminal extensions various sHsps
Figure 3.2:	Agarose gel of restriction enzyme digests of
	pAK3038-Hsp25 and mutants and pET24d(+)- α B-crystallin 96
Figure 3.3:	DNA sequence analysis of Hsp25 and mutants
Chapter 4:	Expression and Purification of Hsp25 and $lpha$ B-Crystallin
Figure 4.1:	SDS-PAGE gel showing expression of Hsp25 and
	lphaB-crystallin100
Figure 4.2:	Anion-exchange chromatograms of Hsp25 and $\alpha\text{B-crystallin}\dots102$
Figure 4.3:	Size-exclusion chromatogram of Hsp25104
Figure 4.4:	Size-exclusion chromatogram of α B-crystallin105
Figure 4.5:	SDS-PAGE gel of the purification of Hsp25 and $\alpha\text{B-crystallin}$ 105

Figure 4.6:	Mass spectra of purified wildtype Hsp25 obtained by
	nanoscale ESI mass spectrometry108
Figure 4.7:	Mass spectrum of purified wildtype α B-crystallin obtained
	by nanoscale ESI mass spectrometry109
Chapter 5:	Characterisation of Wildtype and Mutant Hsp25
Figure 5.1:	Circular dichroism spectra of unmodified and modified
	wildtype Hsp25115
Figure 5.2:	Tryptophan fluorescence spectra of unmodified and
	modified wildtype Hsp25116
Figure 5.3:	ANS binding fluorescence of wildtype and mutant Hsp25116
Figure 5.4:	SEC FPLC chromatograms of unmodified and modified
	wildtype Hsp25117
Figure 5.5:	Thermostability profiles of unmodified and modified
	wildtype Hsp25117
Figure 5.6:	Chaperone activity of unmodified and modified wildtype
	Hsp25 with insulin under reduction stress118
Figure 5.7:	Chaperone activity of unmodified and modified Hsp25 with
	ADH under thermal stress119
Figure 5.8:	Circular dichroism spectra of wildtype and mutant Hsp25121
Figure 5.9:	Tryptophan fluorescence of wildtype and mutant Hsp25127
Figure 5.10:	ANS binding fluorescence of wildtype and mutant Hsp25131
Figure 5.11:	Standard curve for SEC FPLC134
Figure 5.12:	SEC FPLC chromatograms of unmodified and modified
	wildtype Hsp25137
Figure 5.13:	Thermostability profiles of wildtype and mutant Hsp25144
Figure 5.14:	Chaperone activity of wildtype and mutant Hsp25 with
	insulin under reduction stress155
Figure 5.15:	Chaperone activity of wildtype and mutant Hsp25 with ADH
	under thermal stress165
Chapter 6:	Nuclear Magnetic Resonance Spectroscopy of Wildtype
	and Mutant Hsp25
Figure 6.1:	Mass spectra of purified wildtype Hsp25 obtained by
	nanoscale ESI mass spectrometry
Figure 6.2:	¹⁵ N- ¹ H HSQC spectrum of ¹⁵ N-labelled wildtype Hsp25180
Figure 6.3:	¹⁵ N- ¹ H HSQC spectrum of ¹⁵ N-labelled Hsp25-Q205A180
Figure 6.4:	TOCSY and NOESY spectra of ¹⁵ N-labelled wildtype Hsp25184

Figure 6.5:	TOCSY and NOESY spectra of ¹⁵ N-labelled Hsp25-Q205A185
Figure 6.6:	Representative exponential decay of peak volume with
	relaxation time
Figure 6.7:	T_1 and T_2 analyses of ¹⁵ N-labelled wildtype Hps25190
Figure 6.8:	T_1 and T_2 analyses of ¹⁵ N-labelled Hps25-Q205A191
Chapter 7:	Interactions Between Hsp25 and α B-Crystallin
Figure 7.1:	Thermostability profiles of Hsp25 and $\alpha\text{B-crystallin mixtures}196$
Figure 7.2:	SDS-PAGE gel of precipitates from thermostability of Hsp25
	and α B-crystallin mixtures196
Figure 7.3:	Chaperone activity of Hsp25 and α B-crystallin mixtures with
	ADH under thermal stress
Figure 7.4:	Chaperone activity of Hsp25 and α B-crystallin mixtures with

List of Tables

Chapter 1: Introduction

Table 1.1:	Protein misfolding diseases in humans	5
Table 1.2:	Heat shock protein families 10)
Table 1.3:	Factors that induce the heat shock response	5
Table 1.4:	The ten known human sHsps 18	3
Table 1.5:	Secondary structure of Hsp25 and the α -crystallins	ō
Table 1.6:	The effect of C-terminal extension mutations on chaperone	
	activity	2
Table 1.7:	Housekeeping roles of the sHsp family 4	5
Chapter 2:	Materials and Methods	
Table 2.1:	Sequencing primers for the C-terminal region of the Hsp25	
	gene	3
Table 2.2:	Molecular masses of Hsp25 and mutants72	2
Chapter 3:	Site-Directed Mutagenesis of Hsp25	
Table 3.1:	Residue frequency in the C-terminal extensions of various	
	sHsps 88	3
Table 3.2:	Summary of the residue composition of the C-terminal	
	extension of sHsps from mammals and other organisms)
Table 3.3:	Summary of the residue composition of representative	
	globular and intrinsically-disordered proteins)
Table 3.4:	Amino acid sequences of Hsp25 C-terminal extension	
	mutants	3
Table 3.5:	Oligonucleotide primers for site-directed mutagenesis of the	
	C-terminal extension of Hsp25 9	5
Chapter 4:	Expression and Purification of Hsp25 and $lpha$ B-Crystallin	
Chapter 5:	Characterisation of Wildtype and Mutant Hsp25	
Table 5.1:	Secondary structure estimations of unmodified and	
	modified wildtype Hsp25115	5
Table 5.2:	Secondary structure estimations of wildtype and mutant	
	Hsp25122	2
Table 5.3:	Tryptophan fluorescence maxima and of wildtype and	
	mutant Hsp25128	3

Table 5.4:	Oligomeric sizes of wildtype and mutant Hsp25 as
	determined by SEC FPLC138
Table 5.5:	Summary of chaperone activity of wildtype and mutant
	Hsp25 with insulin under reduction stress156
Table 5.6:	Summary of chaperone activity of wildtype and mutant
	Hsp25 with ADH under thermal stress166
Chapter 6:	Nuclear Magnetic Resonance Spectroscopy of Wildtype
••••••••••••••••••••••••••••••••••••••	······································
	and Mutant Hsp25
Table 6.1:	and Mutant Hsp25 Efficiency of uniform ¹⁵ N-labelling of wildtype Hsp25
Table 6.1: Table 6.2:	and Mutant Hsp25 Efficiency of uniform ¹⁵ N-labelling of wildtype Hsp25
Table 6.1: Table 6.2: Table 6.3:	and Mutant Hsp25 Efficiency of uniform ¹⁵ N-labelling of wildtype Hsp25
Table 6.1: Table 6.2: Table 6.3: Table 6.4:	and Mutant Hsp25 Efficiency of uniform ¹⁵ N-labelling of wildtype Hsp25

List of Abbreviations

ADH	alcohol dehydrogenase
ANS	1-anilino-8-naphthalene sulphonate
Ар	ampicillin
АТР	adenosine triphosphate
BCA	bicinchoninic acid
BSA	bovine serum albumin
CD	circular dichroism
crys	crystallin
cvHsp	cardiovascular Hsp
D ₂ O	deuterium oxide
DEAE	diethylaminoethyl
DMPK	dystrophia myotonica-protein kinase
DMSO	dimethylsulphoxide
DNase I	deoxyribonuclease I
DRM	desmin-related myopathy
DTT	dithiothreitol
E. coli	Escherichia coli
EDTA	ethylenediaminetetraacetic acid
ESI	electrospray ionisation
FPLC	fast protein liquid chromatography
Hsp	heat shock protein
HSQC	heteronuclear single-quantum coherence
IPTG	isopropyl- β -D-thiogalactosidase
Km	kanamycin
LB medium	Luria-Bertani medium
MG	molten globule
MS	mass spectrometry
NanoESI	nanoscale electrospray ionisation

NMR	nuclear magnetic resonance
NOE	nuclear overhauser effect
NOESY	nuclear overhauser effect spectroscopy
ODPF	outer dense fibre protein
PAGE	polyacrylamide gel electrophoresis
PCR	polymerase chain reaction
PEI	polyethylenimine
PMSF	phenylmethylsulphonyl fluoride
SDS	sodium dodecyl sulphate
SEC	size-exclusion chromatography
sHsp	small heat shock protein
TEMED	N,N,N',N'-tetramethylethylenediamine
TOCSY	total correlation spectroscopy
Tris	tris(hydroxymethyl)aminomethane
WET	water suppression enhanced through T1 effects
X-gal	5-bromo-4-chloro-3-inodlyl-β-D-galactopyranoside

List of Publications and Presentations

A.M. Morris, T.M.Treweek, J.A. Carver and M.J. Walker (2007) "Glutamic acid residues in the C-terminal extension of Hsp25 are critical for structural and functional integrity". *Under revision*.

A.M. Morris, M.J. Walker and J.A. Carver (2006) "Structure/function studies on the mammalian small heat shock protein Hsp25: the role of the C-terminal extension". Poster presentation at *Molecular Chaperones & the Heat Shock Response meeting, Cold Spring Harbor Laboratory, New York*.

A.M. Morris, J.A. Carver and M.J. Walker (2005) "The role of the C-terminal extension of the mammalian small heat shock protein Hsp25". Poster presentation at *Higher Degree Research Student Conference, University of Wollongong*.

A.M. Morris, J.A. Carver and M.J. Walker (2005) "The role of the C-terminal extension of the mammalian small heat shock protein Hsp25". Poster presentation at *The Lorne Conference on Protein Structure and Function*.

A.M. Morris, J.A. Carver and M.J. Walker (2004) "Structure and function studies on the mammalian small heat shock protein Hsp25". Poster presentation at *The Lorne Conference on Protein Structure and Function*.

T.M. Treweek, A.M. Morris and J.A. Carver (2003) "Intracellular protein unfolding and aggregation: The role of small heat-shock chaperone proteins". *Aust. J. Chem.* 56(5): 357-367.

T.M. Treweek, M.J. Walker, A.M. Morris and J.A. Carver (2002) "Structure/function studies of small heat shock chaperone proteins". Poster presentation at *Molecular Chaperones & the Heat Shock Response meeting, Cold Spring Harbor Laboratory, New York*.

Abstract

Hsp25 is the murine equivalent of human Hsp27, both of which are members of the small heat shock protein (sHsp) family. sHsps are a group of intracellular molecular chaperones that protect unstable intermediates of cellular proteins from aggregation and precipitation. Hsp27 and other sHsps play a role in various neurodegenerative diseases such as Alzheimer's, Alexander's, Creutzfeld-Jakob and Parkinson's diseases. Crystallisation of mammalian sHsps has thus far not been achieved due to the polydisperse and dynamic nature of these proteins. As a result, the oligomeric structure of sHsps is unclear, hindering the elucidation of the functional mechanisms of these proteins.

In this study, a series of site-directed Hsp25 mutants was constructed, in which polar residues of the flexible region of the C-terminal extension were replaced with less polar residues. The C-terminal extension of sHsps is typically short and unstructured and is thought to play an important role in solubilising these proteins and the complexes they form with target proteins by counteracting the hydrophobicity of the remainder of the sHsp. The C-terminal extension is also implicated in interaction with target proteins.

Wildtype Hsp25 and various C-terminal extension mutants (E190A, R192A, Q194A, E199A, E204A, Q205A, K209L) were expressed and successfully purified. A truncation mutant, E190stop, was also constructed but became insoluble during the purification process, demonstrating the importance of the C-terminal extension in maintaining the stability of Hsp25. Wildtype and

mutant Hsp25 proteins were characterised structurally and functionally using a range of spectroscopic techniques, including far-UV circular dichroism spectroscopy, tryptophan and ANS binding fluorescence spectroscopy, size-exclusion fast protein liquid chromatography, nuclear magnetic resonance spectroscopy and chaperone assays under both reduction and heat stress conditions. These experiments enabled the identification of residues key to the chaperone ability of Hsp25.

The R192A and Q194A mutants were functionally indistinct from the wildtype protein and exhibited only minor alterations to their structure. It was therefore concluded that the R192 and Q194 residues are not vital for Hsp25 to function as a molecular chaperone.

Each of the glutamic acid residue mutants exhibited significant alterations in tertiary structure, with increases in exposure of hydrophobic regions compared with wildtype Hsp25, and a minor decrease in the oligomeric size of the E190A mutant was observed. Functionally, these mutants showed poor thermostability and disrupted chaperone function. Glutamic acid residues are abundantly present in proteins from thermophilic organisms and are implicated in the stability of these proteins at high temperatures. Replacement of each of the glutamic acid residues in the C-terminal extension of Hsp25 resulted in loss of solubility at elevated temperatures, indicating that these residues perform similar roles in both Hsp25 and thermophilic proteins. The increase in surface hydrophobicity may have contributed to the poor thermostability of these

xvi

mutants and also the inefficient capture of target proteins observed in the chaperone assays.

The tertiary and quaternary structures of the Q205A mutant were significantly perturbed and the function of this mutant was completely abolished under heat stress conditions. Alterations to the tertiary structure of the N-terminal domain were observed and oligomerisation was severely disrupted, with three distinct oligomeric forms being present: an oligomer larger than that of the wildtype protein and two smaller oligomers. The chaperone activity of this mutant was comparable to that of wildtype Hsp25 under reduction stress conditions, indicating that each of the oligomeric forms were functional. Under heat stress conditions, however, the Q205A mutant co-precipitated along with the target proteins. Flexibility of the mutated residue was considerably decreased, as assessed by NMR experiments, but the remainder of the C-terminal extension was not significantly altered. Together, these results lead to the conclusion that the Q205 residue is vital for the performance of Hsp25 as a molecular chaperone at elevated temperatures.

Mutation of the K209 residue also showed disruption to the oligomerisation of Hsp25, with the K209L mutant eluting as three peaks after size-exclusion chromatography. This mutant was functionally defective under reduction stress conditions but showed comparable chaperone activity to the wildtype at high temperature, suggesting that the smaller oligomeric species require temperature-induced structural alterations in order to acquire chaperone ability. Because full chaperone activity was observed under reduction stress conditions,

xvii

direct interactions between the C-terminal lysine residue of Hsp25 and target proteins is unlikely to be a requirement of chaperone activity.

The stabilisation of α B-crystallin by α A-crystallin is important for the maintenance of the structure and function of α B-crystallin in the eye lens, where these sHsps are present in a ~3:1 ratio. Outside the eye lens, however, α A-crystallin is found only in trace amounts in some tissues. Co-complexes between various sHsps have been observed *in vivo*, for example between α B-crystallin and Hsp27, and it has been proposed that one or more ubiquitous sHsps stabilise α B-crystallin in non-lenticular tissues. Whilst α B-crystallin was found to be unstable above ~69°C, Hsp25 remained almost completely in solution at 100°C. A 3:1 Hsp25: α B-crystallin mixture showed practically identical thermostability to the Hsp25 homo-oligomer and provides support for the role of this sHsp as a stabiliser of α B-crystallin. Chaperone activity assays of the 3:1 mixture show results closely resembling those of the Hsp25 homo-oligomer and demonstrate that interactions between the two sHsps result in an altered chaperone activity of α B-crystallin.

Significant insights into the structure and function of Hsp25 were gained in this study. Several residues in the C-terminal extension were identified as critical to the structural and functional integrity of this sHsp and analysis of the amino acid composition of the C-terminal extensions of sHsps from various organisms indicate that some of these residues may play similar roles in other sHsps.

xviii