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Abstract
1.	 Many long-term wildlife population monitoring programmes rely on citizen scientists  

for data collection. This can offer several benefits over traditional monitoring 
practices as it is a cost-effective, large-scale approach capable of providing long 
time series data and raising public environmental awareness. Whilst there is a 
debate about the quality of citizen science data, a standardised sampling design 
can allow citizen science data to be of a similar quality to those collected by pro-
fessionals. However, many programmes use subjective, opportunistic selection 
of monitoring sites and this introduces several types of bias, which are not well 
understood.

2.	 Using bat roost counts as a case study, we took a ‘virtual ecologist’ approach to 
simulate the effect of opportunistic site selection and uneven observer retention 
on our ability to accurately detect abundance trends. We simulated populations 
with different levels of temporal variability and site fidelity.

3.	 Our simulations reveal that opportunistic site selection and low observer retention 
can result in biased trends and that these biases are magnified when monitored 
populations exhibit high levels of inter-annual variation and low site fidelity. These 
results show that the synergistic effects of observer behaviour, site selection, and 
population dynamics lead to biased abundance trends in monitoring programmes.

4.	 This study highlights the value of engaging and retaining citizen science observers, 
a standardised sampling design, and the collection of metadata. We conclude that 
monitoring programmes need to be aware of their focal species' temporal variabil-
ity and site fidelity to adequately assess the potential bias caused by opportunistic 
site selection and low observer retention.

5.	 Synthesis and applications. Accurate data on population changes are key for con-
servation success. Therefore, it is important that citizen science monitoring pro-
grammes assess and potentially quantify the biases present in their data. We 
demonstrate the applicability of an established simulation framework to assess 
the effect of biases on our ability to correctly detect abundance trends. Our 
findings highlight that monitoring programmes need to be aware of their study 
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1  | INTRODUC TION

A fundamental tool of conservation biology is the establishment of 
long-term monitoring programmes, which allow policy-makers to 
evaluate the extent of biodiversity changes and the effectiveness 
of conservation strategies (Buckland & Johnston,  2017; Magurran 
et al., 2010; Yoccoz, Nichols, & Boulinier, 2001). These programmes 
require a large amount of financial and human resources in order to 
produce robust data that can be used to assess the anthropogenic 
impact on biodiversity (Bird et  al.,  2014; Schmeller et  al.,  2009). 
Monitoring biodiversity through data collected by volunteer observ-
ers has a long-standing history (e.g. the Audubon Society's Christmas 
Bird Count, the British Breeding Bird Survey, NABU Vogelzählung), 
and in recent decades has become the standard for long-term 
monitoring programmes (Burgess et  al.,  2017; Callaghan, Rowley, 
Cornwell, Poore, & Major, 2019; Schmeller et al., 2009). Such citizen 
science programmes offer many benefits compared with traditional 
monitoring approaches. They are cost-effective, large-scale, pro-
vide continuous time series data and also raise public environmental 
awareness (Conrad & Hilchey, 2011; Dickinson et al., 2012).

Despite the success of many citizen science monitoring pro-
grammes, discussion about the quality of data collected by observers 
has been ongoing (Brown & Williams, 2018; Conrad & Hilchey, 2011; 
Gardiner et  al.,  2012; Riesch & Potter,  2014). Commonly voiced 
concerns are data inaccuracies, such as omission and misidenti-
fication, as well as variation in sampling effort through time and 
space (Dickinson, Zuckerberg, & Bonter,  2010; Falk et  al.,  2019; 
Lewandowski & Specht, 2015; Maldonado et al., 2015). Both data 
inaccuracies and sampling effort can be related to the wide varia-
tion in observer skill and retention that is present in citizen science 
observers (Aceves-Bueno et  al.,  2017; Belt & Krausman,  2012; 
Jiguet,  2009; Moyer-Horner, Smith, & Belt,  2012). In response, 
there have been numerous studies highlighting the importance of 
collecting metadata, such as descriptors of the sampling process, 
as well as using suitable modelling approaches to achieve the full 
potential from data collected by observers (Bird et al., 2014; Isaac 
& Pocock, 2015; Johnston, Fink, Hochachka, & Kelling, 2017; Kéry 
et al., 2010; Ruiz-Gutierrez, Hooten, & Campbell Grant, 2016). Thus, 
a standardised sampling design in combination with appropriate an-
alytical methods enables citizen science data to be of similar quality 
as those collected by professionals (Brown & Williams, 2018; Engel & 
Voshell, 2002; Van Strien, Van Swaay, & Termaat, 2013).

Whilst many citizen science monitoring programmes follow 
a structured sampling design (Monitoring Häufige Brutvögel, UK 
National Plant Monitoring Scheme, Streamwatch Australia), others 

use a subjective and/or opportunistic selection of monitoring sites, 
such as FrogID or NABU Insektensommer. This can create a biased 
dataset for a number of reasons. If observers preferentially select 
monitoring sites with a high abundance of the target organism(s) 
(which is plausible if observers have prior knowledge of site abun-
dance or if we assume that low density populations are harder to 
detect; Fitzpatrick, Preisser, Ellison, & Elkinton,  2009), and if the 
population size is highly variable, these high-abundance sites will 
then likely revert back to their long-term mean population size, 
seemingly declining (‘Regression to the mean’, Palmer, 1993; Figure 
S1 in Appendix S1). Meanwhile, sites that were initially low abun-
dance are likely to have increased on average, but if low abundance 
sites are not among the set of monitored sites then these increases 
will not be captured in the monitoring programme. This issue of re-
gression-to-the-mean has been cited as a potentially major source 
for bias in monitoring programmes with opportunistic site selec-
tion (Boyd,  2013; Buckland & Johnston,  2017; Fournier, White, & 
Heard, 2019) and is particularly likely to create problems when only 
one species is monitored per site.

Another potential bias in single-species surveys could arise if 
populations exhibit low site fidelity (e.g. the movement of wetland 
birds between lakes; Ruete, Pärt, Berg, & Knape, 2017). Migration 
of individuals from a monitored site to an unmonitored site would 
result in an apparent decline in numbers since the increase at the 
unmonitored sites would not be measured (Buckland & Johnston, 
2017). Furthermore, in cases where the entire population moves to 
an unmonitored site, the observer may conclude that the population 
has abandoned the site permanently or become extinct, potentially 
causing them to stop monitoring. As a result, any subsequent reoc-
cupation of the site will be missed. Repeated visits within seasons 
can mitigate the problems of low site fidelity, but this is not practical 
for all monitoring programmes. Given the popularity of opportunis-
tic, single-species surveys for biodiversity monitoring, it is important 
to establish how subjective site selection, population dynamics and 
observer retention interact to bias data from single-species surveys.

Counts of individuals at opportunistically selected roost sites 
is a common approach used to monitor bat populations (Order: 
Chiroptera). Gaining large-scale, long-term information about bat 
populations is vital for conservation as they are one of the most 
diverse order of mammals (Russo & Jones, 2015), with more than 
20% of all mammal species being bats (Simmons, 2005). Bats pro-
vide valuable ecosystem services (Kunz, Braun de Torrez, Bauer, 
Lobova, & Fleming, 2011) and are important indicators of anthro-
pogenic impact on climate and habitat quality (Jones, Jacobs, Kunz, 
Willig, & Racey, 2009). Here we use data from the UK's National Bat 

species’ temporal variability and site fidelity to assess and account for the effects 
of biased site selection and observer retention.
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Monitoring Programme (NBMP) Roost Count, coordinated by the Bat 
Conservation Trust, to investigate the issues of biased site selection 
and observer retention. The Roost Count is one of four long-term 
monitoring surveys that form the NBMP (which also includes field 
surveys and counts at winter hibernacula, Table S1 in Appendix S2).

The NBMP Roost Count provides an ideal case study as it com-
prises single-species surveys with opportunistically selected mon-
itoring sites, covers species with varying levels of site fidelity and 
is undertaken voluntarily by citizen scientists who report that the 
presence of bats is an important factor in their desire to continue 
monitoring. Between 2013 and 2017 a third of NBMP Roost Count 
participants who stopped monitoring did so due to bats no longer 
being present (Boughey & Langton,  2017). In addition, abundance 
trends derived from the Roost Counts differ substantially when 
compared with trends derived from other methods, notably for the 
common and soprano pipistrelles Pipistrellus pipistrellus and P. pyg-
maeus (Table S2 in Appendix S2). Trends from NBMP surveys are 
designated as Official Statistics by the UK Government and used to 
inform policy, aid bat conservation and contribute to the UK bio-
diversity indicators (Bat Conservation Trust,  2018). Given the im-
portance of these data, a key concern is whether the discrepancy 
between roost count trends and those derived from other survey 
methods can be resolved by understanding how the data are af-
fected by bias caused by the interaction of population dynamics, site 
selection and observer behaviour.

We use data from the NBMP Roost Count to parameterise a sim-
ulation study using a ‘Virtual Ecologist’ approach where both data 
and observation processes are simulated (Zurell et  al.,  2010). This 
method has been shown to be suitable to evaluate and improve the 
design of monitoring programmes (Rhodes & Jonzén, 2011; Weiser 
et  al.,  2019; Weiser, Diffendorfer, Lopez-Hoffman, Semmens, & 
Thogmartin, 2020; White, 2019). Here we use it to test the general 
hypothesis that biased site selection and variable observer reten-
tion influence our ability to accurately detect abundance trends. 
We specifically investigate the effect of these biases on populations 
with different levels of temporal variability and site fidelity and ask 
whether these biases could explain the divergence of trends derived 
from NBMP roost counts and field surveys. We highlight circum-
stances that monitoring programmes need to be aware of, and ap-
proaches that could be employed, in order to avoid negatively biased 
abundance estimates.

2  | MATERIAL S AND METHODS

2.1 | Bias evaluation

To parameterise our simulation, which explores the effect of sys-
tematic biases on observed abundance trends, we first evaluated 
potential sources of bias within the NBMP Roost Count. We used 
data from 1997 up to and including 2017 for five bat species (P. pipis-
trellus roost counts: n = 9,357, P. pygmaeus Roost Counts: n = 5,873, 
Eptesicus serotinus Roost Counts: n  =  1,566, Myotis nattereri Roost  

Counts: n = 1,344, Rhinolophus hipposideros Roost Counts: n = 6,640). 
Starting in 1997, Roost Count surveys are carried out annually by 
observers who follow an established monitoring protocol. Counts 
are made at a self-selected summer roosting site inhabited by one 
of seven bat species (Table S1 in Appendix S2). Emerging bats are 
counted from 15 min prior to sunset on two different dates at least 
five days apart, one in each of two ten-day survey periods prior 
to parturition (R. hipposiderous counts start in late May, R. ferrum-
equinum counts take place in July, all other species are counted in  
June).

We first investigated whether Roost Count observers surveyed 
larger colonies (an association of individuals sharing one or several 
roosts) more often than would be expected by chance. We assessed 
this in two ways. Firstly, for P. pipistrellus and P. pygmaeus, we created 
separate abundance trends with initial colony sizes below and above 
their long-term mean species abundance. We excluded other species 
due to insufficient sample sizes. We split the data into colonies that 
were larger or smaller (in the first year of the survey) than the average 
colony size for each species. Abundance trends were then created 
by fitting a generalised additive model (GAM) with a Poisson error 
distribution, a site term and a smoothing term (Barlow et al., 2015). 
Degrees of freedom for the smoothing term were chosen accord-
ing to the default suggestion of 0.3 times the number of survey 
years (following Fewster, Buckland, Siriwardena, & Stephen, 2000). 
Population indices were derived from the fitted curve with 1999 as 
a baseline. Secondly, for five species, we compared the frequency 
distribution of colony sizes at the first and last year of the survey 
across all roost sites using two-sided Kolmogorov–Smirnov tests. 
If colonies are entering the NBMP at unusually large size, then we 
would expect the distribution of colony sizes to be different in the 
first and last years.

Roost abandonments (where the colony does not return to their 
summer roosting site after hibernation) may have a significant im-
pact on an observer's interest to continue monitoring. We quantified 
the yearly probability of roost abandonment within the NBMP Roost 
Count dataset, for the five species with a sufficient number of roost 
abandonments recorded (Table 1). Abandonments are also not nec-
essarily permanent as the bat colony may return in subsequent years 
(i.e. they represent temporary emigration of the population, rather 
than extinction events; Simon, Hüttenbügel, & Smit-Viergutz, 2004). 
For each roost, the yearly probability of roost abandonment Pa was 
defined as:

Occupancy change was calculated as the number of times the status 
of a roost changed from occupied to unoccupied for at least a year 
during the monitoring period (Table S3 in Appendix S2). Length of sur-
vey was defined as the number of years the roost was monitored (ex-
cluding roosts that were only monitored for 1 year). A value for each 
species was calculated by averaging the probability across all roost 
sites. Our estimate may also include a small number of true population 

Pa =
Occupancy Change

Length of Survey
.
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extinctions as well as roost abandonments. For two species with suffi-
cient data (P. pipistrellus: n = 26, P. pygmaeus: n = 15), we also calculated 
the average length of abandonment and the likelihood of reoccupation 
of a roost. The probability of reoccupation is likely an underestimate 
because observers often stop monitoring soon after a roost abandon-
ment, thus potentially missing a reoccupation. We also calculated the 
average number of years that observers continued monitoring after a 
roost abandonment across all species (n = 111). Some roosts were not 
occupied when monitoring first started and were excluded from these 
calculations as it was uncertain how long the roost had been aban-
doned for prior to monitoring.

2.2 | Simulation framework

We simulated observers monitoring bat roosts using a ‘Virtual 
Ecologist’ approach where both data and observation processes are 
simulated (Zurell et  al.,  2010; Figure  1). Our framework consisted 
of four components: (a) a population module simulating bat colony 
growth and movement, (b) an observation module simulating the 
process of roost count surveys, (c) an abundance trend analysis and 
(d) an assessment of the differences between the actual and ob-
served abundance trends.

(a) Population module—We simulated the population growth and 
movement of 400 virtual bat colonies over the course of 20 years 
(to match the number of years the NBMP Roost Count has been 
running; Barlow et al., 2015). The number of bat colonies was cho-
sen to mirror the approximate number (438) of NBMP Roost Count 
sites surveyed in more than one year during the NBMP Roost 
Count's first 3  years (1997–2000, Table S2 in Appendix  S2). We 
assume that the population dynamics of the 400 simulated col-
onies are independent from one another because, like the roosts 
monitored by the NBMP Roost Count, they comprise a small and 
independently selected subsample of the total bat population (see 

Mathews et  al.,  2018). We simulated initial colony sizes using a 
Poisson distribution with an average of 72 individuals, which 
is the average colony size of P. pipistrellus in the NBMP Roost 
Count data. The type of distribution selected to simulate initial 
colony sizes makes little difference to the overall simulations as 
the roosts, their colonies, and the biases imposed on them are in-
dependent from one another. We chose a simple Poisson distri-
bution to maintain a balance between generality, specificity and 
complexity within our models. During a simulated year, we multi-
plied each colony size with a growth rate selected from a normal 
distribution with an expected value of 1 and a standard deviation 
(SD) of either 0.1 or 0.01, which remained constant across years 
and colonies. The two standard deviations represent high and low 
temporal variability in colony size, respectively, and are consistent 
with bat population dynamics reported in the literature (Andrews, 
Crump, Harries, & Andrews, 2016; Chauvenet, Hutson, Smith, & 
Aegerter,  2014; Schaub, Gimenez, Sierro, & Arlettaz,  2007). We 
simulated roost abandonment by randomly selecting a given per-
centage of colonies which would abandon their roost at the end 
of a simulated year and establish a new roost. Based on the as-
sessment of roost abandonment rates within the NBMP Roost 
Counts (Table  1), the percentage of roost abandonment was ei-
ther 2% (low rate of roost abandonment: based on the mean rate 
of abandonment of all NBMP Roost Counts), or 10% (high rate of 
roost abandonment: based on the total mean rate plus one stan-
dard deviation). After one or more years of abandonment, each 
abandoned roost had a 70% chance of reoccupation by its original 
colony, which mirrors the likelihood of reoccupation that we cal-
culated for the NBMP Roost Counts. These populations respec-
tively created a dataset providing the ‘actual’ state of the virtual 
system with knowledge about all population dynamics, including 
abandonments and newly established roosts.

(b) Observation module—We also simulated the observation pro-
cess by subsampling the data created in the population module. We 

F I G U R E  1   Diagram of the ‘Virtual Ecologist’ approach where both data and observation process are simulated. The approach contains 
four main components: (a) a population module that simulates the growth and movement of virtual bat colonies—this creates the actual 
state of the virtual system, (b) an observation module which simulates the process of roost counts surveys—this creates the observed state 
of the virtual system; (c) a statistical model which creates abundance trends for both system states and (d) a comparison of the differences 
between the actual and observed abundances of the virtual system

TA B L E  1   An estimate of the mean yearly probability of a roost being abandoned by its colony. Observers record the status of the 
roost's occupancy each year that a roost is monitored. We counted the number of times that the status of an individual roost changed 
from occupied to unoccupied for at least a year and divided this by the total number of years that the roost was monitored. This was then 
averaged across the species

Species

Common 
pipistrelle 
(Pipistrellus 
pipistrellus)

Soprano  
pipistrelle 
(Pipistrellus 
pygmaeus)

Serotine  
(Eptesicus  
serotinus)

Natterer's  
(Myotis  
nattereri)

Lesser Horseshoe 
(Rhinolophus 
hipposideros) Total

No. roosts total 503 397 97 84 306 1,387

No. roosts abandoned 71 59 18 8 9 165

Mean yearly probability of 
roost abandonment (SD)

0.03 (0.093) 0.026 (0.075) 0.038 (0.096) 0.020 (0.074) 0.005 (0.041) 0.023 (0.079)
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used three different levels of biased site selection based on the size 
of the colony, here termed—‘Abundance Dependent Site Selection’ 
(ADSS)—to determine at which point in time virtual observers 
started monitoring. The monitoring of a proportion of sites would 
start at their respective population peak, while the rest would start 
at a random point in time. Under ‘High ADSS’ monitoring at 80% of 
roosts started when the colony was at its population peak, under 
‘Medium ADSS’ this was 50% of roosts and under ‘Low ADSS’ this 
was 20% of roosts. Roosts would then receive a virtual survey visit 
each year. Monitoring could only cease in response to roost aban-
donment; if a colony abandoned its roost and did not return within 
a set period of time (between 1 and 3 years), the virtual observer 
would cease monitoring. The time period was chosen based on the 
time period that NBMP Roost Count observers typically continue 
to monitor after a roost abandonment. In the simulation, the length 
of time assigned to an observer (termed here ‘retention’) came from 
a binomial distribution b(3, P), where the probability P was varied 
(‘Low observer retention’: p  =  0.2; ‘Medium observer retention’: 
p = 0.5, ‘High observer retention’: p = 0.8; Figure S2 in Appendix S1). 
These datasets provided the ‘observed’ state of the virtual system 
where knowledge about population dynamics was subject to ADSS 
and observer retention.

(c and d) Trend analysis and assessment—Data of four different 
population scenarios were simulated, for both combinations of pop-
ulation variation (high and low) and roost abandonment (high and 
low). Each of these datasets created by the population module was 
subsampled with high, medium and low ADSS. Then each of the sub-
sets was subsampled by high, medium and low observer retention 
to create the observation model datasets (Data flow: Figure S3 in 
Appendix S1). This was repeated 1,000 times for each of the four 
population models. Following Barlow et al. (2015), abundance trends 
for all datasets were produced by fitting a GAM to each dataset with 
a Poisson error distribution, a site term to allow for differences in 

relative abundance between sites and a smoothing term to model the 
trend over time. Degrees of freedom for the smoothing term were 
chosen according to the default suggestion of 0.3 times the number 
of survey years (following Fewster et al., 2000). Population indices 
were derived from the fitted curve, taking the base year to be 1. To 
measure the difference between the actual and observed trends, the 
root mean square error (RMSE) was calculated. All analyses and sim-
ulations were carried out using r 3.5.2 (R Core Team, 2018).

3  | RESULTS

3.1 | Can biases in the NBMP Roost Count be 
detected?

We find no evidence that NBMP Roost Count observers tend to 
select roosts that are above their long-term mean abundance. The 
abundance trends of colonies that were initially either below or 
above their species long-term mean abundance did not differ in 
trend direction for either pipistrelle species (Figure  2), and there 
was no significant difference in the frequency distribution of colony 
size at the start and end of their respective time series (Table S4 in 
Appendix S2). We find that there is a high risk that observers will 
cease monitoring in response to roost abandonment and therefore 
miss subsequent reoccupations. The highest mean yearly probability 
PA of a roost being abandoned for at least 1 year was found in E. 
serotinus, while R. hipposideros had the lowest probability (Table 1). 
Roost reoccupation in P. pipistrellus was recorded after an average 
of 1.5 years (SD = 0.9) with a probability of 0.73 for a roost to be 
reoccupied after one year of abandonment. P. pygmaeus reoccupied 
their roost after an average of 1.3 years (SD = 0.5), also with a prob-
ability of 0.73 for a roost to be reoccupied after one year of aban-
donment. Naturally, it is possible that roosts were reoccupied after 

F I G U R E  2   Comparison of population 
trends of Pipistrellus pipistrellus and P. 
pygmaeus divided by the size of the roost 
in its first year of monitoring, i.e. above 
(yellow) or below (violet) the mean size 
of roosts in their first year of monitoring. 
Graph shows the estimated trend from 
GAMs based on an index of 1 at base 
year 1999
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longer periods of time at which point observers had already stopped 
surveying, thus not recording reoccupation. The mean number of 
years observers continued to monitor after a roost abandonment, 
regardless of species, was calculated to be 1.55 years (SD = 0.96), 
thus potentially missing reoccupations of roosts.

3.2 | Do biased site selection and observer 
retention lead to biased observed trends in a 
simulated dataset?

The observed mean trends across our simulations of the four differ-
ent population modules show a population decline and do not match 
the actual simulated population trends which are stable (Figure 3). 
The magnitude of decline observed is by far the lowest in the ‘Low 
variation  +  Low roost abandonment’ population module. Taking 
the trends produced by the ‘ADSS med + observer retention med’ 
observation module, the Low variation + Low roost abandonment’ 
population module shows a decline of 9.1% by year 20 the ‘Low vari-
ation + High roost abandonment’ population module shows a decline 
of 27.8% by year 20 and the ‘High variation + Low roost abandon-
ment’ module shows a decline of 34.2% by year 20. The strongest 
decline of 48.2% by year 20 can be seen in the ‘High variation + High 
roost abandonment’ population module. The magnitude of decline 
varies between the other observation modules (combinations of 
low/high ADSS and low/high observer retention) but follows a simi-
lar pattern to the ‘ADSS med + observer retention med’ observation 
module (Figure 3; see Figure S4 in Appendix S1 for full results).

The RMSE provides a more detailed insight into these simulated 
biases (Figure 4). The RMSE of the observation modules of the ‘Low 
variation + Low roost abandonment’ population module are lowest 
overall compared to those of the other population modules. Within 
the ‘Low variation +  Low roost abandonment’ population module, 

varying observer ‘retention’ level has only a small impact on bias and 
the level of ‘ADSS’ has virtually none. A similar pattern can be seen 
for the observation modules of the ‘Low variation + High roost aban-
donment’ population modules, but the effect of observer ‘retention’ 
level is slightly higher. The RMSE of all observation modules of the 
‘High variation + Low roost abandonment’ population module show 
small differences among the observer ‘retention’ levels but larger dif-
ferences between ‘ADSS’ levels. Here, the lowest RMSE were found 
in the ‘Low ADSS’ modules. Overall, the ranges of RMSE of this pop-
ulation module are broader than those of the ‘Low variation + Low 
roost abandonment’ module. The RMSE of the observation modules 
of the ‘High variation + High roost abandonment’ population mod-
ule are the highest overall compared to the other population mod-
ules. Within this population module, there are sizeable differences in 
RMSE of the observer ‘retention’ levels and ‘ADSS’ levels, and over-
lap between RMSE of difference observation module combinations, 
e.g. the RMSE of ‘Low observer retention + Low ADSS’ is similar to 
that of ‘High observer retention + Medium ADSS’.

4  | DISCUSSION

Our findings suggest that trends derived from NBMP Roost Count 
surveys (the survey we use to inform our simulation) are negatively 
biased as a result of the interaction between low site fidelity in 
some species and observer retention. The magnitude of this nega-
tive bias varies between species depending on their degree of site 
fidelity; species with low site fidelity are more likely to be affected. 
We found that four of our five investigated species (P. pipistrellus, P. 
pygmaeus, E. serotinus, M. nattereri) displayed relatively low levels of 
site fidelity. Thus, trends for these four species are likely to be nega-
tively biased to a greater degree. Rhinolohphus hipposiderous showed 
a much higher level of site fidelity, so for this species, the impact of 

F I G U R E  3   The mean population trends 
of 1,000 simulations for each of the four 
population modules and one observation 
module. Population modules are ‘Low 
variation + Low roost abandonment’, ‘Low 
variation + High roost abandonment’, 
‘High variation + Low roost 
abandonment’, ‘High variation + Low 
roost abandonment’. Graphs show the 
estimated trend from GAMs based on 
an index of 1 at base year 1. Green 
line indicates the actual population 
trend, while the other colours show the 
observed, biased population trends. 
The trends are biased through medium 
abundance dependent site selection 
(ADSS) and medium observer retention
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this negative bias will be reduced. Rhinolophus ferrumequinum and 
Plecotus auritus are also monitored by the NBMP Roost Count, but 
the site fidelity of these species could not be assessed due to small 
sample sizes. Further research is needed to understand the most ap-
propriate way to correct this bias, for example regarding our abil-
ity to statistically distinguish between a true site extinction and a 
temporary roost abandonment. Overall, given the simplifications of 
population dynamics and species behaviour in our simulation, future 
studies should also focus on increasing realism.

A priority for NBMP would be to communicate clearly to observers 
the value of continued monitoring at a seemingly abandoned roost site, 
especially for species with low site fidelity. Unlike in the simulations, 
abundance-dependent site selection and the issue of ‘regression to 
the mean’ appear unlikely to be a major source of bias in NBMP Roost 
Count trends, since we found no difference in the frequency distribu-
tions of the populations of any of the species at the start and end of 
their respective time series, and that trends did not differ between high 
and low abundance sites. While this does not prove that sites were  
selected in an unbiased way, it does highlight that abundance depen-
dent site selection may not be problematic if inter-annual population 
fluctuations are small (Fournier et al., 2019). We recorded instances of 
a bat colony reoccupying an abandoned roost for all species studied 
here. Reoccupation was most frequently observed in the Pipistrellus 
species; for example, in over a third of the recorded instances of aban-
donment P. pipistrellus subsequently reoccupied the roost, and this 
is likely an underestimate due to the tendency of observers to cease 
monitoring after an abandonment. This emphasizes the importance 
of the roost to the colony, even if it is not currently occupied.

It is important to note that the behaviour of roost abandonment 
and reoccupation is very variable, depending on species and study 

area. A colony's site fidelity is influenced by a number of factors such 
as the relative abundance and longevity of roost sites (Kunz, 1982; 
Lewis, 1995). Species that commonly roost in permanent structures 
such as buildings tend to be more loyal to their roosting site, mean-
ing they are more likely to reoccupy a site after hibernation (Simon 
et al., 2004; Thompson, 1992). Species roosting in ephemeral struc-
tures such as trees tend to be less loyal and may form ‘fission-fusion’ 
societies (Kerth, 2008; Kerth & Konig, 1999; but see August, Nunn, 
Fensome, Linton, & Mathews, 2014) and may not return to a roosting 
site after hibernation (Kunz & Lumsden, 2003; Lewis, 1995), which is 
likely a response to loss of roosting sites (Bondo et al., 2019). Some 
bat species also move temporarily between roost sites as individu-
als or small groups. When monitoring a known roost, these short-
term movements (days, weeks) of individuals may lead to under- or 
overestimation of colony sizes. Roost monitoring schemes therefore 
often employ repeated counts of which the peak count is used in 
analysis.

Several possible reasons for the behaviour of moving between 
roost sites have been proposed: Reaction to disturbance (Kunz, 1982), 
avoidance of ectoparasites (Bartonička & Růžičková, 2013; Reckardt 
& Kerth,  2007), predator avoidance (Lausen & Barclay,  2002) 
or changes in microclimate (Bartonička & Rehak,  2007; Kerth, 
Weissmann, & König, 2001). Movements between maternity roosts 
appear to be lowest during the lactation period for some species, 
such as P. pipistrellus (Simon et al., 2004) or Barbastella barbastellus 
(Russo, Cistrone, & Jones,  2005), which is the period sampled by 
the NBMP Roost Count. Pipistrellus pygmaeus have also been ob-
served to move between roosts (Bartonička, Bielik, & Řehák, 2008; 
Ryan, 2016) but may do so less frequently than P. pipistrellus during 
most of the reproductive season (Davidson-Watts & Jones, 2006). 

F I G U R E  4   Root mean square errors (RMSE) measuring the differences between the actual and observed trends of 1,000 repeated 
simulations for all module combinations. Population modules are ‘Low variation + Low roost abandonment’, ‘Low variation + High roost 
abandonment’, ‘High variation + Low roost abandonment’, ‘High variation + Low roost abandonment’. The observation modules could be 
biased by three levels of abundance dependent site selection (ADSS) and three levels of observer retention
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While it is important to take account of the error associated with 
individuals or small groups of bats moving between roosts, it is not 
clear that this behaviour leads to systematic bias within roost moni-
toring schemes, and was therefore not included in this study.

Our simulation of a virtual citizen science monitoring programme 
has shown that biased site selection and observer retention influ-
ence the ability to accurately detect abundance trends in popula-
tions with various degrees of temporal variability and site fidelity. 
Biased site selection, when sites enter the programme at high abun-
dance, caused the biggest differences between actual and observed 
trends in populations where inter-annual variation in abundance was 
high, due to the population reverting back to its long-term mean 
(regression-to-the-mean problem; Buckland & Johnston,  2017; 
Palmer,  1993). Observer retention, that is the likelihood to con-
tinue monitoring after a site had been temporarily abandoned by 
the population, mostly affected the differences between actual and 
observed trends in populations with low site fidelity. These results 
have shown that both biased site selection and observer retention 
can negatively bias the observed population trends, but that the 
magnitude of bias is dependent on temporal variability in abundance 
and the site fidelity of the species.

Overall, our simulation has revealed several synergistic effects 
that monitoring programmes should address to improve the reli-
ability of trend estimates. Firstly, there is a strong interaction be-
tween roost abandonment and observer retention: the combination 
of high roost abandonment with low observer retention produced 
the most biased trends in our simulation. This bias occurs because 
our virtual observers ceased monitoring following a temporary em-
igration event, assuming that the population had gone extinct. This 
extreme bias is likely to be restricted to single-species monitoring 
programmes since the probability that multiple species will tempo-
rarily emigrate at the same time is likely to decrease exponentially 
with the number of species monitored. A similar effect on observer 
retention may arise if detectability of a species is low, which is de-
termined by a number of factors like detection method and survey 
effort (Guillera-Arroita, 2017). Our result means that single-species 
programmes should pay particular attention to observer retention, 
and explore ways to avoid this bias. One possibility would be to 
periodically revisit apparently abandoned sites to record potential 
reoccupations.

Secondly, programmes that allow participants to select monitor-
ing sites should assess the temporal variability in the local abundance 
of their target species, to evaluate the potential for regression- 
to-the-mean problems. We found that regression-to-the-mean can 
be an important source of negative bias when two conditions are ful-
filled. On its own, abundance dependent site selection is not a suffi-
cient condition for this bias to occur. Negative biases emerge only if 
the inter-annual variability in population size is large compared with 
the variation between populations. Thus, monitoring programmes 
that use non-random site selection have a potential for their data to 
be biased, depending on the temporal variability of their monitored 
populations. Consequently, there is a great need for the develop-
ment and testing of statistical methods to address this type of bias 

(Fournier et al., 2019). In the meantime, programmes should be en-
couraged to collect and report metadata (Bird et al., 2014; Tulloch & 
Szabo, 2012) which records the observers’ site selection process and 
reasons for stopping monitoring.

Assessing the accuracy and reliability of data collected in citi-
zen science monitoring programmes is of great importance for 
ecologists, conservationists and policy-makers alike. It is now well-
known that citizen science monitoring programmes benefit from 
standardised sampling designs and adequate observer training. 
Didham et al.  (2020) have identified seven potential challenges for 
time series trends derived from citizen science data, which include 
several of the biases we mention here (such as regression-to-the-
mean and abundance dependent site selection). They note short-
comings in our ability to quantifying the collective impact of these 
biases. Our simulations demonstrate the possibility of measuring the 
synergistic effects of several of these biases. Overall, our study has 
highlighted the need for monitoring programmes to also be aware 
of their study species’ temporal variability and site fidelity in order 
to assess and account for the effects of biased site selection and 
observer retention.
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