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Abstract

The condition monitoring of slow speed roller bearings has been investigated. A

test-rig was designed and constructed to enable detailed measurement of horizon-

tal rotating bearing acceleration forces in both the axial and radial plane in the

speed range of 0.5 to 10 revolutions per minute. These accelerations were carried

out at both sonic and ultrasonic sampling rates to establish which technique is the

most appropriate. Overall bearing displacement and surface temperatures were

measured. Strains generated in the stress frame by the loading of the bearing were

monitored along with the power used to drive the test-rig. Measurements were

obtained from two full-size slew bearings operating in Bluescope Steel Limited.

One bearing operated at 4.3 rpm continuously in the vertical plane. The other

slew bearing operated intermittently and with partial rotation at approximately

1 rpm in the horizontal plane. During this project, the concepts of Symmetry

and Stability have been developed as a fundamental approach to information

analysis. A considerable number of novel signal processing methods including;

Kurtosis/Correlation dimension plots, Symmetry State Space (SSS), Symmetric

Wave Decomposition (SWD), Compressed Eigenvector Deconvolution Spectral

Analysis (CEDSA), Ring Matrix Fault Values (RMFV) have been developed.

These methods all utilize symmetry, antisymmetry, symmetry ’breaking’, stabil-

ity and enable the assessment of which sensor methodology combination is best

for the situation considered. It will be shown, among other things, that ultra-

sonic measurements using sensors designed for Acoustic Emission (AE) permit

an implementation of an early warning system for slow speed bearings. This will

enable the operator to carry the minimum inventory in bearings and to plan shut

downs without incurring additional costs from unplanned outages resulting from

failed bearings.
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Notation and Glossary

0 Zero vector.

a A rank 1 group or vector.

>
a A left-to-right rank 1 group or vector.

<
a A reverse (right-to-left) rank 1 group or vector.

>+
a Symmetry of original time vector a where time increases from

t (start) to T (finish).

>−
a Anti-symmetry of original time vector a where time increases

from t (start) to T (finish).

b Another rank 1 group or vector.

>

b Another left-to-right rank 1 group or vector.

<

b Another reverse (right-to-left) rank 1 group or vector.

>+

b Symmetry of original time vector b where time decreases from

t (start) to T (finish).

>−
b Anti-symmetry of original time vector b where time decreases

from t (start) to T (finish).

cn Number of compression steps.

C Compression operator.

CL Local compression operator.

Cψ Continuous symmetry breaking operator.

C(l) Correlation dimension of a vector containing l elements.

de Euclidean distance.
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xv

dx Distance in the x coordinate.

dy Distance in the y coordinate.

D Downsampling operator.

efs Effective sampling rate.

ek Cumulative energy for the kth sub-vector/wave.

etc A rank 1 group or vector function of etc.

>

etc Original vector etc where etc proceeds from etci (start) to etcn

(finish).

<

etc Original vector etc where etc proceeds from etcn (finish) to

etci (start).

fs Original sampling rate.

fspd Computational speed-up factor that can result from compress-

ing data.

E Total energy for a group of waves.

H Entropy of a group of waves.

i Index to an element of an array/vector or matrix.

I(ωωω) Imaginary number vector for frequencies.

j Complex number =
√
−1. Is also used as an index to an

element of an array/vector or matrix.

k Index to an element of an array/vector or matrix.

K(l) Kurtosis of a vector containing l elements.

len Number of items in the group/set/vector.

nsym Reference pointer to the mid-point of a dataset.

ℵ Vector normal resulting from a vector product.

o ’of’ operator. For example, the symmetry of antisymmetry.

This is not the algebraic multiply. Similar to recursion and/or

iteration.
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pk Energy probability for the kth sub-vector/wave.

p(ωωω) Power vector for frequencies.

p A power vector where frequency increases from ω0 (lowest) to

ωn (highest).

>
p A power vector where frequency increases from ω0 (lowest) to

ωn (highest).

<
p A power vector where frequency reverses from ωn (lowest) to

ω0 (highest).

>+
p Symmetry of original power vector p where frequency increases

from ω0 (lowest) to ωn (highest).

<+
p Symmetry of original power vector p where frequency de-

creases from ωn (highest) to ω0 (lowest).

>−
p Anti-symmetry of original power vector p where frequency in-

creases from ω0 (lowest) to ωn (highest).

<−
p Anti-symmetry of original power vector p where frequency de-

creases from ωn (highest) to ω0 (lowest).

Q A quadrant of a matrix.

rk kth sub-vector obtained from symmetric wave decomposition

(SWD).

R(ωωω) Real number vector for frequencies.

S Any two dimensional state space.

SSSz A symmetric/antisymmetric state space on domain z of a vec-

tor x.

t A time vector where time increases from t (start) to T (finish).

>

t A time vector where time increases from t (start) to T (finish).

<

t A time vector where time reverses from T (start) to t (finish).

>+

t Symmetry of original time vector t where time increases from

t (start) to T (finish).
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<+

t Symmetry of original time vector t where time decreases from

T (start) to t (finish).

>−
t Anti-symmetry of original time vector t where time increases

from t (start) to T (finish).

<−
t Anti-symmetry of original time vector t where time decreases

from T (start) to t (finish).

>+Ψ

t Broken symmetry of original time vector t where time in-

creases from t (start) to T (finish).

<+Ψ

t Broken symmetry of original time vector t where time de-

creases from T (start) to t (finish).

>−Ψ

t Broken anti-symmetry of original time vector t where time

increases from t (start) to T (finish).

<−Ψ

t Broken anti-symmetry of original time vector t where time

decreases from T (start) to t (finish).

>−ΨC

t Broken anti-symmetry of original vector t and compressed it

where time increases from t (start) to T (finish).

<−ΨC

t Broken anti-symmetry of original Vector t and compressed it

where time decreases from T (start) to t (finish).

u A rank 1 group or vector function of u.

>
u Original vector u where u proceeds from ui (start) to un (fin-

ish).

<
u Original vector u where u proceeds from un (finish) to ui

(start).

U Up-sampling operator.

v A rank 1 group or vector function of v.

>
v Original vector v where v proceeds from vi (start) to vn (fin-

ish).

<
v Original vector v where v proceeds from vn (finish) to vi

(start).
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w A rank 1 group or vector function of w.

>
w Original vector w where w proceeds from wi (start) to wn

(finish).

<
w Original vector w where w proceeds from wn (finish) to wi

(start).

x Any rank 1 group or vector.

0
x Upsampled ring vector. The stretched-out/unraveled ring ma-

trix.

n
x Vector x at step n where time increases from t start to T .

n−1
x Vector x at step n− 1 where time increases from t start to T .

>
x Original vector x where time increases from t (start) to T

(finish).

<
x Original vector x where time decreases from T (start) to t

(finish).

>+
x Symmetry of original vector x where time increases from t

(start) to T (finish).

<+
x Symmetry of original Vector x where time decreases from T

(start) to t (finish).

>−
x Anti-symmetry of original vector x where time increases from

t (start) to T (finish).

<−
x Anti-symmetry of original Vector x where time decreases from

T (start) to t (finish).

>+Ψ
x Broken symmetry of original vector x where time increases

from t (start) to T (finish).

<+Ψ
x Broken symmetry of original Vector x where time decreases

from T (start) to t (finish).

>−Ψ
x Broken anti-symmetry of original vector x where time increases

from t (start) to T (finish).

<−Ψ
x Broken anti-symmetry of original Vector x where time de-

creases from T (start) to t (finish).
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>−ΨC
x Broken anti-symmetry of original vector x and compressed it

where time increases from t (start) to T (finish).

<−ΨC
x Broken anti-symmetry of original Vector x and compressed it

where time decreases from T (start) to t (finish).

X(ω) The Fourier transform of the time waveform, x.

X Any rank 2 group or Matrix.

<

X Original Matrix X where time decreases from T (start) to t

(finish).

>h+

X Row symmetry of original matrix X where index increases

from i (start) to j (finish).

<h+

X Row symmetry of original matrix X where index decreases

from j (start) to i (finish).

>h−
X Row anti-symmetry of original matrix X where index increases

from i (start) to j (finish).

<h−
X Row anti-symmetry of original matrix X where index decreases

from j (start) to i (finish).

>v+

X Column symmetry of original matrix X where index increases

from i (start) to j (finish).

<v+

X Column symmetry of original matrix X where index decreases

from j (start) to i (finish).

>v−
X Column anti-symmetry of original matrix X where index in-

creases from i (start) to j (finish).

<v−
X Column anti-symmetry of original matrix X where index de-

creases from j (start) to i (finish).

0>

X Ring matrix of original vector x where time increases from t

(start) to T (finish).

0<

X Ring matrix of original vector x where time decreases from T

(start) to t (finish).
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0
>

X Ring matrix formed from original vector x where time in-

creases from t (start) to T (finish).

0
<

X Ring matrix formed from original vector x where time de-

creases from T (start) to t (finish).

>v+h+

X Column and row symmetry of original matrix X where index

increases from i (start) to j (finish).

>v−h+
X Column anti-symmetry and row symmetry of original matrix

X where index increases from i (start) to j (finish).

>v+h−
X Column symmetry and row anti-symmetry of original matrix

X where index decreases from i (start) to j (finish).

>v−h−
X Column anti-symmetry and row anti-symmetry of original ma-

trix X where index decreases from i (start) to j (finish).

>h+v+

X Row and column symmetry of original matrix X where index

increases from i (start) to j (finish).

>h−v+
X Row anti-symmetry and column symmetry of original matrix

X where index increases from i (start) to j (finish).

>h+v−
X Row symmetry and column anti-symmetry of original matrix

X where index decreases from i (start) to j (finish).

>h−v−
X Row anti-symmetry and column anti-symmetry of original ma-

trix X where index decreases from i (start) to j (finish).

<h−v−
X Row anti-symmetry and column anti-symmetry of original ma-

trix X where index decreases from j (start) to i (finish).

0>h+v+

X Row and column symmetry of Ring matrix formed from origi-

nal vector x where index increases from i (start) to j (finish).

0>h−v+
X Row anti-symmetry and column symmetry of Ring matrix

formed from original vector x where index increases from i

(start) to j (finish).
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0>h+v−
X Row symmetry and column anti-symmetry of Ring matrix

formed from original vector x where index decreases from i

(start) to j (finish).

0>h−v−
X Row anti-symmetry and column anti-symmetry of Ring matrix

formed from original vector x where index decreases from i

(start) to j (finish).

y A rank 1 group or vector function of x.

>
y Original vector y where x proceeds from xi (start) to xn (fin-

ish).

<
y Original vector y where x proceeds from xn (finish) to xi

(start).

>+
y Symmetry of original vector y where time increases from xi

(start) to xn (finish).

>−
y Antisymmetry of original vector y where time increases from

xi (start) to xn (finish).

ð A designed direction vector containing ones and zeros. For

example, one for right and zero for left.

ψC A compression operator. A particular form of global symmetry

breaking.

ψG Represents a global broken symmetry.

ψL Represents a locally broken symmetry.

ω A frequency.

ωωω Vector of frequencies, ω.

⊂i Reduced subset, i, of
>+
x and/or

>−
x .

�
x Side shifting operator on vector x.

∆ Determinant of a matrix.

λ An eigenvalue.

+ A shorthand representation of a symmetry.
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- A shorthand representation of an antisymmetry.

Glossary

The glossary has been constructed by the author and from the following

sources:

• J. Antoni, F. Bonnardot, A. Raad and M. El Badaoui, Cyclostationary

modeling of rotating machine vibration signals, Mechanical Systems and

Signal Processing 18 (2004) 1285-1314

• Holger Kantz, Thomas Schreiber, Nonlinear Time series Analysis , Cam-

bridge University Press, 1997, ISBN 0 521 65387 8.

• A.I.Khinchin, Mathematical Foundations of Information Theory, Dover,ISBN

0-486-60434-9. pp.1-13

• Bart Kosco, Noise, Viking Penguin, 2006, ISBN 0-670-03495-9.

• Roger Penrose, The Road to Reality. A complete guide to the Laws of the

Universe, Vintage Books, 2005, ISBN 978 0 099 44068 0.

• Clifford A. Pickover, Computers Pattern Chaos and Beauty, St Martins

Press, 1991, ISBN 0 312 06179 X.

• Fractal Horizons. Clifford A. Pickover (ed), St. Martins’ Press, 1996, ISBN

0 312 12599 2.

• Statistica Volume 1: General conventions & Statistics 1, pp 1675 Copyright

c© Statsoft 1995.

• Ian Stewart, From Here to Infinity. A Guide to Todays’s Mathematics,

Oxford University Press, 1996, ISBN 0-19-283202-6.

• http://eu.wikipedia.org/wiki/Clifford algebra.

• http://eu.wikipedia.org/wiki/Raleigh wave.

ADC Analog-to-digital converter. Electronic device that trans-

forms continuous signals into signals with discrete val-

ues.

Affine transformation The sum of a linear transformation and a translation.

In Euclidean spaces, this is matrix multiplication plus

a vector addition.
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Antisymmetric A system (A,B) is antisymmetric if A = −B. see

Symmetry.

Attractor An object in state space to which trajectories are even-

tually attracted. A geometrical form in phase space

showing the characteristics of the dynamic system.

Autocorrelation Describes the general dependence of the values of the

data at one time on the values at another time.

Bilateral symmetry The property of having two similar sides. Each side is

a ’mirror image’ of the other.

Box-counting dimension See Dimension, box-counting.

CEDSA Compressed Eigenvector Deconvolution Spectral Analy-

sis. Short for CEDCDFFT.

CECDFFT Compressed Eigenvector Deconvolution Compressed Dis-

crete Fast Fourier Transform. A novel method for ob-

taining the power spectra of any signal or data. The

method incorporates up sampling via translational sym-

metry, down sampling for sampling frequency reduc-

tion, compression by global symmetry breaking of both

time/precedence and magnitude, translational symme-

try to enforce invariance and the solution of the result-

ing Ring matrix as an eigen-problem to produce the

associated eigen-vectors that require the compressed,

discrete, fast Fourier Transform to recover the spectra

of each eigenvector.

CDFFT Compressed discrete fast fourier transform. A novel

method for determining the frequency spectra of a

symmetrically compressed time series.

Chaos Irregular, unpredictable behaviour of a deterministic

nonlinear dynamical system caused by sensitivity to

initial conditions (see SDIC ). Some researchers believe

that chaos theory offers a mathematical framework for

understanding much of the noise and turbulence that

is seen in experimental science.
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Clifford algebras Some times referred to as Geometric Algebra. In math-

ematics, Clifford Algebras are a type of associative al-

gebra. They can be thought of of as one of the possible

generalisations of the complex numbers and quater-

nions. The elements of a Clifford algebra constitute a

2n-dimensional algebra over the reals, in the sense that

quaternions form a 4-dimensional vector space over the

reals, because there are just four independent ’basis’

quantities 1, i, j,k that span the entire space of quater-

nions.

Cyclostationary Is a stochastic process that exhibits some hidden peri-

odicities in its structure. Formally, a stochastic process

x(t)t∈R is said to be strict-sense cyclostationary with

cycle T if its joint probability density function,

px(x1, · · · , xn; t1, · · · , tn) is periodic in t with period

T , that is, if

px(x1, · · · , xn; t1, · · · , tn) = px(x1, · · · , xn; t1+T, · · · , tn+
T ). In this equation t stands for a generic variable

which is not necessarily time.

Cyclostationarity Is a property that characterises stochastic processes

whose statistical properties vary with respect to some

generic variable. By definition, this embodies a class

of non-stationary stochastic processes, with stationary

and deterministic periodic processes as special cases.

Diffusion The process by which fluids and solids mix intimately

with one another due to the kinetic motions of ther-

mally agitated particles such as atoms, molecules, or

group of molecules.

Dimension, box-counting Consider a geometrical objectA in n-dimensional space.

Denote byN(ε) the minimum number of n-dimensional

cubes of side length ε needed to contain A. The box-

counting dimension of A is limε→0
log(N(ε))

log( 1
ε
)

.

Dimension, correlation A measure of the probability that two points in a frac-

tal set are near one another.

Dimension, fractal A measure of a fractal’s space-filling properties.
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Downsampling Is a process that involves selecting new data, as a sub-

set of the original data at, successive, fixed intervals.

With data sampled at a fixed rate, fs, downsampling,

m, reduces the effective sampling rate, feff = fs

m
.

Embedding A method of accessing the attractor of a dynamical

system via a time series generated by that system.

Embedding space The space in which an attractor resides when recon-

structed from time delay variables in which each point

in the time series is plotted versus a number of its

preceding points.

EMD Empirical Mode Decomposition. An empirical method

for hierarchically decomposing a signal into many sub-

components via a sifting process.

Entropy Every finite scheme describes a state of uncertainty.

Entropy, H(p), is a measure of the uncertainty of a fi-

nite scheme. Given a set of probabilities,(p1, p2, · · · , pn),
the entropy, H(p1, p2, · · · , pn) = −

∑n
k=1 pk log pk.

Fixed point A point that is left unchanged by the evolution of a

dynamical system. A point that is invariant under a

mapping.

Fractals Objects (or sets of points, or curves, or patterns) which

exhibit increasing detail (”‘bumpiness”’) with increas-

ing magnification. Many fractals are self-similar.

Fundamental frequency The lowest frequency component of a complex signal.

Gaussian white noise White noise that is subsequently altered so that it has

a bell-shaped distribution of values. Gaussian noise

is often approximated by summing random numbers.

The following formula generates a Gaussian distribu-

tion: r =
√
− log(r1) cos(2πr2)σ + µ, where r1and r2

are two random numbers from a [0,1] uniform distrib-

ution, and σ and µ are the desired standard deviation

and mean of the Gaussian distribution.

IGC Independent Geometric Component is a structure that

contributes to the overall structural response to an ex-

citation. For example, a ball in a roller bearing.
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Lyapunov exponent A measure of the average rate of exponential sepa-

ration of nearby trajectories in a dynamical system.

The Lyapunov exponent also can be thought of as a

quantity, sometimes represented by the Greek letter λ,

used to characterise the divergence of trajectories in a

chaotic flow.

Mahalanobis distance The Mahalanobis distance is the distance of a case

from the centroid in the multi-dimensional space, de-

fined by the correlated independent variables (if the

independent variables are uncorrelated, it is the same

as the simple Euclidean distance). This measure pro-

vides an indication of whether or not an observation

is an outlier with respect to the independent variable

values.

Moment The weighted average of the variate x to a specified

power. The nth moment of distribution P (x) is then

< xn >=
∫∞
−∞ xnP (x)dx. The mean value is given by

n = 1. The second moment is given by n = 2, and so

on.

Neutral state The neutral state occurs when the symmetric, anti-

symmetric pair are both zero.

Phase space Given a flow x(t) = (x1(t), · · · , xn(t)) describing a so-

lution to a differential equation in n-dimensional Euclid-

ean space, phase space is the space of all the vec-

tors of the form (x1(t), ˙x1(t), · · · , xn(t), ˙xn(t)) in 2n-

dimensional Euclidean space.

Probability density The probability that an event in an interval (x, x+dx)

occurs is given by P (x)dx, where P (x) is the proba-

bility density and the derivative of F (x) with respect

to x.

Quaternion The general quaternion is defined as q = t+ui+vj+wk

where t, u, v and w are real numbers and i2 = j2 =

k2 = ijk = −1.

Rayleigh waves Rayleigh waves are a type of elastic surface wave that

travel on solids. They are produced on the Earth
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by earthquakes, in which case they are also known

as ”ground roll”, or by other sources of seismic en-

ergy such as an explosion or even a sledgehammer im-

pact. They are also produced in materials by acoustic

transducers, and are used in non-destructive testing

for detecting defects. When guided in layers they are

referred to as Rayleigh-Lamb waves, Lamb waves or

generalized Rayleigh waves.

Recursive An object is said to be recursive if it partially consists

of or is defined in terms of itself. A recursive operation

invokes itself as an intermediate operation.

Renormalisation A process in which some property of a map is rescaled

so as to reproduce the same map.

Ring matrix Is a novel time invariant matrix of a signal or invari-

ant matrix of a set of data. It is derived from the

translational symmetry of the original signal or data.

RMFV Ring matrix fault values. Is a novel method for pro-

ducing the power at selected frequencies contained in

a dataset. The method does not involve the Fourier

transform.

Self-similar A shape made up of copies of itself, each similar to

(though smaller than) the original. Self-similarity can

be thought of as the property of looking the same un-

der repeated magnifications.

SDIC Sensitive dependence on initial conditions. The prop-

erty of chaotic dynamics by which the distance be-

tween nearby points increases (initially) as the dynam-

ics proceed.

Spectogram Some times known as spectrogram. Is a graphic repre-

sentation of the time variability of the power spectra

in a timeseries. See STFFT.

SNR Signal to noise ratio. A measure of the degradation of

a signal when, for example, represented by a model. In

engineering SNR is a term for the power ratio between

a signal and the background noise. SNR =
Psignal

Pnoise
=
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(
Asignal

Anoise
)2 where the power, P , is the average power

and A is the root mean square (RMS) amplitude. In

decibel terms (dB),

SNRdB = 20 log10(
Asignal

Anoise
) = 20 log10(

meanvalue
standarddeviation

).

Sifting Is a process that allows the separable components of a

system to pass (or be separated) through a filter/sieve.

For example to separate the coarse parts with a sieve.

SNz A Symmetry Number for the domain z is a novel non-

dimensional number that is based on the global (or

local), z, bilateral symmetry embedded in all data. see

F for the mathematical definition. If x is a function of

time then SNz is also a function of time.

Stability Is defined as the amplification of change in a local

neighborhood.

STFFT Short Time Fast Fourier Transform. Is a method for

producing the power versus frequency relationship over

consequetive time windows of a timeseries

SWD Symmetric Wave Decomposition. A novel, empirical

method for non-hierarchical decomposition of a sig-

nal into many sub-components via a local symmetry

breaking transformation.

Symmetric A system (A,B) is symmetric if A = B. see Symmetry.

Symmetry Symmetry encompasses two primary states. These pri-

mary states are the symmetric, antisymmetric pair or

the special, neutral state (see neutral state). Other

sub-states based on these two groups can be derived.

Timeseries Some times known as time series. A function of time

such as an audio signal trajectory. A time series also

can be thought of as the path of a system’s state

through statespace.

Upsampling Is a process that enables the number of members in a

dataset to increase with the same sampling rate as the

original dataset.
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Variance The variance of a distribution σ2 is a measure of the

width of the distribution in terms of the first two mo-

ments: σ2 =< x2 > − < x >2 where the brackets

denote the average over the probability density P (x).

White noise White noise requires only that noise spikes be indepen-

dent of one another in time or that they be statistically

uncorrelated. There are infinitely many types of white

noise and each has a flat frequency spectrum because

all the noise spikes are independent of one another.

White noise can be chaotic as well as impulsive and

the two can combine in ways that we have not imag-

ined. Real noise cannot be white because pure white

noise requires infinite energy.
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