An investigation into the condition monitoring of large slow speed slew bearings

Craig A S Moodie
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong
Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University
does not authorise you to copy, communicate or otherwise make available electronically to any other person any
copyright material contained on this site.
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act
1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,
without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe
their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the
conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Moodie, Craig A S, An investigation into the condition monitoring of large slow speed slew bearings, PhD thesis, School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, 2009. http://ro.uow.edu.au/theses/3035

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

An Investigation into the Condition Monitoring of Large Slow Speed Slew Bearings

A thesis submitted for the degree of Doctor of Philosophy of the University of Wollongong

Craig Alexander Simpson Moodie Bsc.Mech.Eng.

School of Mechanical, Materials and Mechatronic Engineering Faculty of Engineering

Declaration

I, Craig Alexander Simpson Moodie, declare that this thesis, submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy, in the School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged.
The document has not been submitted for qualifications at any other academic institution.
Craig Alexander Simpson Moodie
21 January 2009.

Acknowledgements

The author would like to express his gratitude to his supervisor, Professor A. Kiet Tieu for his excellent guidance and continuous encouragement for the duration of this thesis.
Thanks are given to Mr. Simon Biddle and his colleagues of the Condition Monitoring Group, Bluescope Steel. Their assistance, comments and discussion have been of great help to the author.It is my hope that some or all of the issues that I will present will be accepted by the Bluescope Condition Monitoring Group. The author would like to acknowledge the significant contribution of the Engineering Workshop Personnel, Mr Ron Marshall, Mr Stuart Rod, Mr Steve Selby, Mr Keith Maywald and Engineering IT personnel, Mr Des Jameson and Mr Peter Turner. Their enthusiastic help was important for the completion of this thesis. Acknowledgement is also given to the Australia Research Council for funding the project with an ARC linkage grant.
The author is deeply grateful to his wife Lesley, daughter Robyn and son David for their continuous support, assistance and encouragement, through the good times and the bad. Thank you all indeed.

Abstract

The condition monitoring of slow speed roller bearings has been investigated. A test-rig was designed and constructed to enable detailed measurement of horizontal rotating bearing acceleration forces in both the axial and radial plane in the speed range of 0.5 to 10 revolutions per minute. These accelerations were carried out at both sonic and ultrasonic sampling rates to establish which technique is the most appropriate. Overall bearing displacement and surface temperatures were measured. Strains generated in the stress frame by the loading of the bearing were monitored along with the power used to drive the test-rig. Measurements were obtained from two full-size slew bearings operating in Bluescope Steel Limited. One bearing operated at 4.3 rpm continuously in the vertical plane. The other slew bearing operated intermittently and with partial rotation at approximately 1 rpm in the horizontal plane. During this project, the concepts of Symmetry and Stability have been developed as a fundamental approach to information analysis. A considerable number of novel signal processing methods including; Kurtosis/Correlation dimension plots, Symmetry State Space (SSS), Symmetric Wave Decomposition (SWD), Compressed Eigenvector Deconvolution Spectral Analysis (CEDSA), Ring Matrix Fault Values (RMFV) have been developed. These methods all utilize symmetry, antisymmetry, symmetry 'breaking', stability and enable the assessment of which sensor methodology combination is best for the situation considered. It will be shown, among other things, that ultrasonic measurements using sensors designed for Acoustic Emission (AE) permit an implementation of an early warning system for slow speed bearings. This will enable the operator to carry the minimum inventory in bearings and to plan shut downs without incurring additional costs from unplanned outages resulting from failed bearings.

List of Publications

Craig Moodie, Kiet Tieu, George Wood, Analysis of Complex Systems for the Condition Monitoring of a Rolling Mill, 5th International Congress on Industrial and Applied Mathematics (ICIAM2003) CTAC CTL090 H-091, July 2003, Sydney, Australia
C.A.S. Moodie, A. K. Tieu, S. Biddle, Symmetry methods applied to the condition-monitoring of slow speed slew bearings, 4th Int. Conf. on Condition Monitoring, June 2007, Harrogate UK
C.A.S. Moodie, A. K. Tieu, S. Biddle, Deconvolution of time series data using translational symmetry and eigenstate analysis, 4th Int Conf on Condition Monitoring, June 2007, Harrogate UK
C.A.S. Moodie, A. K. Tieu, S. Biddle, Symmetric Wave Decomposition as a means of identifying the number of damaged elements in a slow speed bearing, Proceedings of 14th International Congress on Sound and Vibration, July 2007, Cairns, Australia, paper 265.
C.A.S. Moodie, A. K. Tieu, S. Biddle, Vibration Event Detection: A Monitoring Method for Slow Speed Bearings, Proceedings of 14th International Congress on Sound and Vibration, July 2007, Cairns, Australia, paper 266.

Contents

Acknowledgements v
Abstract vi
List of Publications vii
Notation and Glossary xiv
1 Introduction 1
1.1 Setting the Scene 1
1.1.1 Importance of research 3
1.1.2 Scope of this research 3
1.1.3 Overview of the research 4
2 Literature and Research Work Review 6
2.1 Rolling Element Bearings 6
2.2 Commercial Solutions 7
2.3 Historical reviews relating to rolling element bearings 9
2.4 Vibration 12
2.5 Acoustic Emission 16
2.5.1 SEE 16
2.5.2 AE and Zero crossing rate 17
2.5.3 AE and lubrication 18
2.5.4 AE and friction 20
2.5.5 AE and fractal dimension 20
2.5.6 AE and defect size 21
2.6 Methods of analysis 22
2.6.1 Cyclostationarity 23
2.6.2 Blind Source Separation 26
2.6.3 Chaos Theory 28
2.6.4 Empirical Mode Decomposition 37
2.6.5 Wavelets, Neural Nets, Radial Basis functions, Fuzzy Logic and Support Vector machines 44
2.7 Modeling of rolling element bearings 50
2.8 Monitoring of extremely slow rolling element bearings 52
2.9 Other contributions 55
2.10 Symmetry 57
2.11 Randomness and Chance 63
2.12 Stability 64
2.13 Summary 64
3 Symmetry of Data 67
3.1 Vectors 68
3.1.1 Mirror symmetry and antisymmetry 68
3.1.2 Time 71
3.2 Orthogonality 73
3.2.1 Vector normal of symmetry and antisymmetry 79
3.3 Symmetry Operators 80
4 Symmetry Breaking ψ 82
4.1 Global symmetry breaking ψ_{G} 82
4.2 Compression ψ_{C} 83
4.3 Local symmetry breaking ψ_{L} 86
4.4 Symmetry 'weaving' 86
4.5 Continuous symmetry breaking $C \psi$ 88
4.6 Symmetric wave decomposition 90
4.7 Compressed Fast Fourier Transform 100
4.8 Upsampling, downsampling and compression 105
4.8.1 Ring Matrix 108
5 Symmetry and Matrices 111
5.1 Any Matrix. 111
5.1.1 $\mathrm{H}+$ Symmetry and H - Antisymmetry 112
5.1.2 V+ Symmetry and V- antisymmetry 112
5.1.3 H+V+ Super-Symmetry 113
5.1.4 H-V- Super-Symmetry 113
5.1.5 H+V- Antisymmetry 114
5.1.6 H-V+ Super-Antisymmetry 114
5.2 The Ring Matrix. 115
5.3 De-convolution 118
5.3.1 Ring Matrix [Moodie et al 2007c] 119
5.3.2 Eigenvalues and Eigenvectors 119
5.3.3 Compressed Ring Matrix 120
6 Events 127
6.1 Introduction 127
6.2 Events 128
6.3 Embedded Events 129
6.4 Threshold counts 130
6.5 Threshold counts and history 131
6.5.1 Ultrasonic ($\geq 20 \mathrm{kHz}$)(Slew bearing test-rig) 131
6.5.2 Sonic ($<20 \mathrm{kHz}$) (Bridge Reclaimer) 134
6.6 Other statistics 139
6.7 Conclusions 141
7 Test-rig Design and Measurements 143
7.1 Introduction 143
7.2 Test-rig Design 143
7.2.1 Design Rationale 145
7.2.2 Safety 145
7.2.3 General 145
7.2.4 Test-rig stress frame bearing specifications 146
7.2.5 Stress frame Loading 148
7.2.6 Speed Requirements 148
7.2.7 Power requirements 148
7.2.8 Drive Strength requirements 148
7.2.9 Vibration Isolation 149
7.2.10 Current Test-rig drive components 149
7.3 Vibration Sensors 149
7.4 Test-rig Measurements 152
7.4.1 Measurement Schematic 154
7.4.2 Dataloggers and Data Aquisition Devices 154
7.4.3 Measurement Equipment Schematic 157
7.4.4 Vibration measurements 159
7.4.5 Bearing Loads 163
7.4.6 Bearing displacement 164
7.4.7 Bearing Friction 165
7.4.8 Bearing Temperature 165
7.4.9 Drive Speed Control 166
7.4.10 No Load Tests 166
7.5 Industrial Measurements 167
7.5.1 Large Mass test 167
7.5.2 Continuous Caster Turret bearing 170
7.5.3 Coal Bridge Reclaimer 173
7.5.4 Historical data 173
7.5.5 Equipment 174
7.5.6 Sampling rates 175
7.6 Premature bearing failure 175
7.7 Test-rig Tests 177
7.7.1 No load tests 177
7.7.2 Load tests 177
8 Results 181
8.1 Introduction 181
8.1.1 Frequency Domain 183
8.1.2 Time Domain 185
8.1.3 Large versus Small Bearings 186
8.1.4 Graphic Representations 186
8.2 Test-rig Results 187
8.3 Dust Contaminants 192
8.4 Squealing 196
8.5 Frequency Domain Fault Histories 202
8.5.1 Demodulation 202
8.5.2 SWDFFT 204
8.5.3 CECDFFT 210
8.5.4 SRMFV 214
8.5.5 Conclusion 216
8.6 Time Domain Histories 218
8.6.1 Sonic 219
8.6.2 Ultrasonic 222
8.6.3 Sonic Stability 225
8.6.4 Ultrasonic Stability 228
8.6.5 Conclusion 228
8.7 Bearing Radial Friction History 228
8.7.1 Sonic and Ultrasonic Radial Friction Coefficients, μ_{r} 231
8.8 Very Low Sample Rate(ADC24) Variable Histories 233
8.8.1 Test-rig Bearing Assembly Friction, $\mu_{b a}$ 235
8.8.2 Bearing Displacement 235
8.8.3 Bearing Temperature 236
8.8.4 Strain and Load 237
8.8.5 Power and Torque 238
8.9 Symmetry/Asymmetry Image Metric 239
8.9.1 Conclusion 243
8.10 The Bridge Reclaimer Bearing 244
8.10.1 Frequency Domain History 248
8.10.2 Time Domain History 250
8.10.3 Symmetry/Asymmetry Image Metric 250
8.11 The Caster Turret bearing 252
8.11.1 Signal Post-Conditioning 253
8.11.2 Frequency Domain 255
8.11.3 Symmetry/Asymmetry Image Metric 255
8.12 Late results from the test-rig- December 2008 257
9 Conclusion 260
9.1 Conclusion 260
9.2 Recommended further work 264
Bibliography 267
A All mathematical functions can be mapped to a Symmetry State Space, $S S S_{z}$ 288
B $\frac{d x}{d t}$ and $\int x d t$ as local symmetry breaking, $\Psi_{C_{L}}$ 289
C Symmetric Wave Decomposition kernel formulation 291
D $\mu_{b a}$ Algorithm 294
E Software 301
E. 1 Commercial 301
E. 2 Freeware 301
E. 3 Contributed 302
E. 4 Software developed for the analysis of data 303
E.4.1 analyse_data_online_latest.py 304
E.4.2 ring_symmetry.py 312
E.4.3 wfsreader.py 312
E.4.4 myzipfile.py 312
E.4.5 filt_gust96.py 312
E.4.6 example_specgram.py 313
E.4.7 analyse_allps3424_files.py 316
E.4.8 analyse_alladc24_files.py 316
E.4.9 analyse_allbluescope_files.py 316
E.4.10 my_allstatdataplots.py 316
E.4.11 my_faultstatdataplots.py 316
E.4.12 my_imagestatdataplots.py 317
E. 5 Software developed for the collection of data 317
E.5. 1 ps3kread.exe 317
E.5.2 my_killprocess.py 317
F Rules of Bilateral Symmetry and the Symmetry Number, $S N$ 318
G Proof of Orthogonality of (Symmetry,Antisymmetry) 320
H History of timeseries for Channels A(1) and D(4) 322
I my_statistics Algorithm 335
J Synopsis of FD3 Software 339
J. 1 CORRELATION DIMENSION 340
J.1.1 FORMULATION OF CORRELATION DIMENSION. 340
J.1.2 RELATIONS AMONG THE DIMENSIONS 341
K Calibration of PAC AE piezo sensors 343
L Computation of the vertical load applied in the stress frame of the test-rig 345

Notation and Glossary

0
a
à
à
a+
a-
b
b
b
b+
b-
c_{n}
C
C_{L}
C^{ψ}
$C(l)$
\mathfrak{d}_{e}

Zero vector.
A rank 1 group or vector.
A left-to-right rank 1 group or vector.
A reverse (right-to-left) rank 1 group or vector.
Symmetry of original time vector a where time increases from t (start) to T (finish).

Anti-symmetry of original time vector a where time increases from t (start) to T (finish).

Another rank 1 group or vector.
Another left-to-right rank 1 group or vector.
Another reverse (right-to-left) rank 1 group or vector.
Symmetry of original time vector \mathbf{b} where time decreases from t (start) to T (finish).

Anti-symmetry of original time vector \mathbf{b} where time decreases from t (start) to T (finish).

Number of compression steps.
Compression operator.
Local compression operator.
Continuous symmetry breaking operator.
Correlation dimension of a vector containing l elements.
Euclidean distance.

\mathfrak{d}_{x}	Distance in the x coordinate.
\mathfrak{d}_{y}	Distance in the y coordinate.
D	Downsampling operator.
efs	Effective sampling rate.
e_{k}	Cumulative energy for the $k^{\text {th }}$ sub-vector/wave.
etc	A rank 1 group or vector function of etc.
etc	Original vector etc where etc proceeds from etc c_{i} (start) to etc c_{n} (finish).
etc	Original vector etc where etc proceeds from etc c_{n} (finish) to etc c_{i} (start).
$f s$	Original sampling rate.
$f_{\text {spd }}$	Computational speed-up factor that can result from compressing data.
E	Total energy for a group of waves.
H	Entropy of a group of waves.
i	Index to an element of an array/vector or matrix.
$\mathfrak{I}(\boldsymbol{\omega})$	Imaginary number vector for frequencies.
j	Complex number $=\sqrt{-1}$. Is also used as an index to an element of an array/vector or matrix.
k	Index to an element of an array/vector or matrix.
$K(l)$	Kurtosis of a vector containing l elements.
$l e n$	Number of items in the group/set/vector.
nsym	Reference pointer to the mid-point of a dataset.
\aleph	Vector normal resulting from a vector product.
$\mathfrak{0}$	'of' operator. For example, the symmetry of antisymmetry. This is not the algebraic multiply. Similar to recursion and/or iteration.

$p_{k} \quad$ Energy probability for the $k^{t h}$ sub-vector/wave
Power vector for frequencies.
A power vector where frequency increases from ω_{0} (lowest) to ω_{n} (highest).

Symmetry of original power vector \mathbf{p} where frequency increases from ω_{0} (lowest) to ω_{n} (highest).

Symmetry of original power vector \mathbf{p} where frequency decreases from ω_{n} (highest) to ω_{0} (lowest).

Anti-symmetry of original power vector \mathbf{p} where frequency increases from ω_{0} (lowest) to ω_{n} (highest).

Real number vector for frequencies.
Any two dimensional state space.
A symmetric/antisymmetric state space on domain z of a vector \mathbf{x}.

A time vector where time increases from t (start) to T (finish). A time vector where time increases from t (start) to T (finish). A time vector where time reverses from T (start) to t (finish).

Symmetry of original time vector \mathbf{t} where time increases from t (start) to T (finish).

$\stackrel{\text { < }}{\text { t }}$	Symmetry of original time vector \mathbf{t} where time decreases from T (start) to t (finish).
$\begin{gathered} >- \\ \mathrm{t} \end{gathered}$	Anti-symmetry of original time vector \mathbf{t} where time increases from t (start) to T (finish).
${ }_{\mathbf{c}}^{\mathbf{t}}$	Anti-symmetry of original time vector \mathbf{t} where time decreases from T (start) to t (finish).
$\underset{\mathbf{t}}{>+\Psi}$	Broken symmetry of original time vector \mathbf{t} where time increases from t (start) to T (finish).
$\underset{\mathbf{t}}{++\Psi}$	Broken symmetry of original time vector \mathbf{t} where time decreases from T (start) to t (finish).
$\underset{\mathbf{t}}{>-\Psi}$	Broken anti-symmetry of original time vector \mathbf{t} where time increases from t (start) to T (finish).
$\underset{\mathbf{t}}{<-\Psi}$	Broken anti-symmetry of original time vector \mathbf{t} where time decreases from T (start) to t (finish).
$\stackrel{>-\Psi_{C}}{\mathbf{t}}$	Broken anti-symmetry of original vector \mathbf{t} and compressed it where time increases from t (start) to T (finish).
$\stackrel{<-\Psi_{C}}{\mathbf{t}}$	Broken anti-symmetry of original Vector \mathbf{t} and compressed it where time decreases from T (start) to t (finish).
u	A rank 1 group or vector function of u.
$\stackrel{\rightharpoonup}{\mathbf{u}}$	Original vector \mathbf{u} where u proceeds from u_{i} (start) to u_{n} (finish).
ù	Original vector \mathbf{u} where u proceeds from u_{n} (finish) to u_{i} (start).
U	Up-sampling operator.
v	A rank 1 group or vector function of v.
$\stackrel{\rightharpoonup}{\text { v }}$	Original vector \mathbf{v} where v proceeds from v_{i} (start) to v_{n} (finish).
$\stackrel{\text { v }}{ }$	Original vector \mathbf{v} where v proceeds from v_{n} (finish) to v_{i} (start).

w	A rank 1 group or vector function of w.
$\stackrel{>}{\mathbf{w}}$	Original vector \mathbf{w} where w proceeds from w_{i} (start) to w_{n} (finish).
$\underset{\text { w }}{\text { - }}$	Original vector \mathbf{w} where w proceeds from w_{n} (finish) to w_{i} (start).
X	Any rank 1 group or vector.
$\begin{aligned} & 0 \\ & \mathbf{x} \end{aligned}$	Upsampled ring vector. The stretched-out/unraveled ring matrix.
${ }_{\mathbf{X}}^{\mathbf{n}}$	Vector \mathbf{x} at step n where time increases from t start to T.
$\stackrel{n-1}{\mathbf{x}}$	Vector \mathbf{x} at step $n-1$ where time increases from t start to T.
$\stackrel{>}{\mathbf{x}}$	Original vector \mathbf{x} where time increases from t (start) to T (finish).
$\overline{\mathbf{x}}$	Original vector \mathbf{x} where time decreases from T (start) to t (finish).
$\xrightarrow{>+}$	Symmetry of original vector \mathbf{x} where time increases from t (start) to T (finish).
$\stackrel{<}{\mathbf{X}}$	Symmetry of original Vector \mathbf{x} where time decreases from T (start) to t (finish).
>	Anti-symmetry of original vector \mathbf{x} where time increases from t (start) to T (finish).
$\stackrel{<-}{\mathbf{X}}$	Anti-symmetry of original Vector \mathbf{x} where time decreases from T (start) to t (finish).
$\underset{\mathbf{X}}{+\Psi}$	Broken symmetry of original vector \mathbf{x} where time increases from t (start) to T (finish).
$\stackrel{+}{\mathbf{X}}^{+\Psi}$	Broken symmetry of original Vector \mathbf{x} where time decreases from T (start) to t (finish).
$>_{\mathbf{x}}$	Broken anti-symmetry of original vector \mathbf{x} where time increases from t (start) to T (finish).
$\left\langle_{\mathbf{X}}{ }^{\Psi}\right.$	Broken anti-symmetry of original Vector \mathbf{x} where time decreases from T (start) to t (finish).

$\stackrel{>-\Psi_{C}}{\mathbf{X}}$	Broken anti-symmetry of original vector \mathbf{x} and compressed it where time increases from t (start) to T (finish).
$\underset{\mathbf{X}}{<-\Psi_{C}}$	Broken anti-symmetry of original Vector \mathbf{x} and compressed it where time decreases from T (start) to t (finish).
$X(\omega)$	The Fourier transform of the time waveform, \mathbf{x}.
X	Any rank 2 group or Matrix.
$\stackrel{<}{\mathbf{X}}$	Original Matrix \mathbf{X} where time decreases from T (start) to t (finish).
$\stackrel{>h+}{\mathbf{X}}$	Row symmetry of original matrix \mathbf{X} where index increases from i (start) to j (finish).
$\stackrel{\langle h+}{\mathbf{X}}$	Row symmetry of original matrix \mathbf{X} where index decreases from j (start) to i (finish).
$\stackrel{>-}{\mathbf{X}}$	Row anti-symmetry of original matrix \mathbf{X} where index increases from i (start) to j (finish).
$\stackrel{\langle h-}{\mathbf{X}}$	Row anti-symmetry of original matrix \mathbf{X} where index decreases from j (start) to i (finish).
$\stackrel{>v+}{\mathbf{X}}$	Column symmetry of original matrix \mathbf{X} where index increases from i (start) to j (finish).
$\stackrel{<v+}{\mathbf{X}}$	Column symmetry of original matrix \mathbf{X} where index decreases from j (start) to i (finish).
$\stackrel{>v-}{\mathbf{X}}$	Column anti-symmetry of original matrix \mathbf{X} where index increases from i (start) to j (finish).
$\stackrel{<v-}{\mathbf{X}}$	Column anti-symmetry of original matrix \mathbf{X} where index decreases from j (start) to i (finish).
$\stackrel{0>}{\mathbf{X}}$	Ring matrix of original vector \mathbf{x} where time increases from t (start) to T (finish).
$\stackrel{0<}{\mathbf{X}}$	Ring matrix of original vector \mathbf{x} where time decreases from T (start) to t (finish).

Ring matrix formed from original vector \mathbf{x} where time increases from t (start) to T (finish).

Ring matrix formed from original vector \mathbf{x} where time decreases from T (start) to t (finish).

Column and row symmetry of original matrix \mathbf{X} where index increases from i (start) to j (finish).

Column anti-symmetry and row symmetry of original matrix \mathbf{X} where index increases from i (start) to j (finish).

Column symmetry and row anti-symmetry of original matrix \mathbf{X} where index decreases from i (start) to j (finish).

Column anti-symmetry and row anti-symmetry of original matrix \mathbf{X} where index decreases from i (start) to j (finish).

Row and column symmetry of original matrix \mathbf{X} where index increases from i (start) to j (finish).

Row anti-symmetry and column symmetry of original matrix \mathbf{X} where index increases from i (start) to j (finish).

Row symmetry and column anti-symmetry of original matrix \mathbf{X} where index decreases from i (start) to j (finish).

Row anti-symmetry and column anti-symmetry of original matrix \mathbf{X} where index decreases from i (start) to j (finish).

Row anti-symmetry and column anti-symmetry of original matrix \mathbf{X} where index decreases from j (start) to i (finish).

Row and column symmetry of Ring matrix formed from original vector \mathbf{x} where index increases from i (start) to j (finish).

Row anti-symmetry and column symmetry of Ring matrix formed from original vector \mathbf{x} where index increases from i (start) to j (finish).

$\stackrel{0>h+v-}{\mathbf{X}}$	Row symmetry and column anti-symmetry of Ring matrix formed from original vector \mathbf{x} where index decreases from i (start) to j (finish).
$\stackrel{0>h-v-}{\mathbf{X}}$	Row anti-symmetry and column anti-symmetry of Ring matrix formed from original vector \mathbf{x} where index decreases from i (start) to j (finish).
y	A rank 1 group or vector function of x.
$\stackrel{\text { y }}{ }$	Original vector \mathbf{y} where x proceeds from x_{i} (start) to x_{n} (finish).
\bar{y}	Original vector \mathbf{y} where x proceeds from x_{n} (finish) to x_{i} (start).
$>_{\mathbf{y}}^{\mathbf{y}}$	Symmetry of original vector \mathbf{y} where time increases from x_{i} (start) to x_{n} (finish).
>	Antisymmetry of original vector \mathbf{y} where time increases from x_{i} (start) to x_{n} (finish).
ð	A designed direction vector containing ones and zeros. For example, one for right and zero for left.
ψ_{C}	A compression operator. A particular form of global symmetry breaking.
ψ_{G}	Represents a global broken symmetry.
ψ_{L}	Represents a locally broken symmetry.
ω	A frequency.
ω	Vector of frequencies, ω.
C_{i}	
$\overleftrightarrow{\mathrm{x}}$	Side shifting operator on vector \mathbf{x}.
Δ	Determinant of a matrix.
λ	An eigenvalue.
$+$	A shorthand representation of a symmetry.

- A shorthand representation of an antisymmetry.

Glossary

The glossary has been constructed by the author and from the following sources:

- J. Antoni, F. Bonnardot, A. Raad and M. El Badaoui, Cyclostationary modeling of rotating machine vibration signals, Mechanical Systems and Signal Processing 18 (2004) 1285-1314
- Holger Kantz, Thomas Schreiber, Nonlinear Time series Analysis, Cambridge University Press, 1997, ISBN 0521653878.
- A.I.Khinchin, Mathematical Foundations of Information Theory, Dover,ISBN 0-486-60434-9. pp.1-13
- Bart Kosco, Noise, Viking Penguin, 2006, ISBN 0-670-03495-9.
- Roger Penrose, The Road to Reality. A complete guide to the Laws of the Universe, Vintage Books, 2005, ISBN 9780099440680.
- Clifford A. Pickover, Computers Pattern Chaos and Beauty, St Martins Press, 1991, ISBN 031206179 X.
- Fractal Horizons. Clifford A. Pickover (ed), St. Martins' Press, 1996, ISBN 0312125992.
- Statistica Volume 1: General conventions \S Statistics 1, pp 1675 Copyright (C) Statsoft 1995.
- Ian Stewart, From Here to Infinity. A Guide to Todays's Mathematics, Oxford University Press, 1996, ISBN 0-19-283202-6.
- http://eu.wikipedia.org/wiki/Clifford_algebra.
- http://eu.wikipedia.org/wiki/Raleigh_wave.

ADC Analog-to-digital converter. Electronic device that transforms continuous signals into signals with discrete values.

Affine transformation The sum of a linear transformation and a translation. In Euclidean spaces, this is matrix multiplication plus a vector addition.

Antisymmetric	A system (A, B) is antisymmetric if $A=-B$. see Symmetry.
Attractor	An object in state space to which trajectories are even- tually attracted. A geometrical form in phase space showing the characteristics of the dynamic system.
Autocorrelation	Describes the general dependence of the values of the data at one time on the values at another time.
Bilateral symmetry	The property of having two similar sides. Each side is a 'mirror image' of the other.
CEDSA	See Dimension, box-counting.
CECDFFTing dimension	
Sis. Short for CEDCDFFT.	

Clifford algebras

Cyclostationary Is a stochastic process that exhibits some hidden periodicities in its structure. Formally, a stochastic process $\mathbf{x}(t)_{t \in \mathbb{R}}$ is said to be strict-sense cyclostationary with cycle T if its joint probability density function, $p_{\mathbf{x}}\left(x_{1}, \cdots, x_{n} ; t_{1}, \cdots, t_{n}\right)$ is periodic in t with period T, that is, if
$p_{\mathbf{x}}\left(x_{1}, \cdots, x_{n} ; t_{1}, \cdots, t_{n}\right)=p_{\mathbf{x}}\left(x_{1}, \cdots, x_{n} ; t_{1}+T, \cdots, t_{n}+\right.$ T). In this equation t stands for a generic variable which is not necessarily time.

Cyclostationarity Is a property that characterises stochastic processes whose statistical properties vary with respect to some generic variable. By definition, this embodies a class of non-stationary stochastic processes, with stationary and deterministic periodic processes as special cases.

Diffusion
The process by which fluids and solids mix intimately with one another due to the kinetic motions of thermally agitated particles such as atoms, molecules, or group of molecules.

Dimension, box-counting Consider a geometrical object A in n-dimensional space. Denote by $N(\varepsilon)$ the minimum number of n-dimensional cubes of side length ε needed to contain A. The boxcounting dimension of A is $\lim _{\varepsilon \rightarrow 0} \frac{\log (N(\varepsilon))}{\log \left(\frac{1}{\varepsilon}\right)}$.

Dimension, correlation A measure of the probability that two points in a fractal set are near one another.

Dimension, fractal A measure of a fractal's space-filling properties.

Downsampling	Is a process that involves selecting new data, as a subset of the original data at, successive, fixed intervals. With data sampled at a fixed rate, f_{s}, downsampling, m, reduces the effective sampling rate, $f_{\text {eff }}=\frac{f_{s}}{m}$.
Embedding	A method of accessing the attractor of a dynamical system via a time series generated by that system.
Embedding space	The space in which an attractor resides when reconstructed from time delay variables in which each point in the time series is plotted versus a number of its preceding points.
EMD	Empirical Mode Decomposition. An empirical method for hierarchically decomposing a signal into many subcomponents via a sifting process.
Entropy	Every finite scheme describes a state of uncertainty. Entropy, $H(p)$, is a measure of the uncertainty of a finite scheme. Given a set of probabilities, $\left(p_{1}, p_{2}, \cdots, p_{n}\right)$ the entropy, $H\left(p_{1}, p_{2}, \cdots, p_{n}\right)=-\sum_{k=1}^{n} p_{k} \log p_{k}$.
Fixed point	A point that is left unchanged by the evolution of a dynamical system. A point that is invariant under a mapping.
Fractals	Objects (or sets of points, or curves, or patterns) which exhibit increasing detail ("'bumpiness"') with increasing magnification. Many fractals are self-similar.
Fundamental frequency	The lowest frequency component of a complex signal.
Gaussian white noise	White noise that is subsequently altered so that it has a bell-shaped distribution of values. Gaussian noise is often approximated by summing random numbers. The following formula generates a Gaussian distribution: $r=\sqrt{-\log \left(r_{1}\right)} \cos \left(2 \pi r_{2}\right) \sigma+\mu$, where r_{1} and r_{2} are two random numbers from a $[0,1]$ uniform distribution, and σ and μ are the desired standard deviation and mean of the Gaussian distribution.
IGC	Independent Geometric Component is a structure that contributes to the overall structural response to an excitation. For example, a ball in a roller bearing.

Lyapunov exponent	A measure of the average rate of exponential separation of nearby trajectories in a dynamical system. The Lyapunov exponent also can be thought of as a quantity, sometimes represented by the Greek letter λ, used to characterise the divergence of trajectories in a chaotic flow.
Mahalanobis distance	The Mahalanobis distance is the distance of a case from the centroid in the multi-dimensional space, defined by the correlated independent variables (if the independent variables are uncorrelated, it is the same as the simple Euclidean distance). This measure provides an indication of whether or not an observation is an outlier with respect to the independent variable values.
Moment	The weighted average of the variate x to a specified power. The nth moment of distribution $P(x)$ is then $<x^{n}>=\int_{-\infty}^{\infty} x^{n} P(x) d x$. The mean value is given by $n=1$. The second moment is given by $n=2$, and so on.
Neutral state	The neutral state occurs when the symmetric, antisymmetric pair are both zero.
Phase space	Given a flow $\mathbf{x}(t)=\left(x_{1}(t), \cdots, x_{n}(t)\right)$ describing a solution to a differential equation in n-dimensional Euclidean space, phase space is the space of all the vectors of the form $\left(x_{1}(t), x_{1}(t), \cdots, x_{n}(t), \dot{x_{n}}(t)\right)$ in $2 n$ dimensional Euclidean space.
Probability density	The probability that an event in an interval $(x, x+d x)$ occurs is given by $P(x) d x$, where $P(x)$ is the probability density and the derivative of $F(x)$ with respect to x.
Quaternion	The general quaternion is defined as $\mathbf{q}=t+u \mathbf{i}+v \mathbf{j}+w \mathbf{k}$ where t, u, v and w are real numbers and $\mathbf{i}^{2}=\mathbf{j}^{2}=$ $\mathbf{k}^{2}=\mathbf{i j k}=-1$.
Rayleigh waves	Rayleigh waves are a type of elastic surface wave that travel on solids. They are produced on the Earth

Recursive

SNR
by earthquakes, in which case they are also known as "ground roll", or by other sources of seismic energy such as an explosion or even a sledgehammer impact. They are also produced in materials by acoustic transducers, and are used in non-destructive testing for detecting defects. When guided in layers they are referred to as Rayleigh-Lamb waves, Lamb waves or generalized Rayleigh waves.

An object is said to be recursive if it partially consists of or is defined in terms of itself. A recursive operation invokes itself as an intermediate operation.

A process in which some property of a map is rescaled so as to reproduce the same map.

Is a novel time invariant matrix of a signal or invariant matrix of a set of data. It is derived from the translational symmetry of the original signal or data.

Ring matrix fault values. Is a novel method for producing the power at selected frequencies contained in a dataset. The method does not involve the Fourier transform.

A shape made up of copies of itself, each similar to (though smaller than) the original. Self-similarity can be thought of as the property of looking the same under repeated magnifications.

Sensitive dependence on initial conditions. The property of chaotic dynamics by which the distance between nearby points increases (initially) as the dynamics proceed.

Some times known as spectrogram. Is a graphic representation of the time variability of the power spectra in a timeseries. See STFFT.

Signal to noise ratio. A measure of the degradation of a signal when, for example, represented by a model. In engineering SNR is a term for the power ratio between a signal and the background noise. $S N R=\frac{P_{\text {signal }}}{P_{\text {noise }}}=$
$\left(\frac{A_{\text {signal }}}{A_{\text {noise }}}\right)^{2}$ where the power, P, is the average power and A is the root mean square (RMS) amplitude. In decibel terms (dB),
$S N R_{d B}=20 \log _{10}\left(\frac{A_{\text {signal }}}{A_{\text {noise }}}\right)=20 \log _{10}\left(\frac{\text { meanvalue }}{\text { standarddeviation }}\right)$.

Sifting
$S N_{z}$

Stability

STFFT

SWD

Symmetric

Symmetry

Timeseries

Upsampling

Is a process that allows the separable components of a system to pass (or be separated) through a filter/sieve. For example to separate the coarse parts with a sieve.

A Symmetry Number for the domain z is a novel nondimensional number that is based on the global (or local), z, bilateral symmetry embedded in all data. see F for the mathematical definition. If x is a function of time then $S N_{z}$ is also a function of time.

Is defined as the amplification of change in a local neighborhood.

Short Time Fast Fourier Transform. Is a method for producing the power versus frequency relationship over consequetive time windows of a timeseries

Symmetric Wave Decomposition. A novel, empirical method for non-hierarchical decomposition of a signal into many sub-components via a local symmetry breaking transformation.

A system (A, B) is symmetric if $A=B$. see Symmetry.

Symmetry encompasses two primary states. These primary states are the symmetric, antisymmetric pair or the special, neutral state (see neutral state). Other sub-states based on these two groups can be derived.

Some times known as time series. A function of time such as an audio signal trajectory. A time series also can be thought of as the path of a system's state through statespace.

Is a process that enables the number of members in a dataset to increase with the same sampling rate as the original dataset.

Variance

White noise

The variance of a distribution σ^{2} is a measure of the width of the distribution in terms of the first two moments: $\sigma^{2}=<x^{2}>-<x>^{2}$ where the brackets denote the average over the probability density $P(x)$.

White noise requires only that noise spikes be independent of one another in time or that they be statistically uncorrelated. There are infinitely many types of white noise and each has a flat frequency spectrum because all the noise spikes are independent of one another. White noise can be chaotic as well as impulsive and the two can combine in ways that we have not imagined. Real noise cannot be white because pure white noise requires infinite energy.

