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ABSTRACT

Terraced alluvial deposits in the Middle Son Valley, Madhya Pradesh, India contain
Youngest Toba Tuff (YTT) deposits and an archaeological record that spans the Acheulean
to the Neolithic. For the past three decades, this region has been the focus of geological and
archaeological investigations that aim to understand the impact of the ~74 thousand year (ka)
Toba volcanic super-eruption on the environment and human populations in India. The
research presented in this study is focussed on two main themes: 1) developing and applying
luminescence dating techniques to alluvial sediments in the Middle Son Valley to assess the
reliability of the YTT ash as a reliable chronostratigraphic marker in palacoenvironmental
investigations; and 2) to test a previously published model of alluvial deposition for the
Middle Son Valley near the confluence of the Rehi and Son Rivers.

The luminescence dating potential of potassium feldspar (KF) was explored at both
the single aliquot and the single grain level for sediments in the Middle Son Valley. In this
study, KF grains are shown to be suited to single-aliquot regenerative-dose measurement
procedures and individual KF grains exhibit fading rates ranging from 0 to more than 20
%/decade. Post-infrared infrared signals (pIRIR) are shown to be less susceptible to
anomalous fading, as expected, but evidence presented here suggests that pIRIR ages for
alluvial sediments in the Middle Son Valley are less reliable than IRSL ages, because the
source traps for these signals are less likely to be completely emptied by sun exposure during
transport and deposition in the Son River.

IRSL ages from KF and OSL ages from quartz presented in this study suggest that
the final deposition of the sediments above and below the YTT ash deposits in the Middle
Son Valley occurred sometime (possibly up to a few tens of thousands of years) after the
Toba volcanic super-eruption. This chronology suggests that: 1) the YTT ash has been
reworked by fluvial processes and cannot be considered a reliable chronostratigraphic
marker as was previously thought; or 2) the YTT ash was deposited soon after the volcanic
event ~74 ka ago, but the underlying sediments have since been eroded and replaced by
younger, inset fluvial sediments. In both cases, the temporal framework presented here calls
into question the validity of previous palacoenvironmental interpretations and hypotheses
that were based on pedogenic carbonates sampled above, below and within the YTT ash.

A previously published model of alluvial deposition for the Middle Son Valley
subdivides the preserved alluvium within the valley system into five stratigraphic
formations. These formations include (from oldest to youngest) the Sihawal, Khunteli,
Patpara, Baghor and Khetaunhi Formations. The accuracy of this model was tested near the
Rehi-Son confluence using cross-valley topographic profiles, field observations, and IRSL

age estimates from terraced alluvial sediments. IRSL age estimates for the highest terrace
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mark the beginning of incision of the Middle Son Valley alluvium at ~16 ka (as predicted by
the model) and the termination of deposition of the Baghor Formation fine member silts
between ~16 and ~21 ka ago. Maximum IRSL age estimates of ~1.9-2.7 ka, ~10 m above
river level, mark the termination of deposition of the Khetaunhi Formation silts and the sands
on the lowest terrace. These ages are only slightly younger than previously reported
radiocarbon age estimates of ~3—5 ka for this formation. The age estimates for coarse sands
and gravels that lie at intermediate elevations (~20 m above river level) between these two
terraces contradict what is predicted by the model. According to the model, these sediments
should be between ~40 and 58 ka in age and form part of the Patpara Formation, which has
been exposed by fluvial erosion of the overlying Baghor Formation. By contrast, maximum
IRSL age estimates presented here suggest that these deposits are only up to ~5-7 ka in age
and form inset sediments that were deposited during a brief aggradational phase, sometime
after incision of the highest alluvial surface ~16 ka ago. Incision of the Middle Son Valley
alluvium across from the Rehi-Son confluence began shortly after ~16-21 ka, probably as a
result of SW monsoon intensification. The inset coarse sand and gravel at ~20 m above river
level likely aggraded under wet conditions in the early Holocene, and the lowest (~10 m
high) inset terrace probably aggraded under more arid conditions during the late Holocene.
Both the Middle Son Valley, and its neighbour, the Belan Valley, record major phases in
regional climate and human occupation of northern India. Improved chronological control
on the stratigraphies of these valleys therefore has implications for enhancing our

understanding the history of climate change and human occupation in India.
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List of Figures

Figure 1-1. a) The Middle Son Valley (MSV) and the locations of archaeological sites and
preserved YTT ash along the banks of the Son River after Sharma and Clark (1983).
B) View south across the Son River from Dhaba sites 2 and 3 of Haslam et al.
(2012). 3

Figure 1-2. Schematic cross-section of the Middle Son Valley looking east from the Rehi-
Son confluence, modified after Williams and Royce (1983) to include the new
Khunteli Formation introduced by Williams et al. (2006). Formation ages are
estimated from reports from Williams and Royce (1982), Pal et al. (2005), and
Williams et al. (2006). The ages of the Patpara and Khunteli formations include a
question mark as these are debated (see Section 1.2 for details). 8

Figure 1-3. a) Study area. b) Ghoghara main section containing YTT ash. The lower 4 cm
of this ash unit is thought to be primary ash. c) Khunteli Formation type-section
containing YTT ash-rich sandy silt (photo courtesy of R.G. Roberts). This ash unit
is thought to be re-worked (Gatti ef al. 2011). 12

Figure 2-1. The luminescence process in quartz. (i) lonization due to exposure of the crystal
to nuclear radiation, with trapping of electrons and holes at defects L and T,
respectively. (ii) Storage during antiquity. (iii) Electron eviction from T and
subsequent recombination at L in response to optical stimulation. Alternatively,
electrons may recombine at non-luminescence centres, be recaptured by a trap of the
same type, or be captured by another type of trap. From Aitken (1998).

22
Figure 2-2. The effect of bleaching (with a green laser beam for 10 s) on the TL glow-curve
of quartz grains (from Aitken 1998, based on Rhodes (1990)). 22

Figure 2-3. An OSL decay curve from a single quartz grain. The OSL signal intensity is
reported in photon counts (cts) per 0.02 s of green (532 nm) laser stimulation. From
Duller et al. (2003). 23

Figure 2-4. The luminescence process in feldspar, involving an electron trap and a hole trap
(Poolton et al. 2002a). (a) Low energy optical excitation (~1.4 eV) raises the
electron to deep-lying band-tail states, and thermal energy from the lattice allows
thermal ionization, followed by recombination. (b) If the defects are close,
recombination via tunnelling is possible from the excited state with no thermal
activation. (c) If the electron and hole traps are very close, recombination via
tunnelling from the ground state is possible. 26

Figure 2-5. TL glow-curves for a single KF aliquot (from Murray ef al. 2009). Three TL
glow-curves are plotted, showing the natural signal with no preheat (“no ph”), the
signal after a 570 Gy dose and no preheat, and the signal after a 570 Gy dose and a
250°C preheat. The 570 Gy, “no ph” curve is plotted again after multiplication by
0.05. The heating rate used was 5 °C/s. 26

Figure 2-6. Relationships between the K content of individual 500-1000 um grains and the
a) calculated internal dose rate, b) natural IRSL intensity, and c) the D.. Data are
from Lamothe ef al. (1994). Internal beta dose rates were calculated using data from
Mejdahl (1983), and the contributions from internal U, Th and Rb were not included
in the internal dose rate calculations (Lamothe ef al. 1994). K content error bars are
smaller than the size of the symbols. 35

Figure 2-7. Scatterplots of D, versus KF grain internal dose rate from K (a), and equivalent
dose versus total dose rate for each grain (b). Data are from Lamothe ef al. (1994).
36
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Figure 4-1. Flow chart for heavy liquid separation (from Mejdahl 1985; Aitken 1998). The

numbers shown are a measure of specific gravity in g/cm’. The left branch at each
step indicates which minerals float and the right branch indicates which minerals
sink. 47

Figure 4-2. A K-rich feldspar aliquot from sample KHUT-1 containing a mixture of K-rich

Figure

Figure

Figure

Figure

Figure

Figure

feldspar, quartz, plagioclase and possibly other minerals. Sodium polytungstate
(p<2.58 g/em’) was used to remove quartz, plagioclase and heavy minerals from the
180-212 um grain size fraction. The separate was then etched for 10 min with a
diluted HF acid (10%) solution. The microphoto was taken using a digital camera
mounted on a Leica MZ16A stereo microscope. 48

4-3. Grains obtained from a K-rich feldspar separate from sample KHUT-1 with
bright, rapidly decaying luminescence signals (except for Grain #26) (a), and slowly
decaying luminescence signals (b). The luminescence decay curve of a grain with a
sharply decaying signal (Grain #30, dashed line) is highlighted in ‘b’. EDS analysis
of this grain suggests that it is plagioclase. c) The luminescence decay curves in ‘a’
are replotted using a logarithmic scale on the y-axis, and the decay curve of Grain
#26 (dashed line) is highlighted. EDS analysis suggests that this is a plagioclase
grain, while all others are orthoclase grains. See Table 4-2 and Figure 4-7 for the
elemental concentrations of all grains. 49

4-4. SEM microphotographs of a subset of feldspar grains with bright, rapidly-
decaying luminescence signals (e.g., Figs 4-3a, 4-3c). All grains are likely K-rich
feldspars, except for Grain 26, which is likely plagioclase and is much dimmer than
the rest. See Table 4-2 for EDS elemental concentrations. 53

4-5. SEM microphotographs of a subset of grains with dim, slowly-decaying
luminescence signals (e.g., Fig. 4-3b). Most of these grains are likely quartz grains.
The elevated proportion of Na and Ca in Grain 30 suggests that it may be a quartz
grain with plagioclase inclusions or a plagioclase grain with a weak signal. Grain 37
was crushed while being transferred from the single-grain disc hole to the specimen
stub. See Table 4-2 for EDS elemental concentrations. 54

4-6. EDS spectrum of a potassium-rich feldspar grain. The peaks associated with
the Ko X-ray lines of C, O, Na, Al, Si, K and Ca, and the Kp X-ray lines of K and
Ca are highlighted in green. The red signal represents the background signal (also
known as “Bremsstrahlung”) derived from interactions between incident electrons
and atomic nuclei. 55

4-7. Donut plots showing the elemental concentrations of individual grains from
sample KHUT-1 (ac) and museum specimens (dg) and (see Tables 4-1 and 4-2 for
raw data). Grains obtained from a KF extract are shown in ‘a’ (bright, rapidly-
decaying signals) and ‘b’ (dim, slowly-decaying signals). Note the lack of
potassium in the grains shown in ‘b’. c) Grains from a quartz separate from KHUT-
1. The elemental concentrations of museum speciments of orthoclase, anorthite,
laboradorite, and quartz are shown in ‘d’, ‘e’, ‘f and ‘g’, respectively, for
comparison. 57

4-8. Donut plots showing the elemental composition of individual K-rich feldspar
grains (n=115) (a) and plagioclase, Fe-rich aluminosilicate, and quartz grains (n=25)
(b). Each ring in each donut plot represents the elemental composition of a single
grain. The rings in ‘a’ are very thin but 12 subgroups of rings is visible on the plot.
All grains are from sample GHO-2 and are classified as homogeneous at the scale of
a single grain (i.e., the three WDS spot measurement values for each grain were
consistent within 2%). The elemental composition of the brightest quartz and
plagioclase grains are highlighted in ‘b’. 62
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Figure 4-9. The IRSL decay curves for the K-rich feldspar, plagioclase, quartz and Fe-rich

aluminosilicate grains in Figure 4-8 are shown in ‘a’, ‘b’, ‘c’, and ‘d’, respectively.
Plots ‘e — h’ show the same decay curves but plotted with a y-axis on a logarithmic
scale. 64

Figure 4-10. Luminescence test dose (T,) signal brightness plotted against major element

Figure

concentration for all K-rich feldspar (black diamonds), plagioclase (white squares),
and quartz (grey triangles) grains. The x-axes in plots ‘b’, ‘c’, ‘d’ and ‘f” are plotted
on a logarithmic scale for clarity, and points with 0% element concentrations are
plotted as 0.0001 % in these plots to avoid their omission. 65

4-11. D, versus major element concentration for all homogeneous K-rich feldspar
(black damonds), plagioclase (white squares), and heterogeneous feldspar (white
circles) grains (n=51). Grains are considered heterogeneous if their three WDS spot
measurement values differ by more than 2%. The x-axes in plots ‘b’, ‘c’, and ‘d” are
plotted on a logarithmic scale for clarity, and points with 0% element concentrations
are plotted as 0.0001 % in these plots to avoid their omission. 68

Figure 4-12. Fading-corrected age versus major element concentration for all homogeneous

Figure

K-rich feldspar (black diamonds), plagioclase (white squares), and heterogeneous
feldspar (white circles) grains (n=51). Grains are considered heterogeneous if their
three WDS spot measurement values differ by more than 2%. The x-axes in plots
‘b’, ‘c’, ‘d” and ‘f* are plotted on a logarithmic scale for clarity, and points with 0%
element concentrations are plotted as 0.0001 % in these plots to avoid their
omission. 69

4-13. g-value versus major element concentration for all homogeneous K-rich
feldspar (black diamonds), plagioclase (white squares), and heterogeneous feldspar
(white circles) grains (n=51). Grains are considered heterogencous if their three
WDS spot measurement values differ by more than 2%. The x-axes in plots ‘b’, ‘c’,
‘d” and ‘f* are plotted on a logarithmic scale for clarity, and points with 0% element
concentrations are plotted as 0.0001 % in these plots to avoid their omission.

70

Figure 5-1. a) The IRSL signal of a laboratory-bleached and dosed (70 Gy) KF grain after

Figure

Figure

IR stimulation using a range of laser powers. b) A close-up of the decay curve in ‘a’
in the stimulation time range of 0 to 3.7 s. ¢) The amount of IR (laser) stimulation
time (90% power) it takes for the luminescence signal of 65 KF grains to be reduced
to less than 10% of the initial value. Eighty-six percent of grains are reduced to less
than 10% of their initial signal after 6 s of IR laser stimulation. ¢) The distribution
of signal intensities from single quartz grains and KF grains from the same sample.
The OSL signal was measured from the quartz grains, and the IRSL signal was
measured from the feldspar grains. The quartz grain data was supplied by Jacqui
Fenwick (unpublished data). All measurements were made on sample KHUT-1.
74

5-2. a) Degradation of the ~150° C TL peak of a single KF grain as the result of
holding it at 50° C for durations of 10, 100, 500 and 1000 s. b) A close-up view of
the left limbs of the TL curves shown in ‘a’. Note the lateral shift of the left limb of
the peak (b). ¢) TL curves after a laboratory dose and IRSL (diode) stimulation for
different durations (2 s, 10 s and 40 s). d) TL curves after a laboratory dose and
stimulation at 0% power to monitor for TL signal degradation due to heating at
50°C. e) and f) are the same graphs as in ¢) and d), respectively, but with focus on
the glow curve region up to 80°C. The background signal from a blank disc has
been subtracted from all TL curves, and all TL curves have been corrected for
sensitivity change (see Table 5-1). 77

5-3. a) TL curves after a laboratory dose and IR (laser) stimulation for different
durations (2 s, 10 s and 40 s). b) TL curves after a laboratory dose and stimulation at
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0% power to monitor for TL signal degradation due to heating at 50°C. c) and d) are
the same graphs as in a) and b), respectively, but with focus on the glow curve
region up to 80°C. The background signal from a blank disc has been subtracted
from all TL curves, and all TL curves have been corrected for sensitivity change (see
Table 5-1). 78

Figure 5-4. Typical IRSL decay curve from a KF grain. The signal in the first 0.134 s of

Figure

Figure

stimulation minus the average count rate from the last 1.742 s of stimulation (shaded
areas) was used in all calculations. The inset graph shows a typical IRSL decay
curve from a quartz grain. 79

5-5. Dose recovery test results using laboratory-bleached and heated (IR diode
bleach for 1000 s, at 290 °C) grains. The given laboratory dose of 70 Gy was
measured using preheats of 120, 160, 200, 240, and 280 °C for 10 s. Weighted mean
(CAM) measured dose/given dose ratios and average recuperation values are shown
for tests without a hotwash in ‘a’ and ‘b’, and with a hotwash listed in ‘¢’ and ‘d’.
Error bars represent 1. The percentage of grains that passed all rejection criteria
are in brackets on the x-axis. OD refers to the overdispersion calculated using the
CAM. 80

5-6. Grain rejection statistics for dose recovery tests shown in Figure 5-5. Dose

recovery tests in ‘a’ do not include a hotwash, and those in ‘b’ include a hotwash.

All preheat durations are 10 s. “RR1” and “RR2” refer to the recycling ratios

calculated from the repeat dose points measured at the low-dose region of the dose-

response curve and at the high-dose region of the dose response curve, respectively.
81

Figure 5-7. Dose recovery tests on sun-bleached (2 days) KF grains. A given laboratory

dose of 124 Gy was measured using preheats of 120, 160, 200, 240, and 280 °C for
10 s. Weighted mean (CAM) measured/given dose ratios and average recuperation
values are shown for tests analyzed without a previous background (BG) subtraction
(a and b), and with a previous BG subtraction (¢ and d). Error bars represent 1oc.
The percentage of grains that passed all rejection criteria are listed in brackets on the
x-axis. OD refers to the overdispersion calculated using the CAM. 83

Figure 5-8. Grain rejection statistics for dose recovery tests shown in Figure 3-6 analyzed

Figure

Figure

Figure

without (a), and with (b) the “Previous BG subtraction” data analysis method.
“RR1” and “RR2” refer to the recycling ratios calculated from the repeat dose points
measured at the low-dose region of the dose-response curve and at the high-dose
region of the dose response curve, respectively. 84

5-9. a) T,/T, graph showing the dependence of Ty on regenerative dose and SAR
cycle number. If the background count rate from each natural/regenerative dose
signal is subtracted from the following test dose signal (called a “previous BG
subtraction”), the non-linear curvature in the dose response curve (b) is reduced.

85

6-1. a) Shine-down curves for a KF grain and a quartz grain (inset) from sample
GHO-2. The integration limits for the initial (first 0.134 s) and background (last
1.742 s) signals are shaded in grey. b) Growth curve for the same KF grain. The KF
grain has a K concentration of 12.2%, and the quartz grain is 99.5% SiO2 (both
measured using WDS; see text). 929

6-2. a) Distribution of measured dose/given dose ratios obtained from the dose
recovery test for sample GHO-2. The grey band is centered on 1, and the black line
is centered on the weighted mean of the distribution. b) D, distribution for sample
GHO-2. ¢) The IRSL decay curves for the circled points in ‘b’. d) D, distribution of
a modern sample (KHUT-10) collected from a sand bar in the Son River channel.
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Grains with negative natural dose values, and values greater than 5 Gy lie outside the
scale of the radial plot but are shown in the histogram (n=366). 100

Figure 6-3. a) Single-grain g-value distribution for sample GHO-2 (n=475). All g-values are

Figure

Figure

Figure

Figure

Figure

normalised to a delay period of 2 days. A single-aliquot g-value distribution (n=24)

from GHO-3 is shown for comparison in ‘b’. Each aliquot consists of ~25 grains

that were mounted on stainless steel discs with silicone oil. Fading plots for

individual grains from sample GHO-2 that exhibit a low (c) and a high (d) fading

rate, respectively. e) A fading plot for one ~25-grain aliquot from sample GHO-3.
101

6-4. a) The fading-corrected age distribution for 24 single-aliquots (white-filled
circles) superimposed on the single-grain fading-corrected age distribution for
sample GHO-2 (black-filled circles, n=467). b) Quarz single-grain age distribution
for sample GHO-2 (n=337). c¢) Single-grain fading-corrected age distribution for all
KF grains with g-values statistically equivalent to zero (within 26) (n=209). Black
lines in plots ‘a’, ‘b’ and ‘c’ delineate the approximate age ranges (excluding
outliers) of the feldspar and quartz single-grain distributions. d) Single-grain fading-
corrected age distribution of microprobe-measured KF grains (n=51); each point is

shaded according to measured K content (in weight %). 102

7-1. a) The study area. The locations of Palaeolithic, Mesolithic and Neolithic
artefacts are after Sharma and Clark (1983). Sedimentary logs for sediments
containing YTT ash at Ghoghara (b) and Khunteli (c) in the Middle Son Valley,
Madhya Pradesh. A 50 cm stick is used for scale in the photos of YTT ash unit in
(b). A microphoto of a sample from the whitest (10YR 8/1) part of the YTT ash unit
at Ghoghara (b) was taken using a digital camera mounted on a Leica MZ16A stereo
microscope. 114

7-2. a) WorldView-1 50 cm panchromatic imagery of the Rehi-Son confluence
showing cliff sections where ash was observed in this study. The sites labelled 1, 2,
3 and 4 in ‘a’ corrospond to photographs 1, 2, 3 and 4, respectively, in ‘b’. The
lower ~4 cm of ash at the Ghoghara main section (photograph 1 in ‘b’) is thought to
be primary ash (Gatt et al. 2011). The ash unit in photographs 2, 3 and 4 in ‘b’ show
evidence of re-working in the form of a deformed lower contact with evidence of
mixing with underlying deposits (2), and diffusive/gradational contacts with the
surrounding sediment (3, 4). 115

7-3. a) IRSLs, and pIRIR,ys decay curves. The pIRIR,ys signal was measured
immediately after the IRSLs, signal on the same aliquot after it was given a
laboratory dose of 28 Gy followed by a preheat of 250 °C for 10 s. Normalized
decay curves are shown in the inset graph. b) IRSLs, dose response curve. c)
pIRIR,,s dose response curve. Dose response curves in ‘b’ and ‘c’ are measured on
different aliquots. The solid grey lines in ‘b’ and ‘c’ illustrate where L,/T, was
projected onto the sensitivity-corrected dose-response curve to determine D.. The
dashed grey lines on either side of the solid grey line mark the errors of L,/T, and D,
at lo. 119

7-4. a) D, versus preheat temperature for the IRSLs, and pIRIR,ys signals.
Recycling ratios and recuperation values for the IRSLs, (b) and pIRIR,,5 (¢) signals.
d) Measured dose/given dose ratios for both signals. e) Residual doses measured
from KF grains that have been sun-bleached for 2 days. A 250°C/10 s preheat was
used. f) Measured dose/given dose ratios obtained when the residuals of each signal
(calculated as the average of all aliquots in ‘e’) are subtracted from the measured
dose (errors have been propagated into the final measured dose/given dose
estimates). Each symbol represents one aliquot, and error bars represent one
standard error on all plots. All measurements were made on sample GHO-3.

120
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Figure 7-5. Representative IRSLs, (a) and pIRIR,,s (b) fading plots for aliquots of sample

Figure

GHO-3, and IRSLs (c) and pIRIR,s (d) g-value distributions for sample GHO-3.
124

7-6. Single-grain (a) and multi-grain aliquot (b) quartz D, distributions for the
modern sample (KHUT-10). Multigrain aliquot distributions for KF grains from the
same sample measured using the IRSLs, (c) and the pIRIR;5 signals (d). The grey
shaded area should capture 95% of the points if they were statistically consistent
with 0 Gyin ‘¢’ and 5 Gy in ‘d’ (Galbraith et al. 1999). 125

Figure 7-7. Radial plots of fading-corrected age distributions for samples GHO-2 (a), GHO-

Figure

Figure

Figure

3 (b), KHUT-1 (c¢), and KHUT-4 (d). Solid circles are aliquots measured using the
IRSLs, signal and open triangles are aliquots measured using the pIRIR;,s signal.
Residual doses of 0.635 + 0.003 Gy and 5.61 + 0.03 Gy have been subtracted from
the IRSLsy and pIRIR,s data, respectively, and the errors on the residual doses have
been propagated through into the error on the aliquot ages. 127

7-8. Radial plots of single-grain quartz age distributions for samples GHO-2 (a),
GHO-3 (b), KHUT-1 (c), and KHUT-4 (d). The IRSLs, KF aliquot fading-corrected
ages (open triangles) are superimposed on the quartz single-grain age distributions.
e) Single-grain IRSLs, fading-corrected ages (black dots) and IRSLs, fading-
corrected aliquot ages (open triangles) from sample GHO-2. A residual dose of
0.635 £ 0.003 Gy has been subtracted from the IRSLs, data and the errors on the
residual doses have been propagated through into the error on the KF ages. Black
solid lines are centred on the component ages identified by the Finite Mixture Model
(FMM) of Roberts et al. (2000) for the quartz and KF single-grain data. The grey
shaded band is centered on the age calculated for the KF aliquot data using the
MAM (Table 7-4). f) The proportion of total brightness versus the proportion of
quartz and KF measured grains from sample KHUT-1. 128

7-9. Slumped river bank deposits, including fallen silty-ash blocks adjacent to the
Son River channel near the Ghoghara main section. During the monsoon season,
these deposits are inundated by rising river water, washed into the river channel and
transported downstream. 131

7-10. Radial plots of single-grain quartz age distributions for samples GHO-2 (a),
GHO-3 (b), KHUT-1 (c¢), and KHUT-4 (d). The pIRIRys KF aliquot fading-
corrected ages (open triangles) are superimposed on the quartz single-grain age
distributions. A residual dose of 5.61 £0.03 Gy was subtracted from the pIRIR s
data and the errors on the residual doses have been propagated through into the error
on the aliquot ages. The grey shaded band is centered on the age calculated for the
KF aliquot data using the MAM (Table 7-4). . 134

Figure 7-11. Quartz and KF luminescence ages imply one of two possible scenarios: 1) the

YTT ash sampled at Ghoghara and Khunteli have been reworked by fluvial
processes and re-deposited either as fluvial silts or as mobile, cohesive blocks,
several thousand years after the Toba event (a and b), or 2) the YTT ash was
deposited soon after the volcanic event ~74 ka ago, but the underlying sediments
have since been eroded and implaced by younger, inset fluvial sediments (c).

141

Figure 8-1. Schematic cross-section of the Middle Son Valley looking east from the Rehi-

Son confluence, modified after Williams and Royce (1983) to include the new
Khunteli Formation introduced by Williams et al. (2006). Formation ages are after
Williams et al. (2006). The ages of the Patpara and Khunteli formations include a
question mark as these are debated (see Chapter 1, Section 1.2 for details). A
“depositional surface” is defined here as one in which the most recent stratigraphic
formation deposited is still preserved after lateral migration of the channel and/or
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incision of the river into the floodplain, while an “erosional surface” is one in which
one or more stratigraphic formations have been eroded, exposing one or more older
underlying stratigraphic formations. It is possible that some erosion has occurred on
all alluvial surfaces immediately before lateral migration of the channel and/or
incision of the river into the floodplain. 145

Figure 8-2. a) The Middle Son Valley (MSV) and the locations of archacological sites along

Figure

the banks of the Son River after Sharma and Clark (1983). b) WorldView-1 50 cm
panchromatic imagery of the study area. ¢) White dashed lines delineate the
prominent WSW-ENE trending terrace escarpment ~500-700 m south of the Son
River and the gentle break in topography parallel to the dirt road north of this.
Yellow lines delineate topographic survey transects A-A’ and B-B’. Luminescence
sample sites are indicated by yellow dots, and the three archacological sites of the
Dhaba locality of Haslam et al. (2012) are indicated by black dots. 146

8-3. a) View south across the Son River from Dhaba sites 2 and 3 (Haslam et al.
2012). b) View northwest from the location of IRSL sample 5, which was taken
from the highest terrace on the south side of the Son River. The dirt road along
which IRSL samples 2, 4 and 6 were collected (Fig. 8-2b) is visible just south of the
Son River. 147

Figure 8-4. Topographic profiles A-A’ and B-B’. The current river floodplain, as well as

Figure

IRSL age estimates of near-surface alluvial sediments are indicated. The
depositional age of the YTT is unclear (see Chapter 7). The elevation of YTT as in
the Ghoghara main section is shown in B-B’. See Figure 8-2¢ for a plan view of the
traverses and IRSL sample locations. 150

8-5. Alluvial sediments sampled for luminescence dating. Samples H-1 and H-5
were taken from the highest terrace south of the Son River. Samples M-2, M-4 and
M-6 were taken beside the dirt road ~240-340 m away from the river channel.
Samples L-3 and L-7 were taken in gullies near the edge of the lowest terrace. Meter
stick for scale. Refer to Figure 8-2¢ for sample locations. 151

Figure 8-6. Typical IRSL decay curve (a) and dose-response curve (b) for sample H-1. IRSL
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Chapter 1 — Introduction and Project Aims

1.1 Introduction

Palaecoanthropological studies that aim to understand the history of human evolution
and expansion out of Africa have focussed largely on a wealth of archacological evidence in
the Levant, or peripheral geographic zones such as western Europe, but relatively little work
has been done in the Arabian Peninsula or the Indian subcontinent (Petraglia 2007). This
PhD project is part of a larger study conducted by an international team of archaeologists,
geologists, volcanologists and palaecobiologists that is focussed on the chronology of human
occupation and the potential influence of the ~74 ka Toba super-eruption in northern
Sumatra on the environment and human populations in India (Williams et al. 2009; Haslam
& Petraglia 2010; Williams et al. 2010; Petraglia et al. 2012; Jones 2012; Williams 2012a,
b). The Toba volcanic eruption is the largest known eruption in the Quaternary (Chesner et
al. 1991). Tt formed a 100 x 30 km caldera (Toba Lake) and erupted ~2800 km”® of rhyolitic
magma. The minimum mass of ashfall has been estimated to be 2 x 10" kg, representing
~30% of the total mass of erupted material (Rose & Chesner 1987). Ash from the Toba
super-eruption (also known as Youngest Toba Tuff, or YTT) has been found in the South
China Sea, the Arabian Sea, as well as various locations across the Indian subcontinent
(Gatti et al. 2011: Fig. 1). Some have suggested that the global cooling triggered by this
event may have resulted in near extinction of human populations (Rampino & Self 1993;
Ambrose 1998; Rampino & Ambrose 2000; Ambrose 2003).

Between 2003 and 2009, multiple field seasons involving geological and
archaeological excavations have been conducted in the Jerreru Valley, Andhra Pradesh, and
in the Middle Son Valley, Madhya Pradesh (Petraglia er al. 2012). A series of
archaeological sites spanning from the Acheulian to the historic period were identified in the
Jerreru Valley, as well as a buried YTT tephra deposit estimated to exceed 1 million cubic
meters in volume. Middle Palaeolithic artefacts were found above and below YTT ash at
two sites in the Jerreru Valley, and technological analyses of these assemblages show no
evidence of any major shifts in tool manufacturing techniques up until 38 ka (Petraglia ef al.
2007, Petraglia et al. 2009; Haslam et al. 2010). Petraglia et al. (2007) reported optically
stimulated luminescence (OSL) ages of 77 + 6 ka and 74 = 7 ka from samples collected from
artefact-bearing deposits below and above the YTT ash, respectively. New OSL ages from
nine Indian sites reported at a conference by Roberts ez al. (2010) gave pre-Toba dates of
~74 ka or earlier, as expected, but nearly all of the post-Toba dates were ~55 ka or younger.
These new ages call into question the validity of the original ~74 ka age estimate for post-
Toba artefact-bearing deposits in the Jerreru Valley. Some argue that strong evidence for

human occupation immediately after the Toba event is still lacking, as the precision of



existing luminescence age estimates is too low (Balter 2010; Williams ez al. 2010; Williams
2012a).

Terraced alluvial deposits in the Middle Son Valley, Madhya Pradesh, India contain
YTT ash and Palaeolithic, Mesolithic and Neolithic artefacts (Sharma & Clark 1983;
Williams ef al. 2006) (Fig. 1-1a). Despite the many archacological and geological
excavations and surveys that have been conducted in the past, (e.g., Sharma & Clark 1983;
Williams & Royce 1983; Williams & Clarke 1984; Haslam ef al. 2011; Haslam et al. 2012),
as well during this study, no sites could be found that contain stratified YTT ash in close
association with artefacts. However, additional support for the argument that Middle
Palaeolithic hominins were present in India soon after (and perhaps prior to) the Toba
eruption is provided by a newly discovered archaeological site, Dhaba, on the north bank of
the Son River, a few tens of meters west of its confluence with the Rehi River (Haslam et al.
2012) (Dhaba sites 2 and 3 are shown in Fig. 1-1b), but these sites are currently undated.
This PhD project is focussed on developing and applying luminescence dating techniques to
alluvial sediments in the Middle Son Valley in order to help constrain the time of final

deposition of YTT ash- and artefact-bearing alluvial deposits.

1.2 The Middle Son Valley

The Middle Son Valley lies within the Vindhyachal Basin (60,000 km?) in north-
central India (Korisettar 2007) (Fig. 1-1a). It is one of four valleys in north-central India
(including the Ganga, Yamuna and the Belan valleys) that preserve a cultural sequence going
back to the early Acheulean (Sharma 1973; Sharma ef a/. 1980; Sharma & Clark 1983; Misra
& Pal 2002). The stratigraphy in the Middle Son Valley has been correlated with that of the
neighbouring Belan Valley (Williams et al. 2006; Gibling et al. 2008). The Son River is the
largest southern tributary to the Ganges, and runs east-west through north-eastern Madhya
Pradesh. It is not free to move laterally by more than 10 km and the alignment of the valley
is controlled by the east-west trending Narmada-Son tectonic lincament that is still prone to
seismic activity (Vita-Finzi 2004). The Middle Son Valley is bound to the north by the
Kaimer Range, the eastern-most extension of the Vindhya Range, and the Baghelkhand
Plateau to the south. The Kaimer Range consists of Vindhya Formation limestones,
sandstones and shales that rise up to ~200 m above the alluvial plain of the Middle Son
Valley, which is situated in an ancient tectonic graben. The local climate is subtropical, and

heavily influenced by the monsoon season, which lasts from July to September.
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1.2.1 Alluvial deposition in the Middle Son Valley

Alluvial terraces, ranging from ~5 to ~35 m above river level, have been observed to
extend over 70 km along the length of the Son River, between Baghor in the east and
Chorhat in the west (Williams & Royce 1983) (Fig. 1-1b). These terraces are thought to
have formed during a period of tectonic stability, when changes in river sedimentation
reflected changes in local plant cover and river load-to-discharge ratios, which in turn, were
influenced by regional climate (Williams & Royce 1982; Williams et al. 2006). The
stratigraphic sequence in the neighbouring Belan Valley has also been interpreted in light of
palaeoclimatic proxies and local changes to the river course (Gibling ef al. 2008).

The climate of the Middle Son Valley (as well as the Belan Valley) is influenced by
the Southern Oscillation, the NE (winter) monsoon, and to a large extent, the SW (summer)
monsoon (Prasad & Enzel 2006; Williams et al. 2006). In the summer months of June to
September, the Intertropical Convergence Zone (ITCZ) migrates northwards and the surface
SW monsoon winds bring large amounts of precipitation to the Indian subcontinent. During
the winter, northeasterly surface winds bring cold, dry continental air. The precipitation
associated with the SW monsoon drives river discharge and can substantially influence river
flow dynamics, sedimentation and morphology (Srivastava et al. 2001; Williams et al. 2006;
Gibling et al. 2008; Roy et al. 2011). Palacoclimate data and climate model simulations
suggest that two mechanisms exert the dominant forcing on millennial-scale variations in
SW monsoon strength. These are changes in the orbit of the Earth, predominantly in the
precession of the equinoxes which control the amount of insolation reaching the Earth as a
function of season, and hence the ability of the Tibetan Plateau to warm in the summer.
Second, changes in glacial boundary conditions (i.e., ice volume, sea surface temperature
(SST), albedo, and atmospheric trace-gas concentrations), which alter the way in which the
monsoon reacts to astronomical forcing. Clemens and Prell (1991) and Clemens et al.
(1991) have argued that while precession-forced insolation changes are the major pacemaker
of monsoon strength, glacial boundary conditions have played a relatively minor role in
determining the timing and strength of the Arabian Sea monsoon.

The Middle Son Valley terraces are comprised of sediments that have been
subdivided into five stratigraphic formations that represent major phases in the alluvial
history (Williams & Royce 1982, 1983; Williams & Clarke 1984, 1995; Williams et al.
2006) (Fig. 1-2), including a major phase of prolonged aggradation that is thought to have
occurred between ~39 ka and ~16 ka ago. These include (from oldest to youngest) the
Sihawal, Khunteli, Patpara, Baghor and Khetaunhi Formations, and their sedimentology,
estimated ages and associated archaeology are summarized in Table 1-1. Published

numerical ages for all stratigraphic formations are listed in Table 1-2.



1.2.2 Sihawal Formation

The Sihawal Formation is the oldest formation and is thought to record mass flow
movements (largely in the form of mudflows and alluvial fan gravels) and the accumulation
of colluvium on the exposed and eroded bedrock surface under semi-arid conditions and
reduced south-west monsoonal input (Williams & Royce 1983; Haslam ez al. 2011). During
this period, the Son River discharge is thought to have been low, with ephemeral or seasonal
streams draining channels on the valley sides. The mottled clay overlying the basal gravels
is thought to be reworked aeolian loess (Williams & Royce 1983). Lower Palaeolithic
artefacts are reported to underlie this loess (Williams & Royce 1983; Haslam et al. 2011).
The type-section for this formation is ~1 km east of Sihawal and it was initially estimated to
be >100 ka in age (Pal ef al. 2005; Williams ez al. 2006). This age estimate is based on a
thermoluminescence (TL) age of 104 + 4 ka and a polymineral fine-grain infrared stimulated
luminescence (IRSL) age of ~100 ka (Pal et al. 2005) from trenches near Nakhjar Khurd.
More recently, single-grain optically stimulated luminescence (OSL) ages of ~125 ka to
~131 ka have been reported for sediments associated with the Sihawal Formation containing
Acheulean artefacts at an archaeological site called Bamburi (Fig. 1-1a, Table 1-2) (Haslam

etal 2011).
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Table 1-2. Numerical ages for Middle Son Valley deposits, updated from Jones and Pal (2009).

Date (ka) . Stratigraphic formation
(**C ka cal BPY) Method/location (associated archaeology) Reference
3.215+0.07 4C (shelly/ Khetaunhi e
(3.26-3.63) not specified (Neolithic) Williams and Clarke (1984)
4.13+0.11 14C (charcoal)/ Khetaunhi -
(4.25-5.00) not specifid (Neolithic) Williams and Clarke (1984)
4.74+0.08 14C (shell)/ Khetaunhi -
(5.31-5.61) not specified (Neolithic) Williams and Clarke (1984)
5.305+0.09 C (CaCO;)/ Bachor fine member Mandal (1983)
(5.91-6.28) not specified & Williams and Royce (1982)
14
6.66+0.18 C (charcoal) Baghor fine member
Baghor 3 (microliths) Mandal (1983)
14,
833+022 C (charcoal)\ Baghor fine member
Baghor 2 (microliths) Mandal (1983)
11.87+0.12 14C (shell)/ ?jﬁggfe‘:ﬁgxmber or Williams and Clarke (1984)
(13.4-14.0) Rampur (Upper Palacolithic) Clark and Williams (1987)
12.81 4C (pedogenic CaCOs)/
40.22/-0.21 Baghor Nala Baghor coarse member Mandal (1983)
13.145+0.14 "C (pedogenic CaCOs)/ Bashor coarse member Mandal (1983)
(15.1-16.1) Baghor Nala & Williams and Royce (1982)
IRSL Pal et al. (2005)
19+2 coarse-grained feldspar)/ al et al.
;aghor Ig\,ala par) Baghor fine member Williams ef al. (2006)
20.135 +0.22 14C (shell)/ Bashor fine member? Williams and Clarke (1984,
(23.45-24.75) Khunderi Nala & ‘ 1995)
24+3 IRSL | s
(or 22 ka in Pal et (coarse-grained feldspar)/ Baghor coarse member l;\e/l'ue't al ( 0015)200 5
al(2009)) Baghor Nala illiams et al. ( )
TL
26.1+5.4 (polymineral fine grains)/ Baghor coarse member Pal et al. (2005)
Nakhjar Khurd
26.25 £0.42 C (shelly/ Baghor coarse member? Williams and Clarke (1984,
(29--31) Rampur (Upper Palaeolithic?) 1995) .
’ Clark and Williams (1987)
IRSL Pal 1. (2005)
coarse-grained feldspar)/ al et al.
39+9 E—}aghor Ig\I o par) Baghor coarse member Williams ef al. (2006)
1C (pedogenic CaCO®)/
26.85 Gerwa well, (location not Patpara Mandal (1983)
+0.82/-0.75 specified) Sharma and Clarke (1982)
OSL (quartz)/ Patpara )
140+ 11 Patpara (Iate Acheulean) Haslam et al. (2011)
OSL (quartz)/ Patpara
137+ 10 Patpara (late Acheulean) Haslam et al. (2011)
IRSL Pal et al. (2005)
coarse-grained feldspar)/ Patpara al et al.
86 (coarse-g par) P Williams et al. (2006)
IRSL
~100 (polymineral fine grains)/ Sihawal Pal et al. (2005)
Nakhjar Khurd
T Siawal Williams and Clarke (1995)
; ; ihawa
104420 gg&ﬁgf&ﬂrﬁm grains)/ Clark and Williams (1987)
OSL (quartz)/ Sihawal
13110 Barbuos (late Acheulcan) Haslam et al. (2011)
OSL (quartz)/ Sihawal
125+ 13 Bamburi (late Acheulean) Haslam et al. (2011)
OSL (quartz)/ Sihawal
13149 Bamburi (late Acheulean) Haslam et al. (2011)

'Calibrated radiocarbon ages are from Williams ez al. (2006), and are expressed at the 95% confidence interval..
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1.2.3 Patpara Formation

The Patpara Formation was initially thought to record rapid sediment deposition in a
channel at peak or falling-peak flood stage, sometime in the Late Pleistocene (Williams &
Royce 1983). The undulose laminations and massive structure have been attributed to rapid
rates of channel bed aggradation, and the alternating coarse and fine sediment units were
thought to record a shifting channel. Its distinct red colour was attributed to the mobilisation
and precipitation of iron and manganese throughout the deposit during a period of moist
conditions, followed by a return to drier conditions (Williams & Royce 1983). Stratified
occurrences of Middle Palaeolithic artefacts have been reported in this formation at the type
locality, located ~10 km west of the Ghoghara main section (Blumenschine ez al. 1983). The
proposed age of the Patpara Formation is disputed and was initially based on only one IRSL
age of 58 = 6 ka from near the village of Sihawal (Pal ef al. 2005; Williams et al. 2006) (Fig.
1-l1a, Table 1-2). The validity of this age estimate has been questioned in light of
archaeological evidence, the stratigraphic context of the IRSL sample (which is poorly
constrained) (Jones & Pal 2009), the fact that the IRSL age was not corrected for fading (Pal
et al. 2005), and new single-grain OSL ages from sediments in the Patpara Formation type
locality at Patpara (Fig. 1-1a, Table 1-2) (Haslam ez al. 2011).

Jones and Pal (2009) state that a ~58 ka age for the Patpara Formation contradicts
available archaeological evidence, as the Patpara Formation preserves late Lower
Palaeolithic and Middle Palaeolithic artefacts (Blumenschine et al. 1983) that should be
older than ~74 ka according to what is currently known about the Indian Palaeolithic record
for this period (Misra 1989; Misra 2001; James & Petraglia 2005). Sediments near the base
of an exposed sequence at the Patpara type locality have been recently dated to ~137 and
~140 ka using single-grain OSL techniques, suggesting that their deposition occurred at
about the same time as sediments associated with the Sihawal Formation at Bamburi and
Nakhjar Khurd (Section 1.2.2) (Haslam er al. 2011). Haslam er al. (2011) note that
sediments associated with the Sihawal Formation are the product of activity within the main
Son River channel, while the Patpara type locality sediments, more than 30 km away, are
derived from local sources separated from the main river channel by an east-west trending
bedrock ridge (Haslam et al. 2011: Fig. 1). They propose that assessing the temporal and
spatial continuity between the two formations will require reanalysis of Sihawal-like
sediments near the base of the Patpara Formation in the Patpara type locality, and Patpara-
like sediments near the upper part of the Sihawal Formation in the Sihawal Formation type-

section.
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1.2.4 Baghor Formation

The Baghor Formation has been divided into a coarse lower member and a fine
upper member (Williams & Royce 1983). The coarse member is associated with rolled
Middle Palaeolithic artefacts and well preserved fossils, including buffalo, hippo, crocodile,
antelope, elephant and tortoise. It is thought to record channel scour and sand deposition
within a low sinuosity bed-load river with a high load-to-discharge ratio (Williams & Royce
1983). Post-depositional calcium carbonate-cemented horizons suggest a trend towards
aridity (Williams & Royce 1983). The fine member is thought to record a change from a
bed-load to suspended-load flow regime, with intermittent overbank accretion of fine
sediment on a floodplain, and is associated with fresh Upper Palaeolithic artefacts (Williams
& Royce 1983). The Baghor Formation is thought to represent a major phase of aggradation
during a period of aridity leading up to and encompassing the Last Glacial Maximum
(Williams et al. 2006). This arid period has also been documented in other parts of India
(Chapter 8) and the intertropical world (Williams ez al. 2006, and references therein). The
age of the Baghor Formation has been constrained by 11 dates including radiocarbon ages
from carbonates, charcoal and shell, IRSL ages from coarse-grained feldspar, and one TL
age from polymineral fine grains (Table 1-2). The age estimates are derived from samples
collected at archaeological sites Baghor 2 and 3, north of Khunderi Nala, Khunderi Nala,
Rampur, Baghor Nala, and Nakhjar Khurd (Fig. 1-1a, Table 1-2).

1.2.5 Khunteli Formation

The Khunteli Formation, located on the south side of the Son River ~25 km east of
the Ghoghara main section (Fig. 1-1a), was introduced by Williams et al. (2006) to account
for YTT ash-bearing sediments in the valley, but recent work has shown that the introduction
of this formation and its temporal relationship with other formations is problematic (Jones &
Pal 2009). It is thought to record erosion and deposition of fluvial sands, gravels, clays and
loams, and the choking of tributary streams with YTT ash ~74 ka ago (Williams et al. 20006).
Williams ez al. (2006) hypothesized that the Khunteli Formation and its YTT ash deposits
are actually older than the Patpara Formation (40-58 ka, Table 1-1), but alternative
hypotheses have been proposed. For example, Williams and Royce (1982) reported the YTT
as part of the coarse member of the Baghor Formation, Williams and Clarke (1995) placed
the YTT before the Baghor Formation, and Jones and Pal (2005) and Jones (2010) believed
the YTT accumulated sometime after deposition of the Patpara Formation. Sedimentological
observations made by Gatti ef al. (2011) suggest that the ash deposit at this location has been
reworked. At the time of writing of this thesis, no numerical ages associated with the

Khunteli Formation, or sediments encasing the YTT ash, have been published. Numerical
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ages from YTT and/or YTT ash-bearing alluvial sediments are needed to clarify its position

within the stratigraphic sequence in the Middle Son Valley.

1.2.6 Khetaunhi Formation

After deposition of the fine member of the Baghor Formation ~16 ka ago, the Son
River is thought to have gone through episodes of downcutting in response to global
warming and a wetter climate, before an aggradational phase in the Holocene (Williams &
Royce 1983; Williams et al. 2006). This aggradational phase led to the deposition of the
Khetaunhi Formation in the form of a ~10 m-high inset terrace, which is best observed on
the south bank of the Son River near the Rehi-Son River confluence. Three radiocarbon
ages ranging from ~3.2 to ~4.7 ka have been obtained from shell and charcoal from this
formation (Williams & Clarke 1984) (Table 1-2), but the precise locations of the radiocarbon

sample sites were not specified.

1.2.7. The need for better chronological control

Terraced alluvial sediments in the Middle Son Valley extend for over 25 km from
the Rehi-Son confluence to the Khunteli Formation type-section, but the chronology of these
sediments is constrained by only a few numerical ages that are spread over a wide area (Fig.
1-1a, Table 1-2). Moreover, the geomorphic and sedimentary contexts of many dated sites
are poorly documented (Table 1-2) (Jones & Pal 2009). This makes lateral correlations
between “known age” stratigraphic units and their associated artefacts difficult and possibly
misleading. Further work is necessary to extend this chronology to more sites using robust
numerical dating techniques, in conjunction with more detailed sedimentological and

geomorphological observations.

1.3 YTT ash — a reliable chronostratigraphic marker?

YTT ash was examined at two locations in this study: one near the confluence of the
Son and Rehi Rivers (24°30°7.608”N, 82°1°2.748”E) (including the Ghoghara main section,
and seven additional sections, all within ~100 meters of each other, described by Gatti et al.
(2011), see Chapter 7), and one ~25 km east of the Rehi River, on the south side of the Son
River in the Khunteli Formation type-section (82°16°33.59”E, 24°32°27.718”N) (Fig. 1-3)
(Williams et al. 2006; Gatti et al. 2011). The YTT exposed near the Rehi-Son confluence
was first discovered by Williams and Royce in 1980 (Williams & Royce 1982). The ash

exposed at both sites has been sampled and studied extensively in previous geological and
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palaecoenvironmental studies (e.g., Acharyya & Basu 1993; Williams & Clarke 1995;
Westgate et al. 1998; Williams et al. 2006; Petraglia et al. 2007; Williams et al. 2009; Jones
2010; Gatti et al. 2011).

To date, there have been no attempts to date the ash directly, however, extensive
geochemical analyses on the deposits suggests that it is YTT. Acharyya and Basu (1993)
showed that the chemical composition of whole-ash samples from Khunteli (spelled Khutiali
in their Table 2) is comparable to that of ash samples collected from Orissa, the Central
Narmada Valley basin, the Kudki basin in Maharashtra, the YTT deposits in the Toba
Caldera, Sumatra, as well as glass shard fractions from ash collected from deep sea cores in
the Indian Ocean, the Bay of Bengal, and Kota Tampan, Malaysia. Instrumental neutron
activation analyses showed that chondrite-normalized rare earth element abundancies in ash
from the Middle Son Valley are similar to those of other ash samples from the Indian
subcontinent, as well as Indian Ocean deep sea cores and Toba pumice (Acharyya & Basu
1993). Electron microprobe analyses on individual glass shards by Shane et al. (1995),
Westgate ef al. (1998), and Petraglia et al. (2007), and on biotite by Smith ez al. (2011), also
confirm that the ash correlates with the ~74 ka YTT event in Sumatra. The YTT ash units at
Ghoghara and Khunteli have been used as chronostratigraphic markers to help correlate the
stratigraphies of the Son and neighbouring Belan Valleys (Williams et al. 2006), as well as
the Middle Son Basin and the Central Narmada Basin (Acharyya & Basu 1993). Carbon
isotope compositions of pedogenic carbonates sampled above, within, and below the ash
from excavated sections at both locations have been used to infer changes in C; and Cy4
biomass before and after the Toba eruption (Williams ez al. 2009). Based on this evidence, it
has been proposed that C; forest was replaced by wooded to open C,4 grassland in north-
central India after the Toba eruption (Williams et al. 2009).

The reliability of the YTT ash as a chronostratigraphic marker has been questioned
due to contradictions in the literature regarding its relation to other stratigraphic formations
(see Jones & Pal 2009, and discussion in Section 1.2.5), and to sedimentological
observations made from YTT ash-bearing sediments (Jones 2010; Gatti ef al. 2011). Gatti et
al. (2011) and Matthews ef al. (2012) consider the lowermost 4 cm of the YTT ash unit at
the Ghoghara main section to be primary ash fall based on its sedimentological
characteristics. These include weakly-developed planar bedding but no cross-bedding, a
uniform thickness and bedding, a white colour (Munsell colour 10YR 8/1) and an absence of
detrital (non-volcanic) material. Sedimentological observations by Gatti er al. (2011)
suggest that the ash deposit at the Khunteli Formation type-section (Fig. 1-3b) has been
reworked, as it shows evidence of mixing with siliclastic silt and sand and, therefore, cannot

be used as a chronostratigraphic marker. Clearly, improved chronological control on the



14

final deposition of the ash is needed before it can be used as a chronostratigraphic marker in

geological and palaeoenvironmental investigations.

1.4 Constraining the time of final deposition of alluvial deposits and their artefacts
— methods used previously

The depositional age of Middle Son Valley alluvial sediments and their associated
artefacts have been constrained using radiocarbon, TL, IRSL, and OSL dating techniques

(Table 1-2). These methods, and some of their limitations, are described below.

1.4.1 Radiocarbon dating

Radiocarbon dating exploits the fact that '*C in living creatures, which is in
equilibrium with that available in the atmosphere or surrounding waters, begins to decay
after their death with a half-life of 5730 years (Roberts & Jacobs 2008). Radiocarbon ages
from shell or charcoal in the Middle Son Valley reflect the time of death of the organism, but
not necessarily the time of final deposition of the shell or charcoal. If the shell or charcoal
has been reworked after death of the organism, then radiocarbon ages from this material can
overestimate the burial age of the artefacts or alluvial sediments in question. Radiocarbon
dates from shell in the alluvial sediments in the Belan Valley are commonly several thousand
years older than OSL dates obtained from the same bed (Gibling ef al. 2008). The accuracy
of the radiocarbon ages from pedogenic carbonates (CaCOs) in the Middle Son Valley are
undetermined (Mandal 1983). These would be minimum ages if the pedogenic carbonate
precipitated sometime after the deposition of the host sediment, or maximum ages if the
carbonates have been re-mobilized and re-deposited. Because of its half-life, radiocarbon
dating is not useful for materials older than ~55,000 years (Roberts & Jacobs 2008);
luminescence dating techniques, by contrast, can yield ages for materials up to several

hundreds of thousands of years old (Aitken 1998).

1.4.2 Thermoluminescence dating

Thermoluminescence dating exploits the fact that many natural minerals absorb and
store ionizing energy from radiation emitted from radioisotopes within mineral grains and in
their immediate surroundings, as well as from cosmic rays. If the mineral is heated to a
sufficiently high temperature, some of the stored energy is released in the form of light,
called thermoluminescence (TL) (Lian 2007b). To determine a TL age, it is necessary to
obtain 1) the laboratory dose of radiation that produces the same intensity of TL as did the
environmental radiation dose (called the equivalent dose, D.) and 2) a measure of the

environmental dose rate (Lian 2007b).



15

1.4.3 OSL dating

OSL dating was developed from TL dating in the mid 1980s (Huntley e al. 1985),
and has major advantages over TL dating for sun-bleached sediments. The main advantage
in OSL dating is that the most appropriate electron traps are emptied — that is, those that have
likely been emptied in antiquity by sunlight exposure, rather than by heat. Because only the
most light-sensitive electron traps are sampled, there is less likelihood of age overestimation
due to insufficient sunlight exposure and much younger sediments can be dated. Also,
determination of the D, in OSL dating is generally simpler than in TL dating, can produce
more accurate ages by performing a range of internal checks on sample integrity and
suitability for dating, and usually result in better precision (Lian 2007a).

OSL ages from single grains of quartz have been determined for two archaeological
sites (Bamburi and Patpara) in the Middle Son Valley for sediments last exposed to sunlight
about 130-140 ka ago (Haslam et al. 2011) (Fig. 1-1a, Table 1-2). The quartz from these
sites was shown to be suitable for single-aliquot regenerative-dose (SAR) dating procedures
(see Chapter 2, Section 2.4 for a description of SAR), and the robustness of the OSL ages
was evaluated using a range of data analysis techniques and assumed sediment burial
conditions (Haslam er al. 2011). Thus, these ages are thought to reliably constrain the
deposition of sediments and late Acheulean artefacts at these sites, although the D, values lie

at the upper end of the range achievable using quartz.

1.4.4 IRSL dating

IRSL ages from polymineral fine grains and coarse-grained feldspars have also been
used to constrain the chronology of artefact-bearing stratigraphic formations in the Middle
Son Valley (Table 1-2) (Pal et al. 2005; Williams et al. 2006). These ages are problematic,
however, because a multiple-aliquot additive-dose method was used to estimate the D,
values, and the dating protocol did not include a correction for anomalous fading (Williams
et al. 2006). Multiple-aliquot techniques require 20-50 aliquots of sample to be prepared,
dosed, heated and measured in the laboratory, with normalization between aliquots (Lian
2007a). Single-aliquot techniques are generally preferred because 1) they minimize the
amount of sample and measurement time required in the laboratory (Duller 1991), 2) single-
aliquot regenerative-dose techniques allow for the self-normalization and sensitivity
correction of each aliquot, 3) each aliquot provides an independent measure of D, to
construct a D, distribution, and 4) the resulting D, distributions facilitate the identification of
aliquots that contain grains that have not been fully bleached by sunlight before burial, or

that are contaminated by grains from older or younger deposits. The identification of
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incompletely bleached or contaminating grains is best achieved when each aliquot is
composed of only a single grain (Jacobs & Roberts 2007).

Ideally, attempts to date feldspars should include tests and corrections for anomalous
fading, a phenomenon thought to be the result of the quantum-mechanical tunnelling of
electrons from one defect site to another (Spooner 1994a) (see Chapter 2); they should also
make use of a single mineral (e.g., potassium feldspar, KF), instead of a mixture of minerals
that likely respond differently to dosing, heating and irradiation in the laboratory (Duller
1997). Geochronological investigations in the Middle Son Valley would benefit from
research that assesses the suitability of KF grains to single-aliquot techniques for D,
determination and for fading measurement and correction, as luminescence ages from KF
grains could provide an independent source of chronological control with which quartz

luminescence ages can be compared.

1.5 The aims of this research and structure of the thesis

The main aims of this thesis are threefold: 1) to explore the luminescence dating
potential of individual grains and multi-grain aliquots of potassium feldspar from alluvial
sediments in the Middle Son Valley using single-aliquot regenerative-dose dating
techniques, fading measurements and corrections; 2) to assess the time of final deposition of
YTT ash-bearing deposits at the Ghoghara main section and at the Khunteli type-section
using luminescence dating techniques; and 3) to test and refine current models of alluvial
deposition of the Middle Son Valley (Williams et al. 2006; Gatti et al. 2011) using new

IRSL ages and field observations. The specific research objectives include the following:

1. To explore the IRSL dating potential of individual KF grains using single-aliquot
regenerative-dose (SAR) dating techniques, fading measurements and corrections. This
includes:

a. an investigation into the possibility of using the luminescence characteristics of
individual grains to differentiate between KF grains and contaminating quartz,
plagioclase or other mineral grains in a sample;

b. investigations into the suitability of single KF grains for SAR measurement
procedures; and

c. an assessment of the source of spread (or overdispersion) in a KF single-grain
age distribution for a sample collected from deposits underlying YTT.

2. To use luminescence ages from both quartz and KF grains to assess the depositional age
of YTT ash-bearing deposits at the Ghoghara main section and the Khunteli Formation

type-section. This involves:
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evaluating the reliability of IRSL ages obtained from small KF aliquots of
samples collected from YTT ash-bearing deposits using single-grain quartz OSL
ages from the same samples and the KF single-grain age distribution obtained in
research objective 1.

evaluating the reliability of previous palacoenvironmental interpretations made
from isotope compositions of pedogenic carbonates sampled above, within, and

below the ash (Williams et al. 2009).

3. To determine new IRSL ages from KF aliquots of samples collected from a series of

alluvial terraces near the confluence of the Son and Rehi Rivers, and combine these with

topographic data and field observations to help test and refine a model of alluvial

deposition for the Middle Son Valley (Williams er al. 2006). The reliability of these

new IRSL ages are informed by the results of research objective 2.

The following sections of the thesis are organized into 8 chapters (Chapters 2-9), and these

are summarized below:

Chapter 2 is a literature review on luminescence dating principles and
procedures for quartz and feldspar.

Chapter 3 describes the methods of luminescence sample collection, preparation
and measurement used in this thesis.

Chapter 4 explores relationships between KF grain major element concentrations
and luminescence signals, D, values, fading rates and calculated KF grain ages
(research objective 1a).

Chapter 5 describes a series of dose-recovery experiments on single KF grains to
determine their suitability to SAR measurement procedures (research objective
1b). These include a series of dose recovery tests on sun-bleached and
laboratory-bleached grains, as well as assessments of the effects of IR laser
power and stimulation duration on KF grain IRSL signals. An attempt to assess
the potential of grain heating by the IR laser is also described.

Chapter 6 explores sources of age overdispersion in a K-rich feldspar sample
using measurements of D., fading corrections applied to single-grain ages, and
measurements of K content in individual grains (research objective 1c). These
results are contained in a manuscript that has been accepted for publication in
Radiation Measurements, and is referred to here as Neudorf ef al. (2012).
Chapter 7 assesses the age of YTT ash deposits at two sites in the Middle Son
Valley using both quartz and KF grains extracted from sediments bracketing the

ash deposits (research objective 2a), and discusses the implications for
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palaecoenvironmental reconstructions using pedogenic carbonates collected from
these sediments.

Chapter 8 combines new IRSL ages for river terrace sediments near the Rehi
Son confluence with field observations and topographic profiles to test a model
of alluvial deposition for the Middle Son Valley (Williams et al. 2006) (research
obective 3).

Chapter 9 includes a summary and conclusions, as well as some

recommendations for future research directions.
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Chapter 2 — Luminescence dating

OSL dating is a numerical dating technique that exploits the luminescence properties
of minerals (usually quartz or feldspar) to estimate the time since their last exposure to
sunlight (e.g., the time of sediment deposition and burial). The calibrated OSL intensity of a
mineral is used as a measure of the total radiation dose absorbed by that mineral since burial.
This data is combined with independent measurements of the environmental dose rate at the

sample site to obtain a burial age of the sediment using the following equation:

Age (ka) = D, (Gy) / environmental dose rate (Gy/ka) (1)

OSL dating was introduced by Huntley et al. (1985) as an alternative to TL dating, a
technique first developed in the 1960s where D, estimates are obtained through thermally
stimulated luminescence measurements (Lian 2007b). OSL dating has since gained
popularity in the geosciences and archaeology, because the depositional age of sediment can
be estimated directly (Roberts 1997; Lian & Roberts 2006) and because the age range goes
well beyond that of radiocarbon dating, spanning the last glacial-interglacial cycle (Rittenour
2008). Methods are currently being developed to extend the age range of quartz (e.g.,
Yoshida ef al. 2000; Chauhan et al. 2009; Jain 2009; Duller & Wintle 2012). If anomalous
fading in feldspars is absent or can be corrected for, theoretically feldspars could be used to

date sediments well over a million years old (Wallinga et al. 2007).

2.1 Luminescence dating principles

Minerals contain structural defects and chemical impurities that can act as traps for
freely roaming (unbound) electrons in the conduction band (Aitken 1998). Unbound
electrons are produced by ionization radiation (alpha, beta and gamma rays) emitted by the
mineral grains and surrounding sediments, and unknown sources from outer space (cosmic
rays). The term “dose” (such as the equivalent radiation dose measured from a sample, or a
laboratory-administered radiation dose) is defined as the energy absorbed per kilogram, and
the unit of measurement is the Gray (Gy) where 1 Gy = 1 J/kg. For the dating of Quaternary
events, dose rates are usually expressed in Gray per thousand years (Gy/ka).

The number of electrons that accumulate in traps in the crystal lattice of a mineral is
proportional to the radiation dose absorbed by that mineral (Aitken 1998). These electrons
can be evicted from traps by exposure to light or heat. In the case of light, the integrated
luminescence (or total area beneath an OSL or IRSL decay curve) of a mineral is
proportional to the number of trapped electrons, and hence to age. The luminescence

intensity at any point in an OSL or IRSL decay curve is also proportional to the number of
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trapped electrons (Aitken 1998). Therefore, the energy stored by an aliquot or a grain as a
result of radiation exposure can theoretically be estimated by measuring the OSL or IRSL
signal.

The efficiency with which a trap type is emptied by light (or the detrapping
probability) is dependent on the trap depth below the conduction band (deeper traps
requiring higher excitation energies, as measured in electron volts (eV)), the trap thermal
stability, optical sensitivity, and the temperature and wavelength used during stimulation
(some traps being more sensitive to specific wavelengths of light) (Bailey ez al. 1997; Aitken
1998; Singarayer & Bailey 2003; Thomsen et al. 2008; Jain 2009). The detrapping
probability (b) is proportional to the photoionization cross-section of the trap (o) (the
probability that a photon will eject an electron from the trap), and the maximum stimulation
light intensity (/) (i.e., b = ¢ Iy) (Bulur 1996).

The sensitivity (or OSL per unit dose) of a mineral in response to optical stimulation
is proportional to the number of evicted electrons that recombine at luminescence
recombination centres (Murray & Wintle 2000). Under certain conditions, a proportion of
evicted electrons will recombine in non-radiative recombination centres, and/or occupy other
shallow or deep traps that are less optically sensitive, reducing the OSL sensitivity of the
mineral (Murray & Roberts 1998; Murray & Wintle 2000). The luminescence efficiency per
unit trapped charged and the rate of trap filling per unit ionization in natural aliquots or
grains may be different to that in samples that have been bleached and/or given radiation
doses in the laboratory (Murray & Wintle 2000). These sensitivity changes need to be
monitored and corrected for when using single-aliquot regenerative-dose dating protocols
(see Section 2.2) (Murray & Roberts 1997; Murray & Roberts 1998; Galbraith er al. 1999;
Murray & Mejdahl 1999; Wallinga ef al. 2000).

2.2 Quartz or feldspar?

The choice of quartz or feldspar for luminescence dating depends on the abundance
of these minerals in the desired grain size fraction, their suitability for dating sediments of a
particular age range, and the luminescence characteristics of these minerals at a particular
site (Lian 2007a). The mineral of interest is typically extracted from a sample using heavy
liquid separation techniques (Aitken 1998), but if the sampled sediment is composed
predominantly of silt and clay, then heavy liquid separation of minerals can be difficult (Kim
et al. 2009). The quartz fraction can be targeted using post-IR blue stimulation (Banerjee et
al. 2001; Roberts & Wintle 2001; Zhang & Zhou 2007). Quartz can also be chemically
isolated in fine grain sediments using hydrofluorosilicic acid (H,SiF4) or hydrofluoric acid

(HF) (Roberts 2007 and references therein).
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The advantages and disadvantages associated with luminescence dating of quartz
and feldspar have been summarized by Lian (2007a and references therein), and are listed in
Table 2-1. The following sections describe the luminescence characteristics of quartz and

feldspar, and commonly used regenerative-dose measurement protocols for these minerals.

Table 2-1. Advantages and disadvantages of using quartz or feldspar for luminescence dating
(modified after Lian 2007a).

Quartz Feldspar

Advantages Disadvantages Advantages Disadvantages

Relatively low luminescence

Highly resistant to . . . Luminescence saturates at Weathers more readily in
. intensity; some samples emit . .
weathering : higher radiation doses nature than does quartz
no luminescence
Luminescence signal . . . .
Luminescence saturates at Luminescence intensity may

bleaches more rapidly in Suffers from anomalous

low radiation doses be orders of magnitude

sunlight than that from compared to that of feldspar higher than that of quartz fading
feldspar
The high K content in KF
grains make them less
Thermal transfer can be sensitive to differences in The luminescence signal
Does not appear to suffer . . . .
from anomalous fading higher in quartz than in beta dose received by bleaches more slowly than
feldspar individual grains in their that of quartz

burial environment (beta
microdosimetry)

2.3 The luminescence process in quartz

The luminescence process in quartz can be summarized by an energy level diagram
(Fig. 2-1). Irradiation of the crystal causes electrons to become detached from their parent
nuclei and subsequently trapped at local defects in the crystal lattice that are attractive to
electrons (T). Subsequent heating or optical stimulation can release these electrons, and
those that recombine radiatively at luminescence centres (L) will emit a photon of light.
Only traps sufficiently deep below the conduction band (~1.6 eV or more) are useful for
OSL dating, because they can hold electrons for several millions of years (Aitken 1998).

Figure 2-2 shows TL curves for quartz measured before and after a 10 s exposure to
a green (514 nm) laser beam delivering 5 mW/cm® to the sample. The detection window was
centred on the violet/near-UV region and the sample was heated at 10 °C/s. The peak at
325°C is easily bleachable, has an emission peak at 380 nm, and is presumed to be the main
source trap for OSL in quartz (Wintle 1997; Aitken 1998). The peak at 375°C has been
termed the ‘slowly bleaching peak’ and has an emission peak at 480 nm (Wintle 1997).
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Figure 2-1. The luminescence process in quartz. (i) Ionization due to exposure of the crystal to
nuclear radiation, with trapping of electrons and holes at defects L and T, respectively. (ii)
Storage during antiquity. (iii) Electron eviction from T and subsequent recombination at L in
response to optical stimulation. Alternatively, electrons may recombine at non-luminescence
centres, be recaptured by a trap of the same type, or be captured by another type of trap. From
Aitken (1998).
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Figure 2-2. The effect of bleaching (with a green laser beam for 10 s) on the TL glow-curve of
quartz grains (from Aitken 1998, based on Rhodes (1990)).

Other peaks (not shown in Figure 2-2) can appear at 110°C, 160°C, 180°C and
220°C (Wintle 1997; Murray & Roberts 1998). The 160°C and 280°C peaks have been
shown to be relatively insensitive to optical stimulation, and can be a source of thermally
transferred charge to the main (325°C) OSL trap during preheating (Murray & Roberts

1998). The 110°C TL peak is absent in natural samples and accumulates charge during
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irradiation, or phototransferred charge during illumination, of the sample in the laboratory
(Murray & Roberts 1998). This peak can be used to monitor sensitivity change in quartz
(Murray & Roberts 1998; Singhvi ef al. 2009).

Typically, luminescence signals (an example shown in Fig. 2-3) are measured using
continuous-wave (CW) stimulation where the prompt luminescence emission is recorded
during constant power excitation (Bulur ef al. 2000). The decrease in quartz CW-OSL
intensity with stimulation time is slower than what would be expected in a curve exhibiting
exponential decay (McKeever ef al. 1997). This is attributed to the contribution of multiple
components (each approximated by an exponential equation) to the overall signal (Bailey ez
al. 1997; Jain et al. 2003) and to retrapping of electrons in non-luminescence centres or other
traps (McKeever et al. 1997). Quartz CW-OSL decay curves can be fitted using an equation
that equals the sum of 3 or more exponential terms representing first-order components of
the signal. These components usually consist of a fast, medium and at least one slow

component (Bailey et al. 1997; Wintle & Murray 2006).

80000 -

60000 -

40000 -

OSL (cts/0.02s)

20000

0 T T ¥ Ls T T

01 00 01 02 03 04 05 06 07 08 0.9
Stimulation time (s)

Figure 2-3. An OSL decay curve from a single quartz grain. The OSL signal intensity is
reported in photon counts (cts) per 0.02 s of green (532 nm) laser stimulation. From Duller et al.
(2003).

2.4 OSL measurement protocols

The most commonly used (and likely the most robust) technique for measuring the
D, in quartz aliquots or grains is the single-aliquot regenerative-dose (SAR) protocol
(Murray & Roberts 1998; Roberts ef al. 1998; Galbraith et al. 1999; Murray & Wintle 2000).
This protocol involves constructing an OSL dose-response curve by repeatedly dosing,
heating, and optically stimulating a sample (Table 2-2). The measurement of the natural

signal (L,) is followed by the measurement of a laboratory-given test dose (T,). A dose-
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response curve is then generated from the induced signals (L) arising from a series of
regenerative doses given in the laboratory, each followed by another test dose measurement
(Ty) to correct for sensitivity changes (Galbraith ef al. 1999). L,/T ratios at each dose point
result in a sensitivity-corrected dose-response curve onto which L/T, is projected to
determine D.. Quartz dose-response curves are typically fitted by a saturating exponential or

saturating exponential-plus-linear function (Galbraith et al. 1999; Murray & Wintle 2000).

Table 2-2. The SAR protocol for single aliquots (from Wintle and Murray 2006, after Murray
and Wintle 2000, 2003).

Step Treatment Observed
1 Give dosel, D;

2 Preheat (160-300°C for 10 s)

3 Stimulate for 40 s at 125°C —L2
4 Give test dose, Dy
5
6
7

Heat (160-300°C)
Stimulate for 40 s at 125°C~ —T/
Stimulate for 40 s at 280°C

8 Return to 1

"For the natural sample, i=0 and D, is the natural dose.
’L; and T; are derived from the stimulation curve, typically the first 1-10 s of initial OSL signal, minus a
background estimated from the last part of the stimulation curve.

To determine whether or not a sample is appropriate for the SAR, tests have been
integrated into the SAR procedure to check for negligible recuperation (the “zero-dose
point”) and proper correction for sensitivity change (the “recycling ratio”) (Murray & Wintle
2000). The “zero-dose point” is the sensitivity-corrected signal obtained from a 0 Gy
regenerative dose. The resulting signal is called the recuperated signal (Aitken & Smith
1988). This signal may include a residual signal from the test dose measured in the
preceeding SAR cycle that was not completely depleted during OSL stimulation, and/or
charge that has been thermally transferred from optically insensitive traps to optically
sensitive traps during the previous irradiation, heating and optical stimulation (Huntley &
Clague 1996; Murray & Wintle 2000). Murray and Wintle (2000) suggest that the
recuperated signal should not exceed 5% of L,/T,.

At the end of a SAR run, the signal from an additional regenerative dose (or a
“repeat dose point”) of the same magnitude as one measured earlier in the SAR run (usually
the first regenerative dose after the natural) is used to check for proper sensitivity correction
of the regenerative-dose signals. The ratio of the sensitivity-corrected repeat dose signal to

the first regenerative-dose signal after the natural is termed the “recycling ratio”. If SAR is
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successful in correcting for sensitivity change, then this ratio should be unity, but a range of
values between 0.90 and 1.10 is commonly considered acceptable (Murray & Wintle 2000).
Recuperation and build up of background signal during a SAR cycle may be minimized by
applying a high temperature OSL stimulation after each SAR cycle (Murray & Wintle 2003),
restricting L, and Ty measurements to the first few channels of the OSL decay curve (this
method also serves to minimize detection of medium and slow components), and (or)
applying early-light background subtraction techniques (e.g., Cunningham & Wallinga
2010). Dose recovery tests (the recovery of a laboratory dose after bleaching by artificial
light or sun-light) (Roberts ez al. 1999; Wallinga et al. 2000) also provide a check on the
suitability of a sample to the SAR protocol.

The SAR procedure assumes that the sensitivity of the test dose is directly
proportional to the sensitivity of the preceding regenerative dose, and that the test dose
following the measurement of the natural adequately corrects for any sensitivity change of
the natural after the first measurement cycle (Murray & Roberts 1997; Murray & Roberts
1998; Murray & Wintle 2000).

2.5 The luminescence process in feldspar

It is thought that the IRSL signal arises from a single trap type (Baril & Huntley
2003) corresponding to a TL peak at ~400°C (Murray et al. 2009). Poolton et al. (2002a;
2002b) have suggested that the IRSL from feldspar is the product of two processes: i)
localised recombination by tunnelling from the excited state of the trap to the recombination
centre (hole trap), and ii) electronic transfer through the conduction band-tail states to the
recombination centre. Band-tail states occur between the conduction and valence bands of
the crystal lattice. They are the result of impurities or defects resulting in non-standard bond
angles between atoms that create several isolated deformations in the conduction band
potential (Poolton er al. 2002a). Band-tail states are areas that allow some (restricted)
electron mobility. IRSL recombination can occur when electrons are lifted into an excited
state, then transferred into these band-tail states before recombining at a trapping hole
(Poolton et al. 2002a) (Fig. 2-4).

Feldspar TL curves can vary from sample to sample because of changes in
mineralogy from aliquot to aliquot or grain to grain (Duller 1997). Two peaks are
commonly observed in natural KF TL curves when measured using a blue-biased
transmission filter and a heating rate of 5°C/s. One appears between 250 and 330°C, and
another closer to 400°C (Fig. 2-5). Irradiated samples of KF also include a broad peak at
150-180°C (Duller 1997; Murray et al. 2009). Earlier work has shown that both the 250-
280°C and 330°C peaks are bleachable, and do not seem to be sourced from different trap
types (Duller 1997). More recent work has shown that two TL peaks in KF appear to be
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depleted by IR stimulation: a peak at 140°C and another at 410°C (Murray et al. 2009).
Comparisons between TL glow curves and pulse annealing curves suggested that the 140°C
TL peak does not contribute to the IRSL signal. Rather, the source of the IRSL seems to be
derived predominantly from charge associated with the 410°C TL peak, even though for both

conduction band
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Figure 2-4. The luminescence process in feldspar, involving an electron trap and a hole trap
(Poolton et al. 2002a). (a) Low energy optical excitation (~1.4 eV) raises the electron to deep-
lying band-tail states, and thermal energy from the lattice allows thermal ionization, followed by
recombination. (b) If the defects are close, recombination via tunnelling is possible from the
excited state with no thermal activation. (c¢) If the electron and hole traps are very close,

recombination via tunnelling from the ground state is possible.
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Figure 2-5. TL glow-curves for a single KF aliquot (from Murray et al. 2009). Three TL glow-
curves are plotted, showing the natural signal with no preheat (“no ph”), the signal after a 570
Gy dose and no preheat, and the signal after a 570 Gy dose and a 250°C preheat. The 570 Gy,
“no ph” curve is plotted again after multiplication by 0.05. The heating rate used was 5 °C/s.
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peaks, there is a linear correlation between the IRSL observed and the loss in TL signal due
to IRSL stimulation. This correlation has been explained by a reduction in recombination
centres in both TL peaks during IRSL stimulation (Murray et al. 2009). IRSL stimulation
does not cause a shift in TL peak position, and this has been interpreted as supporting
evidence that the electrons are derived from a single trap type (Murray et al. 2009).

IRSL decay curves from feldspar have never been described using a single
exponential function. However, linear modulated (LM-) IRSL curves of single feldspar
grains (Better-Jensen ef al. 2003) and dose reduction versus stimulation time curves that
follow a single exponential decay for KF aliquots (Thomsen ez al. 2008), provide supporting
evidence that the IRSL signal of feldspar is dominated by a single trap type. The non-
exponential decay of the IRSL signal may be attributed to the detrapping and recombination
probabilities of electrons, as suggested by Thomsen ef al. (2008). Some electrons may
become re-trapped or recombine at non-luminescent centres during stimulation, as is
common for quartz (Aitken 1998), and some electrons may only become evicted after
prolonged stimulation times (i.e., during the later part of the IRSL decay curve), as a result

of increased donor (electron)-acceptor (hole) distances (Thomsen et al. 2008).

2.6 Anomalous fading
2.6.1 Causes and geological control

The traps most useful for IRSL dating require at least 1.4 eV of excitation energy to
evict their electrons (Aitken 1998). In practice, however, it has been found that at 20°C the
IRSL signal from these deep traps fades over time contrary to kinetic predictions of their
thermal stability, and this is attributed to the loss of electrons from traps that should be
thermally stable at ambient temperatures over geological time, to other defects and centers in
the feldspar crystal lattice (Wintle 1973; Spooner 1994a). This effect has been attributed to
quantum-mechanical tunnelling, where charge recombines without travelling through the
conduction band (Visocekas 1985; Spooner 1994a; Visocekas 2002; Huntley 20006).
Anomalous fading occurs in all feldspar types (Spooner 1994a). Rates have been thought to
be higher for volcanic feldspar than sedimentary feldspar (Aitken 1998), although evidence
to the contrary has been given by Huntley and Lian (2006). In plagioclase feldspar the
fading rate seems to correlate positively with Ca and Fe content (Huntley & Lian 2006).
Tsukamoto and Duller (2008) measured fading rates from four basalt samples and found that
samples containing olivine, pyroxene and plagioclase phenocrysts had higher fading rates

than glassy samples.
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2.6.2 Toward a non-fading signal

Recently, work has focussed on identifying a non-fading signal in feldspar (e.g., Jain
& Ankjargaard 2011). The far-red (710 nm) TL emission in feldspar has been shown to be
resistant to fading (Visocekas ef al. 1994; Visocekas 2000; Visocekas & Guérin 2006).
Tsukamoto and Duller (2008) showed that, for their basalt samples, fading rates measured
using OSL signals detected in the UV, and TL signals detected in the blue, are generally
higher than fading rates measured using IRSL signals detected in the blue. After
experimentation with various stimulation wavelengths, detection windows and temperatures,
Thomsen et al. (2008) found that the fading rates after IR stimulation were the highest,
followed by green, blue and post-IR blue stimulation. They attributed this to the density of
donor and acceptor electron traps, where IR stimulation led to the recombination of electrons
between close donor-acceptor pairs (where anomalous fading is more likely), and blue and
post-IR blue stimulation led to the recombination of electrons between more widely spaced
donor-acceptor pairs. They also observed lower fading rates for higher stimulation
temperatures and for the later part of the luminescence decay curve than for the initial part.
They suggested that the luminescence from the later part of the curve represents the
recombination of electrons in more distal traps via the conduction band or tunnelling from an
excited state. Due to increased donor-acceptor trap distances, these electrons were thought
to be less susceptible to anomalous fading (Thomsen et al. 2008). The lowest fading rates
observed were obtained using a post-IR IR stimulation at an elevated temperature (i.e., IRSL
signals measured at 225°C after stimulating the sample with IR at 50°C), using the later part
of the luminescence decay curve (Thomsen ef al. 2008).

Subsequent investigations using post-IR IR signals measured at 225°C or 290°C
after the sample is stimulated with IR at 50°C showed that these signals are less susceptible
to fading than the conventional IRSL signal (measured at 50°C), but their source traps tend
to be difficult to bleach (Buylaert et al. 2009; Thiel et al. 2010; Buylaert et al. 2011;
Reimann ef al. 2011; Stevens et al. 2011; Thiel et al. 2011; Lowick et al. 2012; Sohbati ef al.
2012). Buylaert ef al. (2009) have tested a post-IR IR SAR protocol on samples from a
range of locations and depositional environments. Their post-IR IR SAR protocol measures
the IR-stimulated signal at 225°C and they found that this had significantly lower fading
rates than the IRSL signal measured at 50°C. After fading correction, both signals yielded
consistent ages, but the post-IR IR protocol was preferred because its ages rely less on the
assumptions underlying fading-correction models (Buylaert et al. 2009). The post-IR IR
signal was found to be not quite as bleachable as the conventional IRSL signal, but for older
samples, the residual post-IR IR signal after bleaching was expected to be small relative to

the accumulated dose (Buylaert e al. 2009). Reimann et al. (2011) tested the conventional
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IRSL and post-IR IR SAR protocols on coarse grained KF extracted from Holocene and late
Pleistocene coastal sands on the southern Baltic Sea coast. Although low fading rates for the
post-IR IR signal were obtained, they concluded that thermal transfer of the post-IR IR
signal may cause a problem in young sediments, but it could be reduced by using a lower
post-IR IR stimulation temperature (180°C) (Reimann er al. 2011).  Post-IR IR
measurements on polymineral fine grains from waterlain sediments in Switzerland yielded
high residual doses on laboratory-bleached samples, suggesting that insufficient bleaching of
this signal in waterlain sediments may be a significant problem (Lowick ef al. 2012).

A non-fading, multi-elevated-temperature post-IR IRSL (MET-pIRIR) signal,
proposed by Li and Li (2011), utilizes an IRSL signal that is measured by progressively
increasing the stimulation temperature from 50 to 250°C in steps of 50°C. Li and Li (2011)
showed that the fading rate of the IRSL signal decreases with increasing stimulation
temperature, but that the bleaching rate of the IRSL signal also decreases with increasing
stimulation temperature. The MET-pIRIR signals measured at 200°C and 250°C have been
shown to have negligible fading rates and give reliable ages for Chinese loess (polymineral

fine grains) deposited within the last glacial-interglacial period (Fu ef al. 2012).

2.6.3 Fading rate measurements and corrections

Protocols for measurement of fading rates involve comparing luminescence
intensities measured shortly after irradiation in the laboratory with those measured after
some time delay (Aitken 1998). Several methods have been proposed to correct for
anomalous fading. These include the fadia method for single grains (Lamothe & Auclair
1999), the g-value method for multiple aliquots (Huntley & Lamothe 2001) and single
aliquots (Auclair et al. 2003), and the dose rate correction (DRC) model for single aliquots
(Lamothe et al. 2003). These correction models work best for samples that have a D, falling
on the linear part of the dose-response curve (Huntley & Lamothe 2001; Auclair et al. 2003),
and models that predict fading rates for older, more saturated, samples (e.g., Lamothe ef al.
2003) have yet to be rigorously tested. To overcome this obstacle, Kars et al. (2008)
developed a model that reconstructs natural fading-corrected dose-response curves using
fading rate and dose-response measurements in the laboratory. Kars and Wallinga (2009)
have reported consistencies between their modelled fading-corrected IRSL ages and

independent age control.

2.7 Luminescence measurements on single KF grains

Luminescence dating techniques that make use of multi-grain aliquots assume that
the luminescence properties are the same and that all grains within an aliquot have been

sufficiently bleached by the sun before burial and have not been subsequently mixed with
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contaminating grains from overlying (younger) or underlying (older) sedimentary units, or
with grains weathered from deteriorating bedrock. Single-grain OSL dating techniques have
been developed so that partially bleached grains, or grains that are unsuitable for
regenerative dating protocols, can be excluded from analyses (Murray & Roberts 1997,
Roberts et al. 1997; Roberts et al. 1998; Olley ef al. 1999; Roberts et al. 1999; Duller et al.
2000; Jacobs et al. 2003; Olley et al. 2004; Duller 2006; Jacobs et al. 2006a; Olley et al.
2006; Jacobs 2008). There are relatively few investigations on the dating potential of single
feldspar grains (e.g., Lamothe et al. 1994; Lamothe & Auclair 2000; Duller ez al. 2003; Huot
& Lamothe 2003; Feathers & Tunnicliffe 2011; Huot & Lamothe 2011; Smedley et al. 2012)
and an efficient procedure for dating single grains of KF has yet to be developed. Such a
procedure should entail measurements of the internal dose rates and anomalous fading rates
of individual KF grains (Duller et al. 2003).

The first optically stimulated measurements made on individual mineral grains were
performed by Lamothe e al. (1994) on K-rich feldspars extracted from a late-glacial (~10
ka) marine sand. Large (500-1000 um diameter) KF grains were individually mounted on
stainless-steel discs with silicone oil, and stimulated with 30 infrared (880 nm) emitting
diodes. The power at the sample was 35 mW/cm®. D, values were measured using the
single-aliquot additive-dose method, in conjunction with a luminescence-correction
procedure that involved separate IRSL measurements on natural aliquots to account for the
erosion of the IRSL signal as a result of the long (10 min) preheats (Duller 1991, 1992).
Checks or corrections for anomalous fading were not conducted (Lamothe ef al. 1994).

Grain-to-grain natural IRSL intensities were shown to be variable (<100,000-
>2.,000,000 photons per second), and D, values measured from 15 grains ranged from 25 to
322 Gy (Lamothe et al. 1994). There was a systematic tendency for bright grains to yield
large D, values, and this was interpreted as evidence that the variability in natural IRSL
intensities was due to partial bleaching. Grains that yielded ages closest to the expected age
of the sample still systematically underestimated the true age by ~30%. Lamothe et al.
(1994) suggested that this discrepancy may be due to supralinearity in the IRSL growth
curves, potential problems with the luminescence correction method, and/or anomalous
fading.

The Iuminescence properties of single KF grains have been subsequently
investigated by these and other authors for the purpose of distinguishing between quartz and
feldspar in density separated aliquots (Duller 2003), demonstrating homogeneity in the
luminescence properties within individual grains (Huot & Lamothe 2003), and identifying
sediment mixtures composed of partially bleached grains or grains that are prone to
anomalous fading (Lamothe & Auclair 1997, 1999, 2000). IRSL stimulation of coarse-

grained KF in these studies was conducted using an array of 30 infrared (880 nm) emitting



31

diodes at 30 mA attached to a Daybreak 1100 TL reader (Lamothe & Auclair 2000; Huot &
Lamothe 2003), or an unfocussed infrared (830 nm) laser diode delivering ~400 mW/cm?® to
the whole sample disc (Better-Jensen ez al. 2000; Duller 2003).

By 2003, a 150 mW IR laser (830 nm) was incorporated into the single-grain Rise
attachment to facilitate screening of quartz for feldspar inclusions, and the stimulation of
single grains of feldspar on single-grain discs (Better-Jensen ez al. 2003). The IR laser beam
intensity exhibits a Gaussian spatial distribution along a plane perpendicular to the laser
beam, with 90% of the power contained within a spot of <20 pum on a sample disc
(Anonymous 2007). It is assumed that internal reflection within 300 um diameter holes on
single-grain discs insures that each grain is illuminated evenly. If we assume that the power
is spread evenly across each grain hole, then the power density of the IR laser beam is
approximately 500 W/cm? (Duller ef al. 2003). The IR laser is by far the most powerful light
source that has been incorporated into OSL/TL systems, with an energy per unit time per
unit area an order-of-magnitude greater than that of the green laser, three orders-of-
magnitude greater than that of the IR laser diode and IR diode array, and four orders-of-
magnitude greater than that of the blue diode array (Better-Jensen et al. 2000; Beotter-Jensen
et al. 2003) (Table 2-3). There is concern that the high power of the IR laser may cause
grains to heat up during stimulation, but strong evidence for this has yet to be reported
(Duller et al. 2003).

The first luminescence measurements on single KF grains using the IR laser were
made by Duller ef al. (2003). Feldspar IRSL decay curves generated using the IR laser
showed an intense initial signal that decayed very rapidly, with very little signal observed
after 0.2 s, and decay curve shapes were very similar from one grain to another (Duller ef al.
2003). Quartz grains stimulated with the laser showed a non-decaying signal more than 10
times the background count of the detection system (Duller e al. 2003). At least 40% of
feldspar grains from two samples made a contribution to the total IRSL emitted, and almost
half of the feldspar grains on a single-grain disc could be used to generate growth curves
(Duller et al. 2003). Similar results were obtained by Li ef al. (2011). This is in contrast to
quartz, where typically fewer than 10% of grains contribute over 90% of the total OSL signal
(e.g., Jacobs et al. 2003).
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Table 2-3. Light wavelengths, intensities, and energy parameters of the light sources associated
with the RiseTL/OSL system, Model TL/OSL-DA-20. Note that the intensity and energy per unit
time per unit area of the IR laser is an order-of-magnitude greater than that of the the green
laser, making it the most powerful light source available.

Blue diode IR diode array IR laser diode Green laser IR laser
array
Wavelength, A ™! 4.70E-07 8.75E-07 8.30E-07 5.32E-07 8.30E-07
Maximum intensity ~ 0.05 0.135 0.400 50 500
(W#*em™)!
Light frequency 6.38E+14 3.43E+14 3.61E+14 5.64E+14 3.61E+14
(m)?
Energy of a single 4.23E-19 2.27E-19 2.40E-19 3.74E-19 2.40E-19
photon, E (W*s)?
Number of photons | ¢p., 1 5.94E+17 1.67E+18 1.34E+20 2.09E+21
per unit time per
unit area’
Energy per unit 5.00E-02 1.35E-01 4.00E-01 5.00E+01 5.00E+02

time per unit area
(W#s)?

'The light wavelength and maximum intensity of all stimulation sources are from Better-Jensen ez al. (2000; 2003).

’Light frequency (v) is derived from the expression v = ¢ / A, where c is the speed of light (3.00 x 10* m/s), and A is the
wavelength of the light source (row 1 of this table). The energy of a single photon (E) is calculated as E = h v, where
h is Planck’s constant (6.63 x 10°* W s?). The number of photons emitted per unit time per unit area is derived by
dividing the maximum intensity of the light source by the energy of a single photon (E), and the energy per unit time
per unit area is determined by multiplying E by the number of photons per unit time per unit area emitted by the light
source (Choi et al. 2006).

KF dose-response curves measured by Duller ef al. (2003) were best described using
a single saturating exponential function:

I=1I)+ L (1—€"") (1)
where / is the sensitivity corrected luminescence signal, D is the given laboratory dose, /, and
1,4 refer to the signals measured at the beginning and the end of the dose-response curve,
respectively, and D, is a constant (the characteristic saturation dose) that describes the shape
of the curve (Duller et al. 2003). Unlike quartz, single-grain KF dose-response curves
showed little variation in the onset of saturation (Duller et al. 2003).

Li et al. (2011) made measurements on single grains of Na- and K-feldspar for the
purpose of improving precision in isochron dating techniques using synthetic aliquots. They
showed that, although the decay curves of Na- and K-feldspar are similar in shape, KF grains
tend to be slightly brighter. Sixty-three percent of KF grains gave signal intensities that were
greater than 3¢ of the background signal, but only 25% of Na-feldspar grains did the same (Li
et al. 2011). Pulse annealing tests were conducted on 150—180 um grains of both K-feldspar
and Na-feldspar (100 grains each). Sensitivity-corrected IRSL measurements (L,/Ty) were
made on laboratory-bleached grains after successive cut-heats ranging from 200°C to 420°C.
After heating to 300°C, up to 80% of the IRSL signal in KF remained, and only 50% of the
signal remained in Na-feldspar. This supported the authors’ conclusion that a larger
proportion of the IRSL signal from Na-feldspar originates from shallow traps, and the IRSL
signal from Na-feldspar is less thermally stable than that from KF (Li ez al. 2011).
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Li et al. (2011) conducted dose recovery tests on laboratory-bleached, 180-212 pm,
KF grains using a modified SAR procedure with the same preheat (260°C for 10 s) for both
the main IRSL measurement (L) and the test dose measurement (Ty), following Blair et al.
(2005). Rejection criteria, similar to those applied by Jacobs ef al. (2006a), were used to
reject grains that exhibited dim signals, abnormal growth curves, uncorrected sensitivity
changes, and high recuperation (Li ef al. 2011). Only 45 of 300 grains passed all rejection
criteria, and accurate dose recoveries were only achieved if the recuperated signal of accepted
grains was less than 10% of the natural (Li et al. 2011). The criterion that led to the rejection
of the largest number of grains was recuperation. The inclusion of grains with high
recuperation lead to underestimations of D, in dose recovery tests in all grain size fractions
measured (90—125 um, 125-150 um, 150—180 pm, 180-212 um, and 212-250 pum) (Li et al.
2011).

Interestingly, when dose-response curves were generated from synthetic aliquots
made up of the sum of the IRSL laser measurements of 100 individual KF grains,
recuperation values (~10%) were higher than those of single-aliquot measurements of the
same sample using IR diodes (~2%) (Li e al. 2011). The authors attributed this effect to the
different stimulation sources (the IR laser versus the IR diodes, Table 2-3), and the
differential extent to which the IRSL signal is removed in each SAR cycle (Li et al. 2011).

Although many luminescence studies have examined the D, distributions of quartz
(e.g., Olley ef al. 1999; Jacobs et al. 2003; Olley et al. 2004; Jacobs et al. 2006a, b; Arnold et
al. 2007; Jacobs & Roberts 2007; Arnold & Roberts 2009), few studies have looked at the D,
distributions of single KF grains or their overdispersion (OD). OD refers to the relative
standard deviation of a D, distribution after allowing for measurement uncertainties
(Galbraith et al. 1999). Sources of OD may include: 1) differences in beta dose received by
individual grains in their burial environment; 2) insufficient or heterogeneous exposure of
some grains to heat or sunlight before burial; 3) post-depositional intrusion of younger grains
into older deposits or vice versa; and/or 4) non-identical field and laboratory conditions, as
well as sample-to-sample variability (Jacobs et al. 2008, and references therein). OD values
of 13—-19% have been reported for KF grains from well-bleached desert sands from northern
China that were not corrected for fading (Li ef al. 2011). An OD range of 22-38% has been
reported for KF grains from aeolian sand samples from Saudi Arabia (Trauerstein et al.
2012). OD values measured from seven fluvial sediment samples from southwestern British
Columbia, Canada ranged from ~53—133% (Feathers & Tunnicliffe 2011). An eighth sample
from this latter study yielded an OD value of only ~1.3%, but this unusually low value was
attributed to the rejection of relatively old grains in the sample that had L,/T, values that

failed to intersect the dose-response curve.
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2.8 Internal dose rates of KF grains

While the U, Th, Rb, and K contents of quartz grains are usually too small to
contribute significantly to the internal dose rate, these elements can occur in large enough
concentrations to contribute to the internal dose rate of KF (Zhao & Li 2005). Because the
“K content within individual KF grains is responsible for a large fraction of the total dose rate
experienced by a grain in nature (Lamothe ef al. 1994; Zhao & Li 2005), grain-to-grain
variations in K content may induce scatter in D, distributions. For example, the total dose
rate of a pure, 180-211 um KF grain from ~24 ka New Zealand dune sand has been
calculated to be 2.87 + 1.62 Gy/ka (Duller ef al. 2003). This is 0.80 Gy/ka greater than the
total dose rate of a similar sized grain containing no *’K from the same sample, suggesting
that variations in **K content alone could lead to D, values ranging from 50 to 69 Gy in these
sediments (Duller ef al. 2003).

Li et al. (2011) found that the internal dose rate contributed ~15% of the total dose to
their KF grains, and they obtained lower D, estimates from their low K, Na-feldspar aliquots
than from their KF aliquots (21.5 + 1.5 Gy compared to 37.7 + 0.5 Gy). In this case, such a
large discrepancy in D, could not be attributed to differences in internal dose rates between
the two minerals, but rather to the lower thermal stability of the IRSL signal in Na-feldspar
(Lietal 2011).

Microprobe measurements of individual KF grains from sediments have shown that
grain-to-grain variations in K content are small (Lamothe et al. 1994; Zhao & Li 2005), and K
contents seem to be distributed homogeneously along the surface of each grain (Zhao & Li
2005); the microprobe measurements were made in spot mode, which typically sample a
volume of ~0.3-3 pm’. Large grain-to-grain variability in K content in KF separates is most
likely to occur as a result of imperfect density separation procedures that lead to quartz and
plagioclase contamination in the sample (Huntley & Baril 1997; Li et al. 2011). Lamothe et
al. (1994) used a microprobe to measure the K contents of 8 out of 15 grains previously used
for age determination. Ten spot measurements of 5 um in diameter were made on each 500—
1000 pm grain, and the calculated average K-content of all 8 grains (11.66%) was applied to
the remaining 7 grains. It was found that for this grain size fraction, the internal dose rate
contribution from K was 50% of the total dose rate (Lamothe et al. 1994: Table 2). Among
the 8 grains that were measured directly with a microprobe, there was a correlation (R* =
0.68) between the K content and the calculated internal dose rate (Fig. 2-6). No clear
correlation existed between K content and natural IRSL intensity or D,, but this may have
been due to the low number of grains measured (Fig. 2-6), or to partial bleaching of the
sample before burial (Lamothe ef al. 1994). There also appeared to be no correlation between

D. and the internal dose rate of the grains, or the total dose rate to the grains (Fig. 2-7).



35

a)

14 -

13 A

K content {2}

1.5 Z 5 El 3.5 4
Internal deose rate {Gy/ka)

=5
~

2500000

G Matural IRSI
intensibies
(shotons/spus |

1500000 - content 1% - all

grains

2000000

1000092 < ®Eprain: |
0 Measured wit
L micraprobe

00000 »

Matural IRSLintensity {photans/s)

o . . Se &
3 10 11 12 12
I content {%)

o
5]

SEquivelent dose
[Gylws € content
(*nb 2l grains

(o

(=3

Ol
—a—

& Lqguivalent dose

Equivalent dose {Gy)
r
2
-

rmicroorabe

o
=)
[
B
HEM
A

]
L=l

10 11 12 1=
K content {%)

Figure 2-6. Relationships between the K content of individual 500-1000 pm grains and the a)
calculated internal dose rate, b) natural IRSL intensity, and c) the D.. Data are from Lamothe ez
al. (1994). Internal beta dose rates were calculated using data from Mejdahl (1983), and the
contributions from internal U, Th and Rb were not included in the internal dose rate calculations
(Lamothe ef al. 1994). K content error bars are smaller than the size of the symbols.
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Figure 2-7. Scatterplots of D, versus KF grain internal dose rate from K (a), and equivalent
dose versus total dose rate for each grain (b). Data are from Lamothe ef al. (1994).

In routine luminescence dating studies using KF, the U and Th contribution to the
dose rate is assumed to be negligible due to their low concentrations in KF grains
(Mejdahl 1987), and Rb contents are estimated using previously published correlations
between K and Rb concentrations (Huntley & Hancock 2001). Beta dose absorption
factors from Mejdahl (1979) are commonly used to estimate internal dose rates from U,
Th and K for a range of grain sizes. Readhead (2002) provides similar absorption factors
for internal beta dose rates from *’Rb.

Zhao and Li (2005) measured the U and Th contents of individual KF grains from
sediment and crushed granite samples from China using laser-ablation inductively-
coupled plasma mass spectrometry (ICP-MS). Although their results can only be
considered qualitative, due to lack of known-concentration standards, some grains had
relatively high concentrations of U (1.4 ppm) and Th (1.7 ppm), while others had low
concentrations: U (~50 ppb) and Th (~100 ppb). Solution ICP-MS analyses of bulk
sediments showed that U, Th and Rb concentrations were high enough to contribute

significantly to the internal dose rate (Zhao & Li 2005). Their data also suggested that
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the commonly used K:Rb ratio of 200:1 (Aitken 1998) is appropriate. U and Th were
found to contribute up to 24% of the total internal dose rate in one sample, and it was
concluded that internal dose rate contributions from these elements should be considered

in luminescence dating procedures using single grains of KF (Zhao & Li 2005).

2.9 External dose rates

Naturally-occurring ionizing radiation causes the redistribution and trapping of
electrons in the crystal lattice of buried mineral grains (Aitken 1998). This radiation is
composed of alpha particles, beta particles and gamma rays as well as cosmic rays from
outer space. Alpha particles, beta particles, and gamma rays are derived from potassium
(**K), thorium (***Th and its daughter products) and uranium (**U and ***U and their
daughter products) in the surrounding sediment. *’K in sediment will emit beta and
gamma radiation, and will dominate the internal dose rate to KF grains (Aitken 1998).
The relative contribution of radiation from *'Rb in sediment is typically small, and
consists of beta particles (Aitken 1998).

External dose rates can be determined by estimating the concentrations of
potassium, rubidium, thorium and uranium in sediments using neutron activation, atomic
absorption, X-ray fluorescence, flame photometry, or inductively coupled plasma mass
spectrometry (ICP-MS) and determining their dose-rate components using conversion
tables (e.g., Appendix A of Aitken 1998). However, dose rates determined this way fail
to take into account the dose rate contributions from daughter products in the uranium
and thorium decay chains, which, in nature, are commonly not in secular equilibrium with
their parents (Olley ef al. 1996) and consequently produce inaccurate estimates of dose
rate. The condition of secular equilibrium is attained in “closed” systems where the rate
of decay (activity) of each daughter is the same as the rate of decay of its parent. In
“open” systems, however, where there is a removal or addition of one of the daughter
products, a condition of radioactive disequilibrium is attained, where some of the
daughter activities are no longer equal to the parent activity (Aitken 1998). Whether or
not radioactive equilibrium is present in sampled sediments can be checked by high-
resolution gamma spectrometry (HRGS) or alpha spectrometry. These methods measure
the activities of several individual nuclides in the uranium and thorium decay chains and

allow the determination of dose rates whether or not equilibrium exists.

2.9.1 Alpha particles

Alpha particles are highly ionizing, but their penetrating distance in mineral
grains is only ~25 pm from the emitting nucleus (Aitken 1998). When sand-sized grains

are considered, the external alpha contribution does not penetrate to the internal core of a
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grain. This can result in uncertainties in determining the external alpha dose rate, because
different regions of the same grain will have received different alpha contributions
(Aitken 1998). To circumvent this problem of partial penetration and inhomogeneous
alpha irradiation, the external alpha contribution is typically reduced to negligible levels
by removing the outer rind of each grain by HF acid etching samples during preparation

(Aitken 1998). This acid-etching procedure was followed in this study.

2.9.2 Beta particles and gamma rays

Beta particles and gamma rays travel a distance of up to 3 mm and 30 cm,
respectively, through most sediments and rocks (Aitken, 1998). Most of the
environmental dose rate comes from the contribution of beta particles and gamma rays, so
it is most important to determine these accurately when estimating the total dose rate.
Beta dose rates are commonly measured using a low-level beta counter (e.g., Haslam ef
al. 2012). This approach does not give information on whether the beta emissions
originated from the uranium or thorium decay chains, or from “’K, but instead gives the
total counts from these sources (Haslam ez al. 2012). Because ~60% of the beta dose rate
from the >**U decay chain originates from decaying radioisotopes in the lower part of the
decay chain, beta counting is superior to methods, such as ICP-MS or atomic absorption,
for example, which measure the concentrations of parent radionuclides, only (Haslam ez
al. 2012). Gamma dose rates can be measured using HRGS, gamma scintillometry, or a
portable gamma ray spectrometer. Portable gamma ray spectrometers are preferred
because they take into account spatial heterogeneity in the gamma radiation field within
30 cm of each OSL sample, as gamma rays can penetrate this distance through sediments
and rock (Haslam ez al. 2012). They provide an estimate of the dose rate from gamma-
ray emitters in the uranium and thorium decay chains and from *’K, and therefore are less
sensitive to U-series disequilibria than methods that measure the concentration of parental

nuclides, only (Haslam ef al. 2012).

2.9.3 Cosmic rays

Cosmic rays come from outer space, and, after penetrating the ground surface, are
dominated by muons (Prescott & Hutton 1994; Aitken 1998). The cosmic-ray flux is
dependent on latitude and altitude (Prescott & Hutton 1994), thickness and density of

sediment and rock overburden, and sample water content (Readhead 1987).

2.9.4 Adjustments for water content, organic matter and calcium carbonate

Pore water, calcium carbonate, and organic matter can severely inhibit the

absorption of ionizating radiation by sediment grains in nature (Lian et al. 1995; Aitken
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1998; Lian & Huntley 1999), as the absorption coefficients of the above are much higher
than that of quartz or feldspar. For the external beta, gamma and cosmic ray dose rates to
be estimated accurately, corrections need to be made for the presence of water, carbonate
content and organic matter in the sediment during the time of burial.

Corrections for water content are made by dividing dry dose rates by attenuation
factors to obtain wet dose rates. Attenuation factors can be calculated as 1+HWF, where
H = 1.50 for the alpha dose rate, 1.25 for the beta dose rate, and 1.14 for the gamma dose
rate, W = is the saturation water content (defined as the weight of water divided by the
dry weight of sediment), and F is the fraction of saturation corresponding to the assumed
average water content over the entire burial period (Zimmerman 1971; Aitken 1998).
Updated attenuation factors, which can take into account carbonate contents determined
using loss-on-ignition, can be determined using a dose rate model designed by Nathan
and Mauz (2008) which assumes a linear increase of carbonate mass and linear decrease

of water mass in pores between sediment particles during burial.

2.10 Summary

This section discussed the basic principles of luminescence dating, some of the
luminescence characteristics of quartz and feldspar, some commonly used single-aliquot
dating procedures, and the contributions to internal and external (environmental) dose
rates. The luminescence signal in feldspar is susceptible to fading through time, but if
this can be corrected for, or if a non-fading signal can be utilized, there are advantages to
using this mineral in luminescence studies. The luminescence signal in feldspar usually
saturates at higher doses than in quartz, enabling the dating of older sediments. The
internal *’K content of KF grains makes them less sensitive to differences in the external
dose rates to individual grains in their burial environment. Luminescence ages obtained
from feldspars also provide an independent source of chronological control with which
quartz luminescence ages can be compared.

The vast majority of luminescence studies using feldspar have made use of multi-
grain aliquots, and relatively few studies have focussed on the dating potential of feldspar
at the single-grain level. Dating feldspars at the single-grain level would allow the
rejection of grains that are unsuitable for SAR measurement procedures and the
identification of potentially poorly bleached grains in partially bleached sediments, or
contaminating younger or older grains in sediment mixtures. Therefore, this thesis begins
with the luminescence dating potential of single KF single-aliquot grains in Chapters 4-6,
and uses this data to inform interpretations of KF aliquot fading-corrected age
distributions in Chapters 7 and 8. The following chapter outlines the luminescence dating

methodology applied in this thesis, including a summary of sample collection and
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preparation procedures, methods of D, calculation, and procedures used to estimate

internal and external dose rates.
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Chapter 3 — Luminescence dating methodology and samples
3.1 Samples and sample collection

All Iuminescence samples were collected by hammering steel tubes, ~5 cm in
diameter, into the section face, extracting them, and sealing both ends with multiple layers of
black plastic. After the tubes were extracted, the sample holes were widened and an in sifu
gamma spectrometer detector was inserted for gamma radioactivity measurements. Bagged
samples of sediment (~60—200 g) were collected from the walls of the gamma spectrometer
detector holes for water content measurements and low-level beta counting in the laboratory.

Four luminescence samples in this thesis were collected from the Khunteli type-
section exposure, located on the south side of the Son River (82°16°33.59”E,
24°32°27.718”N), and the Ghoghara main exposure (24°30°7.608”N, 82°1°2.748”E), located
on the north side of the river, ~25 km west of Khunteli, near the Rehi-Son confluence (Fig.
1-1a, Chapter 1). One modern sample (KHUT-10) was collected from a sand bar in the Son
River channel ~50 m away from the base of the Khunteli type-section. Seven samples for
luminescence dating were also collected from alluvial sediments on the south side of the Son
River, across from the Rehi-Son confluence (Fig. 8-2¢, Chapter 8). These include two
samples (H-1 and H-5) collected from the top of the highest terrace, three samples (M-2, M-
4 and M-6) collected from sediments along a dirt road below the highest terrace, and two
samples (L-3 and L-7) collected from gully exposures in the lowest terrace next to the river

channel.

3.2 Sample preparation and measurement

The 180-212 pm diameter grain-size fraction of all samples was treated with HCI
acid (10%) and H,0, acid (10%) to ensure the removal of any traces of carbonates and
organic material. A KF-rich extract was obtained using sodium polytungstate heavy liquid
separation (p<2.58 g/cm’) and etched with a diluted HF acid (10%) solution for 10 minutes
to remove the outer alpha-irradiated layer of the grains. After HF acid etching, the samples
were sieved again to remove any grains that had been reduced to less than 180 pm in size.

All measurements were made using a Risg TL/OSL DA-20 reader equipped with a
calibrated *’St/*°Y beta source. KF single grains were loaded into 300 pm diameter holes on
gold-plated aluminum discs and stimulated using the IR (830 nm) laser, fitted with an
RG780 filter to absorb a resonant wavelength at 415 nm. An IR laser power of 30% was
used to reduce the potential effects of grain heating by the laser (Duller ef al. 2003).
Because the dose rate from the *’Sr/”Y beta source is not uniform over the entire area of a
disc, the dose rate to each individual disc hole position was calibrated using gamma-

irradiated quartz supplied by Rise.
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Sample Location Geomorphic/stratigraphic  Chapter
context discussed

GHO-2 Ghoghara main section below YTT 4,7,8

GHO-3 Ghoghara main section above YTT 7,8

KHUT-1 Khunteli type-section below YTT 5,7,8

KHUT-4 Khunteli type-section above YTT 7,8

KHUT-10 ~50 m from base of Khunteli modern sand bar 6,7
type-section

H-1 terraced sediments across from  highest terrace 8
Rehi-Son River confluence

M-2 terraced sediments across from  dirt road (between the 8
Rehi-Son River confluence highest and lowest terraces)

L-3 terraced sediments across from  lowest terrace 8
Rehi-Son River confluence

M-4 terraced sediments across from  dirt road (between the 8
Rehi-Son River confluence highest and lowest terraces)

H-5 terraced sediments across from  highest terrace 8
Rehi-Son River confluence

M-6 terraced sediments across from  dirt road (between the 8
Rehi-Son River confluence highest and lowest terraces)

L-7 terraced sediments across from  lowest terrace 8

Rehi-Son River confluence

Multi-grain aliquots, each composed of ~25 grains, were mounted on stainless-steel

discs and stimulated using IR (875 nm) light-emitting diodes (LEDs). The IRSL signals in
the blue-violet region were detected using a bialkali EMI 9235QB photomultiplier tube,
fitted with Schott BG-39 and Corning 7-59 filters. For single-aliquot anomalous fading
measurements, KF grains from sample GHO-2 were adhered to discs using a transparent
thermoplastic polymer adhesive, Crystalbond 509 (see Section 3.3), and KF grains for all

other samples were adhered to discs using silicone oil.

3.3 Aliquot preparation methods using Crystalbond 509

In luminescence studies, silicone oil is typically used to adhere grains to discs, but
we found that, after several hours to days, the oil dries and the grains can move or slide off
the disc. If enough grains are lost, L, and Ty signals may be hampered by poor counting
statistics, leading to an increase in error in fading measurements. To prevent this, a

transparent thermoplastic polymer adhesive, Crystalbond 509, was used for multi-grain
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aliquots of sample GHO-2, following the approach of Huntley and Lamothe (2001). After
measurement of the D, a small amount of Crystalbond was dissolved in acetone and dropped
onto the grains on each disc using a pipette, and allowed to air-dry for at least two hours
before measurement. This adhesive did not adversely affect L,/T, errors of multi-grain
aliquots (Table 3-2), but did reduce the thermal reproducibility of the fading measurements.

As a consequence, I used silicone oil for fading measurements of all other samples.

Table 3-2. L,/Ty errors calculated from two aliquots of sample GHO-2 containing ~25 grains
each. Aliquot 1 was prepared using silicone oil, and Aliquot 2 was prepared using Crystalbond
509.

Aliquot Mask L, T LJ/Ty :‘ng/;’;ve
1 Adhesive size (photon  (photon  L,/T, standard
number (mm) counts) counts) error standard
error (%)
1 Silicone oil 1 172933 74898 2.31 0.01 0.46
2 Crystalbond 1 83195 37636 2.21 0.01 0.67
'Both aliquots were measured after being given a laboratory dose of 28 Gy and a preheat of 250°C for 10 s. The test dose was
11 Gy.

3.4 D, determination

The D, from KF grains from all samples in this study was determined using a SAR
measurement procedure similar to that described by Wallinga ez al. (2007) and Buylaert ez
al. (2009) (Table 3-2), unless otherwise stated. This procedure included the measurement of
the natural signal (L,) followed by the measurement of a laboratory-given test dose (T,). A
dose-response curve was then generated from the signals induced by a series of regenerative
doses given in the laboratory (L), each followed by a test dose measurement (Ty) to correct
for sensitivity changes (Galbraith et al. 1999; Murray & Wintle 2000). L,/Tj ratios at each
dose point resulted in a sensitivity-corrected dose-response curve onto which L/T, was
projected to determine D.. A 1.5% instrumental error was added in quadrature to the
uncertainty due to counting statistics for each L,, Ty, L,, and T,, measurement for multi-grain
aliquots, and a 2.0% instrumental error was used for single grains (e.g., Jacobs et al. 2006a;
Duller 2007). The IRSL signal induced by 1 s of IR stimulation minus the mean background
count rate over the last 20 s of stimulation was used in all D, calculations from KF multi-
grain aliquots. The IRSL signal in the first 0.134 s minus the mean background count rate
over the last 1.742 s was used for all KF single-grain D, calculations. Both the conventional
IRSL signal (i.e. the signal measured at 50°C) and a post-IR IR signal (the IRSL signal
measured at 225°C after a 100 s IRSL stimulation at 50°C) was used on KF aliquots in this
thesis, and both signals were measured using a stimulation duration of 100 s for aliquots.
The conventional IRSL signal (measured at 50°C) was measured using a stimulation time of

6.7 s for single KF grains.
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For both single grains and multi-grain aliquots, the D, and its uncertainty was
calculated by the Monte Carlo stimulation (Duller 2007) using the software package Analyst
version 3.24. All KF grain dose response curves were fitted with a single saturating
exponential function of the form:

I=1p+ Lo (1-€"") M

where / is the sensitivity corrected luminescence signal, /, and 7, refer to the
signals measured at the beginning and the end of the dose-response curve, respectively, D is
the given laboratory dose, and D, is a constant (the characteristic saturation dose) that

describes the shape of the curve (Duller ef al. 2003).

Table 3-3. SAR measurement protocol for KF grains.1

1. Natural / Regenerative Dose

2. Preheat (250°C, 10 s)

3. IRSL — Ly, Ly
4. Test dose

5. Preheat (250°C, 10 s)

6. IRSL — T, Tx
7. IRSL bleach (290°C, 40 s)

8. Return to step 1.

"This protocol is slightly modified for the post-IR IR signal measured from aliquots in Chapter 7. See Table 7-2, Chapter 7.
3.5 Internal dose rates to KF and quartz grains

In this thesis, the internal dose rates to KF grains were not measured directly, but
were instead estimated using assumed U, Th, K and ¥Rb concentrations based on values
widely used in the literature. Internal U and Th contents were assumed to be 0.3 + 0.1 ppm
and 0.7 = 0.1 ppm, respectively, following Medjahl (1987). The internal *'Rb concentration
was assumed to be 400 = 100 ppm (Huntley & Hancock, 2001), and the internal *’K content
for KF grains was assumed to be 12.5 = 0.5% (Huntley & Baril, 1997), unless otherwise
stated (see Chapter 6). The internal alpha and beta dose rate contributions from the U and
Th decay chains, and the internal beta dose rate contribution from *°K, were calculated using
the conversion factors of Adamiec and Aitken (1998). An alpha efficiency factor (a-value)
of 0.09 + 0.03 was assumed, based on previously reported values for polymineral fine grains
in the literature (Rees-Jones 1995; Lang & Wagner 1997; Banerjee et al. 2001; Lang et al.
2003), and dose rates were corrected for beta absorption using absorption factors from

Brennan (2003). An assumed internal dose rate of 0.03 + 0.01 Gy/ka was used for quartz.
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3.6 External dose rate determination

The environmental dose rates from beta, gamma and cosmic radiation were
estimated for each sample. To circumvent the problem of partial penetration and
inhomogeneous alpha irradiation, the external alpha contribution was reduced to negligible
levels by removing the outer portion of each grain by HF acid etching all samples during
preparation (Section 3.2) (Aitken 1998). The external beta and gamma dose rates were
estimated by low-level beta counting and in situ gamma spectrometry, respectively, and a
contribution added for the dose rate from cosmic rays (Prescott & Hutton 1994). Because
beta particles travel a relatively short distance, an adequate representation of the bulk beta
dose rate can be estimated in the laboratory using sediment samples of a few hundred grams.
In this thesis, the bulk beta dose rate was measured from the bagged samples using a low-
level Risg beta counter (GM-25-5) (Better-Jensen & Mejdahl 1985; Better-Jensen &
Mejdahl 1988), making allowance for beta dose attenuation due to grain size and HF acid
etching (Brennan 2003). The radiation from beta particles constitutes ~20-80% of the total
environmental dose rate in samples collected from alluvial deposits in the Middle Son
Valley.

Gamma dose rates were measured in the field using a portable (in sifu) gamma-ray
spectrometer to take into account any spatial heterogeneity in the gamma radiation field
within 30 cm of each OSL sample (as gamma rays can penetrate this distance through most
sediments and rocks). The radiation dose from gamma rays constitutes ~18—50% of the total
dose rate in samples from the Middle Son Valley.

By measuring external dose rates using beta counting and in situ gamma
spectrometry, we have assumed that the dose rate measured at the time of sample collection
has prevailed throughout the burial history of the sample. However, significant time-
dependent radioactive disequilibria in the U or Th decay chains in the sediment, due to the
migration of radioniclides, may indicate that this is not the case (Olley et al. 1996). To
check for disequilibria in the sediments at the Ghoghara main section and the Khunteli type
section, the activities of **U, **Ra, *'°Pb, ***Th, and ***Ra were measured from dried and
powdered sub-samples using high-resolution gamma-ray spectrometry at the CSIRO Land
and Water laboratory, Canberra. These samples were collected in the field from sediment
around the luminescence sample tubes, and the results are discussed in Chapter 7.

The approach described in Prescott and Hutton (1994) was used to determine the
contribution of cosmic rays to the total environmental dose rate. This approach takes into
consideration the location of the sample in terms of its latitude, longitude and altitude (in
metres above sea level), as well as the overburden thickness and density during the burial

history of the sample; the latter was determined by estimating the sample’s depth below the
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modern surface and assuming an average bulk sediment density of 1.8 g/cm®. The cosmic-
ray dose rate constitutes ~5-6% of the total environmental dose rate in samples from the

Middle Son Valley.

3.7 Adjustments for water content, organic matter and calcium carbonate

The sediments sampled in this study are generally well-sorted alluvial silts, sands
and gravels, and very little organic matter or calcium carbonate was observed in the field, so
the calculated environmental dose rates were not adjusted to account for these. External
dose rates were calculated for an estimated long-term, time-averaged water content of ~5—
10% for all samples (Chapters 6, 7 and 8). These estimates and their uncertainties take into
consideration the field water contents measured in the laboratory (these range from 0.2 to
10% of the dry sample in samples in this study), the free-draining nature of the sampled
sediments, their collection during the dry season, and the monsoonal climate of the region.
A 1% increase in estimated water content leads to a ~1% increase in calculated age for

samples from the Middle Son Valley.

3.8 Summary

This chapter summerized the luminescence dating methodology used in this thesis.
This included methods of luminescence sample collection, preparation and measurement, as
well as methods of environmental dose rate determination. In the next three chapters
(Chapter 4-6), the luminescence dating potential of single KF grains is explored and this data
are later used to inform interpretations of KF single-aliquot fading-corrected age
distributions in Chapters 7 and 8. Chapter 4 begins the single-grain investigations with a
study of the possible use of the luminescence characteristics of individual grains to
differentiate between KF grains and contaminating quartz, plagioclase or other mineral

grains.
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Chapter 4 — Elemental Analyses
4.1 Introduction

Standard heavy liquid separation techniques for separating minerals (Fig. 4-1) do not
work perfectly and typically result in KF-rich extracts that are contaminated with quartz and
plagioclase grains (Huntley & Baril 1997) (Fig. 4-2). In this chapter, luminescence
measurements and elemental analyses are conducted on two samples (GHO-2 and KHUT-1)
collected from sediments underlying YTT ash, to examine the relationship between grain
elemental composition and luminescence characteristics, D., and fading rate. Elemental
analyses were conducted on KF grains from sample KHUT-1 using energy-dispersive X-ray
spectroscopy (EDS) in the Faculty of Engineering, University of Wollongong, and the
relationship between IRSL decay curves and grain mineralogy are reported. Elemental
analyses were also conducted on a subset of grains from sample GHO-2 that were used for
D, determination and fading measurements (see also Chapter 6), using wavelength-
dispersive spectroscopy (WDS) at Macquarie University. The WDS measurements on
sample GHO-2 allowed the assessment of the influence that elemental composition of
individual grains has on IRSL signal brightness, decay curve shape, D, fading rate, and
fading-corrected age. The implications these results have for single-grain dating of feldspars

are discussed in Section 4.8.

2.62
)\QV %%
2.58 2.75
W % o %
253 pgg%r&za;e Heavy minerals
Clay K-feldspar Na-feldspar

Figure 4-1. Flow chart for heavy liquid separation (from Mejdahl 1985; Aitken 1998). The
numbers shown are a measure of specific gravity in g/cm®. The left branch at each step
indicates which minerals float and the right branch indicates which minerals sink.
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Figure 4-2. A K-rich feldspar aliquot from sample KHUT-1 containing a mixture of K-rich
feldspar, quartz, plagioclase and possibly other minerals. Sodium polytungstate (p<2.58 g/cm3)
was used to remove quartz, plagioclase and heavy minerals from the 180-212 pm grain size
fraction. The separate was then etched for 10 min with a diluted HF acid (10%) solution. The
microphoto was taken using a digital camera mounted on a Leica MZ16A stereo microscope.

4.2 Heavy liquid separation and luminescence measurements

KF-rich extracts containing 180-212 pm sized-grains were obtained from samples
GHO-3 and KHUT-1 using sodium polytungstate heavy liquid separation (p<2.58 g/cm’,
Fig. 4-1) and etched with a diluted HF acid (10%) solution for 10 min to remove the outer,
alpha-irradiated layer of the grains. A quartz extract containing 180-212 um sized-grains
was also obtained from KHUT-1 using density separation procedures (p<2.62 g/cm’, Fig. 4-
1) and etched with HF acid (40%) solution for 40 min. The decay curves of nineteen grains
from the K-rich feldspar extract and 10 grains from the quartz separate from sample KHUT-
1 were measured before elemental analysis using EDS. All luminescence measurements
were made using a Risg TL/OSL DA-20 reader using the beta source, detection filters and
PMT described in Chapter 3.

Before EDS analysis, grains from the KF extract from sample KHUT-1 were
bleached using a 1000 s IR (diode) stimulation at 290°C, given a beta dose of 70 Gy, and
preheated to 250°C for 10 s before IR laser stimulation at 30% power. After applying a
250°C (10 s) preheat, each grain from the KF extract was heated to 50°C for 10 s, and the IR
laser was switched on after 1.67 s and switched off again after 8.33 s to generate a decay
curve. The decay curves of quartz and KF grains from the KF extract from sample KHUT-1
are shown in Figure 4-3. The grains from the quartz extract were not measured.

D., fading measurements (also made using the IR laser at 30% power), and fading-
corrected age determination of KF grains from sample GHO-2 followed the protocols
outlined in Chapter 6 (Neudorf et al. 2012), and these are described below. The
relationships between grain D., fading measurements, and fading-corrected ages and grain

elemental composition are discussed in Section 4.7.4.
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Figure 4-3. Grains obtained from a K-rich feldspar separate from sample KHUT-1 with bright,
rapidly decaying luminescence signals (except for Grain #26) (a), and slowly decaying
luminescence signals (b). The luminescence decay curve of a grain with a sharply decaying
signal (Grain #30, dashed line) is highlighted in ‘b’. EDS analysis of this grain suggests that it is
plagioclase. c¢) The luminescence decay curves in ‘a’ are replotted using a logarithmic scale on
the y-axis, and the decay curve of Grain #26 (dashed line) is highlighted. EDS analysis suggests
that this is a plagioclase grain, while all others are orthoclase grains. See Table 4-2 and Figure
4-7 for the elemental concentrations of all grains.

4.3 D, determination and rejection criteria

The D, from grains from sample GHO-2 was measured using an IRSL SAR
procedure described in Chapter 3 (Table 3-3). The temperature and duration of the preheat
(250°C, 10 s) preceding the L, and L, measurements were identical to those preceding the T,
and T, measurements, following Huot and Lamothe (2003), and all IRSL measurements
were made while holding the sample at 50°C (Table 3-3). At the end of each SAR cycle, all
grains on each disc were bleached using IR LEDs for 40 s at 290°C to reduce recuperation.

KF grains were rejected if: 1) they exhibited an IRSL decay curve typical of holes
occupied by quartz grains; 2) their signals failed to grow systematically with increasing

regenerative dose (i.e., they had no dose-response curve); 3) the sensitivity-corrected zero-
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dose signal was greater than 5% of L,/T,; 4) the first 0.134 s of the test dose signal following
the natural IRSL measurement was less than 3 times the background; 5) the recycling ratio
differed from unity by more than 26 (Jacobs & Roberts 2007); and 6) grains were rejected if
their natural and/or regenerative signals greater than 268,000 counts per 0.134 s to prevent

partial saturation of the photomultiplier tube.

4.4 Anomalous fading measurements

Fading tests for single grains followed the procedure of Auclair ez al. (2003). After
D. measurement of single grains, each grain (still located in the same hole) was stimulated
repeatedly with the IR laser after being given a laboratory dose of 34 Gy (L) and following
a series of delay times after irradiation and preheating (Table 4-1). Each L, measurement
was immediately followed by a test dose (14 Gy) measurement (T,) to correct the L, signal
for sensitivity change. A prompt measurement (i.e., an L,/Ty measurement made after no
delay period) was made immediately after each delayed L,/T, measurement to ensure that
any sensitivity changes of L,/T, measurements throughout the fading test are accounted for

(Huot, 2007). Maximum delay times for each grain were ~44 h.

Table 4-1. Anomalous fading SAR measurement protocol for single KF grains.

1. Dose (34 Gy)

2. Preheat (250 °C, 10 s)

3. IRSL' (IR laser, 50 °C, 10s)  — L, (prompt)
4. Test dose (14 Gy)

5. Preheat (250 °C, 10 s)

6. IRSL' (IR laser, 50 °C, 10s)  — T, (prompt)
7. IRSL bleach (diodes, 290 °C, 40 s)

8. Dose (34 Gy)

9. Preheat (250 °C, 10 s)

10.  Delay’

11. IRSL' (IR laser, 50 °C, 10s)  — L, (delay)
12. Test dose (14 Gy)

13. Preheat (250 °C, 10 s)

14, IRSL' (IR laser, 50 °C, 10s)  — T, (delay)
15. IRSL bleach (diodes, 290 °C, 40 s)

16. Return to step 1 for the remaining delay times.

'IR laser stimulation commenced 1.675 s after the disc temperature reached 50°C and lasted for 6.7 s.
“Delay times ranged from ~4 min (prompt measurements) to 44 h after irradiation.
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4.5 Fading rate and fading-corrected age calculations

In this study, the g-value of each grain was calculated using Equation 4 of Huntley

and Lamothe (2001):

/I, =1—(g/100) * log,o(t/t.) (1)

where /I, is the L,/T, measurement (/) normalized to the first prompt L,/T; measurement
(1), t = t; + (t,-1)) / 2, where ¢, is the time elapsed since the end of irradiation and the
measurement of L, # is the time eclapsed since the beginning of irradiation and the
measurement of L,, and ¢ is ¢ for the first prompt measurement. Thus, the g-value is the
slope of the weighted regression line of /1. plotted against log(#/z.), multiplied by 100. The
error of the g-value for each grain was calculated as the standard error of the slope of this
weighted regression line, multiplied by 100. The weighted linear regression (weighted

according to the square of the inverse of the measurement error for each //1.) was performed

using the linear model function called ‘Im’ in the R package (http://www.r-project.org).
Following convention, the g-value and its uncertainty were evaluated for 7. = 2 days (Huntley
and Lamothe, 2001).

To calculate the fading-corrected age of each grain from sample GHO-2, the single-
grain D, values, g-values (normalized to 2 days), and the total dose rate for the bulk sample
(2.42 + 0.08 Gy/ka), as well as their uncertainties, were used as parameters in the Huntley
and Lamothe (2001) fading-correction model. The calculations were performed using the
Excel spreadsheet and macro provided by Sébastien Huot. The fading-corrected age for each

grain (7) was calculated using Equation A5 of Huntley and Lamothe (2001):

TYT=DefDe = It/I= 1 — x [In(T/t,) — 1] )

where Tt = D./D, (i.e., the calculated age before correction for fading), D, is the measured
equivalent dose, D, is the total dose rate for the bulk sample, and D.rand /; are the values of
D, and [ that would be obtained if there were no fading.

The associated uncertainty on this age (at 16) was calculated as:

T* {[(Toax—Trwin) / (2*T)]"2 + (ATY/T) 23 0.5 3)

where T, and Ty, are the fading-corrected ages obtained using the measured g-value

(normalized to 2 days) plus 16 and minus 1o, respectively, and AT is the uncertainty on 7.

AT: was calculated as:
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T * [(AD/D )2 + (AD,/D,)"2]" 0.5 @)

where AD, and AD, are the 16 uncertainties on D, and D,, respectively.

4.6 EDS analysis
4.6.1 Measurements

The EDS system at University of Wollongong is equipped with an electron beam
gun and a lithium-drifted silicon (Si(Li)) solid state X-ray detector, and is integrated into a
JEOL JEM LV 6490 scanning electron microscope (SEM). The gun emits an electron beam
to a sample target (in this case, a single sand grain). Electron bombardment by the beam
causes electron transitions between inner atomic orbitals in the sample that result in the
emission of X-rays from different energy-level shells (K, L and M) in different elements
(Reed 1995). The energy of individual X-rays is converted to electrical voltages of
proportional size, and these electrical pulses correspond, in turn to the characteristic X-rays
of each element detected in the sample.

All grains from the K-rich feldspar extract from sample KHUT-1 were analyzed.
The elemental concentrations of museum specimens of orthoclase, anorthite, laboradorite
and quartz were also measured for comparison. These specimens were obtained from the
Howard Worner mineral and rock collection in the School of Earth and Environmental
Sciences at the University of Wollongong.

All sand grains and rock specimens were mounted on specimen stubs with a double-
sided adhesive carbon-filled conductive disc. The specimens were then carbon coated in a
sputter coater to prevent the accumulation of static electric charge on their surface during
irradiation (Welton 1984). The specimen stubs were placed in a holder in a vacuum-pumped
specimen chamber, where a pressure of less than 10* mbar was maintained to prevent
electrons in the beam from being scattered by gas atoms.

EDS measurements were made in “spot” mode using a beam diameter of 67 pm and
a probe current of 1 nA. Spot measurements were made on relatively flat surfaces of the
specimens that were tilted toward the detector, as seen in topographic, secondary electron
(SE) images (or SEM micrographs). SEM microphotographs for a subset of the measured
sand grains are shown in Figures 4-4 and 4-5. The counting time for each spot measurement
was 50 s using a minimum count rate of 5000 counts per second. Each spot measurement
yields an EDS spectrum, which is portrayed as a plot of X-ray counts versus energy (in kilo-

electron volts or KeV) (Fig. 4-6). The characteristic X-rays of each element in the specimen
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appear as peaks, and the elemental composition of a specimen can be determined by

comparing the peak-height ratios of each element to those of a known standard.

a) Grain 1 b) Grain 5

!

15KV X350  50pm 3 50 15KV X300 Sojm 11 50 SEI

¢) Grain 7 d) Grain 8

15kV X370 ; 1660 SEI 15kV X300 “80pm 17 50 SEI

e) Grain 26 f) Grain 82

15KV~ X370 50pm 11 50 SEI X370 _ 50pm 16 50 SEI

Figure 4-4. SEM microphotographs of a subset of feldspar grains with bright, rapidly-decaying
luminescence signals (e.g., Figs 4-3a, 4-3c¢). All grains are likely K-rich feldspars, except for
Grain 26, which is likely plagioclase and is much dimmer than the rest. See Table 4-2 for EDS
elemental concentrations.
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a) Grain 4 b) Grain 27

15kV X300 Ojim 11 50 SEI 15kV X400  50pm 17 50 SEI

¢) Grain 30

15kV )‘(350 50pm 16 50 SEI 15kV X230 100pm 11 50 SEI

e) Grain 37 f) Grain 36

15kV X230 100pm 11 50 SEI ¥ J 11 50 SEI

Figure 4-5. SEM microphotographs of a subset of grains with dim, slowly-decaying
luminescence signals (e.g., Fig. 4-3b). Most of these grains are likely quartz grains. The
elevated proportion of Na and Ca in Grain 30 suggests that it may be a quartz grain with
plagioclase inclusions or a plagioclase grain with a weak signal. Grain 37 was crushed while
being transferred from the single-grain disc hole to the specimen stub. See Table 4-2 for EDS
elemental concentrations.
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Figure 4-6. EDS spectrum of a potassium-rich feldspar grain. The peaks associated with the
Ka X-ray lines of C, O, Na, Al, Si, K and Ca, and the Kp X-ray lines of K and Ca are
highlighted in green. The red signal represents the background signal (also known as
“Bremsstrahlung”) derived from interactions between incident electrons and atomic nuclei.

An estimate of the relative proportions of Si, Al, K, Na, Ca, and O in each grain was
derived using the ‘ZAF standardless quantitative method’ using standard JEOL software
(Yakowitz 1975). The ZAF method uses physical models to correct for atomic number
effects (Z) (due to differences between the atomic number of the specimen and the standard),
absorption of some X-rays by the specimen (4), and fluorescence (F) (Yakowitz 1975). This
method of analysis is considered ‘standardless’ because data were not compared to known

standards measured on the same machine, but rather to default values supplied by JEOL.

4.6.2 EDS results

The elemental concentrations of grains from both the K-rich feldspar and quartz
separates are presented in Table 4-2. The compositions of the museum specimens are
presented in Table 4-3. All data are graphically displayed in Figure 4-7. The mass
concentrations of each element are reported in weight %, with a standard error typically
between 0.1 and 0.4 %. These values can only be considered qualitative, because the
surfaces of the grains and museum specimens were not polished before measurement (Figs
4-4 and 4-5) and because the thickness of the carbon coating cannot be quantified (Yakowitz
& Goldstein 1975; Welton 1984). The carbon coating contributes to the C concentrations
shown in Tables 4-2, 4-3, and Figure 4-7.
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Table 4-2. Elemental concentrations of single grains of feldspar (F) and quartz (Q), as

determined through EDS analysis."

5

Grain# Q/F* Decay Si Al K Na Ca o ct Sum
Curve®  (wt %) WwWt%) (wWt%) (wWt%) (wt%) (wt%) (wt %)

1 F B 20.58 7.12 7.03 0.52 0 42.55 2220 100.00
5 F B 18.46 5.82 5.25 0.60 0.1 42.13 2773 100.00
7 F B 20.85 7.36 7.61 0.30 0 43.56 20.12 99.80
8 F B 15.37 5.58 5.12 0.33 0 45.84 27.66 99.90
26 F B 16.63 521 0.03 227 1.38 36.16 38.32 99.99
33 F B 18.45 6.66 6.17 0.46 0 46.43 21.74 99.91
39 F B 12.18 4.28 3.71 0.47 0 45.82 33.54  100.00
44 F B 19.96 7.14 7.41 0.35 0 41.13 23.87 99.86
55 F B 13.35 4.86 4.42 0.38 0 45.64 31.23 99.88
82 F B 7.90 295 245 0.41 0 36.28 49.94 99.93
99 F B 20.40 7.26 7.72 0.20 0 42.56 21.75 99.89
Average 16.73 5.84 5.17 0.57 0.13 42.55 28.92
4 F D 23.64 0 0.01 0.08 0.02 39.31 35.47 98.53
27 F D 26.79 0.35 0 0 0 51.84 21.01 99.99
30 F D 17.36 8.30 0.10 4.84 1.84 47.34 20.06 99.84
34 F D 23.52 0.39 0 0.07 0 52.3 2372 100.00
37 F D 40.41 0 0 0.01 0.01 4.06 55.47 99.96
36 F D 19.42 1.41 0.08 0 0.11 45.13 33.86 100.01
64 F D 17.82 6.35 0 0.28 0 45.71 23.40 93.56
81 F D 28.29 0.50 0 0.03 0.10 50.44 20.73  100.00
Average 24.66 2.16 0.02 0.66 0.26 42.02 29.22

Q n/a 29.04 0.30 0.01 0.07 0 55.00 15.59  100.01
2 Q n/a 29.64 0.41 0 0 0.01 54.55 1539 100.00
3 Q n/a 25.29 0.30 0 0 0.03 55.73 18.66  100.01
4 Q n/a 27.67 0.48 0 0.02 0.03 52.61 19.18 99.99
5 Q n/a 33.66 0.37 0 0.06 0.05 52.19 13.68  100.01
6 Q n/a 29.71 0.34 0 0.02 0 51.15 18.75 99.97
7 Q n/a 33.56 0.36 0 0.04 0.01 53.34 12.65 99.96
8 Q n/a 33.52 0.42 0.01 0 0.01 53.23 12.81  100.00
9 Q n/a 34.46 0.35 0.01 0.06 0.04 50.23 14.85  100.00
10 Q n/a 34.27 0.53 0.09 0.03 0 49.49 156 100.01
Average 31.52 0.39 0.01 0.03 0.02 52.25 15.77

'Standard errors of each spot measurement are not reported, but range between 0.1 and 0.4 %.
’F = grains are obtained from a density-separated (p < 2.58 g/cm®) and HF etched K-rich feldspar separate that likely includes
some quartz and plagioclase grains. Q = grains are obtained from a density-separated (p > 2.62 g/cm’) and HF
etched quartz separate. Both separates are from sample KHUT-1.
*B = a bright, rapidly-decaying signal, D = a dim, slowly-decaying signal. n/a = decay curves were not measured on the
density-separated quartz grains.
“The carbon content of each grain is derived predominantly from the carbon coating applied to the specimen before
measurement.
*Deviations from 100.00% are due to statistical uncertainties in elemental concentration calculations, and the presence of other
elements (e.g., Mg) that appear in such low concentrations that their X-ray peaks cannot be differentiated from the
background counts or X-ray peaks of other elements in the EDS spectrum.

Table 4-3. Elemental concentrations of one quartz and three feldspar museum specimens, as
determined using EDS.'

Museum Si Al K Na Ca (0] C' Unknown Sum
Sample (wt %) Wt%) (wWt%) (wt%) (wt%) (wt%) (wt %) (wt %)

Laboradorite 16.16 7.96 0.23 1.52 1.97 47.96 18.96 4.80 95.20
Anorthite 12.23 5.19 1.36 2.84 8.24 43.41 22.76 3.96 96.04
Orthoclase 20.36 7.19 7.02 0.63 0 41.43 23.25 0.15 99.85
Quartz 19.31 0.78 0.01 0.08 0.02 41.63 38.16 0.01 99.99

'See footnotes 1, 4 and 5 of Table 4-2.
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a) Bright, rapidly- b) Dim, slowly-
decaying signal decaying signal

d) Orthoclase e) Anorthite f) Laboradorite g) Quartz

Q000

Figure 4-7. Donut plots showing the elemental concentrations of individual grains from sample
KHUT-1 (a—c) and museum specimens (d—g) and (see Tables 4-1 and 4-2 for raw data). Grains
obtained from a KF extract are shown in ‘a’ (bright, rapidly-decaying signals) and ‘b’ (dim,
slowly-decaying signals). Note the lack of potassium in the grains shown in ‘b’. ¢) Grains from
a quartz separate from KHUT-1. The elemental concentrations of museum speciments of
orthoclase, anorthite, laboradorite, and quartz are shown in ‘d’, ‘e’, ‘f* and ‘g’, respectively, for
comparison.

4.6.3 Luminescence intensity versus feldspar type

Most grains characterised by bright, rapidly decaying signals have detectable
amounts of Si, Al, K, Na and O and little or no Ca. The measured K concentration of these
grains (excluding a low-K grain, Grain #26) averages 5.17 wt% with a standard deviation of
1.80 %, and this value is comparable to the measured K concentration of the orthoclase
museum specimen (7.02%). Thus these grains are likely KF grains. One grain (Grain #26)
has a negligible K concentration, but higher concentrations of Na and Ca, and therefore is
likely plagioclase. Grain #26 is characterised by a luminescence signal that is significantly
weaker than that of other KF grains (Figs 4-3a and c).

Grains with slowly decaying IRSL signals (Fig. 4-3b) usually have abundant Si and
O, but little or no detectable K, Na or Ca (Table 4-2, Fig. 4-7). Most of these grains are
likely quartz grains. The elevated proportion of Na and Ca in one of these grains (#30, Table
4-2) suggests that this may be a quartz grain with plagioclase inclusions or a plagioclase
grain with a weak IRSL signal. Closer inspection of the decay curve of this grain (Fig. 4-3b)
shows a rapidly decaying peak in the first 0.5 s of stimulation, and this may be the remnant
of'a dim or partially depleted feldspar luminescence signal.

The intensity and thermal stability of IRSL emissions from feldspars centred around
the 400 nm band has been shown to be somewhat dependent on feldspar type. Pulse anneal
experiments on multi-grain aliquots by Tso et al. (1996) suggest that the source traps of the

IRSL signal from Na-rich feldspars is less thermally stable than that of K-rich feldspars,
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resulting in a shorter lifetime (0.9 x 10* years for Na-rich feldspars than the lifetime of 1.0 x
10° years for K-rich feldspars at an ambient temperature of 10°C). Pulse anneal experiments
on individual grains by Li ef al. (2010) also suggest that the source traps of Na-feldspar
IRSL signals are less thermally stable than those of K-rich feldspars, and this may result in
dimmer signals and lower D, estimates in Na-feldspar grains. Differences in signal intensity
(in signals centred around 400 nm) between different feldspar types may also be attributed to
differences in their luminescence emission spectra. Early studies of TL and IRSL spectra
have shown that K-feldspars tend to have strong emissions in centred around 400 nm while
Na-rich and Ca-rich feldspars have strong emissions centred around 570 nm (Huntley ez al.
1988; Huntley et al. 1991). Prescott and Fox (1993) have shown that thermoluminescence
emissions centred around 400 nm are strongest for feldspars with more than 80% mole
orthoclase, but weaker for all other alkali and some plagioclase feldspars. Spooner (1992)
measured the TL and IRSL (880 A 80 nm) luminescence intensities of feldspars with a range
of Albite:Orthoclase: Anorthite molecular percentage ratios with a focus on emissions
centered around 400 nm. He found lower IRSL and TL sensitivities for Ca-rich feldspars
than for Na- or K-rich feldspars, but with considerable variation in intensity superimposed
on this trend. Deviations from the main trend were thought to be due to crystal structure
state, thermal history, and trace element concentrations. It is suggested here that the
relatively low signal-to-noise ratios observed in Grains 26 and 30 (Fig. 4-3) may reflect
increased thermal erosion of the signal source traps, relative to the other K-rich feldspar
grains during the preheat.

The grains from the quartz separate and the quartz museum specimen are similar in
that both are dominated by Si and O, with small detectable amounts of Al. The Al is likely
present as an impurity within quartz crystals that crystallized in close proximity to Al
sources (Dennen et al. 1970). No grains in the quartz separate contained detectable amounts
of K, Na or Ca above 0.1 wt%, suggesting that the density separation procedures used here
were successful in minimizing the number of contaminating feldspar and other mineral

grains.

4.7 WDS analysis
4.7.1 WDS measurements

WDS measurements were made on 151 grains from sample GHO-2 that were used
for D, estimation and fading measurements, to detect any relationships between their
elemental composition and luminescence characteristics, D, values, fading rates and fading-
corrected ages. WDS measurements were made using a Cameca SX-100 electron

microprobe in the Department of Earth and Planetary Sciences, at Macquarie University,
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Australia. Unlike energy-dispersive spectrometers, which record an entire spectrum of X-ray
wavelengths simultaneously, WD spectrometers consist of an analytical crystal and a gas
proportional counter detector, which detect X-rays of only one wavelength at a time. WDS
systems commonly make use of multiple WD spectrometers and high electron beam currents
(up to 100 nA) that enable a higher count rate of X-rays. As a result, WDS systems achieve
a much higher X-ray spectral resolution than EDS systems, and elemental concentrations of
flat, polished specimens can be determined with detection limits as low as 10 ppm (Reed
1995).

All grains from three single-grain discs were lifted out of the holes using double-
sided sticky tape. The other side of the tape was then adhered to a flattened, polished base of
a round plastic capsule ~30 mm in diameter and 20 mm deep. The capsule was then filled
with epoxy resin and cured. After curing, the resin block was ground with glass paper of
progressively finer grades (240, 800, 1200, 2000) to the centre of the layer of single grains.
To ensure that grain surfaces were as flat and smooth as possible, the surface of the block
was polished using 6, 3, and 1 pum diamond paste. Approximately half of the grains from
each single-grain disc were lost during the grinding process. A vacuum-evaporated carbon
coating (~20 nm thick) was applied to the top of the resin block using a sputter coater.

The polished block was inserted into a holder in a vacuum-pumped specimen
chamber and the locations of spot measurements were identified and recorded using standard
software and a high-power optical microscope and charge-coupled device (CCD) camera
imaging system. Three spot measurements were made on each grain using an electron beam
size of 5 um and a beam current of 20 nA. The beam current samples a volume no greater
than 3 um’. Most grain surfaces still contained rough spots after polishing, so spot
measurement locations were restricted to flat grain surfaces with an homogeneous
appearance. Five WDS spectrometer reference crystals were used to isolate the
characteristic X-rays (Ko X-ray lines) of K, Mg, Si, Ca, Fe, Na, and Al. The detection
crystal types, standards used, as well as the average detection limits achieved for each
element are listed in Table 4-4. The elemental concentration of each spot measurement was
quantified using the ZAF (Z—backscatter effect, A—absorption of radiation within the
grain, F—fluorescence) quantitative method (Reed, 1995). The elemental concentration of
each grain (reported as an absolute value in weight %) was calculated as the average of the

three spot measurements.
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4.7.2 WDS results

Single-grain elemental compositions are shown as donut plots in Figure 4-8a. Each
ring in each donut plot represents the elemental composition of a single grain (the rings are
very thin but 12 subgroups of rings are visible on the plot). Most grains (76%) are classified
as K-rich feldspars (i.e., they have measured K contents of 8% or more). Eleven percent of
grains contain more than 90% SiO,, and thus are classified as quartz. Three grains have
significant amounts of aluminum and iron and are classified as Fe-rich aluminosilicates.
Four percent of grains contain significant amounts of Ca, Na, and Al and are classified as
plagioclase (Fig. 4-8a, Table 4-5). Seven percent of grains exhibit heterogeneity in their
elemental composition (i.e., values of the three spot measurements differed by more than
2%), so these grains were excluded from further analyses (Table 4-5). These heterogeneous

grains may contain mineral inclusions.

Table 4-5. Microprobe-measured grains from a K-rich feldspar separate from sample GHO-2.
Number of grains % of total grains

Total number of grains measured 151

K-rich grains (> 8% K) 115 76
Quartz

(>90% Si0,) 16 11
Fe-rich aluminosilicate 3

Ca/Na-rich feldspar 6 4
Heterogeneous elemental 11 7

composition
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a) K-rich feldspar grains

n=115

K20
M Na20
M Ccao
M FeO
W Al203
M MgO
m Sio2

M unknown

b) Quartz, plagioclase, and Fe-rich aluminosilicate grains

plagioclase
Fe-richalum,

n=25

brightest
plagioclase
grains
brightest
quartz grains

W K20
M Na20
W CcaOo
M FeO
W AI203
M MgOo
mSio2

W unknown

Figure 4-8. Donut plots showing the elemental composition of individual K-rich feldspar grains
(n=115) (a) and plagioclase, Fe-rich aluminosilicate, and quartz grains (n=25) (b). Each ring in
each donut plot represents the elemental composition of a single grain. The rings in ‘a’ are very
thin but 12 subgroups of rings are visible on the plot. All grains are from sample GHO-2 and
are classified as homogeneous at the scale of a single grain (i.e., the three WDS spot
measurement values for each grain were consistent within 2%). The elemental composition of
the brightest quartz and plagioclase grains are highlighted in ‘b’.
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4.7.3 Major element content and IRSL

The IRSL decay curves for all K-rich, plagioclase, quartz, and Fe-rich
aluminosilicate grains are shown in Figure 4-9 ‘a—d’. These signals come from the first test
dose (T,) measured after the natural signal used for D. determination. These curves are
plotted again in Figure 4-9 ‘e—h’ with a logarithmic y-axis, so that the decay curve shapes of
both bright and dim grains are visible. All grains were heated to 50°C for 10 s, and the laser
was switched on after 1.67 s and switched off again after 8.33 s. Each channel represents
0.067 s of photon detection and each grain was stimulated with the laser for 6.66 s.

Grains in the K-rich feldspar, plagioclase and quartz groups can have both bright,
rapidly decaying luminescence curves, and dim, slowly-decaying IRSL curves (Figs 4-9).
The Fe-rich aluminosilicate IRSL curves show little or no decay during the full 6.7 s of
stimulation (Fig. 4-9). The brightest grains (up to ~88,000 counts in the first channel of laser
stimulation) fall into the K-rich feldspar group, although 7% of grains in this group also emit
less than 100 counts per channel. Three out of the six plagioclase grains measured have
signal intensities less than 100 counts per channel, with the three brightest grains emitting
1609, 9734 and 19,265 counts in the first channel of laser stimulation. Most quartz grains
(13 out of 16) emit less than 100 counts per channel, with the two brightest emitting 1304
and 3617 counts in the first channel of IRSL stimulation.

The elemental compositions of the brightest quartz and plagioclase grains are
highlighted in Figure 4-8b, and their signals cannot be explained by their major element
compositions, as these do not appear to be unique or unusual. The K-feldspar grain-to-grain
variations in signal intensity also cannot be explained by elemental composition, as the
elemental composition is fairly consistent from grain to grain (Fig. 4-8a). The three Fe-rich
aluminosilicate grains are very dim, with the brightest emitting ~200 counts in the first
channel of laser stimulation. Scatterplots in Fig. 4-10 show no clear correlation between

IRSL brightness and major element composition for any of the minerals measured.
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Figure 4-10. Luminescence test dose (T,) signal brightness plotted against major element
concentration for all K-rich feldspar (black diamonds), plagioclase (white squares), and quartz
(grey triangles) grains. The x-axes in plots ‘b’, ‘c’, ‘d’ and ‘> are plotted on a logarithmic scale
for clarity, and points with 0% element concentrations are plotted as 0.0001 % in these plots to
avoid their omission.
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The signal characteristics of most K-feldspar and quartz grains measured in this
study are consistent with those reported in the literature. Duller ez al. (2003) have shown
that quartz grains exhibit a weak, slowly decaying signal when stimulated with the IR laser
(their Fig. 1d), and similar signals have been observed from IR (830 nm) stimulated quartz
aliquot (Bailey 1998, 2010). Spooner (1994b) has shown that IR (~860 nm) stimulation of
quartz using a 20 mW/cm® Ar-ion laser can yield a weak signal at stimulation temperatures
as low as 70°C (his Fig. 5-8), and suggested that weak IRSL (not detectable by his
apparatus) would be likely to occur at temperatures below this. In this study, the IRSL
signals detected from the single-grain disc holes containing quartz or Fe-rich aluminosilicate
grains may be due not only to weak IRSL emissions from the quartz grains or feldspar
inclusions inside them, but also to stray IRSL emissions from adjacent bright KF grains (i.e.,
crosstalk) (Duller 2008).

The rapidly decaying curves exhibited by the bright K-rich feldspar grains (Fig. 4-
9a) are consistent with observations made by Duller ez al. (2003) and Li ez al. (2010). The
shape of the decay curves of the brightest plagioclase grains are indistinguishable from those
of the K-rich feldspars (Fig. 4-9e, f), but more plagioclase grains should be measured to
conclusively determine whether or not they tend to be dimmer than K-rich feldspar grains in
this sample. Few plagioclase grains appear in the K-rich feldspar separate (Table 4-5),
suggesting that the density separation procedures used to separate plagioclase and K-rich

feldspars were effective.

4.7.4 Feldspar elemental composition, D, and fading rate

Past research has suggested that feldspar elemental composition may influence
feldspar D, values and fading rates. Because the **K content within individual KF grains is
responsible for a significant fraction of the total dose rate to a grain in nature (Lamothe et al.
1994; Zhao & Li 2005), grain K contents are expected to influence D, values.

The source traps for the IRSL signal from feldspars from each main compositional
regime of the ternary system, and from a range of provenances have been shown to fade
(Spooner 1992, 1994a; Huntley & Lamothe 2001; Huntley & Lian 2006) and some work
suggests that feldspars from volcanic sediments are more susceptible to fading than feldspars
from non-volcanic sources (Wintle 1973). Huntley and Lian (2006) found a positive
correlation between Fe and Ca content and fading rate in plagioclase feldspars, but no
relationship was found between fading rates and the major and minor elemental
concentrations or the structural state of alkali feldspars. Aside from these studies, little work
has been published on the relationships between feldspar elemental compositions and D,
fading rates, and fading-corrected ages. Figures 4-11, 4-12 and 4-13 show major element

content plotted against the D., g-value, and fading-corrected age for WDS-measured grains
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from sample GHO-2 that passed all rejection criteria in Chapter 4 (see Section 4.3 for
rejection criteria). No clear correlation is evident in any of the plots.

In sample GHO-2, the beta radiation from *’K inside feldspar grains contributes up
to 43% of the total dose rate, but there is no detectable correlation between individual grain
K-content and D. or fading-corrected age (Figs 4-11a, 4-12a). As will be discussed in
Chapter 6, a dependency of grain age on K content may be masked by the fact that other
sources of ionizing radiation account for two-thirds of the total dose rate, and any influence
of elemental composition on K-feldspar single-grain ages may be masked by inhomogeneous
bleaching of this fluvial sample. Pulse anneal experiments on individual grains by Li et al.
(2010) suggested that Na-feldspar IRSL signals are less thermally stable than those of K-rich
feldspars, and this may result in dimmer signals and lower D, estimates in Na-feldspar
grains. This result could not be verified in the present study, but few plagioclase grains were
found in the K-rich feldspar extract. The two WDS-measured plagioclase grains that passed
the single-grain rejection criteria (Section 4.3) do not appear to have unusually low D, values
(Fig. 4-10a).

No correlation between K-rich feldspar elemental composition and fading rate was
found (Fig. 4-12a) and this is consistent with the findings of Huntley and Lian (2006).
Unlike these authors, however I did not detect a correlation between Ca and Fe content and
fading rate in plagioclase grains (Fig. 4-12b, d), but more plagioclase grains need to be

measured to confirm this result.
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Figure 4-11. D, versus major element concentration for all homogeneous K-rich feldspar (black
damonds), plagioclase (white squares), and heterogeneous feldspar (white circles) grains (n=51).
Grains are considered heterogeneous if their three WDS spot measurement values differ by
more than 2%. The x-axes in plots ‘b’, ‘c’, and ‘d’ are plotted on a logarithmic scale for clarity,
and points with 0% element concentrations are plotted as 0.0001 % in these plots to avoid their
omission.
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Figure 4-12. Fading-corrected age versus major element concentration for all homogeneous K-
rich feldspar (black diamonds), plagioclase (white squares), and heterogeneous feldspar (white
circles) grains (n=51). Grains are considered heterogeneous if their three WDS spot
measurement values differ by more than 2%. The x-axes in plots ‘b’, ‘¢’, ‘d’ and ‘f’ are plotted
on a logarithmic scale for clarity, and points with 0% element concentrations are plotted as
0.0001 % in these plots to avoid their omission.



70

a) b)
r
- =
<10 © g 10 | 4
E B : . i .3 )
55 & 5 % g I
: 2 i 6
g o f g 0% e -
T 0 5 ® 00001 00017 001 01 1 10
-5 o -5
10 -10
%K % Ca
c) d)
15 15
+ . : i .
T 10 : Z1 .
E . ; E :
£s ¢ S g 5 : :
£ : ¢l o S I :
v 0 1 4 1 a g o ¢ + .
: o1 - 10 ] g.DﬂDl 0.001 1
. z
1) -5
10 =5
%N % Fe
a
e) f)
15 16
— ——— T
g 1w g T11 ¢ IS
§ D L + 7 I I
T I =] .
71 1 : zed 1tk
£ - = =7y R L
e 0 g 2 e 16 | i
= I | v e *
£ 58 12 14 3;1? L+ 0 _|I I
o 0.0001 0001 001 T 041 1
0 % Al #
(]
g)
15
: :
- 10 u] 't
B I °Li, $
3 5 1 b bt Ee by
- . 1¥ T L™ 27 4
-~ 1: . - .~ % 4
03) 1 '_# * L
2 28 29 1 30 31 32
7 5
Qo
-10

% Si

Figure 4-13. g-value versus major element concentration for all homogeneous K-rich feldspar
(black diamonds), plagioclase (white squares), and heterogeneous feldspar (white circles) grains
(n=51). Grains are considered heterogeneous if their three WDS spot measurement values
differ by more than 2%. The x-axes in plots ‘b’, ‘c’, ‘d’ and ‘f’ are plotted on a logarithmic
scale for clarity, and points with 0% element concentrations are plotted as 0.0001 % in these
plots to avoid their omission.
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4.8 Limitations of WDS and EDS measurements

In the previous sections, EDS analyses showed that plagioclase grains tend to be
dimmer than KF grains, but subsequent WDS analyses showed no correlations between
feldspar grain elemental composition and IRSL intensity, decay curve shape, D., fading rate
or fading-corrected age. This may be due, in part, to the limitations of the approach in
estimating grain elemental composition in this chapter. TL, OSL and IRSL emission spectra
of minerals will be biased towards those wavelengths where a sample (a grain) emits
efficiently. Unlike quartz, feldspar grains tend to be opaque, and a substantial part of their
luminescence signal may be absorbed inside the grain (Wintle & Duller 1991; Duller 1997).
Thus, the IRSL signal measured by the photomultiplier tube may be only that emitted by the
near-surface portion of the grain. Because the elemental composition of each grain may not
be homogeneous (e.g., Baril 2004), we cannot assume that the elemental composition of the
luminescence-emitting surface of the grain is necessarily the same as 1) that measured from
surface of the grain that has since been polished flat for WDS analyses; or 2) the volume of
sample measured in spot mode (beam diameter 67 pm) during EDS analyses. If significant
differences exist, then any measured correlations between grain luminescence properties and

measured element concentrations will be erroneous.

4.9 Summary and implications for single-grain dating

This chapter explored the relationships between the luminescence properties and
elemental composition of individual grains from K-rich feldspar and quartz separates, as part
of the investigations into the single-grain dating potential of KF grains in the Middle Son
Valley. Elemental analyses of grains from samples GHO-2 and KHUT-1 showed that
density separation procedures appear to be effective in minimizing the number of
contaminating feldspar minerals in quartz separates and the number of contaminating quartz,
plagioclase and other minerals in K-rich feldspar separates. Only 24% of all WDS-measured
grains from the K-rich feldspar separate from sample GHO-2 consist either of some mineral
other than K-rich feldspar or show heterogeneity in their elemental composition (Table 4-5).

Clear differences exist between feldspar and quartz grains with respect to their
luminescence intensity and decay curve shapes when stimulated with the IR laser. This
implies that luminescence decay curves can be used to reject quartz grains from further
analyses in single-grain feldspar dating studies. No clear differences were found between
the IRSL decay curve shapes for bright plagioclase grains and K-feldspar grains, so
plagioclase grains cannot be rejected in a similar manner.

Elemental composition of feldspar grains appears to have no significant influence on

D., fading rate, or fading-corrected age for the samples measured in this study, despite the
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fact that past research has shown that the thermal stability and fading rate of feldspar IRSL
signals can depend on feldspar type (Huntley & Lian 2006; Li et al. 2010). This may be due,
in part, to differences between the elemental composition of the luminescence-emitting
surface of each grain and the polished grain-surface measured with WDS. Also, some
correlations may have been detected if more plagioclase grains had been measured.
Nonetheless, these results suggest that if density separation procedures are effective at
minimizing the number of contaminating plagioclase and other mineral grains in K-rich
feldspar separates, then grain-to-grain variations in elemental composition should contribute
little scatter to KF single-grain D, and fading-corrected age distributions.

The source of scatter in a single-grain D, and fading-corrected age distribution is
investigated more fully in Chapter 6, but before this, Chapter 5 reports on preliminary
luminescence measurements on KF grains from sample KHUT-1 using the IR laser. These
include an assessment of the effects of IR laser power and stimulation duration on KF grain
IRSL signals, as well as an attempt to determine whether or not grains are heated by the IR
laser during IR stimulation. A series of dose-recovery experiments on single KF grains are

then conducted to determine their suitability to SAR measurement procedures.
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Chapter 5.0 — Preliminary single-grain IRSL measurements
5.1 Introduction

The power density of the IR laser beam is approximately 500 W/cm® (Duller et al.
2003). The IR laser is by far the most powerful light source that has been incorporated into
OSL/TL systems, with an energy per unit time per unit area that is three orders-of-magnitude
greater than that of the IR diode array (Better-Jensen et al. 2000; Botter-Jensen ez al. 2003)
(Table 2-3). In this chapter, the potential effect of IR laser power and stimulation duration
on KF grain IRSL signals is investigated, and a series of experiments that attempt to find
evidence for grain heating by IR laser stimulation are described. This is followed by a series
of dose-recovery experiments on single KF grains to determine their suitability to SAR
measurement procedures. All measurements in this chapter were made on KF grains from

sample KHUT-1.

5.2 Assessing laser power, stimulation duration, and the proportion of grains that
contribute to the total IRSL signal

The IRSL signal of a previously used and subsequently laboratory-bleached KF
grain was observed after IR stimulation using a range of laser powers. The grain was given a
dose of 70 Gy and preheated to 260 °C for 10 s before each IR laser stimulation. Each
stimulation was followed by the measurement of a test dose (~11 Gy), and a hot optical wash
using IR diodes (270 °C, 100 s). The power of the IR laser appears to have little effect on
the IRSL signal intensity of the KF grain (Fig. 5-1a, b). Figure 5-1c shows the length of IR
(laser) stimulation time it takes for the luminescence signal of 65 KF grains to be reduced to
less than 10% of the initial intensity. These grains had been previously bleached and given a
70 Gy beta dose in the laboratory. Eighty-six percent of grains are reduced to less than 10%
of their initial signal intensity after 6 s of IR laser stimulation at 90% power. Six percent of
grains required more than 30 s of IR laser stimulation to reduce their signals to less than 10
% of their initial intensity. At least 60% of KF grains contribute to over 80% of the total
IRSL signal (Fig. 5-1d), and this is consistent with the data reported by Li et al. (2011: Fig.
5).
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Figure 5-1. a) The IRSL signal of a laboratory-bleached and dosed (70 Gy) KF grain after IR
stimulation using a range of laser powers. b) A close-up of the decay curve in ‘a’ in the stimulation
time range of 0 to 3.7 s. ¢) The amount of IR (laser) stimulation time (90% power) it takes for the
luminescence signal of 65 KF grains to be reduced to less than 10% of the initial value. Eighty-six
percent of grains are reduced to less than 10% of their initial signal after 6 s of IR laser stimulation.
¢) The distribution of signal intensities from single quartz grains and KF grains from the same
sample. The OSL signal was measured from the quartz grains, and the IRSL signal was measured
from the feldspar grains. The quartz grain data was supplied by Jacqui Fenwick (unpublished
data). All measurements were made on sample KHUT-1.

5.3 Testing for grain heating by the IR laser

There are concerns that the IR laser may heat up grains during IRSL stimulation (Duller
et al. 2003). Tests for grain heating by both the IR diodes (at 90% power) and the IR laser (at
90% power) were conducted using a single KF grain. Following the approach of Jacobs (2004),
TL curves of a KF grain were observed after IR stimulation. To test for grain heating, a KF
grain (that was laboratory bleached and heated in a previous SAR cycle) was given a laboratory
dose (140 Gy), and a TL curve (TL curve #1 in Table 5-1) was measured up to 390°C at 5°C/s
after IRSL stimulation durations of 2, 10, and 40 s. Immediately after the measurement of these
TL curves, the grain was given another 140 Gy laboratory dose, and another TL curve was

measured (TL curve #2, Table 5-1). The area underneath the TL curves measured after IRSL
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stimulation (TL curve #1) was divided by the area underneath the TL curves measured
immediately after (TL curve #2) in order to provide a correction for sensitivity change (steps 4
and 5, Table 5-1). For all IRSL stimulation durations, this process was repeated in an identical
manner, except with the IR stimulation source switched off (steps 13, Table 5-1). This generated
a series of TL curves (TL curve #3) that allowed monitoring of the degradation of the TL signal

as a result of holding the grain at 50°C during IR stimulation.

Table 5-1. The measurement protocol followed to test for grain heating. This sequence (performed
on a laboratory-bleached grain) was followed for both stimulation sources: the IR diodes (90%
power), and the IR laser (90% power).

Action Purpose

1. Laboratory dose (140 Gy)

2. IRSL stimulation at 50°C for 2 s

3. Measure TL curve' #1 TL after IRSL stimulation for 2 s

4. Laboratory dose (140 Gy)

S. Measure TL curve' #2 Sensitivity correction for TL curve #1
6. Laboratory dose (140 Gy)

7. IRSL stimulation at 50°C for 2 s

Monitoring TL curve degradation due to heating

1
8. Measure TL curve’ #3 to 50°C during IRSL stimulation

9. Laboratory dose (140 Gy)

10.  Measure TL curve' #4 Sensitivity correction for TL curve #3

Repeat steps 1-10 for IRSL stimulation

1. durations of 10 s and 40 s

12.  Repeat steps 1-11 on a blank disc?

Repeat steps 1-13 with the IR stimulation

13 source switched off ®

'TL curves were measured on a K-feldspar grain mounted on a stainless steel disc for the IR diode heating experiment. TL curves
were measured on the same grain on an aluminium single grain disc for the IR laser heating experiment. All TL curves
were measured up to 380°C using a heating rate of 5°C/s.

“For the IR diodes experiment, a blank stainless steel disc with silicone oil was used. For the IR laser experiment, a blank aluminium
single grain disc was used.

*The IR stimulation source is switched off during steps 2 and 7, but the disc is still heated to 50°C for the same duration as when the
IR stimulation source was switched on.

The sequence in Table 5-1 was followed twice to test for grain heating by both the IR
laser and the IR diodes. For the IR diodes, the grain was mounted on a stainless-steel disc with

silicone oil, and, for the IR laser, the grain was inserted into a hole near the centre of an

aluminium single-grain disc. Steps 1-11 of the procedure were repeated on a blank disc (a
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stainless-steel disc with silicone oil for the IR diode test, and a single-grain aluminium disc for
the IR laser test) to generate TL curves that were subtracted from those measured from the K-
feldspar grain to clear the background signal.

The TL curves measured after the laboratory dose in Figure 5-2a show a large peak at
~150°C, and a much smaller peak at ~330°C. These are consistent with TL signals measured
from laboratory-irradiated K-rich feldspar aliquots that have received no preheat (Duller 1997;
Murray et al. 2009). Both the high temperature and low temperature TL peaks are bleachable by
IR stimulation (Duller 1997; Murray et al. 2009). Recent work by Murray et al. (2009) has
shown that IR diode stimulation will cause a vertical drop in TL peaks, but lateral shifts of the
peaks were not observed for successive stimulation periods of 10, 100 and 1000 s. This is
interpreted here as evidence that the diodes did not heat the sample beyond the stimulation
temperature (the stimulation temperature was not reported by Murray et al. (2009), but
presumably, it was room temperature). The left limb of a TL peak, and the peak itself, shifts to
the right after the TL signal has been eroded due to heating as shown in Figure 5-2a and b.
Heating experiments in this section show that while there may be some thermal erosion of the
150°C TL peak due to the 50°C stimulation temperature (Fig. 5-2b and d), the diodes do not
erode the peak any further (Fig. 5-2c). If the grain is heated by the diodes, it is likely not heated
much beyond ~50°C; the temperature at which the left limb of the 150°C TL peak starts to rise
(Fig. 5-2c). However, this inference assumes that there has been negligible phototransfer of
charge from high temperature traps to low temperature traps during IR stimulation.

Figure 5-3 shows the results of the same heating experiment conducted with the IR laser
at 90% power. The IR laser is capable of depleting the 150°C TL peak at a faster rate (Fig. 5-
3a). However, the left limb of the 150°C TL peak does not migrate to the right with the laser
switched on much more than it does when the laser is turned off (Fig. 5-3c, d). This suggests
that, even for stimulation durations of up to 40 s, the IR laser does not heat the grain much
beyond the stimulation temperature of ~50°C. For all subsequent luminescence measurements

on single KF grains in this thesis, a 30% IR laser power is used.
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Figure 5-2. a) Degradation of the ~150° C TL peak of a single KF grain as the result of holding it at
50° C for durations of 10, 100, 500 and 1000 s. b) A close-up view of the left limbs of the TL curves
shown in ‘a’. Note the lateral shift of the left limb of the peak (b). ¢) TL curves after a laboratory
dose and IRSL (diode) stimulation for different durations (2 s, 10 s and 40 s). d) TL curves after a
laboratory dose and stimulation at 0% power to monitor for TL signal degradation due to heating
at 50°C. e) and f) are the same graphs as in ¢) and d), respectively, but with focus on the glow curve
region up to 80°C. The background signal from a blank disc has been subtracted from all TL
curves, and all TL curves have been corrected for sensitivity change (see Table 5-1).
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Figure 5-3. a) TL curves after a laboratory dose and IR (laser) stimulation for different
durations (2 s, 10 s and 40 s). b) TL curves after a laboratory dose and stimulation at 0% power
to monitor for TL signal degradation due to heating at 50°C. c¢) and d) are the same graphs as
in a) and b), respectively, but with focus on the glow curve region up to 80°C. The background
signal from a blank disc has been subtracted from all TL curves, and all TL curves have been
corrected for sensitivity change (see Table 5-1).

5.4 Dose recovery tests

In this section, a series of dose recovery tests were performed on single KF grains
from sample KHUT-1 using a series of SAR measurement protocols and data analysis
methods. The goal of these experiments was to identify a SAR protocol that successfully
recovers a known (given) laboratory beta dose, and minimizes the total number of grains that
must be rejected due to dim signals, poor sensitivity correction and high recuperation. Dose
recovery tests were conducted on grains that were bleached and heated in the laboratory (IR
diode bleach for 1000 s at 290°C, Section 5.4.1), and on grains that were bleached in the sun
for 2 days (Section 5.4.2). Dose recovery tests using laboratory-bleached and heated grains
were conducted using a 125°C stimulation temperature, and those using sun-bleached grains
were conducted using a 50°C stimulation temperature to see if stimulation temperature had a
dramatic effect on results. In both cases, dose recovery tests were conducted following the
SAR protocol in Table 5-2 using a range of preheat temperatures. A zero dose point was
applied to monitor for recuperation, and two repeat dose points were included to monitor that
any sensitivity changes had been adequately corrected for. One duplicate dose point was

placed in the low-dose region of the dose response curve (RR1), and one in the high-dose
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region of the dose response curve (RR2) (e.g., Jacobs ef al. 2006¢) (Table 5-2). The signal
in the first 0.134 s of stimulation minus the average count rate from the last 1.742 s of
stimulation was used in all calculations (Fig. 5-4). One single-grain disc containing ~90-100

grains was measured for each preheat condition.

Table 5-2. The SAR measurement protocol for single KF grains.l
1 Laboratory dose (70 Gy)

2 Preheat”

3 IRSL (7 s) — Ly/Ly

5 Test dose (~11 Gy)

6 Preheat

7 IRSL (7 s) — T.J/Tx

8 IR (diode) bleach (290 °C, 40 s)
9

Return to step 1.

lRegenerative doses of 28, 56, 84, 111, 139, 209, 0, 28, and 139 Gy were measured.
Preheats of 120, 160, 200, 240, and 280 °C were applied for 10 s. Preheats applied before the regenerative and test
dose measurements are identical.

160
E 120
20000
8 80
o
5 40
8 i ofvt —
= 10000 0 2 4 6 8 10
%)
14
0 T T T T 1
0 2 4 6 8 10

IR laser stimulation time (s)

Figure 5-4. Typical IRSL decay curve from a KF grain. The signal in the first 0.134 s of
stimulation minus the average count rate from the last 1.742 s of stimulation (shaded areas) was
used in all calculations. The inset graph shows a typical IRSL decay curve from a quartz grain.

Approximately 30-50% of the grains on each disc had plateau-like decay curves
(Fig. 5-4). The elemental analyses conducted in Chapter 4 suggest that these are probably
quartz grains. These grains have been excluded from analyses. The remaining feldspar
grains were rejected only if: 1) the sensitivity-corrected recuperated signal was greater than
5% of the sensitivity-corrected natural signal (Murray & Wintle 2000); 2) the test dose (T,)
signal (as measured in the first 0.134 s of stimulation) was less than 3 times the average
count rate in the last 1.742 s; and 3) one or both of the recycling ratio values fall outside of 2

standard deviations of unity (Jacobs et al. 2006a). The weighted mean measured dose/given
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dose ratios are calculated using the Central Age Model (CAM) of Galbraith et al. (1999), and

the OD values for these ratios are also reported in Figures 5-5 and 5-7.

5.4.1 Laboratory-bleached and heated grains

The dose recovery tests for the laboratory-bleached and grains were conducted both
with and without a 40 s IR hotwash (290°C) at the end of each SAR cycle (step 8 in Table 5-
2) to investigate if recuperation would be reduced. The stimulation temperature was 125°C.
The weighted mean measured dose/given dose ratios for these experiments are shown in
Figure 5-5. The grain rejection statistics for the same dataset are shown graphically in
Figure 5-6. Measured dose/given dose ratios are all within 5% of unity for all measurement
conditions, except for the 120 °C preheat with no hotwash condition, where the D, is
underestimated by ~8% (Fig. 5-5a). Without the hotwash, recuperation values for accepted
grains are between 3 and 4%, and do not increase significantly with preheat temperature.
When the hotwash is applied, there is a 38—163% increase in the number of accepted grains,
as fewer grains are rejected due to high recuperation, and the recuperation of accepted grains

decreases to between 1 and 2.5% (Figs 5-5, 5-6).
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Figure 5-5. Dose recovery test results using laboratory-bleached and heated (IR diode bleach
for 1000 s, at 290 °C) grains. The given laboratory dose of 70 Gy was measured using preheats
of 120, 160, 200, 240, and 280 °C for 10 s. Weighted mean (CAM) measured dose/given dose
ratios and average recuperation values are shown for tests without a hotwash in ‘a’ and ‘b’, and
with a hotwash listed in ‘¢’ and ‘d’. Error bars represent 16. The percentage of grains that
passed all rejection criteria are in brackets on the x-axis. OD refers to the overdispersion
calculated using the CAM.
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b) Laboratory-bleached and heated grains, hotwash
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Figure 5-6. Grain rejection statistics for dose recovery tests shown in Figure 5-5. Dose recovery
tests in ‘a’ do not include a hotwash, and those in ‘b’ include a hotwash. All preheat durations
are 10 s. “RR1” and “RR2” refer to the recycling ratios calculated from the repeat dose points
measured at the low-dose region of the dose-response curve and at the high-dose region of the
dose response curve, respectively.

5.4.2 Sun-bleached grains

Because, in nature, sand grains in the Son River would have been bleached by
sunlight, dose recovery tests similar to those above were repeated on KF grains that were
bleached in unfiltered sunlight for two days. It must be noted that this bleaching method
likely does not serve as a perfect analogue for the natural bleaching conditions in the Son
River. Waterlain sediments are commonly incompletely bleached (Olley et al. 1999) and
may be partially shielded from the UV component of sunlight before burial (Huntley &
Clague 1996). In these tests, the stimulation temperature was reduced to 50 °C, which is
consistent with IRSL measurement protocols commonly reported in the literature (e.g.,

Auclair et al. 2003; Buylaert et al. 2009; Davids et al. 2010), and the hotwash was included
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in order to minimize the number of grains rejected due to recuperation values >5%. A
laboratory dose of 124 Gy was administered, as measurements on natural grains suggested
that this lay within the range of D, values.

For all preheat conditions applied, measured dose/given dose ratios are generally
within 6% of unity, and the recuperation values lie between 1.0 and 2.5% (Fig. 5-7). Thirty-
nine percent to 63% of KF grains passed all rejection criteria, and the percentage of accepted
grains generally decreased with increasing preheat temperature (Figs 5-7, 5-8). More grains
were rejected due to poor sensitivity correction in the high-dose region of the dose response
curve than in the low-dose region (Fig. 5-8). This was not observed in dose recovery tests
using laboratory-bleached and heated grains (Section 5.3.1). OD values are slightly higher
than those reported for the laboratory-bleached and heated grains (Section 5.3.1), but still
remain below 12% (Fig. 5-7).

5.4.3 L, and Ly residual signals

When a dose response curves were constructed for single KF grains, T,/T, graphs
showed evidence that a residual signal from the L, and L, measurements was contributing to
the T, and T, signals. Figure 5-9 shows that the relative magnitude of T,/T, is dependent on
SAR cycle, which is, in turn dependent on the preceding regenerative dose (Fig. 5-9a).
These residual L, and L, signals probably occur because it is difficult to deplete the IRSL
source traps in the laboratory (Section 5.2), and this effect will theoretically lead to
underestimations in L,/Ty ratios and an accentuated bend in the growth curve (Fig. 5-9b).
Thus, the data from these dose recovery tests were re-analyzed using the “Previous BG
subtraction” option in Analyst, following Murray and Wintle (2000). In this method of
analysis, the same background counts used to derive the corresponding net natural and
regenerative signals are used to derive the net test dose signals. The resulting measured
dose/given dose ratios, average recuperation values, and grain rejection statistics are
included in Figures 5-7 (plots ‘c’ and ‘d’) and 5-8 (plot ‘b’). There is little change in the
measured dose/give dose ratios and recuperation values after the “Previous BG subtraction”

method is applied, but the total number of accepted grains decreases by ~10-40%.
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Figure 5-7. Dose recovery tests on sun-bleached (2 days) KF grains. A given laboratory dose of
124 Gy was measured using preheats of 120, 160, 200, 240, and 280 °C for 10 s. Weighted mean
(CAM) measured/given dose ratios and average recuperation values are shown for tests
analyzed without a previous background (BG) subtraction (a and b), and with a previous BG
subtraction (¢ and d). Error bars represent 16. The percentage of grains that passed all
rejection criteria are listed in brackets on the x-axis. OD refers to the overdispersion calculated
using the CAM.
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a) Sun-bleached grains, hotwash
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Figure 5-8. Grain rejection statistics for dose recovery tests shown in Figure 3-6 analyzed
without (a), and with (b) the “Previous BG subtraction” data analysis method. “RR1” and
“RR2” refer to the recycling ratios calculated from the repeat dose points measured at the low-
dose region of the dose-response curve and at the high-dose region of the dose response curve,
respectively.
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Figure 5-9. a) T,/T, graph showing the dependence of T, on regenerative dose and SAR cycle
number. If the background count rate from each natural/regenerative dose signal is subtracted
from the following test dose signal (called a “previous BG subtraction”), the non-linear
curvature in the dose response curve (b) is reduced.
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5.5 Summary

This section reported on a series of IRSL measurements made on single KF grains
from sample KHUT-1. These included a series of dose recovery tests on sun-bleached and
laboratory-bleached and heated grains to determine the suitability of KF grains from the
Middle Son Valley to SAR, as well as assessments of the effects of IR laser power and
stimulation duration on KF grain IRSL signals. An attempt to assess the potential of grain
heating by the IR laser was also described. TL curves measured from a single KF grain after
IR laser stimulation suggest that, even for stimulation durations of up to 40 s, the IR laser (at
90% power) does not heat grains much beyond the stimulation temperature of 50°C. The
dose recovery tests in this chapter showed that laboratory doses can be recovered to within
10% of the given dose from single KF grains using preheats ranging from 120 °C to 280 °C,
and stimulation temperatures of 50 °C or 125 °C. The number of grains that passed all
rejection criteria were maximized by using a hotwash and lower preheats with no previous
BG subtraction (i.e., 120 °C or 160 °C), but a significant number of grains (i.e., >30%) are
still accepted when using higher (>200°C) preheats and a previous BG subtraction (Fig. 5-
7¢). Measured OD values were consistently low (less than 12%).

There is evidence that L, signals are not always completely bleached, even after
more than 30 s of IR laser stimulation at 90% power, and this may be due to re-trapping and
re-release of electrons during stimulation. T,/T, graphs show that some of the L, residual
signal contributes to the following T, signals. This process may lead to L,/Ty
underestimates, especially at high doses, and cause an increase in the curvature of the dose
response curve. This increase in curvature can be reduced by applying the “Previous BG

subtraction” technique during analysis.
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Chapter 6 — Sources of overdispersion in a K-rich feldspar sample from north-
central India: insights from D, K content and IRSL age distributions for
individual grains

This chapter explores sources of OD in a K-rich feldspar sample using
measurements of D,, fading-corrected single-grain age distributions, and measurements of K
content from individual grains. This is a manuscript that has been accepted for publication
in Radiation Measurements.

The focus of this paper is on measurements and analyses conducted on KF grains
from sample GHO-2. Quartz grain data from the same sample were used to compare the
shape of the single-grain D, distributions. Measurements from multi-grain KF aliquots from
sample GHO-3 and single KF grains from sample KHUT-10 were used in the discussion on
fading rates and signal resetting in the Son River. I was responsible for sample preparation
of KF grains, all luminescence measurements and analyses of KF grain data, wavelength-
dispersive spectrometry (WDS) measurements of KF grains, and the writing of the
manuscript. My supervisors (R.G. Roberts and Z. Jacobs) have contributed the measured
and analyzed quartz single-grain data, and valuable input on my data analysis, presentation,
and interpretations. Sébastien Huot (Université de Montréal, Canada) has provided advice
and Excel macros for fading correction, and Kevin Grant and Norman Pearson (Macquarie
University, Sydney) have provided advice and assistance with WDS measurements at
Macquarie University, Sydney.

In this chapter the D, values and fading-corrected ages are calculated for individual
KF grains from a sample collected from below the YTT ash at the Ghoghara main section as
part of the larger research aim of assessing the time of final deposition of YTT ash in the
Middle Son Valley (sample GHO-2). Although no evidence for grain heating by the IR laser
was found in Chapter 5 (Section 5.2), measurements on single grains were made using an IR
laser power of 30% to reduce the chance of grain heating, as it was found that KF grain
signal intensities are not adversely affected by this stimulation power (Section 5.2). Also,
grains exhibiting plateau-like IRSL decay curves were rejected from further analyses, as
elemental analyses (Chapter 4) suggested that they are probably quartz grains. A 250°C
preheat was used in measurements of both the D, and fading rate following Auclair et al.
(2003) and Feathers and Tunnicliffe (2011). Dose recovery tests in this chapter showed that
laboratory-given doses should be recoverable and at least 30% of grains should pass

rejection criteria using this preheat temperature.
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Sources of overdispersion in a K-rich feldspar sample from north-central India:
insights from D, K content and IRSL age distributions for individual grains
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ABSTRACT

Luminescence dating of individual sand-sized grains of quartz is a well-established
technique in Quaternary geochronology, but the most ubiquitous mineral on the surface of
the Earth—feldspar—has received much less attention at the single-grain level. In this
study, we estimated single-grain equivalent dose values and infrared stimulated
luminescence (IRSL) ages for K-rich feldspar (KF) grains from a fluvial sample underlying
Youngest Toba Tuff (YTT) deposits in north-central India, and compared these ages
(corrected for anomalous fading) with those obtained from individual grains of quartz from
the same sample. Both minerals have broadly similar single-grain age distributions, but both
are greatly overdispersed and most grains have ages substantially younger than the expected
age of the YTT deposit (~74 ka). Almost half (45%) of KF grains used for age calculation
have fading rates statistically consistent with zero, but the age distribution of these grains is
as dispersed as that of the entire population. We obtained a similar distribution of ages
calculated for 51 grains using their individually measured internal K contents, which
exhibited only minor grain-to-grain variation. Given the lack of dependency of single-grain
ages on the measured fading rates and internal K contents, and the overall adequacy of
bleaching of grains collected from a sand bar in the modern river channel, we consider the
spread in ages is most likely due to mixing, at the time of deposition and after the YTT
event, of potentially well bleached fluvially-transported sediments with older grains derived
from slumping of riverbank deposits. Some spread may also be due to natural variations in

the IRSL properties of individual KF grains.

Keywords: potassium feldspar; IRSL dating; single grains; age overdispersion;

anomalous fading; Youngest Toba Tuff
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6.1 Introduction

Luminescence dating procedures that make use of multi-grain aliquots of quartz or
feldspar, and in which more than one grain contributes significantly to the luminescence
signal, implicitly assume that all contributing grains have suitable luminescence properties
for dating and have been sufficiently bleached by sunlight before burial, and have not been
mixed after burial. Single-grain optically stimulated luminescence (OSL) dating techniques
have been available for quartz for more than a decade, enabling the identification of partially
bleached grains or intrusive grains from overlying or underlying sedimentary units, as well
as the rejection of grains with unsuitable characteristics for reliable dose determination using
single-aliquot regenerative-dose (SAR) procedures (Galbraith et al., 1999; Jacobs and
Roberts, 2007). Similar single-grain dating techniques are rarely used for potassium (K)-rich
feldspars but would also entail measurements of the internal dose rates (due principally to
*K) and anomalous (athermal) fading rates of individual grains (Duller et al., 2003). Rise
readers equipped with a 150 mW infrared (IR) (830 nm) laser allow for the direct stimulation
of individual feldspar grains (Duller et al., 2003). In this paper, we describe the use of the IR
laser to obtain single-grain equivalent dose (D) values and fading-corrected ages for K-rich
feldspar (KF) grains from a fluvial sample collected from a sand unit underlying Youngest
Toba Tuff (YTT) deposits in the Middle Son Valley, Madhya Pradesh, India. This study is
part of a larger luminescence dating program to assess the time of deposition of the alluvial
deposits and YTT ash in the Middle Son Valley. Experiments were conducted on two
additional samples (one from the same geological section, and one from a modern sand bar
in the Son River channel) to assess potential sources of overdispersion (OD) in the KF grain
age distribution. The impact of single-grain fading rates and K contents on the KF single-

grain age distribution is also examined.

6.2 Samples

IR stimulated luminescence (IRSL) measurements were made on three samples
(GHO-2, GHO-3, and KHUT-10). Sample GHO-2 was collected from a well-drained,
medium-coarse fluvial sand unit that underlies YTT deposits in a cliff section on the north
bank of the Son River (24° 30” 7.608” N, 82° 1’ 2.748” E) (Jones, 2010). The YTT deposit
at this location is thought to have been deposited ~74 ka ago (Jones, 2010, Gatti, et al. 2011,
Smith, et al. 2011) but the ash here has not been dated directly. Sample GHO-3 was
collected from a fine-medium sand unit immediately above the YTT deposit, and ~2 m
above sample GHO-2. No carbonate concretions or organic matter was observed in the two
sand units in the field. KHUT-10 was collected from a modern-day sand bar in the Son

River channel, ~25 km upstream of the GHO section. See Supplementary Materials for
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further details on sample preparation, equipment and environmental dose rate calculations

(Tables 6-S1, 6-S2).

6.3 Testing a SAR protocol
6.3.1 Natural IRSL signals

Most KF grains (60-80%) from sample GHO-2 are characterized by bright initial
signals (commonly greater than 40,000 counts in the first 0.134 s) that decay rapidly upon
laser stimulation, but fail to reach a constant background (Fig. 6-1a). Approximately 20—
40% of grains from sample GHO-2 exhibit dim and very slowly decaying, IRSL signals (Fig.
6-1a, inset). Elemental (microprobe) analyses (Section 6.6.4) show that the bright grains are
most commonly orthoclase and some are plagioclase, and the dim IRSL signals are usually
derived from holes occupied by quartz grains, both minerals identified on the basis of their
elemental compositions. The IRSL signals detected from the holes containing quartz grains
may be due to weak IRSL emissions from the quartz grains or feldspar inclusions inside
them, or stray IRSL emissions from adjacent bright KF grains. Approximately 10% of
measured feldspar grains have natural and/or regenerative signals greater than 268,000
counts per 0.134 s. These grains were excluded from further analyses as such intense signals

induced partial saturation of the photomultiplier tube.

6.3.2 The SAR procedure and data rejection criteria

The D, was measured using an IRSL SAR procedure similar to that described by
Wallinga et al. (2007). The temperature and duration of the preheat (250°C, 10 s) preceding
the L, and L, measurements were identical to those preceding the T, and T, measurements,
following Huot and Lamothe (2003) and all IRSL measurements were made while holding
the sample at 50°C (Table 6-S3). At the end of each SAR cycle, all grains on each disc were
bleached using IR LEDs for 40 s at 290°C to reduce recuperation. A typical KF grain dose
response curve is shown in Fig. 6-1b.

KF grains were rejected if: 1) they exhibited an IRSL decay curve typical of holes
occupied by quartz grains, 2) their signals failed to grow systematically with increasing
regenerative dose (i.e., they had no dose-response curve), 3) the sensitivity-corrected zero-
dose signal was greater than 5% of L,/T,, 4) the first 0.134 s of the test dose signal following
the natural IRSL measurement was less than 3 times the background, 5) the recycling ratio
differed from unity by more than 2c (Jacobs and Roberts, 2007), and 6) their natural and/or
regenerative signals exceeded 268,000 counts per 0.134 s (to prevent partial saturation of the
photomultiplier tube). Signals were analyzed using the ‘Previous background (BG)

subtraction’ option in Analyst, but we note that this method results in D, values that are
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negligibly smaller (by ~0.2%) than those obtained using the standard ‘late light’ subtraction

procedure.

6.3.3 Dose recovery test

A single-grain dose recovery test was performed on KF grains from sample GHO-2
that were bleached in the sun for 2 days before measuring a laboratory beta dose of 68 Gy
using the SAR procedure outlined in Table 6-S3. Out of 590 measured grains, 232 (39%)
passed all rejection criteria (Table 6-S4). The distribution of measured dose/given dose
ratios is shown in a radial plot in Fig. 6-2a. The weighted mean ratio is 0.97 = 0.01, and the
OD is 6.9 £ 0.5%. Both statistics were calculated using the Central Age Model (CAM) of
Galbraith et al. (1999). These dose recovery results suggest that the SAR protocol is

appropriate for the majority of KF grains in this sample.

6.4 D, determination and sources of overdispersion

The single-grain D, distribution of sample GHO-2 is shown in Fig. 6-2b and the
decay curves for two extreme values are plotted in Fig. 6-2¢; the latter exhibit no obvious
differences in shape. Of 1149 measured grains, 475 (41%) passed all rejection criteria
(Table 6-S4). The weighted mean (CAM) D, of all accepted grains is 52.7 £ 1.6 Gy, with an
OD of 46.5 £ 1.5% (Table 6-1). The OD and relative spread in values of this sample are
much larger than those obtained in the dose recovery test, which we attribute to a number of
factors, including:

1) natural variations in luminescence properties of KF grains additional to
those observed in the laboratory (as bleaching and irradiation conditions in
nature are not identical to those used in the dose recovery test),

2) heterogeneous external beta microdosimetry after burial,

3) inhomogeneous bleaching of grains before burial, including the
incorporation of older grains into the sample by underwater mixing of
slumped riverbank deposits with younger fluvial sediments coming from
upstream,

4) variations in *’K contents among grains, leading to differences in internal
dose rates, and

5) grain-to-grain variations in fading rates.

Heterogeneous beta microdosimetry likely accounts for some of the OD, but the
effect is thought to be minimal because organic matter and calcium carbonate concretions or
nodules were not observed in the sedimentary unit. Any beta microdosimetry effects are less
important for KF grains than for quartz, because a significant part the environmental dose

rate to KF grains (up to ~43% in sample GHO-2) originates from the internal *’K.
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Because sample GHO-2 consists of grains that were deposited in a fluvial channel, it
is possible that not all grains were completely bleached before burial, when last transported
by the river. To examine the issue of inhomogeneous bleaching, single-grain D,
measurements were made on KF grains from a modern sample (KHUT-10) collected from a
sand bar in the middle of the Son River channel. The D, distribution of this sample is shown
in Fig. 6-2d. The weighted mean D, is 1.7 + 0.2 Gy with an OD of 3.9 £+ 0.2 Gy (n = 366),
calculated using the unlogged CAM (Arnold et al., 2009). Only 8% of grains have natural
doses greater than 5 Gy. If the bleaching conditions of river-transported grains in sample
GHO-2 had been similar to those of KHUT-10, then these data suggest that residual doses
would probably have been small (i.e., mostly <5 Gy).

It is possible, however, that a significant proportion of the grains in sample GHO-2
were derived from locally, slumped river-bank deposits, in which case the OD of D, values
for GHO-2 may reflect underwater mixing of potentially well-bleached older riverbank
sediments with younger fluvial sediments transported from upstream. It may also reflect
grain-to-grain variations in fading rate and “’K content. To investigate the latter two
possibilities, fading-corrected ages were calculated for all grains accepted for D, estimation,
using the model of Huntley and Lamothe (2001) and K contents were measured for a
subpopulation of these grains (Section 6.6.4). For comparison, fading-corrected ages were

also calculated from aliquots of the same sample.

6.5 Anomalous fading tests
6.5.1 Fading measurement procedures

Fading tests for both single grains and aliquots in this study followed the procedure
of Auclair et al. (2003). After D, measurement of single grains, each grain (still located in
the same hole) was stimulated repeatedly with the IR laser after being given a laboratory
dose of 34 Gy (L) and following a series of delay times after irradiation and preheating
(Table 6-S5). Each L, measurement was immediately followed by a test dose (14 Gy)
measurement (Ty) to correct the L, signal for sensitivity change. A prompt measurement
(i.e., an L,/Ty measurement made after no delay period) was made immediately after each
delayed L,/Ty measurement to ensure that any sensitivity changes of L,/T, measurements
throughout the fading test are accounted for (Huot, 2007). Maximum delay times for each
grain were ~44 h. Fading tests for multi-grain aliquots followed an identical procedure, but
with shorter delay times (maximum delay time of ~14 h). All fading rates were estimated
using the measured g-value normalized to a delay period of 2 days (Huntley and Lamothe,
2001). Twenty-four aliquots were measured from sample GHO-2, so that single-grain and

multi-grain aliquot calculated ages could be compared. However, the fading rates of 24
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aliquots from sample GHO-3 were subsequently used in comparisons of single-grain and
multi-grain aliquot g-value distributions, because the GHO-3 fading measurements appeared

to be more thermally reproducible than the GHO-2 fading measurements (see Section 6.5.2).

6.5.2 Fading test results

Multi-grain aliquot fading rates for samples GHO-2 and GHO-3 are statistically
indistinguishable, but there is a larger spread in g-values from GHO-2 (3.1 + 2.0 %/decade, n
= 24) than from GHO-3 (3.1 + 0.6 %/decade, n = 24) (the uncertainties are expressed as the
standard deviation). Following Huot (2007) we consider this larger spread to be an
undesirable measurement artefact caused by poorer thermal reproducibility in the fading
measurements for GHO-2. This poor reproducibility is attributed to the Crystalbond
adhesive used to mount grains to discs (see Supplementary Material for details).

The distribution of single-grain g-values for sample GHO-2 is shown in Fig. 6-3a; it
has a weighted mean of 2.9 %/decade and a standard deviation of 7.1 %/decade (n = 475).
The multi-grain aliquot g-value distribution of sample GHO-3 is shown in Fig. 6-3b, for
comparison. Representative single-grain and multi-grain fading plots are shown in Figs 6-
3¢, d and e. The single-grain g-value distribution has a much larger spread than the multi-
grain aliquot distribution. We attribute this to the relatively poor precision of fading
measurements on single grains, and to grain-to-grain variations in fading rates that are

averaged out in multi-grain aliquot measurements.

6.6 KF grain age distributions
6.6.1 Single-grain and multi-grain KF ages

The fading-corrected single-aliquot and single-grain age distributions for sample
GHO-2 are shown in Fig. 6-4a, and the calculated weighted mean (CAM) ages are shown in
Table 6-1. The single-grain weighted mean age for all grains is 29.3 £ 1.3 ka and this is
consistent with the weighted mean age of 29.3 = 1.7 ka for 24 aliquots of the same sample.
The multi-grain aliquot age OD (20.0 + 3.5%) is smaller than that of the single-grain age
(37.3 £ 1.5%), and this is likely due to averaging effects of multiple-grain luminescence
signals.

It is important to emphasize that if, as we consider probable, sample GHO-2 consists
of an admixture of fluvially transported grains and grains derived from older, locally
slumped riverbank deposits, then the weighted mean ‘ages’ determined using CAM have no
meaningful chronological value. We use CAM here only as an indication of central tendency
and not as a measure of sample burial age; the latter would require the use of the minimum

age model to estimate the burial dose of the mostly recently bleached grains in the sample, or
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the finite mixture model to estimate the burial doses of multiple, discrete populations of

single grains (Jacobs and Roberts, 2007).

6.6.2 Single-grain quartz ages

The single-grain quartz weighted mean age of sample GHO-2 is 45.6 + 2.9 ka with
an OD of 44.9 + 2.2%); the age distribution is shown in Fig. 6-4b. The same caveats apply as
above to the interpretation of the weighted mean ‘age’ determined using CAM. The quartz
single-grain OSL measurements follow the procedures of Haslam et al. (2011), and the ages
were determined by dividing the single-grain D, values by the environmental dose rate for
the bulk sample. The pattern and OD of the quartz single-grain age distribution is not
identical to that of the KF grains (e.g., fewer grains have ages between 10 and 30 ka), but the
range of ages of both distributions is similar (Figs 6-4a, b). Most quartz and feldspar grains
have burial ages noticeably younger than the expected age (~74 ka) of the YTT deposit.

6.6.3 Isolating zero-fading grains

A potential benefit of dating K-feldspars at the single-grain level is that grains with
signals that fade significantly can be excluded from analyses. Almost half (45%) of the
accepted grains in sample GHO-2 have g-values that are statistically consistent with zero at
2. We refer to these as ‘zero’-fading grains. The weighted mean ‘age’ of all these grains
(26.4 + 1.2 ka, Table 6-1) is slightly younger than that of the entire grain population, and this
is likely because some of these grains do, in fact, fade, but at rates too low to be detected at
laboratory timescales and given the measurement precisions achieved in this study. The OD
(38.4 £ 2.1%) and pattern of the ‘zero’-fading grain age distribution is similar to that of all
fading-corrected grains, and the oldest and youngest grain ages of the entire grain population
are present in the ‘zero’-fading grain age plot (Fig. 6-4c). No simple correlation between

single-grain fading rate and fading-corrected age could be identified.

6.6.4 The influence of K content on single-grain age distributions

Because the beta radiation from *’K in individual KF grains from sample GHO-2
contributes up to ~43% of the total dose rate, grain-to-grain variations in K content may
induce scatter in single-grain D, and age distributions. Wavelength-dispersive spectrometry
(WDS) measurements were made on 51 individual feldspar grains from sample GHO-2 to
detect any relationships between K content and fading-corrected age; these grains had been
previously used for D, measurements. WDS measurements were made using a Cameca SX-
100 electron microprobe in the Department of Earth and Planetary Sciences, at Macquarie

University, Australia (see Supplementary Material for details).
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Fig. 6-4d shows the single-grain age distribution of the WDS-measured grains (n =
51); each point is shaded according to its K content. Two grains have almost negligible K
contents (<0.25%) and were identified as plagioclase feldspars on the basis of their Al
(~12.5%), Si (~30%), Na (~7%), and Ca (~3%) contents. The remaining grains have K
contents of between 9 and 14% (Fig. 6-4d) and, thus, can be classified as orthoclase. This
range of K contents is slightly larger than that reported for hand-picked feldspar grains from
China (13-14%; Zhao and Li, 2005), but smaller than that reported for KF grains from North
America (6.5-16.9%; Huntley and Baril, 1997).

We could find no correlation between K content and fading rate or single-grain age
(Fig. 6-4d). A wide range of grain ages appear within each K content class, each of which
spans only 1-2%; for example K contents of 13—14%, grain ages range from 13 ka to 82 ka.
A dependency of grain age on K content may be masked by the fact that other sources of
ionizing radiation account for two-thirds of the total dose rate. Also, any influence of “’K
content on KF single-grain ages may be confounded by inhomogeneous bleaching of this

sample.

6.7 Discussion and Conclusions

We have reported KF single-grain D, and fading-corrected ages for a fluvial sand
sample collected from north-central India, and considered some potential sources of OD:
namely, grain-to-grain variations in luminescence properties, residual doses at deposition,
anomalous fading rates and internal K contents. The dose recovery test suggests that at least
6.9% of the OD in D, may be attributed to natural variations in luminescence properties of
the grains. The impact of incomplete bleaching of grains on the OD cannot be measured
directly, but measurements from a modern fluvial sample suggest that any residual dose
would have been small (<5 Gy or ~10% of the weighted mean D,) for grains transported by
the river immediately before burial. Some grains in the sample (including those with ages of
~70 ka and older, Fig. 6-4a) may be derived from older river bank deposits that slumped into
the channel and were mixed with river-transported grains underwater.

Another possible contributor to the spread of single-grain ages is grain-to-grain
variation in fading rate. The decrease in OD before and after correcting for fading (46.6 +
1.5% and 37.3 + 1.5%, respectively) is at least partly due to the lower precisions of the
fading-corrected ages. We also note that the OD of the fading-corrected ages is statistically
indistinguishable from the OD of the ‘zero’-fading grain ages (38.4 + 2.1%), so there is no
evidence for a significant increase in OD attributable to grain-to-grain variations in fading
rates, at least for this sample. Single-grain g-value precisions in this study are poor relative
to those of multi-grain aliquots (see Section 6.5.2). They are probably hampered mostly by

variations in individual grain brightness and by responses to heating and dosing in the
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laboratory during fading tests, in addition to suboptimal thermal reproducibility of fading
tests (Huot, 2007).

We did not detect a dependency of single-grain fading-corrected age on internal K
content, most likely because grain-to-grain variations in K content were small, and any
effects were masked by other causes of D, variation. This suggests that, if single-grain
observations are restricted to density-separated K-rich feldspars, then grain-to-grain
variations in internal dose rates may have a minimal effect on the shape and OD of the KF
single-grain age distribution.

The luminescence ages of some KF grains (4%) and quartz grains (38%) from
sample GHO-2 are consistent with the expected age of the overlying YTT deposit.
However, most KF and quartz grain ages from this sample are significantly younger than 74
ka (Figs 6-4a, b), which suggest that the sand unit underlying the YTT deposit at this sample
location may post-date the YTT event. Sedimentological observations made at this site, as
well as additional feldspar and quartz ages from this and other riverbank sections in the

Middle Son Valley, are being used to further explore this issue.
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Table 6-1. D, and age estimates for sample GHO-2, together
with their overdispersion (OD) values.

CAM
weighted
mean ' OD (%)

D, for all KF grains (Gy) (n = 475) 52.7+1.6 46.5+ 1.5
Uncorrected age for all KF grains 21.8+1.0 465+15
(ka) (n=475)

Fading-corrected age for KF grains 203413 373415
with finite ages (ka) (n = 467)

Age for KF grains with ‘zero’ 264+12 384421
fading (ka) (n = 210)

Fading-corrected aliquot age (ka) 203+17 200+£35
(n=24)

Quartz single-grain age (ka) (n = 45.6+2.9 449420
337)

' CAM weighted mean ages have no meaningful chronological value.
They are used here only to indicate the central tendency of each age
distribution and should not be interpreted as estimates of sample burial
age; see text for explanation.



99

Figures
a
16
— 12
2 20000
S 80
o
] 40
o
% 0. +
= 10000 o 2 4 & 8 10
[72]
o
0 T T T T 1
0 2 4 6 8 10
Time (s)
b

[}
1

Sensitivity-corrected
IRSL signal
N
L

1
50 100 150 200
Dose (Gy)

o
oQY

Figure 6-1. a) Shine-down curves for a KF grain and a quartz grain (inset) from sample GHO-2.
The integration limits for the initial (first 0.134 s) and background (last 1.742 s) signals are
shaded in grey. b) Growth curve for the same KF grain. The KF grain has a K concentration of
12.2%, and the quartz grain is 99.5% SiO2 (both measured using WDS; see text).
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Figure 6-2. a) Distribution of measured dose/given dose ratios obtained from the dose recovery
test for sample GHO-2. The grey band is centered on 1, and the black line is centered on the
weighted mean of the distribution. b) D, distribution for sample GHO-2. c¢) The IRSL decay
curves for the circled points in ‘b’. d) D, distribution of a modern sample (KHUT-10) collected
from a sand bar in the Son River channel. Grains with negative natural dose values, and values
greater than 5 Gy lie outside the scale of the radial plot but are shown in the histogram (n=366).
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Figure 6-3. a) Single-grain g-value distribution for sample GHO-2 (n=475). All g-values are
normalised to a delay period of 2 days. A single-aliquot g-value distribution (n=24) from GHO-
3 is shown for comparison in ‘b’. Each aliquot consists of ~25 grains that were mounted on
stainless steel discs with silicone oil. Fading plots for individual grains from sample GHO-2 that
exhibit a low (c) and a high (d) fading rate, respectively. e) A fading plot for one ~25-grain
aliquot from sample GHO-3.
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Figure 6-4. a) The fading-corrected age distribution for 24 single-aliquots (white-filled circles)
superimposed on the single-grain fading-corrected age distribution for sample GHO-2 (black-
filled circles, n=467). b) Quarz single-grain age distribution for sample GHO-2 (n=337).
Single-grain fading-corrected age distribution for all KF grains with g-values statistically

equivalent to zero (within 20) (n=209).

<)

Black lines in plots ‘a’, ‘b’ and ‘c’ delineate the

approximate age ranges (excluding outliers) of the feldspar and quartz single-grain

distributions.

grains (n=51); each point is shaded according to measured K content (in weight %).

d) Single-grain fading-corrected age distribution of microprobe-measured KF



103

SUPPLEMENTARY MATERIAL

Sample preparation procedures and equipment

The 180-212 pm diameter grain-size fraction of all samples was treated with HCI
acid (10%) and H,0, acid (10%) to ensure the removal of any traces of carbonates and
organic material. A K-feldspar-rich extract was obtained using sodium polytungstate heavy
liquid separation (p<2.58 g/cm’) and etched with a diluted HF acid (10%) solution for 10
minutes to remove the outer alpha-irradiated layer of the grains. After HF acid etching, the
samples were sieved again to remove any grains that were reduced to less than 180 pum in
size.

All measurements were made using a Risg TL/OSL DA-20 reader equipped with a
calibrated *°Sr/”"Y beta source. Single grains (samples GHO-2 and KHUT-10) were loaded
into 300 um diameter holes on gold-plated aluminum discs and stimulated using the IR (830
nm) laser, fitted with an RG780 filter to absorb a resonant wavelength at 415 nm. An IR
laser power of 30% was used to reduce the potential effects of grain heating by the laser
(Duller et al., 2003). Because the dose rate from the *’St/*°Y beta source is not uniform over
the entire area of a disc, the dose rate to each individual disc hole position was calibrated
using gamma-irradiated quartz supplied by Rise.

Multi-grain aliquots (samples GHO-2 and GHO-3), each composed of ~25 grains,
were mounted on stainless steel discs and stimulated using IR (875 nm) light-emitting diodes
(LEDs). The IRSL signals in the blue-violet region were detected using a bialkali EMI
9235QB photomultiplier tube, fitted with Schott BG-39 and Corning 7-59 filters. For multi-
grain aliquot anomalous fading measurements, KF grains from sample GHO-2 were adhered
to discs using a transparent thermoplastic polymer adhesive, Crystalbond 509 (see below),

and KF grains from sample GHO-3 were adhered to discs using silicone oil.

g-value calculations

In this study, the g-value of each grain was calculated using Equation 4 of Huntley

and Lamothe (2001):

UL =1 - (g/100) * logyo(#/t.) (1)

where 7/, is the L,/T, measurement (/) normalized to the first prompt L,/T, measurement

(1), t = t; + (t,-1)) / 2, where ¢, is the time elapsed since the end of irradiation and the
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measurement of L,, 7, is the time elapsed since the beginning of irradiation and the
measurement of L,, and ¢, is ¢ for the first prompt measurement. Thus, the g-value is the
slope of the weighted regression line of /I, plotted against log;(#/¢.), multiplied by 100. The
error of the g-value for each grain was calculated as the standard error of the slope of this
weighted regression line, multiplied by 100. The weighted linear regression (weighted
according to the square of the inverse of the measurement error for each //I.) was performed

using the linear model function called ‘Im’ in the R package (http://www.r-project.org).

Following convention, the g-value and its uncertainty were evaluated for #. = 2 days (Huntley
and Lamothe, 2001).

To calculate the fading-corrected age of each grain from sample GHO-2, the single-
grain D, values, g-values (normalized to 2 days), and the total dose rate for the bulk sample
(2.42 £ 0.08 Gy/ka), as well as their uncertainties, were used as parameters in the Huntley
and Lamothe (2001) fading-correction model. The calculations were performed using the
Excel spreadsheet and macro provided by Sébastien Huot. The fading-corrected age for each

grain (7) was calculated using Equation A5 of Huntley and Lamothe (2001):

TYT=Du/De = It/I= 1 —x [In(T/t) — 1] )

where Tt = D./D, (i.e., the calculated age before correction for fading), D, is the measured
equivalent dose, D, is the total dose rate for the bulk sample, and D.¢and /; are the values of
D, and / that would be obtained if there were no fading.

The associated uncertainty on this age (at 16) was calculated as:

T* {[(Tmax_Tmin) / (Z*T)]Az + (ATf/Tf)Az}A 0.5 (3)
where Ty, and T, are the fading-corrected ages obtained using the measured g-value
(normalized to 2 days) plus 1o and minus 1o, respectively, and ATt is the uncertainty on 7.
AT was calculated as:

T * [(AD/D )2 + (AD,/D,)"2]" 0.5 @)

where AD, and AD, are the 16 uncertainties on D, and D,, respectively.
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Aliquot preparation methods using Crystalbond 509

In luminescence studies, silicone oil is typically used to adhere grains to discs, but
we found that after several hours to days, the oil dries and the grains will move or slide off
the disc. If enough grains are lost, L, and Ty signals may be hampered by poor counting
statistics, leading to an increase in error in the measured g-values. To prevent this, a
transparent thermoplastic polymer adhesive, Crystalbond 509, was used for multi-grain
aliquots of sample GHO-2, following the approach of Huntley and Lamothe (2001). After
measurement of the D, a small amount of Crystalbond was dissolved in acetone and dropped
onto the grains on each disc using a pipette, and allowed to air-dry for at least two hours
before measurement. This adhesive did not adversely affect L,/T, errors of multi-grain
aliquots (Table 6-S1), but did reduce the thermal reproducibility of the fading measurements
(see Section 6.0). As a consequence, we did not use this adhesive on aliquots used for fading

measurements of sample GHO-3.

Environmental dose rate calculations

The environmental dose rate was determined for sample GHO-2 for age calculations.
The internal dose rates of KF grains were not measured directly, but instead estimated using
assumed U, Th, “°’K and *'Rb concentrations based on values widely used in the literature.
Internal U and Th contents were assumed to be 0.3 + 0.1 ppm and 0.7 + 0.1 ppm,
respectively, following Medjahl (1987). The internal *’Rb concentration was assumed to be
400 + 100 ppm (Huntley and Hancock, 2001), and the internal *’K content for KF grains was
assumed to be 12.5 £ 0.5% (Huntley and Baril, 1997), except where stated elsewhere in this
paper (see Section 7.4). The internal alpha and beta dose rate contributions from the U and
Th decay chains, and the internal beta dose rate contribution from *’K, were calculated using
the conversion factors of Adamiec and Aitken (1998). An alpha efficiency factor (a-value)
of 0.09 + 0.03 was assumed based on previously reported values for polymineral fine grains
in the literature (Rees-Jones, 1995; Lang and Wagner, 1997; Banerjee et al., 2001; Lang et
al., 2003), and dose rates were corrected for beta attenuation using beta absorption factors for
etched grains from Brennan (2003).

The external beta and gamma dose rates were estimated by low-level beta counting
and in situ gamma spectrometry, respectively, and a contribution added for the dose rate
from cosmic rays. The external dose rate was calculated for an estimated long-term, time-
averaged water content of 5 + 2%. This takes into consideration the field water content

measured in the laboratory (0.3%), the free-draining nature of the sample sediments and their
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collection during the dry season, and the monsoonal climate of the region. The total dose

rate for sample GHO-2 was calculated to be 2.42 + 0.08 Gy/ka (Table 6-S2).

Wavelength-dispersive spectrometry (WDS) methods

All grains from three single-grain discs were lifted out of the holes using double-
sided sticky tape. The other side of the tape was then adhered to a flattened, polished base of
a round plastic capsule ~30 mm in diameter and 20 mm deep. The capsule was then filled
with epoxy resin and cured. After curing, the resin block was ground with glass paper of
progressively finer grades (240, 800, 1200, 2000) to the centre of the layer of single grains.
To ensure that grain surfaces were as flat and smooth as possible, the surface of the block
was polished using 6, 3, and 1 pm diamond paste. Approximately half of the grains from
each single-grain disc were lost during the grinding process. A vacuum-evaporated carbon
coating (~20 nm thick) was applied to the top of the resin block using a sputter coater.

The polished block was inserted into a holder in a vacuum-pumped specimen
chamber and the locations of spot measurements were identified and recorded using standard
software and a high-power optical microscope and charge-coupled device (CCD) camera
imaging system. Three spot measurements were made on each grain using an electron beam
size of 5 pm and a beam current of 20 nA. Most grain surfaces still contained rough spots
after polishing, so spot measurement locations were restricted to flat grain surfaces with an
homogeneous appearance. Five WDS spectrometer reference crystals were used to isolate
the characteristic X-rays (Ka X-ray lines) of K, Mg, Si, Ca, Fe, Na, and Al. The detection
crystal types, standards used, as well as the average detection limits achieved for each
element are listed in Table 6-S6. The elemental concentration of each spot measurement was
quantified using the ZAF (Z—backscatter effect, A—absorption of radiation within the
grain, F—fluorescence) quantitative method (Reed, 1995) using orthoclase (12.79% K) as a
standard for K. The K content of each grain in weight % was calculated as the average of
the three spot measurements. Seven percent of grains exhibited heterogeneity in their
elemental composition (i.e., values of the three spot measurements differed by more than

2%) and thus were excluded from analyses.
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Table 6-S1. L,/T, errors calculated from two aliquots of sample GHO-2 containing ~25 grains
each. Aliquot 1 was prepared using silicone oil, and Aliquot 2 was prepared using Crystalbond
509.

Aliquot Mask Ly T, LJ/T, rel;la/;fve
1 Adhesive size (photon (photon L,/T, standard
number (mm)  counts) counts) error standard
error (%)
1 Silicone oil 1 172933 74898 2.31 0.01 0.46
2 Crystalbond 1 83195 37636 2.21 0.01 0.67
" All aliquots were measured after being given a laboratory dose of 28 Gy and a preheat of 250°C for 10 s. The test dose was 11
Gy.

Table 6-S2. Environmental dose rates for sample GHO-2 (in Gy/ka).

Alpha Beta Gamma Cosmic Total
External 0.72£0.05 0.61+£0.03 0.09+£0.01 1.42+0.06
Internal 0.12+0.04 0.79+0.03 1.00 £ 0.05
Total 2.42+0.08

Table 6-S3. The SAR measurement protocol for single KF grains. '

l. Natural or regenerative dose

2 Preheat (250°C, 10 s)

3 IRSL ? (50°C, 10 s) — L, L,
4 Test dose (14 Gy)

5. Preheat (250°C, 10 s)

6 IRSL ? (50°C, 10 s) — T, T
7 IR (diode) bleach (290°C, 40 s)

8 Return to step 1.

'L, = natural signal, L, = regenerative dose signal. Regenerative doses of 54, 81, 108, 135, and 203 Gy were used prior to a
zero dose to monitor for recuperation. A repeat dose of 81 Gy was measured after the zero dose to determine the
recycling ratio.

% IR laser stimulation commenced 1.675 s after the disc temperature reached 50°C and lasted for 6.7 s.



Table 6-S4. KF grain rejection statistics for sample GHO-2.

Dose recovery test
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D. determination

(6 discs) (12 discs)
Measured grains 590 1149
& (10 empty holes) (51 empty holes)
Plateau-like decay curves (quartz) 235 197
Feldspar grains 355 952
Grains with signals that do not systematically grow with 23 106
increasing regenerative dose (i.e., no dose response curve)
Grains rejected due to brightness 36 100
(>268,000 counts per 0.134 s)
Grains rejected due to test dose signal <3 x BG 0 0
Feldspar grains rejected due to recycling ratio # 1 at 2c. 38 149
Feldspar grains rejected due to high recuperation (i.e., 38 207
zero-dose signal > 5% of L,/T,))
Accepted feldspar grains 232 475
467

Feldspar grains with finite fading-corrected ages

Table 6-S5. Anomalous fading SAR measurement protocol for single KF grains.

Dose (34 Gy)

Preheat (250°C, 10 s)

IRSL' (IR laser, 50 °C, 10s) ~ — L, (prompt)
Test dose (14 Gy)

Preheat (250°C, 10 s)

IRSL' (IR laser, 50°C, 10s)  — Ty (prompt)
IRSL bleach (diodes, 290°C, 40 s)

Dose (34 Gy)

Preheat (250°C, 10 s)

Delay

IRSL' (IR laser, 50°C, 10s) ~ — L, (delay)
Test dose (14 Gy)

Preheat (250°C, 10 s)

IRSL' (IR laser, 50°C, 10s)  — T, (delay)
IRSL bleach (diodes, 290°C, 40 s)

© % N kWb =

—_m = e e e
wok w b= o

16. Return to step 1 for the remaining delay times

"IR laser stimulation commenced 1.675 s after the disc temperature reached 50°C and lasted for 6.7 s.

? Delay times ranged from ~4 min (prompt measurements) to 44 h after irradiation.
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Chapter 7 — Assessing the time of final deposition of Youngest Toba Tuff
deposits in the Middle Son Valley, India—a luminescence approach using
multiple methods

7.1 Introduction

YTT ash preserved in alluvial sediments near the Rehi-Son River confluence and at
the Khunteli Formation type-section (Figs 1-3, 7-1) has been used as a chronostratigraphic
marker in geological and palacoenvironmental investigations (e.g., Acharyya & Basu 1993;
Williams ez al. 2006; Williams ez al. 2009), but the time of final deposition of the ash, and its
temporal relationship with other stratigraphic formations in the Middle Son Valley, is
disputed (see discussion in Chapter 1). This issue may be resolved by using luminescence
dating techniques that assess the burial age of quartz and feldspar grains in alluvial
sediments bracketing the YTT deposits.

This chapter assesses the luminescence dating potential of small (~25 grain) aliquots
of KF grains extracted from samples GHO-2, GHO-3, KHUT-1, and KHUT-4 (Table 3-1)
using two different IRSL signals: the IRSL signal measured at 50°C, and the post-IR IR
signal measured at 225°C after an IRSL stimulation at 50°C, which has been shown to be
less prone to anomalous fading (Thomsen et al. 2008; Buylaert ez al. 2009). In this chapter,
the IRSL signal measured at 50°C is referred to as the IRSLs, signal, and the post-IR IR
signal measured at 225°C is referred to as the pIRIR,,s signal. Experiments were conducted
to assess the suitability of these samples to SAR measurement protocols and preliminary
IRSLso and pIRIR;,5 aliquot age distributions were determined. The single-grain IRSL age
distribution of KF grains from sample GHO-2 (discussed in Chapter 6), and single-grain
OSL age distributions of quartz grains from all four samples are used to assess the reliability
of IRSL ages obtained from the KF aliquots. The implications of all ages obtained from both
quartz and feldspar for the time of final deposition of the YTT ash is discussed in Section

7.8.

7.2 YTT ash deposits and samples
7.2.1 Ghoghara main section

The Ghoghara main section is one of eight geological sections near the Son-Rehi
confluence that were examined during the 2009 field season and described and interpreted by
Gatti et al. (2011) (Table 7-1). GPS coordinates of these sites have been published by Gatti
et al. (2011) and all but one site (RH2) is thought to contain a primary ash layer overlain by
secondary ash deposits that show re-working and/or intermixing with siliclastic silt and sand
(Gatti et al. 2011) (Table 7-1). The base of all sections exposes fining-upward cross-bedded

sand and gravel that have been interpreted to represent point-bar or counter-bar formation by
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a laterally migrating channel followed by deposition of near-channel overbank sands (Gatti
et al. 2011). The overbank sands are overlain by clay that is interpreted to represent a distal,
low-energy shallow-water depositional environment on a floodplain (Gatti et al. 2011). The
YTT ash that overlies the clay is thought to have been preserved within a low-energy niche
that was later rapidly buried by sediment, such as an oxbow lake or pond on the floodplain
(Gatti et al. 2011).

Six sites observed in this study, including the Ghoghara main section, are shown in
Figure 7-2. Sedimentological evidence of post-depositional re-working of the ash is present
in the form of deformed or gradational horizontal contacts and intermixing with the host silt
and sand (Fig. 7-2). The ash itself appears massive in all instances except for the ash-rich
silt exposed in the Ghoghara main section, which contains ripples (see discussion below).
The lateral extent of the ash units observed in this study could not be determined without
further excavation.

The Ghoghara main section is a step trench that exposes ~11 m (vertical thickness)
of generally fining upward fluvial gravels, sands and silts, with very clean, white (10YR 8/2)
YTT ash appearing between 6 and 7 m below the ground surface (Fig. 7-1b). This ash unit is
cohesive and breaks apart in blocks, and ash-rich cohesive silt blocks can still be seen
partially buried in colluvium at the foot of the exposure. The lower-most 4 cm of the ash is
exceptionally white (10YR 8/1), contains sharp upper and lower contacts, and is thought to
potentially be a primary ash fall layer (Gatti et al. 2011; Matthews et al. 2012). The top of
this cliff section is estimated to be within ~5-10 m of the maximum height of the Middle Son
Valley alluvium in this reach of the Son River. The step trench was dug in a location where
the top-most sands and silts of the valley alluvium have been eroded away. There is no
evidence of lower Holocene terrace formation at its base.

Each sedimentary unit within the Ghoghara main section has been assigned a
lithofacies code using the code scheme of Miall (2006), and the description and
interpretation of all facies is shown in Table 7-2. The fining upward sands and gravels at the
base of the sequence (Sp) are interpreted to represent dune formation and migration within
the river channel under progressively lower energy flow conditions due to lateral migration
of the river channel. These sands grade into silty fine-medium sand (Sm) and clayey silt
(Fsm) that likely record overbank deposition followed by low energy deposition of fines in
an abandoned channel, pond, or oxbow lake on a floodplain. The ash (Y77) and ash-rich silt
(Fma) are indicative of ash deposition and preservation within the same low-energy
waterbody. The overlying alternating layers of fine and medium silty sand (Sma) and silt
with pedogenic features (P) represent deposition of overbank sands and floodplain silts
followed by soil development on the floodplain. The facies analysis of the sediments in the

Ghoghara main section is consistent with the interpretations of Gatti er al. (2011).
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Table 7-1. Geological sections examined by Gatti ez al. (2011). Modified after Gatti et al. (2011).

Thickness Thickness
. . . Previously of the of the Selection
Type Site Locality Coordinates described  primary secondary criteria
ash ash
Primary + 020"
Secondary RHI Rehi ég"(s)?Sz” I];I no 5cm 1.6 cm Western site
ash
GGl o
Ghoghara 020170 Williams
Erililgghara cliffs é‘z‘oi’?zf EN and Royce, 5cm 1.5 cm Main ash site
section) (main site) 1982
Ghoghara PO . .
GGl,b cliffs é;oi?2999§E o 25 cm 1.05 cm Sedimentological
(aully) . structures
0.1 cm
GG2 Ghoghara  24°30°9” N o (disturbed (.90 ¢cm
cliffs 82°1’8” E lenses
only)
GG3 Ghoghara  24°30°9” N o 0.45 cm 1.4 cm
cliffs 82°1’9” E (disturbed)
GG4 Ghoghara ~ 24°30°9” N 0.1-0.4 2.28 cm .
cliffs 82°111"E "° em Eastern site
GGS Ghoghara ~ 24°30°9"N f;flts‘:sbed 1 em
cliffs 82°1°20.6” E
only
. Western
Secondary R2 Rehi 24°30°9” N 13m
ash only confluence 82°0°55” E ne a zietceondary only
KH
Khunteli JORSUON Acharyya Situated on the
Formation Khunteli é;oigz}}\% and Basu, n/a 22m right side of the
1993 river

type-section
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—24°33'N

Ghoghara
main section

Khunteli
type section

<~ Youngest Toba Tuff
& Neolithic

O Mesolithic

A Upper Palaeolithic
@ Middle Palaeolithic
M Lower Palaeolithic

82“’10’ E

Ghoghara

cohesive silt
with ash

/

Meters
below surface

0—

Silt, with modern roots, carbonate nodules,
and the occasional pebble and cobble (P)

Alternating layers of fine and medium silty
sand with re-worked YTT ash (Sma)
GHO-3

YTT, sharp upper and lower contacts (YTT)
Clayey silt (Fsm)

GHO-2 Fine-medium sand (Sm)

Fining upward crossbedded gravel and sand
(Sp)

CISi F M C, Gr
Meters Sa
below surface

0 =======%= Sand matrix supported pebble-cobble gravel
(Gm)

Sandy silt with carbonate nodules (P)

Cross-bedded sand (Sp)

KHUT-4 Cross-bedded sand (Sp)
YTT ash-rich sandy silt (Fma)

YTT ash-rich sandy silt (Fma)
KHUT-1

Cross-bedded sand with gravel lenses (Sp)

Crudely bedded gravel with coarse sand
lenses and cobbles (Gm)
Cross-bedded sand (Sp)
CISi F M C, Gr
Sa

Figure 7-1. a) The study area. The locations of Palaeolithic, Mesolithic and Neolithic artefacts are after
Sharma and Clark (1983). Sedimentary logs for sediments containing YTT ash at Ghoghara (b) and
Khunteli (c) in the Middle Son Valley, Madhya Pradesh. A 50 cm stick is used for scale in the photos of
YTT ash unit in (b). A microphoto of a sample from the whitest (10YR 8/1) part of the YTT ash unit at
Ghoghara (b) was taken using a digital camera mounted on a Leica MZ16A stereo microscope.
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Luminescence samples GHO-2 and GHO-3 were collected from alluvial sediments below

and above the YTT unit, respectively (Fig. 7-1b).

7.2.2 Khunteli Formation type-section

A step trench was excavated at the Khunteli Formation type-section that exposes ~20
m (vertical thickness) of fluvial sands, gravels, silts (Fig. 7-1c). This cliff section extends to
the maximum height of the Middle Son Valley alluvium in this reach of the Son River, and
there is no evidence of lower Holocene terrace formation at its base. This section was also
examined by Gatti ef al. (2011) (Table 7-1). The base of the trench exposes crudely bedded
gravel (Gm) and cross-bedded sands and gravel (Sp) that likely record bar and bedform
deposition within a channel. These sediments are overlain by ash-rich sandy silt (Fma) that
were likely deposited under low-energy or waning flood conditions in a distal environment
on the floodplain (Fig. 7-1c). The YTT ash-rich silt is laterally discontinuous and may have
been deposited within a hollow or abandoned channel. No other ash exposures have been
found within 100 m either side of this section, or within the cliff exposures on the north side
of the Son River directly opposite Khunteli. The ash-rich silt is overlain by cross-bedded
sands (Sp) that likely record overbank deposition in an environment slightly more proximal
to the channel. This sand grades into sandy silt with pedogenic features (P) indicative of the
deposition of floodplain fines in a distal environement, followed by soil formation. A sand-
matrix supported pebble-cobble gravel unit (Gm), not previously described by Gatti ef al.
(2011), caps the sedimentary sequence and this may be the remnants of a former high-energy
river channel deposit that records accelerated flow just prior to incision of the Middle Son
Valley alluvium (Fig. 7-1c). Samples for luminescence dating (KHUT-1 and KHUT-4) were
collected from below and above the ash-rich silt unit (Fig. 7-1c). Refer to Chapter 3 for

details on sample collection and preparation procedures and equipment.

7.3 IRSL sy and pIRIR ;5 signal characteristics of small KF aliquots
7.3.1 The IRSLsy and pIRIR ;5 signals

The D, values from KF grains from all samples in this chapter were estimated using
both the IRSLsy and the pIRIR,,s signals, using single aliquots and SAR measurement
protocols similar to Buylaert e al. (2009) (Table 7-3). The temperature and duration of
preheats preceding the L, and L, measurements were identical to those preceding the T, and
Ty measurements, following Blair ez al. (2005). At the end of each SAR cycle, the sample
was bleached for 40 seconds at 290°C to reduce the extent of recuperation (e.g., Wallinga et

al. 2007; Buylaert ef al. 2009) (Table 7-3).
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Table 7-3. SAR measurement protocols for KF aliquots measured using the IRSLsy and
PIRIR,,;5 signals.

IRSLs, PIRIR;25
1. Natural / Regenerative Dose' 1. Natural / Regenerative Dose'
2. Preheat (250°C, 10 s) 2. Preheat (250°C, 10 s)
3. IRSL(50°C,100s) — L, L 3. IRSL (50°C, 100 s)
4. Testdose (11 Gy) 4. 1IRSL (225°C,100s) — L, L,
5. Preheat (250°C, 10 s) 5. Test dose (11 Gy)
6. IRSL (50°C, 100s)....— T,, T, 6. Preheat (250°C, 10 s)
7. IRSL bleach (290°C, 40 s) 7. IRSL (50°C, 100 s)
8. Return to step 1. 8. IRSL (225°C,100s) — T, Ty
9. IRSL bleach (290°C, 40 s)

10. Return to step 1.

"Ln = natural signal, Lx = regenerative dose signal. For D, estimations regenerative doses of 46, 68, 91, 114, 0 and 68 Gy were
used for the IRSLs, signal and regenerative doses of 46, 68, 91, 137, 0 and 68 Gy were used for the pIRIR s signal.

pIRIR,,s signals are significantly brighter than their preceding IRSLs, signals in
these samples, but the rate of decay of both signals is similar (Fig. 7-3a), which is consistent
with previous results reported in the literature (Thomsen ef al. 2008; Sohbati et al. 2012).
The signal induced by 1 s of IR stimulation minus the mean background count rate over the

last 20 s of stimulation was used in all D, and fading rate calculations.

7.3.2 Preheat plateau tests

To determine whether or not the SAR protocol is appropriate for D, determination,
tests have been integrated into the SAR procedure to check for negligible recuperation (the
“zero-dose point”) and proper correction for sensitivity change (the “recycling ratio”)
(Galbraith et al. 1999; Murray & Wintle 2000; Wallinga et al. 2000) (Table 7-3). Preheat
plateau tests also provide insight into the influence that preheat conditions have on
sensitivity correction, recuperation rates and D, values (Roberts ef al. 1998; Roberts et al.
1999; Wallinga et al. 2000). Here, preheat plateau tests were conducted using both the
IRSLs and pIRIR,;s signals on natural aliquots from sample GHO-3 using a series of 10 s
preheats ranging from 180°C to 300°C (Fig. 7-4). The IRSLs, signal shows a D, plateau
between 180°C and 220°C, then a step up to another plateau between 240°C and 280°C (Fig.
7-4a). This slight increase may be the result of thermal transfer of charge from optically
insensitive traps to optically sensitive traps (Huntley & Clague 1996). The pIRIR;,s signal

shows no significant change in D, with preheat temperature (Fig. 7-4a).
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Figure 7-3. a) IRSLs;) and pIRIR;,s; decay curves. The pIRIR;,,; signal was measured
immediately after the IRSLs, signal on the same aliquot after it was given a laboratory dose of
28 Gy followed by a preheat of 250 °C for 10 s. Normalized decay curves are shown in the inset
graph. b) IRSLs, dose response curve. c) pIRIR;,s dose response curve. Dose response curves
in ‘b’ and ‘¢’ are measured on different aliquots. The solid grey lines in ‘b’ and ‘¢’ illustrate
where L,/T, was projected onto the sensitivity-corrected dose-response curve to determine D..
The dashed grey lines on either side of the solid grey line mark the errors of L,/T, and D, at 1c.

When using a post-IR IRSL signal, it is considered prudent to use preheat
temperatures that are higher than the stimulation temperature (which is, in this case, 225°C)
to prevent an unwanted isothermal TL contribution to the signal (Murray et al. 2009). It is
interesting, therefore to note that the pIRIR,5 D, values measured using preheat temperatures
of 180, 200 and 220°C do not appear to be significantly higher than those measured at 240,
260 and 280°C and this suggests that any isothermal TL contribution to the signals measured
using the lower preheats constitutes a negligible proportion of the natural signals in these
samples. For all preheat temperatures, the pIRIRy,s D, is ~1 to ~3 times that of the IRSLs, D,
value. This may reflect the increased thermal stability and lower fading rate of the pIRIR;s
signal (Thomsen et al. 2011) and/or a decrease in bleachability of the pIRIR,,s in nature
(e.g., Buylaert et al. 2011). The bleachability of both signals is investigated further in
Section 7.3.5.
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Figure 7-4. a) D, versus preheat temperature for the IRSLsy and pIRIR;,s signals. Recycling

ratios and recuperation values for the IRSLsy (b) and pIRIR;;s (c¢) signals.

d) Measured

dose/given dose ratios for both signals. e) Residual doses measured from KF grains that have
been sun-bleached for 2 days. A 250°C/10 s preheat was used. f) Measured dose/given dose
ratios obtained when the residuals of each signal (calculated as the average of all aliquots in ‘e”)
are subtracted from the measured dose (errors have been propagated into the final measured
dose/given dose estimates). Each symbol represents one aliquot, and error bars represent one
standard error on all plots. All measurements were made on sample GHO-3.
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The recuperation of both the IRSLsy and pIRIR,,s signals remains below 5% for all
preheats (Figs 7-4b and c) and this probably reflects the effectiveness of the 40 s, 290°C
hotwash. Recuperation values of 5% are generally thought to have a negligible effect on D,
estimates for older (e.g., >50 Gy) samples (Wallinga et al. 2000; Buylaert et al. 2008;
Davids ef al. 2010). Recycling ratios average 1.00 + 0.03 and 1.01 £ 0.03 for the IRSLs, and
pIRIR,,s signals, respectively (Figs 7-4b and c). These suggest that, for all preheat
temperatures, sensitivity changes between regenerative dose cycles are adequately corrected
for. For all subsequent D, measurements in this study, a preheat of 250°C for 10 s preheat

was used.

7.3.3 Dose recovery tests

Dose recovery tests (the recovery of a laboratory dose after bleaching by artificial
light or natural sunlight; Roberts e al. 1999) can be used to check if KF grains from these
samples are suitable for the SAR protocol (Wallinga ef al. 2000). Dose recovery tests using
the IRSLs, and pIRIR,,s signals were conducted on natural aliquots from sample GHO-3 that
had been bleached in the sun for 2 days. A laboratory dose of 68 Gy was administered to the
aliquots and measured using a SAR protocol. This dose is within the range of natural doses
measured during the preheat plateau tests on GHO-3 using the IRSLs, signal at preheats
greater than 240°C (Fig. 7-4a). Weighted mean ratios of measured dose to given dose of
0.96 = 0.01 (n=12) and 1.02 = 0.01 (n=12) were obtained for the IRSL;, and pIRIR;,s
signals, respectively (Fig. 7-4d). The calculated OD values for both dose recovery tests are
zero. The IRSLs, weighted mean measured-dose to given-dose ratio slightly underestimates
unity, while that of the pIRIR,s signal is consistent with unity. Average residual doses of
0.635 £ 0.003 Gy (IRSLs, signal) and 5.61 + 0.03 Gy (pIRIR,,5 signal) were measured from
aliquots that had been sun-bleached for 2 days (Fig. 7-4e). When these residual doses are
subtracted from the measured doses in the dose recovery tests, weighted mean measured-
dose to given-dose ratios of 0.95 + 0.01 (n=12) and 0.94 £+ 0.03 (n=12) are obtained for the
IRSLs and pIRIR,,s signals, respectively (Fig. 7-4f). Both ratios are within 10% of unity,

therefore these samples are considered to be suitable for the SAR procedure.

7.3.4 Fading rates

It is well known that the IRSLs, signal in KF grains fades over time, and this is
attributed to the loss of electrons from traps that should be thermally stable at ambient
temperatures over geological time to other defects and centers in the feldspar crystal lattice
(Wintle 1973; Spooner 1994). Recent research has shown that the pIRIR,,s signal exhibits
lower fading rates than the IRSLs, signal (Thomsen et al. 2008; Buylaert et al. 2009;

Reimann et al. 2011). Fading tests were conducted on all aliquots used for D,
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measurements, using a SAR measurement protocol based on Auclair et al. (2003) (Table 7-
4). The fading rate was quantified using the g-value normalized to 2 days (Huntley &
Lamothe 2001), and the calculated age of each aliquot was corrected using its own fading
rate. Average IRSLs, and pIRIR,,s g-values for each sample are listed in Table 7-5, and
representative fading plots and g-value distributions for both signals are shown in Fig. 7-5
for GHO-3. Average IRSLs, g-values range from 3.1 to 3.5 %/decade, and those of the
pIRIRy,s signal range from 1.0 to 1.7 %/decade. These average fading rates for these two
signals are comparable to those reported in the literature (Huntley & Lamothe 2001;

Wallinga et al. 2007; Thomsen et al. 2008; Buylaert et al. 2009; Sohbati et al. 2012).

Table 7-4. Anomalous fading SAR measurement protocol.'

Dose (28 Gy)

Preheat (250°C, 10 s)

IRSL (50°C, 100s)  — L, (prompt)
Test dose (10 Gy)

Preheat (250°C, 10 s)

IRSL (50°C, 100s)  — Ty (prompt)
IRSL bleach (290°C, 40 s)

Dose (28 Gy)

Preheat (250°C, 10 s)

$ ©® =2 ok b=

,_.
I

Delay

IRSL (50°C, 100s) — L,
Test dose (10 Gy)

Preheat (250°C, 10 s)

IRSL (50°C,100s) — Ty
IRSL bleach (290°C, 40 s)

L e S e
[ N S

16.  Return to step 10 for the remaining
delay times.

'The pIRIR 5 fading protocol includes IRSL stimulation of the sample for 100 s at 225°C after steps 3, 6, 11 and 14.
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Figure 7-5. Representative IRSLs, (a) and pIRIR;,s (b) fading plots for aliquots of sample
GHO-3, and IRSLs, (¢) and pIRIR;,5 (d) g-value distributions for sample GHO-3.

7.3.5 Signal resetting

In fluvial deposits, it is important to assess whether or not the source traps in all
grains have been sufficiently emptied by sunlight exposure before burial (homogeneous
bleaching). One way of assessing this is to measure the residual dose of a modern sample.
The Son River consists of a shallow, wandering sand bed channel that is confined by ~10 m-
high terraces. D, measurements on single grains of quartz and small (~25 grain) aliquots of
quartz and KF were made on a sample (KHUT-10) collected ~20 cm below the surface of a
modern sand bar in the channel, ~50 m away from the cleaned section at Khunteli. Sediment
within this sand bar has been transported by the river and is considered to be at a sufficient
distance from the river banks so as not to include older, partially bleached grains from
slumped river bank material. The quartz D. values were determined using the SAR
measurement protocol described by Haslam ef al. (2012) (Fig. 7-5). After excluding an
outlying D, value of 38 Gy, the quartz single-aliquot weighted mean D, was calculated to be
0.2 £ 0.1 Gy, and the single-grain weighted mean D, was calculated to be -0.02 + 0.14 Gy,
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suggesting that the source traps for the OSL signal in most quartz grains have been
sufficiently emptied by sunlight before burial.

Residual doses were also measured for KF aliquots from KHUT-10 using the IRSLs,
and pIRIR,,s signals. The weighted mean D, values (calculated using the Central Age Model
(CAM) of Galbraith ef al. (1999)) are 1.3 £0.2 Gy (n=24) and 17.0 + 2.0 Gy (n=24) for the
IRSLs, and pIRIR,,5 signals, respectively, and the D, distributions are shown in Figures 7-6¢
and d. A weighted mean D, of 1.7 £ 0.2 Gy was also measured from 366 single KF grains
from sample KHUT-10 using the IRSLs, signal (Chapter 6). The average IRSLs, and
pIRIR,,5 residual doses measured from KF grains that were sun-bleached for 2 days are
0.635 = 0.003 Gy and 5.61 + 0.03 Gy, respectively, and aliquot-to-aliquot variability is
generally small (i.e., within 1 Gy for the IRSLs, signal and within 3 Gy for the pIRIR;s
signal), suggesting that most grains were well-bleached by this known duration of solar

exposure (Fig. 7-4e). The aliquot-to-aliquot variability in the IRSLs, and pIRIR,,s residual
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Figure 7-6. Single-grain (a) and multi-grain aliquot (b) quartz D, distributions for the modern
sample (KHUT-10). Multi-grain aliquot D, distributions for KF grains from the same sample
measured using the IRSLsy (¢) and the pIRIR;,)s (d) signals. The grey shaded area should
capture 95% of the points if they were statistically consistent with 0 Gy in ‘c’ and 5 Gy in ‘d’
(Galbraith et al. 1999).
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doses in the modern sample is much larger (~7 Gy difference between the largest and
smallest residual doses for the IRSLsq signal, and ~75 Gy difference for the pIRIR,,5 signal,
Figs 7-5c and d), suggesting that not all grains have been fully bleached before burial. The
Minimum Age Model (MAM) of Galbraith ef al. (1999) was originally designed to estimate
the D, of well-bleached grains in D, distributions of samples that were not completely
bleached before burial. The MAM was used to estimate the IRSLsy and pIRIR,,5 D, values
of the most recently bleached KF grains in the modern sample. An OD value of 5% was
added in quadrature to the D. measurement errors before fitting the data with the model; this
is considered an appropriate estimate of the maximum OD expected from a KF aliquot age
distribution obtained from well-bleached grains, as the dose recovery tests yielded OD
values of zero (Section 7.3.3). The MAM IRSLs, and pIRIR,s D, values are 0.3 + 0.8 Gy
(IRSLsp) and 5.4 + 0.2 Gy (pIRIRy,s), which are similar to the results of the sun-bleached
sample. This suggests that the MAM D, values represent well-bleached grains in the modern
sample and that the larger D, values represent incompletely bleached grains. The difference
between the maximum IRSLs, and pIRIR,s residual doses from the modern sample (i.e., the
residual doses obtained from the least-well bleached grains) is ~74 Gy and is much larger
than the difference between the IRSLsy and pIRIR ;s residual doses from the grains that were
bleached in the sun for 2 days (~5 Gy). These results suggest that the source traps of the
pIRIR,5 signal in KF grains in the Son River are much less likely to be emptied by sunlight
exposure than those of the IRSLs signal.

7.4 IRSL sy and pIRIR ;s KF aliquot age distributions

IRSLsy and pIRIR,,5 D, values have been determined for samples GHO-2, GHO-3,
KHUT-1 and KHUT-4 (24 aliquots each) and these have been corrected for anomalous
fading using the correction model of Huntley and Lamothe (2001) (Table 7-4). Fading-
corrected aliquot IRSLs, and pIRIR,,s age distributions for all samples are shown in Figure
7-7. In the next few sections, the KF aliquot IRSLs, and pIRIR,s data are described and the
accuracy of ages calculated from them are assessed using single-grain data from the same

samples (Fig. 7-8).

7.4.1 Recycling ratios, OD, and aliquot ages

All IRSLsy and pIRIRys recycling ratios are statistically consistent with unity,
suggesting that sensitivity changes between consecutive regenerative SAR cycles have been
corrected for, and recuperation values are 2% or less (Table 7-5). IRSLs, OD values range
from ~11% to ~22%, and pIRIR;,s OD values range from ~9% to ~24%. The OD values of
most samples changed little after fading correction, except for sample GHO-2. After fading

correction, the OD of this sample increased by ~5%, which may be due to the relatively low
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precisions in the fading measurements for this sample as a result of the Crystalbond adhesive
used to adhere grains to discs (Chapter 3). Aliquot fading-corrected ages determined using
the pIRIR,s signal are generally higher than those determined using the IRSLs, signal, which
may be due to inadequate bleaching of source traps for the pIRIR,,s signal, as suggested by

measurements of a modern sample (Section 7.3.5).
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Figure 7-7. Radial plots of fading-corrected age distributions for samples GHO-2 (a), GHO-3
(b), KHUT-1 (c¢), and KHUT-4 (d). Solid circles are aliquots measured using the IRSL5, signal
and open triangles are aliquots measured using the pIRIR;,s signal. Residual doses of 0.635 +
0.003 Gy and 5.61 = 0.03 Gy have been subtracted from the IRSL;, and pIRIR;,s data,
respectively, and the errors on the residual doses have been propagated through into the error
on the aliquot ages.

Neither signal produced a significant number of aliquot fading-corrected ages of ~74
ka (the time of the Toba event) or older (Fig. 7-7). This may be due, in part, to grain-
averaging effects. Because of grain-averaging effects, the spread in multi-grain aliquot age
distributions may not be truly representative of the grain-to-grain spread in ages in the
sample. Also, individual grains that are unsuitable for SAR, and contaminating older or
younger grains from other sedimentary units, or grains that have not been completely

bleached before burial, cannot be clearly identified in aliquot age distributions. The signal
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Figure 7-8. Radial plots of single-grain quartz age distributions for samples GHO-2 (a), GHO-3
(b), KHUT-1 (¢), and KHUT-4 (d). The IRSLs, KF aliquot fading-corrected ages (open
triangles) are superimposed on the quartz single-grain age distributions. e) Single-grain IRSLs,
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data and the errors on the residual doses have been propagated through into the error on the
KF ages. Black solid lines are centred on the component ages identified by the Finite Mixture
Model (FMM) of Roberts et al. (2000) for the quartz and KF single-grain data. The grey shaded
band is centered on the age calculated for the KF aliquot data using the MAM (Table 7-4). f)
The proportion of total brightness versus the proportion of quartz and KF measured grains
from sample KHUT-1.
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measured from aliquots represents a cumulative signal from multiple grains. Single-grain
measurements of sample KHUT-1 show that averaging effects are even more pronounced in
feldspar than for quartz (Fig. 7-8f). In sample KHUT-1, 20% of quartz grains will contribute
65-70% of the total OSL signal from an aliquot, and 30-40% of grains will contribute a
similar proportion of the total IRSL signal (Fig. 7-8f). In the next few sections, the accuracy
of ages calculated from IRSLs, and pIRIR,,s KF aliquots is assessed using single-grain OSL
and IRSL data from the same samples. But first, single-grain age distributions for both

quartz and KF are described and interpreted in Sections 7.5.1 and 7.5.2.

7.5 Single-grain age distributions of quart; and KF and evidence for sediment
mixing

7.5.1 Quartz

Single-grain quartz ages for all samples are included in Table 7-5 and their
associated age distributions are shown in Figures 7-8a—d. The quartz single-grain OSL ages
were obtained using the procedures of Haslam ez al. (2011). In this chapter, the quartz data
is shown as age distributions instead of D, distributions, which are typically reported for
quartz, so that they can be directly compared to KF aliquot fading-corrected age
distributions. The quartz age distributions for samples GHO-2, GHO-2, KHUT-1 and
KHUT-4 range from less than 20 ka to over 100 ka, and the OD values ranging from 35 to
45% (Table 7-5, Fig. 7-8). Quartz single-grain datasets for samples known or thought to
have been fully bleached at burial and not affected by post-depositional disturbance (or by
differences in beta dose rate among grains buried at the same time) commonly have OD
values of up to 20% (Arnold & Roberts 2009). The relatively high OD values for the
samples in this study may be the result of: 1) differences in beta dose received by individual
grains in their burial environment due to proximity to pore water, calcium carbonate nodules
or organic matter (e.g., Lian ef al. 1995; Murray & Roberts 1997; Lian & Huntley 1999); 2)
insufficient or heterogeneous exposure of some grains to sunlight before burial (e.g., Olley et
al. 1999); and/or 3) post-depositional intrusion of younger grains into older deposits or vice
versa (e.g., Jacobs 2008; Arnold & Roberts 2009).

OSL measurements of a modern sample (KHUT-10) suggest that quartz grains
transported by the Son River are generally sufficiently bleached before burial (Section 7.3.5).
This suggests that the high OD values associated with samples GHO-2, GHO-3, KHUT-1
and KHUT-4 cannot be attributed solely to heterogencous bleaching of grains. The sampled
sand units above and below the YTT ash (Fig. 7-1) are non-cohesive, medium-coarse sands
that drain freely, contain few carbonate nodules and little organic matter. Thus pore water,

carbonates and organic matter can be ruled out as major contributors to the spread in quartz



130

ages. The spread in the single-grain age distributions may best be explained by sediment
mixing.

Using the Finite Mixture Model (FMM) described by Roberts er al. (2000) and
Galbraith (2005), one can estimate the fewest number of discrete components needed to fit
any distribution of mixed-age grains in sediment mixtures. It has been tested using synthetic
mixtures of laboratory-dosed grains combined in known proportions (Roberts et al. 2000;
Jacobs et al. 2006b), and can be used to estimate the number of components in a distribution,
as well as their age, for any specified OD. In this chapter, the FMM was applied to all
single-grain quartz age distributions following the approach of Jacobs ef al. (2008) where the
optimal number of components for each sample, the age of each component and the
proportion of grains in each component were determined using the maximum log likelihood
and the Bayes Information Criterion (Galbraith 2005). Each quartz age distribution was best
fitted by three components using OD values of 10-20% (Fig. 7-8a—d). The ages of these
components, and the proportion of grains represented by each component, are listed in Table
7-5.

The ages of the components represented by the largest proportion of grains in
samples GHO-3, GHO-2, KHUT-4 and KHUT-1 are ~44 ka, ~36 ka, ~43 ka, and ~39 ka,
respectively (Table 7-5). The component represented by the largest proportion of grains is
the second oldest component in all samples. The oldest components in samples GHO-2 and
KHUT-4 are close to or older than 74 ka (the time of the Toba event) and are ~70 ka and ~88
ka, respectively. The oldest components in samples GHO-3 and KHUT-1 are slightly
younger (~68 ka and ~62 ka, respectively) (Table 7-5). The vast majority of quartz grains
from all samples appear to be younger than 74 ka (Fig. 7-8, Table 7-5). The FMM
component ages suggest that 75-97% of the dated grains were last exposed to sunlight
sometime between ~30 and ~70 ka (Table 7-5). Younger FMM quartz component ages,
associated with 15% or less of grains, may reflect the presence of intrusive grains derived
from plant roots penetrating the cliff face.

The large OD values and multi-component structure in the single-grain datasets may
reflect mixing between pre-existing older river bank deposits, which have been periodically
eroded during floods along the Son River, and younger flood-transported grains. In the
Middle Son Valley, the monsoon season causes the Son River to rise, leading to active
erosion of the river banks. Slumped river bank deposits are frequently washed into the
channel by rising waters (S. C. Jones 2011, pers. comm.) (Fig. 7-9). The sampled fluvial,
overbank and floodplain sediments in the Ghoghara and Khunteli sedimentary sequences
may have been deposited close enough to the river banks to receive a significant contribution

of sediment from older deposits. If this slumped material is not transported a significant
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Figure 7-9. Slumped river bank deposits, including fallen silty-ash blocks adjacent to the Son River channel
near the Ghoghara main section. During the monsoon season, these deposits are inundated by rising river
water, washed into the river channel and transported downstream.
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distance, it may remain incompletely bleached before re-deposition in the river channel,
adding scatter to single-grain age distributions.

If the youngest FMM components (containing ~15% of grains or less) reflects the
presence of intrusive grains derived from plant roots, and the final deposition of the samples
is best estimated from the main FMM components, then the quartz FMM ages suggest that
final deposition of the sand units bracketing the YTT ash at the Ghoghara main section and

the Khunteli type-section occurred sometime between ~36 ka and ~44 ka.

7.5.2 KF grains

In Chapter 6, the D, values of 952 single feldspar grains from a KF-rich extract from
sample GHO-2 were measured using an IR (830 nm) laser. Four hundred and eighty-five of
these grains were either so bright that they caused partial saturation of the photomultiplier
tube, or had undesirable luminescence characteristics for the SAR measurement protocol
(i.e., they had high recuperation, poor sensitivity correction of the regenerative dose
measurements, or signals that did not systematically grow with increasing regenerative
dose). Fading-corrected ages were obtained from the 467 KF grains with suitable
luminescence characteristics for the SAR protocol, using the IRSLs, signal, and this age
distribution is shown in Figure 7-8¢. The OD is 37.3 + 1.5 %. Given the lack of dependency
of KF single-grain ages on the measured fading rates and internal K contents, and the overall
adequacy of bleaching of grains collected from a sand bar in the modern river channel (see
Chapter 6 for details), the spread in KF single-grain ages in sample GHO-2 is also thought to
be mainly due to mixing of potentially well-bleached fluvially-transported sediments with
older grains derived from slumping of riverbank deposits sometime after the YTT event.

The KF single-grain age distribution of GHO-2 is also best fitted with three
components using the FMM. Seventeen percent of the grains constitute a ~16 ka component,
52% constitute a ~28 ka component, and 31% of the grains constitute a ~43 ka component
(Fig. 7-8). The oldest FMM age component (~43 ka) is noticeably younger than that of the
quartz age distribution of the same sample (~70 ka) (compare Figs 7-8 ‘a’ and ‘e”), while the
youngest component (~16 ka) is similar in age to that of the quartz distribution (~12 ka), but
contains a higher proportion of grains (~17% versus ~3%). Thiry-one percent of the KF
grains are represented by a ~43 ka component, but most of the grains (52%) are represented
by a ~28 ka component.

The reason for the differences between the KF and quartz age distributions is
unclear. Feathers and Tunnicliffe (2011) measured individual KF grains from a series of
samples from southwestern British Columbia, Canada, and noted that a fraction of the oldest
grains from each sample had been rejected because the natural signal did not intersect the

dose-response curve. Out of all feldspar grains measured for sample GHO-2, only two were
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rejected as a result of the natural signal failing to intersect the dose-response curve, so this
does not explain the apparent paucity of “old age” grains in the KF distribution. Another
possibility is that the ~70 ka quartz grain population was derived from a sediment layer that
contained few KF grains. Because KF grains are more susceptible to weathering than quartz,
some sediment units in the Middle Son Valley may contain a paucity of KF grains relative to
quartz grains. Approximately 10% of grains in the KF single-grain age distribution are
consistent (at 2c) with the time of the YTT event (~74 ka), within 26, but these were too few
to be identified by the FMM as part of a discrete age population. As was discovered with
quartz, the majority of KF grains in sample GHO-2 appear to have been exposed to sunlight

sometime after the YTT event.

7.6 Implications of single-grain data for KF aliquots
7.6.1 Using the MAM to calculate a maximum IRSLs age

The multi-component structure of the quartz and KF single-grain age distributions is
attributed to sediment mixing between river-transported sediment and slumped river bank
deposits. This multi-component structure is concealed in the single-aliquot data due to
grain-averaging effects (Fig. 7-8), so the FMM cannot be used to define discrete age
populations in the aliquot data. MAM can be used to estimate the age of aliquots that likely
contain the highest proportion of the most recently bleached grains in each age distribution.
However, Feathers and Tunnicliffe (2011) have shown that MAM age estimates, even from
small aliquots containing only 2-3 grains each, can still yield grossly overestimated ages. In
this section, KF aliquot ages were fitted using the MAM, after an OD value of 5% was added
in quadrature to each D, measurement error. This OD value was used as an estimate of the
maximum OD expected for KF aliquot age distributions for well-bleached deposits in the
Middle Son Valley, as laboratory-dosed KF aliquots used in dose recovery tests exhibited no
overdispersion (Section 7.3.3). The IRSLs, KF aliquot MAM age of GHO-2 is 21.3 + 1.6 ka
with an OD of 21.3 £ 1.6% (Fig. 7-8¢, Table 7-5). This age is ~5.5 ka older than the age of
the corresponding youngest (16 + 1 ka) KF FMM age component that constitutes 17% of
grains in this sample. Thus, these data suggest that overdispersed IRSLs, KF aliquot MAM
ages may only serve as maximum age estimates, producing ages within ~5—6 ka of the true
burial age of the youngest, statistically supported age component in a single-grain IRSLsy KF

age distribution.

7.6.2 Comparisons between quartz and KF single-grain age distributions and
KF multi-grain aliquot age distributions

In this section, MAM ages were calculated from all IRSLs, and pIRIR,,5 KF aliquot

age distributions, as was done for GHO-2 in the previous section. Here these data are
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compared to single-grain quartz OSL age distributions from the same samples (Figs 7-8a—d,
7-10a—d, Table 7-5) to determine whether the IRSL aliquot ages should be considered
maximum or minimum ages. The calculated IRSLso MAM ages for all samples fall between
the youngest and second youngest quartz FMM age components (Figs 7-8a—d, Table 7-5).
This suggests that IRSLsy MAM aliquot ages are overestimates of the time since a significant
proportion of grains in these samples were most recently exposed to sunlight, being too old

by ~6 ka (KHUT-4) to ~11 ka (KHUT-1). On the other hand, if the youngest FMM age
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Figure 7-10. Radial plots of single-grain quartz age distributions for samples GHO-2 (a), GHO-
3 (b), KHUT-1 (¢), and KHUT-4 (d). The pIRIR;,;s; KF aliquot fading-corrected ages (open
triangles) are superimposed on the quartz single-grain age distributions. A residual dose of 5.61
+0.03 Gy was subtracted from the pIRIR;,5 data and the errors on the residual doses have been
propagated through into the error on the aliquot ages. The grey shaded band is centered on the
age calculated for the KF aliquot data using the MAM (Table 7-4).

components (which represent a small proportion of grains in each sample) represent intrusive
grains associated with plant roots penetrating the cliff face, and the true burial age of each
sample is actually closer to the second youngest (or main) quartz FMM age component (as
suggested in Section 7.5.1), then the IRSLsy MAM ages (calculated from aliquots that would
likely also contain intrusive grains) will underestimate the true burial ages by ~8 ka (KHUT-
4) to ~15 ka (GHO-2) (Table 7-5).

MAM pIRIR,ys KF aliquot ages approximate the age of the main FMM quartz
components in “above ash” samples (GHO-3 and KHUT-4), but overestimate the age of the
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main FMM quartz components in “below ash” samples by ~10—13 ka (GHO-2 and KHUT-1)
(Fig. 7-10a—d, Table 7-5). pIRIR;;s MAM KF ages overestimate the age of the youngest
FMM quartz components by ~20 ka (KHUT-4) to ~35 ka (GHO-2), suggesting that, as with
the IRSLsy MAM ages, pIRIR,,s MAM ages can only serve as maximum age estimates of the
time since a significant proportion of grains in these samples were most recently exposed to
sunlight. In contrast to the pIRIR,s MAM ages, IRSLss MAM ages only overestimate the
age of the youngest quartz FMM component by ~6-11 ka. Thus, IRSLs, MAM age
estimates are considered here to be more reliable than pIRIR,;s MAM age estimates in
samples that do not (or are assumed not to) contain a significant proportion of young,

intrusive grains as a result of bioturbation.

7.7 Environmental dose rates

7.7.1 Assessing the potential of radioactive disequilibrium in U and Th decay

chains

The environmental dose rates for all luminescence samples were determined for age
calculations using the methods described in Chapter 3. These involved estimating external
beta and gamma dose rates by low-level beta counting in the laboratory and in situ gamma
spectrometry in the field. A contribution has also been added for the dose rate from cosmic
rays using the methods of Prescott and Hutton (1994). By measuring the external dose rates
using beta counting and in situ gamma spectrometry, it is assumed that the dose rate
measured at the time of sample collection has prevailed throughout the burial history of the
sample. However, if radionuclides have migrated since sediment deposition, this may not be
true. To check for evidence of the ingress or loss of radionuclides in the sediment that may
have resulted in time-dependent radioactive disequilibria in the U and Th decay chains, the
activities of **U, *°Ra, *'°Pb, ***Th, and ***Ra were measured from dried and powdered sub-
samples using high-resolution gamma-ray spectrometry (HRGS) at the CSIRO Land and
Water laboratory, Canberra (Table 7-6). These samples were collected from sediment from
each luminescence sample hole in the field. Details of the HRGS instrumentation and

calibration standards are provided by Olley et al. (1996).
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Table 7-6. Radionuclide activities (in Bq/kg) of samples collected from sediments that bracket
the YTT ash at Khunteli and Ghoghara. See text for details.

80 series
Relation to 238 226 210 2267, 238 210,226
Sample {1 U Ra Pb Ra:*"U Pb:""Ra

GHO-3  above ash 857+0.73 10.82+0.16 11.15+£097 1.26+0.11 1.03+0.09
GHO-2 below ash  10.68 + 0.81 11.29+£0.17 11.18+0.81 1.06+0.08 0.99+0.07
KHUT-4 above ash  6.06 + 0.64 7.96 £0.03 7.7+0.78 131+£0.14 0.97+0.10
KHUT-1 below ash 12.71+0.84 13.48+0.19 13.71+£1.05 1.06+0.07 1.02+0.08

Th-232 series K
Sample 5;};"0" to 28Ra 28T 287, 228Ra

GHO-3 above ash 22.77+0.38  22.93 +0.40 1.01 +£0.02 340.6 + 7.2
GHO-2 belowash 31.90+0.49 31.87+0.53 1.00 £ 0.02 204.7 £ 4.5
KHUT-4 above ash 14.05+0.29 14.13+£0.28 1.01 £0.03 130.7 + 3.1
KHUT-1 below ash 33.54+0.50 34.30+0.57 1.02 £0.02 353.7+7.5

All activity ratios (**°Ra:*U, *'°Pb:**°Ra, ***Th:***Ra) are statistically consistent
with unity, except for the **°Ra:***U activity ratios for “above ash” samples GHO-3 and
KHUT-4. In these latter two samples, the ***Ra activity is ~30% higher than that of ***U,
which can be explained by either an ingress of **Ra or a loss of “*U. Because of the
relatively short half-life of *°Ra (1602 years), any unsupported excess of **’Ra would have
decayed away within 10,000 years of sediment deposition, and would, thus, not be expected
to still be present today. The **°Ra:***U ratios are best explained by a loss of ***U, likely due
to the binding of uranium with carbonate complexes after sediment deposition. This has
probably been an ongoing process that has occurred since sediment deposition, so no time-
dependent correction to the dose rate is necessary. The total dose rate for all samples is
dominated by Th and K, so even a ~30% change in ***U concentration would amount to only

a small change in the total dose rates (e.g., 1.4% in sample GHO-2).

7.7.2 Causes of sample-to-sample variations in *’K content

There are significant variations in “’K content from sample to sample (Table 7-6)
and this may be due in part to variations in re-worked YTT ash content. The YTT ash at
these two sites contains ~5% K,O (Petraglia et al. 2007) and therefore is a source of
radioactive *’K. At the Ghoghara main section, the *’K activity is 205 Bq/kg below the ash
(GHO-2) and 341 Bq/kg above the ash (GHO-3). Sample GHO-3 was obtained from fine-
medium silty sand that contained re-worked YTT ash (Fig. 7-1) (observed in this study as
well as by Chivas 2010, Lewis e al. 2011 and Jones et al. 2010 from the same exposure),
whereas sample GHO-2 was obtained from sand and gravel with no visible YTT ash below
the so-called “primary” ash. Sample KHUT-1 was obtained from medium-coarse cross-
bedded sands below the ash-rich sandy silt exposed at Khunteli. The high K content in this

sample may be derived from re-worked ash particles within the sample that were not visible
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in the field and/or ash particles that have leached down the sedimentary profile through time
from the overlying ash-rich silts to the relatively porous sandy sediments at the site of

sample KHUT-1.

7.7.3 A comparison between external dose rates measured using HRGS and

low-level beta counting plus in sifu gamma spectrometry

The external dose rates measured using HRGS and beta counting plus in situ gamma
spectrometry are compared in Tables 7-7 and 7-8 below. The beta dose rates obtained using
HRGS and beta counting are either identical within statistical error, or very close to it as one
would expect from samples with U and Th decay chains that are close to secular equilibrium.
The same is true for the gamma dose rates for all samples except for sample GHO-3, which
was collected above the ash layer at the Ghoghara main section (Fig. 7-1). The HRGS
gamma dose rate for this sample is 0.60 = 0.01 Gy/ka while the gamma dose rate measured
in the field is ~50% higher (0.91 + 0.05 Gy/ka). The field measurement is likely higher than
the HRGS measurement because the in situ gamma spectrometer has detected elevated levels
of “’K from reworked ash present in the underlying deposits. The HRGS sample for GHO-3,

by contrast, would have only consisted of sand close the luminescence sample tubes.
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Table 7-8. External dose rates measured using low-level beta counting and in-situ
gamma spectrometry.

Sample 5;1;?;111 to z";,a)ter content External dose rate' (Gy/ka)

Field Used Gamma Beta Cosmic Total
GHO-2 below ash 0.3 5+2  061£0.03 0.72+0.05 0.09+0.01 1.42+0.06
GHO-3 above ash 0.9 5£2 091+0.05 1.05+0.05 0.11+0.01 2.07+0.07
KHUT-1 below ash 14 5+2  079+£0.04 1.18+0.06 0.07+0.01 2.04+0.07
KHUT-4 above ash 2.8 5+2  030+£0.02 044+002 0.08+0.01 0.82+0.03

'Dose rates are corrected for water content and beta attenuation using attenuation factors from Zimmerman (1971) and Brennan
(2003), respectively. The total dose rate is the mean + total (15) uncertainty, calculated as the quadratic sum of the
random and systematic uncertainties.

7.7.4 Age calculations using water contents approaching saturation

External dose rates were calculated for an estimated long-term, time-averaged water
content of 5 + 2% for all samples in this chapter. These estimates are ~2—5% moister than
the measured (field) water contents but are smaller than saturated water contents (~22%) that
have been measured in the laboratory from similar sediments in the Middle Son Valley
(Haslam ef al. 2011). These estimates are drier than the saturated water contents in order to
take into account their collection during the dry season, the free-draining (not waterlogged)
nature of the deposits, and the monsoonal climate of the region which has a wet season that
lasts only one quarter of the year. Even if we assume that the sediments have been saturated
during their entire burial history, calculated IRSL ages increase by only ~2—4 ka (Table 7-5,

age calculation ‘b’).

7.8 Implications for the time of final deposition of the YTT ash and
palaeoenvironmental reconstructions of Toba’s impact

All the KF aliquot and single-grain quartz ages suggest that final deposition of the
sediments bracketing the YTT ash at Khunteli and Ghoghara occurred sometime (up to a few
tens of thousands of years) after the Toba volcanic super-eruption (Table 7-5). These results
imply one of three things: 1) the YTT ash sampled at Ghoghara and Khunteli has been
reworked by fluvial processes and re-deposited as fluvial silts (Fig. 7-11a), 2) the ash and
ash-rich silt was deposited as mobile, cohesive blocks, several thousand years after the Toba
event (Fig. 7-11b). In this case, the lower 4 cm of the YTT ash unit at the Ghoghara main
section is likely not primary ash, contrary to the suggestions of Gatti et al. (2011) and
Matthews et al. (2012). Or, 3) the YTT ash was deposited soon after the volcanic event ~74
ka ago, but the underlying sediments have since been eroded and replaced by younger, inset
fluvial sediments (Fig. 7-11c).

YTT ash and ashy silt observed in the field constitutes cohesive sediment units that
are underlain by clayey silt and loose sand (Ghoghara) or loose medium to coarse grained

sands (Khunteli) (Fig. 7-1). It is possible that coarser sediment underlying the YTT ash units
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has been preferentially eroded and replaced by younger, inset fluvial sediments, however
sedimentological evidence for this is lacking. If the sediments underlying the YTT ash have
been replaced by inset sediments, one might expect to see such features as a) pieces of ash
collapsed down into the undercut areas; b) hollows excavated below the bed and filled with
lenses of sediment; ¢) discontinuous strata below the ash as a result of cut and fill processes.
None of these features were observed in the field suggesting that the ash does indeed overlie
in situ, relatively older sediment.

It is possible that the ash and ashy silt units that were sampled are actually
remobilized cohesive blocks of sediment that have been eroded from the cliff face and re-
deposited and re-buried in younger fluvial sediments in the Son River channel (Fig. 7-11b).
Modern-day processes give credence to this latter possibility, as ash-rich cohesive silt blocks
can still be seen partially buried in colluvium and fluvial sediments along the banks of the
Son River today (Fig. 7-9). However, again, there is a paucity of evidence to support the
“remobilized ash block” hypothesis from the sedimentary exposures. All observed ash units
contain horizontal upper and lower contacts where contacts are visible (Fig. 7-2b). There are
no sedimentological features within the ash units, such as inclined bedding, or sharp irregular
contacts with the surrounding sediment that might suggest that the ash has been remobilized
as a cohesive block before deposition. Thus, all field observations suggest that the ash has
been reworked by fluvial processes and re-deposited as fluvial silts.

Single-grain quartz ages suggest that most grains in the alluvial sediments bracketing
the ash were last exposed to sunlight sometime between ~30 and ~70 ka. Quartz single-grain
OSL age distributions suggest that samples that bracket YTT ash are composed of a mixture
of recently sun-exposed flood-transported grains and older grains from slumping riverbank
deposits, and possibly some intrusive grains derived from plant roots penetrating the cliff
face. If we take the main quartz FMM component ages, which range from ~36 to ~44 ka, to
be the most accurate estimate of the depositional age of the samples in this study, then the
ash-bearing sediments can be tentatively correlated with either the lower coarse member of
the Baghor Formation (samples GHO-2 and KHUT-1), or the uppermost sediments of the
Patpara Formation (samples GHO-3 and KHUT-4) as defined by the stratigraphic model of
Williams ez al. (2006).
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reworked
YTT

inset
fluvial
sediments

Figure 7-11. Quartz and KF luminescence ages imply one of two possible scenarios: 1) the YTT
ash sampled at Ghoghara and Khunteli has been reworked by fluvial processes and re-deposited
either as fluvial silts or as mobile, cohesive blocks, several thousand years after the Toba event
(a and b), or 2) the YTT ash was deposited soon after the volcanic event ~74 ka ago, but the
underlying sediments have since been eroded and replaced by younger, inset fluvial sediments

(¢).

These results have implications for palacoenvironmental reconstructions that have
been made from pedogenic carbonates sampled from sediments above, below and within
YTT ash at excavated sections at the Rehi-Son confluence and in the Khunteli Formation
type-section (Williams e al. 2009). The carbon isotope compositions of carbonate nodules
and rootcasts were used to determine whether the vegetation growing in the soils was
dominantly following the Hatch-Slack or C, pathway of photosynthesis, such as grasses that
grow in strong sunlight, or the Calvin or C; pathway of photosynthesis, such as trees, shrubs
and grasses growing in shaded forests (Williams et a/. 2009). Based on this evidence, it was
proposed that C; forest was replaced by wooded to open C,4 grassland in north-central India
after the Toba eruption (Williams ez al. 2009).

Luminescence investigations in this chapter suggest that the “before and after Toba”
palacoenvironmental reconstruction of Williams er al. (2009) is likely erroneous.
Luminescence ages in this study suggest that ash-bearing sediments at the Rehi-Son

confluence and at the Khunteli Formation type-section were last deposited tens of thousands
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of years after the YTT event. Any soils, pedogenic carbonate nodules, and rootcasts
associated with these deposits would have formed even later after sediment deposition, and
thus should not be considered reliable proxies for palacoenvironmental reconstruction before
and after the Toba eruption. Ideally, palacoenvironmental reconstructions from pedogenic
carbonates should include independent chronological control on the time of final deposition
of the sediments from which the carbonates have been sampled, and/or the the time of

formation of the carbonates themselves.

7.9 Summary

This chapter presented new single-grain OSL quartz ages from samples collected
above and below two YTT ash units in the Middle Son Valley, and investigated the potential
of KF grains for luminescence dating using the IRSLsy and pIRIR,s signals. KF grains in
these samples appear to be suited to IRSLs, and pIRIR;,5s SAR measurement protocols, and
the measured anomalous fading rates of the IRSLs, and pIRIR,,s signals are generally
consistent with those reported in the literature. In these samples, fading-corrected pIRIR s
ages are ~1.5 to ~2 times those of the IRSLj, signal, even after subtraction of residual doses
measured from aliquots that have been sun-bleached for 2 days. IRSLsy and pIRIR,s D,
values measured from a modern sample from a sand bar in the Son River channel suggest
that the source traps of the pIRIR,,5 signal in our samples may be more difficult to empty in
the Son River than those of the IRSLs, signal.

Quartz single-grain OSL age distributions suggest that samples that bracket YTT ash
in the Middle Son Valley are composed of a mixture of flood-transported grains and grains
from slumping riverbank deposits, and possibly some intrusive grains derived from plant
roots penetrating the cliff face. The time of the most recent bleaching event in each sample
is best observed in the quartz and KF single-grain data; the aliquot data lacks the multi-
component structure apparent in the single-grain data due to grain-averaging effects, and
therefore can only provide maximum age estimates of the most recent bleaching event for
each mineral, even if the age is calculated using the MAM. MAM pIRIR,,s KF ages
overestimate the age of the youngest FMM quartz components by ~20-35 ka and IRSLs,
MAM ages overestimate the age of the youngest quartz FMM components by ~6—11 ka.
Thus IRSLsy MAM ages are considered more reliable age estimates of the most recent
bleaching event than are the MAM pIRIR,,s ages, and these are used in the following
chapter.

If we take the main quartz FMM component ages, which range from ~36 to 44 ka, to
be the most accurate estimate of the depositional age of the samples below and above YTT
ash at Ghoghara and Khunteli, then according to the model of alluvial deposition proposed

by Williams et al. (20006), the alluvial sediments bracketing the YTT ash were deposited
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after the ~74 ka eruption event, and can be tentatively correlated with either the lower coarse
member of the Baghor Formation (samples GHO-2 and KHUT-1) or the uppermost
sediments of the Patpara Formation (samples GHO-3 and KHUT-4). If the lowermost 4 cm
of the YTT ash unit at the Ghoghara main section is indeed primary ash fall as suggested by
Gatti et al. (2011), then this would imply that the underlying ~36 ka old sands (GHO-2,
Table 7-4) are inset sediments deposited after fluvial erosion of non-cohesive sediments
underneath the relatively cohesive YTT ash unit. However sedimentological evidence for
the erosion and deposition of inset sediments is lacking in the Ghoghara sedimentary
sequence, suggesting that the lower 4 cm of the ash at the Ghoghara main section is not
“primary ash” but rather ash that has been eroded from some other location and re-deposited.

Previous palacoenvironmental reconstructions inferred from the carbon isotope
composition of pedogenic carbonates sampled above, below and within YTT ash units at
Ghoghara and Khunteli (Williams ef al. 2009) are likely to be erroneous. Luminescence
ages in this chapter suggest that the burial age of sediments bracketing the YTT at these
locations, and any pedogenic carbonates preserved in them, were most likely deposited tens
of thousands of years after the Toba event. Future palacoenvironmental investigations using
pedogenic carbonates should confirm the burial age of the sediment from which they are
sourced, and/or the formation age of the carbonates directly using independent chronological
control.

The next chapter combines fiecld observations, topographic data and IRSLs, ages
from small (~25 grain) KF aliquots to test a current model of alluvial deposition in the
Middle Son Valley near the Rehi-Son confluence. Comparisons made between single-grain
and KF aliquot age distributions in the present chapter suggest that overdispersed KF aliquot
age distributions in the next chapter should be considered as maximum IRSL age estimates

for the most recent bleaching event in each sample.
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Chapter 8 — Testing a model of alluvial deposition in the Middle Son Valley,
India using IRSL ages of terraced alluvial sediments

8.1 Introduction

Current models of alluvial deposition for the Middle Son Valley subdivide its
alluvium into five stratigraphic formations that represent specific time periods in its
geological and archaeological history (Williams & Royce 1982, 1983; Williams et al. 2006)
(Table 1-1, Chapter 1). In the absence of reliable chronological control, the chronology of
human occupation in the Middle Son Valley has been based on weak correlations between
artefacts and sediments presumed to be part of one or more of these formations on the basis
of their geomorphic context and sedimentological characteristics (Table 1-1) (Williams &
Royce 1982; Sharma & Clark 1983; Haslam er al. 2012). The chronology of the
stratigraphic formations is constrained by few numerical ages spread over a wide area (Fig.
1-1a, Table 1-2) and the sample site locations and sedimentary contexts for some of these
ages are poorly documented (Table 1-2) (Jones & Pal 2009).

According to a recently proposed geomorphic model based on a series of numerical
ages from both the Son and Belan Valleys (Williams et al. 2006), the highest alluvial
terraces on either side of the Son River (~30-35 m above river level) record the end of a
period of aggradation ~16 ka ago coinciding with the termination of deposition of the fine
member of the Baghor Formation. (In this thesis, river level refers to the low-stage level of
the river as measured during the winter season.) These terraces, as well as the ~10 m-high
terraces comprising the Khetaunhi Formation, are considered depositional features in the
landscape (Fig. 8-1) (Williams et al. 2006). Terraces that form prominent surfaces at ~25
and ~15 m above river level are considered to be erosional features that expose Patpara
Formation sediments (Fig. 8-1) (Williams et al. 2006). In this chapter, the accuracy of this
model is tested near the Rehi-Son confluence using satellite imagery of the area, field
observations, cross-valley topographic profiles and IRSL age estimates from small (~25
grain) aliquots of KF from terraced alluvial sediments. These data provide insights into the
fluvial history of the Son River and its response to changes in palacoclimate, and will inform
future archaeological surveys by constraining the geomorphic context of surficial and

excavated artefacts in the area.

8.2 Study area

The reach of the Son River examined near the Rehi-Son confluence is shown in
Figures 8-2 ‘b’ and ‘c’, and 8-3. North of the river, the topography is variable where gullies

and streams have incised non-cohesive alluvial silts and sands. In the northwest, NE-SW
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trending bedrock ridges composed of sandstones and shales outcrop along the north bank of
the river, as well as ~1 km further north. Archaeological excavations at the site of Dhaba
(Haslam et al. 2012) were conducted in March, 2009. One trench (site 3) was dug in
colluvial sediments on the easternmost flanks of the bedrock ridge, and two trenches (sites 1
and 2) were dug in floodplain silts and sands overlying quartzite and shale bedrock on the
north bank of the Son River, closer to the Rehi-Son confluence (Figs 8-2c, 8-3a). These
excavations have yielded undated Acheulean, Middle Palaeolithic and microlithic artefacts
(Haslam et al. 2012). East of the Rehi-Son confluence is the Ghoghara main section, which
exposes Youngest Toba Tuff (Williams ez al. 2009; Gatti ef al. 2011; Smith et al. 2011).

A prominent east-west trending terrace escarpment lies ~500-700 m south of the
Son River channel, and, north of this, gently undulating topography slopes toward the river
(Figs 8-2b, c, and 8-3b). A slight break in the topography trends east-west, subparallel to the
dirt road (Fig. 8-2b, and observed during field surveys on foot); this may mark the edge of

another alluvial terrace.

8.3 Methods
8.3.1 Topographic surveys

Topographic profiles were measured across the valley along two traverses near the
Rehi-Son confluence (Fig. 8-2c) using a differential global positioning system (DGPS) and
electronic total station (ETS). Control points were measured in open (treeless) spaces near
each planned traverse using a Trimble R3 Differential DGPS consisting of one reference
receiver and 2 rovers. These control points served as benchmarks to which the start and end
points of each traverse (measured using the ETS) were tied. Control points were logged in
static mode for 1.5 h using horizontal baseline lengths of ~100-150 m to achieve
measurement precisions better than 0.01 m and the DGPS data were processed using Trimble
Geomatics Office software. A Pentax 326EX ETS was used to measure elevations at 5 m
intervals along each traverse. The average estimated measurement error for each elevation
measurement was less than 4 mm. The ETS data were imported into an ArcGIS workspace,
and superimposed on georeferenced WorldView-1 panchromatic satellite imagery (50 cm

horizontal resolution) of the study area (Fig. 8-2c¢).

8.3.2 Sampling and IRSL measurements

Seven samples for luminescence dating were collected from alluvial sediments on
the south side of the Son River (Fig. 8-2¢). Two samples (H-1 and H-5) were collected from
near the top of the highest terrace, three samples (M-2, M-4 and M-6) were collected from

exposed sediments or roadcuts along the dirt road, and two samples (L-3 and L-7) were
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collected from gully exposures in the lowest alluvial terrace next to the river channel. The
sediments at each sample location were photographed and their texture, colour and
sedimentary structures were recorded. Steel tubes, ~5 cm in diameter, were hammered into
the face of the exposed alluvial sediments ~60 to ~100 cm below the ground surface, to
avoid sampling sediments disturbed by local farming practices (i.e., ploughing). After the
tubes were extracted, the sample holes were lengthened and an in situ gamma spectrometer
detector was inserted for gamma radioactivity measurements. Bagged samples of sediment
(~60-200 g) were collected from the walls of the gamma spectrometer detector holes for
water content measurements and low-level beta counting in the laboratory. See Chapter 3
for details on sample collection and preparation procedures and equipment.

D, values were measured using the IRSLsy SAR procedure previously tested on KF
grains from alluvial sediments in the Middle Son Valley in Chapter 7 (Table 7-3), using
consecutive regenerative doses of 46, 68, 91, 114, 0, and 68 Gy. Dose-response curves were
fitted with a single saturating exponential function. Fading tests were conducted on all
aliquots used for D, determination using the procedure outlined in Chapter 7 (Table 7-4). As
in Chapter 7, the fading rate of each aliquot was quantified using the g-value normalised to 2
days (Huntley & Lamothe 2001), and the age of each aliquot was corrected for fading using
the correction model of Huntley and Lamothe (2001).

8.3.3 Environmental dose rate determination

The environmental dose rates for all IRSL samples were determined following the
procedures outlined in Chapter 3. The water content of the sediments was measured in the
laboratory, and the external dose rate was calculated for an estimated long-term, time-
averaged water content of 5 = 2% or 10 £ 2%, depending on the measured water content in
the laboratory, which range from 0.3 to 9.1%. These values take into consideration the free-
draining nature of the sampled sediments, their collection during the dry season, and the

monsoonal climate of the region.

8.4 Results
8.4.1 Alluvial terraces and sediments south of the Son River

The topographic profiles and the elevations of all IRSL sample sites are shown in
Figure 8-4. Dhaba site 3 is located ~20 m above river level, and is situated in colluvium
derived from the bedrock ridge on the north side of the Son River. The top of the bedrock
ridge is more than 40 m above river level. On the south side of the river, the highest alluvial

terraces are ~25 to ~30 m above river level, and the lowest terraces are ~10 m above river
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Figure 8-5. Alluvial sediments sampled for luminescence dating. Samples H-1 and H-5 were taken from
the highest terrace south of the Son River. Samples M-2, M-4 and M-6 were taken beside the dirt road
~240-340 m away from the river channel. Samples L-3 and L-7 were taken in gullies near the edge of the
lowest terrace. Meter stick for scale. Refer to Figure 8-2¢ for sample locations.
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level. A dip in the topography appears immediately south of the road in both profiles, and
this is presumably the result of excavation during road construction.

The sampled sediments on the highest terrace (H-1 and H-5) are dominated by
massive, yellowish brown (10 YR 5/6) silt with few calcium carbonate nodules (Fig. 8-5).
The sediments located approximately halfway between the highest terrace and the river
channel, at ~20 m above river level (M-2, M-4, M-6), are much coarser. At the site of
sample M-2, they are characterized by brown (7.5 YR 4/6), matrix-supported coarse sand,
pebble-gravel and cobbles. Those at the M-4 sample site are brown (7.5 YR 5/6), crudely-
bedded coarse sand, granules and pebbles that are oxidized on the surface, but less so below
the surface. The sediments at the site of M-6 are characterised by brown (7.5 YR 5/6)
unsorted and massive pebbley coarse sand, overlain by matrix-supported coarse sandy
pebble-cobble gravel. The sediments in the lowest terrace (L-3 and L-7) are relatively fine-
grained. Sediments at the site of sample L-3 consist of dark yellowish brown (10 YR 4/4),
massive silty-fine sand with a rounded cobble-boulder lens. Those at the site of sample L-7
are dominated by yellowish brown (10 YR 5/6) massive silt (Fig. 8-5).

The silts deposited on the highest alluvial terrace, and the silts and silty fine sands
deposited on the lowest terrace, are likely low-energy floodplain deposits and are consistent
with the sedimentological characteristics of the fine member of the Baghor Formation and of
the Khetaunhi Formation, respectively (Table 1-1). The structureless coarse sand and
pebble-cobble gravels observed ~20 m above river level likely record high energy flow and
rapid deposition within a palaco-Son River channel dominated by bed-load transport. These
deposits could be considered most consistent with the sedimentological characteristics of the
Patpara Formation (Table 1-1), but IRSL age estimates reported below suggest that they are
much younger than the age assigned by Williams ef al. (2006).

8.4.2 IRSL age determination

The D, values, average recycling ratios, recuperation values, fading rates, OD values
and fading-corrected age estimates for all samples are listed in Table 8-1. A typical IRSL
decay curve and dose-response curve are shown in Figures 8-6 ‘a’ and ‘b’, respectively.
Recycling ratios for all aliquots measured are statistically consistent with unity (at 1c),
suggesting that sensitivity correction in the SAR sequence is adequate (Table 8-1). Sample-
averaged recuperation values range from ~2 to ~8% of the sensitivity corrected natural
signal. The two youngest samples, collected from the lowest terrace adjacent to the Son
River (samples L-3 and L-7), exhibit the highest relative recuperation. A typical fading plot
is shown in Figure 8-6 ‘¢’ and the g-value distribution of all aliquots from all samples is
shown in Figures 8-6 ‘d’ and ‘e’. The sample-averaged fading rates of all samples range

from ~3 to ~4 %/decade and appear to be independent of sample location (Table 8-1).
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Figure 8-6. Typical IRSL decay curve (a) and dose-response curve (b) for sample H-1. IRSL signal in
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Formation type-section (n=264). e¢) The same g-values in ‘d’ displayed in aradial plot.

154



155

Calculated environmental dose rates for all samples collected south of the Son River range
from ~2.5 to ~4.8 Gy/ka (Table 8-2).

Fading-corrected aliquot ages for each sample are plotted in radial plots in Figure 8-
7. OD values are the lowest for the samples collected from the highest terraces (less than
10%), and highest for samples collected from the dirt road (~45%) and the lowest terrace (up
to ~76%) (Table 8-1, Fig. 8-7). Single-grain quartz OSL age distributions from samples
GHO-2, GHO-3, KHUT-1 and KHUT-4, and one single-grain KF age distribution from
sample GHO-2, have high OD values (~35-45%) and a multi-component structure, while
luminescence measurements made on KF grains from a modern sample collected from a
sand bar in the Son River channel (KHUT-10) suggest that the source traps for the IRSLs
signal in river-transported KF grains are well bleached (Chapter 7). This evidence suggests
that overdispersed samples from alluvial deposits in the Middle Son Valley may consist of a
mixture of relatively well-bleached fluvial grains and potentially poorly-bleached grains
from slumped riverbank deposits (Chapter 7). This may explain a significant proportion of
the OD observed in samples M-2, M-4, M-6, L-3 and L-7.

The relatively low OD values associated with the highest terraces (samples H-1 and
H-5) may be attributed to: 1) better bleaching conditions on a floodplain surface than within
higher-energy depositional environments associated with the medium-coarse sands observed
at lower elevations; and/or 2) a negligible contribution of sediment from slumped older
riverbank material, due to the absence of any proximal steep (palaco-) riverbank at the time
of sediment deposition. Because the KF aliquots in samples M-2, M-4, M-6, L-3 and L-7
may not consist of completely bleached grains, and/or may contain grains derived from
slumping, the MAM was used to estimate the ages of aliquots containing grains that were
exposed most recently to sunlight (Table 8-1). Ages have also been calculated using the
CAM, for comparison (Table 8-1). As shown in Chapter 7, because of grain-averaging
effects, the MAM ages of overdispersed samples (M-2, M-4, M-6, L-3 and L-7) should be
considered only as maximum IRSL ages, which may overestimate the time that a significant
proportion of grains in each sample were last exposed to sunlight.

Separate age estimates have been calculated for Samples L-3 and L-7 after rejecting
all aliquots with recuperation values greater than 10% of the natural signal (ages in
parentheses, Table 8-1). This led to a CAM age estimate increase of ~ 1 ka (from ~4 ka to
~5 ka) in L-3, where eight aliquots were rejected, but this change in age is not significant at
2c. There was no change in the CAM age of IRSL sample L-7, for which only one aliquot

was rejected. The MAM ages were not affected for either sample.
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Figure 8-7. IRSLs, fading-corrected aliquot ages for each sample, displayed on a radial plot.
The grey shaded area is centered on the CAM age estimate and should capture 95% of the
points if they were statistically consistent with each other (Galbraith ez al. 1999). The black line
is centered on the MAM age estimate.
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8.5 Discussion
8.5.1 Consistencies with previously reported age estimates

IRSL age estimates in this study suggest that the uppermost floodplain silts in the
highest alluvial terrace on the south side of the river are ~16 to 21 ka (Fig. 8-4, Table 8-1).
The partially oxidized coarse sands and gravels exposed ~5—10 m below this yield maximum
age estimates of ~4.8-7.5 ka, and the silts and silty sands exposed near the top of the
lowermost terrace, adjacent to the Son River, yield maximum age estimates of ~1.9 ka and
~2.7 ka (Fig. 8-4, Table 8-1). Pal ef al. (2005) reported IRSL ages from samples BN-1, BN-
2, and BN-3 from the Baghore Nala, which is the type-section for the Baghor Formation
(Fig. 1-1a). BN-3 was collected from the lower part of the coarse member and dates to ~39
+ 9 ka, BN-2 was collected from the middle part of the coarse member and dates to ~24 + 3
ka, and BN-1 was collected from the upper fine member and dates to ~19 + 2 ka (Chapter 1,
Table 1-2). Though these ages were not corrected for fading and thus should be interpreted
as minimum ages, the IRSL age of BN-1 is comparable to the IRSL ages from the uppermost
silts in the highest alluvial terrace in the study area (samples H-1 and H-5, Table 8-1),
suggesting that these silts are correlative with the fine member of the Baghor Formation.
According to the Williams ef al. (2006) model, fluvial incision of the Middle Son Valley
alluvium commenced ~16 ka after a period of aggradation between ~39 and ~16 ka.
Luminescence ages of the highest terrace reported here are consistent with the termination of
accumulation of Baghor fine member silts, and the beginning of fluvial incision of the valley
alluvium ~16 ka. The two maximum age estimates of the lowest terrace in the study area are
slightly lower than previously reported radiocarbon age estimates of 3.215 + 0.07 ka and
4.74 + 0.08 ka from shell and a radiocarbon age estimate of 4.13 + 0.11 ka from charcoal

associated with the Khetaunhi Formation (Table 1-2) (Williams & Clarke 1984).

8.5.2 Inconsistencies with the Williams ez al. (2006) model

Contrary to the predictions of the Williams ez al. (2006) model (Fig. 8-1), IRSL age
estimates suggest that the near-surface alluvial sands and gravels ~20 m above river level are
at least ~33 ka younger than the proposed age of the Patpara Formation, and at least ~9 ka
younger than the proposed age of the Baghor Formation and the uppermost floodplain silts in
the highest alluvial terrace (Table 8-1, Fig. 8-1). These results suggest that the alluvial
surface ~20 m above river level is not an erosional feature exposing sediments correlative
with the Patpara Formation, but rather a depositional feature consisting of high-energy sands
and gravels that were deposited during a brief aggradational phase between ~5 and ~16 ka.

However, because only near-surface sediments were sampled in this study, we cannot
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exclude the possibility that sediments of Patpara-age or older exist at some depth below the

surface.

8.5.3 Chronological evidence for northward migration of the Son River

Maximum age estimates from samples collected above and below YTT ash units at
the Ghoghara main section are ~31 and ~21 ka, respectively (Chapter 7, Table 7-5, Fig. 8-4).
The main quartz FMM component ages for these samples (which are assumed to
approximate the burial age of the sample and not ages of intrusive grains derived from plant
roots) are ~44 and ~36 ka, respectively, and are considered more accurate age estimates
(Table 7-5, Chapter 7). As discussed in Chapter 7, the YTT ash at the Ghoghara main
section may be in situ and mark a chronostratigraphic horizon of ~74 ka, and the underlying
sands may be younger inset fluvial sediments; or the YTT ash could have been reworked and
re-deposited long after the YTT event, between ~36 and ~44 ka ago. In either case, the YTT
ash and sediments are thought here to be older than ~16 ka, suggesting that while young
(post-~16 ka) inset alluvial sediments have been deposited on the south side of the Son River
near the Rehi-Son confluence, similar deposits appear to be absent on the north side (Fig. 8-
4). This indicates a general northward migration of the Son River channel after ~16 ka,

which may still be continuing today.

8.5.4 Modifications to the Williams et al. (2006) model

In light of the new IRSL ages reported in this study, modifications to the model of
Williams et al. (2006) near the Rehi-Son River confluence are introduced (Fig. 8-8). IRSL
age estimates from the topmost terrace mark the termination of deposition of the Baghor
Formation fine member silts ~16 to ~21 ka ago. Maximum IRSL age estimates of ~1.9-2.7
ka mark the termination of deposition of the Khetaunhi Formation silts and the sands on the
lowest terrace. Maximum IRSL age estimates of ~5—7 ka mark the termination of deposition
of a mantle of coarse sands and gravels of unknown thickness between the highest and
lowest terraces that was deposited by high energy flow in a palaco-Son River channel
dominated by bed-load transport. Because the luminescence samples reported here were
collected from near-surface sediments, additional excavations, ideally including deep
sediment cores, detailed logging of sediments, in conjunction with additional numerical ages
will be needed to determine if there are any deposits with sedimentological characteristics
and ages that are consistent with the Patpara, Khunteli and Sihawal Formations of the

stratigraphic model of Williams ez al. (2006).
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8.5.5 The palaco-Son River response to past changes in SW Indian monsoon

intensity — multiproxy records spanning the last 150,000 years

The climate of the Middle Son Valley (as well as the Belan Valley) is influenced by
the Southern Oscillation, the NE (winter) monsoon, and to a large extent, the SW (summer)
monsoon (Prasad & Enzel 2006; Williams ef al. 2006). Prell and Kutzbach (1987) compared
a range of palaeoclimate records of the Indian-African monsoon in order to identify the
common patterns of SW monsoon variability over the past 150,000 years. These included
the SPECMAP composite 5'*0 record from Imbrie ez al. (1984), the record of African aridity
based upon Melorsira abundance in aeolian sedimentary records (Pokras & Mix 1985), the
tropical lake level record, indicating the percentage of lakes in the intertropical zone that are
at high or intermediate levels (Street-Perrott & Harrison 1984), the Mediterranean sapropel
index, indicating presence or absence of sapropels associated with high tropical African
monsoon runoff that reaches the Mediterranean via the Nile River (Rossignol-Strick 1983),
the record of monsoon-related pollen in the Gulf of Aden (van Campo et al. 1982), the
faunal record of monsoon-related upwelling off Arabia (Prell 1984), and the faunal record of
salinity and the sea surface temperature of the western Indian Ocean (Prell & Kutzbach
1987). Most palaeoclimate records show four strong SW monsoon-related events that
roughly coincide with the four major maxima of northern hemisphere summer radiation at
about 10, 82, 104, and 126 ka (Fig. 8-9). The palaeoclimate records are most consistent with
the solar radiation record during the last interglacial stage (~125-75 ka) and show less
coherent variability from about 75 to 15 ka when the radiation maxima were not as
pronounced and when the extent of the ice sheets (inferred from large values of the 3'°0
index) was largest.

Patterns of past changes in monsoon intensity for the last 20,000 years are reflected
in marine records from the Arabian Sea and palaeoclimate data compiled from terrestrial
records from 26 sites in NE Africa, Arabia and India (Overpeck ef al. 1996, and references
therein). These show that the SW Indian monsoon was significantly weaker than present
during glacial times (~18 ka). Abrupt increases in monsoon strength appear at ~14.5 ka and
11.4 ka and monsoon intensity reaches a maximum between ~11.5 and 5.0 ka (Overpeck e?
al. 1996).

Clemens and Prell (2003) examined five summer-monsoon proxies (comprised of
chemical, biological, and physical indicators) obtained from cores from the Arabian Sea.
Each proxy is linked to summer-monsoon variability through independent origins within the
oceanographic and atmospheric systems. Visual comparison of the records show that the
timing of climatic events is similar, but differences exist in the relative amplitudes of
monsoon events in each proxy due to differing impacts of dissolution, preservation, and

source area changes. To extract a clearer monsoon-related signal from the time-series data,
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statistical analyses (stacking and principal component analysis) were used to average out the
non-monsoon variance. Principal component analyses yielded a plot (called the Summer
Monsoon Factor, Fig 8-9) that is considered the most robust representation of relative
amplitude through time. This plot shows that strong monsoon signals appear in non-glacial
intervals MIS 3, 5a, ¢ and e. Figure 8-9 suggests that strong monsoon signals occur between
the present and ~13 ka, at around 25 ka, between ~30 and 60 ka, around ~70 ka, between
~80 and 110 ka, and between ~110 and ~150 ka (Clemens & Prell 2003). The post-LGM
increase in monsoon intensities detected by multiproxy records may be responsible for an
increase in the palaeo-Son River discharge and incision of the Middle Son Valley floodplain

after ~16-21 ka (Fig. 8-9).

8.5.6 Lacustrine records of monsoon intensity in north India during the

Holocene

Palacoclimate records from lakes in north India including pollen, sedimentology,
geochemistry, and mineralogy proxies shed some light on the regional Holocene climate
history (Sharma ef al. 2004; Prasad & Enzel 2006) (Fig. 8-10). The most rigorous record
from Lake Didwana (NW India) shows a shift from arid steppe vegetation to shrub savanna
grassland at ~12.8 ka. This is followed by savanna grassland vegetation from ~7.4 to ~6.0
ka and a sub-humid phase from ~6.0 to 4.1 ka. Semi-arid savanna grassland is present from
~4.1 ka to the present (Prasad & Enzel 2006). Lake level indicators of the same lake suggest
that the lake fluctuated between dry/saline to moderate-deep freshwater conditions as a result
of increased monsoon precipitation between ~12.8 ka and ~7.5 ka. Subsequently, freshwater
conditions became more frequent with dry hyper-saline conditions ~7.6-6.7 ka followed by
freshwater conditions from ~6.7 to 5.9 ka. The lake continued to remain fresh until ~4.7 ka
when it briefly dried out with mudcracks and subsequently, except for a short period ~1.3—
0.8 ka when the lake level was relatively deep, the lake has remained ephemeral to the
present day (Prasad & Enzel 2006) (Fig. 8-10). There are some discrepencies between the
pollen and sedimentological/mineralogical data and these are attributed to the fact that lake
level reflects precipitation transfer directly into the lake hydrology and is less dependent on
additional ecological factors or complicating physical factors related to pollen transport and
deposition (Prasad & Enzel 2006).

Lake levels influenced by monsoon precipitation have been inferred from the
sedimentology, mineralogy and isotopic composition of organic material and carbonates
from Lake Lunkaransar (NW India) (Prasad & Enzel 2006) (Fig. 8-10). Sustained high lake
levels appear to occur only between 7.2 and 5.3 ka, with a maximum level at ~6.0 ka. The
final drop of the water table to below the surface occurred ~5.3 ka and the climate is thought

to have remained very similar up until the present (Fig. 8-10). Lake levels inferred from C/N
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Figure 8-10. NW Indian lacustrine records from Prasad et al. (1997) (a), Wasson et al. (1984)
(b), and Enzel et al. (1999) (c) as interpreted by Prasad and Enzel (2006), and the lacustrine
record from Sharma et al. (2004) (d) as interpreted in this study. e) The speleothem isotope
record from Oman (Fleitmann et al. 2003). The interpretation of the NW India lacustrine
records is presented only in relative wetness terms for the different basins; the absolute water
levels of lake or ground water or their transfer to values of precipitation are still problematic
(Prasad and Enzel 2006). The Oman cave record was proposed to represent variations in SW
monsoon rainfall. The arrow indicates the time when the trend towards aridity began as inferred
by Prasad and Enzel (2006). The grey shaded areas represent the luminescence age estimates of
the tops of the lowest (~10 m) and middle (~20 m) terraces across from the Rehi-Son confluence
inthe Middle Son Valley (this study).
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ratios and 8"C of organic matter from Lake Nal Sarovar (NW India) suggest an arid phase
from ~7.8 to 7.2 ka followed by amelioration of the climate from ~7.2 to 6.1 ka. A
particularly dry phase exists between ~6.1 and ~5.4 ka and this is followed by alternating
periods of moderately wet to dry periods from 5.4 ka to the present day (Prasad & Enzel
2006) (Fig. 8-10).

An 18 ka pollen and isotope record from Sanai Tal Lake, on the Ganga Plain in NE
India suggests that the lake expanded due to increased monsoon precipitation at about 15 ka,
then contracted between ~12.2 and 13.4 ka (Sharma et al. 2004). At about 11.5 ka, the lake
expanded again, reaching its maximum size at about 6.7 ka (Sharma et al. 2004) (Fig. 8-10).
Arid phases were inferred from the isotope record at 15-13 ka, 11.5-10.5 ka and 5-2 ka
(Sharma et al. 2004) (Fig. 8-10).

Lakes in north India show no persistent high lake levels as a result of SW monsoon
precipitation during the early Holocene (~10-7 ka) (Fig. 8-10). This is in contrast to well-
dated records of Holocene palacoclimate from Arabian Sea cores (Sirocko et al. 1993;
Prasad & Enzel 2006, Fig. 4) and speleothem isotope records from Oman (Fleitmann ez al.
2003; Fleitmann et al. 2007) (Fig. 8-10) which generally show intensification of the
monsoon from ~11.5 ka to ~5.5 ka before it weakens before the present day.

The IRSL age estimates from the tops of the second lowest (~20 m high) and lowest
(~10 m high) terraces across from the Rehi-Son confluence provide age estimates for the
termination of aggradation events during the Holocene in this reach of the Son River. Age
estimates for the top of the second lowest terrace (M-2, M-4 and M-6) coincide with a “wet-
to-dry” transition in all proxies that likely represent rapid decreases in monsoonal
precipitation (Fig. 8-10). The recorded wet conditions may have been responsible for high
river discharges and the transport and deposition of the coarse sand, pebble-gravel and
cobbles observed in the middle terrace under a high-energy depositional environment.
Subsequent northward channel migration and incision of the valley alluvium may have
begun during a time when the intensity of the SW monsoon was decreasing (Fig. 8-10). The
estimated age of the lowest terrace top coincides with the latter part of an arid phase
recorded in the Lake Sanai and speleothem isotope records (Fig. 8-10). Therefore

aggradation of this late Holocene terrace likely occurred during relatively arid conditions.

8.5.7 Fluvial sequences — The Gangetic Plains, the Belan Valley, and the

southern margin of the Thar Desert

Fluvial sedimentary sequences tend to be complex, containing records of
palaeoclimate that are patchy and/or of lower resolution than their lacustrine and marine
counterparts. River planforms, bedloads and rates of incision and deposition are inherently

linked to local tectonics, channel form history, sediment supply, climate, and, in areas
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proximal to the coast, changes in sea level. Precipitation associated with the SW monsoon is
thought to have had a prominent influence on river discharge and depositional processes in
India throughout the late Pleistocene. Estimated periods of aggradation and incision are
summarized for a series of Indian river stratigraphic records in Figure 8-9. This figure
suggests that intensification of the SW Indian monsoon can lead to river incision or
aggradation, depending on the local circumstances. The intensification of the SW monsoon
is thought to have been responsible for changes in channel planforms, increases in sediment
flux leading to net aggradation, and/or increases in stream power leading to channel incision
(e.g., Srivastava et al. 2001; Gibling et al. 2005; Williams et al. 2006; Roy et al. 2011).

Fluvial and aeolian sequences from the southern margin of the Thar Desert, India
have been used to infer the variability of the SW Indian monsoon over the past 130 ka (Juyal
et al. 2006). The discharge, channel form and sediment budget of rivers in the Mahi and
Orsang basins are thought to have responded to changes in monsoon intensity. Meandering
river channel and floodplain sediments dated to 130-120 ka, 100—70 ka, and ~60-30 ka were
inferred to represent periods of enhanced monsoon intensity. Braided channel sediments
dated to ~120-100 ka and 70—60 ka, and widespread acolian sediments dated to ~20-11 ka
were inferred to represent periods of weak monsoon intensity (Juyal er al. 2006). These
periods of weak monsoon intensity roughly correlate with the proposed time of deposition of
the Sihawal Formation (MIS 5d) and the fine member of the Baghor Formation (MIS 2) (Fig.
8-9) (Williams et al. 2006). It is not clear whether or not the alluvial stratigraphy in the
southern margin of the Thar Desert records river base level changes as a result of sea-level
fluctuations.

Strata recording fluvial activity over the last 100 ka in the middle Ganga Plains
record major periods of fluvial aggradation that occurred 111-59 ka (Period I), 45-30 ka
(Period 1II), 30-23 ka (Period III), 16—11 ka (Period IV) and 2.7 ka to present (Period V)
(Roy et al. 2011) (Fig. 8-9). Period I sediments record prolonged channel activity and some
interfluve flooding, followed by floodplain deposition and pedogenesis. A similar period of
persistent channel activity was recorded in the southern margin of the Ganga Plains (Gibling
et al. 2008) (Fig. 8-9). Period II sediments include minor channel fills, acolian and marsh
sediments that are thought to record reduced monsoonal activity. Period III sediments record
high-energy channel activity at ~28 ka and levee deposition at 34 and 26 ka, possibly
associated with increased monsoon precipitation. These sediments are roughly correlative
with the proposed time of deposition of the coarse member of the Baghor Formation and the
time of deposition of the sediments bracketing YTT ash at Ghoghara and Khunteli (Fig. 8-
10). The Baghor Formation is thought to represent a major phase of aggradation during a
period of aridity leading up to and encompassing the LGM (Williams e al. 2006). No
channel deposits that date between 28 and 15 ka have been found in the middle Ganga
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Plains. Aeolian, floodplain and lacustrine deposits in the middle Ganga Plains suggest a
cooler and drier climate towards the LGM. Period IV records channel aggradation and
channel switching in a braided depositional environment with a high sediment supply. This
may reflect landscape instability during monsoon intensification and may be correlative with
the time of aggradation of the middle (~20 m high) terrace in the Middle Son Valley. A
period of reduced discharged occurs between 13 and 11 ka in the middle Ganga Plains.
Period V records late Holocene aggradation that may be associated with monsoon
intensification (Roy ef al. 2011) (Fig. 8-9).

Late Quaternary sequences in the southern Gangetic Plains (Himalayan Foreland
Basin) are also thought to reflect floodplain aggradation and degradation in response to
fluctuations in SW Indian monsoon intensities (Gibling ef al. 2005). Fluvial/floodplain
sedimentary sequences preserved within interfluves between major Himalayan and cratonic
rivers record periodic aggradation between 90 and 27 ka (MIS 5-3) (Fig. 8-9). This was
followed by a decrease in aggradation and the formation of underfit streams as a result of a
decrease in precipitation during MIS 2. A subsequent increase in precipitation from 15 ka to
5 ka is thought to have promoted incision and widespread badland formation (Gibling et al.
2005). The start of this incision event roughly correlates with that proposed for the Middle
Son Valley after ~16-21 ka (Fig. 8-9).

Alluvial sequences in the Belan River valley, like those of the Middle Son Valley,
have been used as a source of palacoclimatic information for north India (Gibling et al.
2008). The headwaters of the Belan River are in the Kaimur Hills and within 50 km
northeast of the village of Sihawal. The main channel drains NW into the Tons, which in
turn drains NE into the Ganga River. Sedimentary sections along the Belan River reveal
channel-based calcretes above the bedrock that are overlain by mixed-load meandering river
channel/floodplain sediments and soils (Gibling er al. 2008). Net aggradation of fluvial
deposits occurred between ~85 and 16 ka (MIS 5-2) (Fig. 8-9). Channel deposition occurred
predominantly from ~85 to 72 ka and was followed by floodplain buildup through to ~16 ka.
This fining upward stratigraphic sequence that terminates around 16 ka is reminiscent of the
coarse and fine members of the Baghor Formation in the Middle Son Valley, which are
thought to record a trend toward aridification during MIS 2 (Williams ef al. 2006). A
prolonged period of fluvial activity in the Belan Valley is in accord with generally high
precipitation levels in MIS 5-3. Some evidence for floodplain gullying and erosion at ~21—
31 ka exists in the form of reworked gravel lenses in floodplain muds that may record
reduced monsoonal precipitation around the LGM. Evidence for climatic instability is
present in the form of fluvial and acolian deposits at the Mahagara and Deoghat localities
that range in age from 14 to 7 ka. Incision through terraced sediments as young as ~9 ka at

the Mahagara locality has been interpreted to represent monsoon intensification and
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increased fluvial energy post-9 ka. This period of wet climatic conditions leading to incision
in the Belan Valley roughly correlates with the time of aggradation of the coarse sands and
gravels in the middle terrace (~20 m above river level) in the Middle Son Valley (Table 8-1,
Fig. 8-10). Decreasing monsoonal activity since ~6 ka is thought to be responsible for local
inset terrace aggradation at Mahagara (Gibling ez al. 2008). This aggradational event in the
Belan Valley occurred at a similar time as the aggradational event in the Middle Son Valley

that led to the creation of the lowest (~10 m high) terrace (Fig. 8-10).

8.6 Conclusions

In this chapter, the Williams ef al. (2006) model of alluvial deposition for the Middle
Son Valley was tested near the Rehi-Son confluence using cross-valley topographic profiles,
field observations, and IRSL age estimates from terraced alluvial sediments. The age
estimates for the highest terrace on the south side of the Son River are consistent with a
previous IRSL age estimate of the fine member of the Baghore Formation (Pal ez al. 2005),
and the beginning of incision of the Middle Son Valley alluvium ~16 ka as predicted by the
Williams et al. (2006) model. Maximum age estimates from the lowest terrace are ~1.9 and
2.7 ka, and are slightly younger than previously reported radiocarbon ages ranging from ~3
to ~5 ka associated with the Khetaunhi Formation (Williams and Clarke 1984).

The age estimates for the coarse sands and gravels that lie at intermediate elevations
(~20 m above river level) between these two terraces contradict what is predicted by the
model. According to the model, these sediments should be between ~40 and 58 ka in age
and form part of the Patpara Formation, which has been exposed by fluvial erosion of the
overlying Baghor Formation (Fig. 8-1). By contrast, maximum IRSL age estimates
presented here suggest that these deposits are only up to ~5-7 ka in age and form inset
sediments that were deposited during a brief aggradational phase, sometime after incision of
the highest alluvial surface ~16 ka ago. Similar inset sediments appear to be absent on the
north side of the Son River and this is indicative of a general northward migration of the
river channel. Incision of the Middle Son Valley alluvium across from the Rehi-Son
confluence began shortly after ~16-21 ka, probably as a result of SW monsoon
intensification. The inset coarse sand and gravel at ~20 m above river level likely aggraded
under wet conditions in the early Holocene, and the lowest (~10 m high) inset terrace
probably aggraded under more arid conditions during the late Holocene.

Proposed modifications for the Williams ef al. (2006) model have been made for
terraced sediments near the Rehi-Son confluence. These data provide insights into the
fluvial history of the Son River and will inform future archaecological surveys by

constraining the geomorphic context of surficial and excavated artefacts in the area.
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Chapter 9 — Summary, conclusions and recommendations for future research

The aims of this research were to: 1) to explore the luminescence dating potential of
KF grains using individual grains and multi-grain aliquots from alluvial sediments in the
Middle Son Valley using SAR dating techniques, fading measurements and corrections; 2)
assess the time of final deposition of YTT ash-bearing deposits at the Ghoghara main section
and the Khunteli type-section using luminescence dating techniques; and 3) test a model of
alluvial deposition in the Middle Son Valley (Williams et al. 2006) using new IRSL ages and

field observations. The main findings and their implications are summarized below.

9.1 The luminescence dating potential of KF grains using SAR dating techniques,
fading measurements and corrections

9.1.1 Main findings

Dose recovery experiments in the laboratory suggest that KF grains in the Middle
Son Valley are generally suitable for SAR procedures when measured at the multi-grain
aliquot and single-grain level. Elemental analyses showed that contaminating quartz grains
in KF-rich extracts can be identified by their decay curve characteristics and rejected from
further analyses in single-grain studies and that grain-to-grain variations in internal K
content will contribute little to the OD in KF single-grain fading-corrected age distributions
for sediments examined in this study. The observed spread in individual KF grain fading-
corrected ages from one sample (GHO-2) is attributed largely to sediment mixing.
Comparisons between single-grain and multi-grain aliquot data from the same sample
suggest that IRSLs, KF aliquot ages can only serve as maximum age estimates, possibly
producing ages within ~5—6 ka of the true burial age of a significant number of grains in a
sample. Fading rates for KF grains in the Middle Son Valley average ~3 to 4 %/decade and
grain-to-grain variations in fading rates are large (spanning a range of 0 to over 20
%/decade) compared to those of ~25 grain aliquots, which typically range from ~2 to 6
%/decade.

Post-IR IRSL signals have been shown to be less susceptible to fading (e.g.,
Thomsen et al. 2008; Buylaert et al. 2009; Thiel et al. 2011). However, for samples
bracketing YTT ash, fading-corrected pIRIR,,5 ages are ~1.5 to ~2 times those obtained from
the IRSLs, signal, even after subtraction of residual doses measured from aliquots that have
been sun-bleached for 2 days. IRSLs, and pIRIR;s D, values measured from a modern
sample from a sand bar in the river channel suggest that the source traps of the pIRIRs
signal are less susceptible to bleaching in the Son River than are those of the IRSLs, signal.

Thus, pIRIRy,s ages for alluvial sediments in the Middle Son Valley are considered less
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reliable than IRSLs, ages, despite the fact that they are less dependent on fading-correction

models.

9.1.2 Implications and future research directions

Previously reported IRSL ages for alluvial sediments in the Middle Son Valley were
determined using multiple-aliquot additive-dose methods and were not corrected for fading
(Table 1-2) (Pal et al. 2005; Williams et al. 2006). In this study, KF grains are shown to be
suited to the more robust SAR measurement procedure; when the IRSL signal was measured
at 50°C, fading rates of ~2 to ~6 %/decade were measured from small aliquots and fading
rates of 0 to more than 20 %/decade were measured from single grains. Thus, future
luminescence studies that make use of IRSLs, signals in KF grains from the Middle Son
Valley should apply SAR measurement procedures. The inter-aliquot and inter-grain
variability in fading rates observed in this study suggests that fading measurements and
corrections should be made on each aliquot or grain used for D. determination. Future
luminescence investigations that attempt to overcome the problems of fading by measuring
signals with low or negligible fading rates (including post-IR IR signals or MET-pIRIR
signals) should also investigate the bleachability of these signals in waterlain sediments (e.g.,

Lowick et al. 2012).

9.2 Assessing the time of final deposition of YTT ash-bearing deposits at the
Ghoghara main section and the Khunteli type-section using luminescence dating
techniques

9.2.1 Main findings

Investigations into the time of final deposition of YTT ash deposits in the Middle
Son Valley have yielded ambiguous results. All KF and quartz ages from the Ghoghara
main section and the Khunteli type-section suggest that final deposition of the sediments
bracketing the YTT ash occurred sometime (possibly up to a few tens of thousands of years)
after the Toba volcanic super-eruption (Table 7-4). If we take the main quartz FMM
component OSL ages, which range from ~36 to ~44 ka, to be the most accurate estimate of
the depositional age of these samples in this study, then alluvial sediments above and below
the YTT ash would be correlative with either the lower coarse member of the Baghor
Formation or the uppermost sediments of the Patpara Formation of the Williams ez al. (2006)
model, as previously hypothesized by Achyrra and Basu (1993), Williams and Royce (1982),
Williams and Clarke (1995), Jones and Pal (2005), and Jones (2010).

The luminescence ages in this thesis imply one of two things: 1) the YTT ash at
Ghoghara and Khunteli has been reworked by fluvial processes and re-deposited either as

fluvial silts, or as mobile, cohesive blocks, several thousand years after the Toba event, or 2)
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the YTT ash was deposited soon after the volcanic event ~74 ka ago, but the underlying
sediments have since been eroded and replaced by younger, inset fluvial sediments. There
are no sedimentological features within the ash units, such as inclined bedding, or sharp
irregular contacts with the surrounding sediment that might suggest that the ash has been
remobilized as a cohesive block before deposition. It is possible that coarser sediment
underlying the YTT ash units has been preferentially eroded and replaced by younger, inset
fluvial sediments, however sedimentological evidence for this is lacking. All field
observations suggest that the ash has been reworked by fluvial processes and re-deposited as

fluvial silts.

9.2.2 Implications and future research directions

YTT occurrences across peninsular India have been considered by some to be an
isochronous marker, allowing the use of overlying and underlying soils and carbonates as
environmental proxies (Williams et al. 2006; Williams et al. 2009; Williams 2012b). The
Khunteli Formation was introduced by Williams et al. (2006) to account for YTT ash-
bearing sediments in the Middle Son Valley at the Ghoghara main section and at the
Khunteli type-section. However, few aliquot or single-grain luminescence ages produced in
this study approximate the age of the YTT event, casting doubt over the existence of the
Khunteli Formation and the assumption that all YTT deposits in India can be used as a
reliable chronostratigraphic marker (Acharyya & Basu 1993; Acharya & Basu 1994;
Westgate e al. 1998; Williams et al. 2009). The impact of the ~74 ka (or ~73 ka according
to Williams 2012a, b) Toba volcanic super-eruption on humans and ecosystems is still hotly
debated (e.g., Oppenheimer 2002; Ambrose 2003; Gathorne-Hardy & Harcourt-Smith 2003;
Louys 2007; Petraglia et al. 2007; Haslam & Petraglia 2010; Williams et al. 2010; Petraglia
et al. 2012; Jones 2012; Williams 2012a), and this has been attributed to (among other
reasons) the lack of precise and accurate chronologies for marine and terrestrial proxy
records (Williams 2012b). The field observations and luminescence ages presented in this
study suggest that, so far the Middle Son Valley is no exception. The previously proposed
hypothesis that C; forest was replaced by wooded to open C,4 grassland in north-central India
after the Toba eruption (Williams et al. 2009) is not supported by the data presented in this
study. Luminescence investigations in this thesis suggest that sediments above and below
YTT ash units at the Rehi-Son confluence and at the Khunteli Formation type-section were
last deposited tens of thousands of years after the YTT event. Any soils, pedogenic
carbonate nodules, and rootcasts associated with these deposits would have formed even
later after sediment deposition, and thus should not be considered reliable proxies for

palaecoenvironmental reconstruction before and after the Toba eruption.
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Future research into the burial age of the YTT ash units at the Ghoghara main
section and the Khunteli Formation type-section should include investigations of the
luminescence dating potential of non-volcanic quartz and/or feldspar in the re-worked YTT
layers mixed with fluvial silt and sand (e.g., the YTT ash-rich silt unit at the Khunteli
Formation type-section, or the reworked layers above the ~4 cm so-called ‘primary’ ash at
the Ghoghara main section (Jones 2010; Gatti ef a/. 2011)). Luminescence ages for the YTT
ash itself could help resolve the issue of whether or not it was emplaced before or after the
underlying sand units dated in this study. Such investigations could focus on the possibility
of determining the burial age of the glass shards in the YTT ash, directly. These could
include luminescence investigations of the possibility of isolating an OSL ‘fast’ component
in glass shards (e.g., Berger & Huntley 1994; Tsukamoto et al. 2003) or a datable IRSL
signal in volcanic plagioclase (e.g., Tsukamoto et al. 2010). TL ages from the glass shards
could determine the most recent heating event and help resolve any uncertainties as to

whether or not the ash is indeed YTT (and not MTT or OTT).

9.3 Testing and refining a model of alluvial deposition in the Middle Son Valley
9.3.1 Main findings

In this study, the Williams ez al. (2006) model of alluvial deposition for the Middle
Son Valley was tested near the Rehi-Son confluence using cross-valley topographic profiles,
field observations, and IRSL age estimates from terraced alluvial sediments. IRSL age
estimates from the topmost terrace, ~30 m above river level, mark the termination of
deposition of the Baghor Formation fine member silts ~16 to ~21 ka ago. Maximum IRSL
age estimates of ~1.9-2.7 ka, ~10 m above river level, mark the termination of deposition of
the Khetaunhi Formation silts and the sands on the lowest terrace. Maximum IRSL age
estimates of ~5—7 ka mark the termination of deposition of a mantle of coarse sands and
gravels of unknown thickness ~20 m above river level that was deposited by high energy
flow in a palaeo-Son River channel dominated by bed-load transport. The age estimates for
the highest terrace on the south side of the Son River are consistent with a previous IRSL age
estimate of the fine member of the Baghore Formation (Pal et al. 2005), and the beginning of
incision of the Middle Son Valley alluvium ~16 ka as predicted by the Williams ez al. (2006)
model. Incision of the Middle Son Valley alluvium across from the Rehi-Son confluence
began shortly after ~16-21 ka, probably as a result of SW monsoon intensification. The
inset coarse sand and gravel at ~20 m above river level likely aggraded under wet conditions
in the early Holocene, and the lowest (~10 m high) inset terrace probably aggraded under

more arid conditions during the late Holocene.
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9.3.2 Implications and future research directions

The IRSL ages and field observations made near the Rehi-Son confluence showed
that the age of terraced alluvial sediments may not conform to the predictions of the
Williams et al. (2006) stratigraphic model in all reaches of the Son River, and that oxidized
fluvial sands and gravels found at intermediate (~15-20 m) elevations above river level
should not be assigned to the Patpara Formation without independent chronological control.
As pointed out by Haslam et al. (2011), the type locality for the Patpara Formation is
separated from the main river system by a medial bedrock ridge, so the preserved sediments
at Patpara were likely not deposited by a palaeo-Son River, but rather by more localized
processes. Sediments near the base of an exposed sequence at the Patpara type locality have
been dated to ~137 and ~140 ka using single-grain OSL techniques, suggesting that their
deposition occurred at about the same time as sediments associated with the Sihawal
Formation at Bamburi and Nakhjar Khurd (Section 1.2.2) (Haslam et al. 2011) rather than
~40-58 ka ago, as suggested by the Williams et al. (2006) model. More detailed mapping of
sediments adjacent to the Son River, and more numerical ages from units that can be
laterally traced over longer distances, should help to resolve these inconsistencies and
constrain the timing of alluvial deposition and terrace formation in the Middle Son Valley.
Both this valley, and its neighbour, the Belan Valley, record major phases in regional climate
and human occupation of northern India (Sharma & Clark 1983; Williams et al. 2006; Sinha
et al. 2007; Gibling et al. 2008). Improved chronological control on the stratigraphies of
these valleys therefore has implications for enhancing our understanding the history of

climate change and human occupation in India.
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