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Abstract 

Abstract 
 
 The Late Pleistocene was a period during which the behaviour and technology 

of Middle Stone Age (MSA) and Later Stone Age (LSA) modern humans in East Africa 

changed considerably.  The East African climate shifted between periods of humidity 

and aridity, and populations of modern humans expanded, contracted and dispersed 

within, and out of, Africa.  During this time, symbolic behaviours proliferated, 

technological change occurred at a rapid rate and innovative tool types, such as backed 

microliths, became prevalent.  The timing and reasons for these changes in behaviour 

and technologies remain largely unresolved, however, due to the difficulty of obtaining 

reliable age estimates for the East African MSA and LSA cultures.  Constraining the 

timing of behavioural and technological changes in the archaeological record can allow 

an interpretation of why these changes occurred, through comparisons with 

palaeoclimatic and genetic records.  To this end, the main aim of this thesis is to resolve 

when various changes in behaviour and technology occurred during the East African 

MSA and LSA.  Two sites were chosen to address this issue: Mumba rockshelter in 

Tanzania and Moche Borago rockshelter in Ethiopia.  Sediment samples for optically 

stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) dating 

were collected to construct improved, numerical-age chronologies for the archaeological 

deposits at both of these sites.  OSL dating is a technique that has been used to estimate 

accurate and precise depositional ages for Late Pleistocene sediments in other 

geographic regions and archaeological contexts and, thus, has the potential to construct 

reliable chronologies for the MSA and LSA in East Africa. 

 OSL investigations were conducted on individual sand-sized grains of quartz 

using the single-aliquot regenerative-dose (SAR) procedure.  Substantial grain-to-grain 

variability in OSL signal behaviour was observed and characterised.  Dose recovery 

tests were used to determine the measurement conditions and data analysis procedures 

most appropriate for objectively isolating grains dominated by the most light-sensitive 

component of quartz OSL, for which the SAR procedure can be used to obtain reliable 

estimates of the equivalent dose (De).  De values were estimated for individual grains 

and the distributions of these values were analysed using well-established statistical 

models.  For samples affected by beta dose rate heterogeneity and post-depositional 
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mixing, corrections were applied and the De populations that best represented the burial 

ages of the sediments and associated artefacts were used to obtain OSL ages for samples 

from Mumba rockshelter.  Potassium (K) feldspars were also investigated at Mumba to 

extend the luminescence chronology to the older deposits at this site.  Quartz grains 

from the latter deposits yielded only minimum ages, because the OSL signal was in 

saturation.  The IRSL signal was found to be associated with a high-temperature TL 

peak at 430°C and the IRSL signal intensity and decay curve shape were largely 

dependent on stimulation temperature.  The IRSL signal measured at an elevated 

temperature (225°C) after an initial low-temperature (50°C) IR bleach (the ‘post-IR 

IRSL’ signal) was shown to be bleachable by sunlight, suitable for De estimation using 

the SAR procedure and suffer only minimally from the malign phenomenon of 

anomalous fading.  Using this signal, De values and fading rates were measured, and the 

fading-corrected IRSL ages were consistent with the single-grain OSL ages for the 

younger deposits at Mumba, where both techniques could be applied.   

Finally, volcanic sediments from Moche Borago were investigated.  Quartz was 

absent or rare and had a poorly-behaved OSL signal that was unsuitable for the SAR 

procedure.  K-feldspars were also investigated and were shown to have substantially 

different TL and IRSL properties than those from Mumba.  Although the IRSL signal 

passed the standard tests of SAR suitability, the combination of high fading rates, weak 

luminescence signals and few grains prevented the determination of reliable IRSL ages 

for the Moche Borago samples. 

 The OSL and post-IR IRSL ages obtained for the archaeological sequence at 

Mumba rockshelter are in correct stratigraphic order and provide temporal constraints 

on the significant behavioural and technological changes recorded at the site.  First, the 

revised chronology constrains the timing of the point-based Kisele Industry (~74–63 

ka), the backed piece-based Mumba Industry (~57–49 ka) and the scraper-based Nasera 

Industry (~37 ka).  Second, the timing of the emergence of ornamental OES beads 

associated with the Mumba Industries is shown to have occurred ~49 ka ago.  Third, 

ages for deposits that contain obsidian from distant sources provide a minimum estimate 

of the duration of likely long-distance exchange networks between the occupants of 

Mumba and southern Kenya.  The improved chronology for Mumba allows the 

archaeological record at this site to be compared with existing archaeological, 
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palaeoenvironmental, genetic and demographic records for East Africa and the 

continent more broadly.  In doing so, possible reasons for the observed technological 

and behavioural changes that occurred in the Late Pleistocene can be inferred, and such 

inferences are discussed in the penultimate chapter of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi 
 



Acknowledgements 

Acknowledgements: 
 

I would like to express my deepest gratitude to my principal supervisor, 

Professor ‘Bert’ Roberts, for laying the groundwork of this project, providing me with 

the opportunity and means to pursue this research, and for his helpful feedback and 

input in regards to this research.  I am especially grateful for the time and effort that he 

put into reading drafts of my writing, particularly this thesis.  Bert’s insightful 

comments have certainly made this thesis better and improved my writing immensely, 

albeit at the expense of my ego. 

 I am indebted to my co-supervisor, Zenobia Jacobs, for teaching me most of 

what I know about OSL dating of quartz.  The time and effort that she spent teaching 

me, and reading and commenting on drafts of my writings cannot be overstated and are 

greatly appreciated.  Zenobia provided me with guidance when I needed it, while giving 

me the leeway and resources to pursue my own research. 

 I would like to thank Manuel Domínguez-Rodrigo, Mary Prendergast and Audax 

Mabulla for their thoughtful answers whenever I had questions about Mumba.  I would 

like to thank Steve Brandt and Erich Fisher for providing information about Moche 

Borago.  I am grateful to Gitte Jensen for her help and support in learning the finer 

points of feldspar IRSL dating.  I would also like to thank José Abrantes for his 

technical support, assistance and company in the lab over the first two years of my 

research.  

 I would like to thank several of the members of the OSL lab at the University of 

Wollongong, namely Steph Kermode, Nathan Jankowski, Michael Meyer and Jan-

Hendrik ‘Henne’ May, for their camaraderie, ideas and support over the past three and a 

half years.  Our ‘OSL and Beer’ meetings were always fun, therapeutic and 

(occasionally) even educational.  I would like to thank Anders Hallan for everything 

from his help in editing my work to teaching me to play the guitar (a welcome 

distraction), but mostly for his friendship and ability to have both scientific and very 

unscientific discussions, ‘as it were’.  I would like to thank Brett Heino and Dennis 

Mitchell for their friendship, conversations, spots and belays over the past three years. 

 This work would never have been completed (or begun) if not for the support of 

Amy Robinson.  I am eternally grateful for everything she has helped me with, from her 

unwavering encouragement and patience to the dinners she prepared for my late nights 

vii 
 



viii 
 

at the office.  Mostly, she could always remind me that I can ‘move mountains’ 

whenever I needed to hear it. 

 I would like to thank my family, Dan, Nancy, Andrew and Kim, for their 

support, encouragement, distractions and late-night phone calls through all these years.  

Their optimism and encouragement were continual sources of motivation. 

 

 This work is dedicated to Dr. Nancy Penncavage, who broke the trail that I am 

now following, and who is an inspiration for her indomitable spirit and vitality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table of Contents 

Table of Contents 
 

Certification ...................................................................................................................... i 
Abstract ........................................................................................................................... iii 
Acknowledgements: ...................................................................................................... vii 
Table of Contents ........................................................................................................... ix 
List of Figures .............................................................................................................. xvii 
List of Tables .............................................................................................................. xxiii 
List of Abbreviations: ............................................................................................... xxvii 
 

Chapter 1: Introduction: A geochronological approach to assessing the timing of 

behavioural change in the East African Middle and Later Stone Ages ..................... 1 

1.1 Aims .................................................................................................................... 1 
1.2 Anatomical and behavioural origins of modern humans .................................... 2 

1.2.1 Anatomical origin of modern humans ......................................................... 2 
1.2.2 Origins of modern human behaviour ........................................................... 2 

1.3 Defining the MSA and LSA ................................................................................ 3 
1.4 Dating the MSA and LSA in East Africa ............................................................ 4 

1.4.1 Radiocarbon (14C) dating ............................................................................. 6 
1.4.2 Uranium-series dating .................................................................................. 7 
1.4.3 Obsidian hydration dating ............................................................................ 8 
1.4.4 Amino acid racemisation ............................................................................. 9 
1.4.5 Electron spin resonance dating..................................................................... 9 
1.4.6 Luminescence dating .................................................................................. 10 

1.4.6.1 Overview ............................................................................................. 10 
1.4.6.2 Potential problems and pitfalls ............................................................ 12 

1.4.7 Summary .................................................................................................... 14 
1.5 The East African MSA and LSA archaeological record ................................... 14 

1.5.1 Olduvai Gorge, Tanzania ........................................................................... 14 
1.5.2 Nasera rockshelter, Tanzania ..................................................................... 18 
1.5.3 Enkapune Ya Muto rockshelter, Kenya ..................................................... 19 
1.5.4 Prospect Farm and Prolonged Drift, Kenya ............................................... 21 
1.5.5 Lukenya Hill, Kenya .................................................................................. 22 
1.5.6 Other sites .................................................................................................. 22 
1.5.7 Summary .................................................................................................... 23 

1.6 The importance of robust chronologies: resolving technological and 
behavioural change.................................................................................................. 23 
1.7 Objectives .......................................................................................................... 26 
1.8 Scope/Outline of Thesis .................................................................................... 28 

 

Chapter 2: Description of study sites: Mumba rockshelter, Tanzania and Moche 

Borago rockshelter, Ethiopia ....................................................................................... 33 

Mumba rockshelter, Tanzania ..................................................................................... 33 
2.1 Site setting ......................................................................................................... 33 
2.2 History of excavations at Mumba ..................................................................... 34 

ix 
 



2.3 Stratigraphy ....................................................................................................... 36 
2.4 Archaeological context ..................................................................................... 41 

2.4.1 Bed VI deposits .......................................................................................... 42 
2.4.2 Bed V deposits ........................................................................................... 44 

2.4.2.1 Interpretation of Mehlman (1989)....................................................... 45 
2.4.2.2 Interpretation of Diez-Martín et al. (2009) ......................................... 47 
2.4.2.3 Summary and discussion of the Mumba Industry ............................... 50 

2.4.3 Beds IV and III deposits ............................................................................ 52 
2.4.4 Summary .................................................................................................... 53 

2.5 Geochronology at Mumba ................................................................................ 53 
2.5.1 Previous chronologies ................................................................................ 53 
2.5.2 OSL sample collection ............................................................................... 58 

Moche Borago Rockshelter, Ethiopia ......................................................................... 60 
2.6 Site setting ......................................................................................................... 60 
2.7 Stratigraphic and archaeological context .......................................................... 62 
2.8 Archaeological significance and OSL sample collection ................................. 66 

Summary ..................................................................................................................... 68 
 

Chapter 3: Methodology: Optically Stimulated Luminescence (OSL) .................... 69 

3.1 OSL background ............................................................................................... 69 
3.2 Sample preparation and instrumentation........................................................... 72 

3.2.1 Preparation ................................................................................................. 72 
3.2.1.1 Contamination of stainless steel discs ................................................. 73 
3.2.1.2 Implications for other multi-grain aliquot investigations ................... 76 

3.2.2 Instrumentation .......................................................................................... 76 
3.2.2.1 Irradiation sources ............................................................................... 76 
3.2.2.2 Stimulation sources ............................................................................. 77 
3.2.2.3 Signal detection ................................................................................... 78 

3.3 Equivalent dose estimation: The single-aliquot regenerative-dose (SAR) 
procedure ................................................................................................................. 78 

3.3.1 The sensitivity-corrected dose-response curve .......................................... 82 
3.3.1.1 Calculation of Lx/Tx ............................................................................ 82 
3.3.1.2 Error calculation for Lx/Tx .................................................................. 83 
3.3.1.3 Constructing the sensitivity-corrected dose-response curve ............... 83 
3.3.1.4 Error calculation for De estimates ....................................................... 84 

3.3.2 Assessing the suitability of the SAR procedure ......................................... 85 
3.3.2.1 Assessing the effects of charge transfer: the ‘recuperation’ test ......... 85 
3.3.2.2 Assessing the effectiveness of sensitivity correction: the ‘recycling 
ratio’ test ......................................................................................................... 86 
3.3.2.3 Assessing feldspar contamination in quartz separates ........................ 86 
3.3.2.4 Dose recovery test ............................................................................... 87 
3.3.2.5 Summary ............................................................................................. 88 

3.4 Overview of De distribution analysis: graphical displays and age models ....... 88 
3.4.1 Graphical display of De distributions ......................................................... 90 
3.4.2 Age models ................................................................................................ 91 

3.4.2.1 Central age model (CAM) and overdispersion ................................... 91 
3.4.2.2 Finite mixture model (FMM) .............................................................. 92 

x 
 



Table of Contents 

3.4.2.3 Minimum age model (MAM) ............................................................. 94 
3.5 Linearly-Modulated OSL (LM-OSL) ............................................................... 95 

3.5.1 Overview .................................................................................................... 95 
3.5.2 Measurement and de-convolution of LM-OSL curves ............................ 100 

3.5.2.1 Estimating background ..................................................................... 100 
3.5.2.2 De-convolution of LM-OSL curve ................................................... 101 

3.6 Summary ......................................................................................................... 103 
 

Chapter 4: Methodology: Dose rate evaluation ....................................................... 105 

4.1 Internal contributions to the dose rate ............................................................. 105 
4.1.1 Quartz ....................................................................................................... 106 
4.1.2 K-feldspar ................................................................................................. 106 

4.2 External contributions to the dose rate ............................................................ 108 
4.2.1 Alpha contribution ................................................................................... 108 
4.2.2 Cosmic-ray contribution........................................................................... 108 
4.2.3 Beta and gamma contributions ................................................................. 109 

4.2.3.1 In situ gamma spectrometry .............................................................. 110 
4.2.3.2 Beta counting .................................................................................... 110 

4.3 Correction factors:  beta attenuation and water content .................................. 112 
4.4 Potential environmental dose rate problems ................................................... 113 

4.4.1 Radioactive disequilibrium ...................................................................... 113 
4.4.2 Beta microdosimetry ................................................................................ 114 

4.4.2.1 Beta microdosimetry identification ................................................... 115 
4.4.2.2 Beta dose rate correction ................................................................... 116 

4.5 Summary ......................................................................................................... 118 
 

Chapter 5: Characterising the OSL signal of quartz from Mumba rockshelter 

using single grains and multi-grain aliquots ............................................................. 121 

5.1 LM-OSL investigations of quartz from Mumba ............................................. 121 
5.1.1 Establishing the presence of a fast component ........................................ 121 
5.1.2 Assessing the behaviour of the LM-OSL signal over multiple SAR 
measurement cycles .......................................................................................... 125 

5.1.2.1 Assessing the constituent components of a laboratory-irradiated OSL 
signal ............................................................................................................. 126 
5.1.2.2 Assessing the effect a of HOW on the LM-OSL signal .................... 127 
5.1.2.3 Summary ........................................................................................... 130 

5.1.3 Dose recovery experiment using the fast component, isolated from the 
LM-OSL signal ................................................................................................. 131 

5.2 Characterisation of the OSL signal of single grains of quartz ........................ 134 
5.2.1 Characterising the types of quartz grains ................................................. 135 
5.2.2 Discussion ................................................................................................ 142 
5.2.3 Overview of the pulsed-irradiation technique .......................................... 144 

5.2.3.1 The case for pulsed-irradiation.......................................................... 144 
5.2.3.2 Pulsed-irradiation application ........................................................... 146 

5.3 Single-grain dose recovery experiments ......................................................... 147 

xi 
 



5.3.1 Assessing the suitability of single- and pulsed-irradiation techniques at 
lower doses during the SAR procedure............................................................. 149 
5.3.2 Assessing the suitability of single- and pulsed-irradiation techniques at 
higher doses during the SAR procedure ........................................................... 151 
5.3.3 Examining dose distributions to refine rejection criteria ......................... 155 

5.3.3.1 Investigating saturation and hyperbolic dose-response curve shape 156 
5.3.3.2 Identifying aberrant sensitivity change ............................................. 158 
5.3.3.3 Application of new rejection criteria to single-irradiation dataset .... 160 
5.3.3.4 Application of new rejection criteria to 40 Gy dose recovery 
experiment dataset......................................................................................... 160 

5.3.4 Summary of single-grain dose recovery experiments .............................. 161 
5.4 Dose recovery experiments using multi-grain aliquots of quartz ................... 163 

5.4.1 Standard SAR procedure .......................................................................... 164 
5.4.2 Modified SAR procedure: Application of a HOW .................................. 167 
5.4.3 Analysing dose recovery results using an early-background approach ... 170 
5.4.4 Summary multi-grain aliquot dose recovery experiments ....................... 172 

5.5 Conclusions ..................................................................................................... 173 
 

Chapter 6: Single-grain De distributions, dose rate determinations and age 

estimations for quartz from Mumba rockshelter, Tanzania .................................. 177 

6.1 Total environmental dose rate for samples from Mumba ............................... 178 
6.2 Single-grain De determinations ....................................................................... 178 
6.3 Single-grain De distributions ........................................................................... 182 

6.3.1 Analysis of De distributions using the FMM ........................................... 186 
6.3.2 ‘Scattered’ De distributions ...................................................................... 188 
6.3.3 ‘Mixed’ De distributions .......................................................................... 189 

6.4 Beta microdosimetry correction and age determinations ................................ 192 
6.4.1 Beta microdosimetry correction ............................................................... 192 
6.4.2 Estimated uncertainty on age determinations .......................................... 192 
6.4.3 Age determinations and comparisons ...................................................... 194 

6.5 Problematic samples ....................................................................................... 195 
6.6 Summary ......................................................................................................... 196 

 

Chapter 7: Characterisation of the luminescence signal of K-feldspars from 

Mumba rockshelter, Tanzania ................................................................................... 199 

7.1 Feldspar background ....................................................................................... 199 
7.1.1 Feldspar mineralogy ................................................................................. 199 
7.1.2 Feldspar luminescence ............................................................................. 201 

7.2 Emission characterisation ............................................................................... 203 
7.2.1 Instrumentation – IRSL measurement and filter combinations ............... 205 
7.2.2 Comparing TL and IRSL emissions from K-feldspars from Mumba ...... 206 

7.3 Thermoluminescence from K-feldspars .......................................................... 209 
7.3.1 Overview .................................................................................................. 209 
7.3.2 Characterising the TL signal of K-feldspars ............................................ 210 

7.4 Characterising the IRSL signal from K-feldspars from Mumba ..................... 215 

xii 
 



Table of Contents 

7.4.1 Assessing the dependence of IRSL on stimulation time .......................... 215 
7.4.2 Assessing the dependence of IRSL and TL on stimulation temperature . 218 

7.4.2.1 Overview ........................................................................................... 218 
7.4.2.2 Dependence of the measured IRSL and TL signal of K-feldspars on 
stimulation temperature ................................................................................. 219 
7.4.2.3 Characterising the isothermal TL signal ........................................... 225 
7.4.2.4 Interpretation of stimulation temperature tests – the dependence of the 
isothermal TL-subtracted IRSL signal on stimulation temperature .............. 227 

7.4.3 Summary .................................................................................................. 229 
7.5 The post-IR IRSL signal from K-feldspars ..................................................... 229 

7.5.1 Overview .................................................................................................. 229 
7.5.2 Characterising the post-IR IRSL signal from Mumba ............................. 231 
7.5.3 Assessing the sensitivity of the post IR-IRSL signal to sunlight ............. 234 

7.6 Assessing the optimal IR stimulation conditions for samples from Mumba .. 236 
7.6.1 Dose recovery experiments ...................................................................... 236 
7.6.2 Anomalous fading tests ............................................................................ 238 

7.6.2.1 Measuring the fading rate.................................................................. 239 
7.6.2.2 Calculating the fading rate ................................................................ 240 
7.6.2.3 Fading test results .............................................................................. 242 

7.6.3 Summary .................................................................................................. 246 
7.7 Conclusions ..................................................................................................... 246 

 

Chapter 8: Comparison of K-feldspar and quartz ages from Mumba rockshelter, 

Tanzania ....................................................................................................................... 251 

8.1 Measurement of De values and fading rates .................................................... 251 
8.2 Calculating fading-corrected ages ................................................................... 253 
8.3 Assessing the reliability of fading-corrected ages .......................................... 255 
8.4 Age comparisons: K-feldspar and quartz ........................................................ 258 

8.4.1 Sample MR6 ............................................................................................ 259 
8.4.2 Samples MR3 and MR9 ........................................................................... 260 
8.4.3 Sample MR10 .......................................................................................... 262 

8.5 Conclusions ..................................................................................................... 262 
 

Chapter 9: Luminescence investigations of quartz and feldspars from Moche 

Borago, Ethiopia .......................................................................................................... 265 

9.1 OSL measurements on multi-grain aliquots of quartz .................................... 265 
9.1.1 Dose recovery experiments using a standard SAR procedure ................. 265 
9.1.2 Assessing the constituent components of quartz from MB1 using LM-OSL
 ........................................................................................................................... 267 
9.1.3 Summary of OSL investigations of quartz from Moche Borago ............. 268 

9.2 Problems prior to luminescence investigations of K-feldspars ....................... 268 
9.2.1 Contamination of K-feldspar separates .................................................... 269 
9.2.2 Small quantities of weakly luminescent material..................................... 271 

9.3 Characterising various TL and IRSL emissions of K-feldspar from Moche 
Borago ................................................................................................................... 272 

xiii 
 



9.3.1 Comparison of TL signals ........................................................................ 272 
9.3.2 Comparison of IRSL signals .................................................................... 274 

9.4 Characterising K-feldspars from Moche Borago: TL and IRSL..................... 275 
9.4.1 TL from K-feldspar separates .................................................................. 275 
9.4.2 Dependence of IRSL on preheat temperature: Pulsed anneal experiments
 ........................................................................................................................... 277 

9.4.2.1 Summary of pulsed anneal results .................................................... 282 
9.4.3 Relationship between IRSL and TL ......................................................... 283 

9.5 Characterising the IRSL signal of K-feldspars from Moche Borago.............. 285 
9.5.1 IRSL dependence on stimulation temperature ......................................... 286 

9.5.1.1 Characterising the dependence of the measured IRSL signal on 
stimulation temperature................................................................................. 286 
9.5.1.2 Characterising the isothermal TL signal ........................................... 288 
9.5.1.3 Assessing the dependence of the isothermal TL-subtracted IRSL 
signal on stimulation temperature ................................................................. 290 
9.5.1.4 Comparing IRSL from Mumba and Moche Borago ......................... 291 
9.5.1.5 Summary of results for MB3 ............................................................ 293 

9.5.2 The post-IR IRSL signal .......................................................................... 293 
9.5.3 Assessing the optimal IR stimulation conditions for samples from Moche 
Borago ............................................................................................................... 295 

9.6 Characterisation of anomalous fading in MB3 ............................................... 297 
9.6.1 Anomalous fading: TL ............................................................................. 298 
9.6.2 Assessing the rate of anomalous fading of the IRSL signal .................... 301 
9.6.3 Discussion ................................................................................................ 304 

9.7 De value, dose rate and minimum age estimates for MB3 .............................. 305 
9.7.1 Discussion of fading rate, De and age estimates for MB3 ....................... 306 

9.8 Conclusions ..................................................................................................... 307 
 

Chapter 10: Discussion: a synthesis of available archaeological and 

palaeoenvironmental records ..................................................................................... 313 

10.1 Climate of East Africa................................................................................... 314 
10.1.1 Overview ................................................................................................ 314 
10.1.2 Archives of East African palaeoclimates ............................................... 315 
10.1.3 Late Pleistocene climate reconstructions ............................................... 317 

10.1.3.1 MIS 5a (85–74 ka) .......................................................................... 320 
10.1.3.2 MIS 4 (74–60 ka) ............................................................................ 320 
10.1.3.3 MIS 3 (60–24 ka) ............................................................................ 320 
10.1.3.4 Millennial-scale climatic variability ............................................... 321 
10.1.3.5 Summary ......................................................................................... 322 

10.2 Evidence for Late Pleistocene demographic change ..................................... 323 
10.2.1 Demographic change as a driver of cultural change .............................. 323 
10.2.2 Genetic evidence for demographic changes........................................... 324 

10.3 Integrating the MSA and LSA records at Mumba into a regional context ... 326 
10.3.1 Distant raw material transportation: evidence for regional exchange 
networks ............................................................................................................ 327 
10.3.2 The MSA/LSA transition ....................................................................... 330 

10.3.2.1 The emergence of backed piece-based toolkits at Mumba ............. 330 

xiv 
 



Table of Contents 

xv 
 

10.3.2.2 Concurrent emergence of backed piece-based toolkits in East Africa
 ....................................................................................................................... 331 
10.3.2.3 Mumba Industry: is there a Howiesons Poort connection? ............. 333 
10.3.2.4 Symbolic ornaments associated with the Mumba Industry............. 334 

10.3.3 Nasera Industry of Bed III-lower ........................................................... 337 
10.3.4 Summary ................................................................................................ 339 

10.4 Conclusions: a hypothesis ............................................................................. 341 
 

Chapter 11: Conclusions ............................................................................................ 347 

11.1 General luminescence findings ..................................................................... 347 
11.2 Implications of the OSL chronology for Mumba rockshelter on technological 
and behavioural evolution in East Africa .............................................................. 349 
11.3 Future research .............................................................................................. 351 

 

References .................................................................................................................... 355 

 

Appendix 1: Approximate number of grains on multi-grain aliquots ................... 395 

 

Appendix 2: Comparing de-convoluted LM-OSL curves ....................................... 397 

A2.1 Determining the number of component (N) ................................................. 399 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

xvi 
 



List of Figures 

 
List of Figures 
 
Figure 1.1: Potential age ranges for various dating methods. ........................................... 5 
 
Figure 1.2: Basic principles of luminescence dating of sediment.. ................................. 11 
 
Figure 1.3: Example of an OSL decay curve and a dose-response curve. ...................... 11 
 
Figure 1.4: Map of East Africa showing the locations of MSA and LSA sites. ............. 15 
 
Figure 1.5: Timeline showing age estimates for various East African MSA and LSA 
archaeological sites……………………………………………………………………..24 
 
Figure 2.1: Map of geological features around the Lake Eyasi Basin, Tanzania............ 34 
 
Figure 2.2: View of Mumba rockshelter from the northwest. ........................................ 35 
 
Figure 2.3: The geological beds identified by M. Mehlman ........................................... 37 
 
Figure 2.4: Schematic cross-section showing the relationships between the geological 
units, stratigraphic beds of Mehlman and associated lithic industries ............................ 38 
 
Figure 2.5: Planview of excavated area at Mumba rockshelter………………………...39 
 
Figure 2.6: Spatial distribution of all artefacts recovered from Trench 7 during the 2005 
excavations. ..................................................................................................................... 47 
 
Figure 2.7: Approximate positions of OSL samples collected Mumba rockshelter. ...... 59 
 
Figure 2.8: Moche Borago rockshelter and surrounds.. .................................................. 61 
 
Figure 2.9: Photograph and planview showing the extent of excavations at Moche 
Borago rockshelter.. ........................................................................................................ 63 
 
Figure 2.10: Pleistocene deposits and stratigraphic layers in square G10, Moche Borago 
rockshelter ....................................................................................................................... 65 
 
Figure 3.1: Schematic representation of the energy band model of OSL production. .... 70 
 
Figure 3.2: Example of an OSL decay curve .................................................................. 71 
 
Figure 3.3: OSL decay and TL glow curves demonstrating contamination on otherwise 
blank stainless steel discs. ............................................................................................... 74 
 
Figure 3.4: TL curves measured for the same blank stainless steel disc after various 
cleaning procedures.. ....................................................................................................... 75 
 

xvii 
 



Figure 3.5: Example of a sensitivity-corrected dose-response curve .............................. 80 
 
Figure 3.6: Example of a radial plot. .............................................................................. 91 
 
Figure 3.7: Example of a LM-OSL curve ....................................................................... 96 
 
Figure 3.8: A channel-by-channel average of LM-OSL measurements on eight blank 
stainless steel discs.. ...................................................................................................... 101 
 
Figure 5.1: LM-OSL curves of the natural signal from MR7 plotted on a linear-
logarithmic scale.. ......................................................................................................... 124 
 
Figure 5.2: LM-OSL curves following laboratory irradiation of quartz from MR7. .... 127 
 
Figure 5.3: Comparing the effects of a HOW on LM-OSL signal of MR7 .................. 129 
 
Figure 5.4: Dose-response curves built using the fast component, isolated using de-
convoluted LM-OSL measurements.. ........................................................................... 133 
 
Figure 5.5: OSL decay curves for grains that are representative of the five general grain-
types.. ............................................................................................................................ 136 
 
Figure 5.6: Dose-response curves from grains that are representative of the five general 
grain-types.  These grains correspond to those presented in Figure 5.5. ...................... 137 
 
Figure 5.7: OSL decay curves and Dose-response curves from individual grains of the 
fifth grain-type. ............................................................................................................. 141 
 
Figure 5.8: Comparison of the dose-response curve shapes constructed following single- 
and pulsed-irradiation SAR procedure measurements. ................................................. 146 
 
Figure 5.9: Radial plots showing dose distributions from single- and pulsed-irradiation 
low-dose dose recovery tests on single grains of MR6.. ............................................... 150 
Figure 5.10: Radial plots showing dose distributions from single- and pulsed-irradiation 
high-dose dose recovery tests on single grains of MR6 using standard rejection criteria.
 ....................................................................................................................................... 152 
 
Figure 5.11: D0 distributions for all grains of MR6 that passed standard tests of SAR 
suitability from the single grain dose recovery experiment using pulsed irradiation. .. 157 
 
Figure 5.12: Radial plots showing dose distributions from single- and pulsed-irradiation 
high-dose dose recovery tests on single grains of MR6 using standard rejection criteria.  
Grains with low D0 values (≤25 Gy) were also rejected ............................................... 158 
 
Figure 5.13: Tx/TN plots for quartz grains of MR6, some of which show a unique pattern 
of sensitivity change...................................................................................................... 159 
 

xviii 
 



List of Figures 

Figure 5.14: Radial plots showing dose distributions from pulsed-irradiation high-dose 
dose recovery tests on single grains of MR6.  After rejecting grains on the basis of 
standard criteria and with low D0 values, grains that exhibited aberrant sensitivity 
change were rejected. .................................................................................................... 160 
 
Figure 5.15: Normalised test dose OSL decay curves for a multi-grain aliquot whose 
SAR procedure did not include a HOW.  Data were integrated using the standard 
intervals ......................................................................................................................... 165 
 
Figure 5.16: Dose-response curve and OSL produced following the 0 Gy regenerative 
dose for a multi-grain aliquot whose SAR procedure did not include a HOW............. 167 
 
Figure 5.17: Normalised test dose OSL decay curves for an aliquot whose SAR 
procedure included a HOW.  Data were integrated using the standard intervals ......... 168 
 
Figure 5.18: Dose-response curve and OSL produced following the 0 Gy regenerative 
dose for a multi-grain aliquot whose SAR procedure did include a HOW. .................. 169 
 
Figure 5.19: Dose-response curves constructed using the early-background approach 171 
 
Figure 6.1: Single-grain De distributions for samples from Mumba ............................. 184 
 
Figure 6.2: Photograph of a shell from Mumba ............................................................ 186 
 
Figure 7.1: Feldspar nomenclature and chemical composition shown as a ternary 
diagram. ......................................................................................................................... 200 
 
Figure 7.2: Comparison of TL glow curves for various emissions from MR9. ............ 207 
 
Figure 7.3: Comparison of IRSL decay curves for various emissions from MR9.. ...... 208 
 
Figure 7.4: TL glow curves from MR9.. ....................................................................... 211 
 
Figure 7.5: Comparison of TL glow curves from MR9 following various steps of the 
SAR procedure. ............................................................................................................. 213 
 
Figure 7.6: IRSL decay curves from aliquots of MR9 after various IR stimulation 
durations.. ...................................................................................................................... 217 
 
Figure 7.7: Recuperation value plotted as a function of IR stimulation duration (s). ... 218 
 
Figure 7.8: Analysis of the change in IRSL with stimulation temperature ................... 221 
 
Figure 7.9: Normalised decay curves for various IR stimulation temperatures. ........... 223 
 
Figure 7.10: TL curves measured following IR stimulation at various temperatures. .. 224 
 
Figure 7.11: Assessing the isothermal TL signal at various elevated temperatures. .... 227 

xix 
 



 
Figure 7.12: Normalised isothermal TL-subtracted IRSL decay curves.  Isothermal TL-
subtracted IRSL signal intensity plotted as a function of stimulation temperature. ..... 228 
 
Figure 7.13: Post-IR IRSL decay curves from one aliquot of MR9.. ........................... 232 
 
Figure 7.14: Bleaching rate of the post-IR IRSL signal. .............................................. 235 
 
Figure 7.15: Dose recovery results for aliquots of MR9 using various IR stimulation 
conditions.. .................................................................................................................... 238 
 
Figure 7.16: Plots of Lx/Tx vs. delay time, used to calculated fading rates, for six 
aliquots. ......................................................................................................................... 243 
 
Figure 7.17: Comparison of the measured fading rates for all aliquots of MR9 under 
various stimulation conditions.. .................................................................................... 244 
 
Figure 7.18: Comparison of the fading rates for various signal integration periods.. .. 245 
 
Figure 8.1: Examples of dose-response curves and fading rates calculated from plots of 
Lx/Tx vs. delay time for a representative aliquot of each sample .................................. 254 
 
Figure 8.2: Radial plots showing distributions of De values and fading-corrected ages
 ....................................................................................................................................... 256 
 
Figure 9.1: OSL decay curves from an aliquot of quartz from MB1 ............................ 266 
 
Figure 9.2: Dose-response curves constructed for quartz from MB1. .......................... 267 
 
Figure 9.3: LM-OSL curve with the fitted components for quartz from MB1. ............ 268 
 
Figure 9.4: Photographs illustrating the contamination of K-feldspar separates from 
MB3.  Many contaminant grains could be removed ..................................................... 269 
 
Figure 9.5: Photograph of ~30 grains of dark, non-crystalline contaminant material. . 270 
 
Figure 9.6: TL and IRSL measured from contaminant grains compared to that from K-
feldspar grains from MB3. ............................................................................................ 270 
 
Figure 9.7: Comparison of TL glow curves for various emissions from MB3 ............. 273 
 
Figure 9.8: Comparison of IRSL decay curves for various emissions from MB3........ 275 
 
Figure 9.9: TL glow curves from MB3. ........................................................................ 276 
 
Figure 9.10: Results from a pulsed anneal experiment based on the SAR technique for a 
laboratory-irradiated aliquot of MB3 ............................................................................ 279 
 

xx 
 



List of Figures 

Figure 9.11: Example of pulsed anneal data from K-feldspar separates from Duller 
(1994), obtained using a short-shine pulsed anneal ...................................................... 279 
 
Figure 9.12: Results from pulsed anneal experiments using the short-shine technique on 
laboratory-irradiated grains and a technique based on the SAR technique .................. 281 
 
Figure 9.13: Comparison of TL glow curves from MB3 following various steps of the 
SAR procedure.. ............................................................................................................ 284 
 
Figure 9.14: IRSL signal plotted as a function of stimulation temperature. ................. 287 
 
Figure 9.15: Comparison of normalised IRSL decay curves for various stimulation 
temperatures.. ................................................................................................................ 288 
 
Figure 9.16: Normalised isothermal TL curves at various elevated temperatures.  The 
isothermal TL signal plotted as a function of stimulation temperature. ....................... 289 
 
Figure 9.17: Comparison of normalised isothermal TL-subtracted IRSL decay curves at 
various stimulation temperatures.  The isothermal TL-subtracted IRSL signal plotted as 
a function of stimulation temperature. .......................................................................... 290 
 
Figure 9.18: Post-IR IRSL decay curves from one aliquot of MB3 ............................. 294 
 
Figure 9.19: Results for tests of SAR suitability for various IRSL signals of MB3 ..... 297 
 
Figure 9.20: The effect of anomalous fading on TL glow curve shape and size. ......... 299 
 
Figure 9.21: Comparison of TL glow curves measured after various delay times 
showing where TL signal has been lost due to anomalous fading. ............................... 301 
 
Figure 9.22: Plots of Lx/Tx vs. delay time, used to calculated fading rates for the IRSL 
signal of MB3 measured at various temperatures.. ....................................................... 303 
 
Figure 9.23: The IRSL signal of the natural and a laboratory irradiation.  Dose-response 
curve for the same aliquot. ............................................................................................ 306 
 
Figure 10.1: Compilation of palaeoclimate reconstructions relevant to East Africa 
shown as a timeline……………………………………………………………………318 
 
Figure 10.2: Map showing of archaeological sites that have MSA and/or LSA 
archaeological assemblages with obsidian from distant sources. ................................. 329 
 
Figure 10.3: Backed pieces from the Mumba Industry, the Naisiusiu Beds, the 
Nasampolai Industry and the Howiesons Poort Industry .............................................. 332 
 
Figure 10.4: Timeline of chronologically constrained MSA and LSA archaeological 
record in East Africa showing the emergence and persistence of various artefact 
types…………………………………………………………….……………………..339 

xxi 
 



xxii 
 

Figure 10.5: Timeline comparing palaeoclimatic and archaeological records for East 
Africa………………………………………………………………………………….343 
 
Figure A2.1: LM-OSL de-convolution results for an aliquot of quartz from MR7.. .... 398 
 
Figure A2.2: Comparison of the Method 1 and Method 2 for analysing LM-OSL de-
convolution data for a single aliquot ............................................................................. 400 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



List of Tables 

List of Tables 
 
Table 1.1 Description of lithic industries, defining archaeological features and age 
estimates for various East African MSA and LSA sites ................................................. 16 
 
Table 2.1: Cultural sequence for Mumba as determined by Roller (1954) ..................... 42 
 
Table 2.2: All ages reported in the literature for Beds III to VI at Mumba rocksehtler. 55 
 
Table 2.3: List of OSL samples collected from Mumba rockshelter, their locations in the 
excavation, and their corresponding stratigraphic and archaeological associations. ...... 59 
 
Table 2.4: List of OSL samples collected from Moche Borago rockshelter, their 
locations in the excavation, and their corresponding stratigraphic associations. ............ 67 
 
Table 3.1: Information about the Risø TL/OSL readers used in this thesis. ................... 77 
 
Table 3.2: Step-by-step outline of the SAR procedure (Murray and Wintle, 2000, 2003).  
 ......................................................................................................................................... 80 
 
Table 3.3: Worked example of the application of the finite mixture model (FMM) using 
single-grain data from MR7.. .......................................................................................... 94 
 
Table 3.4: Various LM-OSL components published by three studies and their associated 
nomenclature ................................................................................................................... 97 
 
Table 4.1: Internal dose rates for ~180-212 μm diameter K-feldspar grains calculated on 
the basis of previously published studies. ..................................................................... 107 
 
Table 4.2: Worked example of beta microdosimetry dose rate correction for MR7 using 
component proportions from the FMM (see Table 6.5) ................................................ 118 
 
Table 5.1: De-convolution data for the natural LM-OSL signal of quartz from MR7.. 123 
 
Table 5.2: De-convolution data for the laboratory-irradiated LM-OSL signal of quartz 
from MR7.. .................................................................................................................... 126 
 
Table 5.3: Step-by-step outline of the modified SAR procedure (see Table 3.2) using 
pulsed-irradiation to administer the laboratory doses (Bailey, 2004).. ......................... 147 
 
Table 5.4: Description of four subsets of sun-bleached quartz grains from MR6 that 
were used for the four dose recovery experiments described in Section 5.3 ................ 148 
 
Table 6.1: Environmental dose rate data for samples from Mumba ............................. 179 
 
Table 6.2: Single-grain data for samples from Mumba, showing the number of grains 
rejected for each criterion, the accepted grains, the central De, and the overdispersion of 
the distribution .............................................................................................................. 183 

xxiii 
 



Table 6.3: Results of FMM analysis of single-grain De distributions for samples from 
Mumba. ......................................................................................................................... 187 
 
Table 6.4: Analysis of single-grain data for beta microdosimetry ................................ 191 
 
Table 6.5: Dose rates and De and age estimates obtained using single grains of quartz 
from Mumba ................................................................................................................. 193 
 
Table 7.1: Filter combinations used to measure different luminescence emissions ..... 205 
 
Table 7.2: Step-by-step outline of the experiment described in Section 7.3.2 ............. 212 
 
Table 7.3: Comparison of the TL peak intensities of the two major TL peaks (i.e., 350°C 
and 430°C) following various thermal and IR stimulations.. ....................................... 213 
 
Table 7.4:  Step-by-step outline of the experiment described in Section 7.4.1 to 
investigate the effect of stimulation time on the IRSL signal ....................................... 216 
 
Table 7.5: Step-by-step outline of the experiment described in Section 7.4.2.2. ......... 220 
 
Table 7.6: Comparison of TL peak intensities showing that TL peaks at 350ºC and 
430ºC are reduced following IR stimulation at a range of elevated temperatures ........ 225 
 
Table 7.7: Step-by-step outline of the experiment described in Section 7.4.2.3 .......... 226 
 
Table 7.8: Step-by-step outline of the SAR procedure using the post-IR IRSL signal. 230 
 
Table 7.9: Step-by-step outline of the SAR procedure used to measure the fading rate 
for samples from Mumba. ............................................................................................. 240 
 
Table 8.1: Weighted mean De, fading-uncorrected age, fading rate and fading corrected 
age, as well as environmental dose rate data for samples from Mumba ....................... 257 
 
Table 8.2: Comparison of ages obtained for samples from Mumba using quartz and K-
feldspar grains. .............................................................................................................. 258 
 
Table 9.1: Step-by-step outline of the first pulsed anneal procedure described in Section 
9.4.2. .............................................................................................................................. 278 
 
Table 9.2: Step-by-step outline of the second pulsed anneal procedure described in 
Section 9.4.2.. ................................................................................................................ 281 
 
Table 9.3: Step-by-step outline of the experiment described in Section 9.4.3. ............ 283 
 
Table 9.4: Measured dose rate and De data used to calculate the fading-uncorrected age 
estimate for MB3. ......................................................................................................... 306 
 

xxiv 
 



List of Tables 

xxv 
 

Table 10.1: Description of study area, proxies and age estimates used to obtain 
palaeoclimate reconstructions shown in Figure 10.1 .................................................... 319 
 
Table A1.1: Approximate number of mineral grains on multi-grain aliquots of various 
sizes…………………………………………………………………………………...395 
 
Table A2.1: Results of de-convolutions of LM-OSL curves from a multi-grain aliquot of 
MR7. ............................................................................................................................. 398 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

xxvi 
 



List of Abbreviations 

List of Abbreviations: 
 
AAR – amino acid racemisation 
ABOX-SC – acid-base wet oxidation and stepped-combustion 
AMS – accelerator mass spectrometry 
BIC – Bayes Information Criterion 
CAM – central age model 
CW-OSL – continuous wave – optically stimulated luminescence 
DAP – dual-aliquot regenerative-dose  
De – equivalent dose 
ESA – Early Stone Age 
EU – early-uptake model 
FMM – finite mixture model 
HCl – hydrochloric  
HF – hydrofluoric  
HOW – hot optical wash 
ICP-MS – inductively coupled plasma mass spectrometry 
IR – infrared 
IRSL – infrared stimulated luminescence 
K – potassium 
ka – thousand years 
LED – light-emitting diode 
Llik – maximum log-likelihood  
LM-OSL – linearly modulated – optically stimulated luminescence 
LP – Lower Palaeolithic 
LSA – Later Stone Age 
LU – linear-uptake model 
Ma – million years 
MAM – minimum age model 
MEK – methyl ethyl ketone 
MIS – marine isotope stage 
MP – Middle Palaeolithic 
MSA – Middle Stone Age 
Na – sodium 
OES – ostrich eggshell 
OSL – optically stimulated luminescence 
PIC – photoionisation cross-section 
PMT – photomultiplier tube 
R – rubidium 
SAAD – single-aliquot additive-dose  
SAR – single-aliquot regenerative-dose  
SARA – single-aliquot regeneration and added dose  
TIMS – thermal ionisation mass spectrometry 
Th – thorium 
TL – thermoluminescence  
U – uranium 
UP – Upper Palaeolithic 
UV – ultraviolet 

xxvii 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

Chapter 1: Introduction: A geochronological approach to assessing the 
timing of behavioural change in the East African Middle and Later 
Stone Ages 
 

1.1 Aims 

The overarching aim of this thesis is to contribute to resolving when and why 

various behaviours and technologies emerged in sub-Saharan Africa during the Late 

Pleistocene.  During this period, modern humans populations expanded and dispersed 

throughout, and out of, Africa (Quintana-Murci et al., 1999; Macaulay et al., 2005; 

Tishkoff et al., 2007; Atkinson et al., 2008, 2009), symbolic behaviours proliferated 

(Ambrose, 1998; Henshilwood et al., 2002, 2004; Bouzouggar et al., 2007; Texier et al., 

2010), and technologies diversified (McBrearty and Brooks, 2000; Ambrose, 2001, 

2002; Wadley, 2007; Soriano et al., 2007; Lombard et al., 2010).  To elucidate these 

issues, the main aim of this thesis is to construct an improved chronology for the Middle 

Stone Age (MSA) and Later Stone Age (LSA) deposits from two sites in East 

Africa: Mumba and Moche Borago rockshelters.  Both sites have long archaeological 

sequences that contain changes in technology, including the transition from MSA to 

LSA toolkits.  Two significant changes at Mumba include the transition from point-

based to backed piece-based toolkits and the emergence of ornamental ostrich eggshell 

(OES) beads (Mehlman, 1989; Diez-Martín et al., 2009). 

    The aims of this thesis will be achieved using optically stimulated luminescence 

(OSL) dating of quartz and infrared stimulated luminescence (IRSL) dating of 

potassium (K)-feldspar grains to provide numerical-age chronologies for the 

archaeological deposits associated with these transitions in technologies and 

behaviours.  By creating a reliable chronology for these two sites, comparisons can be 

made between the technologies, behaviours, existing palaeoclimate reconstructions and 

genetic evidence for early human demographics.  This multidisciplinary approach can 

yield new insights into the timing of, and potential reasons for, the emergence and 

dispersal of microlithic, backed piece-based technologies and symbolic behaviours in 

sub-Saharan Africa during the Late Pleistocene. 
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1.2 Anatomical and behavioural origins of modern humans 

1.2.1 Anatomical origin of modern humans 

Historically, there have been two competing general models to explain the 

evolution of anatomically modern humans (Homo sapiens): the “Multiregional” 

hypothesis (Wolpoff, 1989; Smith et al., 1989) and the “Out of Africa” hypothesis 

(Stringer and Andrews, 1988).  Most research from the past 20 years has supported the 

“Out of Africa” hypothesis, which postulates that anatomically modern humans evolved 

in Africa during the Middle Pleistocene and that all living people are descendents of this 

founder population.  The emergence of modern humans broadly coincides with the 

proliferation of MSA technologies and the abandonment of Early Stone Age (ESA) 

technologies.  During the Late Pleistocene, groups of anatomically modern humans 

dispersed from Africa to replace archaic hominids in Europe and Asia and to colonise 

the remaining continents1.  Fossil evidence supports the “Out of Africa” model, with the 

earliest Homo sapiens fossils, from Ethiopia, being dated to ~160 ka by multiple 

techniques (Clark et al., 2003; White et al., 2003) and 195 ± 5 ka (McDougall et al., 

2005, 2008).  In addition, this model is currently supported by the bulk of the genetic 

evidence (e.g., Cann et al., 1987; Vigilant et al., 1991; Macaulay et al., 2005; Gonder et 

al., 2007; Atkinson et al., 2008; Oppenheimer, 2009). 

 

1.2.2 Origins of modern human behaviour 

There is no consensus about when or where behavioural modernity emerged and 

developed (McBrearty and Brooks, 2000).  Klein (1995, 2001, 2008) has argued that an 

advantageous mutation in an African population approximately 50 ka begat the fully 

modern human brain.  He argues that the newly acquired cognitive capabilities allowed 

the development of behavioural modernity, the emergence of LSA technologies and 

symbolic behaviour (e.g., ornamentation), and the dispersal of modern humans out of 

Africa.   

Increasingly, however, there is evidence for modern behaviours that precede the 

so-called MSA/LSA transition.  Ochre, a potentially symbolic material, has been found 

                                                 
1 Recent evidence has suggested that the dispersal of anatomically modern humans throughout the Old 
World did not result in a complete replacement of archaic hominid species.  Genetic studies have 
demonstrated that there was likely some interbreeding between modern humans, Neanderthals (Green et 
al., 2010), and a recently discovered hominid from the site of Denisova in southern Siberia (Krause et al. 
2010; Reich et al., 2010).   
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in Middle Pleistocene deposits in Zambia, Sudan, and South Africa (Barham, 1998, 

2002b; Van Peer et al., 2003; Marean et al., 2007).  Ornamentation, such as beads, 

conveys socially constructed meanings and permits the storage and display of 

information, thus, providing an archaeological marker for symbolic behaviours 

(d’Errico et al., 2005; Kuhn and Stiner, 2007).  Beads and ochre have been found in 

Middle Palaeolithic (MP) assemblages from North Africa (Vanhaeren et al., 2006; 

Bouzouggar et al., 2007; d’Errico et al., 2009).  Beads, engraved ochres, and engraved 

OES fragments have been found in Still Bay and Howiesons Poort MSA assemblages 

across southern Africa (Henshilwood et al., 2002, 2004, 2009; d’Errico et al., 2005; 

Mackay and Welz, 2008; Texier et al., 2010).  There is also evidence for symbolic 

behaviours, in the form of beads, burial of the dead, and symbolic ochre use, from 

deposits associated with Neanderthals (d’Errico and Soressi, 2002; d’Errico et al., 2003; 

Conard, 2007; Zilhão et al., 2010).  The temporal and geographical disparity in the 

manifestation of symbolic behaviour and its expression by archaic hominids may 

suggest that the capacity for such behaviour was present from, or before, the anatomical 

origins of modern humans.   

 

1.3 Defining the MSA and LSA 

 The scheme used to describe the African Stone Age was introduced by Goodwin 

and Van Riet Lowe (1929).  Its three stages, the ESA, MSA and LSA, were generally 

the African equivalents of the European Lower Palaeolithic (LP), Middle Palaeolithic 

(MP) and Upper Palaeolithic (UP), respectively.  The MSA is characterised by prepared 

core technologies and flake-based assemblages.  It is likely that composite tool 

technologies were routine in the MSA, with many points being deliberately modified to 

facilitate hafting (McBrearty and Brooks, 2000; Lombard, 2005).  MSA assemblages 

generally lack the heavy duty tools that are typical of the ESA (e.g., Acheulian 

handaxes), and the microlithic tools typical of the LSA (Clark, 1988; McBrearty and 

Brooks, 2000).  Artefacts that are commonly cited as comprising LSA toolkits include 

backed, often standardised, microliths (Barut, 1994; McBrearty and Brooks, 2000; 

Ambrose, 2002) and an abundance of bipolar core technology (Mercader and Brooks, 

2001).  LSA assemblages are also characterised by a lack of MSA-like points.   
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In practice, individual assemblages often cannot unambiguously be classified as 

ESA, MSA or LSA.  Assemblages that contain features typical of both MSA and LSA 

toolkits are sometimes referred to as ‘intermediate’ assemblages.  This terminology has 

largely been abandoned, however, following the discovery that the ‘second 

intermediate’ assemblage from the type-site of Magosi was an amalgamation of 

artefacts from the multiple occupation layers that were mixed during excavation 

(McBrearty and Brooks, 2000), although it is still used occasionally in the literature.  

Two sites in Zambia (Twin Rivers and Kalambo Falls), dating to the Middle 

Pleistocene, contain typical MSA assemblages, except for their association with several 

stratigraphically secure macrolithic backed pieces (Barham, 2002a).  The Howiesons 

Poort Industry from southern Africa is an MSA toolkit that is often found over- and 

underlying typical MSA deposits (Singer and Wymer, 1982; Wurz, 1999; Jacobs et al., 

2008a; Lombard, 2008; Villa et al., 2010).  The defining feature of the Howiesons Poort 

Industry, however, is the prevalence of LSA-like standardised geometric backed pieces 

in the same assemblage as MSA tools, such as flake-blades, denticulates, and unifacial 

and bifacial points (Singer and Wymer, 1982; Wurz, 1999, 2000; Soriano et al., 2007).  

The Mumba Industry (discussed in detail in Chapter 2) was described by Mehlman 

(1989) as transitional between the MSA and LSA based on the presence of both points 

(MSA) and microlithic backed pieces (LSA).  LSA-like bone tools are found in Late 

Pleistocene MSA assemblages from tropical central Africa (Yellen et al., 1995; Brooks 

et al., 1995) and southern Africa (Singer and Wymer, 1982; Henshilwood and Sealy, 

1997; Henshilwood et al., 2001; d’Errico and Henshilwood, 2007; Blackwell et al., 

2008).  The prevalence of assemblages with features typical of the MSA and LSA 

suggests that these terms may be ineffective for describing individual lithic industries.  

The presence of various tool types and technologies in an industry, therefore, may be 

more informative than the industry’s designation as ‘MSA’ or ‘LSA’. 

 

1.4 Dating the MSA and LSA in East Africa 

 The need for objects and events in the archaeological record to be temporally 

constrained is important.  Without a reliable chronology, the archaeological sequence of 

a site cannot be compared with that from other sites (in the same and more distant 

regions), or evidence from other disciplines, such as palaeoclimatic reconstructions.  A 
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variety of dating methods have been developed that can be used to assess the timing of 

various ‘target’ events.  Each method can be used to determine the age of particular 

objects/events, using particular materials, over a limited range of time.  Figure 1.1 

illustrates the broad age ranges over which particular dating methods are applicable.   

High precision methods, such as 40Ar/39Ar, can be used to constrain the timing 

of the earliest MSA in Africa.  Ages for this period cluster between 300 and 240 ka, 

with Acheulian (typical ESA) assemblages disappearing in Africa by approximately 200 

ka (McBrearty and Brooks, 2000; Tyron and McBrearty, 2002).  An early MSA 

assemblage from Gademotta, Ethiopia has been dated using 40K/40Ar to ~235 ka 

(Wendorf et al., 1994).  In the Kapthurin Formation, Kenya, MSA technologies have 

been dated using 40Ar/39Ar to >285 ka (Deino and McBrearty, 2002; Tyron and 

McBrearty, 2002).  This antiquity is supported by similar ages (~230 ka or older) 

obtained by uranium-series dating of speleothem overlying the early MSA assemblages 

in Zambia (Barham and Smart, 1996).   

 

 
Figure 1.1: Potential age ranges for various dating methods discussed in the text.  The limits are 
only approximations, as they are reliant on factors unique to each method and the nature of the 
material being dated. 
 

The later MSA and earliest LSA are less well constrained, despite the abundance 

of MSA, LSA and ‘transitional’ archaeological sites in East Africa.  This is mainly 

because the time period of interest is difficult to date.  It is close to the effective limit of 

high precision 14C dating (ca. 50 ka) and too young for high precision 40Ar/39Ar and 
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40K/40Ar dating (ca. 100 ka) (Ambrose, 1998; McBrearty and Brooks, 2000; Schwarz, 

2002; Roberts and Jacobs, 2008).  Thus, over the past 40 years, a series of other dating 

methods has been applied to estimate ages for MSA and LSA sites in East Africa.  

However, many of those methods and procedures are now outdated and considered 

unsuitable for dating, calling into question the reliability of chronologies obtained 

previously.  Most of the methods, such as 14C dating, are still used, though the sample 

preparation and measurement procedures employed in older studies are no longer 

considered reliable.  A review of the methods used to obtain ages for the East African 

MSA and LSA, and their pitfalls, will be made in the following sections. 

 

1.4.1 Radiocarbon (14C) dating 

Radiocarbon dating is based on the principle that 14C, which is produced in the 

upper atmosphere and has a half life of 5730 ± 40 yr, is absorbed by the tissues of living 

organisms and that this uptake ceases after the organism dies (Roberts and Jacobs, 

2008).  Since the amount of 14C in the organism then decreases by 50% every half life, 

the amount of 14C that remains can be measured and used to obtain an estimate of when 

the organism died.  Conventional 14C dating involves counting beta particles from a 

sample to determine the 14C concentration, while AMS radiocarbon dating involves 

directly measuring the number of 14C atoms in a sample using an accelerator mass 

spectrometer (AMS).  In either case, appropriate pretreatment procedures, which have 

improved markedly over the last decade (Bird et al., 2003; Bronk Ramsey, 2008), are 

necessary to isolate the 14C correlated to the target event, and remove any older or 

younger 14C contamination.  Processes such as molecular ultrafiltration of bone collagen 

(Higham et al., 2006) and acid-base wet oxidation and stepped-combustion (ABOX-SC) 

pretreatment procedures for charcoal (Bird et al., 1999) have been shown to 

substantially increase the accuracy of the resulting 14C ages (Bronk Ramsey et al., 

2004).  Most of the 14C ages available for the East African MSA and early LSA were 

not obtained using these procedures, which are currently accepted as a prerequisite for 

accurate 14C age estimation, and are thus considered unreliable.   

Radiocarbon ages must also be converted into calendar years, due to fluctuations 

in the level of 14C in the atmosphere during the past 50 ka (Van der Plicht, 2000; 

Reimer et al., 2004; Grün, 2006, Roberts and Jacobs, 2008).  Dendrochronology was 
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used to establish calibration curves up to 12 ka ago.  Calibrations for the period of time 

before 12 ka ago have been based on U-series dated corals and speleothems and 14C 

data from planktonic foraminifera correlated with the GISP2 (Greenland Ice Sheet 

Project Two) ice core (e.g., Voelker et al., 1998; Bard et al., 1998; Beck et al., 2001).  

While conventional radiocarbon ages (BP) younger than 24 ka can easily be converted 

into calibrated ages (cal BP) using calibration curves, calibrated ages older than this 

threshold, such as many associated with late MSA and early LSA assemblages, are not 

unambiguous, since considerable differences exist between 14C calibration datasets (Van 

der Plicht, 2000; Reimer et al., 2004). 

There are several datasets that can be used to make the conversion from 

conventional to calibrated radiocarbon ages (e.g., the IntCal09 curve: Reimer et al., 

2009), although ages obtained before these curves were available may need to be 

calibrated.  Unless otherwise stated, all radiocarbon calibrations in this thesis were 

performed using the IntCal09 curve (Reimer et al., 2009) and will be reported with a 1σ 

uncertainty. 

 

1.4.2 Uranium-series dating 

Uranium (U)-series dating is based on the radioactive decay of two forms of 

uranium, 238U and 235U, and the in-growth of their ‘daughter’ nuclides, 230Th and 231Pa, 

respectively.  The 230Th/234U ratio has proven useful for dating Late Pleistocene events 

due to the appropriate half life of 230Th (75,690 ± 230 yr; Grün, 2006).  The 231Pa/235U 

ratio can also be used to date the Late Pleistocene (Grün, 2006).  While thorium is 

insoluble in water, uranium is soluble, making the 230Th/234U ratio useful for dating 

when certain materials formed, such as flowstones and speleothems (Roberts and 

Jacobs, 2008).  Speleothems are reliable sources of U-series ages because they exhibit 

‘closed system’ behaviour (i.e., uranium, but not thorium, was present at the time of 

formation), although the environment of the East African Rift Valley is not ideal for 

speleothem growth.  Mollusc shell and eggshell may be suitable materials for obtaining 

U-series ages, but only when appropriate procedures are used (Roberts and Jacobs, 

2008).  Other materials, such as bone and tooth enamel, exhibit ‘open system’ 

geochemical behaviour, meaning that the timing and rate of uptake (and loss) of 

uranium after burial can be variable (Schwarcz, 2002; Grün, 2006; Grün et al., 2010).  
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Modern U-series techniques may be used to obtain reliable ages using some of these 

materials (Pike et al., 2002; Grün, 2006; Grün et al., 2010).  Recent advances involve 

generating profiles of uranium and thorium concentrations across sectioned pieces of 

bone, which are then compared to models of uranium diffusion and absorption (Pike et 

al., 2002).  Reliable ages can only be obtained for bones with certain profiles, however, 

and this may occur in a minority of cases.  Additionally, the original method of 

obtaining isotope ratios using alpha counting has been superseded by atom counting 

methods, such as thermal ionisation mass spectrometry (TIMS) and inductively coupled 

plasma mass spectrometry (ICP-MS), which can be used to obtain ages of up to 500 ka 

(Grün, 2006; Roberts and Jacobs, 2008).   

 

1.4.3 Obsidian hydration dating 

 The obsidian hydration method can be used to date when a fresh surface on a 

piece of obsidian was exposed to the atmosphere.  It is based on the observation that 

ambient water is absorbed by surfaces of obsidian, forming a hydrated layer whose 

thickness is dependent on time since exposure, the chemical composition of the 

obsidian, and the ambient temperature (Michels et al., 1983).  The thickness of the 

hydrated layer can be measured using optical microscopy and compared to laboratory-

determined layer thicknesses to obtain ages for the exposure of the surface (Michels et 

al., 1983; Anovitz et al., 1999).  However, obsidian hydration ages have proven 

controversial, inconsistent with independent age estimates, and unreliable over time 

(Ridings, 1996; Anovitz et al., 1999; but see Hull, 2001, and Rogers, 2007, for 

response).  A study by Anovitz et al. (1999) has suggested that the method’s 

unreliability is due to unsuitable analytical techniques used by most researchers (such as 

the standard set of equations) and an inappropriate model of the hydration process.  In 

addition, since the hydration rate is temperature dependent, the various palaeoclimatic 

conditions of the Late Pleistocene will have resulted in inaccurate age estimates, unless 

they are taken into account.  The conclusions of Anovitz et al. (1999) indicate that the 

obsidian hydration chronologies for several MSA and LSA sites in East Africa (e.g., 

Prospect Farm and Enkapune Ya Muto, see Section 1.5) may be unreliable and should 

be viewed with caution. 
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1.4.4 Amino acid racemisation 

 Amino acid racemisation (AAR) is a relative dating technique that is based on 

the observation that amino acids in living organisms are exclusively of a left-handed (L) 

form, which gradually converts to a balanced ratio of left- and right-handed (D) forms 

after the death of an organism (Grün, 2006; Roberts and Jacobs, 2008).  Obtaining 

numerical ages with the D/L ratio is not straightforward, however, since the rate of 

racemisation is dependent not only on time, but also on temperature.  In addition, the 

rate of racemisation (i.e., the D/L ratio) must be calibrated against another dating 

method (Clarke and Murray-Wallace, 2006; Roberts and Jacobs, 2008).  These 

calibrations entail obtaining the D/L ratios for samples associated with independent age 

estimates, and using the ratios and independent ages to fit a kinetic model, which is 

often derived from heating experiments (Grün, 2006).  The resulting calibrations are not 

unambiguous, however, since they are dependent on the chosen model and are 

applicable only to the shells of a single species (Grün, 2006).  In addition, materials that 

remain chemically ‘closed’ postmortem, such as mollusc shell and eggshell, can provide 

reliable age estimates, ‘open system’ materials, like bone, generally do not (Grün, 

2006). 

 

1.4.5 Electron spin resonance dating 

 The basic principles of electron spin resonance (ESR) dating are the same as for 

luminescence dating (Section 1.4.6).  Electronic charge begins to accumulate in the 

crystal structure of the mineral hydroxyapatite in the enamel of teeth, following the 

death of an organism.  The rate of charge accumulation is proportional to the flux of 

ionising radiation within and outside the tooth: the greater the amount of trapped 

charge, the more radiation the mineral has been exposed to.  An ESR age is, thus, based 

on the measurement of the trapped charge in the tooth enamel and the determined 

internal and external dose rates (Grün, 2006; Roberts and Jacobs, 2008).  The main 

complication associated with ESR dating is the determination of the appropriate dose 

rate, which depends critically on the history of uranium uptake by the tooth after burial.  

Since teeth exhibit ‘open system’ behaviour, the amount of uranium within a tooth may 

increase (and perhaps later decrease) during the course of burial, thus increasing (or 

decreasing) the dose rate (Schwarcz, 2002; Grün, 2006).  This uncertainty is addressed 
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by assuming that the process of uranium-uptake can be approximated by two models: 

the early-uptake (EU) model and the linear-uptake (LU) model.  The EU model assumes 

that the current uranium concentration was acquired soon after burial, while the LU 

model assumes that uranium was absorbed steadily throughout the period of burial 

(Schwarcz, 2002; Grün, 2006; Roberts and Jacobs, 2008).  While a minimum age 

estimate will be obtained using the EU model, the actual age of a sample is usually 

assumed to lie between the ages obtained using the EU and LU models (Grün, 2006; 

Roberts and Jacobs, 2008).  Combining ESR and 230Th/234U dating methods, using 

techniques such as the “coupled” ESR/U-series dating (Grün et al., 1988) or the closed-

system U-series/ESR model (Grün, 2000), can narrow the likely age range of a sample 

(Roberts and Jacobs, 2008). 

 

1.4.6 Luminescence dating  

1.4.6.1 Overview 

Luminescence dating is based on the principle that the crystal structure of 

silicate minerals (e.g., quartz and feldspar) contains defects at which negatively charged 

electrons or positively charged vacancies (‘holes’) can become trapped (Aitken, 1985, 

1998; Feathers, 1996; Jacobs and Roberts, 2007).  Charge becomes trapped in defects 

following exposure to cosmic rays and ionising radiation from the surrounding 

environment, the latter resulting from the decay of 238U, 235U, 232Th (and their daughter 

products), 40K and 87Rb.  The rate at which charge is trapped increases with the rate at 

which ionising radiation is delivered and absorbed.  When the mineral is exposed to 

sufficient sunlight or heated to >300°C, the charge-traps of interest are emptied 

(‘zeroed’).  Light (luminescence) is emitted from the mineral as a result of the radiative 

recombination of electrons and holes at luminescence centres following stimulation 

with visible light (optically stimulated luminescence [OSL]: Huntley et al., 1985), 

infrared (IR) stimulation (infra-red stimulated luminescence [IRSL]: Hütt et al., 1988), 

or heat (thermoluminescence [TL]: Aitken, 1985).  Thus, target events that can be dated 

using TL techniques include the heating of pottery (Aitken, 1985) and lithics (Mercier 

et al., 1995, 2007) to temperatures greater than 300°C and the last exposure of 

sediments to sunlight.  The target event that OSL and IRSL methods date is the timing 
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of the previous exposure of a mineral grain to sunlight and its subsequent burial (Figure 

1.2).  OSL and IRSL methods can also be used to date heated materials.   

 

 
Figure 1.2: Basic principles of luminescence dating of sediment.  The latent luminescence signal of a 
mineral grain is zeroed by sunlight during transport.  Following deposition, the signal accumulates 
due to ionising radiation in the surrounding sediment.  The latent luminescence signal that had 
accrued during burial (i.e., the ‘natural’ signal) can then be measured in the laboratory.  Modified 
from Aitken (1998). 
 

 
Figure 1.3: Example of an OSL decay curve (a) and a sensitivity-corrected dose-response curve (b). 
 

If a mineral grain is exposed to sunlight, thereby zeroing its OSL or IRSL signal, 

and is subsequently buried, charge will accumulate in traps at a rate that is proportional 

to its exposure to ionising radiation.  When the grain is stimulated with light or IR in the 

laboratory, a decay curve (Figure 1.3a) is produced that is proportional to the charge 

that has accumulated in a mineral grain during burial (the ‘natural’).  The natural can 

then be compared to the luminescence signals measured following known laboratory-

induced irradiations.  The latter signals can be used to construct a dose-response curve 

(Figure 1.3b), where the sensitivity-corrected natural signal is compared to the 

sensitivity-corrected laboratory-regenerated signals (see Chapter 3 for more 
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information).  From this curve, an estimate of the equivalent dose (De) can be made 

(Figure 1.3b).  This value represents the amount of radiation needed to generate a 

luminescence signal equal to the natural signal.  An OSL age can be obtained using the 

De and an estimate of the environmental dose rate, which is the rate at which ionising 

radiation in the natural environment is supplied to the sample.  The dose rate can be 

estimated using a series of in situ and laboratory methods for measuring the flux of 

alpha and beta particles and gamma rays from the sediment surrounding the sample.  

The OSL age (ka) is then obtained by dividing the De (Gy) by the environmental dose 

rate (Gy/ka), and is an estimate of the amount of time since the mineral grain was last 

exposed to sunlight (or heat), and subsequently buried. 

 

1.4.6.2 Potential problems and pitfalls 

 There are many challenges to applying OSL and IRSL dating to obtain the 

depositional age of a sedimentary deposit.  It must be ensured that the grains in the 

sample of interest were fully bleached at the time of deposition; otherwise a residual 

OSL or IRSL signal will lead to an overestimation of the time of deposition (e.g., Olley 

et al., 1999, 2004a,b; Arnold et al., 2007).  Likewise, it must be ensured that no post-

depositional mixing of sediments has occurred.  If post-depositional mixing occurred in 

the deposits of interest, intrusive grains from older or younger deposits may lead to age 

overestimates or underestimates, respectively (e.g., Roberts et al., 1998a,b, 1999; 

Feathers, 2003; Feathers et al., 2006; Jacobs et al., 2006b; Bateman et al., 2007).  In 

addition, millimetre-scale spatial heterogeneity in the beta dose rate would result in 

individual grains in a deposit being exposed to different dose rates and thus, producing 

different De values (e.g., Murray and Roberts, 1997; Olley et al., 1997; Jacobs et al., 

2008c).  Heterogeneity in the external beta dose rate affects K-feldspar grains less than 

quartz grains, however, due to the larger internal dose rates of the former (Duller, 1997).  

These three potential pitfalls can be identified and addressed by measuring single grains 

of quartz (Jacobs and Roberts, 2007). 

 In addition to the three problems described in the previous paragraph, the 

luminescence signals from feldspar grains are affected by anomalous fading, which 

involves the discharge of electrons out of traps that appear to be thermally stable and, if 

not addressed, will result in an underestimation of the age (Wintle, 1973; Spooner, 
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1994b; Huntley and Lamothe, 2001; Huntley and Lian, 2006; Thomsen et al., 2008).  

While there have been reports of non-fading luminescence signals from various feldspar 

minerals (e.g., Guérin and Valladas, 1980; Zink and Visocekas, 1997; Gelian et al., 

2006; Huntley et al., 2007), fading is ubiquitously present in the IRSL signal of K-

feldspars (Spooner, 1994b; Huntley and Lamothe, 2001; Huntley and Lian, 2006).  The 

most common method for addressing anomalous fading has been to measure the fading 

rate in the laboratory and use it to calculate a fading-corrected age (e.g., Huntley and 

Lamothe, 2001; Lamothe et al., 2003; Kars et al., 2008).  The IRSL signal has been 

used to obtain fading-corrected ages (using the model of Huntley and Lamothe, 2001) 

that are in agreement with independent age controls (e.g., Buylaert et al., 2007; Cunha 

et al., 2008; Martins et al., 2009).  In addition, it has been demonstrated that the post-IR 

IRSL signal from K-feldspar suffers from anomalous fading less than other IRSL 

signals (Thomsen et al., 2008; Buylaert et al., 2009). 

 An issue pertaining to the dose rate that must be addressed is the potential for 

disequilibria in the uranium and thorium decay chains.  Disequilibrium is when the 

parent and daughter nuclides in a decay chain (most commonly the 238U series) are 

present in unequal activities.  Under certain geochemical conditions, various parent and 

daughter products of a decay chain are likely to migrate.  If this happens, the dose rate 

may change over time, and the measured (i.e., modern) dose rate may need to be 

corrected (Olley et al., 1996, 1997).  To minimise the potential impacts of disequilibria, 

the nuclides lower down the decay chain, which are the main sources of beta and 

gamma dose rates, can be measured and used to estimate the environmental dose rate 

(Jacobs and Roberts, 2007).  Another source of dose rate variability that should be 

considered is the change in potassium concentration in the sediment by leaching or 

anthropogenic sources (Readhead et al., 1988; Feathers, 1996). 

Quartz and feldspar grains from certain geographical regions and geological 

provenances have proven to have malign characteristics that hinder burial dose 

estimation.  These include areas of mountain building (e.g., Himalayas, European Alps, 

Andes, and the New Zealand Alps: Richards, 2000; Duller, 2006; Klasen et al., 2006; 

Preusser et al. 2006, 2007; Steffen et al., 2009) and volcanic activity (e.g., Indonesia, 

Greece, Japan, the East African Rift Valley: Bonde et al., 2001; Fattahi and Stokes, 

2003a; Tsukamoto et al., 2003, 2007; Choi et al., 2006a; Westaway and Roberts, 2006; 
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Westaway, 2006, 2009).  Characterisation studies and new measurement and analysis 

techniques may be used to overcome the malign properties associated with minerals 

from these regions (e.g., the dual-aliquot regenerative-dose [DAP] protocol: Westaway 

and Roberts, 2006).  In contrast, quartz and feldspars of metamorphic and sedimentary 

origins generally have better behaved luminescence characteristics (Preusser et al., 

2009).   

 

1.4.7 Summary 

It is clear that all of the methods discussed in this section have limitations and 

pitfalls, many of which were unknown when the chronologies for most MSA and LSA 

sites were first obtained.  The following section will provide a review of sites in East 

Africa that contain MSA and LSA assemblages and an assessment of their associated 

chronologies. 

 

1.5 The East African MSA and LSA archaeological record 

Before reviewing the current literature regarding the MSA and LSA in East 

Africa, the implications of the final paragraph in the Section 1.3 should be emphasised.  

Given the presence of typical MSA and LSA features in many intermediate assemblages 

in East Africa, these terms may be ineffective for defining individual lithic industries 

from the Late Pleistocene.  In addition, the assignment of many assemblages has 

changed following more modern excavation and analysis techniques.  However, this is 

the parlance of the literature that has been used by archaeologists for the past eight 

decades.  Thus, the following sections will summarise assemblages from various sites 

that have been classified in the literature as MSA, MSA/LSA transitional, early LSA 

and LSA.  Figure 1.4 is a map showing locations of sites in East Africa that contain 

MSA and/or LSA lithic assemblages that are discussed in this chapter.  Table 1.1 

presents archaeological and chronological information for the sites discussed in this 

section. 

 

1.5.1 Olduvai Gorge, Tanzania 

At Olduvai Gorge, the Ndutu Beds contain a lithic assemblage that has been 

described as MSA, based on a relatively large abundance of Levallois technology 
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(Leakey et al., 1972).  The overlying Naisiusiu Beds, however, contain a lithic 

assemblage that has been characterised as LSA (referred to as “Upper Palaeolithic” by 

Leakey et al., 1972).  The assemblage from the Naisiusiu Beds is primarily comprised 

of blades (42%) and geometric backed microliths (30%).  In addition, different raw 

materials were preferentially utilised for different tool types (Leakey et al., 1972).  

Obsidian from the Naisiusiu Beds has been sourced to the southern Kenyan site of 

Sonanchi (Merrick and Brown, 1984; Mehlman, 1989), suggesting that the makers of 

the LSA assemblage of the Naisiusiu Beds were involved in long distance exchange. 

The MSA assemblage of the Ndutu Beds is associated with an infinite 14C age 

from shell of >29 ka BP (>33.4 cal ka BP) (Leakey et al., 1972).  Leakey et al. (1972) 

reported uncalibrated radiocarbon ages of ~17 ka BP (~21 cal ka BP) and 17.6 ± 1.0 ka  

 

 
Figure 1.4: Map of East Africa showing the locations of MSA and LSA sites discussed in this 
chapter.  Modified from Merrick and Brown (1984) and McBrearty and Brooks (2000). 
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ates for the Naisiusiu Beds assemblage. 

1.5.2 Nasera rockshelter, Tanz

from locally available quartz, obsidian and chert are also present; the latter material is 

BP (21.0 ± 1.2 cal ka BP) associated with the Naisiusiu Beds.  In contrast, 

Manega (1993) obtained infinite AMS 14C ages of >42 ka BP (>45.3 cal ka BP) and 

Ar/39Ar ages from biotite grains of between 42 ± 10 and 90 ± 30 ka.  Most recently, 

Skinner et al. (2003) used three equid teeth recovered during a recent re-excavation of 

the site to obtain ESR ages of 59 ± 5 ka using an EU model and 62 ± 5 ka using a LU 

model (see Section 1.4.5 for assumptions of both models).  The EU model provides a 

minimum age estimate, and the actual age is likely to fall between the estimates 

obtained using the EU and LU models (Grün, 2006; Roberts and Jacobs, 2008).  The 

ESR ages support the infinite AMS 14C age of >42 ka BP and are likely the most 

reliable estim

 

ania 

Nasera rockshelter is located approximately 30 km north of Olduvai Gorge and 

60 km southwest of Lake Natron, overlooking the 4 km wide valley (Angata Kiti) that 

connects the Serengeti Plains and the Salei Plains (Mehlman, 1989).  Mehlman (1989) 

suggests that the site was probably used as a seasonal hunting and scavenging base for 

Late Pleistocene humans, owing to its strategic position on a bottleneck along wildlife 

migration routes between eastern and western plains, and the lack of nearby permanent 

freshwater and wildlife in the dry season.  The MSA assemblages from the base of the 

sequence (Level 25) to Level 12 were assigned to the Kisele Industry, which is also 

present in Bed VIA at Mumba (see Section 2.4.1).  Levels 11 to 8/9 contain a very low 

density of artefacts, which Mehlman (1989) tentatively described as the Serengeti Plains 

counterpart to the Mumba Industry of Mumba Bed V-lower (see Section 2.4.2), based 

on the prevalence of bipolar cores and a similar frequency of points and backed pieces 

in the assemblage.  Levels 6 and 7 contain a dense deposit of artefacts from an 

assemblage assigned to the Nasera Industry (see Section 2.4.3).  It is dominated by 

bipolar core reduction and scrapers, with high proportions of points and low proportions 

of microlithic backed pieces.  An LSA Lemuta Industry assemblage is found in Levels 4 

and 5.  This assemblage has a conspicuous blade component and is dominated by 

bipolar cores and scrapers.  Backed tools and burins are present in moderate 

proportions, as are small frequencies of outils écaillés.  While most artefacts are made 
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most likely from Olduvai Gorge or Lake Natron.  The obsidian artefacts from the Kisele 

and Nasera Industry layers have been traced to source outcrops approximately 250 km 

away in southern Kenya (Mehlman, 1989).   

A U-series age of 56.0 +2.7/-2.3 ka was obtained from a tooth associated with the 

Kisele Industry of Level 17.  Mehlman (1989) reported multiple ages obtained using 

bone from the Nasera Industry of Levels 6 and 7, including a U-series age of 25.6 +0.6/-

0.4 ka, an AAR age of ~26 ka, and three 14C ages of 18.5 ± 0.9 ka BP (22.2 ± 1.1 cal ka 

BP), 22.4 ± 0.4 ka BP (27.1 ± 0.5 cal ka BP) and 17.1 ± 0.1 ka BP (20.3 ± 0.1 cal ka 

BP).  The Lemuta Industry of Levels 4 and 5 produced three 14C ages from bone of 22.5 

± 0.5 ka BP (27.2 ± 0.6 cal ka BP), 18.3 ± 0.6 ka BP (21.8 ± 0.8 cal ka BP), and 21.7 ± 

0.6 ka BP (26.0 ± 0.8 cal ka BP) and an AAR age of ~20 ka.  Since all ages reported for 

the MSA and LSA levels were obtained using 14C, U-series, or AAR dating of bone or 

teeth, materials that have since proven unreliable in these contexts, the chronology for 

Nasera rockshelter remains ambiguous. 

 

1.5.3 Enkapune Ya Muto rockshelter, Kenya 

At Enkapune Ya Muto rockshelter in southern Kenya, the deepest archaeological 

layer contains the Endingi Industry.  It is described as transitional between MSA and 

LSA by Ambrose (2002), based on the presence of several microlithic backed pieces in 

an otherwise typical MSA assemblage.  It contains an abundance of flakes with faceted 

platforms from radial cores, points and scrapers, very few blades, and only three backed 

microliths (Ambrose, 1998).  The overlying LSA Nasampolai Industry is present in low 

artefact densities and represents a long period of ephemeral occupation.  The LSA 

assignment is based on the dominance of large backed blades and geometric microliths 

in the assemblage, several of which exhibit ochre staining on the modified edge, 

indicative of hafting (Ambrose, 1998).  The second LSA industry, overlying the 

Nasampolai, is the Sakutiek Industry.  The assemblage from these layers is dominated 

by scrapers and outils écaillés, with low frequencies of backed microliths.  Typical 

MSA types, including part-bifacially flaked knives, also occur in low frequencies.  The 

Sakutiek Industry contained abundant OES beads (n = 13), bead preforms (n = 12) and 

fragments (n = 593).   
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The chronology reported for Enkapune Ya Muto by Ambrose (1998) consists of 

obsidian hydration ages and uncalibrated 14C ages, the latter obtained from charcoal and 

OES.  The 14C chronology will be discussed first.  The deepest deposits, containing the 

MSA Endingi Industry, produced an uncalibrated 14C age from charcoal of 41.4 ± 0.7 ka 

BP (45.0 ± 1.0 cal ka BP).  No 14C ages were obtained for the Nasampolai Industry, but 

four ages on charcoal and OES were obtained for the Sakutiek Industry: 29.3 ± 0.8 ka 

BP (33.8 ± 0.9 cal ka BP), 35.8 ± 0.6 ka BP (40.7 ± 1.3 cal ka BP), 37.0 ± 1.1 ka BP 

(41.5 ± 2.0 cal ka BP) and 39.9 ± 1.6 ka BP (43.9 ± 2.3 cal ka BP).  Ambrose (1998) 

suggests that the youngest age (~29.3 ka BP) is unreliable, however, because of the low 

carbon content of the sample used to obtain it.  The calibrated 14C ages are in correct 

stratigraphic order, ranging from ~45 cal ka BP to ~44 – 41 cal ka BP.  However, as 

discussed in Section 1.4.1, ages that are this old are not straightforward to calibrate.  In 

addition, Ambrose (1998) concluded that the 14C age obtained for the Endingi Industry 

(~45 cal ka BP) is likely an underestimate of the actual age, since it was obtained from 

material collected ~1.2 m below the Sakutiek Industry samples and the intervening 

sediment consisted of wind-deflated gravels, which would likely require longer than 1 

ka to accumulate.  The agreement of three radiocarbon ages from the deposits 

containing the Sakutiek Industry, however, adds confidence that ~44 to ~41 cal ka BP is 

an appropriate age-range for this toolkit.   

The obsidian hydration ages were calculated using an effective hydration 

temperature 5°C cooler than modern temperatures to account for lower temperatures 

during the last glacial (Ambrose, 1998).  An age of 32.5 ± 1.2 ka was obtained for 

obsidian from the Endingi Industry.  The overlying Nasampolai Industry produced an 

obsidian hydration age of 46.4 ± 2.8 ka.  Ambrose (1998) then used this obsidian 

hydration age, in conjunction with an uncalibrated radiocarbon age from the Sakutiek 

levels, to estimate sedimentation rates from which he extrapolated an age-range of 55 to 

45 ka for the beginning of the Nasampolai deposits.  The LSA Sakutiek Industry, which 

overlies the Nasampolai Industry, produced an age of 35.3 ± 2.2 ka.  The ages obtained 

from obsidian hydration are not in correct stratigraphic order and those for the Endingi 

(~33 ka) and Sakutiek (~35 ka) Industries are systematically younger than those 

obtained from 14C dating.  Given the questionable reliability of the dating technique 
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(Ridings, 1996; Anovitz et al., 1998) and the internal inconsistencies, it is likely that the 

obsidian hydration chronology for Enkapune Ya Muto is unreliable. 

 

1.5.4 Prospect Farm and Prolonged Drift, Kenya 

 Prospect Farm in the Kenyan Rift Valley, a MSA site for which relatively little 

has been published, was excavated and described by Anthony (1978).  The site had four 

main episodes of occupation, one of which contained an MSA assemblage.  The 

overlying layers contained a Second Intermediate, or early LSA, assemblage (Michels et 

al., 1983).  The uppermost MSA horizon (Phase 4 of the Prospect Industry) was 

described as transitional between the local MSA and Second Intermediate technologies, 

based on the disappearance of points and Levallois technologies and the appearance of 

small discoidal knives and scrapers (Michels et al., 1983).  Most artefacts from the site 

are made from obsidian.  Patterns in raw material source distance indicate that the 

proportion of local obsidian (sourced from <15 km) decreased from the oldest MSA to 

the youngest MSA, while the proportion of obsidian sourced from distant sites (>30 km) 

increased (Merrick et al., 1994).   

In regards to the chronology, most available ages were obtained using obsidian 

hydration dating.  Obsidian from Phase 3 of the Prospect Industry from Stratum 9 

yielded four ages of between 119.6 ± 1.7 and 106.3 ± 3.2 ka.  The overlying Phase 3 

assemblages from Stratum 8 resulted in eight ages of between 53.1 ± 4.1 and 46.5 ± 1.7 

ka (Michels et al., 1983).  Obsidian from the overlying transitional Phase 4 (Strata 5 – 

7) resulted in seven ages of between 53.6 ± 0.3 and 45.7 ± 0.2 ka (Michels et al., 1983).  

Ambrose (2002) suggests that cooler temperatures prior to 12 ka would have reduced 

hydration rates, implying that these obsidian hydration ages are likely minimum 

estimates.   

Prolonged Drift is another MSA site, located close to Prospect Farm.  As at 

Prospect Farm, despite the proximity of nearby obsidian sources, a large proportion of 

the artefacts at Prolonged Drift were made of obsidian from a distant source.  Nearly 

90% of obsidian was imported from 40 – 45 km away (Merrick et al., 1994). 
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1.5.5 Lukenya Hill, Kenya 

 At the Kenyan site of Lukenya Hill, obsidian comprises relatively little of the 

MSA assemblage raw material.  In the earlier MSA levels, a relatively small proportion 

(31%) of the obsidian comes from distant (105 – 135 km) sources of Lake Naivasha and 

the Kedong Escarpment (Merrick and Brown, 1984; Kusimba, 2001).  The proportion of 

obsidian from a distant source increased to 62% in the later MSA levels.  The early LSA 

assemblages at Lukenya Hill are characterised by a high frequency of scrapers (~60%) 

and few microliths (~12%), prompting Mehlman (1989) to suggest that they may be 

related to the Nasera Industry.  This contrasts with the youngest LSA assemblage, 

which includes a larger proportion of microliths that are more standardised, including 

crescents and a multitude of backed types (Kusimba, 2001).  Radiocarbon ages on bone 

apatite and collagen of between 4.1 ± 0.2 ka BP (4.6 ± 0.2 cal ka BP) and 20.8 ± 1.1 ka 

BP (24.9 ± 1.4 cal ka BP) were obtained for the LSA layers.  Kusimba (2001), however, 

indicates that these ages are likely substantial underestimates due to bone contamination 

with modern carbon from carbonates and humic acids (Brooks and Robertshaw, 1990).  

 

1.5.6 Other sites 

 Other occurrences of MSA toolkits in East Africa include Sangoan-Lupemban 

and MSA assemblages from Muguruk and Songhor near Lake Victoria.  Both of these 

MSA assemblages contain obsidian sourced from more than 100 km away in southern 

Kenya (McBrearty, 1981, 1988; Mehlman, 1989).  An early Magosian level is present at 

Kisese II rockshelter in central Tanzania (Inskeep, 1962).  Mehlman (1989: 365) states 

that “the Mumba Industry is almost certainly present below level XI at the Kisese II 

rockshelter… associated with OES beads.  The Nasera Industry is also likely present.”  

The industry Mehlman (1989) refers to is a ‘second intermediate’ assemblage, 

dominated by scrapers and outils écaillés with low frequencies of microlithic backed 

forms (Inskeep, 1962).  At Twin Rivers in Zambia, the deposits containing a MSA 

Lupemban Industry are overlain by flowstone, which has been dated to 230 +35/-28 ka 

using on U-series (Barham and Smart, 1996).  Macrolithic, unstandardised backed 

pieces comprise a minor, though technologically significant, component of this 

assemblage and a similar one from the Zambian site of Kalambo Falls (Barham, 2002a).  

Large quantities of ochre are also present in these assemblages, leading Barham (1998, 
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2002b) to infer that pigment was being systematically used in the MSA Lupemban 

Industry.  In the Democratic Republic of Congo, at the site of Katanda in the Semliki 

Valley, MSA Lupemban Industries have been found to contain a formal tool industry 

containing barbed and unbarbed bone points, which have been dated to greater than 89 
+22/-15 ka by combining TL, 230Th/234U and ESR ages (Brooks et al., 1995; Yellen et al., 

1995).  The antiquity of the layers in which these objects were found has been 

supported by OSL investigations, which demonstrated that partial bleaching of these 

fluvial sediments was not a concern (Feathers and Migliorini, 2001). 

 

1.5.7 Summary 

The archaeological and chronological information from each site discussed in 

this section is summarised in Table 1.1.  Figure 1.5 is a timeline showing the age-ranges 

for various lithic industries at East African MSA and LSA sites and the method used to 

obtain them.  There are a substantial number of sites described in the literature of East 

African archaeology that contain MSA and LSA industries.  The MSA assemblages 

from many of these sites contain evidence for modern behaviours, including exotic raw 

material use (presumably procured through exchange networks, see Section 10.3.1), 

transitions to LSA toolkits, elaborately crafted bone tool industries, ornaments and 

evidence for the systematic use of pigments.  However, there are significant 

discrepancies in between the timing of MSA and LSA toolkits at different sites in the 

region.  It is likely that this is, at least in part, due to the unreliable dating methods used 

to obtain many of the chronologies.  The chronologies for most of these sites are lacking 

consistency and estimates of uncertainty, precluding a proper inter-site comparison of 

technologies and behaviours.  The next section will discuss the importance of 

constraining the archaeology with a reliable chronology. 

 

1.6 The importance of robust chronologies: resolving technological and 

behavioural change 

It is clear that all of the methods used to constrain MSA and LSA archaeological 

sites have many caveats and pitfalls, most of which may not have been addressed when 

the chronologies were obtained.  Consequently, the timing of, and reasons for, changes 

in the behaviour of modern humans, manifested as transitions in technologies and the  
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emergence of symbolic artefacts, during the Late Pleistocene in East Africa remain 

unresolved.   

Two potential factors that have been cited as possible instigators for changing 

behaviours and technologies are environmental and demographic variations.  

Environmental differences would likely lead to different behaviours and technologies as 

a means of efficient survival (Henshilwood and Marean, 2003; McBrearty, 2007).  

Changes in the availability of various resources, and the associated resource 

intensification that results from absolute decreases in resources or increased competition 

for the same resources, are likely to instigate changes in the behaviour and technology 

of modern humans.  Alternatively, the development of social and exchange networks, to 

mitigate risk in marginal environments or as a function of increased population 

interaction in a growing population, could result in increased symbolic expression 

(Deacon and Deacon, 1999; McBrearty and Brooks, 2000; Ambrose, 2002, 2010; 

Henshilwood and Marean, 2003; Kuhn and Stiner, 2007).  Many recent studies have 

modelled the effects of population size on technological and social complexity (e.g., 

Shennan, 2001; Henrich, 2004; Powell et al., 2009), the results of which have been 

supported by archaeological and ethnographic studies (e.g., Kuhn and Stiner, 2007; 

Riede, 2009; Nowell, 2010; Kline and Boyd, 2010).  These studies concluded that 

larger, more concentrated populations are more likely to be socially and technologically 

innovative than smaller, more isolated populations (see Section 10.2.1).  

Changes in behaviours are, thus, likely associated with changes in the 

environment, changes in population size and structure, or both.  In this regard, a 

multidisciplinary approach to answering questions regarding behavioural change is 

essential.  Palaeoclimatic reconstructions for the Late Pleistocene can provide a 

framework within which technological change (identified in the archaeological record) 

and changes in population size and structure (identified through genetic studies) can be 

interpreted.  Likewise, given that population size affects technological and social 

complexity, behavioural changes can be interpreted in the framework of genetically-

identified demographic changes.   

The link that allows data from these three disciplines to be compared and 

interpreted is chronology.  If the archaeological record is temporally constrained, the 

timing of when technologies and behaviours change can be related to the timing of 
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population changes and past environmental conditions to provide insights into why and 

how these changes came about.  Without a reliable chronology, however, any 

interpretation of the archaeological record is conjecture.  Archaeological evidence for 

changes in behaviour and technology must be temporally constrained to allow 

appropriate comparisons with genetic and palaeoclimatic evidence, provided the 

chronology of the palaeoclimate record is reliable and the genetic evidence is sound.  

Geochronology is, thus, the hub of any reliable interpretation of the archaeological 

record within an environmental and demographic context.   

As an example, developments of new measurement procedures, instrumentation 

and sample preparation and analysis techniques over the previous decade, coupled with 

the systematic application of dating studies, have greatly improved the chronology of 

the southern African MSA.  Recently, the timing of the Still Bay and Howiesons Poort 

Industries have been constrained more precisely (Jacobs et al., 2008a), which has 

allowed the archaeology to be compared with a range of contextual evidence (e.g., 

Jacobs et al., 2008a; Jacobs and Roberts, 2009; Thackeray, 2009; Villa et al., 2010; 

Chase, 2010).  Jacobs and Roberts (2009) suggest that the technologically and socially 

innovative Still Bay and Howiesons Poort Industries developed as a result of population 

increases (as reconstructed from genetic studies; Atkinson et al., 2009) and the resultant 

increase in information exchange.  Chase (2010) suggests that this population increase, 

in turn, resulted from an ameliorated climate associated with increased precipitation in 

the southern African Winter Rainfall Zone during MIS 4.  

 

1.7 Objectives 

The timing of the latest MSA and earliest LSA in East Africa has proven 

difficult to resolve due to the limitations of the various dating methods available.  The 

archaeological record of the region needs to be temporally constrained using new and 

more reliable dating techniques, taking into consideration progress made over the past 

decade.  Ages must be accompanied by appropriate estimates of uncertainty, and they 

must be obtained from studies that are described so that their validity can be assessed.  

OSL is a method that has often been used to obtain accurate and precise ages for 

sedimentary deposits dating to the Late Pleistocene.  Few studies, however, have 

applied this technique in East Africa.  Of those that have, most were problematic due to 
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the challenging nature of the OSL behaviour of quartz from parts of this region (e.g., 

Choi et al., 2006a).  However, accurate ages may be able to be obtained if sites with 

appropriate sediments (e.g., sediments of metamorphic origin) are investigated, the 

luminescence behaviours of quartz and feldspar are systematically characterised to 

determine the appropriate measurement conditions, and the various sources of 

uncertainty and variability (e.g., post-depositional mixing of sediments, spatial 

heterogeneity in the dose rate, and high rates of anomalous fading) are assessed and 

addressed. 

There is, thus, enormous potential for OSL dating studies to construct reliable 

chronologies for MSA and early LSA archaeological deposits in East Africa.  To 

investigate this, OSL samples were collected from two rockshelters in East Africa: 

Mumba rockshelter in northern Tanzania and Moche Borago rockshelter in the 

southwest Ethiopian highlands.  Both sites have long archaeological sequences that 

contain a transition from MSA to LSA toolkits and one (Mumba) has evidence for 

ancient symbolic ornaments.   

While the majority of this chapter has provided background information to 

illustrate the significance of the aims discussed in Section 1.1, this section will detail the 

specific objectives established to address the aims of this study: 

o Obtain measurements of the external dose rate for samples (in the field and 

laboratory). 

o Assess the availability of quartz and feldspar from samples in the laboratory.  

When ample quartz is available, characterise the luminescence properties of 

multi- and single-grain aliquots to investigate the suitability of OSL dating for 

obtaining ages for these samples.  Investigate the luminescence properties of 

quartz, so that any variability in the OSL signal can be identified and addressed 

accordingly.  Use this information to determine the appropriate measurement 

and data analysis procedures that can be used to obtain a known dose under 

controlled laboratory conditions, as a prerequisite to measuring the unknown 

doses (De values) in the archaeological samples. 

o Use the empirically derived measurement and data analysis procedures to obtain 

De distributions for single grains of quartz.  These can be used to investigate 

potential sources of external variability affecting the dataset, including post-
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depositional mixing and beta microdosimetry.  If the distributions are consistent 

with these sources of external variability, appropriate corrections can be made, 

and the population of De values that best represents the burial dose can be used 

to calculate OSL ages for these samples. 

o For samples that do not contain quartz, or for which quartz OSL ages could not 

be obtained, characterise the luminescence signal from K-feldspar separates.  

Investigate the luminescence properties to assess the suitability of IRSL dating 

of K-feldspars.  Determine the appropriate measurement and analysis procedures 

(e.g., the post-IR IRSL procedure) for obtaining a known laboratory-dose and 

limiting the extent of anomalous fading. 

o Use appropriate measurement and analysis procedures to measure the De values 

and fading rates for multi-grain aliquots of K-feldspar grains.  Use a previously-

developed and well-established technique for correcting anomalous fading (i.e., 

Huntley and Lamothe, 2001) to obtain fading-corrected ages for the samples.  

Obtain ages for several key samples using the post-IR IRSL signal from K-

feldspar and the OSL signal from quartz to provide a basis for comparison.  This 

will serve as a semi-independent check of the suitability of the two methods and 

the accuracy of resulting ages. 

o Use the OSL and post-IR IRSL chronologies of the MSA and LSA deposits 

from these sites, in conjunction with existing palaeoclimatic, genetic and 

regional archaeological records, to gain insights into the timing and potential 

reasons for the emergence of, and changes in, technologies and symbolic 

behaviours. 

 

1.8 Scope/Outline of Thesis 

 The ways that I have gone about achieving the objectives of this thesis are 

detailed in the following chapters: 

 

Chapter 2:  The location, excavation history, setting, stratigraphy, previous 

chronologies and archaeological context for Mumba and Moche Borago rockshelters 

will be discussed in this chapter. 
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Chapter 3:  This chapter details the OSL dating methodology used throughout this 

thesis, focusing on the quartz OSL signal.  Included in this chapter are sections detailing 

a background of the method, the methods of sample collection and preparation, the 

measurement instrumentation, procedures for measuring De values, statistical models 

for analysing De distributions, the various aspects of the OSL signal and the challenges 

of applying OSL to quartz from various regions of the world. 

 

Chapter 4:  The methods for determining dose rates for quartz and K-feldspar grains 

are discussed in this chapter.  The various contributions to the internal and 

environmental dose rates are detailed, as well as methods for measuring, quantifying 

and correcting the latter.   

 

Chapter 5:  This chapter details the characterisation of the OSL signal of quartz from 

Mumba.  First, the linearly modulated (LM)-OSL signal from multi-grain aliquots is 

investigated and the effects of adding a hot optical wash (HOW) to the single-aliquot 

regenerative-dose (SAR) procedure are assessed.  Next, the OSL signal from single 

grains of quartz is characterised and several grain-types, each with different OSL 

behaviours, are described.  The applicability of using the pulsed-irradiation technique 

with a modified SAR procedure is then assessed with dose recovery experiments.  

These experiments are then used to assess the measurement and analysis technique most 

appropriate for objectively rejecting grains with poorly behaved OSL signals, while 

isolating grains with well-behaved OSL signals for De estimation.  Finally, dose 

recovery experiments are performed using multi-grain aliquots, the results of which are 

compared to the results from single-grain dose recovery experiments. 

 

Chapter 6:  First, the total environmental dose rates for samples from Mumba 

rockshelter are discussed.  The remainder of this chapter details the measurement and 

analysis of De values, obtained using the empirically derived procedures determined in 

Chapter 5, from single grains of quartz from Mumba.  The resulting De distributions are 

then characterised and analysed using the appropriate statistical models, to identify any 

external sources of variability, such as post-depositional mixing and beta dose rate 

heterogeneity.  The De populations that best represent the burial dose are identified and 
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used to obtain ages.  Finally, problematic samples for which ages could not be obtained 

are discussed. 

 

Chapter 7:  In this chapter, the characteristics of the luminescence signals of K-feldspar 

separates from Mumba are detailed.  A background to the mineralogy and luminescence 

characteristics of feldspars is discussed, as well as procedures for measuring and 

calculating the rate of anomalous fading.  The blue emission is chosen as most 

appropriate for the remaining experiments.  The TL signal is characterised and the 

relationship between TL peaks and the IRSL signal is investigated.  The IRSL and post-

IR IRSL signals are then characterised as a function of stimulation duration and 

stimulation temperature, and the sensitivity of the post-IR IRSL signal to sunlight is 

assessed.  Dose recovery and anomalous fading experiments are then described and 

used to identify the IRSL signal that could best recover a known dose and exhibit the 

least anomalous fading. 

 

Chapter 8:  This chapter details the use of the post-IR IRSL signal to measure De 

values and fading rates that are used to calculate fading-corrected ages for multi-grain 

aliquots of K-feldspar from Mumba.  These fading-corrected ages are then compared to 

the single-grain quartz-OSL ages described in Chapter 7 to assess the reliability of the 

K-feldspar post-IR IRSL procedure for age estimation. 

 

Chapter 9:  This chapter details the luminescence investigations of quartz and feldspar 

from Moche Borago.  The characteristics of the OSL and LM-OSL signals of quartz 

will be discussed.  Next, the luminescence signal from K-feldspar separates is 

characterised using TL, pulsed anneal, and IRSL experiments, and the dependence of 

the IRSL and post-IR IRSL signals on stimulation temperature is investigated.  The 

effects of anomalous fading on the TL signal and various IRSL signals are then 

characterised.  Finally, natural IRSL signal and dose rate measurements are discussed. 

 

Chapter 10:  In this chapter, the revised chronology for the MSA and LSA at Mumba 

rockshelter is assessed in the context of the existing East African archaeological record 

and existing palaeoclimatic and genetic reconstructions for the region.  The chapter 
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begins with a review of the palaeoclimatic and genetic evidence, as well as studies 

linking demographic changes to changes in technologies and behaviours.  A discussion 

of the significance of the new chronology for the MSA/LSA archaeology at Mumba and 

how it relates to the regional archaeological record is followed by a hypothesis that 

synthesises the available records to assess a potential scenario for the development of 

various technologies and behaviours in East Africa. 

 

Chapter 11:  This chapter presents a summary of results and the contributions of this 

work towards an improved understanding of the MSA and LSA in East Africa.  The 

suitability of OSL as a reliable chronometric tool for constraining this period of time in 

East Africa is discussed, followed by recommendations for future research into the 

timing of this critical period in human evolution. 
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Chapter 2: Site description 

Chapter 2: Description of study sites: Mumba rockshelter, Tanzania 
and Moche Borago rockshelter, Ethiopia 
 

Mumba rockshelter, Tanzania 

There are relatively few sites in East Africa with archaeological sequences that 

contain both MSA and LSA assemblages.  Mumba rockshelter is a notable exception, 

containing one of the richest and most continuous MSA to Iron Age archaeological 

sequences in East Africa.  Its MSA and LSA assemblages, in particular, have become 

the type sequences for these cultural phases in East Africa.  The best known 

archaeological features from Mumba are the presence of geometric microlithic stone 

artefacts and OES beads found in assemblages throughout the sequence, but most 

notably in the Bed V Mumba Industry.  Microlithic technologies and the manufacture of 

personal ornaments play a central role in deliberations about the origins of modern 

human behaviour, the dispersals of modern humans within and out of Africa, and their 

responses to factors such as climate change (e.g., Ambrose, 1998; Wurz, 1999; 

McBrearty and Brooks, 2000; Mellars, 2006; Clarkson et al., 2009; Jacobs and Roberts, 

2009; Petraglia et al., 2009).  The abundant occurrence of microliths, especially 

geometric backed pieces, and personal ornaments in the archaeological record, is often 

used to differentiate between the MSA and LSA in Africa (Ambrose, 1998, McBrearty 

and Brooks, 2000).  Although they are the hallmark of the LSA, it is well known that 

backed tools also occur in some MSA contexts, such as the Howiesons Poort in 

southern Africa (Wurz, 1999; Soriano et al., 2007; Lombard et al., 2008) and the 

Lupenbam of Zambia (Barham, 2002a), thereby obscuring the clear distinction between 

MSA and LSA toolkits, and the timing of the transition between the two. 

 

2.1 Site setting 

Mumba rockshelter (3º17’47”E, 3º32’26”S) is located ~1050 m above sea level 

in the Lake Eyasi Basin in northern Tanzania, ~62 km south of Olduvai Gorge (Figure 

2.1).  The Lake Eyasi Basin is situated near the southwestern terminus of the Crater 

Highlands volcanic area, but volcanic debris is found only in the northernmost portion 

of the lake and does not reach the rockshelter.  The basin is of Pleistocene age and is 

now mostly filled with sediment.  As a result, it has very little topography, making it 

very sensitive to rises and falls in lake level.  When dry, the lakebed is subject to severe 
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aeolian deflation by strong northerly winds.  In contrast, the lake level has also been 

high enough at times to submerge the rockshelter (Mehlman, 1989; Prendergast et al., 

2007).  Today, the modern lake is approximately 2 to 4 km away from the site 

depending on the lake level, which continues to fluctuate considerably.  The rockshelter 

is situated at the base of a massive outcrop of diorite and gneiss (Figure 2.2).  Like most 

outcrops in the region, the Mumba outcrop is composed of metamorphic rock of the 

Mozambique belt.  

 

 
Figure 2.1: The location of the Lake Eyasi Basin and Mumba rockshelter in northern Tanzania as 
well as the geological features of the surrounding area.  Map is modified from Prendergast et al. 
(2007) and Ebinger et al. (1997). 
 

2.2 History of excavations at Mumba 

 Mumba rockshelter was first documented by M. and L. Köhl-Larsen (Köhl-

Larsen, 1943), who excavated the vast majority of the archaeological deposit (9 x 12.5 x 

10.75 m).  They excavated a ‘test trench’ (8 x 4 m) between 1934 and 1936.  Over eight 

months of excavation in 1938, M. Köhl-Larsen expanded the trench to 9 m across the 

shelter by 12.5 m from the wall of the shelter towards the dripline (Prendergast et al., 

2007; see Figure 2.5a).  While excavating in 20 to 40 cm thick spits, M. Köhl-Larsen 
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identified six geological beds in more than 10 m depth of deposit, naming them Beds I 

to VI (Köhl-Larsen, 1943; Mehlman, 1989).  Due to the large volume of sediment 

moved in such a brief period of time, the excavations were imprecise by today’s 

standards.  The Köhl-Larsen collection is now known to be heavily biased in favour of 

large cores and flakes of exotic raw materials such as obsidian and chert.  They 

discarded many important artefacts, such as microliths and blades made from quartz.  

These artefacts, along with other retouched artefacts and bone, are well represented in 

the enormous dump where the Köhl-Larsens deposited their rejected materials 

(Prendergast et al., 2007).  This spoil heap is located outside the shelter, on the western 

side of the excavation.  Quantitative analyses of the Köhl-Larsen lithic collection, stored 

in Tübingen, Germany, were performed by Mehlman (1989) who confirmed that they 

were heavily biased.  This outcome suggests that further re-studies of this collection 

(e.g., Conard and Marks, 2006) may be limited in terms of their reliability and meaning. 

 

 
Figure 2.2: View of Mumba rockshelter from the northwest.  Note the two people at the foot of the 
outcrop for scale. (Photo: R.G. Roberts) 
 

 Further investigations of Mumba were performed by M. Mehlman, and are 

described in his Ph.D. dissertation (Mehlman, 1989).  He excavated four ‘witness’ 

sections in 1979 and 1981, with the aim of refining the stratigraphy of the site and 
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obtaining samples for the purposes of dating.  A third aim of his excavations was to 

collect a comprehensive, unbiased sample of the lithics for analysis.  Unfortunately, M. 

Mehlman was unable to return to Tanzania to analyse the samples that he had collected.  

Prendergast et al. (2007) studied the materials collected by M. Mehlman, which had 

been in storage at Olduvai Gorge, and found that many lithics from Bed V and almost 

all fauna were unaccounted for.  In the end, Mehlman performed most of his work on 

the Köhl-Larsen collection, retaining their geological bed nomenclature during his 

analysis of their lithic assemblage.  In doing so, he defined the archaeological sequence 

for the site (Mehlman, 1989).  

In 2005, the site was re-excavated by a team led by M. Domínguez-Rodrigo and 

A. Mabulla. They opened up a further four trenches along the perimeter of the area 

excavated by the Köhl-Larsens, naming them Trenches 5 to 8 (Figure 2.5).  An unbiased 

lithic sample was collected from Bed V and analysed by Diez-Martín et al. (2009).  

Samples were collected for OSL dating by R.G. Roberts and Z. Jacobs in conjunction 

with these excavations in July, 2007. 

 

2.3 Stratigraphy 

As briefly mentioned in the previous section, the Köhl-Larsens identified six 

geological beds in the Mumba deposits, naming them Beds I to VI (Köhl-Larsen, 1943).  

Mehlman (1989) retained this six-bed division and provided several further subdivisions 

(Figure 2.3).  He subdivided the lowermost geological unit, Bed VI, into two units: the 

basal Bed VIB, which he attributed to higher lake levels, and the overlying Bed VIA, 

which he attributed to falling lake levels and the associated deflation of the desiccated 

lacustrine floodplain.  Mehlman (1989) described Bed V as being comprised of fine-

grained aeolian sediments.  Bed IV was interpreted as being deposited during a period 

of high lake levels (~26 m above the modern level) that may have submerged the base 

of the rockshelter.  Bed III was composed of fine-grained sediments of aeolian origin, 

with carbonates, gravels, LSA stone tools and ceramics (in the upper-most part) located 

throughout.  Mehlman described Bed II as sandy, silty, and containing ceramics, and 

Bed I as a shallow, grey ashy sandy and silt layer.  By correlating the deposits of the 

rockshelter with those of the lake (using test pits), he established that the Mumba 
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deposits were younger than the lake deposits and that sedimentation in the rockshelter 

was the result of lowering lake levels and the associated aeolian deflation. 

 

 
Figure 2.3: The geological beds identified by M. Mehlman, and the locations from where samples 
for dating were collected and for which radiometric ages were reported. (From Mehlman, 1989: 
Figure 4.5) 
 

To reassess the overall stratigraphy and history of formation of the site, 

Prendergast et al. (2007) examined section profiles of the four new trenches as well as 

cleaned exposures of the original Köhl-Larsen and Mehlman excavations.  They 

subdivided the deposit into a sequence of eight geological units, naming them Units A 

(at the top) to H (at the base).  The units are primarily distinguished by the relative 

abundance of stone blocks (boulders and cobbles), alternating between units composed 

of fine-grained aeolian sediments (silts and sands) and units containing rocks (≥ 10 cm) 

embedded in a silty-sandy matrix.  A number of archaeologically sterile units were also 

identified by Prendergast et al. (2007).  The aeolian silts and sands were likely derived 
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from deflation of the exposed lakebed during drier periods.  Alternatively, the boulders 

and cobbles were transported by gravity from a fracture on the eastern side of the 

rockshelter during wetter periods (i.e., when weathering was more intense).  The 

different units are most readily differentiated in the east and north of the site and less 

conspicuous further west, where the gravity-deposited rocks are fewer and smaller 

(Figure 2.5b).  As a result of this lateral variation, the contact between units is rarely 

horizontal and each unit is of variable thickness across the exposure (Prendergast et al., 

2007).  Figure 2.4 is a schematic section showing the relation between the eight 

geological units of Prendergast et al. (2007) and the six geological beds of Mehlman 

(1989), together with the lithic industries as defined by Mehlman (1989) and Diez-

Martín et al. (2009).  See Section 2.4 for a detailed discussion of the archaeology of 

each Bed. 

 

 

 
Figure 2.4: Schematic cross-section showing the relationships between the geological units of 
Prendergast et al. (2007), the beds of Mehlman (1989), and the associated lithic industries following 
Mehlman (1989) and Diez-Martín et al. (2009). 
 

Each geological unit is described in detail in Prendergast et al. (2007), and will 

briefly be summarised here: 
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o Unit H.  The sediments that compose this unit are poorly sorted sands, ranging 

in size from fine to coarse-grained, with a silty-clay matrix.  Prendergast et al. 

(2007) posit that this unit may have an alluvial origin. 

o Unit G.  This unit was divided into two sub-units.  The basal ~0.4 m sub-unit is 

comprised of fine to moderately fine-grained sediments.  The matrix is patchy at 

the base and more clayish at the top.  The upper ~0.25 m sub-unit is composed 

of very fine-grained loamy sediments, including sands, silts, and infrequent 

small pebbles.  Prendergast et al. (2007) suggest that the basal sub-unit is the 

result of channel infilling in a fluvial system, and that the change between the 

basal and upper sub-units was caused by aeolian processes. 

o Unit F.  This unit is composed mainly of large stone blocks and fragments.  

These blocks were not transported fluvially, instead being gravity deposits that 

originated from a fracture on the eastern side of the rockshelter. Consequently, 

the thickness of this unit varies considerably, from 0.8 m in the east to 0.15 m in 

the west. There is a clear sloping of the unit downwards towards the west. 

o Unit E.  The thickness of this unit is variable.  It is ~1.1 m thick in the west, ~0.9 

m thick along the main section, and ~1.5 m thick near the shelter wall on the east 

side of the excavation.  This unit is thickest in the middle portion of the section 

and slopes downwards (~30°) towards the west.  The basal ~0.2 m portion of 

this unit is composed of sandy, silty, and loamy sediments, interspersed with 

several stone blocks.  This is overlain by a thin level of stone slabs, Achatina 

snail shells, lithics, and bones.  The upper portion of this unit is comprised of 

sands and fine-grained sands and silts that are moderately cemented by 

carbonates. 

o Unit D.  This unit, like Unit F, is composed mainly of stone blocks, the size of 

which generally decreases from east to west.  The unit has an average thickness 

of ~0.7 m, although it is thicker in the east and slopes downwards towards the 

west (Figure 2.5b).  The blocks that comprise this level are overlain by a level of 

small rock fragments.  The matrix that contains the blocks is composed of loamy 

sands, which are cemented by carbonates towards the base of the unit and more 

lightly cemented towards the top of the unit. 
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o Unit C.  The thickness of this unit varies considerably, from 0.6 m in the east to 

1.6 m in the west (Figure 2.5b).  At the base of this unit is a layer of very fine-

grained loamy sands interspersed with rock fragments and bones.  This layer is 

cemented by carbonates (likely of algal origin) to the top of the underlying unit 

(Unit D), indicative of the presence of permanent fresh water (Prendergast et al., 

2007).  Above this, two levels of rock fragments and bones are cemented by 

algal carbonates (~0.3 m thick) and make up the middle of this unit.  The top of 

this unit (~0.3 m) is composed of fine loamy sediments, Achatina shell 

fragments, and bones. 

o Unit B.  This unit varies in thickness from 0.05 to 0.4 m (Figure 2.5b).  It is 

composed of stone blocks, with a sedimentary matrix of fine loamy sandy silt 

with abundant rock and Achatina shell fragments. 

o Unit A.  This unit is the top of the deposit, reaching up to 0.35 m in thickness.  

At the base, this unit is composed of very fine-grained sediments with 

interspersed small rock fragments from the underlying unit.  These sediments 

contain fragments of Achatina shell and bone, and abundant insect nests.  At the 

top of the deposit is a layer of loose, fine loamy sands.  Prendergast et al. (2007) 

report that this upper level shows evidence of anthropogenic disturbance and 

bioturbation by modern insects.  

 

2.4 Archaeological context 

The first description of the lithic assemblages from Mumba is presented in 

Roller (1954).  He based his analysis on the Köhl-Larsen collection and the 

contemporary literature, suggesting the cultural sequence for Mumba presented in Table 

2.1.  The validity of the presence of multiple lithic industries in the Bed V deposits was 

questioned by Mehlman (1979) after a self-described cursory analysis of lithics 

collected during his 1977 excavation.  Later, Mehlman (1989) produced the 

archaeological sequence for Mumba that is now most commonly cited.  He based the 

archaeological sequence principally on a thorough typological assessment of the 

collection of lithics collected by the Köhl-Larsens.  However, Mehlman (1989) makes 

regular comparisons to his cursory analysis of the lithics collected during the 1977/81 

excavations.  Given the biased nature of the Köhl-Larsen collection, it is likely that 
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valuable information was missing from the assessment made by M. Mehlman, a point 

that he acknowledges repeatedly throughout his dissertation (e.g., Mehlman, 1989: 313).  

Later, in 2005, an unbiased sample of lithics was collected from Mumba using modern 

excavation techniques (Prendergast et al., 2007; Diez-Martín et al., 2009).  The results 

of a recent re-analysis of the unbiased Bed V assemblage were published by Diez-

Martín et al. (2009), who did not re-examine any of the other archaeological layers.  

Consequently, the general validity of the rest of Mehlman’s scheme has yet to be 

examined using unbiased lithic assemblages, such as that collected in 2005.  His 

description of the remaining archaeological layers may thus be subject to revision.   

 
Table 2.1: Cultural sequence for Mumba as determined by Roller (1954).  Note that the term 
‘Stillbay’ was used to describe many MSA assemblages in the 1950s, most of which did not conform 
to definition for the southern African MSA industry as described by Goodwin and Van Riet Lowe 
(1929) (Wadley, 2007). 

 
 

The following sections will describe the lithic assemblages present in the 

deposits at Mumba.  They will be presented in order from the basal to the uppermost 

units.  The descriptions are mainly based on Mehlman (1989) for assemblages in Beds 

VI, III and II.  In regards to the lithic assemblage of Bed V, two descriptions will be 

presented: that of Mehlman (1989) and that of Diez-Martín et al. (2009). 

 

2.4.1 Bed VI deposits 

The archaeological context of all lithics from Bed VI (i.e., VIA and VIB) can be 

described as MSA on the basis of both typology and technology (Mehlman, 1979, 1987, 

1989).  The artefacts contained in the basal deposits of the excavated sequence (Unit H, 

Bed VIB) were designated by Mehlman as the Sanzako Industry. This industry is 

characterised by high frequencies of scrapers (side and notched) and bifacially modified 

pieces, which co-occur with heavy-duty tools such as small bifaces and choppers. 
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Additionally, Levallois technology and retouched points are uncommon (Mehlman, 

1989; Mabulla, 2007).  The dominant raw material of Sanzako Industry artefacts is 

quartz (~95%; Mehlman, 1989).  There are two further points of interest in regards to 

the archaeology of this layer.  First, three molars from a single Homo sapiens were 

recovered from Bed VIB (Bräuer and Mehlman, 1988), suggesting that the associated 

MSA artefacts were used by the same species.  It seems likely, therefore, that the 

artefacts from the overlying (i.e., younger) layers were also associated with Homo 

sapiens.  The second point of interest is the presence of more than a dozen obsidian 

artefacts collected during Mehlman’s 1977 excavation.  Microprobe analyses were used 

to assess the chemical content of three of these pieces.  Results indicated that the 

obsidian was chemically similar to outcrops in the Njorowa Gorge, located 320 km 

NNE of Lake Eyasi on the southern side of Lake Naivasha in southern Kenya (Merrick 

and Brown, 1984; Mehlman, 1989; see maps in Figure 1.4 and Figure 10.2).  The 

implications of the presence of raw material from such a distant source will be 

discussed in Section 10.3.1.  Mehlman (1989: 270) states that “the closest parallels to 

the Sanzako Industry are MSA assemblages at Songhor (McBrearty, 1981) and those 

overlying the Sangoan at Muguruk (McBrearty, 1988)”, both of which also contain 

distant obsidian (McBrearty and Brooks, 2000). 

The overlying deposits (Unit G, Bed VIA) contained stone artefacts that were 

assigned to the Kisele Industry.  Like the Sanzako Industry, the majority of tools were 

produced using quartz as raw material.  The artefacts are, however, generally smaller 

than those found in the underlying deposits.  Retouched points occur in relatively high 

frequency (>10% of tools), whereas heavy-duty tools, backed tools and burins were 

rare.  The most distinctive tool types are bifacial and unifacial points (>10% of 

retouched tools) and scrapers.  Technologically, the assemblage is characterised by high 

frequencies of disc and part-peripheral cores, with a low frequency of Levallois cores 

(Mehlman, 1989).  The 2005 assemblage also contained large-sized artefacts, such as 

Levallois cores and large scrapers, and lacked any microliths (Diez-Martín et al., 2009).  

Similarly to Bed VIB, eleven pieces of obsidian were associated with the Kisele 

Industry.  These pieces were analysed and traced to the same sources as their Sanzako 

counterparts, 320 km from Mumba, near Lake Naivasha in Kenya (Mehlman, 1989).  

Mehlman (1989) identified an MSA Kisele Industry assemblage below level 12 at 
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Nasera rockshelter, which is ~60 km to the north of Mumba.  Distant raw material use is 

prevalent in the archaeological record at Nasera, with obsidian being sourced to 

southern Kenya and chert being sourced to either Olduvai Gorge (~30 km south) or 

Lake Natron (60 km NNE).  Mehlman (1989) has also suggests that the MSA 

aggregates from Lukenya Hill are similar to the Kisele Industry. 

 The two industries defined by Mehlman (1989) for Bed VI deposits (i.e., the 

Sanzako and Kisele Industries) are typical MSA.  Their similarities include the presence 

of both retouched points and radial-disc-Levallois technology.  Both assemblages are 

dominated by quartz artefacts and generally lack core and heavy-duty tools.  In addition, 

both industries include obsidian pieces collected at least 320 km from the site.  

However, several features of the two industries set them apart from one another.  The 

Kisele assemblage generally contains more points and a lower frequency of scrapers 

(side and notched), bifacially modified pieces, and heavy-duty tools.  In addition, the 

general size of the artefacts is smaller in the Kisele Industry.  Technologically, the range 

(distinguished by core types) of the Sanzako and Kisele Industries is similar.  However, 

the frequency of various core types varies between the two.  The frequency of 

amorphous cores decreases, and the Levallois technique becomes more prevalent 

(though still rare) in the Kisele assemblage.  When examined together, Mehlman (1989: 

183) surmised that the MSA lithic assemblage of the Sanzako is more “primitive” and 

less diverse than that of the Kisele. 

 

2.4.2 Bed V deposits 

Overlying Bed VI deposits is Mehlman’s Bed V, which corresponds to the upper 

part of Unit G, all of Units F and E, and the lower part of Unit D in the geological 

system of Prendergast et al. (2007).  To distinguish their assemblage from that 

examined by Mehlman (1989), Prendergast et al. (2007) refer to the artefacts that were 

collected from the Bed V deposits in 2005 as the ‘Level V’ assemblage.  However, 

Diez-Martín et al. (2009) refer to this same assemblage as ‘Bed V’.  Since Diez-Martín 

et al. (2009) describe the assemblage collected in 2005, their nomenclature (i.e., Upper, 

Middle, and Lower Bed V) will be retained in this thesis.  The descriptions of the Bed V 

lithic assemblage by Mehlman (1989) and Diez-Martín et al. (2009) will be discussed 

separately, and then compared, in this section. 
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2.4.2.1 Interpretation of Mehlman (1989) 

 The name commonly given to the lithic assemblage from Bed V at Mumba, the 

Mumba Industry, was coined by Mehlman (1989).  He concluded that the Mumba 

Industry was intermediate between the MSA and LSA, representing a transitional lithic 

assemblage.  This conclusion was based on the occurrence of large backed pieces 

(typical LSA) and retouched points (typical MSA) in the same assemblage.  The 

presence of these two lithic types was not an artefact of examining the biased and 

hastily collected (i.e., in 20 to 40 cm thick spits) Köhl-Larsen collection, since Mehlman 

confirmed their co-occurrence in the same 10 cm spits during his excavations.  In spite 

of this, Mehlman (1989) makes clear that the Bed V assemblage of the Köhl-Larsen 

collection is heavily biased in favour of exotic raw materials and against smaller tool 

and core types that are characteristically LSA, such as backed microliths and small 

bipolar cores.  Consequently, although Mehlman principally based his description of the 

lithics from Bed V on the Köhl-Larsen collection, he continually compares it to the 

results of a cursory analysis of his own unbiased assemblage collected during the 

1977/81 excavations. 

Mehlman divided the Bed V artefact assemblage into three sub-levels: Bed V-

lower, V-middle, and V-upper.  In the Bed V-lower assemblage of the Köhl-Larsen 

collection, points are the most frequently occurring type (~17%), followed by side 

scrapers (~13%), then backed pieces (~8%), which range from macrolithic to 

microlithic.  The large majority of cores are part-peripheral (39%) or radial/disc (16%), 

with low frequencies of bipolar types (8%).  In contrast, the assemblage collected from 

Bed V-lower during the 1977/81 excavations is substantially different, although that 

may be attributed to the low number of artefacts collected.  In this assemblage, sundry 

side scrapers and ends were the most common types.  Only one backed piece and one 

unifacial point were found; this is likely a result of the small number of total flaked 

tools collected (n = 26).  A more significant difference between the Mehlman collection 

and the Köhl-Larsen collection is the difference in the frequencies of core types.  In 

Mehlman’s collection, the frequencies of bipolar and peripherally worked cores are 

reversed: the majority of cores (56%, n = 20) are bipolar, while peripherally worked 

cores account for a mere 11% (n = 4).  Three pieces of obsidian were collected, though 

none were analysed for trace elements (Mehlman, 1989). 
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The middle and upper levels of Bed V contained more LSA-like assemblages.  

In the Köhl-Larsen collection, points comprise only 5% of tools, while backed pieces 

(microlithic and macrolithic) comprise 9%.  The most common core types are single 

and multiple platform (~22%), while 15% were bipolar.  The Köhl-Larsens also 

recovered several OES artefacts, but they interpreted them as being intrusive.  As in Bed 

V-lower, the 1977/81 assemblage looks substantially more LSA-like than that collected 

by the Köhl-Larsens.  Backed pieces, the majority of which are microlithic, were the 

most frequent tool type (14%), while only four points (2%) were found.  

Technologically, the assemblage is dominated by bipolar cores (75%), while 

peripherally worked and platform types both accounted for 10%.  As in the lower levels, 

most tools were still made on quartz (95%) with small contributions from fine-grained 

quartzite and chert.  Twelve pieces of obsidian were recovered from Bed V-upper, four 

of which were traced to distant Kenyan sources: three from Sonanchi and one from the 

Njorowa Gorge area.  Mehlman also recovered multiple OES artefacts (seven beads, 

one shaped blank, and four drilled fragments) from as deep as 50-60 cm into Bed V.  He 

concluded that they were in situ on the basis of AAR investigations, by A. Brooks, of 

these OES artefacts and several from Bed III. 

To summarise, Mehlman’s interpretation of the Bed V assemblages was based 

on a thorough analysis of the biased Köhl-Larsen assemblage and a cursory analysis of 

the unbiased sample collected during his 1977/81 excavations.  He described the 

assemblage from Bed V as being transitional between the MSA and LSA on the basis of 

changing frequencies of tool and core types throughout the sequence.  While he 

described no new or different types of artefacts in successive Bed V sub-levels, it was 

clear that the frequencies of various types changed substantially between the lower and 

upper parts of the deposit (e.g., points and backed pieces).  The two characteristic 

features of the Mumba Industry, namely large backed pieces and retouched points, are 

present in equivalent numbers in the Bed V-lower assemblages.  In the Bed V-upper and 

V-middle assemblages, backed pieces (micro and macrolithic) increase in frequency and 

points become more intermittent.  Technologically, radial, platform and bipolar core 

types are all present throughout the assemblage.  Radially flaked cores become less 

common, while platform and bipolar cores become more common in Bed V-upper, 

suggesting a shift towards more LSA-like core technologies (Mehlman, 1989).  In 
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addition to the clear presence of symbolic materials, in the form of OES beads, in Bed 

V-upper and the increase in microlithic backed pieces, this suggests that a shift occurred 

throughout Bed V, with the Bed V-upper assemblage being more LSA-like than the Bed 

V-lower assemblage. 

 

2.4.2.2 Interpretation of Diez-Martín et al. (2009) 

Diez-Martín et al. (2009) divided the Bed V archaeological collection into three 

assemblages based on their own stratigraphic observations: Lower, Middle, and Upper 

Bed V (Figure 2.6).  This tripartite division corresponds well with the original Bed V-

Upper/Middle/Lower scheme of Mehlman (1989).  Additionally, it reflected the 

observation that the artefacts in Middle Bed V appeared to be separated from those 

below by a conspicuous layer of medium-sized rocks in Unit E, and from those above 

by a ≤9 cm-thick layer of sterile sand (Figure 2.6) (Prendergast et al., 2007; Diez-Martín 

et al., 2009).  The subdivisions of Bed V, however, do not represent discrete 

occupational events, given the lack of clear archaeological layers or discrete 

depositional units (Prendergast et al., 2007; Diez-Martín et al., 2009). 

 

 
Figure 2.6: Spatial distribution of all artefacts recovered from Trench 7 during the 2005 
excavations (modified from Diez-Martín et al., 2009).  The black line between Upper and Middle 
Bed V represents a layer of sterile sands (Prendergast et al., 2007). 
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 The approach used by Diez-Martín et al. (2009) to assess the lithic assemblage 

from Bed V can be described as typo-technological, as opposed to the purely 

typological approach of Mehlman (1989).  The typological classification scheme of 

Mehlman (1989: 127-138) was retained, with few modifications (e.g., the inclusion of a 

type for ‘bipolar backed pieces’).  Diez-Martín et al. (2009) noted substantial 

typological differences between the Lower Bed V and Upper Bed V assemblages.  In 

Lower Bed V, 48% of tools (n = 10) were scrapers and 42% (n = 9) were backed pieces.  

Upper Bed V, in contrast, is dominated by backed pieces (63%, n = 27).  In addition, 

whereas geometric microliths were all but absent from the Lower Bed V assemblage, 

they constituted a substantial component of the Upper Bed V assemblage.  Six (22%) of 

the Upper Bed V geometric microliths are crescents, a hallmark of the LSA (McBrearty 

and Brooks, 2000; Ambrose, 2002).  In addition, three OES beads and nine ochre 

fragments were recovered from Upper Bed V.  They were located at different depths 

throughout the sequence and were not associated with the Bed IV/V interface (Diez-

Martín et al., 2009).  This corroborates the claim of Mehlman (1989) that OES beads 

are associated with the Mumba Industry and are not derived from the downward 

migration and, thus, intrusion of Bed III materials.  A notable type that was nearly 

absent from the 2005 assemblage was blades and blade fragments.  None were 

recovered in Lower Bed V and only a few were recovered from Upper Bed V, the latter 

likely as a result of the larger sample size. 

The two main knapping techniques represented in Bed V at Mumba are the 

bipolar and freehand techniques.  The latter corresponds to peripherally worked and 

platform cores, as defined by Mehlman (1989).  The two knapping techniques were by 

no means independently utilised by the inhabitants of Mumba.  Freehand retouch was 

observed on multiple bipolar flakes.  Diez-Martín et al. (2009) confirmed Mehlman’s 

observations of the 1977/81 collection (i.e., in contrast to his observations of the Köhl-

Larsen collection), that most cores in the Bed V deposit are bipolar.  This reduction 

technique is typical of LSA technologies in the western Rift Valley (Brooks and 

Mercader, 2001).  Bipolar cores represented the majority of cores collected from Lower, 

Middle and Upper Bed V assemblages.  Diez-Martín et al. (2009) did not identify 

significant differences in core morphology across levels, observing similar dimensional 

and technical characteristics.  This suggests that similar technological approaches were 
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used throughout Bed V.  This was confirmed by an analysis of the flakes in the 

assemblage, ~50% of which were produced using the bipolar technique.  This reduction 

technique is most abundant in Upper Bed V, while the freehand technique is more 

common in Middle and Lower Bed V.  No significant differences were observed 

between Bed V assemblages in the size and shape of bipolar flakes, but a slight trend 

towards size reduction (<1 cm) in freehand flakes from Lower to Upper Bed V was 

reported.  Diez-Martín et al. (2009) thus concluded, based on the dimensional and 

technological variables of flakes and cores, that no significant separation can be made 

between the assemblages of Lower, Middle, and Upper Bed V.  They attributed the 

differences in type frequencies to the differing sample sizes of the three Bed V 

assemblages. 

Interesting patterns were observed, however, when freehand and bipolar 

reduction techniques were compared.  Most of the bipolar cores (~83%) retain cortex on 

at least one platform, whereas 54% of freehand cores retain no cortex and 23% retain 

only a very small amount of cortex on their lower surfaces.  Very few freehand flakes 

collected could be assigned to the initial phase of the reduction process, with only 4% of 

flakes having cortex on their dorsal surface.  In addition, the collected freehand cores 

were consistently small in size, whereas bipolar core size was more variable.  When all 

of these factors are taken into account, it is clear that various stages of the chain 

opératoire for freehand reduction are not uniformly represented in the deposit, with 

most specimens being attributed to the latest stages of the knapping sequence.  The 

earlier phases of the reduction sequence were likely performed elsewhere.  Supporting 

this conclusion is the very low core-to-flake ratio, which indicates that the core nuclei 

were also mostly discarded elsewhere.  Notably, the reduction technique used tends to 

correlate with the raw material being exploited.  The bipolar technique was 

preferentially used to exploit lower quality raw materials, with ~85% of bipolar objects 

being made on orthogneiss, polycrystalline quartz and smoky quartz.  In contrast, higher 

quality raw materials (e.g., hyaline quartz, metarhyolite, nephelinite and chert) were 

almost exclusively reduced using freehand techniques.  While the upper assemblage 

contained a higher frequency of better quality raw materials (e.g., hyaline quartz) and a 

lower frequency of low quality raw materials (e.g., orthogneiss and smoky quartz), 
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Diez-Martín et al. (2009) suggested that the discrepancy is probably due to the small 

sample size.   

While the implications of these patterns of raw material use are not discussed by 

Diez-Martín et al. (2009), they are interesting.  The data from Diez-Martín et al. (2009) 

indicate that most of the LSA-like features of the assemblages in Bed V (i.e., microlithic 

backed pieces and blade or blade-fragments) were produced on higher quality raw 

materials.  In Figures 15 and 16 of Diez-Martín et al. (2009), all blades, blade 

fragments, retouched blade fragments, crescents and sundry backed microliths are made 

on high quality raw materials (i.e., hyaline quartz, chert, or nephelinite).  These higher 

quality raw materials were likely transported to the site as prepared cores, while the 

early stages of the reduction sequence were performed elsewhere.  They were then 

preferentially reduced using freehand knapping techniques to produce the more LSA-

like features of the toolkit.  Any cores not completely exhausted were transported away, 

probably for further reduction, until exhaustion and subsequent disposal.  This pattern 

may suggest that the higher quality raw materials were more highly valued and harder to 

come by than the lower quality raw materials.  The lower quality raw materials on the 

other hand, were preferentially reduced using the bipolar technique.  These raw 

materials were likely more accessible, given that the earlier stages of bipolar core 

reduction are present in the assemblage, bipolar cores retain more cortex, and bipolar 

cores of variable sizes were discarded.  These lines of evidence suggest that lower 

quality raw material was brought to the rockshelter, reduced from the early states of the 

reduction sequence using the bipolar technique, and discarded prior to core exhaustion.  

This implies that lower quality and more available raw materials were regarded as less 

valuable than higher quality and less available raw material. 

 

2.4.2.3 Summary and discussion of the Mumba Industry 

To summarise, Diez-Martín et al. (2009) found that the overall properties of the 

Bed V assemblages could be classified as LSA.  They reported a distinct shift towards 

bipolar reduction and the use of scrapers and backed tools in Lower Bed V, noting that 

the artefacts obtained from the immediately underlying MSA deposits in Bed VI did not 

have these characteristics.  No unambiguous technological changes were documented in 

the Bed V sequence, with bipolar and freehand techniques being equally represented 
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and the size of flakes remaining fairly consistent across assemblages.  The only 

differences between Bed V levels reported by Diez-Martín et al. (2009) are typological.  

In Lower Bed V, scrapers and backed pieces were represented in equal frequencies, 

whereas backed pieces dominated the Upper Bed V assemblage.  Importantly, 

geometric microliths, including crescents, were abundant in the Upper Bed V backed 

piece assemblage.  Symbolic objects (i.e., three OES beads) and potentially symbolic 

objects (i.e., nine ochre fragments) were also present in this assemblage.  However, 

given the technological consistency, Diez-Martín et al. (2009) considered the 

typological differences insufficient to signify significant change in the toolkit across the 

Bed V sequence.  They suggested that the typological differences were, instead, an 

artefact of the relatively small size of their sample. Based on both the technology and 

typology, Diez-Martín et al. (2009) considered the assemblages in Bed V to be more 

appropriately defined as LSA.  

The revised description of the Mumba Industry by Diez-Martín et al. (2009) 

supersedes the ‘MSA/LSA-transitional’ description by Mehlman (1989), given the lack 

of evidence when an unbiased sample is investigated using modern methods of stone 

tool analysis.  Mehlman (1989) proposed that Bed V contained a transitional industry 

with typological components that can be described as MSA (e.g., retouched points) and 

LSA (e.g., geometric microliths and large backed pieces). In contrast, the unbiased Bed 

V assemblage collected in 2005 did not contain any retouched points or large backed 

pieces (Diez-Martín et al., 2009). This discrepancy complicates a straightforward 

comparison with the Mehlman record.  It does, however, raise the possibility that the 

co-occurrence of these elements in the Bed V assemblages described by Mehlman 

(1989) is an artefact of excavating in thick, horizontal spits (Prendergast et al., 2007; 

Diez-Martín et al., 2009).  Diez-Martín et al. (2009) argue that the co-occurrence of 

points and large backed pieces in the same assemblage can no longer be unambiguously 

accepted: given the sloping topography of the deposit, there is considerable potential for 

mixing of sediments and artefacts from multiple beds when excavated in horizontal 

spits. 
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2.4.3 Beds IV and III deposits 

The basal few centimetres of Unit C of Prendergast et al. (2007) correspond to 

Mehlman’s Bed IV and are culturally sterile (Figure 2.4).  The remainder of Unit C, the 

overlying Unit B, and the basal part of Unit A are collectively equivalent to Mehlman’s 

Bed III, and contain evidence for LSA occupation (Figure 2.5).  Mehlman (1989) 

divided Bed III into lower, middle and upper sections to define the archaeological 

industries (Figure 2.4).  Bed III-lower is associated with the Nasera Industry, an early 

LSA tradition that is also present at Nasera rockshelter.  The assemblage from Mumba 

is dominated by scrapers and contains relatively low frequencies of points and 

microlithic backed pieces (Mehlman, 1989).  Blades are very rare and bipolar core 

reduction is very common.  One obsidian artefact was present in the Köhl-Larsen 

collection.  The Bed III-lower assemblage studied by Mehlman (1989) also contained 

large quantities of OES beads and fragments, and several bored stone balls.  The OES 

bead tally in Bed III-lower includes 243 beads, 25 shaped blanks, nine drilled pieces, 

and 51 unfinished beads from the Köhl-Larsen assemblage and 78 finished beads, 26 

shaped blanks, eight drilled pieces, and 23 unfinished beads from the 1977/81 

assemblage.  The abundance of OES beads and bored stone balls is unambiguous 

evidence for symbolic behaviour in the Nasera Industry from Mumba rockshelter.  An 

assemblage from Nasera rockshelter has also been assigned to the Nasera Industry on 

the basis of similar proportions of backed pieces and points and an abundance of 

scrapers.  Mehlman (1989) also suggests that a Nasera Industry assemblage is present at 

Kisese II rockshelter.  A third assemblage, namely the Sakutiek Industry from 

Enkapune Ya Muto, shares substantial typological similarities with the Nasera Industry.  

Like the assemblage of Bed III-lower, it contains very few backed tools, though overlies 

an assemblage that contains abundant backed pieces.  Both assemblages also contain 

several typical MSA types, are dominated by scrapers, and are associated with an 

abundance of OES beads. 

Mehlman (1989) recognised an aceramic LSA assemblage in the middle section 

of Bed III, but the small sample size precluded industrial assignment.  He noted that this 

assemblage was deficient in geometric microliths but had a high frequency of curve-

backed pieces and large scrapers.  In spite of the small sample size, OES beads were 

found in Bed III-middle as well as a notched bone fragment and a bone point.  A 
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ceramic LSA, known as the Oldeani Industry, appears in upper Bed III, along with a 

profusion of backed microliths. The ceramics include Kansyore ware, an LSA ware 

traditionally associated with hunter-gatherers, as well as Narosura and Lelesu wares, 

which were produced by pastoral Neolithic and Iron Age people, respectively. While 

these wares have previously been found together in secure stratigraphic contexts, it 

remains to be demonstrated if this also holds true at Mumba. Beds II and I represent 

more recent Iron Age deposits (Mehlman, 1989; Prendergast et al., 2007) and are 

beyond the scope of this study. 

 

2.4.4 Summary   

Mumba rockshelter is one of the few sites in East Africa that contains both MSA 

and LSA assemblages in its archaeological sequence.  The contents of each assemblage 

and the changes of the contents of each assemblage may be indicative of changes in 

toolkits, subsistence strategies, behaviours and ideas over time.  The presence of distant 

obsidians in Beds VIA, VIB, V and III-lower may be evidence for interactions between 

distant groups of people.  The transition from the MSA, point-based Kisele Industry of 

Bed VIA to the backed piece-based Mumba Industry of Bed V may reflect a change in 

subsistence strategies or population dynamics.  Likewise, the emergence of ornaments 

in Upper Bed V and their proliferation in Bed III-lower may reflect changing 

environmental conditions, population dynamics, behaviours, or a combination of the 

three.  Robust chronologies for each archaeological layer, and thus when technologies 

and ornaments were being used and when they changed, will allow comparisons to be 

made over a wider geographical and temporal region with other sites in eastern and 

southern Africa.  The temporally constrained regional archaeological record can then be 

interpreted in the context of existing palaeoclimate and genetic reconstructions to infer 

why technologies and behaviours changed through time. 

 

2.5 Geochronology at Mumba 

2.5.1 Previous chronologies 

As mentioned in Section 2.2, a principal objective of M. Mehlman’s 1977/81 

excavations at Mumba was to obtain samples for dating, which could be used to 

construct a chronology for the archaeological sequence.  The sample material collected 
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for radiocarbon and U-series dating included charcoal, bone collagen, bone apatite, 

OES, Achatina shell and tufa.  Sixteen ages were obtained in the 1980s and are 

presented in Mehlman (1989: 103).  Since then, several authors have reported additional 

ages for various levels at Mumba.  Table 2.2 presents a compilation of all known age 

estimates (except two) for Beds III to VI at Mumba.  The two ages omitted from the 

table are 14C ages on charcoal (4860 ± 100 BP) and bone collagen (4890 ± 70 BP) for 

the human burial in Bed III reported by Mehlman (1989).  Given that the human 

remains were likely interred long after the time of formation of Bed III, they are not 

relevant to the current discussion.  

Three features of the dataset presented in Table 2.2 are of note.  First, the ages 

are stratigraphically inconsistent.  The four 230Th/234U ages reported by Mehlman 

(1989) using bone apatite from Bed V illustrate this point.  One age was obtained for the 

Bed V-upper, two from V-middle, and one from V-lower.  The two ages obtained for 

the middle section are significantly different from one another and are inverted with 

respect to their stratigraphic positions.  The sample that yielded the age of ~65.7 ka was 

collected above the sample that yielded the age of ~46.6 ka in the section (Figure 2.3).  

In addition, both ages from the middle of Bed V are significantly older than that 

obtained for the sample from the underlying V-lower (~35.3 ka).  Likewise, the 14C ages 

obtained using bone apatite and Achatina shell from Bed V are inverted (Figure 2.3).  

More broadly, the 14C age obtained using Achatina shell from Bed IV is older than 

several other 14C ages obtained from Bed V-middle, V-lower, and VI. 

The second noteworthy feature of Table 2.2 is that most of the ages were 

obtained using either, sample materials that are now considered unsuitable for dating, or 

sample preparation and measurement procedures no longer considered reliable (see 

Section 1.4).  These two factors indicate that the existing chronology for Mumba is 

largely inadequate by modern standards.  It is highly likely that these shortcomings are 

responsible (wholly, or in part) for the inversions and inconsistencies in the reported 

ages.  The two dating methods that were used to obtain the majority of ages at Mumba, 

namely U-series and radiocarbon dating, were discussed in Section 1.4.  They will 

briefly be considered again to highlight the limitations and deficiencies of their use at 

Mumba. 
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All U-series ages reported for Mumba were obtained using bone apatite.  

Obtaining U-series ages using this material is complicated by the variable timing and 

rate of uptake of uranium after burial, due to the ‘open system’ behaviour of bone 

(Grün, 2006; Grün et al., 2010).    A minimum 230Th/234U age can be determined if it is  

 
Table 2.2: All ages reported in the literature for Beds III to VI.  The two AMS 14C ages for Bed III-
upper were calibrated using the IntCal 04 curve (Reimer et al., 2004).  All remaining 14C ages were 
reported as uncalibrated ages and have been calibrated using the IntCal 09 curve (Reimer et al., 
2009).  The calibrated 14C age range (2σ) is presented in bold under the reported uncalibrated age. 
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assumed that the bone absorbed all of its uranium soon after deposition and none was 

subsequently lost.  The actual age of the bone will be older if uranium-uptake occurred 

substantially later.  It is possible to put some constraints on the history of uranium 

migration in bone by taking into account the different radioactive half-lives of 230Th in 

the 238U series and 231Pa in the 235U series (e.g., Cheng et al., 1998): if the ages obtained 

using 230Th/234U and 231Pa/235U are statistically consistent, then it can be surmised that 

the bone behaved as a ‘closed system’ after the uptake of uranium.  The paired 
230Th/234U and 231Pa/235U ages for three samples reported by Mehlman (1989) for 

Mumba (two from Bed V and one from Bed VI) are statistically consistent (Table 2.2), 

but both ages may be underestimated by similar amounts if uranium-uptake occurred 

long after burial.  Conversely, if uranium was lost after burial, the obtained ages will be 

overestimated by similar amounts.  Until the accuracy of these age estimates are verified 

using modern U-series techniques, such as those discussed in Section 1.4.2, the U-series 

chronology for Mumba should be viewed as unreliable.   

 The current 14C chronology for Mumba is at least as deficient as the U-series 

chronology.  Most of the six materials used by Mehlman to obtain 14C ages at Mumba 

(i.e., charcoal, shells of the land snail Achatina, OES, bone collagen, bone apatite and 

tufa) have since proven problematic.  Appropriate pretreatment procedures are 

necessary in order to isolate the 14C that is correlated to the target event from any older 

or younger 14C.  Given the materials and methods used to obtain 14C ages for Beds IV, 

V and VI in the 1980s, there are three principal issues with the chronology.  First, bone 

apatite and shells often produce erroneous ages, as a result of the exchange of carbon 

with the carbonate in the apatite and shell structure during diagenesis (Taylor, 1987; 

Stafford et al., 1991; Hedges and Van Klinken, 1992; Surovell, 2000; Bronk Ramsey, 

2008).  Given the evidence for post-depositional formation of carbonates at Mumba 

(e.g., carbonate nodules and carbonate concretions), the environmental conditions at the 

site were likely conducive to carbon exchange in such materials.  Second, in modern 14C 

dating of shells, the exteriors are generally removed so that unaltered aragonite crystals 

can be isolated for analysis.  Since Achatina shells are thin-walled, it is likely that this 

precaution was not taken.  Third, the preparation procedures for materials such as bone, 

eggshell and snail shells have improved substantially in the last decade (Bird et al., 

2003; Bronk Ramsey, 2008).  Processes such as molecular ultrafiltration of bone 
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collagen have been shown to substantially increase the accuracy of the resulting 14C 

ages (Bronk Ramsey et al., 2004; Higham et al., 2006).  It is likely that most of the 14C 

ages from Mumba are unreliable since they not were obtained using these procedures, 

which are currently accepted as a prerequisite for accurate 14C age estimation. 

The final notable feature of the existing chronology for Mumba is the recent 

proliferation of ages that can be found in the literature.  Unfortunately, none of these 

ages has been published with associated estimates of uncertainty or supporting 

information, both of which are necessary to justify their reliability.  These ages include 

an age range of 29 – 33 ka BP obtained from AMS 14C dating of OES (Conard, 2007) 

and AAR ages of 52 ka and 45 – 65 ka, also on OES (McBrearty and Brooks, 2000).  A 
14C age of 33.5 ± 0.9 ka BP was reported for Mumba by Brooks et al. (1990) without a 

description of its provenance.  An OSL study had previously been undertaken using 

samples from the site (Feathers, personal communication), although no ages have been 

reported from this work.  Without estimates of precision and adequate contextual and 

methodological information to support the reported age estimates, the reliability of these 

age estimates cannot be assessed in an informed, scientific manner. 

The inadequacy of the current chronology at Mumba is similar to the rest of the 

East African MSA archaeological record.  Its usefulness is extremely limited in regards 

to placing the significant archaeological features from Mumba in context within the 

sub-Saharan African archaeological record.  Appropriate comparisons cannot be made 

with existing palaeoenvironmental and genetic evidence to make appropriate inferences 

about the timing of and reasons for changes in technology and behaviour.  Despite the 

deficient state of the current Mumba chronology, however, several ages have been 

selectively used in the literature to support individual arguments.   

In order to overcome problems associated with the limited chronology, and to 

chronologically constrain the significant features of Mumba’s archaeology, OSL 

samples were collected for dating.  Quartz and feldspar grains from volcanic provinces 

are known to pose a variety of problems for luminescence dating (Fattahi and Stokes, 

2003; Tsukamoto et al., 2003; Westaway and Roberts, 2006).  In the East African Rift 

Valley, some samples of quartz have proven challenging for dating because of their 

undesirable OSL properties (e.g., Choi et al., 2006a), whereas other samples of quartz, 

and mineral mixtures dominated by the luminescence emissions from feldspars, have 
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been used to investigate the soil erosion history and pastoral Neolithic settlement of 

Tanzania and Kenya (Erikkson et al., 2000; Wright et al., 2007).  The Mumba deposits 

are predominantly derived from metamorphic and not volcanic sources, so it was likely 

that the mineral grains from these deposits would not exhibit the volcanic-associated 

poor luminescence behaviours.   

 

2.5.2 OSL sample collection 

In June 2007, 16 sediment samples were collected to assess the suitability of the 

quartz and feldspar grains for OSL dating.  Table 2.3 lists the geological units from 

which all samples were collected and their archaeological contexts.  Photographs of the 

approximate locations of nine of OSL samples are shown in Figure 2.7a and b.  The 

approximate positions of 15 of these samples are shown as filled circles on a section 

drawing of the stratigraphy of the site (Figure 2.5b); one sample was also collected from 

the Köhl-Larsen spoil heap to the west of the rockshelter (MR14).  Two of the OSL 

samples (MR12 and MR13) were collected from the northern section wall, but the 

majority of samples were collected from Trench 5 (MR1, MR2, MR3, MR4, MR5) and 

Trench 7 (MR6, MR7, MR8), which were originally excavated in 2005.  Both trenches 

were 2 x 2 m in plan area with maximum depths of 2.63 m and 0.92 m, respectively.  

Trench 5 spans Units A – C of Prendergast et al. (2007), equivalent to Beds I to III of 

Mehlman (1989), and ends at the boundary of Beds III and IV.  Trench 7 includes the 

base of Unit C and all of Units D – G, which correspond to Mehlman’s Beds IV and V.  

Five samples were collected from below Trench 7 (MR9, MR10, MR11, MR15, 

MR16), to obtain samples from Bed VI.  Since the 2005 investigation did not excavate 

this deep, the stratigraphic and archaeological associations of the samples are unclear.  

Mehlman stated that Bed VIA extended 2 m below Bed V.  If this is the case, then 

MR15 and MR16 are from Bed VIB.  However, given the sloping topography of the 

deposits, this cannot be unequivocally known.     

All samples were collected at night using dim, red-filtered torchlight (filtered 

using several layers of Lee 106 “primary red” filter paper: Lamothe, 1995) for 

illumination. The exposed faces of the excavation were cut back to uncover sediment 

that had not been exposed during excavation and to ensure that loose material was not 

sampled.  Due to the presence of large rocks in the deposit and the cemented nature of 
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some of the sediments, it was not practical to obtain samples by hammering plastic or 

metal tubes into the cleaned section faces. Instead, narrow slots and small-diameter 

holes were made in the deposit using trowels and an auger, and the excavated sediment 

was collected in plastic bags that were immediately wrapped in black plastic for protect- 

 
Table 2.3: List of OSL samples collected from Mumba rockshelter, their locations in the 
excavation, and their corresponding stratigraphic and archaeological associations.  

 
 

 
Figure 2.7: Photographs showing the approximate positions of nine of the OSL samples collected 
from Trench 5 and 7 at Mumba rockshelter. 

59 
 



 

ion from light and for transport to the laboratory. The resulting slots and holes were 

large enough to permit in situ gamma spectrometry measurements at each sample 

location.  Subsequent to collecting sample material for OSL measurement, sediment 

was collected for dosimetry and water content determination.  These samples were 

collected from inside the hole in the face of the excavation after OSL sediment sample 

removal, placed in a plastic bag, sealed with duct tape, and labelled. 

 

 

Moche Borago Rockshelter, Ethiopia 

 Moche Borago Rockshelter is currently under investigation by the Sodo Wolayta 

Archaeology Project (SWAP) team co-directed by S. Brandt (University of Florida, 

USA) and E. Hildebrand (Stony Brook University, USA).  One of the principal goals of 

the current investigations is to obtain independent ages for the archaeological sequence 

using a variety of methods.  Samples for conventional, ABOX-SC, and pyrolysis 

radiocarbon dating were collected in addition to samples for ESR and OSL dating.  As a 

consequence of the desire for truly independent ages, the SWAP team directors made 

very little information about the site available to the participating geochronologists.  

This lack of information, along with the lack of publications on the site, meant that there 

was little information available to assist with questions of sample context.  The only 

information offered in regards to Moche Borago has come from a heavily edited copy of 

the field report on the 2007 excavations (Brandt et al., 2007), the 2009 East African 

Quaternary Research Association (EAQUA) workshop presentation given by E. Fisher 

(Fisher et al., 2009), personal communications with E. Fisher in regards to the lithics, 

and the field notes taken by R.G. Roberts during OSL sample collection. 

 

2.6 Site setting 

 Moche Borago (37º45’17.8”E, 6º53’49.7”N) is a large rockshelter located near 

Sodo, Wolayta, in the southwest Ethiopian Highlands (Figure 2.8).  It is positioned at 

~2300 m above mean sea level, on the western flank of Mt. Damota (2800 m; Figure 

2.8b), a dormant volcano to the north of Lake Abaya.  The morphology of the cave has 

been interpreted as a basalt (i.e., lava) flow overlain by a lahar, which was, in turn, 
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overlain by another basalt flow (Brandt et al., 2007).  The rockshelter itself has formed 

within an erosional cavity in the ancient lahar features. 

 

 
Figure 2.8: Moche Borago Rockshelter.  a, Geographic location of Moche Borago in southwest 
Ethiopia.  b, Mount Damota.  c, Photograph of Moche Borago Rockshelter. 
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2.7 Stratigraphic and archaeological context 

 The rockshelter was originally excavated by a French team, directed by X. 

Guterez (University of Montpelier) in 1998.  Additional field seasons were conducted in 

2000, 2001 and 2002.  They excavated a 1.5 x 1 m test pit (H10 and half of G10 in 

Figure 2.9b) down to ~2 m below the surface.  The upper 80 cm contained a Holocene 

sequence of silts, sands and volcanic tephra that contained flaked stone artefacts, 

grindstones, pottery, pits, hearths and other LSA, Neolithic and Iron Age features.   

Underlying these deposits was a thick tephra (named BWT by SWAP in 2006), 

under which was a metre of silts, sands, and tephra containing LSA and MSA artefacts.  

The French team proceeded to excavate a 20 m2 area in the northwest portion of the 

rockshelter (Figure 2.9), focusing on the Holocene deposits to elucidate the origins of 

food production in the Horn of Africa.  This main area of French excavations was later 

designated as the Block Excavation Area (BXA) by SWAP, and is denoted by light 

shading in Figure 2.9b.  In addition, they excavated a 1 x 1 m test unit (TU2 in Figure 

2.9b) near the centre of the rockshelter. 

 The SWAP team has been conducting ongoing excavations at the site since 

2006.  In their pilot field season they completed their official goals of: 1) defining the 

areas excavated by the French team, 2) constructing a GIS database for the site, 3) 

recording the profiles excavated by the French for integration into the GIS database, 4) 

extending excavations, 5) obtaining samples for dating, and 6) assessing changes in 

stone tool technology throughout the sequence.  The subsequent field seasons expanded 

on each of these issues, with a detailed stratigraphic interpretation and a summary of the 

investigation of the lithics (conducted by E. Fisher) made available.  The SWAP team 

has mainly focussed their archaeological investigations on the BXA.  A brief outline of 

the stratigraphic sequence (Brandt et al., 2007) and the associated lithics (Fisher, 

personal communication) from this area is described below and is illustrated in Figure 

2.10. 

 

PKT: The base of the 2007 excavations was an archaeologically sterile layer of dense 

ash or lahar. 
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Figure 2.9: Moche Borago Rockshelter.  a, Photograph taken from the west of the rockshelter 
showing the BXA, spanning from left to right in the foreground.  b, Planview of the excavations at 
Moche Borago Rockshelter.  The light shading indicates the BXA.  Modified from a graphic by E. 
Fisher in Brandt et al. (2007). 
 

T* Group Deposits:  Four stratigraphic units (VHG, CTT, MHD, and DCC) comprise 

the T* Group, which represents periods of dense human occupation.   

The lowermost unit, VHG, is a layer of abundant gravels in a clay matrix.  The 
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overlying MHD is a series of stratified hearth deposits, indicating a sustained human 

presence.  Between VHG and MHD in square G10 is a localised ash lens surrounded by 

clay, named CTT.  Above MHD is a thick layer with a high clay component.  In the T* 

Group deposits, Mode 3 Levallois points are found in association with small foliate 

points made from end-struck flakes and blades with dorsal trimming.  The foliate points, 

of which those from lower in these deposits show affinities with Mode 3 Levallois 

technology, exhibit features that suggest that they were hafted (e.g., shallow bi-lateral 

notching or non-uniform lateral edge retouch).   

 

YBT: Overlying the T* Group is a tephra that is composed of ash intermixed with 

sandy-silt deposits.  While this tephra represents an occupational hiatus, artefacts are 

still present in very low densities, suggesting sporadic occupation during periods of 

volcanic activity (Brandt et al., 2007).  

 

S* Group Deposits:  Four stratigraphic units (OBMB, LVDBS, LMGV, and VDBS) 

comprise the S* Group.  The lowermost unit, OBMB, is a silty-clay that is broadly 

distributed in the test pit, but has been incised or removed subsequently in some areas.  

Above this lies LVDBS, a loose, dark brown silt that represents a channel fill deposits, 

which accumulated during a period of increased humidity.  The overlying VDBS 

appears to cap the channel fill, and is composed of dark silts with an abundance of lithic 

artefacts.  In the S* Group deposits, in spite of the presence of small Levallois cores, no 

Mode 3 technology projectile points were present.  The projectile points in these 

deposits begin to show a more elongate foliate shape, likely the result of being shaped 

from blade blanks.  They are uniformly small, unifacial or part-bifacial, and exhibit 

edge retouch and dorsal trimming, as well as features that suggest that they were hafted.  

In addition, small backed bladelets and a single crescent were recovered from within 

these deposits. 

 

YBS:  Deposits from a second volcanic event overlie the S* Group Deposits.  YBS is an 

archaeologically sterile unit composed of a series of ash layers, interstratified with thin 

dark lenses.  The absence of any cultural materials suggests that the volcanic event 

forced the rockshelter to be abandoned. 
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Figure 2.10: Pleistocene deposits of the North profile of square G10 and associated stratigraphic 
layers.  Modified from Fisher et al. (2009). 
 

R* Group Deposits:  Three stratigraphic units (RGCB, RCGA, and RCA) compose the 

R* Group, which overlies the YBS tephra.  The sediments that comprise these deposits 

are red to reddish-brown clays and silty clays, with round to semi-round inclusions and 

abundant obsidian flakes.  The red colour was posited to indicate a change in oxidation 

of the iron within the deposits due to sub-aerial exposure as a palaeosol.  In the R* 

Group deposits, the projectile points show a more elongate foliate shape.   

 

BWT:  This layer is a 20 cm thick, archaeologically sterile tephra.  It is layer is a dense, 

homogeneous white ash lens, which is a clear marker tephra throughout the site. 
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 The general technological trend throughout the assemblage from BXA suggests 

a convoluted transition from Mode 3 to Mode 4/5 lithic technologies (Fisher, personal 

communication).  Instead of the former technology being replaced by the latter as one 

moves up the archaeological sequence, the frequency of Mode 3 artefacts (e.g., 

Levallois points and cores) is reduced, though ever present, while the frequency of 

Mode 4/5 artefacts (e.g., blade cores, microliths, foliate projectile points) increases 

through time.  In addition, there is a high frequency and diversity in the projectile 

points, which are present throughout the entire sequence below BWT.    The diversity of 

sizes and shapes of projectile points throughout the sequence suggests that multiple 

hafted projectile technologies were being used simultaneously at the site.  This is 

supported by the contemporaneous diversity of core types present throughout the 

sequence. 

 

2.8 Archaeological significance and OSL sample collection 

 Given the size of the rockshelter (>100 m2) and its layout, conditions were likely 

favourable for human habitation, sediment deposition, and preservation of 

archaeological materials.  Correspondingly, the current excavations have revealed a 

long sequence of archaeological material punctuated by occasional volcanic deposits 

and episodes of fluvial activity.  The duration and richness of the archaeological 

materials in the sequence is unparalleled for the region and will allow reconstructions of 

technological and behavioural change over periods of the Late Pleistocene.  

Constraining the timing of these changes could elucidate the potential migrations of 

humans within and out of Africa.  The richness of the archaeological sequence is 

probably, at least in part, due to the rockshelter’s location in the southwest highlands of 

Ethiopia.  Due to their position relative to the regional atmospheric circulation patterns, 

the southwest highlands are one of the wettest regions in northeast Africa and could 

have served as a refugium for humans during periods of increased aridity (Brandt et al., 

2007).  Additionally, the varied topography means that a range of alititudinally 

determined environments would have existed, resulting in regional stability as an area 

of human occupation (Brandt et al., 2007). 

 In order to try to constrain the archaeological sequence at Moche Borago, OSL 

samples were collected by R.G. Roberts in June 2007.  All samples are listed in Table 
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2.4 along with their stratigraphic context and depth below the current surface of the 

rockshelter.  Most of the samples that are associated with MSA and LSA assemblages 

were collected from the East face of the excavation square G10.  Only two samples 

(MB11 and MB12) were collected from the West face of excavation square G9.  

Samples MB13 to MB17 were collected from the Holocene section, in the West face of 

square F9.  All samples were collected at night using red-filtered head torches for 

illumination.  Samples were collected by creating narrow slots and small-diameter holes 

in the face using trowels and collecting the excavated sediment in plastic bags, which 

were immediately wrapped in black plastic for protection from light and for transport to 

the laboratory.  The resulting slots and holes were used for in situ gamma spectrometry 

measurements at each sample location.  Additional bags of sediment were collected 

from inside each OSL sampling hole for laboratory measurements of the environmental 

dose rate and sediment moisture content. 

 
Table 2.4: List of OSL samples collected from Moche Borago rockshelter, their locations in the 
excavation, and their corresponding stratigraphic associations.  
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As discussed in Chapter 1, quartz and feldspar grains of volcanic origin have 

proven to commonly have malign luminescence characteristics (e.g., Fattahi and Stokes, 

2003; Tsukamoto et al., 2003, 2007; Choi et al., 2006a; Westaway and Roberts, 2006; 

Westaway, 2009).  Since the Moche Borago deposits are predominantly derived from 

volcanic sources, including lahars, ashes and tephras, samples were not expected to 

have straightforward OSL properties.  Still, the volcanic origin of these samples and the 

metamorphic origin of samples from Mumba would provide an interesting comparison 

between the luminescence properties of the quartz and feldspars from the two different 

provenances. 

 

 

Summary 

 Mumba and Moche Borago rockshelters both have long, continuous records of 

MSA and LSA occupation.  Like most East African sites discussed in Section 1.5, 

neither of these sites has a robust chronology.  Temporally unconstrained transitions in 

technologies are features of the archaeological sequences at both sites, and severely 

limit archaeologists’ ability to make appropriate interpretations.  Obtaining a 

chronology for the archaeological sequence from Moche Borago will constrain changes 

in technologies and behaviours.  Given the site’s strategic position in the Ethiopian 

Highlands, this information may elucidate Late Pleistocene human migrations within 

and out of Africa.  At Mumba, the timing of the emergence of the backed piece-based 

Mumba Industry can yield insights into the development of regional LSA technologies.  

The timing of the appearance and proliferation of OES bead ornaments at Mumba in 

Bed V-upper and Bed III-lower (respectively) can help elucidate the emergence and 

development of symbolic behaviours in East Africa.  A chronology for Bed VIB, VIA, 

V and III at Mumba will reveal the span of time over which distant raw materials came 

to the site, likely via social interaction and exchange networks.  It was, thus, the 

objective of this research to construct robust chronologies for the MSA and LSA 

archaeological sequences of these two sites.  The following two chapters will review the 

methodological aspects of obtaining and OSL age. 



Chapter 3: Methodology: OSL 

Chapter 3: Methodology: Optically Stimulated Luminescence (OSL) 
 
 In this chapter, the characteristics of the OSL signal are introduced and 

discussed, along with the laboratory instrumentation and procedures used to measure 

the luminescence emissions and estimate an equivalent dose (De).  As discussed in 

Section 1.4.6, the OSL age (ka) is an estimate of the amount of time since a mineral 

grain was last exposed to sunlight and subsequently buried, and is calculated as: 
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This chapter, thus, discusses the numerator in the luminescence equation (Equation 3.1).  

The denominator in this equation is the dose rate and will be discussed in the next 

chapter (Chapter 4).  While both quartz and potassium (K)-feldspars are used as 

dosimeters and discussed in this thesis, the focus of this chapter is quartz.  The 

luminescence produced by feldspars will be discussed in detail in Chapter 7. 

 

3.1 OSL background 

 The motivation for the initial development of OSL was to establish a method for 

dating sediments that was better than thermoluminescence (TL) (Aitken, 1985, 1998).  

TL utilises heat, whereas OSL utilises light, to stimulate the emission of photons 

(luminescence) from mineral grains.  The photons are then detected using a sensitive 

photomultiplier tube (PMT) in the laboratory (Aitken, 1998).  The TL signal is easily 

bleached when a material is heated, but it is much more difficult to bleach by sunlight in 

unheated materials (Aitken, 1985).  Thus, the TL signal is well suited to determining the 

age of heated materials, such as pottery.  Parts of the natural TL signal of unheated 

sediments, however, often contain a residual signal that was accrued prior to deposition 

and which the bleaching at deposition had been inadequate to remove (Aitken, 1998).  

The ability to use visible light to stimulate luminescence from unheated sediments to 

satisfactorily estimate the age of deposition was first demonstrated by Huntley et al. 

(1985).  This was achieved by stimulating quartz grains with green light from a laser.  

Hütt et al. (1988) later showed that infrared (IR) light could be used to stimulate 

luminescence (i.e., IRSL) from feldspar grains.   
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Figure 3.1: Schematic representation of the energy band model of OSL production (modified from 
Aitken, 1998).  a, During irradiation, natural radiation ionises electrons and holes to become 
trapped at defects, known at traps (T) and luminescence centres (L), in the crystal lattice of quartz.  
b, During storage, electrons and holes remain trapped in defects, which have a specific depth (E) 
below the conduction band.  c, After being stimulated with light, electrons are evicted from their 
traps into the conduction band.  From there, they may reach a luminescence centre where they 
recombine and emit light. 
 

 The most widely accepted model of the mechanics of luminescence production 

in quartz is the ‘energy band’ model (Aitken, 1985, 1998; Preusser et al., 2009).  A 

schematic representation of the energy band model is presented in Figure 3.1. Trapped 

charge within the crystal lattice of a mineral grain is the agent of luminescence 

production.  Electrons are ionised into defects in the crystal structure of a grain where 

they become trapped (Figure 3.1a), with the population of trapped electrons 

accumulating over time.  The lack of an electron in the valence band results in a local 

negative charge deficit referred to as a ‘hole’, which may also become trapped at defects 

(Preusser et al., 2009).  When a hole gets trapped in the forbidden zone (the region 

between the valence and conduction bands), it can act as a ‘recombination centre’.  

When an electron is evicted from its trap (due to stimulation by heat or light) it can 

combine with a hole at a recombination centre, and release energy in the process 

(Aitken, 1985; Preusser et al., 2009).   

There are several types of recombination centres depending on the defect type in 

which a hole is trapped.  ‘Luminescence centres’ release energy in the form of a photon 

(the wavelength of which is dependent on the defect that has formed the luminescence 

centre) when they combine with an electron (Figure 3.1c; Aitken, 1998; Preusser et al., 

2009).  Other types of recombination centres release heat.  While only one or two 

electrons can be stored in a single trap, many can accumulate in a single ‘type’ of trap 

until all individual traps of that type are filled, reaching a state known as ‘saturation’ 
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(Aitken, 1998).  The different trap types (hereafter referred to as ‘traps’) can be defined 

as having different depths (E, described in terms of the unit electron-volts [eV]) below 

the conduction band (Figure 3.1b).  Different traps are responsible for the different 

luminescence signals that are observed; i.e., the various TL peaks (on a luminescence 

vs. temperature plot) and components of the OSL signal.  The luminescence of a 

mineral grain resulting from optical stimulation delivered at a constant power 

(sometimes referred to as continuous wave [CW]-OSL) takes the form of a decay curve 

(Figure 3.2) and would be expected to decay exponentially if a single trap type were 

involved (Smith and Rhodes, 1994).  Consequent to the fact that the OSL signal in 

quartz is derived from multiple traps, CW-OSL decay curves have been shown to be 

best fitted by a number of exponential decay functions (e.g., Smith and Rhodes, 1994; 

Bailey et al., 1997).   

 

 
Figure 3.2: Example of an OSL decay curve from a multi-grain aliquot of quartz from Mumba. 

 

Bailey et al. (1997) identified the existence of three different components in the 

CW-OSL decay curves, namely a ‘fast’, ‘medium’ and ‘slow’ component.  The fast 

component of the OSL signal is of most interest in dating applications, since the most 

commonly used procedure (the single-aliquot regenerative-dose [SAR] procedure of 

Murray and Wintle, 2000; see Section 3.3) has been designed to deal with this 

component only.  This component has been shown to be related to the 325°C TL peak 

(Smith et al., 1986; Smith and Rhodes, 1994; Spooner, 1994a), suggesting a common 

source trap for the two luminescence signals.  The components that make up the 
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luminescence signal of a single or multi-grain aliquot of quartz can be isolated by fitting 

the CW-OSL decay curve with multiple exponential functions (e.g., Bailey et al., 1997).  

The components can be visualised more easily by linearly increasing the intensity of 

optical stimulation (referred to as linearly modulated [LM]-OSL; Bulur et al., 1996).  

The various components and the LM-OSL technique will be discussed in Section 3.5. 

 

3.2 Sample preparation and instrumentation 

3.2.1 Preparation 

Sediment samples were prepared in the laboratory using standard methods 

(Aitken, 1985; Wintle, 1997).  The aim of sample preparation was to recover pure, 

coarse sand-sized fractions of quartz and K-feldspar without depleting the natural 

luminescence signal in the process.  To this end, all laboratory work was performed in 

red-light conditions in which all lights were fitted with multiple layers of Lee 106 

“primary red” filter paper (Lamothe, 1995).  The light sources used in the laboratory 

included fluorescent tubes fixed in the ceiling and head-torch light-emitting diodes 

(LEDs).  The latter were used in proximity (tens of centimetres) to OSL samples, 

particularly when mounting material on to discs for measurement.   

All samples were unpacked and soaked in 10% hydrochloric (HCl) acid, which 

reacts with and dissolves carbonates.  When no more reaction was observed, samples 

were rinsed with tap water and then distilled water.  Samples were then soaked in 10% 

hydrogen peroxide (H2O2), which reacts with and digests any organic matter.  When no 

more reaction was observed, samples were rinsed and soaked in 50% H2O2 overnight.  

After rinsing with tap water and distilled water, samples were dried in a 50°C oven 

before being dry-sieved using an electric sieve shaker.  All mineral grains >212 μm and 

<180 μm in diameter were packed into light-tight plastic bags and stored.   

Using the 180-212 μm diameter grain-size fraction, heavy minerals (>2.70 

g/cm3) were separated from quartz and feldspar grains using a sodium polytungstate 

solution with a density of 2.70 g/cm3.  Quartz grains (density of 2.62–2.70 g/cm3) were 

then separated from feldspar grains using a solution with a density of 2.62 g/cm3.  K-

feldspar grains (density of 2.53 – 2.58 g/cm3) were separated from sodium (Na)-feldspar 

using a solution with a density of 2.58 g/cm3.  Finally, for K-feldspar separates from 

Moche Borago, a fourth separation was performed at a density of 2.52 g/cm3 to remove 
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most of the large quantities of pumice present in the sediments.  The isolated quartz 

grains were then soaked in 48% hydrofluoric (HF) acid for 40 minutes to dissolve any 

remaining feldspar grains that were not removed by density separation.  A second 

reason for the HF acid treatment was to etch the outer rind of each grain that was 

exposed to external alpha radiation (Wintle, 1997; Aitken, 1998).  This is desired in 

order to simplify dosimetric calculations.  The K-feldspar fraction was also soaked in 

HF acid (10% for 10 minutes) to etch the outer, alpha particle-exposed rind of each 

grain.  The quartz and K-feldspar separates were then soaked in concentrated HCl acid 

for 40 minutes to remove any precipitated fluorides.  After rinsing and drying, the 

mineral separates were then sieved again to retain the 180-212 μm grain-size fraction.  

These preparation steps were performed to isolate and prepare the desired mineral 

(quartz or feldspar) for the measurement of the luminescence signal. 

 Following sample preparation, mineral grains were mounted on to discs, which 

were then loaded into the luminescence measurement instruments (Section 3.2.2).  

Multi-grain aliquots of each sample were mounted on stainless steel discs with a 

diameter of 10 mm.  A silicone oil adhesive (Silkospray) was sprayed on to the clean 

discs through a mask of the desired diameter.  Grains were then mounted on to the disc, 

sticking to the area of Silkospray as a monolayer.  The mask-size diameters used in this 

study were 1, 3, 5 and 7 mm, which correspond to ~10–20, ~100–200, ~300–500 and 

~500–1000 grains per aliquot, respectively (see Appendix 1).  Single grains were 

mounted onto 10 mm in diameter, gold-coated aluminium discs.  These discs have 100 

holes, each with a diameter of 300 μm, laid out in a 10 x 10 grid.  Individual grains were 

placed into the holes by brushing sample material across the top of the disc.  Given the 

sizes of the grains and holes, it was assumed that one grain was deposited in each hole.  

This was checked by observing each disc under a microscope to ensure that only one 

grain occupied each hole. 

 

3.2.1.1 Contamination of stainless steel discs 

 A potential source of contamination of the luminescence signal that has not been 

discussed in the literature is the cleanliness of the stainless steel discs on to which grains 

of sample material are mounted.  During multi-grain aliquot measurements of the UV 

emissions from K-feldspar separates of MB3 in September 2009, a large TL peak at 
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110°C was measured.  Since K-feldspars do not have a 110°C TL peak, this suggested 

one of two scenarios: 1) that there was quartz contamination in the K-feldspar separates 

from Moche Borago, or 2) that the discs on to which the sample materials were 

mounted were contaminated with quartz.  The latter was shown to be the case when 

experiments, in which empty stainless steel discs were irradiated, heated, and optically 

stimulated using the blue LEDs, resulted in the measurement of 110°C TL peaks and 

OSL decay curves (Figure 3.3).  After visual and microscopic examination showed no 

grains on the surfaces of the measured discs or the carousel on to which the discs are 

mounted, it was concluded that the surface of the discs or carousel was contaminated 

with microscopic quartz residue.  This was confirmed when the empty stainless steel 

discs were removed from the carousel and the empty positions were irradiated with 59 

Gy, heated to 300°C, and stimulated with blue LEDs for 40 s at 125°C.  No TL peaks or 

OSL decay curves were measured (inset in Figure 3.4), indicating that the measured TL 

peaks and OSL decay curves were not caused by contamination of the carousel.   

 

 
Figure 3.3: Several empty stainless steel discs were irradiated, heated to 300°C, and optically 
stimulated.  The OSL decay curve and the TL curve with the 110°C TL peak (presented in the 
inset) indicate that there was a quartz residue contamination on the otherwise blank discs. 
  

Upon isolating the stainless steel discs as the source of contamination, a series of 

experiments were performed to establish a cleaning procedure that would ensure the 

cleanliness of the discs.  Results are presented in Figure 3.4.  First, the contaminated 

discs were wiped down on both sides with a sterile cloth.  A 110°C TL peak and an 
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OSL decay curve were subsequently measured for both discs, with the intensities of 

both signals being approximately half of those prior to cleaning.  This suggested that the 

contamination was on the surface of the discs and could potentially be abraded off.  In 

the second test, discs were next rinsed in distilled water and soaked in methyl ethyl 

ketone (MEK) for 30 minutes to dislodge any contaminants on the surface.  The discs 

were again rinsed in distilled water, and then in acetone prior to being measured.  

Following this treatment, both discs produced a 110°C TL peak and an OSL decay 

curve, which were of the same intensity as that following the previous cleaning 

treatment.  In the final experiment, the discs were rinsed in water and then abraded with 

1200 grit sandpaper for approximately 10 s to remove any residual material from the 

surface.  Discs were then rinsed in acetone, then MEK, then water and placed in an 

ultrasonic bath for several minutes before being rinsed with distilled water and dried.  

After performing this procedure, neither disc produced a 110°C TL peak or OSL decay 

curve.  Consequently, this cleaning procedure was performed on all stainless steel discs 

prior to aliquot preparation for luminescence investigations. 

 

 
Figure 3.4: TL curves measured for the same blank stainless steel disc after various cleaning 
methods.  “Empty disc” is the TL curve measured for the disc after standard cleaning.  The disc 
was then wiped with a sterile cloth and measured (“Cloth”).  The disc was then soaked in methyl 
ethyl ketone and measured (“MEK”).  The disc was then abraded with 1200 grit sandpaper, rinsed 
in water and acetone, and measured (“Sandpaper”), a treatment that resulted in the removal of the 
110°C TL peak.  The inset shows the TL curve measured when no stainless steel disc was measured.  
The lack of any TL peaks indicates the source of quartz contamination is the stainless steel discs 
and not the carousel. 
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3.2.1.2 Implications for other multi-grain aliquot investigations 

It is believed that disc contamination was not a problem for any other multi-

grain aliquot investigations discussed in this thesis.  Most measurements using multi-

grain aliquots of quartz (Chapter 5) were performed between November 2007 and June 

2008.  LM-OSL experiments performed on multi-grain aliquots were among the last 

experiments to be performed in this period of time.  Eight blank stainless steel discs, 

chosen at random, were used for the measurement of instrumental background (Section 

3.5.2.1).  Empty discs were irradiated, heated to 260°C and optically stimulated in a 

linearly modulated fashion.  None of the discs produced an LM-OSL signal typical of 

quartz, only producing signals typical of background measurement (e.g., Choi et al., 

2006b).  Additionally, none of the discs produced a 110°C TL peak.  It can thus be 

assumed that the batch of discs used during and prior to LM-OSL experiments in June 

2008 were free from quartz residue.  All discs used for multi-grain aliquot 

measurements made after September 2009 were cleaned using the procedure described 

above prior to mounting sample material. 

 

3.2.2 Instrumentation 

 All measurements performed during this study were made using three Risø 

automated TL/OSL readers housed in the OSL laboratory at the University of 

Wollongong.  The designation and model of the three Risø readers and the samples 

measured with them are presented in Table 3.1.  Risø 2 and Risø 3 have single-grain 

attachments, and Risø 4 was used for all LM-OSL and K-feldspar measurements 

presented in this thesis.  All readers used in this study are computer-controlled by Mini-

Sys units that are described by Markey et al. (1997). 

 

3.2.2.1 Irradiation sources 

 All laboratory radiation sources are 90Sr/90Y beta irradiators installed in each 

Risø reader.  Each source is mounted in a stainless steel, vertically oriented wheel 

positioned above the carousel containing the sample discs.  When the source faces 

upwards, the samples are not irradiated.  When the wheel is rotated 180°, the source 

faces the sample, thereby irradiating it (Markey et al., 1997).  Risø 2 and Risø 3 were 

calibrated by H. Yoshida in October 2001 and March 2005, respectively and Risø 4 was 
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calibrated by Z. Jacobs.  The dose rate of each beta source is recalculated daily to adjust 

for the natural decay of the source (half-life 28.79 years; Chu et al., 1999).  The dose 

rate received by grains loaded on to aluminium discs differs from that of stainless-steel 

discs by a factor of 0.9595 (Risø 2) and 0.9413 (Risø 3).  In addition, the beta source on 

Risø 3 does not deliver a spatially uniform dose to all single grains on an aluminium 

disc (e.g., Thomsen et al., 2005), and this has been considered. 
 
 
Table 3.1: Information about the three Risø TL/OSL readers, housed at the University of 
Wollongong, that were used to measure luminescence from mineral separates in this thesis. 

 
 

3.2.2.2 Stimulation sources 

Risø 2 and Risø 3 have four clusters of seven blue LEDs (~470 ± 30 nm) that 

can deliver a total power of ~40 mW/cm2.  Risø 4 is equipped with clusters of 42 blue 

LEDs (470 nm) that can deliver a power of 50mW/cm2.  In order to minimise the 

amount of directly scattered light that reaches the PMT cathode, a green, long-pass filter 

(GG-420) is placed in front of each cluster of blue LEDs.  All readers are also fitted 

with an IR stimulation source.  Risø 2 and Risø 3 have three clusters of seven IR LEDs 

(875 nm) that deliver ~135 mW/cm2 to the sample (Bøtter-Jensen et al., 2003).  Risø 4 

is fitted with a 1 W IR laser diode (830 nm) that can deliver a power density of 300 

mW/cm2. 

Risø 2 and Risø 3 are also equipped with a single-grain laser system attachment 

that allows the stimulation of individual grains (Bøtter-Jensen et al., 2003).  This system 

contains a 10 mW 532 nm Nd:YVO4 solid-state diode-pumped laser for green-light 

stimulation.  Risø 3 also contains a 150 mW 830 nm IR laser for single-grain IR 

stimulation.  The maximum power density of the green and IR lasers is ~50 and ~500 

W/cm2 respectively (Bøtter-Jensen et al., 2003). 
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3.2.2.3 Signal detection 

 Every Risø reader used in this study was mounted with a blue-sensitive bi-alkali 

Electron Tubes Ltd. 9235QA photomultiplier tube (PMT).  Individual photons (e.g., the 

luminescence emitted by an optically stimulated grain) are counted by the PMT when 

they interact with a photosensitive cathode mounted inside a vacuum tube within the 

PMT.  The range of wavelengths of photons that is desired can be isolated by mounting 

coloured glass filters in front of the PMT.  For quartz measurements, the ultraviolet 

(UV) emissions (270-370 nm) were detected after passing through two 3 mm-thick 

Hoya U-340 filters.  Several of the emissions from K-feldspar samples were tested to 

deduce optimal measurement conditions.  This is discussed in detail in Section 7.2.1, 

where the various filter combinations used to measure these emissions are presented 

(Table 7.1).   

 

3.3 Equivalent dose estimation: The single-aliquot regenerative-dose (SAR) 

procedure 

 Many methods for estimating the De value have been used in the past for TL and 

OSL dating studies.  OSL methods that employed multiple aliquots to estimate De 

values were initially developed (e.g., Huntley et al., 1985, 1993; Prescott et al., 1993).  

However, normalisation techniques were required to account for variation in the 

luminescence behaviours of each individual aliquot (Aitken, 1998).  Methods that 

involve the repeated measurement of a single-aliquot (single- or multi-grain) to estimate 

the De, such as the single-aliquot additive-dose (SAAD) technique (Duller, 1991; 

Murray et al., 1997), the single-aliquots regeneration and added dose (SARA) technique 

(Mejdahl and Bøtter-Jensen, 1994, 1997), and the single-aliquot regenerative-dose 

(SAR) technique (Murray and Roberts, 1998; Galbraith et al., 1999; Murray and 

Mejdahl, 1999; Murray and Wintle, 2000, 2003) avoid the need for inter-aliquot 

normalisation.  The problem with single-aliquot procedures is that repeated cycles of 

irradiation, heating, and optical stimulation instigate sensitivity changes in the aliquot 

(e.g., Zimmerman, 1971; Stoneham and Stokes, 1991; Roberts et al., 1993; Stokes, 

1994a; Junger and Bøtter-Jensen, 1994).  The SAR procedure was designed to 

incorporate a method that will monitor and correct for this sensitivity change using the 

110°C TL peak (Murray and Roberts, 1998).  It was later modified to use the OSL 
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response from a small radiation dose (a ‘test dose’), administered immediately after 

OSL measurement of the natural and regenerated doses, to correct for sensitivity 

changes (Roberts et al., 1998a, 1999; Galbraith et al., 1999; Murray and Mejdahl, 1999; 

Murray and Wintle, 2000, 2003; Wintle and Murray, 2006).  The SAR procedure allows 

for the repeated irradiation, heating and optical stimulation of individual aliquots to 

produce regenerated luminescence curves while regularly correcting each measurement 

for any sensitivity changes.  Using this procedure, individual De values can be estimated 

from individual aliquots, allowing for the generation of many De estimates for each 

sample.   

The SAR procedure that provided the general framework for luminescence 

investigations in this thesis is that described by Murray and Wintle (2000, 2003), and is 

outlined, step-by-step, in Table 3.2.  It consists of the measurement of the OSL from the 

natural dose (LN) and from a series of ‘regenerative doses’ (Lx).  The measurement of 

LN and each Lx is followed by the measurement of the OSL from a small, standardised 

test dose (TN and Tx, respectively).  Murray and Roberts (1998) and Wintle and Murray 

(2000) recommend that optical stimulation be carried out for 40 s at a temperature of 

125°C to avoid re-trapping of optically evicted charge into the thermally unstable trap 

responsible for the 110°C TL peak.  Each Lx is then divided by its subsequent Tx (Lx/Tx) 

to create a series of sensitivity-corrected regenerative-dose points.  These values are 

used to construct a sensitivity-corrected dose-response curve on to which the sensitivity-

corrected natural (LN/TN) is projected and interpolated on to the dose axis to obtain the 

De (Figure 3.5).  The series of regenerated doses should be chosen to bracket the 

expected De value, with at least one regenerative dose lower than and larger than the De.  

Every time the SAR procedure was used in this study, between 3 and 5 different 

regenerative doses were used. 

Prior to the measurement of OSL (i.e., LN, TN, Lx, and Tx), a high temperature 

preheat or cutheat is applied to the aliquot.  Preheats are commonly held for either 5 or 

10 s at a temperature between 160°C and 300°C.  A cutheat is a preheat that is held for 

0 s.  The main purpose of preheating a sample prior to OSL measurement is to remove 

charge from traps that are filled by laboratory irradiations but are empty when the 

natural signal is measured.  These traps (e.g., those associated with TL peaks at 110°C, 

160°C and 280°C) are of variable thermal stability and optical sensitivity (Roberts et al.,  
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Table 3.2: Step-by-step outline of the SAR procedure (Murray and Wintle, 2000, 2003).  Steps 1 to 
5 are used to obtain the sensitivity-corrected natural (LN/TN).  Steps 7 through 13 are used to obtain 
the sensitivity-corrected regenerative-dose points, which are used to construct a sensitivity-
corrected dose-response curve.  Step 6 is an elevated temperature blue-light bleach (hot optical 
wash [HOW]; see text for details).  

 
 

 

 
Figure 3.5: Example of a sensitivity-corrected dose-response curve from a single grain of quartz 
from sample MR3. 
 

 

1993; Godfrey-Smith, 1994; Wintle and Murray, 1999).  In the conventional SAR 

procedure, the preheat (160°C to 300°C) is held for 10 s prior to measurement of LN and 

Lx and a cutheat (160°C to a temperature less than that of the preheat) is made prior to 

measurement of TN and Tx (Figure 3.5) (Murray and Wintle, 2003).  The reason for the 

80 
 



Chapter 3: Methodology: OSL 

less stringent preheat prior to the measurement of the test dose is to minimise additional 

sensitivity change during the test dose cycle, while still removing the thermally unstable 

components that may interfere with the main OSL signal.  High temperature 

regenerative and test dose preheats (e.g., 260°C and 220°C) have been shown to reduce 

the effects of unwanted components in the OSL signal (e.g., Jain et al., 2003; Singarayer 

and Bailey, 2003; Choi et al., 2003; Jacobs et al., 2006a).  Based on these studies all 

applications of the SAR procedure using quartz described in this thesis include a natural 

and regenerative dose preheat of 260°C for 10 s and a test dose preheat of 220°C for 5 s, 

unless otherwise stated. 

Another thermal treatment that is often added to the SAR procedure is an 

elevated temperature (280°C) blue-light bleach at the end of every Lx/Tx cycle, directly 

after measurement of the test dose (Murray and Wintle, 2003).  Hereafter, this bleach 

will be referred to as a ‘hot optical wash’ (HOW).  The HOW, suggested by Murray and 

Wintle (2003) and tested by Jacobs et al. (2006a), serves two purposes.  First, it reduces 

the effects of charge transfer, which involves the accumulation of charge in light-

insensitive traps following the measurement of the test dose. The phenomenon of re-

trapping of charge during laboratory heating is known as thermal transfer (Smith and 

Rhodes, 1994; Rhodes, 2000).  During the subsequent preheat following the 

regenerative dose, which is more severe than the preheat following the test dose, this 

accumulated charge may be thermally transferred into optically-sensitive traps, resulting 

in an aberrant OSL signal (Murray and Wintle, 2003).  Charge transfer is also referred 

to as ‘recuperation’ by some authors (e.g., Aitken and Smith, 1988).  Any charge 

transfer that may occur during the SAR procedure is monitored using the ‘recuperation 

test’ as described in Section 3.3.2.1.  A second, related, purpose of a HOW is to reduce 

the build of up the S3 component of Jain et al. (2003) (see Section 3.5), which is 

thought to be related to the geologically unstable trap associated with the TL peak at 

280°C (Singarayer, 2002; Singarayer and Bailey, 2003; Arnold et al., 2008).  The build 

up of the S3 component throughout the SAR sequence of measurements could lead to 

De, and thus age, underestimation (Jacobs et al., 2006a).  Based on these studies, a 

HOW was administered following the measurement of the test dose (Tx) for all 

applications of the SAR procedure using quartz described in this thesis, unless 

otherwise stated 
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3.3.1 The sensitivity-corrected dose-response curve 

 The sensitivity-corrected dose-response curve, on to which the sensitivity-

corrected natural is projected to obtain the De, is the foundation of the SAR procedure.  

All OSL analyses in this study were conducted using the Luminescence Analyst 

program (Version 3.22b), written by G.A.T. Duller (Duller, 2007).  This section details 

the calculation of the sensitivity-corrected values and the construction of the dose-

response curve. 

 

3.3.1.1 Calculation of Lx/Tx 

 To build a sensitivity-corrected dose-response curve, the value of Lx/Tx must be 

calculated for each regenerative-dose cycle.  This value is calculated using the 

background-subtracted signal of the OSL decay curve following a regenerative dose 

(Lx) and its subsequent test dose (Tx), which then expressed as a ratio (Lx/Tx).  The 

value of LN/TN is calculated in the same way.  The background-subtracted OSL signal is 

calculated by summing the initial portion of the decay curve (x channels) and 

subtracting a mean ‘late light’ background signal.  The background signal is calculated 

as the sum of the last m channels divided by m/x.  The purpose of performing the ‘late 

light’ background subtraction is to remove any instrumental noise and remaining signal 

from slower OSL components from the initial signal, ensuring that only the fast 

component is sampled (Murray and Wintle, 2000). 

 Four different initial and background signal combinations were used in this 

thesis.  For quartz from Mumba, multi-grain aliquots were stimulated with the blue 

LEDs at 70% power for 40 s.  Unless otherwise noted, the OSL signal used for all 

calculations was the sum of the first 0.45 s of stimulation with the last 8.0 s of signal 

used to calculate a background (i.e., the ‘late-background’ approach).  An ‘early-back-

ground’ approach (Cunningham and Wallinga, 2010) was also tested for multi-grain 

aliquots of quartz from Mumba (Section 5.4.3).  This approach entailed using the sum 

of the first 0.45 s of signal minus a background calculated from the subsequent 1.31 s of 

signal.  For all feldspar measurements, multi-grain aliquots were stimulated with the IR 

diodes at 90% power for 100 s.  The IRSL signal used for all calculations was the sum 

of the first 2.0 s of stimulation with the last 10.2 s used to calculate the background.  For 

all quartz measurements of single grains, the green laser was used at 90% power for 2.0 
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s.  The default OSL signal used was the sum of the first 0.2 s of stimulation with the last 

0.3 s used to calculate the background.  Due to variability in the shape of single-grain 

decay curves, the initial signal was occasionally varied from as low as 0.1 s to as high as 

0.3 s of stimulation in order to integrate only the decaying portion of the OSL signal. 

 

3.3.1.2 Error calculation for Lx/Tx  

 The uncertainty associated with each LN, TN, Lx and Tx value is derived from 

two sources (Duller, 2007): 

1. A random uncertainty associated with photon-counting statistics of each OSL 

measurement (e.g., Lx and Tx).  This is calculated for each OSL measurement 

using Equation 3 of Galbraith (2002). 

2. An uncertainty associated with instrumental error.  This is determined for each 

reader using instrumental reproducibility tests (e.g., Jacobs et al., 2006b) and is 

expressed as a percentage value.  Instrumental errors of 1% and 2% were used 

for all multi-grain aliquot and single-grain aliquot measurements in this study, 

respectively.  These values are based on measurements made for each Risø 

TL/OSL reader and are consistent with values presented in the literature (e.g., 

Armitage et al., 2000; Thomsen et al., 2005; Jacobs et al., 2006b; Duller, 2007).   

 

These two error terms are added in quadrature to produce the uncertainty on LN/TN and 

Lx/Tx measurements (Duller, 2007). 

 

3.3.1.3 Constructing the sensitivity-corrected dose-response curve 

 The sensitivity-corrected dose-response curve was constructed using 

regenerative-dose points (Lx/Tx) obtained for multiple irradiation doses.  In the majority 

of cases, the regenerative dose points were fitted using a saturating-exponential-plus-

linear function described as: 

 

KDeVVV DD +−+= − )1( 0/
max0      Equation 3.2 

 

where V is the sensitivity-corrected luminescence intensity, V0 represents the initial 

offset of the signal from zero, Vmax represents the upper limit of the intensity of the 
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luminescence signal at saturation, D is the regenerated laboratory dose, and D0 and K 

are constants.  D0 describes the onset of signal saturation and K is the additional linear 

term added to the exponential function to account for continued growth at high doses. 

 Occasionally, fitting a single saturating exponential function is more appropriate 

than Equation 3.2.  This is defined as: 

 

)1( 0/
max0

DDeVVV −−+=       Equation 3.3 

 There are several circumstances in which Equation 3.3 is preferable to Equation 

3.2.  First, given the large diversity in the shapes of dose-response curves produced by 

different grains of the same sample (e.g., Roberts et al., 1999; Yoshida et al., 2000; 

Jacobs et al., 2003b, 2006b, 2008c), a single saturating exponential function may 

produce a better fit for an individual grain or aliquot than a saturating-exponential-plus-

linear function.  In addition, although the dose-response curves of many samples are 

best fitted by a saturating-exponential-plus-linear function (e.g., Roberts and Duller, 

2004; Murray et al., 2008; Pawley et al., 2008), the mechanism that gives rise to the 

additional linear component is unclear (Bøtter-Jensen et al., 2003; Lowick et al., 2010; 

Lowick and Preusser, 2011).  Second, Equation 3.3 can be used to determine the 

saturation characteristics of a grain’s dose-response curve using the D0 value.  The D0 

value is a fitted parameter of a single saturating exponential function that equates to the 

dose at which the OSL intensity reaches 63% of the saturation intensity.  In this study, 

the D0 value was used to identify grains that produced dose-response curves that 

saturated at low doses (Section 5.3.3.1). 

 

3.3.1.4 Error calculation for De estimates 

 The uncertainty on each De estimate is comprised of random and systematic 

errors.  The random uncertainty is comprised of the two sources described in Section 

3.3.1.2, added in quadrature to a third source: a dose-response curve-fitting error 

(Duller, 2007), which expresses the average deviation of the measured data points from 

the fitted dose-response curve.  The deviation between the measured value and that 

predicated by the fit is the ‘fitting residual’.  This uncertainty is calculated as the square 

root of the averaged sum of the squared fitting residuals.  The combined error is then 

transformed into the 1σ limits on the De estimate (Gy) by interpolating the upper and 
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lower limits of LN/TN on to the dose-response curve (Duller, 2007).  A 2% systematic 

error, which accounts for uncertainty in the calibration of the beta source in the Risø 

TL/OSL reader, is added in quadrature to the random error to obtain the uncertainty on 

the De. 

 

3.3.2 Assessing the suitability of the SAR procedure 

 There are several tests that can be used to ensure that the luminescence signal 

from a sample behaves appropriately for dose estimation using the SAR procedure.  

This includes internal checks to ensure that any sensitivity changes are being 

sufficiently corrected for, no unwanted charge transfer is occurring, and that feldspar 

contamination is absent from the quartz separates being measured.  In addition, it is 

essential to ensure that a known dose can be obtained using the SAR procedure. 

 

3.3.2.1 Assessing the effects of charge transfer: the ‘recuperation’ test 

In order to monitor for the effects of charge transfer that cannot be observed 

directly, measurement of a 0 Gy regenerative dose point is undertaken.  If charge 

transfer has taken place during the preceding test dose cycle, then the subsequent 

regenerative dose preheat will thermally stimulate some of this aberrant charge into 

optically sensitive traps.  This results in additional, unwanted signal in the following 

OSL measurement.  The zero-dose point can monitor for the thermal transfer:  if charge 

transfer occurs, it will result in a measurable zero-dose signal.  In the SAR procedure, 

the sensitivity-corrected 0 Gy regenerative-dose point is divided by the sensitivity-

corrected natural (i.e., [L0/Tx]/[LN/TN]) as a means of assessing the extent of charge 

transfer.  If this value (referred to in this thesis as the ‘recuperation value’) is 

substantially large (i.e., ≥0.05), recuperation may significantly affect the calculated De 

(Murray and Olley, 2002; Murray and Wintle, 2003).  Unless otherwise noted, any 

aliquots (single- or multi-grain) measured and described in this thesis that had 

recuperation values greater than 0.05 were rejected as unsuitable (Murray and Olley, 

2002; Jacobs et al., 2006b). 
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3.3.2.2 Assessing the effectiveness of sensitivity correction: the ‘recycling ratio’ test 

 It must be ensured that the test dose correction is reliably monitoring sensitivity 

change throughout the entirety of the measurement sequence that is used to construct 

the sensitivity-corrected dose-response curve.  To this end, two identical regenerative 

doses were measured (Roberts et al., 1998, 1999; Galbraith et al., 1999; Murray and 

Wintle, 2000).  One usually followed the measurement of the natural signal and the 

other followed the measurement of the 0 Gy regenerative-dose signal (i.e., one at the 

beginning of, and the other towards the end of, the SAR measurement sequence).  If the 

ratio of the repeat sensitivity-corrected dose point to the initial sensitivity-corrected 

dose point deviates more than 2σ from unity, the test dose is not adequately corrected 

for sensitivity change and the aliquot (single- or multi-grain) should be rejected as 

unsuitable. 

 

3.3.2.3 Assessing feldspar contamination in quartz separates 

 Despite the effectiveness of density separation followed by an HF acid etch for 

isolating quartz separates (Wintle, 1997), the technique is imperfect (e.g., Godfrey-

Smith and Cada, 1996).  Due to the considerable differences in the luminescence 

behaviours of quartz and feldspars, it is important to ensure that the mineral of interest 

is being measured without contamination from the other.  In order to identify feldspar 

contamination in single-grain quartz samples, the OSL-IR depletion ratio test of Duller 

(2003) was used.  It involves adding a third repeat regenerative-dose point to the end of 

the SAR measurement sequence.  After the regenerative dose is delivered, the aliquot 

(single- or multi-grain) is stimulated with an IR bleach for 40 s at 50°C.  The aliquot is 

then preheated and the luminescence is measured (Lx).  This is followed by a standard 

test dose cycle.  Since IRSL at room temperature is strong in feldspars (Hütt et al., 

1988; Spooner, 1994b) but weak or nonexistent in quartz (Spooner, 1994a), the IR 

bleach will empty the IR-sensitive traps in any feldspar grains or inclusions, while 

leaving the optically-sensitive traps in quartz grains unaffected.  The subsequent OSL 

measurements can then be compared with those of the preceding regenerative dose-

point for the same dose (i.e., the second repeat dose used to obtain the ‘recycling ratio’).  

If the OSL-IR depletion ratio is more than 2σ below unity, then it is likely that there is 

some feldspar contamination and the grain or multi-grain aliquot should be rejected.   
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3.3.2.4 Dose recovery test 

The ‘dose recovery’ test is a useful experiment that can be used to assess 

whether the experimental procedures of the SAR procedure (e.g., preheat temperatures, 

stimulation temperatures, application of a HOW) are appropriate for the sample being 

tested.  This test, first used and described by Roberts et al. (1998, 1999) and Galbraith et 

al. (1999), involves exposing individual grains or multi-grain aliquots of a sample to 

natural sunlight at ambient temperature to empty the traps associated with the OSL 

signal without causing substantial sensitivity change.  The bleached aliquots or grains 

are then given a known dose in the laboratory (the ‘given’ dose) that acts as a surrogate 

natural and is treated as an unknown quantity.  The SAR procedure can then be used to 

estimate the dose.  This can be repeated for many different aliquots or grains using 

different experimental procedures (i.e., varying the preheat and stimulation temperature) 

of the SAR procedure to assess those that best estimate the given dose.  The ratio of the 

measured and given doses (the ‘measured/given dose ratio’) should be consistent with 

unity at 2σ for a successful dose recovery test.   

A successful dose recovery experiment does not necessarily reveal that the 

tested SAR procedure will accurately estimate the natural dose.  Instead, it indicates 

whether a sample is unsuitable for the SAR procedure (Galbraith et al., 1999; Murray 

and Olley, 2002).  This is because the given dose does not exactly mimic the natural 

dose due to time-dependent effects that cannot be replicated in the laboratory (e.g., 

differences in dose rate) (Murray et. al., 2002).  Nevertheless, it is unlikely that the SAR 

procedure can be used to accurately estimate the natural dose if it cannot accurately 

estimate a laboratory dose.  Therefore, successful results in a dose recovery test for a 

sample should be a minimum standard before attempting to estimate a De value using 

the tested SAR procedure (Wintle and Murray, 2006). 

For this study, unless otherwise stated, all aliquots (single and multi-grain) were 

bleached for at least 3 days in direct natural sunlight.  Despite the results of multiple 

studies that indicate that two optical stimulations using blue-light LEDS for 1000 s with 

a 10,000 s pause at room temperature are sufficient to bleach the OSL signal in an 

aliquot (e.g., Murray and Wintle, 2003; Choi et al., 2003), natural sunlight was chosen 

because it has been shown to not cause sensitivity changes to the quartz OSL signal 

(Choi et al., 2009) and because it more closely mimics the conditions under which the 
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sample was bleached in nature.  In this study, a successful result in the dose recovery 

test was a minimum requirement prior to attempting to estimate the De using the SAR 

procedure.  Various experimental conditions in the SAR procedure (e.g., dose-delivery 

technique, preheat and stimulation temperature, stimulation duration and pre-

stimulation bleaches) were also tested using dose recovery experiments to assess 

whether they were appropriate for the sample being investigated.  Consequently, for 

both quartz and feldspar, dose recovery tests were performed on at least one sample 

from each site. 

 

3.3.2.5 Summary 

 The tests described in the previous sections can be used to identify grains and 

multi-grain aliquots that possess characteristics that would likely lead to inaccurate De 

estimates.  The recuperation test can be used to ensure that no unwanted charge transfer 

is taking place during the steps of the SAR measurement procedure.  The recycling ratio 

test can be used to ensure that the test dose cycle is appropriately monitoring and 

correcting for any changes in the sensitivity of the OSL signal.  The OSL-IR depletion 

ratio test monitors for the presence of feldspar contamination in the quartz separates 

comprising each aliquot (single- or multi-grain).  Finally, the dose recovery test can be 

used to ensure that the SAR procedure can be used to accurately obtain a dose estimate.  

Success in these tests, thus, suggests that the OSL signal is suitable for accurately 

estimating the De value for a sample. 

 

3.4 Overview of De distribution analysis: graphical displays and age models  

Using automated instrumentation, such as the Risø TL/OSL readers, and the 

SAR procedure, many accurate De estimates can be obtained from individual grains or 

aliquots of each sample (Bøtter-Jensen et al., 2003; Wintle and Murray, 2006).  The 

increased resolution at the single-grain level allows the generation of De distributions 

from which insights can be gained into the pre-depositional, depositional and post-

depositional processes that may have affected the given sample (Duller, 2008).   

Individual grains from the same sample can have different post-depositional 

mixing histories (Roberts et al., 1998a,b, 1999; Feathers et al., 2006; Jacobs et al 2006b; 

Olley et al., 2006; Bateman et al., 2007; David et al., 2007), different bleaching histories 
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(Olley et al., 1999, 2004a,b; Arnold et al., 2007; Page et al., 2007), differences in 

microdosimetry resulting from inhomogeneity in the beta dose rate  (Murray and 

Roberts, 1997; Olley et al., 1997; Nathan et al., 2003; Mayya et al., 2006; Jacobs et al., 

2008c) and variable behaviour in response to OSL measurements (Roberts et al., 1999; 

Duller et al., 2000; Yoshida et al., 2000; Jacobs et al., 2003b, 2006b, 2008c).  This 

grain-scale variety in the luminescence behaviour and history of individual grains 

means that, when a multi-grain aliquot is measured, the resulting OSL signal is an 

‘average’ of the signal from many individual grains.  This averaging-out effect has been 

observed by many studies (Roberts et al., 1998a; Bateman et al., 2003; Forest et al., 

2003; Adamiec, 2005; David et al., 2007).  In sedimentary deposits that are believed to 

have been mixed, the spread in the De distribution increases as the size of the aliquot is 

decreased, down to a single grain.  A good example of this effect is when the De 

distributions of young fluvial samples are examined (e.g., Olley et al., 1998, 1999, 

2004a; Arnold et al., 2007, 2008, 2009).  These studies have shown that as the number 

of grains that comprise an aliquot is decreased, the distribution of De values from those 

aliquots gets more spread.  This is because, as the size of an aliquot increases, the 

resulting De is the average of De values from increasing numbers of single grains, 

resulting in a more uniform De distribution (Olley et al., 1999; Duller, 2008).  Even in 

cases where the sediment is homogeneous and all grains are thought to be well-

bleached, such as some aeolian dune sands, multi-grain aliquots may be insufficient to 

account for bioturbation (Lomax et al., 2007; Carr et al., 2007).   

In archaeological contexts, sediment may often be mixed, contain unbleached 

roofspall, suffer from beta microdosimetry, be partially bleached and bioturbated (e.g., 

Smith et al., 1997; Roberts et al., 1998a, 1999; Jacobs et al., 2003b, 2006b, 2008c; 

Feathers et al., 2006; Olley et al., 2006; David et al., 2007) so that single-grain analysis 

is preferable.  Given the variety of processes that are likely to have affected the De 

distributions of samples from archaeological sites, in order to accurately estimate an age 

using OSL it is essential to: 1) identify the processes that have resulted in the De 

distribution for a given sample, and 2) select a suitable age model to obtain a 

representative estimate of the burial dose.  This section will discuss how De values were 

graphically displayed in order to assist in identifying the processes that resulted in the 

measured distribution.  Visual assessment of the data helped enable the identification of 
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the age model that was most appropriate for obtaining an accurate burial dose.  The ages 

models that were used in this study, the central age model (CAM), the finite mixture 

model (FMM) and the minimum age model (MAM) (Galbraith et al., 1999) will also be 

discussed in this section. 

 

3.4.1 Graphical display of De distributions 

 Radial plots, described by Galbraith (1988) and Galbraith et al. (1999), were 

first used for fission-track dating and are an informative means of displaying the 

measured dose along with its measurement error.  They have been widely been used to 

display single and multi-grain aliquot De distributions in optical dating studies (e.g., 

Roberts et al., 1998, 1999; Yoshida et al., 2000; Jacobs et al., 2003b, 2006b, 2008c; 

Duller, 2006).  Radial plots, unlike histograms, plot individual De values according to 

the magnitude of the dose as well as the precision of the dose estimate.  In this way, 

radial plots present useful visual representations of datasets composed of De values with 

uncertainties of varying precision (Galbraith et al., 1999; Lian and Roberts, 2006) and 

can be used to identify a single or multiple populations of De values (Duller, 2008).  In 

this thesis, all dose and De distributions are presented as radial plots.   

 An example of a radial plot is presented in Figure 3.6.  Each De value is 

represented by a dot.  The magnitude is plotted in an arc on the right-hand side of the 

plot.  The magnitude of each individual De is read by drawing a straight line from the 

‘0’ on the left hand axis (Standardised Estimate), through the dot that represents the De, 

on to the arced right-hand axis.  The precision and relative error of each De value is 

plotted on the x-axis, where the De values that are further to the left of the graph have 

the lowest precisions, and those plotted towards the right have the highest precision.  

Because of the way in which the radial plot is constructed, a 95% confidence interval 

(2σ) can be drawn to encompass values that are statistically consistent with a common 

dose.  If 95% of the data points lie within any single band projecting from the 

standardised estimate axis, then they are consistent with a common dose at two standard 

deviations.  In Figure 3.6, the grey band captures ~91% of the data; the extra spread 

amounts to an overdispersion of 15 ± 4%.  Radial plots thus allow the identification of 

De distributions that are spread more widely than measurement uncertainties alone can 

account for.  Such distributions would be expected if samples exhibit heterogeneous 
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bleaching, post-depositional mixing, or small-scale spatial inhomogeneity in the dose 

rate. 

 

 
Figure 3.6: Example of a radial plot of data collected during a single-grain dose recovery 
experiment using sample MR 6.  The distribution is centred on 116 Gy and has an overdispersion of 
15 ± 4%. 
 

 

3.4.2 Age models 

3.4.2.1 Central age model (CAM) and overdispersion 

 In a setting in which all grains are well bleached prior to deposition and there 

has been no post-depositional mixing or other field-related complications, the 

distribution of De values can be expected to exhibit lognormal statistical properties 

(Galbraith et al., 1999).  This means that the De distribution is expected to be 

symmetrical on a log scale where all values are centred on the mean.  Galbraith et al. 

(1999) proposed that the CAM may be appropriate to derive a representative burial dose 

in such circumstances.  When the CAM is applied, it is assumed that each De estimate is 

not necessarily statistically consistent with a single dose, but is instead a random sample 

drawn from a lognormal distribution that has a mean (μ) and a standard deviation, or 

‘overdispersion’ (σ).  These two unknown parameters are solved for by maximum 

likelihood.  The overdispersion value (reported as a percentage) denotes the amount of 

variation in De values that cannot be accounted for by measured uncertainties on the 

individual dose estimates (i.e., the uncertainties associated with instrumental 

reproducibility, counting statistics and dose-response curve-fitting errors).  This extra 
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variation results from natural or experimental variation between aliquots or grains being 

measured (e.g., Galbraith et al., 2005). 

 The overdispersion values, as calculated in the CAM, are often used as an 

estimate of the spread of De values for a sample.  It has also been used as a tool to 

indicate whether a dose distribution represents a sample that is well bleached and 

undisturbed following deposition (e.g., Olley et al., 2004a; Jacobs et al., 2006b; 

Bateman et al., 2007).  Several authors have suggested that an overdispersion value of 

20% can be used as a threshold value to establish if a dose distribution represents a 

single dose population for which the CAM can be used to estimate a burial dose (Olley 

et al., 2004a, 2004b; Galbraith et al., 2005; Jacobs et al., 2006a; Anderson et al., 2006).  

In studies investigating single grains from well bleached samples (where the expected 

overdispersion value is theoretically zero), overdispersion values in the range of 0 to 

40% have been reported (e.g., Murray and Roberts, 1997; Roberts et al., 1998a; Jacobs 

et al., 2003b, 2006a; Olley et al., 2004a, 2004b; Anderson et al., 2006; Arnold et al., 

2007; Carr et al., 2007; Arnold and Roberts, 2009).  While these additional sources of 

scatter that lead to a non-zero overdispersion value can sometimes be identified (e.g., 

Thomsen et al., 2005; Galbraith et al., 2005), they are usually not fully known 

(Thomsen et al., 2005; Jacobs et al., 2006b, 2008c; Lian and Roberts, 2006).  This 

emphasises the need to characterise samples from every site to assess the normal range 

of variability in overdispersion values specific to that site and to determine an 

overdispersion value representative of well bleached samples.  The minimum 

overdispersion value that can be expected for a single component from a given sample 

can be estimated from the overdispersion obtained during dose recovery experiments 

(Roberts et al., 2000; Jacobs et al., 2008c). 

 

3.4.2.2 Finite mixture model (FMM) 

In some cases, the spread in De values is larger than expected.  Post-depositional 

mixing, which involves the movement of grains through the profile following 

deposition, is one such case (Roberts et al., 1998a, 2000; Bateman et al., 2003; Jacobs et 

al., 2006b).  Another such case is where there is spatial inhomogeneity in the beta dose 

rate, due to the presence of material with higher or lower radioactivity (Olley et al., 

1997; Mayya et al., 2006; Jacobs et al., 2008c).  The measurement of single grains can 
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potentially expose these post-depositional processes, both of which can be manifested 

as multi-modal dose distributions that have distinct populations with differing De values 

(Roberts et al., 2000; Jacobs et al., 2008b).  When such dose distributions are 

encountered, a sound understanding of the depositional environment is required to 

correctly obtain the burial dose using statistical models.  A statistical model that can be 

used to distinguish multiple, discrete components in single-grain De distributions is the 

FMM, described by Roberts et al. (2000) and Galbraith (2005).  This model is 

applicable only for single-grain, and not multi-grain aliquot, De distributions (Arnold 

and Roberts, 2009).  By assuming that every log De value belongs to a mixture of 

(log)normally distributed component populations, the FMM can be used to provide 

information on the number of discrete De populations (k) of grains in a distribution, each 

component’s mean (μ) and standard deviation, and the proportion of grains that falls 

into each population (π) (Roberts et al., 2000).  The FMM has been successfully used in 

single-grain OSL studies of synthetic populations of laboratory-irradiated grains (e.g., 

Roberts et al., 2000; Jacobs et al., 2006c; Arnold and Roberts, 2009) and archaeological 

sites (e.g., Jacobs et al., 2006a, 2008b,c; David et al., 2007). 

To use the FMM, two parameters are assumed to be known.  These are k and the 

standard deviation (σ) of each population component (i.e., the overdispersion value, 

which is assumed to be the same for each component).  A systematic approach is used 

to find the optimal combination of σ and k, as described by Galbraith (2005), David et 

al. (2007), and Jacobs et al. (2008b).  The Bayes Information Criterion (BIC) (Schwartz, 

1978) was used to assess the suitability of the fit of the FMM to the dataset to decide 

which combination of σ and k best described the dataset.  The BIC is calculated as: 

 

)ln()2(2 1 nkLBIC nlik −+−=      Equation 3.4 

 

where Llik is the maximum log-likelihood estimate for each FMM fit and n is the 

number of values (De values in this case) in the dataset.  The BIC and Llik values were 

calculated for each combination of σ and k (i.e., k = 2, 3, 4...; σ = 16, 18, 20%).  As an 

extra population component is added and the Llik value increases, the BIC value will 

decrease only if the component improves the fit to the data.  The BIC value will 

increase if further components are fitted and do not improve the Llik value significantly.  
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Therefore, the optimal combination of k and σ for a dataset is that with the highest Llik 

and, in particular, the lowest BIC values.  A worked example is presented in Table 3.3.  

Whenever this age model was used in this thesis, it was fitted using the S-PLUS 

statistical package using the FMM program written by R. Galbraith.  For samples from 

Mumba, a value of ~15% was used as a ‘minimum’ σ value to account for the 

unexplained scatter usually observed in well-beached sediments (Galbraith et al., 2005) 

and because this was the smallest overdispersion value obtained for laboratory-bleached 

and irradiated grains during dose recovery experiments. 

 
Table 3.3: Worked example of the application of the finite mixture model (FMM) for single-grain 
data from MR7.  See text for details of procedure.  The optimal fit of the model to the data is 
estimated by varying the overdispersion value and number of components (k).  The combination of 
these two variables that produces the largest maximum log likelihood (Llik) and, in particular, the 
smallest Bayes Information Criterion (BIC) provides the best fit.  The largest Llik and the smallest 
BIC are produced with the combination of 20% overdispersion and k = 2. 

 
 

3.4.2.3 Minimum age model (MAM) 

The MAM, described by Galbraith et al. (1999), can be used to analyse dose 

distributions to obtain an appropriate burial dose for samples that are likely to have been 

partially bleached at deposition (e.g., Roberts et al., 1998, 1999; Olley et al., 2004a; 

Anderson et al., 2006; Eriksson et al., 2006; Page et al., 2007; Arnold et al., 2007, 

2008).  In a deposit where partial bleaching may be expected (e.g., fluvial or glacial 

deposits), the De distribution would be expected to be positively skewed; the long ‘tail’ 
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extending toward the upper end of the distribution is the result of grains with substantial 

residual doses, while the lowest doses most closely approximate the burial dose (Olley 

et al.,1998, 1999, 2004a; Bailey and Arnold, 2006; Arnold et al., 2007).  Given that all 

of the grains investigated in this thesis are thought to have been deposited by aeolian 

processes, partial bleaching was not considered to be a major cause for concern.  The 

MAM, however, can also be used to assess whether various post-depositional processes 

and scenarios, such as spatial heterogeneity in the beta dose rate, are consistent with the 

measured De distribution (see Jacobs et al., 2008c and Section 4.4.2.1 of this thesis).  

Given the large quantities of carbonate and shell noted during excavations at Mumba, 

small scale differences in the beta dose rate, in the form of radioactive ‘cold’ spots, 

were expected. 

In this study, the MAM was fitted using the MAM-4 and MAM-3 programs 

written by R. Galbraith.  An additional overdispersion value of 15% was added, in 

quadrature, to the measured uncertainty of each De (Galbraith et al., 2005; Arnold et al., 

2009; Arnold and Roberts, 2009) to account for the scatter in De values expected for a 

well-bleached sample of grains from Mumba.  An overdispersion of 15% was used 

because it was the lowest overdispersion value obtained during dose recovery 

experiments on the Mumba samples. 

 

3.5 Linearly-Modulated OSL (LM-OSL) 

3.5.1 Overview 

 It has been demonstrated that the OSL decay curve obtained when grains of 

quartz are stimulated with green or blue light and measured in the UV is the sum of 

more than one exponential decay functions (e.g., Bailey et al., 1997; Jain et al., 2003; 

Singarayer and Bailey, 2003).  Bailey et al. (1997) used CW-OSL to identify three 

components (named the ‘fast’, ‘medium’ and ‘slow’ components) based on their relative 

decay rates.  Bulur (2000) described the CW-OSL decay curve as the sum of multiple 

exponential functions using Equation 3.5: 

 

)exp()( 0 btbntL −=       Equation 3.5 
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where n0 is the initial number of trapped electrons, t is time, and b is the detrapping 

probability.  The value of b can be described in terms of the photoionisation cross-

section (PIC) and the maximum light intensity (L0), such that b = PIC*L0.  The b and 

PIC values of an OSL component are indicative of the type of trap associated with that 

component (Bulur, 2000). 

 For an alternative picture of the number and types of components that make up 

the OSL signal, LM-OSL measurements can be made.  This technique for measuring the 

OSL signal was first proposed by Bulur (1996), and involves linearly increasing the 

power of the stimulation source from zero to a preset value.  By increasing the power of 

the stimulating light, each component is manifested in the LM-OSL vs. stimulation time 

curve as a peak.  The resulting LM-OSL curve is thus the sum of multiple peaks, each 

related to an individual component (e.g., Figure 3.7).  The measured LM-OSL curve can 

be de-convoluted into its constituent components using Equation 4.2 from Bulur et al. 

(2002): 
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where P represents the total stimulation time of the LM-OSL measurement. 

 

 
Figure 3.7: An example of a LM-OSL curve from a laboratory-irradiated aliquot of MR7.  The de-
convoluted components, identified using the nomenclature and relative PIC values of Jain et al. 
(2003), are presented along with the measured LM-OSL. 
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Two early studies into the LM-OSL characteristics of quartz (Jain et al., 2003; 

Singarayer and Bailey, 2003) reported on the presence of at least seven different 

components, as well as their absolute and relative PIC values (Table 3.4).  Jain et al. 

(2003) de-convoluted LM-OSL curves from nine different quartz samples from four 

continents.  They reported the presence of seven different components, which they 

termed the ultrafast, fast, medium, slow 1, slow 2, slow 3 and slow 4 components.  

Singarayer and Bailey (2003), using the same techniques on samples from a variety of 

locations, reported the identification of five discrete components: fast, medium, slow 1, 

slow 2 and slow 3.  The two studies, along with others (e.g., Choi et al., 2006a), have 

corroborated one another by independently reporting similar absolute and relative PIC 

values for each component.   

These two studies identified different numbers of slow components, resulting in 

two different naming systems (Wintle and Murray, 2006).  The two naming systems and 

their respective absolute and relative PIC values are presented in Table 3.4 along with 

the values from Choi et al. (2006a).  All absolute PIC values are similar, having slight 

differences but being of the same order of magnitude for each component in each study.  

The relative PIC values, on the other hand, are the same for Singarayer and Bailey 

(2003) and Jain et al. (2003) and only slightly different, but of the same order of 

magnitude, in Choi et al. (2006a).  This means that upon identifying the presence of a 

fast component, the relative PIC values (or the relative b values) can be used to identify 

the remaining components.  Unless otherwise stated, all component nomenclature used 

in this thesis is based on that presented by Jain et al. (2003). 

 
Table 3.4: Various components published by three studies and their associated nomenclature.  
Unless otherwise noted, all component nomenclature used in this thesis is based on Jain et al. 
(2003). 
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 While several studies have reported components with PIC and b values similar 

to those presented in Table 3.4 (e.g., Li and Li, 2006b; Arnold et al., 2008), many others 

have observed a great deal of variability in the identification of OSL components.  

Several studies have encountered difficulties in identifying specific components, 

especially in the later part of the LM-OSL curve (e.g., Tsukamoto et al., 2003; Li and 

Li, 2006b) while others have identified different OSL components (e.g., Tsukamoto et 

al., 2007). 

 It is clear from the studies noted above that the OSL signal from different 

samples is commonly composed of different constituent components (Jain et al., 2003; 

Singarayer and Bailey, 2003; Choi et al., 2006a,b).  Additionally, many studies indicate 

that different aliquots of the same sample can contain different constituent components 

or different proportions of components (Choi et al., 2006a; Arnold et al., 2008).  

Variability in OSL components has even been observed between individual quartz 

grains from the same sample (e.g., Bulur et al., 2002; Yoshida et al., 2003).  This inter- 

and intra-sample variability in LM-OSL composition is not surprising given the variety 

of OSL behaviours regularly observed for individual grains of a given sample (e.g., 

Roberts et al., 1999; Duller et al., 2000; Yoshida et al., 2000, 2003; Jacobs et al., 2003b, 

2006b, 2008c).  Adamiec (2005) has found that, when the OSL properties of individual 

grains on an aliquot are inhomogeneous, the components observed using LM-OSL of 

multi-grain aliquots may not accurately represent the trap structure of the quartz; instead 

they represent a manifestation of the variety of luminescence properties of the 

individual grains.  This suggests that grain-scale heterogeneity in OSL properties may 

result in erroneous conclusions when using multi-grain aliquots for LM-OSL 

measurements. 

Different OSL components have different sensitisation characteristics, thermal 

stabilities, degrees of recuperation, dose-response curve shapes and bleaching 

characteristics (Jain et al., 2003; Singarayer and Bailey, 2003, 2004).  In regards to 

thermal stability, Singarayer and Bailey (2003) found that all components, with the 

exception of the ultrafast and the S3 components (the latter corresponds to their S2 

component), were stable up to 270°C and have thermal lifetimes greater than 300 Ma.  

The ultrafast component can be removed using higher temperature preheats (e.g., 

260°C; Jain et al., 2003; Choi et al., 2003; Jacobs et al., 2006a).  The S3 component, 
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which has been linked to the thermally unstable 280°C TL peak (Singarayer, 2002), can 

be depleted by 50% when preheated to 260°C (Jain et al., 2003).  Singarayer and Bailey 

(2003) confirmed this for their S2 component (equivalent to the S3 component of Jain et 

al., 2003) by showing that it could be depleted by heating up to 220°C and had a 

thermal lifetime of ~1 ka at 20°C.  If this thermally unstable OSL component is 

substantially large in a sample of interest, then the use of the SAR procedure may result 

in an underestimate of the De (Jacobs et al., 2006a).  Due to its short thermal lifetime, 

this component will be present in the laboratory regenerated OSL signals but not in the 

natural signal.  Jacobs et al. (2006a) found that by increasing the test dose preheat to 

220°C and including a HOW in the SAR procedure, the unwanted effects of the S3 

component were substantially reduced.  In addition to these components, Choi et al. 

(2003), Li and Li (2006a) and Pawley et al. (2010) identified a thermally unstable 

medium component that led to systematic age underestimations.  Pawley et al. (2010) 

also identified a thermally unstable S2 component and calculated the thermal lifetimes 

of this and the medium component to be <1 ka at 20°C. 

 The SAR procedure was designed for the use of the fast component to estimate 

De values (Galbraith et al., 1999; Murray and Wintle, 2000; Wintle and Murray, 2006).  

Consequently, many samples that have OSL signals dominated by a fast component 

have been successfully dated using the SAR procedure.  The results of many other 

studies have shown that, for some samples, the fast component is either not dominant or 

not present (e.g., Tsukamoto et al., 2003, 2007; Choi et al., 2006a,b; Westaway, 2006, 

2009; Steffen et al., 2009).  Choi et al. (2006a) were unable to identify a fast component 

in quartz from the volcanic region of the Kenyan Rift Valley.  Tsukamoto et al. (2007) 

could not identify a fast component in quartz derived from Japanese tephras.  They 

concluded that the OSL signal from volcanic quartz was composed of a suite of 

different components than is present in sedimentary quartz, and was unsuitable for age 

estimation.  During luminescence investigations of samples from Peru, Steffen et al. 

(2009) found that ages obtained using the OSL signal from quartz underestimated 

feldspar IRSL ages due to the presence of a very weak fast component and a thermally 

unstable medium component. 

 The studies described above highlight the limitations and the usefulness of LM-

OSL measurement and de-convolution as a tool to assess the constituent components 
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that make up the OSL signal from a sample of quartz.  The identification of a fast 

component is necessary to allow for reliable age estimation using the SAR procedure.  

Additionally, the identification of aberrant OSL components, such as the ultrafast and 

the S3 components, can alert the researcher to the need for potential modifications of 

the SAR procedure (such as an elevated preheat temperature or the application of a 

HOW) to aid in reliable De estimation.  However, given the results of Adamiec (2005), 

caution should be used when interpreting LM-OSL data measured using multi-grain 

aliquots. 

 

3.5.2 Measurement and de-convolution of LM-OSL curves 

Multi-grain aliquots consisting of several hundred grains of sample material 

were used for the LM-OSL experiments described in this thesis.  LM-OSL 

measurements, all of which were performed on Risø 4, were made by increasing the 

stimulation power from 0 to 90% power (0 to ~45 mW/cm2) over 3600 s, with data 

collection every 1 s.  Samples were held at a constant temperature of 125°C for the 

entire 3600 s.  After measurement, the LM-OSL curves were de-convoluted into their 

respective peaks in order to discern the components that made up the luminescence 

signal from quartz.  The de-convolution procedure used in this study is the same as that 

described by Choi et al. (2006b) and was implemented using the commercially available 

SigmaPlotTM (ver. 9.0) software that employs the Marquardt-Levenberg algorithm for 

linear and non-linear fitting. 

 

3.5.2.1 Estimating background 

 Prior to fitting LM-OSL curves, the background OSL signal resulting from 

steadily increasing the stimulation power over 3600 s must be taken into consideration 

(Choi et al., 2006b).  Choi et al. (2006b) observed an increase in background count rate 

with stimulation power, inferring that stimulation light was penetrating the detection 

filter (Hoya U-340s for both Choi et al., 2006b and this study).  In this study, the 

background count rate was calculated using eight blank stainless steel discs that were 

coated with a layer of Silkospray, administered using a 3 mm in diameter mask (the 

same mask size used for the LM-OSL measurements of aliquots of MR7 described in 

Chapter 5).  The eight blank discs were irradiated, preheated at 260°C, and then held at 
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125°C while being stimulated with the blue LEDs, with the power increased from 0 to 

90% while the photon counts were measured.  Results for background measurements 

are presented in Figure 3.8 and are in good agreement with those of Choi et al. (2006b).  

The background count increases with stimulation light intensity for all discs, such that a 

channel-by-channel average of the eight discs was best fitted using a quadratic function 

(y = 0.000005x2 + 0.0093x + 45.789), which gave an R2 value of 0.9637.  The 

observation that the background does not increase linearly was also observed by Choi et 

al. (2006b), who suggested that a slight change in the wavelength of the stimulation 

light emission as the power was increased allowed more photons to pass through the 

filters.  The quadratic function depicted in Figure 3.8 was taken as the background for 

measurements made on Risø 4 and was subtracted from all subsequent LM-OSL 

measurements prior to de-convolution. 

 

 
Figure 3.8: A channel-by-channel average of LM-OSL measurements on eight blank stainless steel 
discs.  The data was best fitted by a quadratic function (R2 of 0.9637).  This function was then used 
to calculate the background to subtract from all LM-OSL measurements made on Risø 4. 
 

3.5.2.2 De-convolution of LM-OSL curve  

 After measurement of the LM-OSL from an aliquot, the ramping time and 

background-subtracted LM-OSL photon count datasets were transferred into the 

SigmaPlotTM software for curve fitting.  Equation 3.7 was the basis for the equation 

entered into the software’s fitting program (Regression Wizard), following Equation 2 

from Choi et al. (2006b): 
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        Equation 3.7 

 

where the total stimulation time (P) was fixed at 3593 s and values of nN (the number of 

trapped electrons) and bN (the detrapping probability) are the variables obtained through 

mathematical fitting.  The variable N (the number of components being fit for) was 

fixed prior to fitting.  The value of P was set at 3593 s, because the first seven channels 

of every 3600 s measurement (i.e., up to 0.45% power) produced zero or negative 

background-subtracted LM-OSL counts.  A potential reason for this could be that below 

~0.5% the power is too low to switch on the blue LEDs, resulting in instrumental noise 

for those first few channels.  The value of b (s-1) was used for identification of specific 

components in lieu of the PIC (cm2) value, because it is equally suitable and more 

convenient to work with in the software program (Choi et al., 2006b).  The initial values 

entered for nN were set at 100,000 and the initial values for bN were based on those 

given in Choi et al. (2006b).  The value of P was fixed at 3593 s, the maximum number 

of iterations was 105 
with a step size of 100, and the tolerance was set to 10-500 

(Choi et 

al., 2006b).  In situations where a fit could not be obtained, values of n were varied 

between 100 and 100,000. 

 To determine the model that best fit the background-subtracted LM-OSL data, 

each curve was fitted for a varying numbers of components (i.e., 2, 3, 4, 5 and 6 

components represented by N = 2, 3, 4, 5 and 6 in Equation 3.7).  The model (i.e., value 

of N) that provided the best fit to the data was identified from the sum of the squared 

residuals, with the best-fit being that with the smallest sum.  In situations where 

multiple LM-OSL curves were measured, de-convoluted, and compared for the same 

aliquot (such as in the LM-OSL SAR experiments described in Chapter 5), the de-

convolution model used for each LM-OSL curve was chosen using Method 2 described 

in Appendix 2.  This method involves de-convoluting the LM-OSL measurements for 

each test dose for a given experiment (≤6 regenerative-dose cycles) for the largest value 

of N that could be fit.  This always resulted in a range of b values for the fast component 

of ≤0.10 s-1.  The de-convolution model for each regenerative dose was then chosen 

based on the N value that resulted in a fast component with a b value in the range 
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produced by the test doses.  This method ensured that the b values of the fast component 

for all regenerative and test doses fell within a narrow (0.10 s-1) range.  This approach 

agrees with the recommendation of Li and Li (2006b) that fixing the peak position 

(analogous to the b value) results in improved reproducibility when comparing different 

LM-OSL measurements for the same aliquot. 

 

3.6 Summary 

 In this chapter, the general properties of the OSL signal emitted from quartz 

were described, in addition to the procedures used for determining the numerator in the 

luminescence age equation (i.e., the equivalent dose, De).  Procedures for collecting and 

preparing samples for De determination were discussed, along with the requisite 

instrumentation.  The main procedure for estimating De values used in this thesis, 

namely the SAR procedure, was then described, as well as tests for assessing the 

suitability of applying the SAR procedure to samples, including checks for recuperation, 

adequate sensitivity correction, and recovery of known (given) doses.  The age models 

(CAM, FMM and MAM) used to analyse De distributions were also introduced and 

discussed.  Finally, the measurement technique used to assess the constituent 

components of the OSL signal, namely LM-OSL, was then described, along with the 

measurement and analytical procedures used to obtain and de-convolute the curves.  

The next chapter will discuss the second half of OSL dating, namely the measurement 

and calculation of the denominator in the age equation (i.e., the environmental dose 

rate). 
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 The mechanism that causes the redistribution and accumulation of electrons in 

traps and defects in the crystal lattice of quartz and feldspar grains is naturally occurring 

ionising radiation.  The rate at which electrons accumulate in traps within a grain, is 

proportional to the rate at which the grain absorbs energy from the flux of radiation to 

which it is exposed (i.e., the ‘dose rate’; Aitken, 1998).  The dose that a sample receives 

is defined in terms of absorbed energy per kilogram and is expressed using the 

measurement unit Gray (Gy); 1 Gy = 1 J/kg1 (Aitken, 1998).  The ionising radiation is 

primarily derived from potassium (40K), the decay of uranium (238U and 235U) and 

thorium (232Th) and their daughter products, as well as cosmic rays.  Owing to the fact 

that the half lives of these parental nuclides are sufficiently long so that their abundance 

is effectively unchanged over the timescales at which OSL is operative, past dose rates 

can be estimated by measuring the present radiation flux, provided the main decay 

chains of interest (238U and 232Th) are in secular equilibrium.  The ionising radiation 

from the decay of radionuclides in the sediment comes in three forms; alpha and beta 

particles and gamma rays (Aitken, 1985). 

The total dose rate that a grain is exposed to can be separated into two parts: the 

internal and the external dose rates.  The internal dose rate comes from alpha and beta 

particles, emitted during the radioactive decay of U and Th in quartz, with an additional 

contribution from 40K and rubidium (87Rb) in K-feldspars.  The external dose rate 

comes from alpha, beta and gamma radiation from K, U and Th in the environment 

surrounding the mineral grain, as well as cosmic rays (Aitken, 1985).  The focus of this 

chapter is the estimation the internal and external dose rates that combine to make up 

the total dose rate, and thus the denominator in the age equation (Equation 3.1).  The 

components of the dose rate will be discussed, along with the instrumentation 

(laboratory and field) and procedures used to measure them.  Finally, potential 

problems, such as disequilibrium in the uranium decay series and small scale 

inhomogeneity in the beta dose rate, are discussed. 

 

4.1 Internal contributions to the dose rate 

 The internal contribution to the dose rate depends on the abundance of 

radionuclides (40K, 87Rb, U and Th, and the decay products of the latter pair of parents) 
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within the mineral grain of interest.  Since these abundances vary significantly between 

mineral grains, the internal component of the total dose rate needs to be calculated 

separately for quartz and K-feldspar separates. 

 

4.1.1 Quartz 

 The presence of trace amounts of U and Th within typical quartz grains means 

that a portion of the dose rate comes from the decay of these nuclides within each grain.  

Due to the small amounts of these nuclides usually found in grains of quartz, the 

internal dose rate is typically very small and inconsequential relative to the external 

contribution (Aitken, 1998; Zhao and Li, 2005).  Therefore, an internal dose rate value 

of 0.03 ± 0.01 Gy/ka was assumed in this thesis as the dose rate for quartz from all sites.  

This value is based on measured values from Feathers and Migliorini (2001), Bowler et 

al. (2003) and Jacobs et al. (2006c). 

 

4.1.2 K-feldspar 

K-feldspars have an internal beta dose rate that originates from 40K and 87Rb and 
238U, 235U and 232Th and their decay products, as well as an internal alpha dose rate from 

U and Th.  Concentrations of K, Rb, U and Th were not measured directly for any 

samples in this study and were instead assumed, based on previously published and 

widely used values in the literature.  Since the contribution to the internal dose rate from 

each nuclide is dependent on the size fraction of the grains being measured, the dose 

rate value was calculated from the assumed radionuclide concentrations given in the 

literature, as described below. 

 Mejdahl (1987) proposed that, when using alkali feldspars as a dosimeter, the 

contribution to the dose rate from internal U, Th, 87Rb and 40K must be taken into 

consideration.  He measured the internal U concentration for several samples using a 

delayed neutron counting technique and reported that the majority of K-feldspar 

samples had internal U contents below 0.3 ppm with a modal range of 0.0 to 0.15 ppm.  

Two samples (~2%) had U contents in the range of 1.35 to 1.65 ppm (Mejdahl, 1987).  

Due to the difficulty in measuring the internal Th content directly, Mejdahl (1987) also 

made measurements that indicated that the Th:U ratio in K-feldspars is typically 2.36:1.  

Balescu et al. (1997), measuring four sedimentary K-feldspar samples, obtained internal 
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U and Th contents that ranged from 0.4 to 0.6 ppm and 0.4 to 1.5 ppm, respectively.  

Zhao and Li (2005) measured multi-grain aliquots of HF acid etched K-feldspar grains 

from two sedimentary and three granitic samples using ICP-MS.  The measured internal 

Th and U concentrations for the five different samples ranged from 0.47 to 2.92 ppm 

and 0.43 to 0.72 ppm, respectively.  In this thesis, the assumed internal U and Th 

contents of all K-feldspar samples are 0.3 ± 0.15 ppm and 0.7 ± 0.35 ppm, respectively.  

These values are based primarily on the results of Mejdahl (1987).  The associated 50% 

uncertainties on the U and Th contents accommodates for variation observed in most 

other studies.  The internal 40K content is assumed to be 12.5 ± 0.5% based on the 

measurements of Huntley and Baril (1997).  The internal 87Rb content is assumed to be 

400 ± 100 ppm, based on a similar study by Huntley and Hancock (2001). 

 The grain size fraction used in this study is 180-212 μm.  The internal alpha and 

beta dose rate contribution from U and Th and the internal beta dose rate contribution 

from 40K were calculated using the concentrations cited above and the conversion 

factors of Adamiec and Aitken (1998).  An assumed alpha efficiency value of 0.07 ± 

0.03 was used, on the basis of previously published values for feldspar and polymineral 

fine grains (Rees-Jones, 1995; Lang and Wagner, 1997; Banerjee et al., 2001; Lang et 

al., 2003).  Beta absorption coefficients of 0.146, 0.206 and 0.0702 were applied to the 

U, Th and 40K contents, respectively (Mejdahl, 1979).  The internal beta dose rate 

contribution from 87Rb was calculated using the conversion factors from Readhead 

(2002).  The internal dose rate data assumed for K-feldspar separates from Mumba are 

presented in Table 4.1. 

 
Table 4.1: Internal dose rates for ~180-212 μm diameter K-feldspar grains calculated on the basis 
of previously published studies. 
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4.2 External contributions to the dose rate 

The external contribution to the dose rate depends on the abundance of 

potassium, uranium and thorium in the soil matrix surrounding the grain, as well as the 

effects of cosmic radiation.  Since the rate at which energy is absorbed is assumed to be 

equal to the rate at which it is emitted, it is possible to calculate the dose rate to buried 

sediments.  This can be done by determining the concentrations of radionuclides in the 

deposits or by directly measuring the emissions of alpha and beta particles and gamma 

rays within the sediment (Aitken, 1998).  The latter approach was used in this study and 

is outlined in this section, which deals with estimating the four components of the 

external dose rate: alpha, beta and gamma emissions and cosmic rays.  Since this 

component of the total dose rate is derived from sources external to the mineral grains 

used as dosimeters, it is the same for both quartz and feldspar grains. 

 

4.2.1 Alpha contribution 

 Alpha particles, although highly ionising, only have a penetrating range of 

~0.025 mm from the emitting nucleus (Aitken, 1998).  Therefore, when sand-sized 

grains are considered, the external alpha contribution does not penetrate the internal 

core of a grain, instead only affecting the outer rind.  This results in inherent 

uncertainties in determining the external alpha dose rate because different regions of the 

same grain will have received different alpha contributions (Aitken, 1998).  To 

circumvent this problem of partial penetration and inhomogeneous alpha irradiation, the 

external alpha contribution has been reduced to negligible levels by removing the outer 

~9 μm of each grain by HF acid etching (see Section 3.2.1) all samples during 

preparation (Aitken, 1998).  Subsequent to HF acid etching, the external alpha 

contribution to the quartz and K-feldspar grains is assumed to have been removed and is 

not considered further. 

 

4.2.2 Cosmic-ray contribution 

 Despite the fact that cosmic rays typically make up only a small fraction of the 

environmental dose rate, estimates of their contributions to the total dose rate should be 

included (Prescott and Hutton, 1988).  Cosmic rays are a lightly ionising form of 

radiation with two components.  The ‘soft’ component is absorbed in the top ~50 cm of 
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sediment.  The ‘hard’ component is composed of muons capable of penetrating to 

considerable depths, although with decreasing intensity as the depth of overlying 

sediment or rock increases (Aitken, 1998).  The cosmic-ray contribution to the dose rate 

of a sample, thus, decreases as the thickness of overlying sediments and rocks increases. 

 In this study, the contribution of cosmic rays to the environmental dose rate was 

estimated using the procedures described by Prescott and Hutton (1994).  This approach 

takes into account the latitude, longitude and altitude of the study sites.  The effect on 

the cosmic-ray dose rate of the thickness of sediment overburden, which was assumed 

to be 2.0 g/cm3, and the cos2 ø-zenith angular distribution of cosmic rays to account for 

rock shielding (Smith et al., 1997) were also taken into account.  A systematic error of 

10% was used to account for the uncertainty associated with the primary cosmic-ray 

flux (Prescott and Hutton, 1994).  The cosmic-ray contribution to the total 

environmental dose rates for samples from Mumba is low (3-4% of the total dose rate 

for most samples). 

 

4.2.3 Beta and gamma contributions 

 The majority of the environmental dose rate for both quartz and feldspar 

separates in this study is derived from beta particles and gamma rays.  These 

components of the dose rate result from 40K and the decay of 238U, 235U, 232Th and their 

daughter products in the surrounding sediment.   

Beta particles and gamma rays have penetration ranges of up to 3 mm and 30 

cm, respectively (Aitken, 1998).  The short penetration range of beta particles means 

that an adequate representation of the bulk natural beta dose rate can often be obtained 

from a small sediment sample in the laboratory.  This is in contrast to the dose rate 

resulting from gamma rays.  Laboratory measurements of a small sediment sample may 

not be representative of the natural surroundings of the sample, unless the 30 cm-radius 

gamma sphere is homogeneous in composition (e.g., sand dune deposits).  In this study, 

all samples were collected from archaeological sites that consist of complex and 

heterogeneous sedimentary deposits.  Archaeological sites typically contain large 

numbers of artefacts, shell, bone, carbonate nodules and possible ashy lenses, each of 

which has different concentrations of radioactive materials.  It is for this reason that, 

whenever possible, the gamma-ray contribution to the dose rate was measured in situ 
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using a field gamma spectrometer.  The sedimentary heterogeneity also has 

consequences for the beta dose rate.  This will be discussed later in this chapter (Section 

4.4.2).   

In Section 4.2.3.1, the method for measuring the gamma-ray contribution to the 

total dose rate using a field gamma spectrometer is discussed.  Section 4.2.3.2 details 

the method for measuring the beta component of the environmental dose rate using GM-

25-5 beta counting. 

 

4.2.3.1 In situ gamma spectrometry 

Field gamma spectrometry measurements were made for most of the OSL 

samples at Mumba and Moche Borago rockshelters by R.G. Roberts at the time of 

sample collection (June and July 2007).  Measurements were made using a gamma 

spectrometer with a 2 inch in diameter NaI(Tl) crystal.  The field gamma spectrometer was 

calibrated by Z. Jacobs using the ‘Oxford Blocks’ (Rhodes and Schwenninger, 2007) at the 

Research Laboratory for Archaeology and the History of Art, University of Oxford.  The 

total gamma dose rate from U, Th and K in the sediment was determined using the 

‘threshold’ technique (Mercier and Falguéres, 2007).  The concentrations of K, U and Th 

are ascertained by locating specific high-energy gamma peaks within the spectra that 

correspond to 40K and the daughter radionuclides of 238U and 232Th: 214Bi and 208Tl, 

respectively.  For 40K, the peak emits at 1460 KeV, for uranium the 214Bi peak is 1760 KeV, 

and for thorium the 208Tl peak is at 2620 KeV (Jacobs, 2004; Mercier and Falguéres, 2007).  

The peak used for derivation of the Th concentration is the only peak in the gamma-ray 

spectrum that is not significantly interfered with by other peaks, despite the large number of 

gamma emitters in the 232Th decay series. The 40K peak is also reasonably interference-free 

(Jacobs, 2004).  Each spectrum in this study was obtained by inserting the field gamma 

spectrometer into a 30 cm deep and ~6 cm wide horizontal hole in the archaeological 

section, created by taking OSL samples, and measuring the counts for 60 min.  A relative 

error of 2.5% was used. 

 

4.2.3.2 Beta counting 

The bulk beta contribution to the environmental dose rate was estimated from 

beta counting measurements made using a low-level Risø beta counter (GM-25-5), 
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which is described in Bøtter-Jensen and Mejdahl (1985, 1988).  The instrument is 

comprised of a gas flow counter (using a gas composed of 99% argon and 1% 

isobutane), five individual Geiger-Müller cylindrical detectors, and a common guard 

counter.  The detectors are mounted in a row with their mylar windows facing 

downwards to record pulses derived from the sample material loaded into five 

cylindrical containers (‘pots’) with a diameter of 25 mm.  These containers are loaded 

on to a sliding vessel to ensure that their locations underneath the detectors are precise 

and reproducible.  The whole instrument is encased inside 10 cm of lead brick shielding 

to reduce the background signal from cosmic rays. 

 Sub-samples to be measured in the beta counter were dried and ground to a fine 

powder.  The loose powder was dispersed into the pots and enclosed using a plastic film 

(i.e., ‘Glad Wrap’).  The pots containing the sample material were then loaded into three 

of the five positions in the instrument, with the other two positions reserved for pots 

containing material used to measure the background signal and a calibration standard.  

The material used for background measurements was a sample of magnesium oxide 

(MgO) that has an average count rate of 0.17 counts/min.  The calibration standard was 

a dried sample of Nussloch Loess (‘Nussi’), which has a known beta dose rate 

calculated using high resolution gamma spectrometry (Kalchgruber, 2002), and an 

average count rate of ~5 counts/min.  The beta dose rate of Nussi, when calculated 

using the conversion factors of Adamiec and Aitken (1998), is 1.49 Gy/ka 

(Kalchgruber, 2002; Bauer, 2007).  Measurements of the five positions were made 

simultaneously for 24 cycles, each one hour (i.e., 24 hours of measurement time). 

 To calculate the beta dose rate for the sample being measured, the total number 

of counts for each position from all 24 cycles was summed.  The total counts from the 

MgO pot were then subtracted from the total counts from each sample position and the 

Nussi calibration standard.  The background-corrected total for each sample was then 

divided by the background-corrected total for the calibration standard, and multiplied by 

the known beta dose rate for Nussi.  The calculated beta dose rates for the three 

replicates were then averaged to obtain a final, bulk beta dose rate for the sample. 

 It was assumed that the three sub-samples measured in the beta counter were 

three independent measurements of the beta dose rate of the sample.  Following this, the 

uncertainty associated with the bulk beta dose rate for each sample was obtained by 
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calculating the standard deviation of the three background-corrected sub-sample 

measurements.  This was divided by the background-corrected sub-sample mean beta 

dose rate to obtain the relative error, which was then added, in quadrature, to the relative 

error on the Nussi standard to obtain the uncertainty on the bulk beta dose rate.  The 

error on Nussi was calculated as 3% by combining, in quadrature, the U, Th and K 

concentration uncertainties (Kalchgruber, 2002). 

 

4.3 Correction factors:  beta attenuation and water content 

 Before the total environmental dose rate could be calculated for each sample, 

several corrections needed to be made to the measured external contributions to the dose 

rate.  First, the beta dose rate needs to be corrected for beta attenuation caused by the 

relatively small ionising range of beta particles.  Second, each external dose rate 

component needs to be corrected for the presence of water, which attenuates the 

ionising radiation from beta particles and gamma and cosmic rays. 

 Beta attenuation occurs within each grain.  The extent of attenuation of beta 

particles varies for U, Th and K and is dependent on the grain size being examined.  In 

this study, the grain-size fraction used for all samples was 180–212 μm.  Consequently, 

the beta attenuation factors used are those from Mejdahl (1979) for grains of 200 μm in 

diameter.  These are 0.930, 0.854 and 0.794 for K, U and Th, respectively.  A fractional 

error of 3% arising from uncertainties associated with the derivation of the beta-

attenuation factors was added in quadrature to the uncertainty on the beta dose rate. 

 The environmental dose rate of sediment containing moisture will be smaller 

than for the same sediment if were dry, due to the fact that water in the sediment 

absorbs radiation at a higher rate than the grains themselves (Aitken, 1998).  The 

various radiation emissions (beta particles and gamma and cosmic rays) are attenuated 

to different degrees by water.  If water content is ignored, the resulting OSL age may be 

considerably underestimated (Aitken, 1998).  The water content of the sample when 

collected (the ‘measured water content’) is expressed as a percentage of the dry mass of 

the sample and is calculated by dividing the mass of water in the sample by the mass of 

the dry sample.  The measured water content may not be representative of the long-term 

average water content over the course of the sample’s burial (‘historical water content’), 
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and so this must be estimated.  The correction to the dose rate for water content can be 

expressed as: 

 

HWF
DD dry

correctedwater
+

=−
1

     Equation 4.1 

 

where Dwater-corrected is the water content-corrected dose rate, Ddry is the measured dose 

rate for a particular emission, WF is the historical water content, and H is the dose rate 

attenuation factor for the emission (Aitken, 1998).  H values of 1.25, 1.14 and 1.176 

were used for beta particles, gamma rays and cosmic rays, respectively (Aitken 1985; 

Readhead, 1987).   

It must be noted that the measured in situ gamma dose rate (Din-situ gamma) is 

already attenuated by the measured water content (Win-situ).  This field measurement 

must be first converted to a ‘dry’ gamma dose rate (Ddry gamma) as follows: 
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     Equation 4.2 

 

The dry gamma dose rate is then used in Equation 4.1 to calculate the water corrected 

gamma dose rate for the historical water content. 

 

4.4 Potential environmental dose rate problems 

4.4.1 Radioactive disequilibrium 

 A radioactive decay chain is in secular equilibrium if each member of the chain 

decays to the succeeding member at the same rate as it is produced from the preceding 

member.  At secular equilibrium, therefore, the activities of daughter and parent 

nuclides are equal.  Alternatively, if a decay chain is in disequilibrium, the activities of 

the daughter and parent nuclides will be unequal (Olley et al., 1996).  Disequilibrium 

results when a process preferentially moves parent or daughter nuclides into, or out of, 

an open system at a significant rate relative to the half-life of the daughter product 

(Olley et al., 1996).  The three main mechanisms that cause disequilibria in sediments 
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are: 1) precipitation and solution reactions, 2) diffusion of the gaseous radon isotopes, 

and 3) alpha particle recoil (Olley et al., 1996).   

 Since it is not always possible to accurately assess past episodes of 

disequilibrium, assumptions must be made about the radioactive history of a sample.  

The two main assumptions made in luminescence dating are: 1) the radioactive decay 

chains have always been in secular equilibrium, or 2) that the modern dose rate is 

representative of the dose rate that has prevailed during burial, which does not imply 

secular equilibrium (Olley et al., 1996).  Dose rate evaluation techniques that measure 

the activity of parent nuclides (e.g., neutron activation analysis, atomic absorption 

spectrometry, and ICP-MS) rely on the first assumption.  Alternatively, dose rate 

evaluation techniques that count emissions (e.g., beta counting, in situ gamma 

spectrometry and thick source alpha counting) rely on the second assumption (Olley et 

al., 1996).  While emission counting techniques measure the activity of all nuclides in 

the U and Th decay chains, the majority of the measured dose rate is contributed by the 

radionuclides in the lower half of the decay chains (Olley et al., 1996). 

Olley et al. (1996, 1997) showed that, when the modern dose rate is assumed to 

have prevailed during burial and the dose rate is estimated from the activities of the 

shorter-lived daughter nuclides, the presence of disequilibrium in the 238U decay chain 

caused a small disparity (<3%) between the calculated and true dose rates.  

Alternatively, when secular equilibrium was assumed and the concentrations of the 

parent nuclides were measured to determine the dose rate, the disparity between 

calculated and true dose rates was greater (~8%) (Olley et al., 1996, 1997).  

Consequently, all dose rate evaluations in this thesis were made using emission-

counting techniques (i.e., beta counting and in situ gamma spectrometry) that do not 

assume secular equilibrium. 

 

4.4.2 Beta microdosimetry 

Many archaeological sites, including Mumba and Moche Borago rockshelters, 

have complex sedimentary deposits that are heterogeneous in composition.  Aside from 

sediment grains, they contain large concentrations of shell, bone, stone artefacts, ash 

lenses and carbonate nodules, each of which has different radioactive properties.  

Millimetre-scale spatial inhomogeneity in deposits can lead to heterogeneity in the beta 
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dose rate due to the presence of material that is high in radioactivity (i.e., ‘hotspots’) or 

low in radioactivity (i.e., ‘cold spots’) (Olley et al., 1997; Nathan et al., 2003; Mayya et 

al., 2006).  Mayya et al. (2006) suggested that microscopic fluctuations in the 

distribution of highly radioactive beta-emitting 40K in the sediment could cause a 

heterogeneous dose rate (and, hence, De) distribution.  Alternatively, the presence of 

‘cold spot’ materials, such as carbonate fragments, gypsum, opal, calcite and 

carbonaceous materials such as shell fragments, can also lead to spatial inhomogeneity 

in the dose rate (Murray and Roberts, 1997; Olley et al., 1997; Nathan et al., 2003; 

Mercier et al., 2007; David et al., 2007; Jacobs et al., 2008c) 

Differences in the dose rate derived from sediment heterogeneity have little 

effect on De distributions when aliquots consisting of many grains are measured.  This is 

because the effects of sediment (and, thus, dose rate) heterogeneity are averaged out 

among grains when the total environmental dose rate is used in the age equation with a 

De estimated using a summed luminescence signal from multi-grain aliquots (Olley et 

al., 1997; Nathan et al., 2003).  As the size of the aliquots measured decreases to the 

single-grain level, the differences in beta dose rate resulting from sediment 

heterogeneity become progressively more significant, potentially resulting in De 

distributions with large scatter (Olley et al., 1997; Mayya et al., 2006).  Beta dose rate 

heterogeneity has been used in many previous studies as one explanation for the large 

spread in single grain De distributions (e.g., Murray and Roberts, 1997; Olley et al., 

1997; Roberts et al., 1999; Feathers, 2003; Lomax et al., 2007; Jacobs et al., 2008b,c). 

A method was developed by Jacobs et al. (2008b,c) to attempt to resolve the 

ambiguities associated with the beta dose rate to individual grains.  It involves analysing 

single-grain De distributions with the FMM and using the discrete components, along 

with the bulk beta dose rate, to model and correct for beta microdosimetry variations.  

This correction procedure will be discussed in the next two sections. 

 

4.4.2.1 Beta microdosimetry identification 

An analytical test that must be undertaken in order to verify the possible 

presence of beta microdosimetry variations is based on Jacobs et al. (2008c).  It 

involves modelling the effects of grains that were completely surrounded by ‘cold spot’ 

material, thus receiving no beta dose.  The MAM is used to analyse each single-grain 
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dataset to obtain the statistically smallest De value, which is divided by the bulk dose 

rate with the beta contribution set to 0 Gy/ka (i.e., internal alpha, external gamma and 

cosmic-ray contributions only).  The resulting age applies to those hypothetical grains 

that have been encased in ‘cold spot’ material throughout their burial history, thereby 

reducing their beta dose rates to zero. 

There are three possible outcomes of this analysis.  First, if this age is smaller 

than that calculated using the major De component (identified using the FMM) and the 

total bulk dose rate (i.e., including the measured, average beta dose rate), then beta 

microdosimetry can be ruled out as the sole or principal source of the observed scatter 

in De values.  This result indicates that the MAM component is composed of grains with 

burial doses that are too small to be the result solely of them having received no beta 

dose throughout their burial history.  If the latter were a sufficient explanation by itself, 

then they would have produced larger De estimates.  Second, if the age obtained using 

MAM and the dose rate minus the beta contribution is greater than the age obtained 

using the major De component and the total bulk dose rate, then beta microdosimetry is 

a possible explanation for the observed overdispersion.  In this case, the MAM 

component consists of grains that received a beta dose rate less than the average 

measured beta dose rate received by the bulk sample.  Finally, if the two ages are 

statistically consistent, then beta microdosimetry variations are a possible explanation.  

In this scenario, the MAM component is comprised of grains that were completely 

surrounded by material with low radioactivity, receiving a beta dose rate of 0 Gy/ka for 

most of their burial history.  While this analysis does not definitively confirm that beta 

dose rate heterogeneity is the process that has resulted in the observed De distributions, 

it can establish whether the observed distributions cannot be explained as a function of 

differences in beta dose rate among grains.   

 

4.4.2.2 Beta dose rate correction 

The method that was used to correct for heterogeneity in the beta dose rate in 

this study was tested and used by Jacobs et al. (2008c) on samples from archaeological 

deposits in South Africa.  It uses the relative proportion of grains in each population (π) 

fitted using the FMM and the measured beta dose rate to estimate the beta dose rate 

received by the majority of grains.  The measured bulk beta dose rate represents a 
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combination of above-average beta dose material and below-average beta dose (i.e., 

‘cold spot’) material.  In the laboratory, these materials were combined into a 

homogeneous powder and measured, thus producing an average beta dose rate for the 

sample.  If results from the analysis described in Section 4.4.2.1 indicate that beta 

microdosimetry may be present, it could be assumed that the grains that comprise the 

minor component in the De distributions (as indicated by the FMM) were surrounded by 

material with low radioactivity, and that these grains experienced a below-average beta 

dose rate.  This means that the grains in the main De component must have received a 

beta dose rate higher than the measured, average beta dose rate.  The grains in the minor 

component received some beta dose rate between zero (in the case of a grain completely 

surrounded by ‘cold spot’ material) and a value less than the bulk beta dose rate.   

A step-by-step worked example of the beta microdosimetry correction is 

presented in Table 4.2 for sample MR7 from Mumba.  It is based on the principal that 

the bulk beta dose rate for a sample is equal to the sum of the fractional beta dose rate 

for the minor and major De components.  It was assumed that the beta dose rate received 

by the grains in the minor De component was equal to half the bulk beta dose rate (Table 

4.2, B), which was multiplied by the proportion of grains assigned to the this component 

by the FMM to estimate the fraction of the bulk beta dose rate associated with these 

grains (Table 4.2, C).  This value could then be subtracted from the bulk beta dose rate 

to obtain the fraction of the bulk beta dose rate that pertains to the grains in the main De 

component (Table 4.2, D).  The fraction of the bulk beta dose rate that is associated with 

the main component was divided by the proportion of grains in the main De component 

to obtain the beta dose rate applicable to these grains (Table 4.2, E).   

The beta microdosimetry correction can also be expressed as follows: 

 

main

minorminoraverage
main

)(
π

πββ
β

×−
=

DRDR
DR    Equation 4.3 

 

where βDRmain is the beta dose rate for the main De component, βDRaverage is the bulk 

beta dose rate, βDRminor is the beta dose rate that the minor De component received, 

πminor is the proportion of grains that fall into the minor component, and πmain is the 

proportion of grains that comprise the main component.   
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Table 4.2: Worked example of beta microdosimetry dose rate correction for MR7 using component 
proportions from the FMM (see Table 6.3 and Table 6.5).  See text for details of the procedure.  
Using the proportions of the components determined by the FMM, the measured bulk (average) 
beta dose rate, and an assumed beta dose rate of half the bulk beta dose rate for the minor 
component, the beta dose rate of the main component can be estimated 

 
 

The uncertainty on the adjusted beta dose rate was obtained by assuming that all 

beta dose rates experienced by grains in the minor component (i.e., surrounded by ‘cold 

spot’ materials) are effectively captured at 2σ (95% confidence interval) on either side 

of half of the average beta dose rate value.  The uncertainty at 1σ (68% confidence 

interval) for the minor component (i.e., [midpoint value]/2: Table 4.2, F) is then divided 

by (√n) (Table 4.2, H), where n is the number of De values in the main component 

(Table 4.2, G).  This value represents the standard error on the mean for the main De 

component. This error is then added in quadrature to the bulk beta dose rate 

measurement error to estimate the uncertainty on the adjusted beta dose rate for the 

grains in the main De component. 

 

4.5 Summary 

 In this chapter, the denominator of the age equation, namely the dose rate, was 

introduced and the different components of the dose rate described.  Details of the 

instrumentation and procedures used in this study to measure the different dose rate 

components were provided as were the methods used to correct for water content and 

beta dose attenuation.  Finally, two problems associated with estimating the 

environmental dose rate were discussed, along with how they were addressed in this 
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thesis.  The effects of potential disequilibrium in the U and Th decay series were kept to 

a minimum by using emission counting methods, which measure short-lived daughter 

nuclides down the decay chain and do not assume secular equilibrium, for all dose rate 

measurements.  Heterogeneity in the beta dose rate is a likely cause of large spreads in 

De distributions from archaeological sites.  A technique that had published previously 

(Jacobs et al., 2008c) for modelling and correcting for small-scale beta dose rate 

heterogeneity was discussed, and a worked example was given in Table 4.2. 
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Chapter 5: Characterising the OSL signal of quartz from Mumba 
rockshelter using single grains and multi-grain aliquots  
 

In this chapter, investigations of the OSL signal from multi-grain and single-

grain aliquots of quartz from Mumba are described.  The samples that were used to 

characterise the OSL signal of quartz from Mumba are both from the Bed V 

archaeological unit, which contains the Mumba Industry.  Multi-grain aliquots of quartz 

from MR7 were investigated.  This sample was not used for single-grain studies, 

however, due to the relatively small quantity of MR7 material remaining.  

Consequently, OSL investigations of single grains were performed on quartz from 

MR6.  Since both samples are from the same geological unit (Unit E; Table 2.4), their 

origins and luminescence behaviours were expected to be the same. 

The main aim of these studies was to identify an OSL signal that could be used 

to obtain reliable De estimates for samples from Mumba using the SAR procedure.  

Several objectives were established to meet this aim.  First, LM-OSL measurements 

were used to verify the presence of a fast component in the OSL signal of natural and 

laboratory irradiated aliquots.  A dominant fast component is necessary for reliable De 

determination using the SAR procedure (Galbraith et al., 1999; Murray and Wintle, 

2000).  Second, the OSL signal from single grains of quartz was characterised, and 

modified SAR procedures were tested.  Third, dose recovery experiments were 

performed to assess the suitability of the modified SAR procedure for obtaining 

accurate dose estimates.  These experiments were used to develop rejection criteria that 

could be used to isolate grains with well-behaved OSL signals.  Finally, the effects of 

intra-sample OSL variability on the OSL signal from multi-grain aliquots were 

investigated. 

 

5.1 LM-OSL investigations of quartz from Mumba 

5.1.1 Establishing the presence of a fast component 

 As discussed in Chapter 3, the SAR procedure was designed as a technique to 

obtain De values using the fast component of the OSL signal from quartz (Galbraith et 

al., 1999; Murray and Wintle, 2000; Wintle and Murray, 2006).  On this basis, LM-OSL 

investigations were undertaken with the primary aim of identifying the presence of a 
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fast component in the natural signal of quartz from Mumba.  A second aim was to 

identify the optically less-sensitive slower components present in quartz from Mumba. 

To achieve these aims, the natural LM-OSL signals from eight multi-grain 

aliquots of MR7, each consisting of ~500 quartz grains, were measured.  Samples were 

preheated to 260°C for 10 s prior to LM-OSL measurements, which were made and 

analysed as described in Section 3.5.  The stimulation power was linearly increased 

from 0 to 90% power (0 to ~45 mW/cm2) over 3600 s while the temperature was kept 

constant at 125°C.  The number of components that provides the optimal fit to the 

measured LM-OSL curve was determined by minimising the sum of the squared 

residuals.  The individual components could then be distinguished based on their PIC, 

absolute b, and relative b values, which were compared to published values (e.g., Table 

3.4).   

The LM-OSL curves measured on the eight aliquots of MR7 were subsequently 

de-convoluted and the data is presented in Table 5.1.  LM-OSL curves from four of 

these aliquots are also shown in Figure 5.1 along with their fitted components.  The 

number of components (N) that best fit the data varied for each aliquot.  Most aliquots 

(75%, n = 6) were best fitted using five or more components.  Each component that was 

fitted for each aliquot was allocated into a column (A–F) according to its b value (Table 

5.1).  At the bottom of the table, the average b-values, relative b (relative to the first 

component), and PIC for each column are presented.  There are two components present 

in all aliquots measured, namely those presented in columns A and F in Table 5.1.  

These represent the fastest and slowest components, respectively.  The components 

represented by columns B and E were also present in all aliquots, except aliquot 7, 

which could only be de-convoluted using an equation where N = 2.   

Although the component represented in column B was present in most aliquots, 

it has a large range of b values (~0.3–0.7 s-1) and appears to be more closely related to 

the components represented by column C.  This can be inferred by scrutinising the 

aliquots that were de-convoluted for five or more components.  When five components 

were fitted, only one (column B) was present and when six components were fitted, 

components corresponding to both columns B and C were present.  Li and Li (2006b) 

made similar observations.  They noted that the fastest component had a similar peak 

position (related to the b value) for different aliquots, but that the slower components 
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were difficult to separate clearly, making it difficult to determine the size and number of 

components in the later part of the LM-OSL curve.  There seems to be a spectrum of b 

values for components presented in columns B and C, from 0.13 to 0.71 s-1.  There is no 

intuitive separation between the two, making it difficult to discern between them.  This 

may suggest that the components represented by columns B and C may actually be a 

single component with a continuum of b values. 

 
Table 5.1: De-convolution data for the natural LM-OSL signal measured for eight aliquots of MR7.  
Each LM-OSL curve was de-convoluted using the sum of the squared residuals to determine how 
many components optimally fit the data.  Each component was then grouped by its b value into 
columns. 

 
 

Despite the difficulty in identifying discrete slower components, three 

components were consistently identified in all aliquots, namely those presented in 

columns A, E and F.  If only these three components are considered, they can be 

associated with the fast, S2 and S3 components of Choi et al. (2006a) (roughly equal to 

the fast, S3 and S4 components of Jain et al., 2003).  If this is so, then components B 

and C may represent a medium component, and component D may represent the S1 

component of Choi et al. (2006a) (the S2 component of Jain et al., 2003).  Additionally, 

the size of the component represented by column B, relative to the component 

represented by column A, is variable for each aliquot (Figure 5.1).   

It is peculiar that the S3 component (S2 component of Singarayer and Bailey, 

2003) was identified in the natural signal, given that this component has previously 

been described as thermally unstable (Singarayer and Bailey, 2003).  However, atypical  
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Figure 5.1: LM-OSL curves of the natural signal from four multi-grain aliquots of MR7 plotted on 
a linear-logarithmic scale.  The background-subtracted LM-OSL is shown (in bold) with the fitted 
components underlying it.  The approximate positions of the peak of the three components that 
were consistently identified in MR7 (fast, S3 and S4) are also presented.  
 

results, such as the identification of an S3 component and the continuum of b-values 

identified for several components, may be the result of measuring the combined LM-

OSL signal from hundreds of grains.  Adamiec (2005) found that, in the case of an 

inhomogeneous sample (where homogeneity is defined as all grains having the same 

OSL properties, such as decay form and thermal sensitisations), components observed 
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in LM-OSL curves of multi-grain aliquots may not accurately represent the trap 

structure of the quartz.  Instead, they may represent a manifestation of heterogeneous 

luminescence properties, which could lead to erroneous conclusions.  Variability in the 

luminescence signal of individual grains of quartz from the same samples is well 

established (e.g., Roberts et al., 1999; Duller et al., 2000; Adamiec, 2000; Yoshida et 

al., 2000, 2003; Bulur et al., 2002; Jacobs et al., 2003b, 2006b, 2008c). 

 

5.1.2 Assessing the behaviour of the LM-OSL signal over multiple SAR 

measurement cycles 

 With the composition of the natural OSL signal generally known and the 

presence of a fast component confirmed, experiments were undertaken to assess the 

composition of the laboratory-irradiated OSL signal.  To do this, four aliquots, 

consisting of ~500 grains of MR7, were bleached in natural sunlight for one week.  

They were then given a beta dose of 116 Gy, followed by a preheat of 260°C for 10 s, 

and then stimulated by linearly ramping the blue LEDs from 0 to 90% over 3600 s.  

Subsequent to the LM-OSL measurement, a test dose cycle was performed that 

consisted of a test dose of 11 Gy, a preheat of 220°C for 5 s, and a LM-OSL 

measurement for 3600 s.  The first two aliquots (Aliquots 1 and 2) were not given a 

HOW and the other two aliquots (Aliquots 3 and 4) were given a HOW.  This was 

repeated for a total of five measurement cycles, keeping the regenerative dose constant. 

There were two main purposes in performing this experiment, which are 

addressed in the next two subsections.  First, the constituent components that make up 

the OSL signal following a laboratory irradiation could be ascertained and compared to 

those that constitute the natural signal.  This would identify the presence of any 

potentially thermally unstable components that may not be present in the natural signal 

due to trap instability over geological timescales, but that may be present in the 

laboratory-irradiated OSL signal (Jain et al., 2003; Singarayer and Bailey, 2003; Li and 

Li, 2006a; Jacobs et al., 2006a; Pawley et al., 2010).  The aberrant effects of these 

thermally unstable components have been shown to be reduced by certain laboratory 

treatments (e.g., using a 220°C test dose cutheat and applying a HOW; Jacobs et al., 

2006a).  Second, this experiment would provide information regarding the effect of a 

HOW on the accumulation of signal over multiple SAR measurement cycles.  This 
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could be achieved by comparing the shapes of LM-OSL curves from the same aliquots 

over multiple cycles of irradiation, preheating and optical stimulation.  The results from 

the two aliquots for which a HOW was used could then be compared to those that did 

not include this additional step.   

 

5.1.2.1 Assessing the constituent components of a laboratory-irradiated OSL signal 

 The first LM-OSL curves measured after sun-bleach, irradiation and preheat 

were analysed for each of the four aliquots (Figure 5.2).  These LM-OSL curves were 

de-convoluted as described in Section 3.5.  Results are presented in Table 5.2.  Three of 

the four aliquots (Aliquot 1, 2 and 3) were best fitted with four components.  The fourth 

aliquot (Aliquot 4) was best fitted with six components.  All aliquots have four 

components in common, namely those represented by column A, C, D and F.  A 

comparison of these components’ PIC and b values with those in Table 3.3 indicates 

that these four components are likely the fast, medium, S2 and S4 (using the 

nomenclature of Jain et al., 2003).  For Aliquot 4, the component represented by column 

B has not been reported in the literature, though it is generally similar to the component 

present in the natural signal represented by column B in Table 5.2.  The component 

represented by column E for Aliquot 4 can be identified by its PIC and b values: they 

indicate that this component is a S3 component, which was also identified in the natural 

signal (column E in Table 5.2). 

 

 
Table 5.2: De-convolution data for the laboratory-irradiated LM-OSL signals obtained for four 
aliquots of MR7.  The components represented in the columns by letters are equivalent to those in 
Table 5.1. 
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Figure 5.2: LM-OSL curves for four aliquots of MR7 following laboratory irradiation plotted on a 
linear-logarithmic scale.  The background-subtracted LM-OSL is shown (in bold) with the fitted 
components underlying it.   
 

5.1.2.2 Assessing the effect a of HOW on the LM-OSL signal 

 The second objective of this experiment was to assess the effect that a HOW had 

on the accumulation of OSL signal over the course of repeated cycles of irradiation, 

heating, and optical stimulation.  To this end, all of the background-subtracted LM-OSL 

curves for each aliquot were normalised to their peak intensity and plotted together on a 
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linear-logarithmic scale (Figure 5.3a,c).  In this way, any accumulation of OSL signal or 

changes in sensitivity in different components, indicated by changes in the shape of the 

LM-OSL curve with repeated SAR measurement cycles, could be examined.  These 

changes could be compared between those aliquots whose SAR measurement procedure 

included a HOW (Figure 5.3c) and those aliquots whose measurement procedure did not 

(Figure 5.3a).  When the HOW is included, the main LM-OSL peak (i.e., that of the fast 

component) consistently stays in the same position (with respect to measurement time) 

over repeated measurement cycles.  Conversely, when no HOW is administered, the 

highest point of the main peak migrates to the right by as much at 12 s.  This migration 

of the main peak suggests that when no HOW is administered, a slower component may 

accumulate under the fast component, thereby shifting the position of the main peak.  A 

potential candidate for this slower component, underlying the main peak of the LM-

OSL curve, is represented by column B in Table 5.2.  In Figure 5.2d, this component 

can be seen underlying the later portion (i.e., the right side) of the main LM-OSL peak.  

If this component accumulates or sensitises proportionally more than the fast 

component, then the position of the main peak would shift towards the right. 

The later portions of the LM-OSL curves show that slower components are 

accumulating over the course of each SAR measurement cycle.  Moreover, due to the 

normalised nature of Figure 5.3 (a and c), it is apparent that the slower components are 

accumulating more than the fast component that comprises the main LM-OSL peak.  

Figure 5.3 (b and d) show point-by-point subtractions of the first regenerated LM-OSL 

curve and the final (fifth) regenerated LM-OSL curve (R5 - R1) from Figure 5.3 (a and 

c), respectively.  These curves show that, although signal is accumulating in the later 

region of the LM-OSL curve when a HOW is employed, more signal accumulates when 

a HOW is not used.  By calculating the area under each curve, the difference in signal 

accumulation can be gauged.  There is approximately twice as much signal that 

accumulates in the later region of the LM-OSL curve over five measurement cycles 

when a HOW is not applied compared to when a HOW is used.  The curves in Figure 

5.3 (b and d) were then de-convoluted using the same procedure outlined in Section 3.5 

with the aim of discerning the components in the LM-OSL signal that were 

accumulating.  Figure 5.3b was best fitted using four components (R2 = 0.979), namely 
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the S1, S2, S3 and S4.  Figure 5.3d was best fitted using three components (R2 = 0.956), 

namely the S2, S3 and S4. 

 

 
Figure 5.3: Background-subtracted LM-OSL measurements for an individual aliquot whose SAR 
procedure did not include a HOW (a) and an individual aliquot whose SAR procedure did include a 
HOW (c).  Each curve (from progressive SAR measurement cycles with a regenerative dose of 116 
Gy) is normalised to its peak intensity.  (b) and (d) show the accumulation of LM-OSL signal over 
five SAR measurement cycles.  The first normalised background-subtracted LM-OSL curves in (a) 
and (b) were subtracted (point-by-point) from the final curves (i.e., R5 - R1). 
 

 Results from these analyses suggest that the inclusion of a HOW in the 

regenerative-dose procedure for samples from Mumba is beneficial.  The use of a HOW 

reduced the accumulation of signal in the slower components that make up the later 

region of the LM-OSL curve and completely eliminated the contribution from S1.  The 

components that made up these accumulated signals included the S3 component, which 

has been reported to be thermally unstable (Singarayer and Bailey, 2003; Jain et al., 

2003; Jacobs et al., 2006a).  Over five regenerative cycles, these slow components 

accumulated twice as much in the aliquots whose measurement procedure did not 
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include a HOW.  The HOW also reduced the extent of accumulation of signal in a 

slower component that underlies the main LM-OSL peak, closest to the fast component.  

This prevented migration of the main peak position over the course of multiple SAR 

measurement cycles.  When a HOW was not included, the accumulation of signal under 

the main LM-OSL peak was observed as a shift of the peak towards the right, 

suggesting that the early portion of the CW-OSL curve may be affected as well.   

 

5.1.2.3 Summary  

 This LM-OSL experiment provided important information regarding the 

composition and behaviour of the constituent components of the OSL signal of quartz 

from Mumba.  First, it verified the presence of a fast component in the laboratory-

irradiated OSL signal.  This confirmed that the fast component was present in both the 

natural and laboratory-irradiated OSL signals, a feature that is necessary to successfully 

obtain a reliable De value using the SAR procedure (Murray and Wintle, 2000, 2003; 

Preusser et al., 2009).  Second, this test showed that there is an accumulation of signal 

in the slower component region of the LM-OSL curve over the course of multiple SAR 

measurement cycles.  This accumulating signal is best fitted with a S1, a S2, a thermally 

unstable S3 and a S4 component.  Third, this test confirmed the usefulness of the 

addition of a HOW in the SAR procedure.  The accumulation of signal in the S2, S3 and 

S4 components over the course of five measurement cycles was reduced by half and no 

S1 component accumulated when a HOW was included, compared to when it was not.  

Additionally, the position of the main LM-OSL peak stayed constant through all five 

measurement cycles when a HOW was administered, compared to the rightward shift in 

peak position observed when it was not applied.  This indicates that, when a HOW is 

not included, a slower component may underlie and obscure the fast component.   

The presence of multiple slow components, including a potentially thermally 

unstable component, suggests that a high temperature preheat combination (e.g., 

260°C/220°C) is appropriate for quartz samples from Mumba (Murray and Wintle, 

2003; Jain et al., 2003; Singarayer and Bailey, 2003; Jacobs et al., 2006a).  In addition, 

the accumulation of slow components in the later portion of the LM-OSL signal, a 

feature that could complicate the measurement of the fast component during CW-OSL 

investigations, was substantially reduced when a HOW was included in the SAR 
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measurement cycle.  This confirms the utility of this treatment in the SAR procedure for 

measuring quartz samples from Mumba. 

Following the results summarised above, it was necessary to assess whether the 

SAR procedure was suitable for dose estimation using the OSL signal of quartz from 

Mumba.  Therefore, a dose recovery test was performed, using only the de-convoluted 

LM-OSL fast component, to assess whether a known dose could be accurately measured 

in the laboratory with this procedure. 

 

 

5.1.3 Dose recovery experiment using the fast component, isolated from the LM-

OSL signal 

 Previous research has demonstrated that the fast component, isolated from LM-

OSL measurements, can be used to obtain De estimates that are in agreement with those 

obtained using CW-OSL (Li and Li, 2006b).  Li and Li (2006b) stated that the results 

from such LM-OSL SAR experiments can be checked using the same tests of SAR 

suitability as are used for CW-OSL SAR experiments, namely a recycling ratio test and 

a dose recovery test.  Pawley et al. (2010) used curve fitting to isolate the fast 

component from an OSL signal that included a thermally unstable medium and S2 

components to obtain ages that were in agreement with expected ages of up to ~450 ka.  

To ensure that the fast component of quartz from Mumba was reliable as a 

chronometer, a dose recovery test was performed.  Five aliquots of MR7, each 

consisting of ~500 grains, were bleached for at least three days in natural sunlight.  

Each aliquot was then given a laboratory irradiation of 122 Gy that was treated as a 

surrogate natural dose.  A preheat of 260°C for 10 s was administered, followed by an 

LM-OSL measurement for 3600 s at 125°C.  This was followed by a test dose cycle 

consisting of a 12 Gy irradiation, a preheat of 220°C for 5 s, and a LM-OSL 

measurement for 3600 s at 125°C, followed by a HOW.  This procedure was repeated 

for regenerative doses of 61, 122, 183, 244 and a repeated dose of 61 Gy, which were 

used to build a dose-response curve.  A 0 Gy regenerative dose was not included in this 

experiment.  Each regenerative and test dose LM-OSL curve was de-convoluted as 

described in Section 3.5.  Method 2 of Appendix 2 was used to determine the number of 

components fitted to each curve.  This ensured that the b value of the component being 
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compared would remain consistent for a given aliquot throughout the entire SAR 

procedure.  

 Following the de-convolution of each LM-OSL curve, the isolated fast 

components were used to obtain values of Lx/Tx for each SAR measurement cycle.  The 

uncertainties estimated for both Lx and Tx values included a systematic error, a fitting 

error and an error related to counting statistics.  A systematic error of 1% was used (see 

Section 3.3.1.2).  A fitting error was produced for all components during the fitting 

procedure using the Sigmaplot software.  The uncertainty related to counting statistics 

was estimated based on a modification of Equation 3 from Galbraith (2002).  Galbraith 

(2002) addresses the quantification of statistical uncertainties for CW-OSL decay 

curves.  This involves signals and backgrounds that are measured in fundamentally 

different ways than for LM-OSL curves.  For the purposes of this LM-OSL study, the 

statistical uncertainties were calculated as: 

 

YY
YY

rse s −

+
=

0

0)ˆ(μ       Equation 5.1 

 

where )ˆ( srse μ  is the relative standard error for the counting statistics, Y0 is the 

cumulative LM-OSL signal measured and Y  is the sum of the estimated background 

count.  This counting statistics uncertainty was added, in quadrature, to the systematic 

and fitting uncertainties to estimate the uncertainty on both the values of Lx and Tx.  

Dose-response curves were then built, on to which the values of Lx/Tx for the surrogate 

natural could be projected and interpolated on to the dose axis.  Since a 0 Gy 

regenerative dose was not used, each dose-response curve was fitted with an additional 

Lx/Tx value of 0, which forced the curve through the origin.   

 Dose-response curves are presented in Figure 5.4 for the four aliquots for which 

dose-response curves could be constructed.  One of the five aliquots was rejected due to 

instrumental malfunction during measurement of the LM-OSL signals.  Results are 

somewhat ambiguous.  The four remaining aliquots successfully recycled a duplicate 

regenerative dose, with a weighted mean recycling ratio of 0.99 ± 0.01.  This suggests 

that, when the fast component is isolated, the test dose can successfully correct for any 

sensitivity changes that occurred over the course of multiple SAR measurement cycles.  
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However, the given dose (122 Gy) was underestimated for three aliquots and 

overestimated for one.  In spite of this, the weighted mean dose estimate for the four 

aliquots, obtained using the CAM, is 111.4 ± 11.0 Gy with an overdispersion of 18 ± 

7%.  This corresponds to a weighted mean measured/given dose ratio of 0.92 ± 0.09, 

which is consistent with unity at 1σ. 

 

 
Figure 5.4: Dose-response curves built using the fast component, isolated using de-convoluted LM-
OSL measurements.  Curves are shown for the four aliquots for which curves could be constructed, 
along with the measured dose.  Each curve was forced through the origin.  The given dose was 122 
Gy. 
 

While the given dose was, on average, recovered successfully, a larger sample 

size would have made these results substantially more robust.  It is a protracted process 

to measure and de-convolute LM-OSL curves and isolate the fast component from each 

natural, regenerative and test dose signal.  In addition, there are several fundamental 

statistical limitations of such approaches (Adamiec, 2005; Bluszcz and Adamiec, 2006).  

Adamiec (2005) found that, in the case of an inhomogeneous sample (where 
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homogeneity is defined as all grains having the same OSL properties, such as decay 

form and thermal sensitisations), components observed in LM-OSL curves of multi-

grain aliquots may not accurately represent the trap structure of the quartz, but may, 

instead, represent a manifestation of heterogeneous luminescence properties, which 

could lead to erroneous conclusions.   

It is highly likely, given the large intra-sample variability in luminescence 

properties reported for single grains of quartz (e.g., Roberts et al., 1999; Duller et al., 

2000; Adamiec, 2000; Yoshida et al., 2000, 2003; Bulur et al., 2002; Jacobs et al., 

2003b, 2006b, 2008c), that multi-grain aliquots of quartz from Mumba are also 

inhomogeneous in their OSL behaviour on a single-grain level.  This heterogeneity has 

been confirmed by the measurement and analysis of individual grains of quartz (see 

Section 5.2).  Consequently, further multi-grain aliquots were not measured, and single 

grain investigations were undertaken. 

The following section details the characterisation of the OSL behaviour of 

individual grains of quartz from Mumba.  Large intra-sample variability in the OSL 

signal is demonstrated, suggesting that the identification of individual slower 

components in the LM-OSL signal from multi-grain aliquots of MR7 quartz does not 

necessarily reflect a physical property of the quartz. 

 

5.2 Characterisation of the OSL signal of single grains of quartz 

A major benefit of using single grains of quartz for OSL dating is that large 

numbers of grains can be investigated, providing the opportunity to assess and 

characterise the luminescence characteristics of many individual grains from the same 

sample (Roberts et al., 1999; Jacobs et al., 2003b, 2006b, 2008c).  This allows for the 

identification and subsequent rejection of grains that do not possess the qualities needed 

to obtain a reliable De estimate using the SAR procedure.  This latter point means that 

grains that may have led to relatively poor performances in multi-grain aliquot 

experiments can be identified and rejected from single grain datasets (Jacobs et al., 

2006b).   

Following the results of LM-OSL investigations presented in Section 5.1, the 

SAR procedure used to investigate single grains of quartz from Mumba included a 

regenerative/test dose preheat combination of 260/220°C and a HOW. 
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5.2.1 Characterising the types of quartz grains 

In order to assess the variability in the OSL signal, individual quartz grains from 

sample MR6 were bleached in sunlight for at least 3 days, given a surrogate natural 

dose (120 Gy), preheated at 260°C for 10 s, and stimulated with the green laser for 2 s 

at 125°C.  They were then given a test dose of 10 Gy, a test dose preheat of 220°C for 5 

s, and stimulated with the green laser for 2 s at 125°C.  Each test dose measurement was 

followed by the application of a HOW (40 s of blue LED stimulation at 280°C).  

Regenerative doses of 60, 120, 180, 240, 0 and a second 120 Gy dose were used to 

construct dose-response curves.  An OSL-IR depletion ratio test (Duller, 2003) was also 

performed for each grain to check for feldspar contamination. 

Individual grains of quartz from Mumba exhibited a wide range of different 

behaviours when put through the SAR measurement procedure.  The array of various 

behaviours could generally be classified into five broad grain-types based on differences 

in their OSL decay curve shapes (Figure 5.5), extent of sensitisation of the OSL signal 

over multiple measurement cycles (insets to Figure 5.5), and dose-response curve 

shapes (Figure 5.6).  Dose-response curves constructed by representative grains of the 

five types are presented in Figure 5.6.  Decay curves from the same individual grains 

shown in Figure 5.6 are presented in Figure 5.5.  The decay curves are those measured 

following the test dose, recorded during the first and final regenerative-dose cycles.  

The insets to Figure 5.5 show the test dose OSL signals (Tx) normalised to the first test 

dose measurement (TN) as a function of SAR measurement cycle.  These Tx/TN plots 

show the change in OSL signal sensitivity as a function of measurement cycle.  

Although all three of the features discussed were used, the shape of the dose-response 

curve was the principal characteristic that was used to classify grain-types.  In this 

section, the five general classes of grain-types that are prevalent at Mumba will be 

described, compared, and discussed.  It is important to recognise the differences in 

behaviour of the various grain-types, so that reliable De values can be obtained for age 

calculation.   

 The first grain-type is the ideal type for De estimation using the SAR procedure.  

Figure 5.5a and Figure 5.6a show the OSL decay curves and the dose-response curve 

from a representative grain of this type.  The OSL signal decays rapidly, reaching inst- 
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Figure 5.5: OSL decay curves for grains that are representative of the five general grain-types.  The 
two decay curves were measured during the test dose cycle of the first (blue) and final (pink) 
regenerative-dose cycles.  The inset plots show the ratio of test dose responses (Tx/TN) as a function 
of measurement cycle for each grain to illustrate changes in sensitivity. 
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Figure 5.6: Dose-response curves from grains that are representative of the five general grain-types.  
These grains correspond to those presented in Figure 5.5. 
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rumental background within the first ~0.2 s of green laser stimulation, indicating that it 

is dominated by the fast component.  The shape of the OSL decay curve does not 

change over the course of multiple SAR measurement cycles (Figure 5.5a), indicating 

that that fast component remains dominant and that slower components are not 

accumulating.  Additionally, any sensitivity changes in the OSL signal are negligible, as 

seen by the Tx/TN plot for which all ratios are close to unity (inset to Figure 5.5a).  Any 

sensitivity changes that do occur are corrected for using the test-dose cycle, resulting in 

recycling ratios that are consistent with unity.  The dose-response curves that are built 

for these grains can be fitted with a single saturating exponential function (Figure 5.6a), 

on to which the sensitivity-corrected natural signal (LN/TN) can be projected and 

interpolated onto the dose axis to obtain a De estimate.  Ideally, the De estimate should 

be no more than twice the size of the D0 value (Wintle and Murray, 2006).  As 

discussed in Section 3.3.1.3, the D0 value is a fitted parameter of a saturating 

exponential function that equates to the dose at which the OSL intensity reaches 63% of 

the saturation intensity. 

 The second type of grain has OSL decay curves and dose-response curves like 

those presented in Figure 5.5b and Figure 5.6b.  A main feature of these grains that 

separates them from the first grain-type is that their OSL signals saturate at relatively 

low doses despite their dose-response curves requiring an additional linear term to 

describe the continual, low rate of growth in sensitivity-corrected OSL signal at higher 

doses (Figure 5.6b).  This low-dose saturation can be quantified by the relatively low 

D0 values (<25 Gy) when the dose-response curves resulting from grains of this type 

are fitted with a single saturating exponential function.   Grains that have dose-response 

curves with these characteristics generally show changes in OSL sensitivity that are 

more substantial than those seen in the first grain-type (inset to Figure 5.5b).  Although 

these grains experience changes in OSL sensitivity, they are generally able to 

successfully recycle a duplicate regenerative dose.  However, since the OSL signal of 

grains of this type saturates at early doses, the duplicate regenerative dose is not a 

genuine test of reproducibility, since all regenerative dose points (e.g., 60, 120, 180 and 

240 Gy in Figure 5.6b) are statistically consistent with one another.  In these grains, 

therefore, the effectiveness of the sensitivity-correction is not being monitored using the 

recycling ratio test.  In addition, many of these grains have OSL signals that decay more 
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slowly in response to optical stimulation than grains of the first type.   This suggests 

that the OSL signal from these grains, while still mainly composed of a fast component, 

may be comprised of additional components to a larger extent than grains of the first 

type. 

The third grain-type constitutes grains that have OSL signals that are fully 

saturated at relatively low doses, as evidenced by their very low D0 values.  The dose-

response curves built using these grains have sensitivity-corrected regenerative-dose 

points that are equivalent to one another at higher doses (e.g., ~100 Gy in Figure 5.6c).  

Due to the early onset of signal saturation in these grains, finite De values usually 

cannot be obtained because the sensitivity-corrected natural signals (LN/TN) project on 

to the saturated region of the dose-response curve.  Any projection of LN/TN on to this 

kind of dose-response curve can only result in a minimum De estimate.   Grains of this 

type usually have OSL signals that are dominated by the fast component and are subject 

to some changes in sensitivity (inset to Figure 5.5c).  The shape and rate of decay 

curves do not change over multiple measurement cycles (Figure 5.5c), suggesting that 

the slower components are not accumulating and interfering with the fast component.  

Like the second grain-type, the OSL signals from grains of this type are in saturation at 

very early doses.  The recycling ratio test, thus, does not appropriately monitor the 

effectiveness of the sensitivity correction, even though these grains may be able to 

successfully recycle a duplicate regenerative dose. 

 The fourth grain-type has been referred to previously as ‘Class 3’ grains by 

Yoshida et al. (2000).  The defining characteristic of this type of grain is that the LN/TN 

value is significantly greater than any of the sensitivity-corrected regenerative-dose 

points that were used to construct the dose-response curve, even at high doses (Figure 

5.6d).  Quartz grains of this type, which occur in high abundance at Mumba, have been 

shown to be prevalent in southern Africa (Jacobs et al., 2003b, 2006b, 2008a,c) and 

Australia (Yoshida et al., 2000).  The majority of these Class 3-type grains at Mumba 

showed four further characteristics.  First, the dose-response curves from these grains 

often do not grow, being either saturated at an early dose (Figure 5.6d) or are hyperbolic 

in shape.  Second, the OSL decay curves produced by a grain of this type generally 

change shape considerably over the course of multiple SAR cycles (Figure 5.5d).  Slow 

components appear to accumulate in the OSL signal, a feature that is manifested as a 

139 
 



slowing of the decay rate and a progressive increase in the later portions of the decay 

curve with successive measurement cycles (Figure 5.5d).  Third, these grains often 

exhibit considerable changes in OSL sensitivity (inset to Figure 5.5d).  The grain in 

Figure 5.5d (inset) showed a 26-fold (2600%) increase in test dose signal intensity over 

six measurement cycles.  This is in contrast to changes in sensitivity over six 

measurement cycles of 20%, 50% and 30% for the grains presented in Figure 5.5a, b 

and c, respectively.  Fourth, the substantial changes in sensitivity frequently are not 

appropriately corrected for by the test-dose cycle, as evidenced by the recycling ratios 

that are inconsistent with unity (Figure 5.6d).  Nevertheless, a small proportion of these 

grains are able to recycle a duplicate regenerative dose within 2σ of the original value, 

although they generally have OSL signals that exhibit smaller changes in shape and 

sensitivity over the course of multiple measurement cycles.  The poor recycling ratios 

and the inability of LN/TN values to intercept with the dose-response curves precludes 

the estimation of De values from these grains using the SAR procedure.  Although the 

cause of Class 3-type grains is unknown, the presence of these grains has limited 

consequences for De estimation from single-grain measurements.  However, the 

presence of bright Class 3-type grains in a multi-grain aliquot may compromise the 

reliability of the resulting De estimate (Yoshida et al., 2000). 

 Grains of the fifth type showed a decrease in both absolute and sensitivity-

corrected OSL intensity with increasing radiation doses, resulting in dose-response 

curves that exhibit a hyperbolic shape.  This anomalous behaviour has previously been 

reported elsewhere in the literature for quartz grains from Australia (e.g., Roberts et al., 

1999) and South Africa (e.g., Jacobs et al., 2008c).  Dose-response curves from grains 

that are representative of this type are presented in Figure 5.6e and Figure 5.7.  For 

Mumba, the defining feature of grains of this type was the paradoxical condition of 

higher regenerative-dose points having sensitivity-corrected OSL values lower than 

those obtained using smaller regenerative doses.  The dose-response curves constructed 

from grains of this type, however, turned hyperbolic at varying doses.  This is illustrated 

in Figure 5.7, which presents the dose-response curves and associated decay curves of 

three different grains of this type.  The low-dose portion of the dose-response curves 

from these grains often grew before turning hyperbolic (Figure 5.7d and f).  For other 

grains, the lowest regenerative dose (60 Gy) resulted in the largest sensitivity-corrected 
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OSL signal, and each successive regenerative dose resulted in progressively smaller 

sensitivity-corrected OSL signals.  This resulted in a dose-response curve that appeared 

to decrease with increasing dose (Figure 5.7b).   

 

 
Figure 5.7: OSL decay curves (left column) and dose-response curves (right column) from three 
individual grains of the fifth grain-type.  The two decay curves in each plot in the left column were 
measured during the test dose cycle of the first and final regenerative-dose cycles.  Each plot in the 
right-hand column corresponds to its adjacent plot in the left-hand column.  These grains show 
dose-response curves that turn hyperbolic at varying regenerative doses. 
 

Generally, the OSL signal from grains of this type decayed slowly during 

stimulation with the green laser (Figure 5.5e and Figure 5.7c and e).  This suggests that 

there is a substantial contribution to the total OSL signal from one or more slower 

components.  In addition, the shapes of the decay curves generally remained unchanged 

over the course of multiple measurement cycles, despite the substantial sensitivity 

141 
 



changes that were often observed.  These changes in sensitivity often commenced with 

increases on the order of 100% between the natural and first regenerative dose cycles 

(e.g., inset to Figure 5.5e), followed by further increases or decreases in sensitivity.  The 

effectiveness of the sensitivity-correction cannot be appropriately assessed in these 

grains, however, since their OSL signal does not respond to dose in a predictable way.  

The sensitivity-corrected OSL signals for the duplicate regenerative dose is statistically 

consistent with those of the preceding and succeeding regenerative doses for the grains 

presented in Figure 5.6d and Figure 5.7b and 5.7d.  The recycling ratio test, therefore, is 

not an appropriate check for reproducibility in grains of this type. 

 

5.2.2 Discussion 

 As mentioned in the introduction to this section, it is imperative that the 

differences in behaviour of different types of grains are recognised so that reliable De 

estimates can be obtained and used for age calculation.  Fortunately, many grains that 

posses aberrant OSL characteristics can be identified and removed from the datasets by 

applying a standard range of objective rejection criteria (Jacobs et al. 2003b, 2006a).  

Several of these criteria were introduced in Section 3.3.2, namely the recycling ratio 

test, the recuperation check and the OSL-IR depletion ratio test.  Additionally, grains 

that have weak test dose OSL signals (i.e., the initial intensity of a grain’s TN signal is 

less than three times its background intensity) were eliminated in this study.  This 

removes grains that produce no or very dim luminescence from the dataset.  Grains 

were also rejected if their LN/TN values did not intercept with the fitted dose-response 

curve; an estimate of the De cannot be made for such grains.  This final standard 

rejection criterion precludes all Class 3-type grains (fourth grain-type) and many 

saturated grains (third grain-type) from being included in the dataset.  As a result of 

these rejection criteria, grains that are unsuitable for the De estimation using the SAR 

procedure and Class 3-type grains, regardless of their prevalence in a sample, should not 

have an effect on the sample’s De distribution.  It is important to emphasise that grains 

are rejected due to their aberrant physical properties, not on their estimates of De.  The 

latter cannot be obtained with confidence from grains that exhibit the malign behaviours 

that are screened for using these criteria (Jacobs et al., 2006a).  However, two features 

are not monitored for using standard rejection criteria: namely, the onset of signal 
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saturation and the presence of grains of the fifth type.  The former feature will be briefly 

discussed in the following paragraph and further explored in Section 5.3.3.  The latter 

feature will be discussed in the remainder of this section. 

The dose at which an OSL signal, dominated by the fast component, saturates is 

a major limitation of OSL dating.  This is because the fast component commonly 

saturates at relatively low doses (Wintle and Murray, 2006).  Given the relatively high 

environmental dose rates for samples from Mumba (~2–3 Gy/ka, see Table 6.1, natural 

doses in excess of 100 Gy will accrue after just ~30–50 ka of burial.  This is 

uncomfortably close to the saturation limit observed for the first two grain-types and 

above the saturation limit of the third.  When these first three grain-types are compared, 

it is clear that they share marked similarities.  All three have OSL signals that are 

mainly dominated by the fast component and have relatively small changes in 

sensitivity when regenerated.  The major difference is the dose at which their OSL 

signals begin to saturate.  Grains of the third-type will normally be rejected outright, 

due to the inability of their sensitivity-corrected natural signals to intersect the non-

saturated portion of the dose-response curve, preventing De estimation.  A point to 

emphasise is that all three of these grain-types are characterised as having relatively 

well behaved OSL behaviours, with varying levels of saturation.  Consequently, the D0 

value could be used as a means of quantifying grains that saturate at low doses, so as to 

remove them from the De dataset for a sample.  Reasons to support such a rejection 

criterion for grains from Mumba will be discussed further in Section 5.3.3. 

 Unlike the first three grain-types, grains of the fifth-type, which were 

particularly common in samples from Mumba when higher doses were investigated (see 

Section 5.3.2), exhibit a suite of aberrant OSL behaviours.  The hyperbolic shape of 

their dose-response curves was often caused by a decrease in the absolute OSL signal at 

higher doses relative to lower doses.  Put another way, the decrease in regenerative dose 

points (Lx/Tx) at higher doses was often the result of a decrease in Lx and not an 

increase in Tx.  The effectiveness of the test dose cycle to appropriately correct for 

sensitivity changes also cannot be assessed, even though grains of this type often 

produce recycling ratios that are consistent with unity.  Although the origin of this 

aberrant behaviour is unknown, it is an unwanted property of the dose-response curve 

that sheds doubt on the reliability of De values obtained from these grains.  Bailey 
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(2004) suggested that erroneous dose-response curves may be generated in the 

laboratory because of difference in the rate at which OSL traps are filled in nature 

compared to in the laboratory.  As a result, he recommended delivering laboratory 

irradiations as multiple small doses (e.g., as 10 Gy pulses), separated by heat treatments 

(e.g., cutheat of 240°C), to more closely mimic the natural dose rate.  This ‘pulsed-

irradiation’ technique will be discussed further in the following section as a possible 

means of reducing the proportion of grains with hyperbolic dose-response curves. 

 

5.2.3 Overview of the pulsed-irradiation technique 

5.2.3.1 The case for pulsed-irradiation 

Bailey (2004) and Bailey et al. (2005) suggested, modelled and tested the 

method of pulsed-irradiation as a technique for overcoming dose-rate effects in quartz.  

These dose-rate effects arise from the disparity between the environmental dose rate (on 

the order of ~3 Gy/ka, or ~9 x 10-11 Gy/s, for samples from Mumba) and the rate at 

which laboratory irradiations are given (~0.08 Gy/s).  In nature, the low dose rate 

ensures that the concentration of thermally unstable charge-trapping centres remains 

consistently low.  By contrast, the high dose rate used in the laboratory keeps these 

thermally unstable traps filled.  The occupancy of these thermally unstable centres 

following laboratory irradiation alters the natural distribution of thermally stable and 

unstable traps, resulting in increased competition among those traps responsible for 

OSL (Bailey, 2004).  Consequently, the OSL output following a high laboratory 

irradiation will be lower than the OSL output following an environmental irradiation of 

the same magnitude.  This causes the sensitivity-corrected OSL signal to be lower at 

high laboratory doses, which can result in the measured De being an overestimate of the 

true burial dose (Bailey, 2004).  Several previous studies have concluded that dose-rate 

effects in quartz are negligible.  Wallinga et al. (2002) experimentally concluded that 

dose-rate (shallow trapping) effects are not significant in quartz.  Alternatively, the 

theoretical approach used by Banerjee et al. (2002), using the model of Bailey (2001), 

concluded that there is no significant effect on quartz luminescence when the dose rate 

is varied over two orders of magnitude (0.001–0.1 Gy/s).  However, as noted by Bailey 

(2004), the difference in dose rates modelled by Banerjee et al. (2002) is too small to 
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predict effects arising from the actual difference between laboratory and environmental 

dose rates (i.e., nine orders of magnitude). 

 Bailey (2004) modelled the OSL response arising from irradiations at rates of ~1 

Gy/s (simulated laboratory dose rate) and ~1 Gy/ka (~3 x 10-11 Gy/s; simulated natural 

dose rate).  He reported that the laboratory dose response was lower than the simulated 

environmental dose response, resulting in an overestimate of the De.  These effects are 

magnified for larger doses.  The cause for this dose-rate effect was surmised to be an 

increase in competition for electrons during laboratory irradiations.  Increased 

competition resulted from an increased concentration of holes at the R1 centre, a 

thermally unstable recombination centre (E = 1.43 eV compared to E = 1.7–2.6 eV for 

the main OSL trap) that is effectively empty at environmental dose rates due to the slow 

flux of holes into the centre being equal to the slow thermal de-trapping rate (Bailey, 

2004; Bailey et al., 2005).  In contrast, during laboratory irradiations, the flux of holes is 

~10 orders of magnitude greater than in nature, resulting in a higher concentration of 

holes trapped in the R1 centre, which in turn results in stronger competition for free 

electrons (Bailey, 2004).  It is this increased competition from the R1 centre that reduces 

the number of free electrons that can access OSL traps, resulting in a smaller 

luminescence output per unit dose.  It is impractical to administer laboratory doses at 

environmental dose rates to avoid these dose-rate effects.  Alternatively, by 

administering laboratory irradiations in 10 Gy pulses (low enough to not saturate the R1 

centre) separated by cutheats of 240°C (to reduce the concentration of the R1 centre), 

the thermally unstable centres are kept at a low concentration and the effects of 

competition are reduced, thus allowing a more natural distribution of free electrons 

(Bailey, 2004; Bailey et al., 2005).  As an aside, successive cutheats of 240°C were 

shown to produce no extra thermal erosion of the OSL signal beyond that of the 

administered preheat of 260°C for 10 s (Bailey et al., 2005). 

Simulations (Bailey, 2004) and experiments on samples from a wide geographic 

range (Bailey et al., 2005) showed that when individual aliquots were used to measure 

the natural signal and build multiple dose-response curves (first using single-irradiation, 

then using pulsed-irradiation), the resulting curves using a single-irradiation procedure 

were consistently lower than those resulting from a pulsed-irradiation procedure for 

doses above ~40 Gy (e.g., Figure 5.8).  The De values estimated using the pulsed-
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irradiation dose-response curves were consistently lower and less scattered than those 

estimated using the single-irradiation curves.  This feature has implications for a major 

prediction of the model of Bailey (2004), namely the existence of Class 3-type 

behaviour (though he does not use this term to refer to the behaviour).  When a single-

irradiation SAR procedure was used, this behaviour was observed for both simulations 

(Bailey, 2004) and experiments (Bailey, 2004; Bailey et al., 2005).  For one aliquot in 

the experiment described above (Liwa/pit/10), the sensitivity-corrected natural signal 

exhibited Class-3 type behaviour for the dose-response curve constructed using a single-

irradiation procedure, but intersected the curve when pulsed-irradiation was employed 

to construct the dose-response curve (Figure 12 in Bailey et al., 2005). 

 

 

 
Figure 5.8: Dose-response curves constructed for the same grain of MR6 that was bleached in 
sunlight.  The grain was measured using two back-to-back SAR procedures that were identical 
except for the mode of dose delivery.  In the first the regenerative doses were administered using a 
single-irradiation technique and in the second the regenerative doses were administered using a 
pulsed-irradiation technique.  Regenerative and test dose preheats of 260°C for 10 s and 220°C for 
5 s were used, in addition to the application of a HOW. 
 

 

5.2.3.2 Pulsed-irradiation application 

 The ability of the pulsed-irradiation technique to lift the higher dose region of 

the dose-response curve (relative to dose-response curves built using single-irradiation) 

could potentially reduce the effects of low-dose saturation and hyperbolic dose-response 
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curve shape: aberrant properties that were frequently observed during investigations of 

single grains of quartz from Mumba.  Consequently, dose recovery experiments were 

performed to compare single-irradiation results with pulsed-irradiation results (Section 

5.3).  The pulsed-irradiation technique, as applied to single grains of quartz from 

Mumba, involved delivering regenerative doses in alternating cycles of 10 Gy pulses 

and 240°C cutheats (Table 5.3).   

 
Table 5.3: Step-by-step outline of the modified SAR procedure (see Table 3.2) using pulsed-
irradiation to administer the laboratory doses (Bailey, 2004).  All laboratory doses were applied in 
10 Gy pulses (step 7) followed by a cutheat of 240ºC (step 8).  This was repeated d times so that the 
intended regenerative dose was administered (e.g., if the intended regenerative dose is 120 Gy, d = 
(120/10) - 1 = 11).  A HOW was applied subsequent to the measurement of each test dose. 

 
 

5.3 Single-grain dose recovery experiments 

One way of investigating the effects of various OSL characteristics, such as dose 

saturation, on the determination of De values is to perform dose recovery tests 

(Galbraith et al., 1999; Wintle and Murray, 2006).  These experiments can also be used 

to test and refine modifications to the conditions used in the SAR procedure and 

methods of data analysis most appropriate for an individual sample.  This will enable 

improved reliability in De estimation.  If the chosen experimental conditions and 

methods of data analysis are appropriate for the sample being investigated, then the 
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measured/given dose ratio should be consistent with unity.  In this study, dose recovery 

tests were the principal means used to assess the suitability of various modifications to 

the experimental conditions of the SAR procedure.   

Four dose recovery experiments, using four subsets of sun-bleached quartz 

grains of MR6 (Table 5.4), are described in this section.  After grains of quartz were 

bleached in natural sunlight for at least three days, a surrogate natural dose of either 40 

or 120 Gy was given in the laboratory using the 90Sr/90Y beta source built into the Risø 

TL/OSL reader.  The larger dose is analogous to De values that were expected for many 

of the Mumba samples.  However, this dose lies close to the saturation limit of many 

grains from Mumba, which may adversely influence the accurate recovery of the given 

dose.  Thus, the smaller dose was used so that the appropriateness of the measurement 

conditions could be established in the absence of any complications resulting from the 

early onset of signal saturation.  Subsets of grains for each surrogate natural dose were 

then measured using the SAR procedure.  For one subset, the surrogate natural and 

regenerative doses were delivered in uninterrupted, single applications – that is, in the 

conventional manner (subsets 1 and 3 in Table 5.4).  For the other subset, the surrogate 

natural and regenerative doses were delivered using the pulsed-irradiation technique 

(subsets 2 and 4 in Table 5.4).  Results were then compared. 

 
Table 5.4: Description of four subsets of sun-bleached quartz grains from MR6 that were used for 
the four dose recovery experiments described in Section 5.3.  Note that the surrogate natural and 
regenerative doses were delivered using the prescribed irradiation technique. 

 
 

Several objectives could be met by performing these dose recovery experiments 

in this way.  First, the appropriateness of using both single-irradiation and pulsed-

irradiation techniques in the SAR procedure to obtain a known dose was assessed 

(Section 5.3.1).  Second, the ability of the pulsed-irradiation technique to overcome the 

malign properties of quartz from Mumba was investigated.  These properties included 

the low doses at which the OSL signal saturates, the presence of Class 3-type grains, 
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and the presence of grains that produce hyperbolic dose-response curves.  Third, these 

tests were used to refine the criteria used to analyse single-grain data, enabling the 

identification and rejection of grains that would be incapable of obtaining reliable De 

values (Section 5.3.3). 

 

5.3.1 Assessing the suitability of single- and pulsed-irradiation techniques at lower 

doses during the SAR procedure  

To assess the suitability of the SAR procedure using the conventional irradiation 

technique and without complications caused by the early onset of saturation, a dose 

recovery test was performed using a lower dose.  A set of 500 grains was bleached in 

natural sunlight and given a surrogate natural dose of 40 Gy.  Grains were then 

preheated to 260°C for 10 s and stimulated with the green laser for 2 s at 125°C.  A test 

dose cycle was then performed consisting of a 10 Gy irradiation, a 220°C preheat for 5 

s, and an optical stimulation for 2 s at 125°C using the green laser.  The measurement of 

each test dose was followed by the application of a HOW.  The sensitivity-corrected 

OSL responses to regenerative doses of 40, 10, 60, 80 and 0 Gy and a duplicate 40 Gy 

dose were used to construct dose-response curves.  An OSL-IR depletion ratio test was 

also performed. 

Seventy-two grains out of the 500 measured (14.4%) passed all tests of SAR 

suitability (see Section 3.3.2 for a description of tests) and produced dose estimates.  Of 

these 72 grains, four (5.6%) were of the fifth grain-type (i.e., had an OSL signal that 

decayed slowly and a hyperbolic dose-response curve shape).  Additionally, 16 grains 

(3.2%) passed all tests of SAR suitability, but exhibited Class 3-type behaviour, 

preventing dose estimation.  Despite the malign dose-response curve shapes of ~5% of 

the grains for which doses could be estimated, the weighted mean measured dose from 

the 72 dose estimates was 42.7 ± 1.6 Gy, recovering the given dose within 2σ.  This 

corresponds to a measured/given dose ratio of 1.07 ± 0.04.  However, the spread in the 

72 individual dose estimates is larger than expected, given the size of their measurement 

errors.  The distribution of dose estimates is presented in Figure 5.9a.  The 

overdispersion value for the distribution, calculated using the CAM, is 27 ± 3%.  This 

value is larger than many others reported in the literature for quartz samples under 

controlled laboratory conditions (e.g., Roberts et al., 2000; Thomsen et al., 2005; 
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Galbraith et al., 2005; Jacobs et al., 2006b; Arnold and Roberts, 2009).  The large 

spread in the dose distribution suggests that the given dose was unable to be recovered 

using some of the grains, despite the grains passing the standard rejection criteria. 

 

 
Figure 5.9: Dose distributions from dose recovery tests on single grains of quartz of MR6 displayed 
in radial plots, which are centred on the surrogate natural dose (40 Gy).  a, Dose recovery in which 
laboratory doses were delivered in the conventional single-irradiation fashion.  The measured/given 
dose ratio was 1.07 ± 0.04 with an overdispersion of 27 ± 3%.  b,  Dose recovery in which laboratory 
doses were delivered using the pulsed-irradiation technique.   The measured/given dose ratio was 
1.04 ± 0.02 with an overdispersion of 14 ± 2%. 
 

To investigate the appropriateness of the SAR procedure when laboratory doses 

were delivered using the pulsed-irradiation technique, a second dose recovery 

experiment was performed.  A group of 500 grains of MR6 were bleached in natural 

sunlight for at least three days.  The surrogate natural dose of 40 Gy was then delivered 

in a pulsed fashion; that is, in four successive pulses of 10 Gy irradiations alternated 

with 240°C cutheats.  The low surrogate natural dose would not only limit the effects of 

the early onset signal-saturation, it would also reduce any dose-rate effects resulting 

from increased competition from the R1 centre.  This allowed the SAR measurement 

procedures to be tested without complications related to these two features.  Grains were 

then preheated at 260°C for 10 s and stimulated with the green laser for 2 s at 125°C.  

This was followed by the application of a 10 Gy test dose, a 220°C preheat for 5 s, and 

an optical stimulation of 2 s at 125°C using the green laser.  Each test dose cycle was 

immediately followed with the application of a HOW.  All regenerative doses (40, 10, 

60, 80, 0 and a duplicate 40 Gy dose) were administered using the pulsed-irradiation 

technique.  The experimental conditions for this dose recovery test were identical to 
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those described at the beginning of this section, with the sole exception of the method of 

delivering laboratory doses to the grains. 

Results from this experiment are similar to the results for the corresponding 

single-irradiation counterpart.  Four grains of the 500 measured (0.8%) passed all tests 

of SAR suitability but exhibited Class 3-type behaviour, preventing dose estimation.  

Seventy-eight grains (15.6%) proved suitable for the SAR procedure by passing all 

rejection criteria and producing dose estimates.  Of these, four (5.1%) grains were of the 

fifth grain-type (i.e., had a hyperbolic dose-response curve shape).  The weighted mean 

measured dose from the 78 grains, which recovered the given dose within 2σ, was 41.2 

± 0.9 Gy with an overdispersion of 14 ± 2%.  This corresponds to a measured/given 

dose ratio of 1.04 ± 0.02.  Although both the proportion of accepted grains and the 

measured/given dose ratios were similar to those obtained for the single-irradiation 

dataset, the spread in the dose estimates in this ‘pulsed’ dataset was substantially less.  

Additionally, the estimated overdispersion value was similar to other values reported in 

the literature for a single population of well bleached quartz grains (e.g., Roberts et al., 

2000; Thomsen et al., 2005; Galbraith et al., 2005; Jacobs et al., 2006b; Arnold and 

Roberts, 2009). 

These results indicate that a SAR procedure using the pulsed-irradiation 

technique can recover a low laboratory dose (40 Gy) at least as well as a SAR procedure 

using conventional single-irradiation.  The low proportion of the fifth grain-type in both 

the ‘pulsed’ and ‘non-pulsed’ dose recovery experiments also suggests that hyperbolic 

dose-response curves may be associated with higher doses and an early onset of OSL 

signal saturation.  Consequent to the satisfactory results from these dose recovery tests, 

a second set of experiments were performed using a higher surrogate natural dose and 

higher regenerative doses.  The following section will assess the effects of the two 

irradiation techniques on the prevalence and behaviour of grains with low saturation 

levels and hyperbolic dose-response curves. 

 

5.3.2 Assessing the suitability of single- and pulsed-irradiation techniques at higher 

doses during the SAR procedure 

 The dose recovery experiment described in the previous section showed that 

single grains of quartz from Mumba were suitable for the application of the SAR 
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procedure to accurately obtain a 40 Gy radiation dose.  Consequently, a second set of 

dose recovery experiments was conducted to assess the ability of single grains to 

accurately measure a higher given dose, namely one that is nearer to the expected burial 

doses for many samples from Mumba.  The first dose recovery test was performed on 

700 single grains of MR6.  The grains were bleached for at least three days in natural 

sunlight before being given a surrogate natural dose of 120 Gy as a single, 

uninterrupted, irradiation.  The grains were then preheated to 260°C for 10 s and 

stimulated with the green laser for 2 s at 125°C.  This was followed by a test dose cycle 

that included a 10 Gy irradiation, a preheat of 220°C for 5 s, and an optical stimulation 

for 2 s at 125°C with the green laser.  The measurement of each test dose was 

immediately followed by the application of a HOW.  The dose-response curves were 

constructed using the sensitivity-corrected OSL signals following regenerative doses of 

120, 60, 180, 240, 0 Gy and a duplicate 120 Gy dose, which were delivered in the 

single-irradiation fashion.  An OSL-IR depletion ratio test was also performed. 

 Many of the measured grains were saturated, with only 3.7% (n = 26) passing 

standard rejection criteria and resulting in finite dose estimates.  The dose distribution 

of the 26 grains for which dose estimates were obtained is presented in Figure 5.10a.  

The dose estimates are overdispersed by 30 ± 6%, and produced a weighted mean dose 

estimate of 89.8 ± 6.6 Gy.  This corresponds to a measured/given dose ratio of 0.75 ± 

0.06, which is significantly different from unity and underestimates the given dose by 

~25%. 

 

 
Figure 5.10: Dose distributions from dose recovery tests on single quartz grains of MR6 using 
standard rejection criteria.  The data is displayed in radial plots that are centred on the given dose 
(120 Gy).  a, Single-irradiation.  b, Pulsed-irradiation. 
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A conspicuous characteristic of the dataset is that ~77% of grains that produced 

dose estimates (n = 20) were of the third or fifth grain-type; that is, they had completely 

saturated or hyperbolic dose-response curves.  These grains produced dose estimates 

because their LN/TN values intercepted the dose-response curves in the low-dose region.  

Additionally, of the grains that successfully passed the standard rejection criteria (n = 

36), dose estimates could not be obtained for 28% (n = 10) of the grains because they 

exhibited Class 3-type behaviour.  Only six of the grains that passed standard rejection 

criteria and produced dose estimates (23%) were of the first grain-type; that is, their 

dose-response curves continued to grow at higher regenerative doses.  When only these 

six grains are considered, the given dose is successfully recovered with a weighted 

mean of 123.3 ± 11.4 Gy (12 ± 11% overdispersion), corresponding to a 

measured/given dose ratio of 1.03 ± 0.09.  This result was encouraging, although 

several factors detracted from its apparent success.  First, the large uncertainty in the 

measured/given dose ratio is the result of the large spread in estimated doses, which, 

ranged from 80 to 161 Gy.  Second, the very low rate of recovery (0.8% of all grains 

measured) means that accepting only grains that produced dose-response curve that 

consistently grow at higher regenerative doses would require a large amount of 

instrument time. 

A second dose recovery test was performed to assess the effects of using the 

pulsed-irradiation technique on the behaviour of grains at higher doses.  An aim of this 

investigation was to discern whether this technique could be used to offset the effects of 

early signal saturation and hyperbolic dose-response curve shape.  A group of 700 

grains of MR6 were bleached in sunlight for at least three days before being given a 

surrogate natural dose of 120 Gy, delivered in a pulsed fashion (i.e., 10 Gy pulses 

interspersed with 240°C cutheats).  Grains were then given a 260°C preheat for 10 s 

before being stimulated with the green laser for 2 s at 125°C.  The subsequent test dose 

cycle was comprised of a 10 Gy irradiation, a 220°C preheat for 5 s, and an optical 

stimulation for 2 s at 125°C with the green laser.  This was immediately followed by the 

application of a HOW.  The sensitivity-corrected OSL signal following regenerative 

doses of 120, 60, 180, 240 and 0 Gy and a duplicate 120 Gy dose, delivered using the 
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pulsed-irradiation technique, were used to construct dose-response curves.  An OSL-IR 

depletion ratio test was also administered. 

Fifty-eight grains (8.3%) were deemed suitable for dose determination, 

producing a weighted mean of 91.7 ± 6.5 Gy, with an overdispersion of 45 ± 6%.  The 

dose distribution is presented in Figure 5.10b.  This corresponds to a measured/given 

dose ratio of 0.77 ± 0.05.  These results are similar to those of the corresponding single-

irradiation dose recovery experiment, in that the given dose is underestimated and the 

overdispersion is high.  Despite these similarities, several features of the ‘pulsed’ dose 

distribution are improved.  The proportion of grains of the third and fifth grain-type 

(i.e., grains with saturated or hyperbolic dose-response curves) was substantially 

decreased when laboratory irradiations were delivered in a pulsed fashion.  Only 43% of 

grains that passed all standard rejection criteria (n = 25) exhibited these malign features, 

compared to ~77% (n = 20) for the single-irradiation dataset. 

Notwithstanding the inability to recover the given dose, the smaller proportion 

of grains of the third and fifth grain-type suggests that the pulsed-irradiation technique 

helps to correct for these abnormal behaviours to some extent, and may aid in reducing 

the effects of saturation at low doses.  However, the inability to recover a known dose 

and, more importantly, the presence of grains of the fourth grain-type in both dose 

recovery experiments described in this section indicates that these malign features were 

not the result of dose-rate effects.  In contrast to the results of Bailey (2004) and Bailey 

et al. (2005), the number of grains that exhibited Class 3-type behaviour did not 

decrease when the results following pulsed-irradiation were compared to the 

corresponding dose recovery results using conventional single-irradiation techniques.  

In the pulsed-irradiation dose recovery, ~37% (n = 34) of all grains that passed standard 

rejection criteria (n = 92) exhibited Class 3-type behaviour, similar to the proportion of 

Class 3-type grains in the single-irradiation dataset (~28%).  It is unknown at the 

present time why pulsed-irradiation lowers the proportion of grains that exhibit 

hyperbolic dose-response curve behaviour (fifth grain-type) but does not affect the 

proportion of grains that exhibit Class 3-type behaviour (fourth grain-type) for single 

grains of quartz from Mumba, but it is evident that the causes of the two grain-types are 

not related. 
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It is interesting to note that in the cases of both single- and pulsed-irradiation 

dose recovery tests described in this section, the higher surrogate natural dose was 

underestimated and a relatively high proportion of the grains that passed standard 

rejection criteria and produced finite dose estimates (77% and 43% for single- and 

pulsed-irradiation, respectively) were of the third or fifth grain-type.  In contrast, in both 

dose recovery experiments described in Section 5.3.1, the lower given dose was 

recovered when all grains that passed standard rejection criteria were used.  

Additionally, fewer grains that passed standard rejection criteria and produced finite 

dose estimates (~5% for both single- and pulsed-irradiation) were of the third or fifth 

grain-type.  These results suggest that many individual quartz grains from Mumba have 

the malign property of a relatively early onset of signal saturation.  This property would 

not affect the estimation of lower doses (e.g., 40 Gy), but would hinder the estimation of 

higher doses (e.g., 120 Gy).  Given the archaeological context and relatively high dose 

rates for samples from Mumba (~3 Gy/ka), De values for samples from Bed V and VI 

were expected to be on the order of ≥100 Gy.  This indicates that the early onset of OSL 

signal saturation in quartz from Mumba may be a problem.  Consequently, the data 

from these dose recovery experiments were scrutinised further to seek additional 

objective criteria to identify and remove grains that underestimated the given dose due 

to features associated with the early onset of signal saturation. 

 

5.3.3 Examining dose distributions to refine rejection criteria 

 When the dose distributions from the dose recovery experiments described in 

Section 5.3.2 are examined, it becomes clear that the majority of dose estimates are 

consistent with the given dose.  When the distributions are plotted in radial plots, ~80% 

of the grains (21 of 26 in Figure 5.10a, and 46 of 58 in Figure 5.10b) fall within the 

shaded 2σ band.  This means that ~80% of the grains have measured doses that are 

statistically consistent with the given dose, suggesting that the measurement procedures 

are appropriate for the majority of grains.  However, the remaining 20% of grains 

yielded dose estimates that were significantly smaller than the given dose.  

Additionally, many of these low dose estimates have relative errors of less than 20%.  

The inclusion of these small, relatively precise dose estimates in the calculation of the 

weighted mean accounts for the disparity of the measured/given dose ratios from unity.  
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When these low-dose grains are examined, it is clear that they have one of two specific 

characteristics that will be discussed in the following sections: 1) they have aberrant 

dose-response curve shapes and saturate at low doses (i.e., they are of the third or fifth 

grain-type), or 2) the pattern of sensitivity change is distinctly different from that 

exhibited by grains that produced dose estimates that were consistent with the given 

dose. 

 

5.3.3.1 Investigating saturation and hyperbolic dose-response curve shape 

To investigate early dose saturation in individual quartz grains from Mumba, the 

D0 value, as defined in Equation 3.3, of each grain was characterised.  The D0 value is 

one of the fitted parameters of a single saturating exponential function, and is a measure 

of the onset of signal saturation.  It is equivalent to the dose at which the OSL intensity 

reaches 63% of the saturation intensity.  Previous studies on single grains have reported 

that D0 values from quartz grains vary widely, ranging from 16 to 600 Gy (e.g., Roberts 

et al., 1999; Duller et al., 2000; Yoshida et al., 2000; Jacobs et al., 2003b).  Figure 5.11 

shows the distribution of D0 values for all of the grains that produced dose estimates in 

the pulsed-irradiation dose recovery test plotted in Figure 5.10 and described in Section 

5.3.2.  There is considerable variability in the onset of saturation for individual grains.  

Most D0 values fall between 15 and 45 Gy with a mean and median of 39 Gy and 33 

Gy, respectively.  Three outliers have values of 96, 100 and 189 Gy. 

The main objective of computing the D0 value of each individual grain was to 

quantify the shape of each dose-response curve.  Grains of the third or fifth grain-type 

saturate at low doses, producing dose-response curves that are either horizontal or 

hyperbolic in shape.  These grains will have lower D0 values than grains of the first or 

second grain-type, which have dose-response curves that continue to grow with 

increasing dose.  This can be observed when the 25 grains of the third or fifth grain-type 

were investigated.  These grains are represented in Figure 5.11 with light shading.  

Every grain that has a D0 value of 25 Gy or lower has a horizontal (i.e., third grain-type; 

Figure 5.6c) or hyperbolic (i.e., fifth grain-type; Figure 5.6e) dose-response curve 

shape.  Of the 25 grains of the third or fifth grain-type, 80% (n = 20) fall into this 

category.  The remaining 20% of these grains (i.e., those with D0 values above 25 Gy) 

produced dose-response curves that continue to grow above the point at which the 
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LN/TN is projected on to the dose-response curve, only turning hyperbolic after 180 Gy.  

These results suggest that grains from Mumba that have a D0 value of 25 Gy or below 

are likely to be of the third or fifth grain-type and suffer from early signal saturation. 

 

 
Figure 5.11: D0 distributions for all grains of MR6 that passed standard rejection criteria tests from 
the single grain dose recovery experiment using pulsed irradiation described in Section 5.3.2.  
Grains whose signal saturated at an early dose, as distinguished by their dose-response curve shape 
being horizontal or hyperbolic, are represented by the lighter shading. 
 

A feature of the distribution shown in Figure 5.11 is the large number of grains 

that have low (<45 Gy) D0 values.  Murray and Wintle (2000) advised against using 

samples with a low saturation dose, cautioning that samples with De values that were 

larger than two times their D0 values could prove problematic.  Unfortunately, the 

number of grains from Mumba that pass standard rejection criteria and produce dose 

estimates is low for this sample (~8%).  Of these, the number of grains that fall below 

the aforementioned threshold of Murray and Wintle (2000) is very low, and only 16 

grains would be accepted (~2% of all grains measured).  Therefore, to obtain a 

significant number of dose estimates, the De/D0 ratio was not used as a rejection 

criterion in this study.  Demuro (2009) also accepted grains with De/D0 ratios that fell 

above the threshold of Murray and Wintle (2000).  She was able to accurately estimate 

ages for known-age samples, indicating that the inclusion of these grains was not 

detrimental to accurate age estimation. 

To remove grains that saturate at an early dose, while retaining a significant 

number of grains to produce robust dose distributions, a new rejection criterion was 
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applied.  Based on the pattern observed in Figure 5.11, this new criterion involved 

rejecting grains that had D0 values equal to or lower than 25 Gy.  This value was chosen 

as the rejection threshold because all grains that had D0 values under this threshold also 

had abnormally shaped dose-response curves.  This resulted in the rejection of 20 grains 

from the pulsed-irradiation dataset.  The dose estimates from the remaining 38 grains 

were overdispersed by 30 ± 5% and had a weighted mean of 108.5 ± 6.7 Gy, 

corresponding to a measured/given dose ratio of 0.87 ± 0.06.  The distribution of dose 

estimates from these grains is shown in Figure 5.12b.  While the measured/given dose 

ratio is substantially closer to unity when these early-saturation grains are rejected, the 

given dose is still significantly underestimated.  The reason for the continued 

underestimation of the given dose is apparent when the radial plot is again examined.  

While most of the low-dose grains have been removed, two doses measured with high 

precision (shown in the circle in Figure 5.12b) continue to form a low-dose component.  

The inclusion of these two grains in the dose distribution causes the underestimation of 

the given dose and the high overdispersion. 

 

 
Figure 5.12: Dose distribution from dose recovery tests on single quartz grains of MR6 described in 
Section 5.3.2.  The data is shown in radial plots centred on the given dose (120 Gy).  After the 
application of standard rejection criteria (Figure 5.10), grains that produced low D0 values ≤25 

.3.3.2 Identifying aberrant sensitivity change 

All 38 grains that were not rejected were further characterised.  The two grains 

g four grains that exhibited a unique 

 (
Gy) were also rejected.  a, Single-irradiation.  b, Pulsed-irradiation. 
 

 

5

that form the low-dose component were amon
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pattern of sensitivity change, as identified by their distinctive Tx/TN curves.  Two Tx/TN 

plots are presented in Figure 5.13.  The curves of the two low-dose grains have Tx/TN 

curves that decrease linearly to a ratio of <0.70 after eight regenerative-dose cycles 

(Figure 5.13a), a behaviour that is shared by two other grains.  This pattern is unique 

amongst this population of grains, as illustrated by a sample of Tx/TN plots from the 

other 34 grains (Figure 5.13b).   

 

 
Figure 5.13: Tx/TN plots for quartz grains of MR6 from the dose recovery test involving pulsed-
irradiation described in Section 5.3.2.  a, The 2 grains that form the low-dose component circled in 
Figure 5.12b, as well as 2 other grains, show a unique pattern of sensitivity change.  Their Tx/T  

at significantly underestimate the given dose suggests that it can be used to identify 

grains 

N
plots that linearly decrease to a ratio of <0.70.  b, Tx/TN plots showing the patterns of sensitivity 
change of a sample of the remaining 34 grains. 
 

While the cause of this feature is unknown, the fact that it is shared by grains 

th

that would produce unreliable De estimates.  Consequently, these four grains 

were rejected based on their atypical Tx/TN plots, resulting in the dose distribution 

presented in Figure 5.14.  The dose estimates from the remaining 34 grains recovered 

the given dose given dose within 1σ, with a weighted mean recovered dose of 116.0 ± 

5.1 Gy, corresponding to a measured/given dose ratio of 0.96 ± 0.04.  Additionally, the 

overdispersion decreased to 15 ± 4%.  This value agrees with other values reported in 

the literature for a single population of well bleached quartz grains (e.g., Roberts et al., 

2000; Thomsen et al., 2005; Galbraith et al., 2005; Jacobs et al., 2006b; Arnold and 

Roberts, 2009). 
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Figure 5.14: Dose distribution from the pulsed-irradiation dose recovery test using single quartz 
grains of MR6 described in Section 5.3.2.  After rejecting grains on the basis of standard criteria 
and on the basis of the criterion described in Section 5.3.3.1, grains that exhibited aberrant 
sensitivity change (i.e., decreased linearly to a ratio of 0.70) were rejected.  The data is shown in a 
radial plot centred on the given dose (120 Gy). 
 

 

5.3.3.3 Application of new rejection criteria to single-irradiation dataset 

These new rejection criteria were then applied to the single-irradiation dose 

recovery dataset described in Section 5.3.2 and plotted in Figure 5.10a.  Six grains were 

rejected on the basis of low D0 values, but no grains exhibited the deleterious Tx/TN 

behaviour.  While the resulting dose distribution is improved (Figure 5.12a), the given 

dose is still significantly underestimated.  The weighted mean of the remaining 20 dose 

estimates was 102.7 ± 6.0 Gy (overdispersion of 18 ± 6%), corresponding to a 

measured/given dose ratio of 0.86 ± 0.05.  This result is worse than that obtained for the 

pulsed-irradiation dose recovery experiment. 

 

5.3.3.4 Application of new rejection criteria to 40 Gy dose recovery experiment dataset 

 These new rejection criteria were then applied to the datasets from the dose 

recovery experiment with a given dose of 40 Gy described in Section 5.3.1 and plotted 

in Figure 5.9.  When the two rejection criteria were applied to the single-irradiation 

dataset, 38 additional grains were rejected, all on the basis of low D0 values.  The 

remaining 34 grains produce a weighted mean dose estimate of 48.4 ± 1.3 Gy with an 

overdispersion of 9 ± 3%.  This is a significant overestimation of the given dose, 

corresponding to a measured/given dose ratio of 1.22 ± 0.03.  When these criteria are 

applied to the pulsed-irradiation dataset, 41 grains are rejected: 37 on the basis of low 
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D0 values and 4 on the basis of aberrant sensitivity change.  The remaining 37 grains 

produced a weighted mean dose estimate of 44.3 ± 0.8 Gy (overdispersion of 4 ± 3%).  

This, also, significantly overestimates the given dose, corresponding to a 

measured/given dose ratio of 1.11 ± 0.02. 

 For both 40 Gy dose recovery datasets, the application of the two new rejection 

criteria resulted in poorer results than the standard rejection criteria.  In both datasets, 

most grains were rejected on the basis of having D0 values below 25 Gy.  This rejection 

criterion was developed to overcome the low doses at which the OSL signals of many 

grains of quartz saturate (Section 5.3.3.1).  However, the given and regenerative doses 

in this experiment (e.g., ~40 Gy) are low enough that the dose-response curve was less-

affected by low-dose saturation.  The proportions of grains of the third and fifth grain-

types in these datasets support this.  In the pulsed-irradiation 120 Gy dose recovery 

experiment, ~43% of grains had saturated or hyperbolic dose-response curves (Section 

5.3.2).  In contrast, only ~5% of grains had those features in the pulsed-irradiation 40 

Gy dose recovery experiment (Section 5.3.1).  The application of the new rejection 

criteria to the pulsed-irradiation 40 Gy dose recovery dataset resulted in the removal of 

~47% of grains, a substantial proportion of which (~42%) had well-behaved OSL 

signals, and the given dose was significantly overestimated.  In contrast, the use of 

standard rejection criteria allowed the given dose to be recovered.  This suggests that 

low-dose saturation and hyperbolic dose-response curve shape do not adversely affect 

the ability of the SAR procedure to accurately estimate known doses up to 40 Gy using 

the OSL signal of quartz grains from Mumba.  Consequently, the new rejection criteria 

were considered inappropriate for estimation of low doses. 

 

5.3.4 Summary of single-grain dose recovery experiments 

The dose recovery experiments described in this section have highlighted the 

usefulness of this test as a means of refining an OSL methodology tailored to the 

particular behaviours of a sample that exhibits several malign luminescence 

characteristics.  In this study, the dose recovery experiment was used as the main tool to 

discern the optimal experimental conditions used to measure doses and to refine the 

rejection criteria to overcome problems specific to these samples.   
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Characterising the signal from various types of individual grains (Section 5.2) 

indicated that the OSL signal of quartz from Mumba saturated at relatively low doses.  

To test the suitability of the SAR procedure to single grains of quartz without the 

complications arising from low-dose saturation, a 40 Gy dose recovery experiment was 

performed (Section 5.3.1).  Two SAR procedures with different experimental conditions 

were tested: one in which laboratory doses were delivered in a conventional, single-

irradiation fashion and the other in which laboratory doses were delivered using the 

pulsed-irradiation technique.  In both cases, the given dose was recovered 

(measured/given dose ratios in agreement with unity at 2σ) when standard rejection 

criteria were used.  In addition, neither set of experimental conditions produced a high 

proportion of grains that exhibited third or fifth grain-type behaviour (i.e., saturated or 

hyperbolic dose-response curves). 

Following the verification that the SAR procedure, using either dose delivery 

technique, could be used to determine a known dose in the region well below saturation 

intensity of the dose-response curve, a 120 Gy dose recovery experiment was performed 

to assess the suitability of the SAR procedure at a high dose (closer to saturation).  

Based on the relatively high dose rate (~3 Gy/ka) and archaeological/ lithic context of 

the layers of interest at Mumba, burial doses for many of the samples were expected to 

be on the order of ≥100 Gy.  Given this, as well as the aberrant behaviours of the OSL 

signal at high doses observed for several grain-types, it was considered necessary to test 

a higher surrogate natural dose (Section 5.3.2).  Again, the two sets of experimental 

conditions were compared.  Applying the regenerative doses in a pulsed fashion resulted 

in a greater number of dose estimates and a smaller proportion of grains of the fifth 

grain-type, relative to single-irradiation application.  This suggests that the pulsed-

irradiation technique reduced the number of grains with hyperbolic dose-response 

curves.   

In both 120 Gy dose recovery tests, following the application of standard 

rejection criteria, the dose estimates from the majority of grains were consistent with the 

given dose.  However, the weighted mean dose estimate was significantly smaller due to 

the presence of a substantial low-dose component measured with high precision.  These 

low-dose grains were characterised and found to have one of two specific OSL 

characteristics: 1) they saturated at very low doses, as indicated by their D0 values of 
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less than 25 Gy, or 2) they exhibited a distinctly different pattern of sensitivity change 

over the course of the entire SAR procedure.  Consequently, new rejection criteria were 

introduced to remove these grains based on the OSL properties of: 1) having a D0 value 

below 25 Gy, or 2) decreasing in sensitivity by more than 30% over the course of the 

SAR procedure (manifested in Tx/TN plots that decrease linearly to a ratio smaller than 

0.70).  After the application of these new rejection criteria, the SAR procedure using the 

pulsed-irradiation technique recovered the given dose within 1σ.  The SAR procedure 

using conventional single-irradiation failed to do so, continuing to significantly 

underestimate the surrogate natural dose.  In addition, these new rejection criteria were 

shown to be inappropriate for the 40 Gy dose recovery experiment.  It is important to 

emphasise that grains were rejected based on their aberrant physical characteristics and 

not on their measured doses per se.  The new rejection criteria were developed based on 

patterns of irregular OSL characteristics, and are applied to attempt to limit dose 

determination to the first grain-type (Figure 5.5a and Figure 5.6a). 

These results indicate that the SAR procedure is capable of accurately 

recovering a low radiation dose (~40 Gy) when the regenerative doses are delivered in a 

pulsed fashion and standard rejection criteria are used.  They also indicate that higher 

doses can reliably be obtained using the pulsed-irradiation SAR procedure, provided the 

data are analysed utilising the newly developed rejection criteria described above.  

These new rejection criteria effectively reduce the effects of grains with OSL signals 

that saturate at early doses and have atypical patterns of sensitivity change.  The next 

section will detail dose recovery experiments using multi-grain aliquots of quartz from 

Mumba to assess the effects of using the summed OSL signals from multiple grain-

types for SAR measurements. 

 

5.4 Dose recovery experiments using multi-grain aliquots of quartz 

 In Section 5.2, large intra-sample variability in the OSL signal from individual 

grains of quartz from Mumba was demonstrated.  By characterising the OSL signal 

from individual quartz grains during dose recovery experiments, appropriate rejection 

criteria were developed that allowed the appropriate use of the SAR procedure to obtain 

accurate estimates of known, laboratory doses (Section 5.3).  However, if only multi-

grain aliquots had been investigated, the OSL behaviours of individual grains would not 
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have been characterised, and standard SAR procedures may have been employed to 

investigate quartz from Mumba.  This section will examine the effects of using the sum 

of the OSL signals from many individual quartz grains when multi-grain aliquots are 

measured using the SAR procedure.   

Six aliquots of MR 7, each consisting of ~50 grains, were bleached in sunlight 

for at least three days and given a laboratory dose of 83 Gy.  Aliquots were then 

preheated to 260°C for 10 s before being stimulated with the blue LEDs for 40 s at 

125°C while the OSL was measured.  This was followed by a test dose cycle that 

included a 1.3 Gy irradiation, a 220°C preheat for 10 s, and an OSL measurement for 40 

s at 125°C.  For three of the aliquots, a HOW was administered following the 

measurement of each test dose (Tx).  This measurement cycle was repeated for 

regenerative doses of 42, 83, 125 and 0 Gy to construct dose-response curves.  A repeat 

(42 Gy) dose cycle was also measured to assess each aliquot’s ability to recycle a 

duplicate regenerative dose. 

The results of these dose recovery experiments will be described in the next 

three sections.  First, the results of the dose recovery experiment using a standard SAR 

procedure without a HOW will be described (Section 5.4.1).  In Section 5.4.2, the 

results of the dose recovery experiment using a modified SAR procedure included a 

HOW are discussed.  Finally, Section 5.4.3 assesses whether the use of an ‘early-

background’ approach (Cunningham and Wallinga, 2010) to OSL signal analysis 

improves the results of both dose recovery experiments presented in the preceding 

sections. 

 

5.4.1 Standard SAR procedure 

 The shape of the OSL decay curves changes substantially between each SAR 

measurement cycle when a HOW is not administered.  Figure 5.15 shows the 

normalised test dose OSL decay curves for each SAR measurement cycle for one of the 

aliquots that was not given a HOW.  The OSL signal decays more slowly and to a 

higher background with each progressive regenerative dose cycle.  Compared to the 

initial portion of the decay curve (i.e., the first ~0.45 s) the later portion of the decay 

curve (i.e., the final 8 s) increased by >100% over the course of six SAR measurement 

cycles.  This suggests that there is a portion of the OSL signal that is not being fully 
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bleached by the 40 s optical stimulation.  The decay curve of the test dose following the 

surrogate natural (Figure 5.15) decays rapidly over the first ~2 s of optical stimulation, 

which is consistent with the depletion of the fast component.  However, the increasingly 

shallow shape of the decay curve with each progressive measurement cycle suggests 

that a slower component, or series of slower components, may be accumulating at 

different rates.  The accumulation of signal in these CW-OSL curves is reminiscent of 

the accumulation of signal in LM-OSL curves (Figure 5.3).  In addition, the 

accumulation of signal in the region of the CW-OSL signal corresponding to the fast 

component (i.e., before ~3 s of stimulation: Bailey et al., 1997; Arnold et al., 2008; 

Pawley et al., 2010) may be related to the component represented by column B or C in 

Table 5.1 and Table 5.2, both of which underlie the fast component. 

 

 
Figure 5.15: Normalised test dose OSL decay curves for the one aliquot whose SAR procedure did 
not include a HOW.  Results are representative.  The inset plots show the test dose signals (Tx) 
normalised to the first test dose measurement (TN), as a function of the test dose cycle for the same 
aliquot.  These data were integrated using the standard intervals (i.e., sum of the first 0.45 s minus 
a background calculated from the final 8 s). 
 

Several other observations support this conclusion.  First, the background 

(calculated from the last 8.0 s of stimulation)-subtracted sum of the initial 0.45 s of test 

dose signal increases with each progressive SAR measurement cycle.  The inset to 

Figure 5.15 shows the test dose signals (Tx) normalised to the first test dose 

measurement (TN), as a function of the SAR measurement cycle for the same aliquot 

(Tx/TN plots).  The OSL response following the test dose increases with each 

progressive SAR measurement cycle, changing in sensitivity by ~200% for all aliquots.  
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Second, the unbleached components of the OSL signal are accumulating with each 

regenerative and test dose, suggesting that each progressive OSL measurement has a 

residual signal from the previous OSL measurement underlying it.  This can be directly 

observed by looking at the OSL decay curve following the 0 Gy regenerative dose 

(Figure 5.16b).  A sample that has an OSL signal that is dominated by the fast 

component will not produce a measurable OSL signal following the 0 Gy regenerative 

dose because the fast component is bleachable within 5 s of optical stimulation (Bailey 

et al., 1997).  For samples from Mumba, a clear and bright decay curve is produced 

(Figure 5.16b), confirming the presence of a residual unbleached signal underlying each 

OSL measurement. 

A representative dose-response curve, constructed for an aliquot whose SAR 

procedure did not include a HOW, is presented in Figure 5.16a.  Results indicated that 

the SAR procedure is unsuitable when applied to all aliquots.  Although all aliquots 

produced satisfactory recuperation values (weighted mean of 3 ± 1%), the ratio of the 

two repeat points (the recycling ratio) is not consistent with unity for any of the aliquots 

(weighted mean recycling ratio of 0.73 ± 0.04 for the three aliquots).  The shapes of the 

dose-response curves were anomalous as well.  The sensitivity-corrected regenerative 

dose points (Lx/Tx) decreased at higher doses, resulting in dose-response curves with a 

hyperbolic shape.  Additionally, the sensitivity-corrected surrogate natural (LN/TN) fell 

above the dose-response curve for all three aliquots.  This behaviour precludes the 

natural signal from intercepting the dose-response curve, preventing dose (or, in the 

case of natural aliquots, De) estimation.  Yoshida et al. (2000) observed this dose-

response curve behaviour when investigating the natural signal from single grains of 

quartz.  During OSL investigations of multi-grain aliquots of quartz from southern 

Africa, Armitage et al. (2000) also noted the presence of aliquots that have a natural 

signal greater than the saturation intensity of regenerated doses.  The two aberrant 

characteristics of the dose-response curves described above (i.e., hyperbolic shape and 

Class 3-type behaviour) are similar to the characteristics of grains of the fourth and fifth 

grain-type (Section 5.2). 

 It is likely that the changes in sensitivity of multiple OSL components over the 

course of progressive SAR measurement cycles, and the unbleached OSL signals that 

accumulate as a result (Figure 5.15 and Figure 5.16b), are the likely causes of the poor 
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recycling ratios and aberrant dose-response curve behaviours.  The presence of several 

slowly bleaching, thermally unstable slow components may be the cause of the 

sensitivity changes and signal accumulation (e.g., Murray and Wintle, 2003; Jacobs et 

al., 2006a).  The addition of a HOW to the measurement procedure may overcome 

problems associated with the accumulation of residual signal from slow components in 

the OSL signal. 

 

 
Figure 5.16: Results for one aliquot whose SAR procedure did not include a HOW.  a, dose-
response curve.  b, the OSL produced following the 0 Gy regenerative dose. 
 

5.4.2 Modified SAR procedure: Application of a HOW 

The addition of a HOW to the SAR procedure reduced the effects of multiple, 

unwanted components in the OSL signal.  Figure 5.17 presents the normalised test dose 

OSL decay curves for each measurement cycle for one aliquot whose SAR procedure 

included a HOW.  It is apparent that the signal is still accumulating in the later parts of 

the decay curve and that the decay curve shape gets shallower with each SAR 

measurement cycle.  Both features are, however, considerably reduced in comparison to 

those presented in Figure 5.15.  Relative to the first 0.45 s of the OSL signal, the final 

8.0 s of signal increases by ~30% from the first to the last regenerative dose.  This is 

substantially reduced from the ~100% increase observed when no HOW was 

administered.  The reduction in CW-OSL signal accumulation when a HOW was used 

is similar to the reduction in LM-OSL signal accumulation (Figure 5.3).   

When the Tx/TN plots for these aliquots (inset to Figure 5.17) are observed, it is 

clear that the OSL output of the test dose continues to increase with each progressive 

SAR measurement cycle.  However, when a HOW is applied the signal increased by 

between 50 and 80% from the first to the final regenerative dose cycle, lower than the 
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increase of ~200% observed when no HOW was applied.  A third feature is that the 

OSL signal measured after the 0 Gy regenerative dose (Figure 5.18b) is considerably 

smaller than its counterparts when a HOW was not used.  Unfortunately, the absolute 

signal of the 0 Gy decay curve for aliquots that received a HOW cannot be directly 

compared to the signal measured for those that did not receive this treatment, due to the 

fact that different aliquots were measured for both experiments and individual aliquots 

will have different signal intensities.  The absolute intensity for the aliquot in Figure 

5.18b is, however, significantly less (~30%) than that in Figure 5.16b.  This suggests 

that less signal had accumulated in optically less-sensitive components over the course 

of SAR measurement cycles when a HOW was administered.   

 

 
Figure 5.17: Normalised test dose OSL decay curves for the one aliquot whose SAR procedure 
included a HOW.  The inset plots show the test dose signals (Tx) normalised to the first test dose 
measurement (TN), as a function of the test dose cycle for the same aliquot.  These data were 
integrated using the standard intervals (i.e., sum of the first 0.45 s minus a background calculated 
from the final 8 s). 
 

This difference in the absolute intensity of the 0 Gy dose points, and 

accumulation of the OSL signal from cycle-to-cycle, can be quantified by examining the 

recuperation values, which was reduced with the addition of the HOW.  While the 

recuperation values passed the rejection criteria when a HOW was not used (weighted 

mean of 3 ± 1%), they were an order of magnitude smaller when the HOW was added to 

the measurement procedure (weighted mean of 0.3 ± 0.1%).  These results suggest that 

the addition of a HOW reduced the accumulation of unwanted signal over multiple 

168 
 



Chapter 5: Characterising the OSL signal of quartz from Mumba 

measurement cycles, and that the total OSL signal changed composition much less from 

one measurement cycle to the next.   

 

 
Figure 5.18: Results for one aliquot whose SAR procedure included a HOW.  a, dose-response 
curve.  b, the OSL produced following the 0 Gy regenerative dose. 
 

The dominance of the fast component throughout the course of progressive 

measurement cycles is necessary for reliable dose estimations to be made using the SAR 

procedure (Wintle and Murray, 2006). By reducing the contribution of the unwanted 

components to the total OSL signal, the addition of a HOW enabled the fast component 

can remain dominant.  This is the likely reason for the improved results in tests of SAR 

suitability when a HOW was included in the measurement procedure.  Two of the three 

aliquots successfully recycled a duplicate regenerative dose within 2σ, with a weighted 

mean recycling ratio of 0.96 ± 0.02.  The third aliquot was rejected due to a low 

recycling ratio value of 0.91 ± 0.03.   

A dose-response curve produced by one of the well-behaved aliquots is 

presented in Figure 5.18a and is representative.  The two aberrant dose-response curve 

features that were present when a HOW was not administered (Figure 5.16a) are 

markedly reduced.  First, the curve in Figure 5.18 does not exhibit Class 3-type 

behaviour.  For all three aliquots, the sensitivity-corrected surrogate natural (LN/TN) 

could be projected on to the dose-response curve and interpolated to obtain a dose 

estimate.  Furthermore, the two aliquots that passed the recycling ratio test successfully 

obtained dose estimates that were within 1σ of the given dose, with a weighted mean 

measured/given dose ratio of 1.04 ± 0.07.  Second, these dose-response curves do not 

exhibit a hyperbolic shape, with each higher regenerative dose yielding a larger 
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sensitivity-corrected regenerative dose point (Lx/Tx).  However, despite the consistent 

growth of the dose-response curves for all three aliquots, they all appear close to 

saturation.  As mentioned in Section 3.3.1.3, one way of monitoring the onset of 

saturation in a dose-response curve is to use the D0 value from Equation 3.3.  The dose-

response curves of these three aliquots saturated at a relatively low dose, with a 

weighted mean D0 value of 33 ± 2 Gy.  This is consistent with the single-grain 

investigations presented in Section 5.2 and Section 5.3, which suggested that many 

grains saturate at low doses. 

 

5.4.3 Analysing dose recovery results using an early-background approach 

 The integration interval chosen for CW-OSL data analysis will have an effect on 

the components that contribute to the net OSL count (Cunningham and Wallinga, 2010).  

It is common practice to use a ‘late-background’ approach (see Section 3.3.1.1), which 

entails using the sum of the initial signal (e.g., 0.45 s) minus a background calculated 

from the later portion of the signal (e.g., the final 8.0 s).  In contrast, Cunningham and 

Wallinga (2010) have suggested that an ‘early-background’ approach to choosing the 

integration interval can reduce the proportion of the net OSL signal originates from 

slow components and increase the proportion of the net OSL signal that originates from 

the fast component.  They summed the OSL signal from the initial 0.4 s of stimulation 

and subtracted a background calculated using the OSL signal from 0.4 to 1.4 s of 

stimulation (i.e., 2.5 times the initial integration interval).  Their results indicate that the 

early-background approach reduced thermal transfer and recuperation, and produced 

tighter De distributions.  In addition more aliquots produced accurate De values with the 

early-background approach than when the late-background approach was used 

(Cunningham and Wallinga, 2010).   

To see if the results from the dose recovery experiments described in Section 

5.4.1 and Section 5.4.2 could be improved, the data were reanalysed using the early-

background approach.  Dose-response curves, constructed using the sum of the first 

0.45 s of OSL signal minus a background calculated using the OSL signal from 0.45 to 

1.76 s of stimulation, are presented in Figure 5.19.  The dose-response curves in Figure 

5.19a and b were constructed using the OSL signal from the same aliquots whose dose- 

170 
 



Chapter 5: Characterising the OSL signal of quartz from Mumba 

 
Figure 5.19: Dose-response curves, constructed using the early-background approach (see text for 
details) to analyse OSL signals from two aliquots.  a, Corresponds to the aliquot whose dose-
response curve, constructed using the OSL signal obtained during a SAR procedure did not include 
a HOW, presented in Figure 5.16a.  b, Corresponds to the aliquot whose dose-response curve, 
constructed using the OSL signal obtained during a SAR procedure that included a HOW, 
presented in Figure 5.18a. 
 

response curves are presented in Figure 5.16a and Figure 5.18a, respectively.  Results 

from tests of SAR suitability, produced when the early-background approach to OSL 

signal analysis was used, suggested that the standard SAR procedure without a HOW 

was suitable for multi-grain aliquots of MR7.  None of the dose-response curves 

produced by the OSL signal from the three aliquots had either a hyperbolic shape or 

Class 3-type behaviour.  The OSL signal from all three aliquots successfully recycled a 

duplicate regenerative dose within 2σ, with a weighted mean recycling ratio of 0.97 ± 

0.03.  The recuperation value was also reduced (weighted mean of 2.4 ± 0.1%).  

However, the given dose was significantly underestimated by all three aliquots, which 

resulted in a weighted mean measured/given dose ratio of 0.62 ± 0.06.  This suggests 

that, while the shape of the dose-response curve improved and the tests of SAR 

suitability were successfully passed when data were analysed using the early-
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background approach, the standard SAR procedure without a HOW was inappropriate 

for dose estimation. 

 When the OSL signal data obtained using a SAR procedure that included a 

HOW were reanalysed using the early-background approach, all three aliquots passed 

all tests of SAR suitability.  All aliquots were able to successfully recycle a duplicate 

regenerative dose, producing a weighted mean recycling ratio of 1.00 ± 0.02.  The 

recuperation value of each aliquot was also reduced, with a weighted mean value of 0.1 

± 0.01%.  However, unlike the results of late-background analysis, two of the three 

aliquots significantly underestimated the given dose.  The weighted mean 

measured/given dose ratio is 0.85 ± 0.04.  This is in contrast to the results for these 

same aliquots when the OSL signals were analysed using the late-background approach, 

for which the given dose was recovered within 1σ (see Section 5.4.2). 

 

5.4.4 Summary multi-grain aliquot dose recovery experiments  

The dose recovery tests described in the previous sections highlight the 

usefulness of single-grain analysis over multi-grain analysis.  When a HOW was not 

included in the SAR procedure, optically less-sensitive components were observed to 

accumulate over the course of several SAR measurement cycles, resulting in a 

substantial residual signal and a change in OSL sensitivity.  The OSL signal of the test 

dose following the surrogate natural appeared to be dominated by the fast component, 

decaying rapidly over the initial 2 s of blue-light stimulation.  However, the 

accumulation of unwanted components with repeated cycles of irradiation, preheating, 

and optical stimulation changed the composition of the total OSL signal, thus reducing 

the relative contribution of the fast component to the part of the signal that was 

integrated and used to construct a dose-response curve.  The HOW reduced the degree 

of build-up of unwanted components.  In doing so, the composition of the total OSL 

signal and, in particular, that part that was integrated and used to construct the dose-

response curve, changed less over the course of multiple SAR measurement cycles, with 

less contribution by slower components and a continuance of the dominance of the fast 

component.  This was supported by improvements in all tests of SAR suitability.  When 

a standard late-background approach was used to analyse OSL signals an construct 

dose-response curves, the SAR procedure that included a HOW provided satisfactory 
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results, whereas the SAR procedure without a HOW did not.  When the HOW was 

included in the measurement procedure, a duplicate regenerative dose was able to be 

recycled, the recuperation values were reduced, and the measured/given dose ratios 

were in agreement with unity. 

To assess whether the proportion of the signal dominated by the fast component 

could improved using analytical techniques, the data from both dose recovery 

experiments were reanalysed using the early-background approach of Cunningham and 

Wallinga (2010).  Results indicated that both SAR procedures (i.e., with and without a 

HOW) were suitable for all aliquots; a duplicate regenerative dose could be successfully 

recycled and the recuperation values were lower when the early-background approach 

was used.  In addition, whereas late-background analysis resulted in dose-response 

curves that were hyperbolically shaped and exhibited Class 3-type behaviour, the 

standard SAR procedure produced well-behaved dose-response curves when data were 

analysed using the early-background approach.  These results are in agreement with 

those of Cunningham and Wallinga (2010), who also observed improvements in tests of 

SAR suitability when the early-background approach was used.  However, in spite of 

these improvements in dose-response curve shape and behaviour and SAR suitability 

tests, the early-background approach resulted in the given dose being significantly 

underestimated in the case of both SAR procedures.  This suggests that, when quartz 

from Mumba was measured using the SAR procedure that included a HOW, the late-

background approach was more appropriate for OSL signal analysis than the early-

background approach. 

 

5.5 Conclusions 

 In this chapter, the OSL signal of quartz grains from Mumba was characterised.  

The main results and conclusions that were established from these investigations are 

summarised below: 

o LM-OSL investigations revealed several important features of the OSL signal of 

quartz from Mumba: 

o The presence of a fast component was established by de-convoluting the 

LM-OSL signal of naturally and laboratory irradiated aliquots.  When 
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this component was used in isolation during an LM-OSL dose recovery 

experiment, it could recycle a duplicate regenerative dose. 

o The presence of several slower components was also established by de-

convoluting the LM-OSL signal of natural and laboratory irradiated 

aliquots.  These components were shown to accumulate faster than the 

fast component over multiple cycles of irradiation, preheating and LM-

OSL stimulation.  This accumulation of slower components, however, 

was substantially reduced by adding a HOW into the measurement 

procedure.  As a result of the presence of several slow components and 

the beneficial effects of a HOW, a high temperature preheat combination 

(260/220°C) and a HOW were considered to be appropriate for the 

measurement of quartz from Mumba using the SAR procedure. 

o Investigations of single grains of quartz demonstrated that there was significant 

intra-sample variability in the OSL signal.  Five general classes of grain-types 

were established and characterised.  The OSL signals from many grains were 

shown to saturate at low doses, exhibit Class 3-type behaviour and/or produce 

hyperbolically shaped dose-response curves.  The proportion of grains with 

hyperbolic dose-response curves was reduced by delivering laboratory doses 

using a pulsed-irradiation technique (Bailey, 2004; Bailey et al., 2005). 

o To assess the suitability of the SAR procedure without the complications arising 

from low-dose saturation, dose recovery experiments were conducted using a 

low given dose (40 Gy).  The SAR procedure was tested using both the single-

irradiation and pulsed-irradiation techniques.  In both cases, the proportions of 

grains that exhibited Class 3-type behaviour or had hyperbolic dose-response 

curves were low, and the given dose could be recovered (within 2σ) using 

standard rejection criteria. 

o To assess the suitability of the SAR procedure at doses closer to those expected 

for samples from Mumba, a dose recovery experiment was conducted using a 

higher given dose (120 Gy).  Using standard rejection criteria, both the single-

irradiation SAR procedure and the pulsed-irradiation SAR procedure 

significantly underestimated the given dose.  By characterising the grains that 

underestimated the given dose, new rejection criteria were established that 
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removed grains whose OSL signals saturated at low doses (D0 value ≤25 Gy) 

and exhibited aberrant sensitivity changes (Tx/TN plots that decreased linearly 

below 0.70).  After the application of these two rejection criteria, the given dose 

was successfully recovered within 1σ using the pulsed-irradiation SAR 

procedure.  The single-irradiation SAR procedure still significantly 

underestimated the given dose. 

o To assess the effects of combining grains with substantially different OSL 

signals on the same aliquot, the OSL signal from multi-grain aliquots of quartz 

was investigated.   

o The SAR procedure without a HOW was shown to be unsuitable for 

quartz from Mumba when the standard late-background approach was 

used.  Duplicate regenerative doses could not be recycled and dose-

response curves exhibited Class 3-type behaviour and hyperbolic shapes.  

The OSL signal was shown to change shape and accumulate signal over 

multiple measurement cycles.  When data were analysed using the early-

background approach (Cunningham and Wallinga, 2010), tests of SAR 

suitability and the dose-response curve behaviour were improved, 

however, the given dose was significantly underestimated. 

o The SAR procedure that included a HOW was shown to be suitable for 

quartz from Mumba when the late-background approach was used for 

data analysis.  Two of three aliquots recycled a duplicate regenerative 

dose and successfully recovered the given dose within 1σ.  Over multiple 

measurement cycles, the amount of signal-accumulation and shape-

change in the decay curve was substantially reduced when a HOW was 

used (relative to when a HOW was not used).  When the data were 

reanalysed using the early-background approach, the OSL signal from all 

three aliquots could successfully recycle a duplicate regenerative dose 

and tests of SAR suitability were passed.  However, the given dose was 

significantly underestimated, suggesting that the late-background 

approach to data analysis was more appropriate for quartz from Mumba. 
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The results presented in this chapter indicate that, when single grains of quartz 

are investigated, the pulsed-irradiation SAR procedure including a HOW is capable of 

accurately recovering low doses (~40 Gy) using standard rejection criteria and higher 

doses using the new rejection criteria.  The SAR procedure including a HOW was 

shown to be appropriate for recovering a given dose using multi-grain aliquots of 

quartz.  However, given the likelihood of sediment mixing, beta microdosimetry, partial 

bleaching and bioturbation in archaeological contexts (e.g., Roberts et al., 1998a, 1999; 

Jacobs et al., 2003b, 2006b, 2008c; Feathers et al., 2006; Olley et al., 2006; David et al., 

2007), single-grain analysis is preferable to multi-grain aliquot analysis.  The next 

chapter will describe the measurement of De values from single grains of quartz from 

Mumba using the experimental conditions and methods of data analysis developed in 

this chapter. 
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Chapter 6: Single-grain De distributions, dose rate determinations and 
age estimations for quartz from Mumba rockshelter, Tanzania 

 

In the preceding chapter, investigations of the OSL signals of quartz grains from 

Mumba were discussed.  The signal was characterised, and five general classes of grain-

type were identified.  Grains were classified into types based on the shape and 

behaviour of their dose-response curves and OSL decay curves, and the way in which 

they sensitised over multiple SAR measurement cycles (Section 5.2).  Many of the 

grain-types were shown to have malign OSL properties, resulting in many dose-

response curves that saturated at low doses and many more that were hyperbolically 

shaped.  The presence of large numbers of grains with these properties in the Mumba 

samples was the likely cause of aberrant OSL behaviours of multi-grain aliquots of 

quartz, which were unable to recover a given laboratory dose (Section 5.1 and 5.4).   

Single-grain dose recovery experiments demonstrated that delivering 

regenerative doses using the pulsed-irradiation technique (Bailey, 2004; Bailey et al., 

2005) resulted in fewer grains that had hyperbolic dose-response curves.  The SAR 

procedure using pulsed-irradiation was shown to be appropriate for obtaining doses of 

40 Gy when standard rejection criteria were used to analyse the dose distributions.  

Saturation was shown to interfere with the ability to obtain a higher known dose (120 

Gy) when this measurement procedure was used.  Two new rejection criteria were thus 

developed to overcome problems of low-dose saturation and abnormal OSL 

sensitisation (Section 5.3.3).  Since these two rejection criteria were inappropriate for 

estimating the given dose of 40 Gy (Section 5.3.3.4), they are only applicable when the 

expected dose is relatively large.  When these new rejection criteria were applied, the 

120 Gy given dose was successfully recovered.  This indicated that the SAR procedure 

using pulsed-irradiation was appropriate for obtaining dose estimates from well-

behaved single grains of quartz from Mumba.  However, as mentioned in Section 

3.3.2.4, while a successful dose recovery experiment can indicate the suitability of a 

sample for use of the SAR procedure, it does not necessarily reveal that the tested SAR 

procedure will be able to obtain accurate De estimates.  

In this chapter, the estimation of ages obtained using single grains of quartz 

from Mumba will be discussed.  The total environmental dose rates for samples from 

Mumba are presented in Section 6.1.  The determination of De values is detailed in 

177 
 



Section 6.2, followed by the analysis and characterisation of the De distributions 

(Section 6.3).  Section 6.4 presents evidence that the De distributions of most Mumba 

samples are consistent with the effects of beta microdosimetry.  An appropriate 

correction procedure is then described and applied to obtain beta-adjusted age estimates.  

Finally, samples for which single-grain OSL ages could not be obtained are discussed in 

Section 6.5. 

 

6.1 Total environmental dose rate for samples from Mumba 

 The total dose rates calculated in this study used the methods described in 

Chapter 4 to measure the contributions to the dose rate from the various sources of 

ionising radiation.  These were corrected for beta attenuation and for historical water 

content (Section 4.3).  The environmental dose rates and associated uncertainties are 

presented in Table 6.1 for samples from Mumba rockshelter, Tanzania. 

 The measured water contents for samples from Mumba range from 3.3 to 8.2% 

and are presented in Table 6.1.  Due to the palaeoenvironment of the region (see Section 

10.1), with periods of higher lake levels that potentially submerged (and thus saturated 

the sediment in) the rockshelter interspersed with periods of aridity, it is unlikely that 

the measured water content would be identical to the historical water content.  

Consequently, a historical water content of 10 ± 2% was assumed for all samples from 

Mumba.  This was based on the high likelihood that the relatively low measured water 

contents for all samples were due to drying out of the deposits after excavation (e.g., 

Köhl-Larsen et al., 1943; Mehlman, 1989; Prendergast et al., 2007).  Additionally, there 

is a high likelihood that the environmental conditions were wetter, with higher lake 

levels, over parts of the Late Pleistocene.  It should be noted, however, that the 

calculated OSL ages are not especially sensitive to the choice of assumed water content.  

An increase (or decrease) of 1% assumed water content will yield a ~1% increase (or 

decrease) in the calculated age. 

 

6.2 Single-grain De determinations 

The modified SAR procedure using pulsed-irradiation was shown to be 

appropriate for obtaining reliable dose estimates from single grains of quartz when the 

refined rejection criteria were applied. As a result, natural single quartz grains were me- 
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Table 6.1 
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asured and used to obtain De values for samples MR2 to MR10.  Grains were preheated 

to 260°C for 10 s before the natural OSL signal was measured using a green laser 

stimulation for 2 s at 125°C.  Subsequently, a test dose cycle was administered that 

included a 10 Gy irradiation, a preheat of 220°C for 5 s, and an optical stimulation for 2 

s at 125°C using the green laser.  The measurement of each test dose was immediately 

followed by the application of a HOW.   Dose-response curves were then constructed 

using the sensitivity-corrected OSL signals from between four and five different 

regenerative doses.  After the measurement cycle involving the highest regenerative 

dose was completed, the standard tests of SAR suitability (i.e., those described in 

Section 3.3.2) were performed.  These included the application of a 0 Gy dose point 

(recuperation test), the measurement of a duplicate regenerative dose (recycling ratio 

test), and the OSL-IR depletion ratio test to check for feldspar contamination.  

Individual grains were then either accepted or rejected based on their performance in 

these tests using the criteria of Jacobs et al. (2003b, 2006b).  Grains were rejected if: 

o Their OSL signal was too dim for De calculation.  This was quantified using the 

test dose signal from each grain.  If the initial intensity of the TN signal was less 

than three times the corresponding background intensity, the grain was rejected 

as being too dim. 

o They had LN/TN values equal to or greater than the saturation intensity of the 

dose-response curve, thus preventing estimation of a finite De estimate.  This 

includes grains of the third grain-type (completely saturated) and four grain-type 

(Class 3 grains). 

o They exhibited high levels of recuperation.  Grains were rejected if the Lx/Tx 

value for the 0 Gy regenerative dose point was more than 5% of the LN/TN 

value. 

o The test dose cycle was not appropriately correcting for sensitivity changes, 

identified using the recycling ratio test.  Grains were rejected if the ratio of the 

Lx/Tx values for duplicate regenerative doses differed from unity by more than 

2σ. 

o Feldspar contamination was inferred from the OSL-IR depletion ratio test 

(Duller, 2003).  Grains were rejected if there was a significant loss of OSL 

signal after IR stimulation.  If the ratio of the Lx/Tx values for the regenerative 
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dose cycle that included an IR bleach and the preceding regenerative dose cycle 

was more than 2σ below unity (see Section 3.3.2.3). 

Dose distributions were obtained after the application of the five rejection 

criteria listed above.  If the weighted mean De value of a sample was 40 Gy or less, the 

dose distributions were considered acceptable, on the basis of results from the 40 Gy 

dose recovery experiment (see Section 5.3.1 and Section 5.3.3.4).  If the weighted mean 

De value of a sample was greater than 40 Gy, the two additional rejection criteria, 

determined experimentally during the 120 Gy dose recovery experiments (see Section 

5.3.3), were applied.  The application of these criteria removed: 

o Grains that had OSL signals that saturated at small doses.  Grains were rejected 

if they had a D0 value of less than 25 Gy. 

o Grains that exhibited the aberrant pattern of sensitivity change determined 

during dose recovery experiments.  Grains were rejected if their sensitivity 

decreased by more than 30% over the course of an entire SAR measurement 

sequence, identified by Tx/TN values of less than 0.7. 

 

Between 400 and 1700 individual grains were measured for each sample.  Table 

6.2 lists the number of grains measured for each of the Mumba samples, alongside the 

number of grains rejected for each criterion.  For most samples, 70–80% of the 

measured grains were rejected because their OSL signals were so weak that the initial 

TN intensity was indistinguishable from background.  A large number of grains were 

also rejected because they had poor recycling ratios.  Between 4 and 6% of all measured 

grains from samples MR6, MR7, MR8 and MR9 were fully saturated or exhibited Class 

3-type behaviour.  A further ~5% of grains from these samples were rejected because 

they had D0 values less than 25 Gy.  For samples MR2 and MR3, feldspar 

contamination resulted in the rejection of 11% and 20% of the quartz grains, 

respectively.  Feldspar contamination affects these two samples (both from Bed III-

upper) considerably more than any other samples.   

A feature of Table 6.2 that should be addressed is the omission of MR5.  No De 

values could be determined for this sample, due to an apparent lack of a natural OSL 

signal.  For many of the grains, the test doses and all subsequent regenerative doses 

produced measurable OSL signals from which dose-response curves could be 
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constructed.  However, each grain produced a De estimate of zero due to the absence of 

a natural signal.  This peculiar characteristic is unlikely to be a result of a sample 

preparation mistake or, more specifically, an unfortunate bleaching error during 

preparation.  This is because MR5 was prepared at the same time and in the same space 

as MR4, MR6, MR7, MR8 and MR9, none of which exhibits this feature.  One 

explanation is the possibility that the sample was accidentally bleached during sample 

collection.  A second possibility is that it is a phenomenological issue unique to MR5.  

A third scenario is that all of the grains in MR5 are modern, however, this scenario is 

unlikely, given the measured De values for samples overlying and underlying this 

sample (Table 6.2).  MR5 was collected from Bed IV, corresponding to the contact 

between Geological Units D and C (Table 2.3).  This layer shows evidence of being 

deposited in an environment of fairly permanent freshwater, as opposed to most of the 

other samples, which appear to have been deposited in an aeolian manner (as deflation 

from the lake bed).  This alternative mode of deposition suggests that the sediment from 

which MR5 was collected has a different origin, and thus possibly different 

luminescence properties, to samples from the aeolian layers.  Regardless, OSL 

investigations of this sample were terminated due to the anomalous behaviour of its 

natural signal. 

 
6.3 Single-grain De distributions 

In total, between 3 and 9% of all measured grains passed the rejection criteria 

and produced reliable De estimates.  The weighted mean De values and overdispersion 

values for each sample, obtained after analysis using the CAM, are presented in Table 

6.2.  The De distributions are plotted as radial plots (Figure 6.1), which are centred on 

the central De value.  One feature of the data is the large overdispersion values obtained 

for all samples, ranging from 29 ± 4% for MR6 to 73 ± 6% for MR2.  None of the 

samples from Mumba has a De distribution that is consistent with a single, common 

dose.  Given that the OSL signal has been characterised, and refined rejection criteria 

limit the distributions to De values from grains of the first and second grain-type, 

internal factors are an unlikely source of spread above the 10–20% commonly reported 

for well-bleached quartz (e.g., Roberts et al., 2000; Thomsen et al., 2005; Galbraith et 

al., 2005; Jacobs et al., 2006b; Arnold and Roberts, 2009).  It is more likely that the 

additional overdispersion is the result of external factors.  The three possible explanat-  
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Table 6.2 
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Figure 6.1: Single-grain De distributions for samples from Mumba presented as radial plots.  The 
grey bands in each plot are centred on the De values identified for discrete dose components by the 
finite mixture model. 
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ions for such high overdispersion values include: 1) inhomogeneous bleaching of grains 

prior to deposition, 2) mixing of grains with significantly different burial doses after 

deposition, or 3) millimetre-scale differences in the beta dose rate to individual grains 

deposited at the same time (Jacobs and Roberts, 2007).  Incomplete bleaching of the 

OSL signal is, generally, only a concern for sediments that have been exposed to 

sunlight only briefly before deposition, such as in fluvial (Olley et al., 1999; Arnold et 

al., 2007, 2008, 2009) or glacial (Duller, 2006) environments.  Given the aeolian 

deposition of most of the sediments at Mumba, partial bleaching is considered unlikely 

(Aitken, 1998; Duller, 2008).   This suggests that the other two external mechanisms, 

post-depositional mixing and beta microdosimetry, are the more likely causes of the 

scatter in De values beyond that commonly reported for well-bleached grains of quartz 

in the absence of complicating extrinsic factors. 

Prendergast et al. (2007) reported an assortment of features indicating that the 

upper layers of the Mumba deposit (i.e., above Bed III-middle, equivalent to Geological 

the middle of Unit C) suffered from anthropogenic disturbance.  Archaeological 

artefacts that are distinctly LSA, pastoral Neolithic and Iron Age were found occurring 

together in these layers.  This observed post-depositional mixing of artefacts would 

likely be associated with a post-depositional mixing of sediments, a feature that should 

be manifested as a large spread in De.  The high overdispersion values (Table 6.2) 

obtained for samples from these layers (i.e., MR2 and MR3) support this.  This suggests 

that post-depositional mixing contributed to the observed spread in De values for these 

two samples.   

In contrast, no mixing was reported for layers below Bed III-lower/Geological 

Unit C-lower (MR4 to MR10).  Small scale differences in the beta dose rate (as 

described in Section 4.4.2) are, thus, the most likely cause of scatter in De for grains 

from these layers.  An abundance of small carbonate nodules, bones, and shells in these 

deeper deposits was reported by Prendergast et al. (2007).  In addition, all artefacts were 

heavily concreted (Prendergast et al., 2007; Diez-Martín et al., 2009).  These reports 

were corroborated by the abundance of egg shell, shells and smaller carbonate nodules 

observed during the collection and preparation of these OSL samples (Figure 6.2).  The 

large amount of this carbonaceous material was verified by relatively volatile chemical 

reactions with HCl acid and by the accompanying loss of sample mass during laboratory 
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preparation of these OSL samples.  Carbonates commonly have substantially lower 

radioactivity than the surrounding lithogenic sediments, leading to spatial 

inhomogeneity in the dose rate (Murray and Roberts, 1997; Olley et al., 1997; Nathan et 

al., 2003; Jacobs et al., 2008c).  Consequently, a grain of quartz that was coated in, or 

abutted, carbonate-rich materials (e.g., Figure 6.2) would have received a substantially 

smaller beta dose during burial than a similar grain that was not.  Therefore, grains that 

were deposited at the same time would be expected to have a range of De values, due to 

their exposure to different beta dose rates during burial, leading to a scattered De 

distribution.  To distinguish between the most likely causes of the observed spread (i.e., 

post-depositional mixing or beta microdosimetry) the finite mixture model (FMM; 

Roberts et al., 2000) was used to analyse De distributions from Mumba.  

 

 
Figure 6.2: Photograph of a shell from Mumba.  This shell was contained in the sediment sample 
(MR7) taken for OSL dating and was found during sample preparation.  Note the two quartz 
grains affixed to the shell.  These two quartz grains would likely have received half as much beta 
dose rate as a grain that was not abutting material with low beta activity. 
 

6.3.1 Analysis of De distributions using the FMM 

 The De distributions can be investigated for the presence of human-induced 

mixing, dosimetry-induced scatter, or a combination of both, and a De value that is 

appropriate for the depositional event of interest can be obtained.  The FMM (described 

in detail in Section 3.4.2) was systematically applied to all single-grain De distributions 

to identify the existence of discrete De components.  The FMM can be fitted using the 
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approach described in detail by Galbraith (2005), David et al. (2007), Jacobs et al. 

(2008b) and in Section 3.4.2.  An example of the fitting procedure is also presented in 

Section 3.4.2.  The FMM could be appropriately used to fit two or more discrete De 

components to the De distributions from all but one samples from Mumba.  The FMM 

fitting results are presented in Table 6.3.  The range of optimal overdispersion values 

(16–20%) was considered appropriate for these samples, given the overdispersion value 

obtained for bleached and laboratory irradiated grains during the dose recovery 

experiment (15 ± 4%; Section 5.3.3.2).  Five samples had De distributions that could be 

adequately fitted using two components.  These kinds of distributions are referred to as 

‘scattered’, following the terminology of Jacobs et al. (2008b), and will be discussed in 

Section 6.3.2.  Additional components were required to optimally fit the De distributions  

 
Table 6.3: Results of FMM analysis of De distributions for samples from Mumba.  The optimal fit 
for each distribution was determined as described in Section 3.4.2.2.  The main De component is 
denoted in italics.  No discrete components could be fitted for sample MR2.  Instead, the minimum 
and maximum De values were calculated using the minimum and maximum age models, 
respectively, for which a 20% standard error, as an estimate of inherent overdispersion, was added 
in quadrature to the measurement error for each individual De value. 
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of two other samples.  The latter kinds of distributions are referred to as ‘mixed’, 

following Jacobs et al. (2008b), and will be discussed in Section 6.3.3. 

One sample, MR2, had a continuum of De values that were highly scattered 

(overdispersion value of 73 ± 6%) and could not be fitted satisfactorily using the FMM 

(Figure 6.1a).  For this sample, the best fit that could be obtained using the FMM was a 

three-component model with the overdispersion set to 26%; this is higher than the 

maximum value of 20% used for the FMM based on the overdispersion values 

commonly reported for well-bleached quartz samples that are unaffected by 

complicating external factors (Roberts et al., 2000).  This suggests that the three-

component model, while it fits the data, does not actually describe discrete populations 

of De values.  The majority of the De values for MR2 lie within a range of ~3 to ~30 Gy, 

with a weighted mean of ~9 Gy (Figure 6.1a and Table 6.2).  Given the high degree of 

turbation observed for Bed III-upper (Prendergast et al., 2007), it is unsurprising that the 

width of the De distribution is so large.  This sort of distribution is typical of deposits in 

which sediments from multiple depositional events have undergone prolonged mixing 

(Feathers et al., 2006; David et al., 2007; Jacobs et al., 2008b,c).  It is, thus, impossible 

to identify any common De values that correspond to a particular depositional event.  

Instead, De values can be identified that correspond to grains that have been buried for 

the longest and shortest durations.  In these cases, the range between the maximum De 

values, corresponding to grains that were deposited earliest, and minimum De values, 

corresponding to grains that were deposited most recently, is the best outcome that can 

be achieved.  This can be accomplished using two other statistical models, namely the 

minimum age model (MAM; Galbraith et al., 1999) and the maximum age model (Olley 

et al., 2006).  The results from the analysis of the De distribution of MR2 using these 

models are presented in Table 6.3. 

 

6.3.2 ‘Scattered’ De distributions 

 The five samples that could be adequately fitted with two components are MR4, 

MR6, MR7, MR8 and MR10 (Table 6.3 and Figure 6.1).  Scattered distributions like 

these are similar to those presented in Jacobs et al. (2008c, Figure 4), which were 

explained as being the result of beta microdosimetry.  Since no apparent sediment 

mixing was reported during archaeological investigations of the geological units from 
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which these samples were collected (Unit C-lower, Unit E and Unit G) (Prendergast et 

al., 2007), inhomogeneity in the beta dose rate is thought to be the most likely cause of 

the scattered De distributions. 

An analytical test must be performed to verify the possibility that all grains were 

deposited at the same time, but had experienced a range of beta dose rates over the 

period of burial.  This test models the effects on the De distribution of De values from 

grains that were completely enveloped by >2 mm of low-radioactivity material, such as 

carbonate, thus accumulating the smallest dose during burial.  This approach is based on 

Jacobs et al. (2008c) and is described in detail in Section 4.4.2.1; it is described only 

briefly here.  The smallest De component in the distribution is obtained using the MAM, 

and is assumed to represent grains that received no beta dose during the course of burial.  

The validity of this assumption can be tested by dividing the MAM De estimate by an 

adjusted bulk dose rate that does not include any beta dose contribution (i.e., gamma, 

alpha, cosmic-ray and internal contributions only).  The assumption is considered valid 

only if this age is equal to, or greater than, the age obtained by dividing the main De 

component, identified using the FMM, by the total environmental dose rate (i.e., 

including the measured, average beta dose rate).  The results of this analysis are 

presented in Table 6.4.  For all five samples that have scattered distributions, the age 

calculated for the minor De population that experienced no beta dose is equal to, or 

greater than, the age calculated using the main De component and the total 

environmental dose rate.  This result indicated that beta microdosimetry could be a 

likely cause for the observed spread in the scattered De distributions of these five 

samples. 

 

6.3.3 ‘Mixed’ De distributions  

 Three samples from Mumba could not be fitted with the FMM using two 

components (MR2, MR3 and MR9).  One of these samples, MR2, has been discussed in 

Section 6.3.1.  No discrete components could be identified in the De distribution of MR2 

using the FMM and overdispersion values of 20% or less.  This, along with the reported 

turbation of the layer from which this sample was collected, implies that MR2 consists 

of a mixture of grains from a great many depositional events, but only the first and last 

can be distinguished (Figure 6.1a).  For samples MR3 and MR9, 4 and 3 discrete De 
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components could be identified using the FMM, respectively (Table 6.3).  The presence 

of multiple dose components in these distributions can be attributed to these samples 

consisting of grains derived from multiple, discrete depositional events being mixed 

together afterwards. 

 When the De distribution from MR3 is examined, it is clear that two of the fitted 

components collectively account for less than 8% of the grains (Table 6.3).  These 

minor De components have the largest and the smallest De values, while the majority of 

the grains (~92%) are included in the two middle components.  The highest component 

makes up ~5% of the total distribution and is comprised of grains that have De values 

~2.5 times that of the main component.  The De of this component is statistically 

consistent with De values for grains from the underlying sample, MR4.  It is, thus, likely 

that the grains that produced De values in the highest component are intrusive grains 

from these older layers.  The smallest De component is comprised of 2 grains (Figure 

6.1b), making up ~2% of the total number of grains.  These two grains have De values 

of ~5 Gy, which cannot be explained solely in terms of reduced beta dose rates; they are 

considered to be intrusive grains.  

The De distribution of MR9 is similar to that of MR3.  The component with the 

lowest De value comprises approximately 16% of all of the accepted grains.  The grains 

that make up this component have a mean De value that is too small to be explained by 

beta microdosimetry. 

 The presence of these minor components in the distributions of MR3 and MR9 

are likely the result of small-scale mixing.  Consequently, the small numbers of 

intrusive grains that make up these components were removed from the De distributions.  

Once these grains were removed, 92% and 84% of the total number of grains remained 

for samples MR3 and MR9, respectively.  For both samples, the two remaining 

components have De values that differ by an amount consistent with inhomogeneity in 

the beta dose rates (Table 6.4).  The existence of the smaller component could be the 

result of these grains receiving a smaller-than-average beta dose rate during burial.  

Thus, after removing the small number of intrusive grains from both samples, MR3 and 

MR9 were treated as ‘scattered’ De distributions. 
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6.4 Beta microdosimetry correction and age determinations   

6.4.1 Beta microdosimetry correction 

 The burial ages of all samples were determined using the main De component 

identified using the FMM (shown in italics in Table 6.3).  The main De component for 

each sample was defined as that which contained the largest proportion of grains.  The 

environmental dose rate then needed to be adjusted for these grains to take into account 

the following: if grains that were coated in low dose-rate material, such as carbonates, 

had experience below-average beta dose rates, then the other grains (i.e., those that 

comprise the main De component) must have received above-average beta dose rates.  

Both of these materials (i.e., high and low dose rate materials) were pulverised together 

and used for beta counting to produce the measured beta dose rate (as described in 

Section 4.2.3.2).  This represents an average beta dose rate for the bulk sample, and is 

not the same as the dose rate received by the grains in the main De component during 

burial.  Unfortunately, the beta dose rate for these grains cannot be measured directly.  

Instead, it was determined using the modelling approach introduced by Jacobs et al. 

(2008c) and described in Section 4.4.2.2.  Results are presented in Table 6.5. 

The dose distributions for three of the samples (MR4, MR6 and MR9) are 

comprised of two De components that contain nearly equal proportions of grains.  When 

this is the case, the modelling used to correct the beta dose rate has very little effect on 

the final age determination.  An age calculated using the weighted mean De value 

(obtained using the CAM) and the measured environmental dose rate (including the 

bulk beta dose rate) will be very similar to the age calculated using the main De 

component identified using the FMM and its corresponding adjusted dose rate.  When 

these two age estimation methods are compared for these three samples (Table 6.5), it is 

clear that the paired age estimates are statistically indistinguishable.   

 

6.4.2 Estimated uncertainty on age determinations 

The uncertainties on the ages are calculated by combining, in quadrature, the 

uncertainties of the De and the dose rate.  For the uncertainty on the De value, the FMM 

provided the random error, which was combined in quadrature with the systematic 

uncertainty of 2% associated with laboratory beta source calibration (see Section 3.3).  

The total uncertainty on the dose rate was obtained by adding in quadrature all random  
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errors and the systematic uncertainties related to sample water content and grain-size 

(see Section 4.3 and Section 6.1).  The uncertainty on the final age is given as one 

standard deviation. 

 

6.4.3 Age determinations and comparisons 

 The final ages derived from single grains of quartz from Mumba are presented in 

Table 6.5.  Ages or age ranges were calculated for eight samples.  For seven samples, 

the De of the main component is presented along with the corresponding beta-adjusted 

dose rate and age.  Since no discrete De populations could be identified for MR2 using 

the FMM (using appropriate overdispersion values), an age range was determined that 

represents grains deposited earliest (largest De values and ages) and most recently 

(smallest De values and ages).   

 Three samples have De distributions that are comprised of two components of 

equal proportions (i.e., MR4, MR6 and MR9).  For these samples, the weighted mean 

De (obtained using the CAM) is also presented, alongside the corresponding bulk 

sample dose rate and the resultant age.  Because the total dose rate depends on the 

model chosen for age estimation, an appropriate comparison of the two statistical 

models (i.e., FMM and CAM) can only be made using the ages, and not the De values.  

Additionally, to facilitate a direct comparison of the CAM and the FMM ages for 

sample MR9, the presumed intrusive grains (16% of the total number) were removed 

from the distribution, and the CAM De was recalculated.  For these three samples, there 

is good agreement between the beta-adjusted FMM age and the weighted mean CAM 

age.  The CAM/FMM age ratios for samples MR4, MR6 and MR9 are 0.93 ± 0.11, 0.97 

± 0.11 and 0.89 ± 0.11, respectively.  The internal consistency of the ages obtained 

using the CAM and FMM methods (Table 6.5) suggests that the adjustment made to the 

beta dose rate is valid for the Mumba samples.  It also indicates that, for samples with 

suitable De distributions, the OSL ages are not dependent on the statistical model chosen 

for analysis.  These conclusions provide confidence in the estimated ages for the quartz 

samples from Mumba. 

 The ages obtained using single grains of quartz are in correct stratigraphic order, 

with the exception of that for the deepest sample (MR10).  This discrepancy will be 

addressed in the next section (Section 6.5).  Several of these ages are also in agreement 
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with independent ages cited in the literature.  Specifically, the ages obtained for samples 

from Bed V (MR6, MR7 and MR8) are in agreement with an age of 52 ka and an age 

range of 45–65 ka, obtained using AAR (amino acid racemisation) on OES from Bed V 

deposits, reported by McBrearty and Brooks (2000).  The internal consistency of this 

chronology provides confidence in the single-grain quartz ages for samples from 

Mumba. 

 

6.5 Problematic samples 

Reliable OSL ages were not obtained from quartz for several samples presented 

in this study: namely, MR2, MR5 and MR10.  MR2 comes from a layer where 

substantial turbation was observed (Prendergast et al., 2007).  The best result is an age 

range identified using the MAM and the maximum age model, which give an age range 

of between 0.9 ± 0.1 ka and 12.0 ± 1.7 ka (Table 6.5). 

Grains of quartz from MR5 produced no natural OSL signal despite producing 

OSL in response to laboratory irradiations.  Since no age could be obtained for sample 

MR5, the best result that can be achieved is an age range based on the ages of the 

samples taken directly above and below this sample.  Thus, MR5 must have been 

deposited sometime between 36.8 ± 3.4 ka (MR4) and 49.1 ± 4.3 ka (MR6).  

The final sample that requires discussion is MR10.  Several factors indicated 

that estimating De values for this sample would be problematic.  First, the proportion of 

grains rejected from this sample’s dataset (~97%, Table 6.2) was higher than for any 

other sample from Mumba.  Proportionally, twice as many grains were recovered for the 

overlying sample (MR9), which is from the same geological unit as MR10: 6% and 3% 

of all grains measured from MR9 and MR10, respectively, were accepted.  Second, 

many grains from Mumba experienced an early onset of OSL signal saturation.  

Although many of these grains were rejected using the experimentally determined 

rejection criterion, saturation was expected to be particularly problematic for MR10 

since it was taken from the deepest layer sampled.  Accordingly, the natural OSL 

signals of the quartz grains from this sample were very close to the saturation intensity, 

resulting in only minimum estimates of De.  This is supported by a comparison of the De 

distribution for MR10 with that MR9.  When the FMM is used to analyse the dataset of 

MR10, the De of the minor component is statistically consistent with the De of the minor 
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component identified for MR9 (~95 Gy).  The main component identified for MR9 is 

centred on ~216 Gy.  The main component identified for MR10 is 160.3 ± 34.9 Gy, 

which is consistent with 216 Gy at 2σ.  In addition, 55% (n = 11) of De values obtained 

from grains of MR10 were consistent with 216 Gy at 2σ.  Given the higher dose rate 

measured for MR10 (~0.3 Gy/ka higher than for MR9), and the fact that it was taken 

from below MR9 (and is, thus, older), it is plausible that the burial dose of MR9 was 

low enough that it could be obtained from the highest, unsaturated portion of well-

behaving dose-response curves.  The burial dose of MR10, by contrast, may be high 

enough that the natural OSL signal that is representative of the main depositional event 

lies above the saturation dose of the well-behaved grains.  It was thus concluded that the 

OSL signals from many of the quartz grains from sample MR10 were most likely 

saturated and that the estimated De values could only be considered as minimum 

estimates. 

 

6.6 Summary 

 In this chapter, the measurement and analysis of De distributions for eight 

samples from Mumba was described.  The major results are as follows: 

o The De distribution of MR2 included grains from too many depositional events 

to distinguish as discrete entities.  It was concluded that these grains were 

deposited at different times and were subsequently mixed after burial, 

supporting the observed turbation reported by Prendergast et al. (2007).  As a 

result, an age range of 0.9 ± 0.1 ka to 12.0 ± 1.7 ka was the best outcome that 

could be achieved. 

o The De distributions of two samples (MR3 and MR9) showed evidence of post-

depositional mixing.  Populations of intrusive grains were identified using the 

FMM.  When these grains were subsequently removed from the datasets, the 

distributions were treated as ‘scattered’. 

o The ‘scattered’ De distributions of five samples (MR4, MR6, MR7, MR8 and 

MR10), as well as those of MR3 and MR9 (after the removal of intrusive 

grains), were consistent with two components.  The presence of the minor 

component was inferred to be the result of beta dose rate heterogeneity.   
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o Ages were calculated for eight samples (MR3, MR4, MR6, MR7, MR8, MR9 

and MR10) using the main population of grains and a beta-adjusted dose rate.  

The age obtained for MR10 using single grains of quartz should be considered a 

minimum age due to the small De dataset (n = 20) and the fact that many grains 

had OSL signals that were in saturation.  With the exception of MR10, all ages 

are in correct stratigraphic order.  The ages obtained for Mumba using single 

grains of quartz will be compared with ages obtained from IRSL measurements 

of feldspars in Chapter 8.  The archaeological implications of this revised 

chronology for Mumba will be discussed in Chapter 10. 

  

The inability to obtain a robust OSL age using quartz from MR10 indicates the 

limitations of this mineral to estimate burial doses beyond the saturated region of the 

dose-response curve.  Accurate ages for Bed VI are crucial to achieving one of the 

objectives of this thesis.  To identify when the transition from an MSA lithic toolkit to 

the Mumba Industry occurred, ages need to be obtained for layers containing each of 

these technologies.  All samples collected from Bed V (MR6, MR7 and MR8), which 

contains the Mumba Industry, could be dated using OSL on single grains of quartz.  

Only one sample from Bed VIA (MR9) could be dated.  More ages for Bed VIA (i.e., 

sample MR10) were, thus, desirable to identify when an MSA lithic toolkit was being 

used at Mumba.  To circumvent problems associated with the saturation observed in 

quartz from MR10, the suitability of using feldspar separates to obtain an IRSL age was 

explored, as feldspars have a much higher saturation limit than quartz.  These 

investigations are the subject of the next chapter. 
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Chapter 7: Characterisation of the luminescence signal of K-feldspars 
from Mumba rockshelter, Tanzania 
 

The quartz from Mumba has some malign OSL properties that hinder age 

estimation for older samples.  A major problem is the relatively low doses at which the 

OSL signal from quartz grains saturates, and the relatively high dose rate of the 

sediment surrounding the samples.  Consequently, ages could be estimated for samples 

from Bed V and only the uppermost sample from Bed VI.  

In this chapter, investigations of the luminescence signal from potassium (K)-

feldspar grains from Mumba are described.  The main aim of investigating K-feldspars 

was to obtain ages for samples form Bed VIA.  There were four main objectives that 

were set in order to achieve the aim of this study.  First, the luminescence mechanics in 

feldspars were investigated by comparing the shape and intensity of TL glow curves and 

infrared stimulated luminescence (IRSL) decay curves.  The temperature at which IR 

stimulation was performed was also investigated.  Second, the optimal stimulation 

conditions for estimating De values using improvements to conventional measurement 

procedures (namely the SAR procedure) were investigated.  Third, use the improved 

measurement procedures to find a signal that suffered from anomalous fading the least.  

Anomalous fading is the discharge of electrons out of traps that appear to be thermally 

stable over geologic time, thus resulting in an underestimation of the burial dose and 

age (see Section 7.1.2; Wintle, 1973; Spooner, 1994b; Thomsen et al., 2008).  Fourth, 

use the outcomes from the first three aims to obtain ages for K-feldspar grains from 

Mumba. 

 

7.1 Feldspar background 

7.1.1 Feldspar mineralogy 

 Feldspar is a term used to refer to a broad spectrum of alumino-silicate minerals 

with tetrahedral structures composed of four oxygen atoms and a silicon atom (SiO4) 

(Duller, 1997; Krbetschek et al., 1997).  When silicon atoms are replaced with 

aluminium atoms, cations, typically K, sodium (Na), calcium (Ca) and occasionally 

barium (Ba), may be inserted into the lattice.  Feldspars represent a solid-solution series 

that can be illustrated as a ternary diagram (Figure 7.1).  The end-members of this series 

are made entirely of K (orthoclase or K-feldspars), Na (albite) and Ca (anorthite) with 
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the intermediate feldspars being composed of varying proportions of these end members 

in a continuous series (Duller, 1997).  Feldspars of potassium and sodium (K+Na) and 

of sodium and calcium (Na+Ca) composition are known as alkali and plagioclase 

feldspars, respectively (Krbetschek, et al., 1997).  The structural state of a feldspar (that 

is, the ordering of aluminium and silicon atoms within the lattice) is principally the 

result of its thermal history.  Feldspars are typically disordered if they crystallise at high 

temperatures (such as feldspars of volcanic origin) and are ordered if they crystallise at 

low temperatures (Duller, 1997; Krbetschek, et al., 1997).  Generally, feldspars of 

intermediate composition that are crystallised at a high temperature will have a 

disordered, homogeneous composition.  Alternatively, if these feldspars were 

crystallised at a low temperature, they will have an ordered structure with phase 

separation (i.e., alkali feldspars will form regions of K-rich and Na-rich composition) 

(Duller, 1997).  Many authors agree that feldspars with a more disordered structure tend 

to have higher rates of anomalous fading (Spooner, 1994b; Visocekas et al., 1994, 1998; 

Fattahi and Stokes, 2003a), although Huntley and Lian (2006) presented evidence that 

the fading rates of volcanic and non-volcanic feldspars do not differ significantly. 

 

 

 
Figure 7.1: Feldspar nomenclature and chemical composition shown as a ternary diagram (from 
Krbetschek et al., 1997). 
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7.1.2 Feldspar luminescence 

Feldspar has several advantages over quartz as a luminescence dosimeter.  First, 

the luminescence emitted from K-feldspars per unit dose is often 10–50 times brighter 

than that from quartz (Duller, 1997), which results in better counting statistics, higher 

precision of measured doses, and smaller doses that can be measured precisely.  Second, 

feldspar luminescence can be stimulated using IR photons, which allows technically 

easier measurement of a blue/UV emission due to the large difference in wavelength 

between the stimulating and the measured wavelength (Hütt et al., 1988; Duller, 1997; 

Aitken, 1998).  Third, the feldspar luminescence signal saturates at higher radiation 

doses than the luminescence signal from quartz.  Older samples can, therefore, be dated 

using feldspars (Huntley and Lamothe, 2001).  Fourth, K-feldspars have a relatively 

high 40K content (12.5 ± 0.5%; Huntley and Baril, 1997) and 87Rb content (400 ± 100 

μg/g; Huntley and Hancock, 2001).  These internal contributions to the dose rate are 

unaffected by variations in water content and beta dose rate heterogeneity, thus reducing 

the overall dose rate uncertainty (Duller, 1997).  These final two points are particularly 

beneficial for luminescence investigations of sediment from Mumba, where beta dose 

rate heterogeneity and low saturation levels of the luminescence signal from quartz 

hindered age estimation. 

Aside from the positive properties listed above, feldspars have a malign property 

that has limited their use as chronometers, namely anomalous fading.  This phenomenon 

was first observed by Wintle (1973) in TL studies of lava flows.  Spooner (1994b) 

showed anomalous fading to be virtually ubiquitous in an IRSL study of museum 

feldspar samples.  Several studies have also confirmed the phenomenon’s ubiquity in 

sediment samples (Huntley and Lamothe, 2001; Huntley and Lian, 2006).  The physical 

model used to describe anomalous fading is based on quantum-mechanical tunnelling 

(Visocekas, 1985), which is summarised by Aitken (1985: Appendix F).   

The work of Hütt et al. (1988) showed that luminescence in feldspars is 

dominated by electron transfer from a single defect type.  This single-trap origin for 

feldspar IRSL has been confirmed by later studies (Krbetschek et al., 2000; Trautmann 

et al., 2000; Baril and Huntley, 2003a; Thomsen et al., 2008; Murray et al., 2009).  The 

pathways of electrons from the ground state of this single defect type to a recombination 

centre to create luminescence following IR stimulation are, however, still unclear.  The 
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difference between the main peak of the stimulation spectrum (1.41–1.47 eV: Bailiff 

and Barnett, 1994; Clark and Sanderson, 1994; Poolton et al., 1995; Duller, 1997) and 

the depth of the ground state of the IRSL electron trap below the conduction band (~2 

eV; Poolton et al., 2002b) in alkali feldspars indicates that there is a ~0.5 eV gap 

between the excited state and the conduction band (Poolton et al., 2002a).  Hütt et al. 

(1988) posited that electrons are stimulated to the exited state by IR and are then 

thermally assisted to the conduction band where they are highly mobile and can reach 

distant recombination centres.  This model, partially supported by later studies (Bailiff 

and Poolton, 1991; Hütt and Jaek, 1993; Clark and Sanderson, 1994), was largely 

contradicted by the results of others (e.g., Baril and Huntley, 2003b) that showed that 

the thermal activation energies are too small to thermally excite the excited electrons 

directly into the conduction band (Thomsen et al., 2008).   

Poolton et al. (1995, 2002a,b, 2009) posited that a donor-acceptor recombination 

process is at the root of IRSL from feldspars.  This model, supported by the results of 

several other studies (e.g., McKeever et al., 1997; Thomsen et al., 2008; Li, 2010), 

suggests that after electrons are stimulated to the excited state (where their tunnelling 

range is larger than from the ground state), they can either tunnel directly to a 

recombination centre without passing through the conduction band (a possibility also 

suggested by Baril and Huntley, 2003b) or they are transferred into low-mobility band-

tail states or the conduction band (with thermal assistance) where they can reach more 

distant recombination centres.  Band-tail states are localised deformations in the 

conduction band potential that allow electrons to move, although with less mobility than 

electrons in the conduction band (Poolton et al., 2002b).  They are formed by the 

presence of imperfections (charged impurities or non-standard bond angles) in the 

crystal structure of feldspars (Poolton et al., 2002b).  Regardless of the mechanics of 

IRSL production in feldspars, electrons that are trapped in defects can tunnel directly 

from the ground state to the recombination centre if it is close enough (Poolton et al., 

2002a).  This has been directly observed as tunnelling afterglow following a laboratory 

irradiation (Spooner, 1994b; Visocekas et al., 1994, 1998; Visocekas, 2002) and is the 

reason for the observed decrease in luminescence with time, i.e., anomalous fading 

(Visocekas, 1985, 2002; Aitken, 1985; Poolton et al., 2002a,b; Huntley, 2006).   
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 Much of the research regarding feldspar as a luminescence dosimeter has been 

focused on addressing this issue of anomalous fading, which can be quantified using the 

g-value (%/decade, where a decade is a factor of 10 in time since irradiation; see 

Section 7.6.2.2).  Several studies have claimed to have found non-fading signals from 

feldspars using specific TL peak temperatures, emissions, and feldspar mineralogies 

(Guérin and Valladas, 1980; Zink and Visocekas, 1997; Gelian et al., 2006; Huntley et 

al., 2007).  Others have reported using grain-to-grain and aliquot-to-aliquot variability 

in fading rates as a method for estimating a correct De (Lamothe and Auclair, 1999).  

All of these methods either require specialised equipment or the correct mineralogy of 

feldspar to be present.  Other methods have not withstood scrutiny.  For lack of finding 

a non-fading feldspar signal, the most common and practical method for addressing 

anomalous fading has been to measure the fading rate and correct the estimated age for 

it.  Aitken (1985: Appendix F) presents a model based on quantum-mechanical 

tunnelling and can account for some anomalous fading data.  This model is the basis for 

the most commonly used anomalous fading correction, based on the work of Huntley 

and Lamothe (2001).  This correction, however, has its limitations.  Specifically, it 

becomes unreliable for old samples for which the De does not fall on to the linear 

portion of the dose-response curve.  Other fading corrections have been developed (e.g., 

Lamothe et al., 2003; Kars et al., 2008), but the method presented by Huntley and 

Lamothe (2001) has proved to be sound for samples with doses up to 200 Gy and is 

used in many feldspar studies (e.g., Balescu et al., 2003; Buylaert et al., 2009; Martins 

et al., 2010; Tsukamoto et al., 2010).  Martins et al. (2010) infer from their results and 

the literature that the Huntley and Lamothe (2001) correction for anomalous fading 

works well up to a dose of at least ~200 Gy. 

 

7.2 Emission characterisation 

There are several main emissions that have been used in past studies of feldspar 

TL and IRSL.  A comprehensive summary of these studies on TL and IRSL spectra 

from feldspars can be found in Krbetschek et al. (1997).  The major emissions that are 

currently being researched as those most applicable for dating purposes are the UV, 

blue, yellow and red.  There are two UV emission bands.  One is centred at 275–290 nm 

(Prescott et al., 1994; Krbetschek and Rieser, 1995; Rendell and Clarke, 1997; Clarke et 
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al., 1997) and is considered thermally unstable (Wintle and Duller, 1991; Krbetschek et 

al., 1997).  The second is centred at 320–340 nm, is dominant in plagioclase feldspars, 

and is considered thermally stable owing to its intensity at high temperatures 

(Krbetschek and Rieser, 1995; Krbetschek et al., 1996). 

The blue emission (~390–440 nm) is considered the main IRSL emission from 

K-feldspars (Clarke and Rendell, 1997; Krbetschek et al., 1997), although it is present 

in some Na-feldspars (Clarke and Rendell, 1997) and plagioclase feldspars (Krbetschek 

and Rieser, 1995).  Baril and Huntley (2003b) showed a correlation between K content 

and increased intensity of the ~410 nm emission band. 

The yellow emission (~550–570 nm) has been shown to be related with Mn 

substituting for Ca, making it more likely to be produced by plagioclase feldspars 

(Krbetschek et al., 1997; Baril and Huntley, 2003b).  The yellow emission generally 

dominates the TL spectra of plagioclase feldspars (Huntley et al., 1988, Prescott et al., 

1990), although it has been reported in other feldspar types also (Krbetschek et al., 

1996; Clarke and Rendell, 1997).  In addition, the yellow TL emission from plagioclase 

feldspars has been shown to be non-fading in one study (Gelian et al, 2006).  Huntley et 

al. (2007) also suggest that the yellow emission from plagioclase feldspars (with <5% 

Ca content) may be non-fading. 

The red emission (~600–750 nm) has been shown to be present in many feldspar 

types (Krbetschek et al., 1997), with the far-red emission (~700–710 nm) attributed to 

Fe3+ substituting for Al3+ (Zink et al., 1995).  Several TL studies have also shown that 

the red emission fades less than the blue emission and can be used to successfully obtain 

an age from alkali and plagioclase feldspars (Zink et al., 1995, Zink and Visocekas, 

1997; Visocekas and Guérin, 2006).  Despite the technical problems associated with 

stimulating with IR and measuring a red emission (Fattahi and Stokes, 2003b), red IRSL 

has been suggested to be non-fading by Fattahi and Stokes (2003a).  Using the far-red 

IRSL emission, the SAR procedure was shown to be suitable for application using K-

feldspar separates with mixed results (Arnold et al., 2003; Fattahi, 2004).  Tests on the 

potential non-fading red IRSL emission were also inconclusive (Fattahi and Stokes, 

2003c; Fattahi, 2004). 

Owing to the diversity in feldspar mineralogy, it can be expected that there may 

be a large diversity in luminescence emissions.  To this end, it is worth investigating the 
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presence of the various emissions in the feldspars from Mumba.  It should be noted that, 

due to instrumental limitations, the technique of measuring the far-red emission was not 

investigated in this study. 

 

7.2.1 Instrumentation – IRSL measurement and filter combinations 

All IRSL measurements on feldspars from Mumba were made using the same 

Risø TL/OSL reader (Risø 4).  The instrument is fitted with a 1 W IR laser diode (830 

nm) that can deliver a power density of 300 mW/cm2.  The measurement of all 

emissions was performed using a blue-sensitive bialkali Electron Tubes Ltd 9235QA 

PMT.  This tube has a high quantum efficiency in the blue portion of the spectrum and 

is thus not ideal for measurement of yellow emissions (~550 nm).   

 
Table 7.1: Filter combinations used to measure different luminescence emissions from K-feldspar 
separates. 

 
 

 Filter combinations used to isolate the desired wavelength are presented in Table 

7.1.  The UV emissions were measured using two U-340 (3 mm) filters, which have a 

maximum transmittance at ~330 nm.  Blue emissions were measured using two 

different combinations.  The standard blue filter combination included a band-pass 

BG39 (2 mm) filter and a Kopp 7-59 (4 mm) filter.  The second blue filter combination 

included a band-pass BG39 (2 mm) filter and a Kopp 5-60 (4.3 mm) filter with a 

maximum transmittance at ~420 nm.  The yellow emission was measured using a band-

pass BG39 (2 mm) filter, a long-pass GG400 (3 mm) filter and a long-pass OG550 (1 

mm) filter with a maximum transmittance at ~559 nm.  The BG39 band-pass filter used 
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to transmit all emissions (except UV) is used to reduce the effect of scattered photons 

from the IR diodes (Fattahi and Stokes, 2003b). 

 

7.2.2 Comparing TL and IRSL emissions from K-feldspars from Mumba 

To compare various emissions from K-feldspar separates from Mumba, the TL 

and IRSL signals from two aliquots, consisting of ~500 grains of sample MR9, were 

measured through the four different filter combinations.  The aliquots were first heated 

to 500°C, cooled to room temperature and immediately given a ~117 Gy irradiation, 

preheated to 260°C for 60 s, and then stimulated with the IR diodes for 100 s at 50°C.  

The filters were then changed and the procedure was repeated using the same two 

aliquots, beginning with the 500°C heat treatment.  This measurement cycle was 

performed a total of five times.  The first cycle served to sensitise the two aliquots and 

the luminescence was measured through the standard blue filter combination.  The 

second, third, fourth and fifth cycles were measured through the yellow, second blue 

filter combination (BG39 and Kopp 5-60), the UV and the standard blue filter 

combination (BG39 and Kopp 7-59), respectively.  By performing the experiment in 

this way, the shape and intensity of decay curves and TL glow curves could be 

compared for the same aliquot for different emissions.  It also provided an internal 

reproducibility check; by measuring the first and final cycles through the standard blue 

filter combination, the shape and intensity of the first and final decay curves could be 

compared to ensure that no unaccounted for sensitisation had occurred.   

Figure 7.2 illustrates the TL glow curves for the 500°C heat treatment following 

IR stimulation.  The TL curves show consistent peak positions regardless of the filter 

combination used.  There are three general peaks present: at ~180°C, at ~350°C and one 

on the shoulder of the ~350°C TL peak at ~430°C.  The only difference between the 

two blue and UV emissions is the intensity of the glow curve.  The TL glow curves 

measured through the two blue filter combinations were about an order of magnitude 

brighter than the TL viewed through the UV.  The TL viewed through the standard blue 

filter combination was brighter than that of the second blue combination for 

temperatures greater than ~200°C.  The glow curve measured using the yellow emission 

has the same general shape as the other glow curves up to ~375°C, although it is about 

an order of magnitude dimmer than the UV emission glow curve.  At temperatures 
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above ~375°C, the yellow emission glow curve begins increasing through 500°C, 

showing the opposite behaviour to those observed for the other three filter 

combinations.     

 

 
Figure 7.2: TL glow curves for various emissions from one aliquot of MR9.  Results are 
representative of both aliquots measured.  The TL peaks remain in the same position regardless of 
the emission observed; only the intensity of the TL changes.   

 

These results suggest that there are major differences in brightness of the TL 

signal from various emissions.  On the other hand, there are only minor differences in 

the shapes of TL glow curves from different emissions.  The exception is the high-

temperature portion of the yellow emission TL curve, which may represent the low-

temperature portion of a high-temperature (i.e., >500°C) TL peak 

 Figure 7.3 presents IRSL decay curves measured using the various filter 

combinations.  These results are from the same aliquot whose TL curves are presented 

in Figure 7.2.  First, it should be noted that the two IRSL decay curves measured using 

the standard blue filter pack (i.e., in the first and final measurement cycles) are identical 

and are very similar in intensity (~2.3 million and ~2.4 million counts, where the IRSL 

signal is calculated as described in Section 3.3.1.1).  This indicates that differences in 

decay curve brightness observed for different filter combinations are the product of 

changes in observed emissions, not of sensitisation of the aliquot.  Similarly to the TL 

glow curves, the IRSL decay curve shape is consistent when measured in the blue and 

UV emissions.  The UV signal, however, is approximately an order of magnitude 

dimmer than the blue signal.  The IRSL decay curves measured using the two different 
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blue filter combinations (i.e., standard and second) are approximately equal in 

brightness, similar to their TL glow curves.  The yellow emission produces a very 

different decay curve.  It is substantially dimmer than that of the UV and it decays as an 

overall slower rate, although the slope looks similar to the other decay curves over the 

first 1–2 s of stimulation.  Instead of decreasing to a background level, it stops decaying 

after ~10 s of IR stimulation and gradually increases as a function of increasing IR 

stimulation time.   

 

 
Figure 7.3: IRSL decay curves for various emissions from one aliquot of MR9.  Results are 
representative of both aliquots measured.  Note the logarithmic scale for the y-axis. 
 

 The results from the above experiment and analyses suggest that the remaining 

investigations of the IRSL signal from K-feldspars from Mumba should be carried out 

using a blue filter combination to maximise the IRSL signal intensity that is measured.  

Due to the abnormal appearance of its decay curve, the yellow emission is not 

considered practical at this time for dating purposes using standard procedures.  While 

there is no difference in IRSL decay curve or TL curve shape measuring either the blue 

or UV emissions, the greater signal intensity obtained from the blue emissions will 

increase counting statistics and result in more precise data.  The UV filters transmit both 

the stable peak between 320 and 340 nm and the unstable peak between 275 and 290 

nm (Krbetschek et al., 1997), making this filter combination less suitable for dating than 

either of the blue filter combinations.  In addition, several studies have noted that the 

UV emission that is IR stimulated from feldspars suffers from anomalous fading more 
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than the blue emission (e.g., Preusser, 2003; Klasen et al., 2007; Tsukamoto and Duller, 

2008; Morthekai et al., 2008).  The blue emission is the most commonly measured 

emission in IRSL studies of feldspars (e.g., Balescu et al., 1997; Huntley and Lamothe, 

2001; Preusser, 2003; Auclair et al., 2007).  The TL and IRSL signals measured for the 

two different blue filter combinations were very similar in shape and magnitude.  

Subsequently, all remaining luminescence measurements described in this chapter were 

made using the standard blue filter combination (BG39 + Corning 7-59).  The choice of 

this filter combination also ensures that these results can be compared with those of the 

many other studies that employed the same filter combination (e.g., Wallinga et al., 

2000a,b; Auclair et al., 2003; Thomsen et al., 2008). 

 

7.3 Thermoluminescence from K-feldspars 

7.3.1 Overview 

No TL peaks have been shown to be present in all feldspars, although several 

peaks have been shown to be common.  Many natural K-feldspars often exhibit two TL 

peaks centred at 250–280°C and 330°C, and laboratory-irradiated feldspars often exhibit 

a large TL peak at ~150°C (Duller, 1997).  Also, unlike quartz where OSL is generally 

believed to originate from the trap associated with the 325°C TL peak (Smith et al., 

1986; Spooner, 1994a), there is no consensus regarding a correlation between a specific 

TL peak and the source trap for IRSL in feldspars (Duller, 1997).  Godfrey-Smith et al. 

(1988) reasoned that the traps that generate IRSL in feldspars are not important in TL 

production, based on the contrasting bleaching rates of each, although most other 

studies (e.g., Li, 1991; Bøtter-Jensen et al., 1991; Duller and Wintle, 1991; Duller, , 

1994, 1995; Murray et al., 2009) are not in agreement with this claim.  Pulsed-annealing 

experiments have been used to assess the temperatures at which the charge that 

produces the IRSL signal is evicted (e.g., Li, 1991; Bøtter-Jensen et al., 1991; Duller, 

1994; Murray et al., 2009), and these generally point towards a higher temperature TL 

peak as the source of the IRSL.  The effects of IR stimulation on TL peaks has also been 

investigated (e.g., Duller and Wintle, 1991; Duller, 1995; Murray et al., 2009).  These 

studies have shown that IR stimulation reduces the intensity of the TL peaks, although 

not necessarily uniformly.  Murray et al. (2009) reported that their TL peak at ~310°C 

was unaffected by IR stimulation.  They also observed that the ~150°C TL peak does 
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not contribute to IRSL, supporting the earlier conclusion of Duller and Bøtter-Jensen 

(1993).  The outcomes from these studies suggest that IRSL originates from charge 

associated with higher temperature (>310°C) TL peaks (Duller, 1997).  Murray et al. 

(2009) go so far as to identify the high-temperature TL peak at 410°C as the source trap 

for IRSL. 

The large variety of TL characteristics is likely due to the range of chemical 

compositions within the feldspar group (Duller, 1997).  As a result, a thorough 

characterisation of the feldspar signal should be performed for every dating study. 

 

7.3.2 Characterising the TL signal of K-feldspars  

For three aliquots comprised of ~500 grains of MR9, an additive laboratory dose 

of 0, 60 or 240 Gy was applied in addition to the natural dose.  The aliquots were then 

heated to 500°C and the TL was measured (Figure 7.4).  A blank stainless steel disc was 

also measured and used to subtract any background TL from the aliquots.  There is little 

difference in the composition of the TL peaks in the higher temperature region (i.e., 

>300°C) between the aliquot with no added dose and aliquots that had received a 

laboratory dose.  Humps at ~350°C and ~430°C can be observed in the TL curves of all 

three aliquots.  The main difference is that laboratory irradiation results in a large TL 

peak in the low-temperature region (at ~150°C), and this peak is not present in the 

natural aliquot.  At 150°C, the aliquot that received a 60 Gy additive dose produced a 

TL signal ~50,000 times greater than the aliquot that received no laboratory dose.  

Many studies have observed this large, low-temperature TL component and have 

concluded that it does not contribute to the measured IRSL signal (Bøtter-Jensen et al., 

1991; Duller and Bøtter-Jensen, 1993; Murray et al., 2009).  However, in order to 

ensure that the luminescence signals resulting from laboratory and natural irradiations 

were as similar as is reasonably possible, the low-temperature TL components should be 

removed for purposes of dating.  This could be achieved through the application of a 

high-temperature preheat.  The natural TL signal begins to reach a peak at ~260°C, 

which is approximately the same temperature that the TL curves for the irradiated 

aliquots begin to take the same shape as that of the natural aliquot.  Based on this, and 

on results from many recent feldspar IRSL studies taken from the literature (e.g., Huot 
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and Lamothe, 2003; Cunha et al., 2008; Buylaert et al., 2009), a preheat of 260°C for 60 

s was chosen. 

 

 

 
Figure 7.4: TL glow curves from three aliquots of MR9.  Each aliquot was given a different 
laboratory irradiation followed by a 500°C heat treatment.  Note that the inset plot shows the same 
data as the main figure, but with the y-axis on a linear scale. 
 

Further TL experiments were conducted in order to investigate: 1) the 

relationship between the TL curve and IR stimulation, and 2) how the TL curve changes 

throughout the steps of one SAR cycle (see Section 3.3).  Table 7.2 presents a step-by-

step outline of this experiment.  Several aliquots of MR9 were heated to 500°C and then 

had their TL signal recorded (while heating to 500°C) after successive steps of a SAR 

cycle.  First, the TL was recorded following an irradiation of 117 Gy.  Then the TL was 

recorded following an irradiation (117 Gy) and a preheat of 260°C for 60 s.  Then the 

TL was recorded following an irradiation (117 Gy), preheat, and IR stimulation at 50°C 

for 100 s.  Finally, the TL was recorded following an irradiation (117 Gy), preheat, IR 

stimulation at 50°C, and an IR stimulation at 225°C for 100 s; the latter is referred to as 

post-IR IR stimulation (Thomsen et al., 2008; Buylaert et al., 2009) and will be 

discussed in Section 7.5 (Figure 7.5).   
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Table 7.2: Step-by-step outline of the experiment described in this section.  Note that the “TL 
curve” corresponds to the nomenclature in Figure 7.5. 

 
 

The TL following only the irradiation shows the same three peaks observed in 

Figure 7.4, at ~150, 350 and 430°C.  The extent of decrease of the two higher-

temperature TL peaks in response to various laboratory treatments is listed in Table 7.3.  

As expected, the preheat thermally removes the low temperature TL component.  The 

350°C peak is reduced by ~14% after the preheat, while the 430°C peak remains 

virtually unaltered (reduction of ~0.6%).  The effects of an IR stimulation following a 

preheat are markedly different from those of only a preheat.  The IR stimulation at 50°C 

induces phototransfer of charge back into the low-temperature TL peaks.  This 

phototransfer is not observed following the post-IR IR stimulation because the 

stimulation temperature of 225°C keeps the low-temperature TL traps empty.  In the TL 

glow curve following an IR stimulation at 50°C, compared to that after only a preheat, 

the 350°C peak is reduced by ~19%.  In contrast, the 430°C peak is reduced by ~54%.  

The TL following a post-IR IR stimulation, compared to that after the IR (50°C) 

stimulation, reduces the 350°C peak and the 430°C peak by a further ~16% and ~33%, 

respectively.  It is interesting to note that with each successive treatment and TL 

measurement (i.e., ‘preheat’ compared to ‘preheat + IR’ compared to ‘preheat + IR 

[50°C] + post-IR IR [225°C]’), the 350°C peak is reduced by roughly the same propor- 
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Figure 7.5: a, TL glow curves following various steps of the SAR procedure for aliquots of MR9.  
The ‘Dose’ is a 117 Gy laboratory irradiation, ‘PH’ is a preheat of 260°C for 60 s, ‘IR’ is an IR 
stimulation at 50°C for 100 s, and ‘post-IR IR’ is an IR stimulation at 225°C for 100 s following an 
IR bleach at 50°C.  Note the logarithmic scale of the y-axis.  b, The TL curves from Figure 7.5a are 
shown as difference curves.  This illustrates the temperatures at which the TL signal is reduced 
following various kinds of stimulation. 
 

 
Table 7.3: The data presented shows how the two major TL peak intensities (i.e., 350°C and 430°C) 
are reduced following various thermal and IR stimulations.  The curve in the top row is divided by 
the curve in the left column for both TL peaks.  Note that the curve nomenclature is taken from 
Figure 7.5a. 

 
 

tion (16 ± 3%).  In contrast, the 430°C is unaltered following the preheat, and is then 

reduced by 54% by IR (50°C) and a further 33% by post-IR IR (225°C).  This suggests 

that the 350°C peak is affected by both the preheat and IR stimulation, whereas the 
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430°C peak is only affected by IR stimulation and is unaffected by thermal stimulation 

of 260°C for 60 s.  These results suggest that a large proportion of the charge that 

produces IRSL is related to the traps that produce the 430°C TL peak.  This supports the 

observations of Murray et al. (2009) that a potential source of the IRSL in K-feldspars is 

a high-temperature TL trap (~410°C in that study).  They also noted that their TL peak 

at ~310°C was “unbleachable” (Murray et al., 2009).  Here, similarly, the ~350°C TL 

peak observed in MR9 is less bleachable by IR stimulation than is the ~430°C TL peak. 

To compare the TL curves and see how the distribution of TL signal changes 

after various stimulation conditions, the TL curves presented in Figure 7.5a were 

subtracted from one another (Figure 7.5b).  When the TL curve following an IR 

stimulation (both at 50°C and the post-IR IR at 225°C) is subtracted from that following 

a preheat, the largest reduction in TL signal occurs at 430°C.  The post-IR IR 

stimulation at 225°C produces a greater reduction of the 430°C peak than IR at 50°C.  It 

is noteworthy that the subtraction trough (where most charge on the TL curve is being 

emptied) stays constant at 430°C.  In the case of IR stimulation at 50°C, charge is 

supplied to the traps that give rise to the low-temperature peaks (positive values at 

temperatures below ~280°C indicating phototransfer).  When the TL curve following an 

IR (50°C) stimulation is subtracted from the TL curve following a post-IR IR 

stimulation, one trough and a shallow trough are observed.  The trough is at ~250°C and 

the shallow trough is between 350°C and 430°C.  The 250°C trough is the result of 

charge transfer following IR stimulation at 50°C into low-temperature traps.  This 

phototransfered charge is thermally removed from these low-temperature traps by the 

post-IR IR stimulation at 225°C, creating the subtraction trough.  The shallow trough 

indicates that the post-IR IR stimulation at 225°C removes an equal amount of charge 

from the 350 and 430°C TL peaks, compared to IR stimulation at 50°C.   

It is shown in later experiments (Section 7.4.2, Figure 7.10 and Figure 7.11) that 

the reduction of the 350°C and 430°C TL peaks by the post-IR IR stimulation is not the 

result of the 100 s of heating at 225°C during elevated-temperature IR stimulation.  It 

follows, then, that the 350°C peak can be reduced by IR stimulation.  It is also possible 

that the observed reduction of the 350°C TL peak following IR stimulation is the result 

of a reduction of a broad 430°C TL peak that may underlie the 350°C peak.  In this 

case, the 350°C peak is reduced following IR stimulation, not by electron eviction from 
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traps responsible for this TL peak, but by eviction of electrons from traps responsible 

for the 430°C peak underlying the 350°C peak.  A third possibility for the reduction in 

the 350°C TL peak following IR stimulation, suggested by Murray et al. (2009), is that 

the IR stimulation changes the luminescence recombination probability prior to the TL 

measurement.  In this scenario, IR stimulation does not evict electrons from traps 

associated with TL peaks.  Instead, IR stimulation reduces the number of TL 

recombination centres available for the electrons that are subsequently stimulated by the 

heat treatment, thus reducing the TL yield (Murray et al., 2009).  The effects of IR 

stimulation on these two TL peaks are further discussed later in this chapter (Section 

7.4.2): they lend support to this third possibility and to a relationship between IRSL 

production and the 430°C TL peak. 

 

7.4 Characterising the IRSL signal from K-feldspars from Mumba 

 The following sections detail experiments performed to characterise the IRSL 

signal of K-feldspar separates from Mumba.  Following the tests and conclusions from 

Section 7.2, all measurements were made using the standard blue filter combination 

(BG39 + Corning 7-59) and a preheat of 260°C for 60 s. 

 

7.4.1 Assessing the dependence of IRSL on stimulation time 

 A feature of the IRSL decay curve noted in Figure 7.3 is that the signal intensity 

continued decaying throughout the 100 s period of stimulation and did not reach a 

constant background.  It has been noted in previous studies that a longer stimulation 

time can make the signal intensity decay to background (Preusser, 2003; Demuro, 

2009).  Demuro (2009) made all IR stimulations for 500 s to reduce the signal to 

background levels, after her initial measurements of feldspars indicated that the IRSL 

signal decayed slowly for all emissions. 

 A step-by-step outline of the experiment described in this section is presented in 

Table 7.4.  To test the effects of a longer duration IR stimulation on K-feldspar samples 

from Mumba, two ~50-grain aliquots of MR9 were bleached in sunlight for at least 

three days.  They were then given a laboratory irradiation of 117 Gy, preheated to 

260°C for 60 s, then stimulated with IR at 50°C for varying durations.  Following each 

cycle, a test dose cycle consisting of a laboratory irradiation of 12 Gy, a preheat of 
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260°C for 60 s, and an IR stimulation at 50°C for the same duration as the preceding 

measurement cycle was performed to monitor for sensitivity changes.  Following the 

test dose, a 0 Gy dose was applied, followed by a preheat of 260°C for 60 s and an IR 

stimulation at 50°C for the same duration as that used to stimulate the first laboratory 

dose of the cycle.  This was followed by a second test dose cycle.  This whole procedure 

was performed four times for IR stimulation durations of 100, 200, 300 and 500 s.  The 

purpose of the 0 Gy irradiation cycle was to mimic the recuperation test performed 

during the SAR procedure, to determine whether a longer IR stimulation may reduce the 

background, the build-up of background, and the recuperation value (see Section 

3.3.2.1) as a result. 

 
Table 7.4:  Step-by-step outline of the experiment described in this section to investigate the effect 
of stimulation time on the IRSL signal.  IR stimulation durations of 100, 200, 300 and 500 s were 
tested during the first, second, third, and final cycle, respectively. 

 
 

Results are presented in Figure 7.6.  As expected, the initial intensity of the 

IRSL decay curve is identical for all decay curves regardless of the stimulation duration.  

The shape of decay curve for each IR stimulation is also identical (through to the 

termination of each stimulation).  Unlike the results obtained by Demuro (2009), 

however, after 500 s of IR stimulation the signal is still decreasing.  This also holds true 

for the IRSL decay curves following a 0 Gy dose (Figure 7.6b). 
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Figure 7.6b shows the IRSL decay curves following a 0 Gy irradiation.  For all 

stimulation durations, except 100 s, the initial signal intensity (i.e., the first 2 s of 

signal) is very similar (between 36,000 and 38,500 counts).  For the 100 s stimulation, 

the initial signal intensity is ~20% greater.  The IRSL signal also decays more rapidly 

with an increase in stimulation time.  This suggests that the IRSL trap continued to be 

emptied throughout the entire duration, albeit at a slower rate.  The result is that there 

were fewer electrons in IR-sensitive traps when the aliquots were stimulated with IR 

again following the 0 Gy irradiation.  This is consistent the predictions of a donor-

acceptor model of feldspar luminescence, as electrons from traps that are farther from 

recombination centres would take longer to tunnel from their excited state. 

 

 
Figure 7.6: IRSL decay curves from aliquots of MR9 after various IR stimulation durations.  a, 
IRSL decay curves following a laboratory irradiation of ~117 Gy.  b, IRSL decay curves following a 
0 Gy irradiation.  Note the logarithmic scale for the y-axis in Figure 7.6a. 
 

 To quantify the amount of signal remaining following each cycle, the 

recuperation value ([L0/Tx]/[L117/Tx]) was calculated (Figure 7.7).  The L0/Tx value was 

calculated using the background-subtracted signals of the IRSL following the 0 Gy 

irradiation and its subsequent test dose.  The L117/Tx value was calculated using the 

background-subtracted signals of the IRSL following the 117 Gy irradiation and its 

subsequent test dose.  Each L0/Tx value was divided by the L117/Tx value calculated 

from the preceding measurements to obtain the recuperation value.  Despite the results 

in Figure 7.6b, the recuperation values are minimally affected by stimulation time for 

durations of 200 s and longer.  The recuperation value for a stimulation of 100 s (2.02 ± 

0.06%) is still well under the 5% value used as the rejection criterion during the SAR 
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procedure for quartz (see Section 3.3.2.1) and feldspar (e.g., Wallinga et al., 2000b).  

This suggests that the 100 s stimulation time, despite not reducing the signal to 

background, reduces it sufficiently to be used for the SAR procedure.  There are two 

other benefits to keeping the stimulation duration relatively short.  First, the demand on 

instrument time for every experiment is reduced.  Second, several recent studies 

investigating the IRSL from K-feldspar utilised a 100 s stimulation time (e.g., Wallinga 

et al., 2000a; Auclair et al., 2003; Thomsen et al., 2008), so the results obtained here 

will be more comparable to theirs than if a longer-duration stimulation were used. 

 

 
Figure 7.7: Recuperation value plotted as a function of IR stimulation duration (s). 
 

 

7.4.2 Assessing the dependence of IRSL and TL on stimulation temperature 

7.4.2.1 Overview 

It has previously been observed that the intensity of the IRSL signal increases 

with increasing stimulation temperature, from 25°C to 250°C (Duller and Wintle, 1991; 

Duller, 1997; McKeever et al., 1997; Poolton et al., 2002b; Thomsen et al., 2008).  

There is, however, no consensus with regards to the dependence of the shape of the 

IRSL decay curve on stimulation temperature.  Duller and Wintle (1991) and McKeever 

et al. (1997) reported that as the IRSL intensity increased with stimulation temperature, 

the rate of decay of the IRSL signal increased as well, suggesting a thermally assisted 

recombination process (McKeever et al., 1997).  In contrast, Poolton et al. (2002b) and 

Thomsen et al. (2008) reported that the rate of decay observed for the IRSL signal stays 

constant regardless of stimulation temperature.  Thomsen et al. (2008) interpreted this 

as suggesting that the same trap was accessed at increasing stimulation temperatures, 
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but with an increased number of electrons available for stimulation.  As an alternative, 

they suggested that the elevated temperatures may increase the luminescence efficiency.  

The interpretations of both sets of studies are in agreement with most other research that 

suggests that IRSL from feldspars is the result of a donor-acceptor recombination 

process from a single trap-type (see Section 8.1.2). 

In regards to dating applications, some studies recommend avoiding the 

measurement of IRSL at elevated temperatures (e.g., Rieser et al., 1997; Poolton et al., 

2002b), whereas several recent studies have produced results that encourage it (e.g., 

Thomsen et al., 2008; Murray et al., 2009).  A potential benefit recently revealed is that 

the IRSL signal measured at an elevated temperature may fade less than that measured 

at lower temperatures (Thomsen et al., 2008; Buylaert et al., 2009; Murray et al., 2009).    

Before experimenting with fading rates and SAR procedures, it was important to 

characterise the dependence of the IRSL and TL signals on stimulation temperature. 

 

7.4.2.2 Dependence of the measured IRSL and TL signal of K-feldspars on 

stimulation temperature 

Two aliquots of MR9, each composed of ~50 grains, were bleached in sunlight 

for at least one week in order to assess the dependence of the IRSL and TL signals on 

the temperature at which IR stimulation is performed.  Table 7.5 is a step-by-step 

outline of the experiment that is described in this section.  The sun-bleached aliquots 

were given a laboratory irradiation of 117 Gy, a preheat of 260°C for 60 s, and an IR 

stimulation for 100 s at a specified temperature.  A test dose cycle, consisiting of a 30 

Gy laboratory dose, a preheat of 260°C for 60 s, and an IR stimulation at 50°C for 100 

s, was also performed to monitor, but not correct, for changes in sensitivity.  This 

procedure was repeated for specified IR stimulation temperatures of 50°C, 100°C, 

150°C, 200°C, 225°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C and 550°C.  After 

all IR stimulation temperatures were measured, the entire procedure was repeated for 

most stimulation temperatures with a heat treatment of 500°C administered in lieu of a 

test dose cycle to observe how the TL peaks changed when the IR stimulation 

temperature was varied. 
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Table 7.5: Step-by-step outline of the experiment described in this section.   

 
 

 Decay curves measured during IR stimulations at various temperatures, 

measured during steps 2 to 8 in Table 7.5, are shown in Figure 7.8a, and the IRSL signal 

intensity as a function of stimulation temperature is shown as diamonds in Figure 7.8b.  

The observed change in IRSL signal intensity for stimulation temperatures up to 225°C 

is in accordance with data provided by the literature (e.g., Bailiff and Poolton, 1989; 

Duller and Wintle, 1991; McKeever et al., 1997; Thomsen et al., 2008), although it 

should be noted that most of the cited studies used U-340 filters as opposed to the 

standard blue filter combination (see Section 7.2.1) used in this study.  As the IR 

stimulation temperatures increases, the IRSL intensity also increases.  At 225°C, the 

IRSL signal is ~6 times greater than that at 50°C, which is similar to the five-fold 

increase of reported by Thomsen et al. (2008).  IRSL intensity increases approximately 

linear up to a stimulation temperature of 250°C.  A significant change occurs at 300°C 

where the IRSL intensity increases by ~60% from the value observed for a 250°C 

stimulation temperature.  At a stimulation temperature of 350°C, a decrease of ~10% is 

observed, followed by even greater decreases in signal intensity at 400°C and 450°C 

(40% and 70%, respectively).   
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Figure 7.8: Analysis of the change in IRSL with stimulation temperature.  a, Decay curves 
measured for  IR stimulation at various temperatures.  Note that the legend is arranged by 
brightness, from the brightest stimulation (IRSL 300ºC) at the top to the dimmest stimulation 
(IRSL 550ºC) at the bottom.  b, IRSL signal intensity as a function of stimulation temperature.  The 
IRSL signal is calculated as the background-subtracted signal.  Diamonds were calculated from the 
IRSL measured during steps 2 to 8 in Table 7.5.  Triangles were calculated from the IRSL 
measured during steps 10 to 14 in Table 7.5. 
 

The IRSL signal intensities measured during steps 10 to 14 in Table 7.5 

(triangles in Figure 7.8b) also increase with stimulation temperature up to 300°C, 

though the increase is substantially less: at 225°C, the IRSL signal is ~3 times greater 

than that at 50°C.  The difference between the two datasets displayed in Figure 7.8b 

needs to be addressed and sheds further light on the high-temperature source of IRSL 

from feldspars.  The data presented as diamonds Figure 7.8b comes from IRSL 

measured with a test dose cycle performed after each IR stimulation, whereas the data 

presented as triangles in Figure 7.8b comes from IRSL measured with a heat treatment 

of 500°C performed after each IR stimulation.  This suggests that the 500°C heat 

treatment is the source of the difference between the shapes of the two graphs.  Murray 

et al. (2009) reported that their 310°C TL peak was completely optically insensitive.  

The 350°C TL peak observed for feldspar from Mumba has been shown to be less 

optically sensitive than the 430°C TL peak (Table 7.3).  It is likely that, for the first 

experiment, which did not include a heat treatment (i.e., steps 2 to 8 in Table 7.5), the 

350°C TL peak may have been accumulating signal with each successive cycle, due to 

its relative optical insensitivity.  The large increase in IRSL signal intensity at the IR 

stimulation temperature of 300°C (diamonds in Figure 7.8b) is, thus, likely to have been 

the result of thermal erosion of an enlarged 350°C TL peak that had been accumulating 
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charge over the six previous cycles of irradiation, preheating, IR stimulation, and test 

dose cycles.  In contrast, when a 500°C heat treatment was performed after IR 

stimulation, the 350°C TL peak was thermally eroded after every cycle of irradiation, 

preheating and IR stimulation.  This would have prevented any accumulation of charge 

in the traps responsible for the 350°C TL peak, leading to a smaller isothermal TL 

signal when IR stimulation was performed at 300°C.  This can be observed as a smaller 

increase in IRSL signal intensity at the stimulation temperature of 300°C when the 

500°C heat treatment was included (triangles in Figure 7.8b) relative to when no heat 

treatment was included (diamonds in Figure 7.8b).  This conclusion is also supported by 

results in the next two sections, which investigate the isothermal TL signal underlying 

the IRSL signal measured at elevated temperatures (Figure 7.12b). 

When the decay curves presented in Figure 7.8a are normalised to their first 0.2 

s stimulation interval, the change in decay curve shape as a function of stimulation 

temperature can be assessed (Figure 7.9a and c).  The decay rate increases for IRSL at 

50°C to 225°C.  It is similar at 225°C and 250°C, although the background is large and 

flat at 250°C.  The decay rate then is substantially slower at 300°C.  At 350°C, the 

decay rate returns to approximately the same decay rate as for 225°C.  The decay rate 

then increases and is fastest at 400°C and 450°C.  It is inconclusive as to which is faster: 

the signal measured at 400°C and 450°C decay fastest for both aliquots, but the two 

aliquots differ (i.e., Disc 33: 450°C is fastest, Disc 34: 400°C is fastest).  Finally, for 

IRSL at 500°C and again at 550°C, the decay curve shape changes markedly.  For both 

stimulation temperatures, the IRSL signal decays rapidly over the first ~10 to 20 s of 

stimulation to large and flat background (relative to the initial decay).  The normalised 

curves for each elevated-temperature IRSL signal were then divided by the normalised 

decay curve for IR stimulation at 50°C (Figure 7.9b and d) to show how the rate of 

decay changes for various IR stimulation temperatures.  Figure 7.9b and d demonstrates 

that the early portion (the first ~5 to 10 s) of the decay curve is the region where the 

most change occurs in the rate of decay of the IRSL signal.  Most decay curves then 

become flatter for the remainder of the 100 s of IR stimulation.   

The increase in IRSL intensity and the accompanying increase in decay rate with 

stimulation temperature from 50°C to 225°C observed for K-feldspar samples from 

Mumba supports the results of Duller and Wintle (1991) and McKeever et al. (1997), 

222 
 



Chapter 7: Characterising the luminescence signal of K-feldspar from Mumba 
 

but differs from the results of Thomsen et al. (2008) and Poolton et al. (2002a), who did 

not see any change in decay rate despite the associated increase in IRSL intensity. 

 

 
Figure 7.9: a and c, Normalised decay curves for various IR stimulation temperatures.  The 
normalised curves are shown in the two graphs to show the difference in decay curve shape 
between stimulation temperatures of 50-250°C (a) and from 300-550°C (c).  The normalised decay 
curves (from a and c) were divided by the normalised decay curve for IRSL at 50ºC (b and d, 
respectively) to see how the decay rate at various elevated temperatures changed, relative to IRSL 
at 50°C, over the first 20 s of IR stimulation.  Note that in (d), IRSL at 550°C continues to increase 
to a ratio of 2.7 by 20 s of IR stimulation. 
 

When TL curves following IR stimulation at elevated temperatures are observed, 

additional patterns can be established.  The IRSL intensities and decay curve shapes for 

stimulation temperatures of 300°C and above can more readily be interpreted.  TL 

curves following each IR stimulation at the specified temperature are presented in 

Figure 7.10.  All TL curves have a peak at ~350°C (except when it is heated through 

during IR stimulation at an elevated temperature).  Some of the curves have a ~430°C 

peak.  As in Figure 7.5, phototransfer is observed for all stimulation temperatures below 

225°C. 
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Figure 7.10: TL curves measured following IR stimulation at various temperatures. 
 

As shown in Figure 7.8, the IRSL intensity increases in an apparently systematic 

way up to a stimulation temperature of 250ºC, followed by a large increase in signal 

intensity at 300ºC, and then a decrease in signal intensity from 350ºC to 550ºC.  It is 

also between 250°C and 350°C that a change in the shape of the decay curve and rate of 

decay changes significantly.  This change at 300ºC is significant.  When the TL glow 

curves (following IR stimulation at the specified temperatures) are observed, the peak at 

~350ºC remains constant up to a stimulation temperature of ~225ºC (Table 7.6).  

Following IR stimulation at ~250ºC for 100 s, the TL peak at ~350ºC begins to be 

thermally eroded by the elevated temperature of IR stimulation.  After stimulation at 

400ºC for 100 s, no 350ºC peak remains and it appears that the TL peak at ~430ºC is 

almost completely thermally eroded.  IR stimulation at 400ºC also coincides with the 

large reduction in IRSL signal (Figure 7.8b).  After stimulation at 450ºC, there is hardly 

any 430ºC TL peak remaining (Figure 7.10) or IRSL signal (Figure 7.8b). 

The results presented in Table 7.6 for stimulation temperatures of 50–225ºC also 

show that the 350°C TL peak remains relatively unchanged when IR stimulation is 

performed at 50ºC to 225°C for 100 s.  This may suggest that the increase in IRSL 

intensity associated with an increase in stimulation temperature is not associated with 

trap charge from the TL peak at 350°C.  The 430°C TL peak on the other hand, is 

reduced by ~10% following each increase in IR stimulation temperature.  This reduction 

cannot be the result of thermal erosion, since the 350°C TL peak would also be reduced 
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if thermal erosion was the cause of the decrease in the 430ºC TL peak.  As the 

stimulation temperature is increased to 225°C, the IRSL intensity increases and the 

430°C TL peak is reduced.  This observation lends support to a high-temperature TL 

peak, 430°C in this case, as a source trap for IRSL in feldspars, supporting the 

conclusions of Murray et al. (2009) and the results from Section 8.3.   

 
Table 7.6: The data presented shows how the TL peaks at 350ºC and 430ºC are reduced following 
IR stimulation at a range of elevated temperatures.  The TL peak following the IR stimulation 
temperature noted in the top row is divided by the TL peak following the IR stimulation 
temperature noted in the left column.  

 
 

7.4.2.3 Characterising the isothermal TL signal 

The results presented in Figure 7.8, Figure 7.9 and Figure 7.10 can be 

understood more clearly in conjunction with the results of another experiment that was 

designed to assess the contribution of an isothermal TL signal (the TL that is produced 

by holding a mineral grain at a constant temperature) to the elevated-temperature IRSL 

signal.  Table 7.7 is a step-by-step outline of the experiment discussed in this section.  

Two more aliquots of MR9 were prepared and heated to 500°C.  After cooling to room 

temperature, they were given a laboratory irradiation of 117 Gy and a preheat of 260°C 

for 60 s.  They were then brought to an elevated temperature and held there while their 

TL was recorded for 100 s.  Finally, they were heated to 500°C again and their TL glow 

curves were recorded.  This was repeated for various stimulation temperatures of 50, 

150, 200, 225, 250, 300, 350, 400, 450 and 500°C.  After the completion of this 
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procedure, the process was repeated with an elevated-temperature IR stimulation in 

place of the isothermal TL stimulation.   

 
Table 7.7: Step-by-step outline of the experiment described in this section 

 
 

Results presented in Figure 7.11a show the isothermal TL curves produced by 

holding the aliquots at each elevated temperature for 100 s following a 260°C preheat 

for 60 s.  The 250°C stimulation temperature is the first to produce an isothermal TL 

curve above instrumental background.  Maximum isothermal TL is observed for 

stimulation temperatures at 300°C and 350°C.  This suggests that any change in IRSL 

with stimulation temperature up to, and including, 225°C (e.g., Figure 7.8) is not 

resultant from an isothermal TL signal underlying the IRSL signal.  This is further 

illustrated in Figure 7.11b in which the signal intensity is calculated for the isothermal 

TL curves.  The signal intensity was calculated by integrating initial 2 s of stimulation 

and subtracting a background calculated using the final 10.2 s of stimulation (see 

Section 3.3.1.1).  The first increase of the isothermal TL signal occurs at 250°C, 

followed by large increases at 300 and 350°C.  This suggests that, when a 260°C 

preheat is applied for 60 s prior to IRSL measurement, IR stimulation at temperatures of 

≥250°C may thermally empty TL traps in addition to stimulating traps associated with 

IRSL.  This could result in an isothermal TL signal underlying the IRSL signal for IR 

stimulation temperatures above 250°C.  A third set of data supporting this conclusion is 

presented in Figure 7.11c, which shows that the shape and intensity of all the TL glow 

curves measured following isothermal TL stimulation up to 225°C are identical.  
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Following isothermal TL measurements at 250°C, the 350°C TL peak begins to be 

thermally eroded.  

 

 
Figure 7.11: a, Isothermal TL curves for various elevated temperatures.  b, Isothermal TL signal 
intensity calculated using the first 2 s of signal minus a background calculated from the final 10.2 s 
of signal as a function of stimulation temperature.  c, TL glow curves recorded after the isothermal 
TL measurements presented in (a). 
 

 

7.4.2.4 Interpretation of stimulation temperature tests – the dependence of the 

isothermal TL-subtracted IRSL signal on stimulation temperature 

There are several possible explanations for why IRSL intensity and TL glow 

curve shapes change the way they do when the stimulation temperature is varied.  When 

the isothermal TL curves are subtracted (channel-by-channel) from the measured IRSL 

decay curves produced for each elevated temperature (Figure 7.12), it can be seen that 

IR intensity increases with increasing stimulation temperature up to 300°C, after which 
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is begins to decrease (Figure 7.12b).  This curve represents the response of IR 

stimulation at elevated temperature without the isothermal TL signal underlying it. 

 

 
Figure 7.12: a, Normalised IRSL decay curves from which the isothermal TL curves (measured 
from the same aliquot and presented in Figure 7.11a) were subtracted.  b, IRSL signal intensity  
(calculated as the initial 2 s of stimulation minus a background calculated from the final 10.2 s) 
plotted as a function of stimulation temperature.  ‘IRSL + IsoTL’ is the signal intensity from the 
measured IRSL signal.  ‘IRSL – IsoTL’ is the data from ‘IRSL + IsoTL’ curves with the isothermal 
TL data from Figure 7.11b subtracted.  Both the IRSL and isothermal TL signals were measured 
using the same aliquot. 
 

The normalised decay curves resulting from IR stimulation at elevated 

temperatures from which the isothermal TL signal was subtracted are presented in 

Figure 7.12a.  As stimulation temperature is increased up to 400°C, the rate of decay of 

the IRSL signal increases.  Electrons in traps that are farther away from recombination 

centres may access those recombination centres faster at higher temperatures due to the 

thermal assistance of the electrons into the conduction band.  This adds to the 

luminescence produced by the tunnelling recombination of close trap-recombination 

centre pairs, resulting in brighter IRSL signals and a faster rate of IRSL decay.  A 

possible reason for the drop in IRSL brightness above 300°C is the thermal removal of 

electrons from optically sensitive traps prior to IR stimulation and measurement, thus 

reducing the number of electrons available to produce IRSL.  These results lend support 

to the observations of McKeever et al. (1997) and suggest that increasing the IR 

stimulation temperature increases a thermally assisted process of recombination.  These 

results also support the conclusions reached by Li (2010) that a thermally assisted 
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recombination process (via the conduction band) contributes to the athermal tunnelling 

recombination process to produce IRSL in feldspars.   

 

7.4.3 Summary 

 It is important to characterise the TL and IRSL properties of K-feldspar samples 

prior to attempting to estimate a burial dose or age, owing to the large diversity of K-

feldspar mineralogies and luminescence behaviours (Duller, 1997).  In the case of the 

blue emission from K-feldspars from Mumba, the stimulation time has been shown to 

make little difference in regards to practical application to dating.  In regards to the 

temperature at which IR stimulation is performed, it has been shown that increasing the 

stimulation temperature up to 300°C results in increased IRSL brightness, even when 

the isothermal TL component resulting from the high stimulation temperature is 

removed.  This isothermal TL component has been shown not to affect the IRSL signal 

for stimulation temperatures below 250°C when it is preceded by a preheat of 260°C for 

60 s.  These results indicate that, for dating applications, the IRSL signal measured at 

250°C and above will include an isothermal TL component that would be difficult to 

account for during De measurement procedures.  This suggests that an IR stimulation 

temperature of 225°C is the highest temperature that can be reliably used for IR 

stimulation of samples from Mumba. 

 

7.5 The post-IR IRSL signal from K-feldspars 

7.5.1 Overview 

 The major drawback of using feldspar as a luminescence dosimeter is anomalous 

fading, the malign property that is ubiquitous to all K-feldspars thus far described 

(Wintle, 1973; Spooner, 1994b; Huntley and Lamothe, 2001).  Despite descriptions of 

several non-fading feldspar signals (e.g., Guérin and Valladas, 1980; Zink and 

Visocekas, 1997; Gelian et al., 2006; Huntley et al., 2007), none have proved 

universally applicable.  The short-comings of fading-correction models based on 

measured anomalous fading rates (Huntley and Lamothe, 2001), and the absence of a 

reliable non-fading signal, have prompted research to find a feldspar IRSL signal that 

fades the least.  The post-IR IRSL technique (e.g., Table 7.8), introduced by Jain and 

Singhvi (2001), expanded upon and tested by Thomsen et al. (2008), and tested here on 
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the Mumba samples, has the potential to exploit a feldspar signal that exhibits minimal 

anomalous fading.   

Jain and Singhvi (2001) reported that IRSL measured at 50°C and at 220°C 

probed distributions of two different trap types: Type A traps that are sensitive to both 

IR at 50°C and blue-green light, and Type B traps that are sensitive only to blue-green 

light.  Their results indicated that IRSL at 50°C probes Type A traps, while IRSL at 

220°C probes both Type A and Type B traps.  They concluded that measuring IRSL at 

220°C could be used to access the deeper, more thermally stable, Type B traps in 

feldspars that may show less fading (Jain and Singhvi, 2001).  Thomsen et al. (2008) 

showed that the fading rate does, indeed, decrease when IRSL is measured at 225°C for 

100 s following a 100 s IR bleach at 50°C.  They contended that by using a signal that 

fades less the correction to the measured age will be smaller and, therefore, less 

dependent on the age correction model (Thomsen et al., 2008).   Their measured fading 

rate for samples measured using a post-IR IRSL procedure was often on the order of <1 

%/decade.  For this reason, the post-IR IRSL signal from Mumba was investigated.   

 

 
Table 7.8: Step-by-step outline of the SAR procedure using the post-IR IRSL signal. 
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Unless otherwise noted, all post-IR IRSL procedures described in this chapter 

consist of an IR bleach at 50°C for 100 s and a post-IR IR stimulation at 225°C for 100 

s.  The SAR procedure, using the post-IR IRSL signal to measure a dose or De, is 

illustrated in Table 7.8. 

 

7.5.2 Characterising the post-IR IRSL signal from Mumba 

 Two ~50-grain aliquots of MR9 were bleached in sunlight for at least three days.  

They were then given a laboratory irradiation of 120 Gy, preheated at 260°C for 60 s, 

stimulated with IR photons for 100 s at 50°C, then stimulated with IR photons for 100 s 

at 225°C.  Decay curves for the post-IR IRSL signal are presented in Figure 7.13a.  The 

post-IR IRSL signal (calculated using the first 2 s of stimulation minus a background 

calculated using the final 10.2 s) is ~21% weaker than the IRSL signal measured at 

50°C that preceded it.  Normalising the two decay curves to their initial 0.2 s interval 

(inset to Figure 7.13a) allows the decay rate of the two signals to be compared.  The 

post-IR IRSL signal decays more slowly than the IRSL signal measured at 50°C.  This 

is confirmed when the normalised post-IR IRSL signal is plotted as a ratio of the IRSL 

(50°C) signal (Figure 7.13b).  This shows that the post-IR IRSL signal decays more 

slowly than the IRSL (50°C) signal over the first 10 to 15 s of stimulation, after which 

their decay rates are very similar.  The decrease in the rate of decay for the post-IR 

IRSL is consistent with similar observations reported by Thomsen et al. (2008).   

When the post-IR IR stimulation temperature is varied from 50 to 400°C, the 

results, presented in Figure 7.13c, are similar to those in Figure 7.9.  The IR bleach 

stimulation temperature was always held constant at 50°C.  The rate of decay is slowest 

for post-IR IR stimulation at 50°C, and starts to increase as the post-IR IR stimulation 

temperature is increased up to 225°C.  The decay curve for post-IR IRSL at 250°C is 

similar to IRSL at 250°C.  Both the IRSL and post-IR IRSL signals measured at 250°C 

have different decay curve shapes relative to the IRSL and post-IR IRSL signals 

measured at 225°C, respectively (Figure 7.13d).  In addition, both IRSL and post-IR 

IRSL measured at 250°C result in weaker background-subtracted signals relative to 

IRSL and post-IR IRSL measured at 225°C, respectively.  The decay rate for post-IR 

IRSL at 300°C is the slowest of all stimulation temperatures above 225°C.  The decay  
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Figure 7.13: Post-IR IRSL decay curves from one aliquot of MR9.  a, Decay curves for IR (50°C) 
bleach and post-IR IRSL (225°C).  The inset shows these same two decay curves normalised to their 
first 0.2 s interval.  b,  The normalised decay curves from the inset of Figure 8.12a plotted as a ratio 
of one another (normalised post-IR IRSL curve / normalised IRSL (50°C)).   c, Normalised post-IR 
IRSL decay curves for various post-IR IR stimulation temperatures.  d, Normalised post-IR IRSL 
decay curves for stimulation temperatures of 225°C and 250°C. Note the logarithmic scale for the y-
axis.  
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rate increases for post-IR IR stimulation at 350°C and 400°C.  This pattern of a decrease 

in the decay rate and a change in shape of the decay curve at 300°C is the same as that 

observed for standard IRSL when the stimulation temperature is 300°C (Figure 7.9).  As 

with standard IRSL, the observed pattern is likely due to the contribution of an 

isothermal TL signal in post-IR IRSL at temperatures above 225°C, (see Section 7.4.2).  

It is, therefore, likely that when the isothermal TL component under the IRSL is 

removed, the decay rate will increase with increasing post-IR IR stimulation 

temperature up to ~450°C.  This suggests that post-IR IR stimulation temperatures 

above 225°C should not be used during dating applications, when measured after a 

preheat of 260°C for 60 s.  This is because the isothermal TL signal from the elevated 

IR stimulation temperature would be difficult to account for during De measurement 

procedures. 

 It can be seen in Figure 7.13c that the post-IR IRSL signal measured at 50°C 

increases for 10 s of stimulation before beginning to decrease.  This is similar to what 

was observed when ‘interrupted’ IRSL measurements were made by McKeever et al. 

(1997) following Poolton et al. (1995).  They argued that this observation is indicative 

of a donor-acceptor recombination process for the origin of IRSL in feldspars. 

 The donor-acceptor recombination model can also be used to explain the low 

fading rates for post-IR IRSL signals in feldspar reported by Thomsen et al. (2008) and 

others.  If anomalous fading is the result of close trap-recombination centre pairs for 

which, over geological time, the electron from the trap tunnels to the recombination 

centre, then the fading rate is a function of the number of these closely spaced pairs.  

Over laboratory time scales, this tunnelling does not have sufficient time to take place.  

Therefore, more IRSL is measured for a laboratory dose, relative to environmental dose 

of the same magnitude, resulting in an age underestimation.  It has been shown in 

Section 7.4.2 that IR stimulation at 225°C, while stimulating the same closely spaced 

trap-recombination centre pairs as IRSL at 50°C, can also access traps that are farther 

from recombination centres, by thermally assisting electrons into the conduction band.  

By applying an IR bleach at 50°C prior to the measured IRSL at 225°C, the electrons in 

these close pairs will be elevated to an excited state and will either tunnel or pass 

through band-tail states to the closest recombination centre.  This reduces the population 

of closely spaced trap-recombination centre pairs, which would have tunnelled over 
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geological time.  The post-IR IR stimulation at 225°C that follows stimulates electrons 

from traps that are more distant from recombination centres, and were, thus, less likely 

to tunnel over geological time.  These electrons are stimulated into either the conduction 

band or band-tail states where they are more mobile and can reach more distant 

recombination centres.  This explanation is largely supported by results from Thomsen 

et al. (2008), Li (2010), and by results from this study presented already and later in this 

chapter. 

 

7.5.3 Assessing the sensitivity of the post IR-IRSL signal to sunlight 

Godfrey-Smith et al. (1988) explicitly measured the bleachability of the TL, 

OSL and IRSL signals from quartz and feldspar using natural sunlight.  Their results 

showed that the OSL signal from quartz bleached more rapidly than the IRSL signal of 

feldspar, which reached 1% of its initial brightness after ~9 min of sunlight exposure 

and was posited to decrease to a negligibly low level given enough time.  The purpose 

of the experiment described in this section was to test the sensitivity of the post-IR 

IRSL signal to sunlight. 

The use of elevated stimulation temperatures for IRSL measurements of K-

feldspar has generally been eschewed in previous studies.  For a sample with a known 

De of ~1 Gy, Poolton et al. (2002b) noted an increase in measured De from ~1 to 6 Gy 

as they increased the stimulation temperature from 50 to 200°C.  They suggested that 

OSL or IRSL performed at elevated temperatures allows access to traps that were not 

bleached in nature, leading to an overestimation of the De.  Later, bleaching experiments 

by Thomsen et al. (2008) showed only very subtle differences in bleachability between 

the IRSL signal at 50°C and the IRSL signal at 225°C.  In their experiments they used 

modern beach sands resulted in quartz OSL De values of <39 mGy, K-feldspar IRSL 

(50°C) De values of ~0.5 Gy, and K-feldspar IRSL (225°C) De values of ~2 Gy 

(Thomsen et al., 2008).  They suggested that this confirmed that feldspars are bleached 

more slowly than quartz by natural sunlight and that IR stimulation at elevated 

temperatures accesses less bleachable traps.  A similar experiment described by 

Buylaert et al. (2009) showed no obvious disparity in bleachability between IRSL at 

50°C and post-IR IRSL for known-age Holocene samples, although both signals tended 

to overestimate the quartz OSL age.  Both studies suggested that a small residual dose 
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may be present when using an elevated-temperature IRSL signal; if older sediments are 

measured, this residual will likely be insignificant. 

To measure the extent to which the post-IR IRSL signal is reduced in K-feldspar 

separates from Mumba, a bleaching test was performed.  Twenty-seven ~50-grain 

aliquots of MR9 were prepared and bleached in natural sunlight for approximately one 

week.  A 59 Gy beta dose was given to each aliquot and they were bleached in direct 

sunlight for varying durations of time, ranging from 3 to 3600 s (1 hr) in groups of three 

aliquots.  Using a post-IR IRSL SAR procedure (see Table 7.8), each aliquot’s dose was 

measured and compared with the given dose.  By comparing the measured/given dose 

ratios for various bleaching durations, the bleaching rate of the post-IR IRSL signal 

could be assessed.  This bleaching experiment is based on the assumption that the post-

IR IRSL signal is capable of recovering a known dose using the SAR procedure.  This is 

shown to be true in Section 7.6.1.  Results for the bleaching experiment are presented in 

Figure 7.14.  The residual dose corresponds to ~8% of the given dose (4.3 ± 1.1 Gy) 

after 360 s (6 min) of sunlight exposure, and ~2% (1.1 ± 0.1 Gy) after 3600 s (1 hr).   

 

 
Figure 7.14: Bleaching rate of the post-IR IRSL signal of K-feldspars from Mumba.  Each point 
represents the weighted mean measured/given dose ratio of three aliquots. 
 

As a follow-up experiment to assess whether there was any residual signal 

remaining from an irradiation that preceded a 1 hr bleach, three ~50-grain aliquots were 

bleached for more than a week in sunlight, then given a laboratory dose of 59 Gy.  The 

aliquots were then bleached again for 1 hour in direct sunlight, given another 59 Gy 

laboratory dose, and measured using the SAR procedure to try to recover the given 

dose.  The weighted mean measured/given dose ratio for the three aliquots was 1.01 ± 
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0.02.  These results indicate that, after a laboratory irradiation and one hour of sunlight 

bleaching, the post IR-IRSL signal is sufficiently reduced that a dose given after the 

bleach can still be recovered accurately.  This implies that, in nature, one hour of direct 

sunlight exposure is likely to be sufficient to reduce the post IR-IRSL signal to 

negligible levels, and hence act as an accurate dosimeter for older sediments.  This 

supports the conclusions of Buylaert et al. (2009). 

 

7.6 Assessing the optimal IR stimulation conditions for samples from Mumba 

7.6.1 Dose recovery experiments 

 After characterising the TL and IRSL signals of K-feldspar separates from 

Mumba, it was important to confirm that the various heat treatments used as part of the 

SAR procedure will result in accurate De determinations.  One way of testing it is to 

perform dose recovery experiments (see Section 3.3.2.4).  Wallinga et al. (2000a,b) 

demonstrated that the SAR procedure could be used as a robust and fast means for De 

determination in feldspars.  They used a regenerative dose preheat of 290°C for 10 s, a 

test dose cutheat of 210°C, and made all measurements using the standard blue filter 

pack.  They demonstrated that De values estimated using the SAR procedure were 

consistent with those obtained using the SAAD procedure (Duller, 1991; Murray et al., 

1997), although ages calculated using both procedures underestimated the known ages 

of the deposits (Wallinga et al., 2000a).   Their study also showed that the IRSL signal 

in K-feldspar samples could accurately recycle a duplicate regenerative dose within 

10% and produce recuperation values that were less than 5% the natural IRSL signal.  

The given doses in dose recovery experiments, however, were consistently 

underestimated by approximately 27% (Wallinga et al., 2000b).  They proposed that the 

underestimation of the given doses resulted from an increase in the electron trapping 

probability due to preheating above 200°C.  Later, Blair et al. (2005) demonstrated that, 

in contrast to standard SAR procedures for quartz, regenerative dose preheats and test 

dose preheats should be identical.  In their study, they observed the UV emission from 

various feldspar types and demonstrated that sensitivity changes can be monitored and 

corrected for using preheat combinations of between 160 and 300°C.  They then used 

regenerative and test dose preheats of 220°C for 10 s during a SAR procedure and were 

able to recover a known dose (within 5%). 
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Nine sets of four ~50-grain aliquots of MR9 were used for dose recovery 

experiments.  All aliquots were bleached in sunlight for at least three days, and were 

then given a laboratory irradiation of 117 Gy.  The sensitivity-corrected IRSL signals 

resulting from regenerative doses of 58, 117, 176, 234, 0 Gy and a duplicate dose of 58 

Gy were used to build dose-response curves.  A test dose of 12 Gy was used.  Nine 

different IRSL stimulation conditions were tested.  All measurements were made using 

the standard blue filter combination (see Section 7.2.1).  An identical preheat of 260°C 

for 60 s was used for all regenerative and test doses.  The standard tests of SAR 

suitability were performed (see Section 3.3.4).  The various stimulation conditions 

tested were as follows: 

1.  IR stimulation for 100 s at 50°C 

2.  IR stimulation for 100 s at 225°C 

3.  IR stimulation for 100 s at 300°C 

4.  IR stimulation for 100 s at 350°C 

5.  IR stimulation for 100 s at 400°C 

6.  IR stimulation for 100 s at 450°C 

7.  Post-IR (100 s at 50°C) IR stimulation for 100 s at 225°C 

8.  Post-IR (100 s at 100°C) IR stimulation for 100 s at 225°C 

9.  IR stimulation for 500 s at 50°C; where the signal intensity is 

calculated using the sum of the first 2 s of stimulation and subtracting a 

background calculated using the final 10.2 s (i.e., from 489.8 to 500.0 s) 

of stimulation. 

 

Results are presented in Figure 7.15.  It is clear that some of the dose recovery 

results are better than others.   Stimulation conditions with measured/given dose ratio 

weighted means that recovered the given dose within 2σ include those numbered above 

as 1 (0.99 ± 0.02), 2 (1.00 ± 0.01), 3 (1.04 ± 0.02), 7 (1.00 ± 0.01), 8 (0.99 ± 0.02) and 9 

(0.97 ± 0.02).  Aliquots measured using these stimulation conditions also passed all 

standard tests of SAR suitability, suggesting that the SAR procedure is able to 

accurately estimate a laboratory dose and may be appropriate for estimation of the 

burial dose of grains of K-feldspar.  The dose recovery tests failed when stimulation 

temperatures above 300°C were used: all but two aliquots overestimated the given dose.   
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Figure 7.15: Dose recovery results for aliquots of MR9 using various IR stimulation conditions.  a,  
Measured/given dose ratios.  b, Recycling ratios.  c, Recuperation values (calculated as the 
sensitivity-corrected IRSL signal from the 0 Gy regenerative dose divided by that of the surrogate 
natural).  Note that ‘post-IR IR’ includes an IR bleach at 50°C, whereas ‘post-IR* IR’ includes an 
IR bleach at 100°C.  ‘IR^ 50°C’ was stimulated for 500 s. 

 

 

These results support those of Section 7.4, and indicate that stimulation temperatures at 

or below 225°C are the most suitable for dating applications using the SAR procedure. 

 

7.6.2 Anomalous fading tests 

Several of the stimulation conditions tested in Section 7.6.1 proved suitable for 

dose determination using the SAR procedure.  The next step was to determine the extent 

to which K-feldspar separates from Mumba suffer from anomalous fading.   To do this, 

the same aliquots from the dose recovery experiment were used to perform anomalous 

fading tests.  An individual fading rate was calculated for each aliquot, in view of the 

238 
 



Chapter 7: Characterising the luminescence signal of K-feldspar from Mumba 
 

findings of several studies that have shown that there is grain-to-grain (Lamothe and 

Auclair, 1997) and aliquot-to-aliquot (Huntley, 1997; Huntley and Lian, 2006) 

variability in the fading rate.  Huntley and Lian (2006) state that the fading rates used to 

correct an age for anomalous fading should be applicable to the aliquots on which each 

De is measured. 

 

7.6.2.1 Measuring the fading rate 

Wallinga et al. (2000a) suggested that the SAR procedure could be used as a tool 

to calculate the rate of anomalous fading in K-feldspars.  This was followed by Auclair 

et al. (2003), who compared various methods of estimating the fading rate, ultimately 

demonstrating that a fading test based on the SAR procedure is reliable.   

 The purpose of the fading tests performed here was to compare fading rates for 

the various stimulation conditions.  To this end, several of the sets of aliquots from the 

dose recovery experiment had their fading rates measured using the same stimulation 

conditions used in the dose recovery test (i.e., the set of aliquots stimulated with IR at 

225°C in the dose recovery test had its fading rate measured using IR stimulation at 

225°C).  Following Thomsen et al. (2008), the objective was to find the stimulation 

conditions that yielded a signal that was most stable (i.e., fades least over time).  A 

lower fading rate means the observed age needs a smaller correction, which reduces the 

dependence of the final age on the age-correction model (Thomsen et al., 2008).    

A step-by-step procedure for the measurement of the fading rate is illustrated in 

Table 7.9.  The aliquots from the dose recovery experiment were given a 59 Gy 

irradiation followed immediately by a preheat (Auclair et al., 2003) of 260°C for 60 s.  

Aliquots were then stored for various durations, ranging from 0 s to ~24 hr (~86,400 s) 

before receiving an IR stimulation at a specified temperature for 100 s or a post-IR IR 

stimulation (Lx).  This was followed by a test dose cycle consisting of a 12 Gy dose, a 

preheat of 260°C for 60 s, followed immediately by an IR stimulation identical to that 

used to obtain Lx (Tx).  This procedure was repeated an average of 23 times using 

various storage durations.   

It should be noted that the storage times used in this experiment were relatively 

short compared to those of other studies.  The purpose of this experiment was not to 

correct any measured ages, but to compare fading rates for various stimulation 
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conditions.  The storage times were, therefore, relatively inconsequential, so long as 

they were standard for all stimulation conditions being compared.  To this end, ‘prompt’ 

measurements (storage time of 0 s) were the first three measurements made.  Prompt 

measurements were also made following each longer storage time.  These 

measurements served to monitor for reproducibility. 

 
Table 7.9: SAR procedure used to measure the fading rate for samples from Mumba.  In step 9, t is 
varied for a range of storage durations.  When the post-IR IRSL signal is being tested, Step 3 
includes an IR bleach at 50°C for 100 s followed by an IR stimulation at 225°C for 100 s.  The 
signal from the latter stimulation is used to calculate Lx and Tx values 

 
 

7.6.2.2 Calculating the fading rate 

 Anomalous fading has been explained using a model based on quantum-

mechanical tunnelling (Visocekas, 1985; Aitken, 1985).  In this model, the 

luminescence signal decreases linearly with the logarithm of time (Huntley and 

Lamothe, 2001).  The observed luminescence induced by IR stimulation (I) at time t 

after irradiation can be described as follows: 

 

I = Ic [1 – κ ln(t/tc)]      Equation 7.1 

 

where Ic is the luminescence intensity at an arbitrary time (tc) and κ is a constant, 

characteristic of the sample, that represents the fractional decrease in luminescence 
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intensity with time for the time interval tc to 2.30 tc.  The fading rate is generally 

described using the g-value (Aitken, 1985: Appendix F), which is defined as the percent 

decrease in luminescence intensity per decade, where a decade is a factor of 10 in time 

since irradiation (%/decade).  The g-value can be derived from the κ value using an 

equation from Huntley and Lamothe (2001), as follows: 

 

g = 100κ ln(10)      Equation 7.2 

 

which changes the fading equation to: 

 

I = Ic [1 – g/100 log10(t/tc)]     Equation 7.3 

 

The choice of tc weakly influences the κ and g-values (Huntley and Lamothe, 2001; 

Auclair et al., 2003).  To enable comparisons between studies, the g-value is commonly 

expressed in the literature for a tc of 2 days (g2days), following Huntley and Lamothe 

(2001). 

 A consideration that must be made is that the ‘time since irradiation’ must 

account for the anomalous fading that takes place during the administration of the 

laboratory dose.  As mentioned in the section above, a dose of 59 Gy, which takes 

approximately 500 s to be delivered to the sample, was used for fading measurements in 

this study.  Equations F9 and F11 from Aitken (1985: Appendix F) account for this by 

replacing t and tc with t* and tc* respectively: 

 

t* ≅ t1 + (t2 – t1)/2      Equation 7.4 

 

where t1 is the elapsed time between the end of irradiation and the beginning of 

luminescence stimulation and t2 is the elapsed time between the beginning of irradiation 

and the beginning of luminescence stimulation.  Therefore, (t2 – t1) is equal to the 

duration of irradiation (Auclair et al., 2003).  Following this, all fading rate calculations 

made during this study replaced t and tc in Equation 7.1 with t* values as calculated in 

Equation 7.4.                
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 The procedure laid out in Table 7.9 was performed as described in Section 

7.6.2.1.  The Lx/Tx values for the various delay times were then plotted against log delay 

time and a regression line was fitted to the measurements from which g2days-values were 

calculated (e.g., Figure 7.16).  A g2days-value was thus obtained for each aliquot 

measured. 

 

7.6.2.3 Fading test results 

 The six stimulation conditions for which fading rates were measured include: IR 

stimulation for 100 s at 50°C, 225°C, 300°C and 350°C, IR stimulation for 500 s at 

50°C and post-IR IR stimulation as described in Section 7.5 (i.e., IR stimulation at 

225°C following an IR stimulation at 50°C).  Despite the unsuitability of IR stimulation 

at 300°C and 350°C for dating applications due to their inability to obtain a known 

dose, it was of interest to determine the extent of fading at higher temperatures. 

Values of Lx/Tx are plotted as a function of delay time for representative aliquots 

from each stimulation condition in Figure 7.16 and are used to calculate the g-value.  

Fading rates for each measured aliquot are displayed in Figure 7.17.  As the IR 

stimulation temperature is increased to 300°C, the fading rate decreases, supporting the 

results of Thomsen et al. (2008) who tested temperatures up to 225°C.  For stimulation 

temperatures above 300°C, the fading rate is unchanged.  The fading rates measured for 

the post-IR IR stimulation are considerably lower than the fading rates calculated for 

any of the other stimulation conditions.  The post-IR IRSL fading rate of four aliquots 

resulted in a weighted mean g2days of 0.9 ± 0.3%/decade.  This is ~94% and ~87% lower 

than the weighted mean fading rates of four aliquots each for IR stimulations at 50°C 

and 225°C, respectively.  The small fading rates measured using the post-IR IRSL 

signal support the results of Thomsen et al. (2008) and Buylaert et al. (2009), who 

obtained average fading rates for the initial post-IR IRSL signal of 1.28 ± 0.07 and 1.62 

± 0.06 %/decade, respectively. 

The fading rates obtained using an IR stimulation for 500 s at 50°C (Figure 

7.16f) deserve mention.  It should be noted that two fading rates are not plotted in 

Figure 7.17 and have g2days-values of 62.0 ± 1.1 and 86.0 ± 1.7 %/decade.  These fading 

rates are remarkably large, especially considering that the only difference between this 

stimulation condition and the others is the extended duration of IR stimulation.  The 
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fading rates were recalculated using, for background, the part of the decay curve 

between 89.8 and 100 s (i.e., the same interval used for the 100 s IR stimulations), 

instead of the interval 489.8 and 500 s.   The fading rates changed little, increasing by 3  

 

 
Figure 7.16: Measured fading rates for six representative aliquots (one aliquot for each stimulation 
condition tested) of MR9.  Dashed lines indicate 2σ. 
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± 2%/decade.  Given the purpose of these experiments and analyses was to identify the 

measurement conditions associated with the lowest fading rates, IR stimulation for 500 

s was no longer considered a viable procedure. 

 

 
Figure 7.17: Measured fading rates for all aliquots of MR9 under various stimulation conditions.  
Two data points for the IR stimulation for 500 s lie off the graph (discussed in text).  Inset shows 
the weighted mean fading rate of four aliquots for each stimulation condition.  Note that ^ indicates 
IR stimulation for 500 s. 
 

 All of the fading rates in Figure 7.17 were calculated using the same part of the 

decay curve that has been used in the rest of this study (i.e., integrating the first 2 s of 

signal and using the final 10.2 s of IR stimulation to calculate the background).  

Thomsen et al. (2008) and Li (2010) have also reported that when the later parts of the 

IRSL and post-IR IRSL decay curves are used to obtain a background-subtracted signal, 

the calculated fading rate is lower.  To investigate this, the data used to calculate the 

fading rates in Figure 7.17 were reanalysed.  The signal integration interval was varied 

in 2 s periods (i.e., 0–2 s, 2–4 s, 4–6 s… 20–22 s.).  For each interval, Lx/Tx was 

recalculated for each delay time and prompt measurement and new values of g2days were 

calculated.  The interval used to calculate the background was kept the same as 

previously (final 10.2 s stimulation). 

 Results are presented in Figure 7.18 for IR stimulation at 50°C and 225°C and 

for post-IR IR stimulation.  Each point represents the weighted mean of the four 
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aliquots measured.  As the signal integration interval is moved further down the decay 

curve, the calculated fading rate decreases markedly for IR stimulation at 50°C and 

225°C.  It is reduced by ≥50% when the signal is integrated between 4 and 6 s of IR 

stimulation.  This same analysis was performed for IR stimulation at 50°C for 500 s and 

these data displayed similar results, decreasing to a weighted mean g2days of 5.75 

%/decade when the signal integration interval was shifted from 0 – 2 s to 20 – 22 s of IR 

stimulation.  The post-IR IR stimulation fading rates, however, stayed consistent, 

regardless of which part of the decay curve was integrated.  The initial signal integration 

period used throughout this study (0–2 s) does not seem to fade significantly more or 

less than any other integration interval analysed for the post-IR IRSL signal.  These 

results support those of Thomsen et al. (2008) in regards to IR stimulation at 50°C and 

225°C, but not in regards to the post-IR IR stimulation, as they observed a decrease in 

fading rate when the later parts of the decay curve were integrated as signal. 

 

 
Figure 7.18: Fading rates for various signal integration periods.  The initial integration period was 
varied in two second intervals from 0–2 s through to 20–22 s.  The background, calculated from the 
final 10.2 s of stimulation, remained constant for all calculations.  The inset shows normalised 
fading rate as a function of the integration interval for IRSL at 50°C and 225°C. 
 

 Also of interest is that these results, like those of Thomsen et al. (2008) and Li 

(2010), support the donor-acceptor model of feldspar luminescence.  If transport 

through the conduction band was the pathway for electrons to travel from the excited 

state to a recombination centre, then the fading rate should stay the same regardless of 

the integration period; electrons from all traps would have approximately the same 

chance of accessing distant recombination centres via the high-mobility conduction 
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band.  In the donor-acceptor model, the closest trap-recombination centre pairs are the 

most likely to fade and would be the first to recombine upon IR stimulation.  This 

suggests that the earlier part of the IRSL decay curve will be dominated by closer, less 

stable trap-recombination centre pairs that are more likely to tunnel (i.e., fade), while 

the later parts of the decay curve will be dominated by farther spaced, more stable pairs 

that would be less likely to tunnel.  This is supported by the results in Figure 7.18.  The 

post-IR IRSL fading rate is largely unaffected by the part of the decay curve integrated 

as signal.  This suggests that the close trap-recombination centre pairs that are likely to 

lead to fading over time do not contribute to the post-IR IRSL signal because they are 

sufficiently removed by the 50°C IR bleach. 

 

7.6.3 Summary 

 The purpose of performing the experiments described in this section was to 

compare various IR stimulation conditions to find those that resulted in an IRSL signal 

that could best recover a given dose and fade the least, thereby making any calculated 

ages less dependent on a fading-correction model.  After comparing the various 

stimulation conditions tested in this section, the post-IR IRSL procedure produced the 

most promising results.  The SAR procedure proved suitable for measurement of the 

post-IR IRSL signal, which passed all tests of suitability, was bleachable by sunlight, 

recovered a known laboratory dose and faded the least of all stimulation conditions 

tested.   

 

7.7 Conclusions 

 In this chapter, the luminescence signal of K-feldspar separates from Mumba 

was characterised.  The main results and conclusions that were established from these 

investigations are summarised as follows: 

o The decision to make luminescence measurements using the blue emission, 

isolated using the standard blue filter combination (BG39 + Kopp 7-59), was 

made on the basis of two criteria: 1) luminescence investigations of the various 

emissions from K-feldspars indicated that the blue emission provided the 

brightest TL and IRSL signal, and 2) many other studies have used this blue 

filter combination, making our results directly comparable to theirs. 
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o The TL glow curves of natural aliquots possessed peaks at ~350°C and ~430°C.  

Laboratory-irradiated aliquots possessed a third peak, at ~180°C.  The following 

features suggest that the ~430°C TL peak may share the same source trap as the 

IRSL signal in K-feldspars from Mumba: 

o The TL peak at ~350°C was shown to be less optically sensitive than the 

TL peak at ~430°C.  The ~350°C TL peak was reduced by roughly the 

same amount by a preheat (260°C for 60 s), as by IR stimulation at 50°C, 

and by a post-IR IR stimulation.  When the IR stimulation temperature 

was increased from 50°C to 150°C and then to 225°, with the TL glow 

curves recorded after each stimulation, the ~350°C TL peak was not 

reduced, despite the increased IRSL output.  The ~350°C TL peak was 

inferred to accumulate charge following repeated irradiations, preheats, 

and IR stimulations up to 225°C. 

o The ~430°C TL peak was shown to be unchanged following a preheat of 

260°C for 60 s, although IR stimulation at 50°C and post-IR IR 

stimulation both reduced the peak substantially.  In addition, when the IR 

stimulation temperature was increased from 50°C to 150°C and then to 

225°C, the IRSL output increased, and the ~430°C TL peak was reduced 

by ~10% with each step increase in stimulation temperature. 

o The IRSL signal intensity and decay curve shape were shown to be largely 

dependent on stimulation temperature.   

o The IRSL signal intensity increased as IR stimulation temperature was 

increased from 50°C to 300°C, after which it began to decrease.  This 

finding holds true even when the isothermal TL signal resulting from the 

elevated temperature is taken into account.  Elevated-temperature 

stimulations at, or below, 225°C were shown not to have a substantial 

isothermal TL signal when a preheat of 260°C for 60 s preceded it.  

These results suggested that 225°C was the maximum temperature at 

which IR or post-IR IR stimulation could reliably be made. 

o When the isothermal TL signal was subtracted from the IRSL signal 

measured at a variety of temperatures, the decay rate of the IRSL signal 
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was shown to increase as stimulation temperature was increased from 

50°C to 400°C. 

o Dose recovery experiments indicated that the SAR procedure would be 

applicable for measurement of the post-IR IRSL signal and the IRSL signal at a 

number of different stimulation temperatures (50°C and 225°C).  They passed 

all tests of SAR suitability and recovered a known dose.  A modified dose 

recovery test was also used to show that the post-IR IRSL signal was bleachable 

to negligible levels in a relatively short period of time by direct sunlight 

exposure. 

o Anomalous fading was shown to be ubiquitous regardless of the IR stimulation 

conditions (50°C, 225°C, 300°C, 350°C and post-IR IR).  The fading rate was 

shown to decrease as the IR stimulation temperature was increased up to 300°C.  

The later portions of the IRSL signals measured at 50°C and 225°C were shown 

to suffer less from anomalous fading than the initial portions of these signals.  

The post-IR IRSL signal consistently showed the smallest rate of anomalous 

fading across the entire decay curve. 

o The donor-acceptor model of feldspar IRSL production (Poolton et al., 1995, 

2002a,b, 2009) was largely supported by the results presented in this chapter. 

o It was shown that the anomalous fading rate of the IRSL signal measured 

at 50°C and 225°C decreased as the portion of the signal that was 

integrated was moved later into the decay curve.  This suggests that the 

later parts of the decay curve are increasingly the result of IRSL resulting 

from distant trap-recombination centre pairs (i.e., those less likely to 

anomalously fade).  The population of close trap-recombination centre 

pairs (i.e., those more likely to anomalously fade), which recombine 

through tunnelling from the excited state, is more likely to produce the 

IRSL in the early part of the decay curve and is, thus, more likely to be 

exhausted by the later part of the decay curve.  As stimulation time 

increases, IRSL is increasingly produced by distant trap-recombination 

pairs, resulting in lower fading rates. 

o The observation that the decay rate of the IRSL signal increases as IR 

stimulation temperature is increased from 50°C to 400°C suggests that 
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the early portion of the IRSL signal, which is usually produced mainly 

by close trap-recombination centre pairs, is increasingly contributed to 

by IRSL produced by distant trap-recombination centre pairs.  As the IR 

stimulation temperature is increased, the thermally assisted process of 

IRSL production, whereby electrons are thermally assisted into the 

conduction band and can thus reach distant recombination centres more 

quickly, adds signal to the tunnelling recombination process that is 

responsible for the IRSL signal at low temperatures. 

o The low fading rate of the post-IR IRSL signal can also be explained 

using this model.  The initial IR stimulation (50°C) bleaches the IRSL 

signal produced by the close trap-recombination centre pairs that would 

be more likely to fade in nature, leaving electrons in the traps associated 

with the more distant pairs.  These pairs are accessed with the IR 

stimulation at an elevated temperature (225°C), resulting in an IRSL 

signal that suffers much less from anomalous fading.  This is further 

supported by the observation that the fading rate of the post-IR IRSL 

signal does not change as the signal that is integrated is moved to later 

portions of the decay curve.  This suggests that the same population of 

traps (i.e., distant trap-recombination pairs) is being accessed throughout 

the duration of post-IR IR stimulation. 

 

Owing to its ability to recover a known dose, be bleached by sunlight, and suffer 

from almost negligible levels of anomalous fading, the post-IR IRSL signal was used to 

estimate De values and measure fading rates for multi-grain aliquots of K-feldspar of 

four strategic samples from Mumba (MR3, MR6, MR9 and MR10).  The following 

chapter describes the measurement of these De values and fading rates, as well as the 

age-correction model used to correct for anomalous fading.  The fading-corrected K-

feldspar ages will then be compared with the OSL ages obtained from single grains of 

quartz. 
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Chapter 8: Comparison of K-feldspar and quartz ages from Mumba 
rockshelter, Tanzania 
 

In the previous chapter, investigations of the TL and IRSL signals from multi-

grain aliquots of K-feldspar separates from Mumba were described.  Infrared 

stimulation was performed at various temperatures and the resultant luminescence 

signals were characterised.  Following these results, which support those reported by 

Thomsen et al. (2008), a post-IR IR stimulation, performed at 225°C, was investigated 

for its applicability at Mumba.  The post-IR IRSL signal from K-feldspars was shown to 

be appropriate for the use of the SAR procedure.  It could be used to recover a known 

radiation dose in the laboratory (Section 7.6.1) and the signal was shown to be 

bleachable by natural sunlight (Section 7.5.3).  In addition, the post-IR IRSL signal 

exhibited the least anomalous fading of the six different stimulation conditions 

investigated (Section 7.6.2).  Following these results, it was concluded that the post-IR 

IRSL signal could be used to determine De values and fading rates for aliquots of K-

feldspar from Mumba.  These could then be used to calculate fading-corrected ages. 

In this chapter, the measurement of De values and fading rates from multi-grain 

aliquots is described, together with the model for correcting anomalous fading.  Fading-

corrected ages will be presented for K-feldspar separates of four samples from Mumba, 

and then compared with the OSL ages obtained from single grains of quartz. 

 

8.1 Measurement of De values and fading rates 

 De values and anomalous fading measurements were made for four strategic 

samples from Mumba, namely MR3, MR6, MR9 and MR10.  Separates of K-feldspar 

from the first three of these samples were measured because ages were also obtained 

using single grains of quartz.  The latter provided a semi-independent, internal check of 

the ages obtained using the post-IR IRSL procedure.  A second reason for making 

measurements on MR9 was because the natural OSL signal from quartz was close to 

saturation.  Separates of K-feldspar from MR10 were measured because a reliable age 

could not be obtained using quartz, due to the natural OSL signal being in saturation. 

Twenty-four aliquots of MR3 and MR6, and twenty-three aliquots of MR9 and 

MR10, were used to obtain De values using the post-IR IRSL procedure (described in 

detail in Section 7.5).   Each aliquot, consisting of ~50 grains, was preheated to 260°C 
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for 60 s, bleached using the IR diodes at 50°C for 100 s, and stimulated using the IR 

diodes at 225°C for 100 s while the IRSL was measured (LN).  A test dose cycle was 

then administered, which consisted of a 12 Gy irradiation, a 260°C preheat for 60 s, an 

IR bleach at 50°C for 100 s, and an IR stimulation at 225°C for 100 s (TN).  The aliquots 

were then given a regenerative dose, bleached with the IR diodes at 50°C for 100 s, and 

the IRSL was measured at 225°C for 100 s (Lx), followed by a test dose cycle (Tx).   

Dose-response curves were constructed for MR3 using the sensitivity-corrected 

IRSL signal following regenerative doses of 60, 120, 180, 240, 0 and a second 60 Gy.  

Dose-response curves for MR6, MR9, and MR10 were constructed using the sensitivity-

corrected IRSL signal following regenerative doses of 60, 30, 90, 120, 180, 240, 360, 0 

and a second 60 Gy.  The second 60 Gy regenerative dose was measured to determine 

the recycling ratio, which was used to check that any changes in sensitivity were 

corrected for.  Only one aliquot from sample MR9 failed to recycle this duplicate 

regenerative dose and was consequently rejected.   

The sensitivity corrected natural (LN/TN) for each aliquot was projected onto its 

dose-response curve to obtain a De estimate.  For each aliquot of samples MR3, MR6 

and MR9, the LN/TN value was able to intercept the dose-response curve and produce a 

De estimate.  All aliquots of MR10 produced dose-response curves that continued to 

grow at higher doses, but four aliquots had LN/TN values that fell above the 360 Gy 

regenerative-dose point.  Consequently, a higher regenerative dose of 480 Gy was 

included for these four aliquots of MR10.  The higher regenerative-dose point meant 

that the LN/TN values of all aliquots could be projected on to the dose-response curves, 

thus producing De estimates.  Examples of dose-response curves from representative 

aliquots of each sample are presented in the left-hand plots in Figure 8.1.   

 Fading rates were measured for each aliquot as described in Section 7.6.2.1.  

Following De estimation, each aliquot was given repeated regenerative cycles of 60 Gy 

with test doses of 12 Gy.  The delay times were varied between 0.17 hr (10 min) and up 

to 1765 hr (~74 days).  Fading rates (expressed as g-values normalised to a delay time 

of two days) were then calculated as described in Section 7.6.2.2 (right-hand plots in 

Figure 8.1). 
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8.2 Calculating fading-corrected ages 

 The method used to correct K-feldspar ages for fading is based on that of 

Huntley and Lamothe (2001), which uses the equation: 

 

Tf/T = 1 – κ[ln(T/tc*)-1]      Equation 8.1 

 

where T is the corrected age that would be calculated if fading was not present, and Tf is 

the age calculated when using the measured, fading-affected De value.  The variable tc* 

represents the period between irradiation and stimulation, taking into account the 

duration of irradiation.  The variable κ was determined at time tc* using the results from 

fading tests, as described in Section 7.6.2.   

 An important caveat to this anomalous fading-correction model was emphasised 

by Huntley and Lamothe (2001).  They stated that the correction model is limited to the 

linear portion of the dose-response curve, and should not be expected to be appropriate 

for samples with De values in the non-linear portion of the growth curve; this may 

restrict its use to samples younger than ~20–50 ka.  To the contrary, though, several 

recent studies have shown that the age correction model may be applicable to older 

samples with larger doses.  Martins et al. (2010) pointed out that the dose-response 

curve is not expected to be truly linear even very close to the origin, and suggest that the 

fading-correction model may be appropriate for doses as high as ~200 Gy.  Buylaert et 

al. (2007) used the model of Huntley and Lamothe (2001) to correct IRSL-SAR ages 

from Chinese loess.  They concluded that the resultant fading-corrected ages were in 

good agreement with independent age controls in the range ~70 to ~130 ka.  By 

contrast, the SAR-OSL ages obtained for quartz from the same samples underestimated 

the independent ages (Buylaert et al., 2007).  Later, Buylaert et al. (2008), investigating 

samples from Northern Russia, compared quartz OSL ages with K-feldspar IRSL ages 

(also corrected for anomalous fading using the model of Huntley and Lamothe, 2001) 

and concluded that they were indistinguishable, although both underestimated the 

expected age.  Cunha et al. (2008) and Martins et al. (2009) have also demonstrated that 

there is good agreement between fading-corrected feldspar IRSL ages and quartz OSL 

and U-series ages for a number of samples from the Portugal in the rage of ~35 to ~60 

ka. 
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Figure 8.1: Examples of dose-response curves (a, MR3; c, MR6; e, MR9; g, MR10) and fading rates 
calculated from plots of Lx/Tx vs. delay time (b, MR3; d, MR6; f, MR9; h, MR10) for a 
representative aliquot of each sample.  The fading rates are expressed as g2days values (see Section 
7.6.2.2 for details).  The dashed lines in (b), (d), (f) and (h) indicate 2σ. 
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 A second caveat for fading-corrected ages is that correction procedure is based 

on the fading rates measured in the laboratory.  Since storage tests can only be 

performed on laboratory time scales, it is assumed that the measured fading rates are 

representative of those experienced by the sample over the total duration of burial.  To 

minimise any errors that might arise from this assumption, the IRSL signal of K-

feldspars from Mumba that faded the least was identified (Section 7.6) and used to 

obtain De values.  Use of the signals with low fading rates minimises the dependence of 

the fading-corrected ages on the assumptions and limitations of the correction model 

(Huntley and Lamothe, 2001; Thomsen et al., 2008).   

 

8.3 Assessing the reliability of fading-corrected ages 

 The De distributions obtained for samples MR3, MR6, MR9 and MR10 are 

presented in Figure 8.2a, c, e and g respectively.  The weighted mean De value and 

spread of each distribution (overdispersion) are presented in Table 8.1.  The measured 

De and g2days values for each aliquot were used, together with the bulk sample 

environmental dose rate, to calculate a fading-corrected age for each aliquot as 

described in Section 8.2.  The distributions of the resultant fading-corrected ages for 

each sample are presented in Figure 8.2 (b, d, f and h).  Table 8.1 lists the fading-

corrected ages and their spread, obtained using the CAM, for the four samples from 

Mumba.  The dose rates (from Table 6.1), weighted mean De values and the uncorrected 

CAM ages are also presented for comparison.   

Three features of the data presented in Table 8.1 confirm the internal 

consistency and reliability of ages obtained using K-feldspar separates from Mumba.  

First, all ages, fading-corrected and -uncorrected, are in the correct stratigraphic order, 

including MR10 for which the quartz OSL age was significantly younger than MR9.  

This outcome provides confidence in the ages obtained using the post-IR IRSL signal.  

Second, the agreement between fading-corrected and -uncorrected ages reflects the 

limited extent to which fading-corrected ages are reliant on the correction and its 

caveats.  The corrected/uncorrected age ratios for the four samples are 1.10 ± 0.16 

(MR3), 1.06 ± 0.06 (MR6), 1.11 ± 0.07 (MR9) and 1.11 ± 0.08 (MR10), each of which 

is statistically consistent with unity.  This outcome indicates that the ages obtained 

using the post-IR IRSL signal from K-feldspar are not critically dependent on the meas- 
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Figure 8.2: Radial plots showing distributions of De values (a, MR3; c, MR6; e, MR9; g, MR10) and 
fading corrected ages (b, MR3; d, MR6; f, MR9; h, MR10) for all samples measured. 
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ured fading rates, as a result of the low measured fading rates.  As a consequence, these 

ages are also not critically dependent on the model used to correct for fading, or its 

associated assumptions and limitations (Huntley and Lamothe, 2001).  Nonetheless, the 

age that is corrected for anomalous fading is likely to be more accurate than the 

uncorrected age.  This is because the fading-corrected age at least compensates for the 

limited extent of fading observed on laboratory timescales. Third, the fading-corrected 

ages obtained using K-feldspar separates from MR3, MR6 and MR9 are in good 

agreement with the corresponding OSL ages obtained from single grains of quartz 

(Table 8.2).  The latter act as semi-independent age controls and indicate that the 

fading-corrected ages obtained using the post-IR IRSL signal from K-feldspars from are 

at least as accurate as ages obtained using the OSL signal from single grains of quartz, 

provided the deposit has not been subjected to significant post-depositional disturbance.  

The single-grain OSL ages are not truly independent from feldspar-IRSL ages because 

the two share many of the same dose rate terms. 
 
 
Table 8.2: Ages obtained for samples from Mumba using quartz and K-feldspar grains. 

 
  

8.4 Age comparisons: K-feldspar and quartz 

 In Section 6.4.3, the ages obtained from single grains of quartz using the FMM 

and beta microdosimetry correction were shown to be in correct stratigraphic order 

(except MR10) and in agreement with the available independent age estimates.  In this 

chapter, the fading-corrected ages obtained using multi-grain aliquots of K-feldspar 
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separates were described.  They were also shown to be in correct stratigraphic order, 

and not critically reliant on the limitations and assumptions of the age-correction model 

(Huntley and Lamothe, 2001).  Having established the internal consistency of the quartz 

and feldspar ages independently, they will now be compared in this section.  Table 8.2 

shows the ages obtained in this study for each sample.  The ages shown in the left 

column were obtained using single grains of quartz, and have been corrected for beta 

microdosimetry variations.  The ages shown in the right column were obtained using the 

post-IR IRSL signal from multi-grain aliquots of K-feldspar, and have been corrected 

for anomalous fading.  Three of the four samples for which both quartz and K-feldspar 

ages were obtained (MR3, MR6 and MR9) show good agreement between the two ages.  

The feldspar/quartz age-ratio for each of these samples is consistent with unity at one 

standard error: 1.15 ± 0.15 (MR3), 0.97 ± 0.09 (MR6) and 0.93 ± 0.09 (MR9). 

 

8.4.1 Sample MR6 

 Sample MR6 is the most appropriate sample for assessing the consistency of 

ages obtained using quartz and K-feldspar.  This is because the distribution of single 

grain quartz De values suggested that this sample was not subject to any apparent 

problems associated with either post-depositional mixing or low-dose saturation (Figure 

6.1).  For this sample, therefore, the effects of ‘summing’ the luminescence signals from 

multiple grains when measuring multi-grain aliquots of K-feldspar should be negligible.  

For this reason, the feldspar/quartz age-ratio of 0.97 ± 0.09 for MR6 provides further 

confidence in the procedures used to obtain both ages.  That is, the close agreement 

offers assurance that the fading-correction procedure applied to the K-feldspar ages and 

the beta-dose correction applied to the single grain quartz ages did not introduce 

significant bias.  In addition, the consistency in the quartz and feldspar ages also 

provides increased confidence in an age estimate of ~48 ka for the uppermost section of 

Bed V at Mumba.  However, it would be invalid to determine the weighted mean of the 

ages obtained using quartz and feldspar for this, or any other, sample from Mumba, 

because they are not truly independent age estimates, as discussed in Section 8.3.  As a 

result, the age obtained using single grains of quartz from MR6 should be considered 

the more accurate, due to the higher resolution afforded by single-grain analysis and the 

ability to reject any aberrant or intrusive grains. 
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8.4.2 Samples MR3 and MR9 

 The single-grain De distributions of samples MR3 and MR9 exhibited a large 

spread in De values (Figure 6.1).  Using the FMM, four discrete De components were 

identified for MR3 (Table 6.3).  For this sample, the components with the lowest and 

highest De values consisted of just two and five grains, respectively.  The central De of 

the lowest component was one-eighth as large as that of the majority of the other grains.  

The highest component had a central De that was 2.5 times as large as the majority of 

the other grains.  Consequently, the populations of grains that gave rise to these De 

components were considered to be intrusive and were, thus, removed from the dataset.  

The remaining grains could be fitted by two De components, which were analytically 

shown to be compatible with small-scale variations in the beta dose received by 

individual grains.   

There are two reasons why beta microdosimetry variations would not have had a 

substantial effect on the spread of De values for multi-grain aliquots of K-feldspar.  

First, when multiple grains are amassed on an aliquot, the luminescence measured is a 

sum of that produced by each individual grain.  Thus, the problem of individual grains 

experiencing different dose rates, and hence different burial doses, is not manifested.  

Second, K-feldspar grains have a higher internal dose rate than quartz, making them less 

susceptible to the effects of external beta microdosimetry.  The internal dose rate of the 

mineral of interest is unaffected by the dose rate from the surrounding environment.  

Thus, if the fractional contribution of the internal dose rate to the total dose rate is large, 

then the effects of uncertainties associated with the external dose rate will be smaller.  

Since the internal dose rate to K-feldspar from the decay of 40K, 87Rb, U and Th is 30 

times larger than that of quartz (Table 6.1), it constitutes a substantial proportion of the 

total dose rate (~29% in the case of MR3).  This means that differences in the beta dose 

rates received by individual grains of K-feldspar are less consequential. 

In contrast, the mixing of grains that were deposited earlier or later than the 

majority of grains could have an effect on the K-feldspar age.  The presence of these 

intrusive grains would likely increase the spread in De values.  The two populations of 

intrusive grains that were identified during quartz single-grain measurements are the 

likely reason for the large overdispersion (51 ± 7%) in the K-feldspar De distribution of 

MR3 (Table 8.1).  Additionally, intrusive grains may increase or decrease the measured 
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De estimates, and corresponding ages, obtained using multi-grain aliquots.  This source 

of possible bias may account for the slight overestimation of the fading-corrected IRSL 

age, which resulted in a feldspar/quartz age-ratio of 1.15 ± 0.15.  Since the intrusive 

high-dose component constituted a larger proportion of the total number of grains (5 ± 

3%) than the intrusive low-dose component (2 ± 1%) in this sample, it is likely that the 

former had a greater effect on the ‘summed’ luminescence signal from multi-grain 

aliquots.  Nonetheless, the feldspar/quartz age-ratio for MR3 is statistically consistent 

with unity, indicating that any De overestimation resulting from the inclusion of 

intrusive grains in multi-grain aliquots of K-feldspar was insufficient to significantly 

skew the IRSL age. 

The situation for sample MR9 is similar to that of MR3.  For this sample, three 

discrete, single-grain quartz De components were identified using the FMM (Figure 6.1 

and Table 6.3).  The component with the lowest De values was comprised of ~11 grains 

(16 ± 7%), which were interpreted as being intrusive.  When this population of grains 

was removed from the dataset, analytical tests showed that the remaining two 

components could be explained in terms of small-scale variations in the beta dose rate 

received by individual grains.  Again, beta microdosimetry variations would likely not 

have had a substantial effect on the De and age determinations from multi-grain aliquots 

of K-feldspar.  Alternatively, the inclusion of the intrusive, younger grains on multi-

grain aliquots may account for the feldspar/quartz age-ratio of 0.93 ± 0.09 for this 

sample.  In spite of this slight disparity, this ratio is within one standard error of unity, 

confirming that the K-feldspar and single-grain quartz ages are statistically 

indistinguishable.  As was the case for MR3, this indicates that the presence of a small 

number of intrusive grains on multi-grain aliquots of K-feldspar was not sufficient to 

significantly skew the IRSL age. 

Although the quartz and K-feldspar ages are in statistical agreement, it would 

not be valid to determine a final age by taking the weighted mean of the two ages, 

owing to their correlated dose rate terms.  Following the conclusion reached for MR6, 

the OSL ages obtained using single grains of quartz from MR3 and MR9 are considered 

more reliable, because intrusive grains were identified in both samples.  These grains 

were subsequently rejected from the OSL datasets prior to age determination, but the 

same does not apply to the multi-grain aliquots used for IRSL determination. 
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8.4.3 Sample MR10 

 This sample, from the lowest stratigraphic unit, exhibited a substantially larger 

disparity between the ages obtained from quartz and K-feldspar grains.  The 

feldspar/quartz age-ratio for MR10 is 1.60 ± 0.37, and is compatible with unity at the 

95% confidence interval.  This outcome is misleading, however, as the observed 

statistical consistency is only due to the large relative error (>20%) on the quartz age.  

The reasons for the younger age obtained using quartz from MR10, and its large 

associated uncertainty, were discussed in Section 6.5.  Due to the proximity of the 

natural OSL signals to saturation, the age obtained using single grains of quartz from 

MR10 should only be taken as a minimum estimate.  In addition, the large uncertainty 

on the age is a result of the correspondingly large uncertainties on the (minimum) De 

estimates, which arise from the projection of the sensitivity-corrected natural OSL 

signal on to the low slope of the dose-response curve as it approaches saturation.   

The inability to obtain a reliable, finite age estimate for MR10 from single 

grains of quartz was the impetus for investigating K-feldspar as a potential 

luminescence dosimeter at Mumba.  Since the IRSL signal from K-feldspars saturates at 

considerably higher doses than does the OSL signal from quartz (Figure 8.1g) (Duller, 

1997), the age determined using K-feldspars from MR10 is considered more accurate.  

In addition, the precision of the K-feldspar age is substantially improved. 

 

8.5 Conclusions 

 A robust OSL age could not be obtained using single grains of quartz from the 

deepest sample collected at Mumba, MR10.  This was because the natural OSL signal 

from many quartz grains from this sample fell on to the saturated portion of the dose-

response curve, precluding the reliable estimation of finite De values.  To achieve the 

objectives of this thesis, and identify when the transition from a MSA toolkit to the 

Mumba Industry occurred at Mumba rockshelter, robust age estimates for the MSA-

bearing Bed VI deposits were necessary.  To avoid problems associated with dose 

saturation in quartz, the suitability of using K-feldspar separates to estimate an age for 

MR10 was, thus, explored. 

Although the IRSL signal from K-feldspars saturates at higher doses than the 

OSL signal from quartz (Duller, 1997), it suffers from the malign phenomenon of 
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anomalous fading, and the widely-used correction model for fading has several 

limitations (Huntley and Lamothe, 2001).  These can be reduced by using an IRSL 

signal that fades only slightly.  The post-IR IRSL signal (Thomsen et al., 2008) was 

tested due to its reportedly low fading rates and, thus, lesser dependence on the 

assumptions of the fading-correction model.  In Chapter 7, the post-IR IRSL signal of 

K-feldspars from Mumba was shown to be able to recover a known dose, be bleached 

by sunlight, and suffer little from anomalous fading.  Consequently, this signal was used 

to obtain De values and measure fading rates for multi-grain aliquots of K-feldspar from 

four strategic samples (MR3, MR6, MR9 and MR10).  The De values were then used 

with the measured rates of fading and the environmental dose rates to obtain fading-

corrected ages for all four samples.  The consistency between fading-corrected and 

fading-uncorrected ages (Table 8.1) demonstrates that IRSL ages obtained from K-

feldspars from Mumba are not critically dependent on the limitations and assumptions 

of the fading-correction model.  In addition, the fading-corrected ages are consistent 

with the single-grain quartz OSL ages for the three samples (MR3, MR6 and MR9) for 

which reliable De estimates could be made using both minerals.  This agreement 

increases the confidence in the luminescence chronology for Mumba, as well as 

providing evidence that post-IR IRSL K-feldspar ages can be as accurate as single-grain 

quartz OSL ages.  The archaeological implications of the luminescence chronology 

from Mumba will be discussed in Chapter 10. 
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Chapter 9: Luminescence investigations of quartz and feldspars from 
Moche Borago, Ethiopia 
  

As discussed in Chapter 2, Moche Borago is a rockshelter located on the western 

flank of the dormant volcano Mt. Damota in Ethiopia.  Sediments of volcanic origin are 

ubiquitous at the site.  Many previous studies have shown that quartz and feldspar of 

volcanic origin have properties that are unsuitable for standard luminescence dating 

(e.g., Wintle, 1973; Visocekas, 2002; Fattahi and Stokes, 2003a; Choi et al., 2006b; 

Westaway and Roberts, 2006; Tsukamoto et al., 2007).   

In this chapter, investigations of the luminescence signals from multi-grain 

aliquots of quartz and K-feldspar from Moche Borago are described.  A small amount of 

quartz was present in only one of the three sediment samples prepared.  K-feldspar, 

while extracted from all samples, was also present only in small amounts.  The small 

quantity of luminescent material was exacerbated by the fact that the luminescence 

signals (i.e., TL, IRSL and OSL) from both minerals were very dim.  All measurements 

made on samples from Moche Borago and discussed in this chapter were performed on 

the same Risø TL/OSL reader – Risø 4. 

 

9.1 OSL measurements on multi-grain aliquots of quartz 

Of the three samples prepared (MB1, MB2 and MB3), quartz could be extracted 

from only one: sample MB1.  There were sufficient quartz grains to prepare only ten 

small multi-grain aliquots, each consisting of ~100 grains.  Quartz could not be used, 

therefore, as a dating dosimeter for samples from Moche Borago.  However, 

investigations into the OSL characteristics of quartz from MB1 were undertaken.  To 

use sample material as sparingly as possible, only two aliquots, each consisting of ~100 

grains, were prepared and used for the following experiments.   

 

9.1.1 Dose recovery experiments using a standard SAR procedure 

To assess whether quartz from Moche Borago possessed luminescence 

characteristics suitable for the application of the SAR procedure, a set of dose recovery 

experiments was performed.  Two aliquots were bleached at 50°C using blue LEDs for 

4000 s in Risø 4, and were then given a laboratory irradiation of 47 Gy.  A standard 

SAR procedure (see Table 3.2) was then applied using regenerative doses of 47, 24, 70, 
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0 and a duplicate 47 Gy dose.  The OSL signal following a test dose of 6 Gy was used 

to correct for sensitivity changes.  The preheats applied following the regenerative doses 

and test doses were 260°C for 10 s and 220°C for 5 s, respectively.   

 OSL decay curves produced from one aliquot following the surrogate natural (47 

Gy) and the subsequent test dose (6 Gy) are presented in Figure 9.1a.  The OSL signal 

decays relatively slowly in comparison to grains from Mumba (e.g., Figure 5.15 and 

Figure 5.16).  This suggests that a fast component may not be present.  The presence of 

a substantial slow component is further inferred from the OSL measured following the 0 

Gy regenerative dose (Figure 9.1b).  The OSL signal for L0 decays over the course of 

optical stimulation and instrumental background is never reached.  It is likely that this is 

the decay of a slow component that was not fully bleached by optical stimulation for 40 

s at 125°C and had accumulated throughout repeated regenerative-dose cycles.  

Alternatively, the 4000 s blue LED bleach may have been insufficient to completely 

deplete the source traps of the slower components.  Regardless, the presence of a 

substantial slow component and apparent lack of a fast component have been reported 

by several studies investigating volcanic quartz (e.g., Choi et al., 2006b; Tsukamoto et 

al., 2003, 2007) and have often proven to be problematic for De estimation. 

 

 
Figure 9.1: OSL decay curves measured for aliquot A.  a, Decay curves measured for the surrogate 
natural (LN) and the subsequent test dose (TN).  b, Decay curves measured for the 0 Gy regenerative 
dose (L0) and its test dose (Tx).   
 

Dose-response curves for both aliquots are presented in Figure 9.2.  Poor 

counting statistics resulted from the very dim OSL signal of quartz from MB1 (Figure 

9.1).  Both aliquots passed the recycling ratio test, but had relatively high associated 

uncertainties (0.79 ± 0.15 and 0.89 ± 0.43).  One aliquot failed the recuperation test (29 
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± 7%), while the other produced a recuperation value consistent with 0 (6 ± 10%).  The 

relatively poor performance of these aliquots in the SAR procedure was likely, at least 

in part, because of the dimness of the sample.  The OSL per unit dose produced by the 

aliquot from Figure 9.2b was approximately one third as bright as that from the aliquot 

from Figure 9.2a.   

 

 
Figure 9.2: Dose-response curves obtained for two aliquots of quartz from MB1.  a, Aliquot A.  b, 
Aliquot B. 
 

 

9.1.2 Assessing the constituent components of quartz from MB1 using LM-OSL 

 The OSL decay curves measured for quartz samples from MB1 appear to lack a 

fast component.  To assess the components that make up the regenerated OSL signal, 

LM-OSL curves were measured for the same two aliquots presented in Figure 9.2.  The 

aliquots were given a 120 Gy beta dose and preheated to 260°C for 10 s.  LM-OSL 

curves were then measured and de-convoluted as described in Section 3.5.  The sum of 

squared residuals was used to assess the most appropriate number of components (N) 

needed to fit the data.   

The measured LM-OSL curve for one aliquot is presented in Figure 9.3; it is 

representative of the other aliquot.  The data were best fitted using three components, 

corresponding to S2, S3 and S4 (using the nomenclature of Jain et al., 2003).  The n 

(trapped charge concentration), PIC (photoionisation cross-section) and b (detrapping 

probability) values obtained for this fit are presented as an inset in Figure 9.3.  No fast 

component could be identified.  Many other studies of volcanic quartz have reported 

that a fast component was either not present or not dominant in the OSL signal (e.g., 

Choi et al., 2006b; Tsukamoto et al., 2003, 2007; Westaway, 2009).  In many cases, 
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with the exception of Tsukamoto et al. (2003) and Watanuki et al. (2005), a burial dose 

cannot be obtained for volcanic quartz using the OSL signal and SAR procedure.   

 

 

 
Figure 9.3: Regenerated LM-OSL curve with the fitted components underlying the measured data.  
The inset table presents the calculated parameters of each fitted component. 
 

 

9.1.3 Summary of OSL investigations of quartz from Moche Borago 

Only a small quantity of quartz could be extracted from a single sample from 

Moche Borago (MB1).  Measurements indicated that the OSL signal from quartz was 

weakly luminescent and had characteristics that made is unsuitable for burial dose 

estimation using the SAR procedure.  As a result, luminescence investigations of quartz 

were ceased.  The remainder of this chapter will focus on the characteristics of the 

luminescence signal from K-feldspar separates from Moche Borago, with the aim of 

finding a signal that could be used for burial dose estimation. 

 

9.2 Problems prior to luminescence investigations of K-feldspars 

 Before describing the investigations into K-feldspar grains from Moche Borago, 

several problems that hindered their study will be addressed.  These include the 

contamination of K-feldspar separates with pumice and the small quantities of K-

feldspar with weak luminescence emissions obtained from every sample. 
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9.2.1 Contamination of K-feldspar separates 

 Following the density separation stage of sample preparation, it was evident that 

the mineral separates from Moche Borago were contaminated with dark coloured grains, 

which were presumed to be pumice.  Sample MB3 was density separated with sodium 

polytungstate solution with a specific gravity of 2.62 g/cm3.  The portion of the sample 

that had a density of <2.62 g/cm3 was very dark in colour.  Density separation at 2.58 

g/cm3 produced little material of >2.58 g/cm3 (i.e., Na-feldspars).  The material with a 

density of <2.58 g/cm3 was then etched in HF acid and rinsed in HCl acid and distilled 

water (as described in section 3.2), second sieved to remove grains with a diameter 

below 180 μm, and density separated a final time at a specific gravity of 2.53 g/cm3.  

Grains with a density between 2.53 and 2.58 g/cm3 were extracted as K-feldspar 

separates (Aitken, 1985).  An aliquot of ~1000 grains was prepared and visually 

inspected under the microscope, revealing that only ~15% of the material was 

crystalline grains K-feldspar (Figure 9.4a).  Given the volcanic origin of most of the 

sediments at Moche Borago (i.e., tuffs, ash falls, etc.), the low-density, dark material is 

likely to be pumice.  However, since density separation is an imperfect method for 

isolating mineral grains due to the range of densities of particular minerals (Godfrey-

Smith and Cada, 1996; Wintle, 1997), it is possible that the Moche Borago K-feldspar 

separates also contain contaminant Na- and Ca-feldspar grains.   

 

 
Figure 9.4: Photographs of aliquots of K-feldspar separates from MB3.  a, A ~1000-grain aliquot of 
sample material after density separation (material is between 2.53 and 2.58 g/cm3), HF acid etching 
and second sieving.  Note the large proportion of dark, non-crystalline contaminant grains (~85% 
of the grains in this photo).  b, A ~1000-grain aliquot of material from the same sample after 
ultrasonic bath treatment described in the text.  Note that the proportion of dark, non-crystalline 
contaminant grains has decreased markedly (~10% of the grains in this photo). 
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Given that HF acid etching did not remove the putative pumice grains from the 

sample, it was unlikely that the grains could be removed with further acid treatment.  

Instead, the samples were put into beakers filled with distilled water and placed in an 

ultrasonic bath for ~10 min.  After decanting the water, the sample material was dried, 

and then sieved again at 180 μm, removing a large portion of the contaminant material 

that had been disaggregated by the ultrasonic bath treatment.  A second aliquot of 

~1000 grains was prepared and visually inspected under the microscope.  While the 

ultrasonic bath treatment had not removed all of the contaminant grains, ~90% of the 

grains making up the aliquots were crystalline K-feldspar grains (Figure 9.4b). 

 

 
Figure 9.5: Photograph of an aliquot that was prepared to include ~30 grains of the dark, non-
crystalline contaminant material. 
 

 

 
Figure 9.6: Luminescence measured from an aliquot consisting of contaminant grains compared to 
luminescence measured from an aliquot consisting of K-feldspar grains from the same sample 
(MB3).  a, IRSL curves.  b, TL curves.  The inset to (a) is the first 30 s of IRSL from the aliquot 
containing contaminant grains.   
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 To investigate the luminescence properties of the contaminant material, an 

aliquot consisting of ~30 grains of the contaminant material was prepared (Figure 9.5).  

This aliquot was given a laboratory irradiation of 235 Gy, preheated to 260°C for 10 s, 

and stimulated with the IR diodes for 100 s at 50°C.  The resulting IRSL decay curve is 

presented as an inset to Figure 9.6a.  While the IRSL signal is dim (~160 counts/0.2 s at 

its peak), it is present.  The IRSL and TL curves were normalised to their brightest 

interval (counts/0.2 s and counts/°C, respectively) and compared to normalised IRSL 

and TL curves from an aliquot of K-feldspar grains from MB3.  The IRSL decay curves 

are nearly identical in shape (Figure 9.6a).  While the TL curve of the contaminant 

grains has a hint of a 110°C TL peak, it is similar in shape to the TL curve from K-

feldspar grains; they both peak at ~240°C (Figure 9.6b).  The similarity in the IRSL and 

TL signals produced by the contaminant and K-feldspar grains suggests that they likely 

contain K-feldspar and/or behave in a similar way to K-feldspar.  Consequently, 

contamination of the K-feldspar separates was not considered problematic, although 

large portions of pumice on an aliquot will have a diluting effect.  Care was, thus, taken 

to make all aliquots of K-feldspar as pristine as possible. 

 

9.2.2 Small quantities of weakly luminescent material 

 Only small amounts of K-feldspars were present in each of the samples, with 

MB3 producing the most.  All measurements to characterise the luminescence signal of 

K-feldspars from Moche Borago were, therefore, performed on extracts from MB3. 

 The problems associated with the relative dearth of quartz and K-feldspar were 

exacerbated by the weak luminescence signal from K-feldspar separates of MB3.  This 

necessitated the use of large aliquots, each comprised of ~1000 grains, and large test 

doses (of between 30 and 60 Gy).  Owing to the paucity of material, many experiments 

performed on K-feldspar separates and presented in this chapter required the re-use of 

aliquots that had previously been used for other experiments.  All aliquots that were re-

used were given a heat treatment of 500°C prior to experimentation to empty all deep 

traps that may still contain charge, such as those associated with the IRSL signal and 

corresponding to the 430°C TL peak (see Chapter 7).  It is noted in the descriptions of 

each experiment throughout this chapter whether the luminescence signals measured 

271 
 



from the aliquots being used were natural, bleached, or annealed prior to 

experimentation. 

 

9.3 Characterising various TL and IRSL emissions of K-feldspar from Moche 

Borago 

9.3.1 Comparison of TL signals 

 As discussed in Chapter 7, there are four major emissions from feldspars that 

have been discussed in the literature: UV, blue, yellow and red/far-red (Duller, 1997; 

Fattahi and Stokes, 2003a,c).  The filter combinations used to investigate various 

emissions from K-feldspar separates from Moche Borago are presented in Table 7.1.  

The red and far-red emissions were not measured for feldspars in this study. 

To investigate the various emissions from K-feldspar separates for samples from 

Moche Borago, two aliquots of ~1000 grains of MB3 were prepared and heated to 

500°C.  The aliquots were then given a laboratory beta dose of 120 Gy, preheated to 

260°C for 60 s, and stimulated with IR at 50°C for 100 s.  The filters were then changed 

and the procedure was repeated for both aliquots, beginning with the 500°C heat 

treatment.  The filter combinations were alternated in the same order as in the 

experiment presented in Section 7.2.2; the standard blue filter combination, yellow, the 

second blue filter combination, UV, and then the standard blue filter combination again.  

The first filter combination was repeated at the end of this sequence to ensure 

reproducibility (using the IRSL signal) and produce a TL glow curve that could be 

compared with the others.  As in the experiment described in Section 7.2.2, the first 

cycle (heat treatment, irradiation, preheat and IR stimulation) was measured through the 

standard blue filter combination (BG39 + Kopp 7-59).  For analysis purposes, this first 

cycle was treated as an ‘annealing cycle’, and the TL and IRSL emissions from the final 

cycle (measured using the standard blue filter combination again) were compared with 

the other emissions.  In this way, the shape and intensity of IRSL decay and TL glow 

curves could be compared for different emissions from the same aliquot. 

The TL curves are presented in Figure 9.7.  There is one main peak at ~340°C 

for all emissions, which occur consistently in the same position regardless of the 

emission measured.  The TL curves measured through the two different blue filter 

combinations are almost identical, with that measured through the standard blue filter 
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combination being slightly brighter.  The shape of the UV emission TL curve is similar 

to the blue emission TL curves, but the former is an order of magnitude weaker.  The 

yellow emission TL curve also has a peak at ~340°C, but it is even weaker than the UV 

emission.  The yellow emission TL curve, however, differs markedly from the other 

three emissions in the low and high temperature regions of the glow curve.  In the low-

temperature region, the yellow emission glow curve shows an elevated, but stable signal 

compared to the other three curves, and only starts to increase at ~270°C.  In the high-

temperature region, the yellow TL emission shows a significant increases from ~380°C 

to >500°C.  This is in contrast to the blue and UV emission TL curves, which remain at 

instrumental background until ~150°C, followed by a substantial increase at ~260°C, 

peaking at 340°C, then decrease after the peak through 500°C.   

 

 
Figure 9.7: TL glow curves measured using various filter combinations (see Table 7.1) from one 
aliquot of MB3.  Results are representative.  Note that data in the main plot is plotted on a log-
linear y-axis.  The inset shows the same data plotted on a linear y-axis. 
 

 The difference in the yellow emission TL curve shape from MB3 is similar to 

that observed for K-feldspar grains of MR9 from Mumba rockshelter (Figure 7.2).  Both 

samples show the large increase in yellow emission TL above ~380°C, but the elevated 

TL counts from 0 to 250°C observed for MB3 is not present in MR9.  This suggests that 

the elevated count level in the low-temperature region of the yellow emission TL curve 

from MB3 is unlikely to have an instrumental cause, such as increased background due 
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to the specific filters.  If this were the case, then the yellow emission TL curve from 

MR9 should presumably also show the same behaviour, since it was measured on the 

same instrument using the same filter combination.  The yellow emission TL curve 

from MB3 also differs from MR9 in that there is no discernable peak at ~150°C.  

Differences in TL peak composition between the two samples are explored further in 

Section 9.4.   

These results suggest that the TL peak at ~340°C is present regardless of the 

emission measured.  Furthermore, the only difference between the two blue emissions 

and the UV emission is the brightness of the glow curve.  The yellow emission TL 

curve, while having a TL peak at ~340°C, is markedly different in the high- and low- 

temperature regions.   

 

9.3.2 Comparison of IRSL signals 

 Decay curves measured for the various emissions are presented in Figure 9.8.  

The IRSL signal intensity is calculated for each decay curve in the standard manner 

(i.e., the count rate over the final 10.2 s of the IRSL decay curve is used to calculate the 

background [see Section 3.3.1.1], which is then subtracted from the initial signal, which 

is calculated using the sum of the first 2 s of IRSL).  The decay curves measured using 

the two blue filter combinations are similar in shape and intensity (both have 

background-subtracted IRSL signals of ~29,000 counts).  The decay curve measured for 

the UV emission also has a similar shape to those measured using the blue emissions, 

but it is approximately an order-of-magnitude less bright (background-subtracted IRSL 

signal of ~1,300 counts).  Results for these three filter combinations are similar to those 

for K-feldspar separates from MR9 (Figure 7.3).  The yellow emission IRSL from MB3 

does not decay, instead showing a slight increase throughout the 100 s of IR 

stimulation.  This is in contrast to MR9, which had a yellow emission IRSL signal that 

decayed over the first ~10 s of IR stimulation, before subsequently increasing.  From 

~20 s into IR stimulation, the IRSL decay curves for both MB3 and MR9 are very 

similar in shape and intensity. 

All IRSL signals from MB3 (except the later portion of the yellow emission 

IRSL) are significantly dimmer than those from MR9.  For example, the blue emission 

IRSL signal for MB3 is nearly two orders of magnitude dimmer than that from MR9).  
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These results, like those from Section 7.2.2, suggest that the blue emission is the 

optimal emission with which to measure luminescence from K-feldspars at Moche 

Borago.  The standard blue filter combination (BG39 + Kopp 7-59) was, therefore, 

chosen for all subsequent investigations of the IRSL and TL signals of K-feldspar 

separates from Moche Borago.  This emission produced the brightest luminescence and 

the results can be easily compared with those from Mumba and with other studies that 

have commonly used this filter combination (e.g., Wallinga et al., 2000a,b; Auclair et 

al., 2003; Thomsen et al., 2008). 

 

 
Figure 9.8: IRSL decay curves for various emissions from one aliquot of MB3.  Results are 
representative of both aliquots measured.  Note the log-linear scale on the y-axis. 
 

 

9.4 Characterising K-feldspars from Moche Borago: TL and IRSL 

9.4.1 TL from K-feldspar separates 

 While no TL peaks have been shown to be ubiquitously present in all K-

feldspars, several common peaks that have been reported in the literature were 

identified during TL investigations of K-feldspar separates from Mumba.  These peaks 

include a large, low temperature peak at ~150°C that is present only in laboratory-

irradiated samples, a peak at ~350°C and a peak at ~430°C (Chapter 7; Duller, 1997; 

Murray et al., 2009).  Investigations into the luminescence properties of K-feldspars 

from Mumba suggested that the TL peak at ~430°C was associated with the source trap 

for IRSL (Chapter 7), in agreement with the conclusions of Murray et al. (2009).  Due 
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to the range of TL properties exhibited by various feldspars reported in the literature, 

the TL properties of one of Moche Borago samples (MB3) were characterised. 

 Three aliquots of ~1000 grains of K-feldspar from MB3 were each given a 

different laboratory dose of 0, 60 or 240 Gy, in addition to the natural dose, and heated 

to 500°C at a rate of 5°C/s while the TL was measured.  A blank stainless steel disc was 

also heated to 500°C at a rate of 5°C/s, and the resulting photon count was subtracted, 

point-by-point, from each of the measured TL curves.  Results are presented in Figure 

9.9.  The TL curves are different from those measured for MR9, for which three main 

TL peaks (i.e., at ~150°C, ~350°C and ~430°C) could be identified (Figure 7.4).  The 

TL curves measured from aliquots of MB3 are also an order of magnitude dimmer than 

those from MR9.  The natural TL curve of MB3 has two broad TL peaks: one centred at 

~310°C and the other at ~480°C.  The TL signal remains at instrumental background 

until ~150°C.  The aliquots that were given a laboratory beta dose exhibit one broad TL 

peak that begins to increase in intensity substantially by ~50°C, attain a maximum 

intensity at ~230°C and decrease in intensity by ~400°C.  It also appears that the 

~480°C TL peak observed in the natural TL signal is present in the laboratory-irradiated 

TL signals, in the form of a shoulder on the main TL peak.   

 

 
Figure 9.9: TL glow curves plotted on a linear-logarithmic scale for three natural aliquots of MB3.  
Each aliquot was given a different additive dose, followed by a TL measurement from 0 to 500°C.  
Note that the inset plot shows the same data as the main figure, but with the y-axis on a linear scale. 
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There are two possible explanations for the width of the main peak produced by 

the aliquots that received an additive laboratory dose.  First, the peak may represent a 

single, very broad TL peak centred at ~230°C.  Alternatively, the peak may be 

composed of several peaks that amalgamate to form a single, broad peak.  The latter 

possibility is more likely, given the shape of the natural TL curve.  In the TL signals of 

the laboratory-irradiated aliquots, the two TL peaks identified in the natural are likely to 

be present, but are obscured by a large, thermally unstable TL component arising from 

the laboratory irradiation. 

Results from this experiment suggest that a preheat of 260°C would be 

appropriate when comparing natural and laboratory radiation doses.  This is because the 

TL signal of the natural does not increase above background until the sample is heated 

to a temperature of ~150°C, meaning that any TL produced at or below this 

temperature, such as that observed for laboratory-irradiated aliquots, is likely to be 

associated with traps that are thermally unstable over geological timescales.  Several 

studies have concluded that the low-temperature TL component does not contribute to 

the IRSL signal (e.g., Bøtter-Jensen et al., 1991; Duller and Bøtter-Jensen, 1993; 

Murray et al., 2009).  However, to ensure that the laboratory signal is as similar to the 

natural as possible, the removal of the low-temperature, thermally unstable TL 

components prior to IR stimulation, by applying a high-temperature preheat, was 

considered desirable.  Consequently, a preheat of 260°C for 60 s was used throughout 

the investigations of K-feldspars from Moche Borago. 

 

9.4.2 Dependence of IRSL on preheat temperature: Pulsed anneal experiments 

 To assess the dependence of IRSL from MB3 on temperature, several pulsed 

anneal experiments were performed.  These are generally conducted measuring either 

the natural signal or the signal from a laboratory-dosed aliquot that is stimulated with a 

short, low-intensity pulse of IR (e.g., 0.1 s at 1% power), so that the IRSL signal is not 

significantly depleted (e.g., Duller, 1994; Murray et al., 2009).  The aliquot is then 

preheated to the lowest temperature desired before another IR pulse is given.  This 

sequence is repeated, increasing the preheat temperature in small (e.g., 10°C) 

increments until the IRSL signal is completely depleted (e.g., Duller, 1994; Murray et 

al., 2009).  A short-shine pulsed anneal was performed on the natural signal from three 
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~1000-grain aliquots.  Each aliquot was heated to a specified temperature, where it was 

held for 0 s (i.e., cutheat) and the IRSL produced by a low-intensity pulse of IR 

stimulation (0.1 s at 1% power) was then measured.  The cutheat temperature was 

increased in 10°C increments from 100°C to 450°C.  Unfortunately, however, the IRSL 

produced by the natural signal from MB3 was too dim for this short-shine technique to 

provide meaningful results.  For all three aliquots, no patterns could be discerned from 

the results (inset to Figure 9.10).  As a result, an alternative approach was used, similar 

to that described by Demuro (2009). 

A step-by-step outline of the pulsed anneal experiment is presented in Table 9.1. 

An aliquot of ~1000 grains of K-feldspar from MB3 was annealed using repeated heat 

treatments (heating the sample to 500°C) and IR stimulations.  The aliquot was then 

given a laboratory dose of 120 Gy, preheated at the specified temperature for 60 s, and 

stimulated using the IR diodes for 100 s at 50°C (Lx).  This was followed by a test dose 

cycle that consisted of a 30 Gy dose, a preheat of 180°C for 60 s, and an IRSL 

measurement (100 s at 50°C: Tx).  This process was then repeated 31 times, increasing 

the specified preheat temperature in 10°C increments, beginning at 100°C and ending at 

400°C.  The test dose preheat was kept constant at 180°C. 

 
Table 9.1: Step-by-step outline of the pulsed anneal experiment described in this section, the results 
of which are presented in Figure 9.10. 

 
 

Results are presented in Figure 9.10 and look substantially different from most 

other pulsed anneal results in the literature  (e.g.,  Figure 9.11).   Pulsed anneal curves  
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Figure 9.10: Results from a pulsed anneal experiment based on the SAR technique (see text) for a 
laboratory-irradiated aliquot of MB3.  The sensitivity-corrected IRSL signal (Lx/Tx) is shown, and 
is normalised to the 100°C data point.  The inset shows the pulsed anneal data measured using the 
short-shine technique (as described in the text) applied to a natural aliquot from MB3.   
 

 
Figure 9.11: Pulsed anneal data from K-feldspar separates from Duller (1994).  A short-shine 
pulsed anneal was performed and the data is plotted as the proportion of the IRSL signal that 
remains after annealing at the specified temperature.  Note that “ph” is a preheat at 220°C for 10 
min.  Data and Figure are from Duller (1994, 1997). 
 

from K-feldspar generally do not begin to decrease until ~300°C (e.g., Duller, 1994; 

Murray et al., 2009).  In contrast, the sensitivity-corrected IRSL signal (Lx/Tx) begins 

decreasing from 100°C and continues decreasing throughout.  It is reduced to 1% of the 

initial value (at 100°C) by 380°C.  These results are similar to the pulsed anneal results 

279 
 



for K-feldspar separates from sample QGC1 presented in Demuro (2009, Figure 6.8), 

who performed a pulsed anneal in a similar way. 

It is likely that the atypical results from this experiment were due to the atypical 

experimental design.  The duration of the specified preheat (given before the 

measurement of Lx) may have affected the results of this experiment.  It is likely that the 

preheat duration of 60 s resulted in isothermal decay of the IRSL signal before the IRSL 

was measured.  If these results are meaningful, however, it would suggest that the IRSL 

resulting from laboratory irradiations of K-feldspar from MB3 originated from a trap 

associated with a lower temperature TL peak. 

A second set of pulsed anneal experiments was performed to improve the 

reliability of the results.  Two natural aliquots, each composed of ~1000 grains, were 

annealed at 500°C.  The aliquots were then given a laboratory dose of 240 Gy, and a 

short-shine pulsed anneal experiment was performed.  The aliquots were heated at a 

specified cutheat temperature (for 0 s) before the luminescence produced by a short IR 

pulse (1% power for 0.1 s) was measured.  The cutheat temperature was increased in 

10°C increments from 100°C to 450°C.  Results are presented in Figure 9.12.  The 

laboratory-irradiated aliquot produced a substantially brighter short-shine IRSL signal 

than did the natural aliquot (i.e., inset to Figure 9.10), although the signal was still 

relatively dim.  Apart from the large initial decrease (~43%) from 100°C to 110°C, the 

largest decrease in IRSL signal occurred between 200°C and 300°C.  During this 

interval, the IRSL signal decreased from ~70% to ~15% of the signal measured at 

110°C, in agreement with the results presented in Figure 9.10.  Note that in Figure 9.12, 

the short-shine IRSL signal is normalised to 110°C, instead of 100°C, due to the large 

decrease in signal between 100°C and 110°C.   

The same aliquots were then heated at 500°C again, and a second pulsed anneal 

experiment, based on the SAR procedure, was performed.  A step-by-step outline of this 

experiment is presented in Table 9.2.  In this experiment, the aliquots were given a 

laboratory dose of 60 Gy.  They were then heated to a specified cutheat temperature and 

then stimulated with the IR diodes for 100 s at 50°C (Lx).  This was followed by a test 

dose cycle consisting of a 60 Gy irradiation, a cutheat of 100°C, and an IR stimulation 

for 100 s at 50°C (Tx).  This process was repeated for specified cutheat temperatures 

between 100°C and 450°C.  The test dose cutheat was kept constant at 100°C.  Several 
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features of this pulsed anneal experiment (Table 9.2) make it more sound than the one 

described at the beginning of this section (Table 9.1).  First, in this experiment the 

specified cutheats are held for 0 s instead of specified preheats for 60 s.  As a result, the 

IRSL signal should not isothermally decay in this experiment.  Second, the test dose 

used in this experiment is larger (60 Gy, compared to 30 Gy), resulting in a brighter 

IRSL signal with improved counting statistics for the sensitivity correction. 

 
Table 9.2: Step-by-step procedure of the pulsed-anneal experiment described in this section, the 
results of which are presented in Figure 9.12. 

 
 

 
Figure 9.12: Results from the second set of pulsed anneal experiments.  These results are from a 
laboratory-irradiated aliquot of MB3 and are representative of both aliquots measured.  The 
triangles show results for pulsed anneal experiment using the short-shine technique (see text) on 
grains given a 240 Gy laboratory dose.  The data points for this technique are normalised to the 
value at 110°C.  The diamonds represent results from a second pulsed anneal experiment based on 
the SAR technique (see text).  The data points for this technique are normalised to the value at 
100°C. 
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Results are presented in Figure 9.12 and are in closer agreement with other 

pulsed anneal results in the literature (e.g., Duller, 1994; Murray et al., 2009; Figure 

9.11).  For the sensitivity-corrected IRSL signal (i.e., Lx/Tx), the signal does not begin 

decreasing until 220°C.  The signal is reduced to 50% at 300°C, ~15% by 360°C and 

~5% by 400°C.  This suggests that the IRSL signal is not wholly associated with a low-

temperature TL peak (i.e., at ~250°C), as was suggested by the results presented in 

Figure 9.10, but may originate from traps associated with TL peaks in the range of 

~220°C to 410°C. 

 

9.4.2.1 Summary of pulsed anneal results 

 Four different pulsed anneal experiments were conducted on K-feldspar 

separates from Moche Borago and each produced different results.  The natural signal 

proved too dim to allow measurement of a standard short-shine pulsed anneal curve.  A 

laboratory-irradiated signal, while bright enough to produce IRSL in response to a short 

IR pulse, was still dim.  The latter experiments suggested that the largest decrease in 

IRSL occurred between ~200°C and ~300°C and that the signal was mostly removed by 

~350°C.  To overcome the problem associated with weak IRSL signal intensities of K-

feldspars from MB3, a pulsed anneal technique based on the SAR procedure was used, 

and a sensitivity-corrected IRSL signal was obtained for different preheat temperatures.  

Two of these SAR-based pulsed anneal experiments were performed.  The first (Figure 

9.10) suggested that the IRSL signal was mostly removed by heat treatments between 

~180°C and ~300°C.  The second, more sound, pulsed anneal experiment (Figure 9.12) 

showed that the IRSL signal did not begin to be removed until ~220°C, with substantial 

signal still present at 300°C, and some signal remaining at 400°C.  This suggests that 

the IRSL signal originates from traps associated with TL peaks in the region of 220°C 

to 410°C.  The pulsed anneal experiments could not conclusively identify the 

dependence of the IRSL signal on preheat or cutheat temperature, although the results 

presented in Figure 9.12 are considered more valid than those in Figure 9.10, due to the 

improved design of the experiment. 
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9.4.3 Relationship between IRSL and TL 

 Experiments were performed to assess whether an association could be observed 

between the IRSL and TL signals of K-feldspars from MB3.  A step-by-step outline of 

the experiment is presented in Table 9.3.  A ~1000-grain aliquot of MB3 was annealed 

at 500°C.  It was then given a laboratory beta dose of 240 Gy and heated to 500°C at a 

rate of 5°C/s while the TL was measured to serve as a first control.  It was then given 

another 240 Gy dose, stimulated with the IR diodes (100 s at 50°C) and the TL was 

measured.  The aliquot was then given a third 240 Gy dose, preheated to 260°C for 60 s, 

and its TL was measured.  Finally, the aliquot was given a fourth 240 Gy dose, 

preheated, stimulated with the IR diodes, and the TL was measured.  This experiment 

allowed the effects of preheating and IR stimulation on the TL curve to be assessed for a 

laboratory-irradiated sample. 

 
Table 9.3: Step-by-step outline of the experiment described in this section. 

 
 

 TL curves are presented in Figure 9.13a.  Both TL curves that were not preceded 

by a preheat (i.e., ‘Dose’ and ‘Dose + IR’) overlap each other for temperatures above 

150°C, suggesting that IR stimulation has little effect on the high-temperature region of 

the TL curve.  The same is true for the two TL curves that were preceded by a preheat 

(i.e., ‘Dose + PH’ and ‘Dose + PH + IR’).  The only differences are in the lower 

temperature region of the TL curves.  For the TL curve preceded by a preheat and IR 

stimulation, there is a very small low temperature peak (~150°C) not present in the TL 
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curve that was preceded only by a preheat.  This small peak is most likely the result of 

phototransfer of charge into low-temperature TL peaks, which had been emptied by the 

260°C preheat, following IR stimulation.   

 

 
Figure 9.13: a, TL curves for the same aliquot following various laboratory treatments.  b, The TL 
curve following irradiation was subtracted from the TL curve following irradiation and IR 
stimulation, showing the effect of IR stimulation on the TL curve.  c, The TL curve following an 
irradiation and a preheat was subtracted from the TL curve following an irradiation, preheat, and 
IR stimulation.  Note the log-linear scale on the y-axis of (a) and the linear scale on the y-axis of (b) 
and (c). 
 

To elucidate the temperature interval over which the TL signal changed 

following IR stimulation, the TL curves were subtracted from one another.  When the 

TL curve following only an irradiation is subtracted from the TL curve following an 

284 
 



Chapter 9: Characterising the luminescence signals of quartz and feldspar from 
Moche Borago 

 

irradiation and IR stimulation, the signal loss due to IR stimulation is greatest in the low 

temperature region (≤150°C; Figure 9.13b).  There is then a region of smaller signal 

loss that begins to decrease from ~290°C and has disappeared by 370°C.  After a brief 

temperature region where there is no loss of signal due to IR stimulation, the TL curve 

following IR stimulation becomes larger than its control for temperatures over ~450°C.  

This same feature is present when the two TL curves measured after irradiation and 

preheating are examined (Figure 9.13c).  A small amount of phototransfer is observed 

from 100°C to 280°C, followed by a region of TL signal loss (280°C to 370°C) due to 

IR stimulation, with the greatest loss occurring at ~320°C.  Above 380°C, the TL signal 

measured after IR stimulation is larger than that of the control.   

These results are different to those from a similar experiment performed on K-

feldspars from Mumba (Section 7.3.2).  For MR9, the TL peaks at 350°C and 430°C 

decreased following IR stimulation, with the decrease for the latter peak being ~3 times 

greater than the decrease of the former (Figure 7.5).  This, along with results from 

several other experiments (see Chapter 7), was taken to suggest that the 430°C TL peak 

was associated with the source trap for the IRSL signal in K-feldspar separates from 

Mumba.  As was shown in Section 9.4.1, the discrete TL peaks observed for MR9 are 

not apparent in MB3.  Results from the experiments reported in this section show that a 

decrease in TL signal following IR stimulation of grains of MB3 occurs from the low-

temperature region of the TL curve (~180°C) up to ~370°C (Figure 9.13b, c).  These 

results suggest that IRSL from K-feldspar separates from MB3, when compared to 

MR9, may be associated with a lower temperature region of the TL glow curve (i.e., 

below 370°C).  The increase in TL signal intensity above ~450°C following IR 

stimulation is also atypical.  The reason for this increase of signal in the high-

temperature TL region following IR stimulation is not presently known. 

 

9.5 Characterising the IRSL signal of K-feldspars from Moche Borago 

 In K-feldspars, the temperature at which IR stimulation is performed has an 

effect on the resultant luminescence signal intensity and rate of IRSL decay as a 

function of stimulation time (Duller, 1997).  During investigations of K-feldspar from 

Mumba, the IRSL signal intensity was shown to increase with stimulation temperature 

up to 300°C (Section 7.4.2).  This was in agreement with many other studies that have 
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reported that the IRSL signal intensity increases with increased stimulation 

temperatures (e.g., Duller and Wintle, 1991; McKeever et al., 1997; Poolton et al., 

2002b; Thomsen et al., 2008).  Results from Mumba also showed that the shape of 

IRSL decay curves changed with stimulation temperature, in accordance with the results 

reported by Duller and Wintle (1991) and McKeever et al. (1997).  When the isothermal 

TL produced by the elevated stimulation temperatures was taken into account (Figure 

7.11) and subtracted (Figure 7.12), the rate of decay of the IRSL signal was shown to 

increase with increased stimulation temperatures up to 400°C.  In addition, it was shown 

that as the IR stimulation temperature was increased up to at least 225°C, the fading rate 

of the resulting IRSL signal decreased.   

Given the relatively dim luminescence signals of K-feldspars from MB3, an 

increased IRSL yield from an elevated-temperature IR stimulation would be beneficial 

for IRSL investigations.  Before elevated-temperature IR stimulations could be used for 

dose estimation or fading measurement, however, the dependence of the measured IRSL 

signal, the isothermal TL signal, and the isothermal TL-subtracted IRSL signal on 

stimulation temperature was assessed 

 

9.5.1 IRSL dependence on stimulation temperature 

9.5.1.1 Characterising the dependence of the measured IRSL signal on stimulation 

temperature 

 Two ~1000-grain aliquots of MB3 were annealed at 500°C.  They were then 

given a laboratory beta dose of 120 Gy, preheated to 260°C for 60 s, and stimulated 

using the IR diodes for 100 s at a specified temperature.  This procedure was performed 

for IR stimulation temperatures of 50°C, 100°C, 150°C, 200°C, 225°C, 250°C, 300°C, 

350°C, 400°C, 450°C and 500°C.  The intensity of the IRSL signal, calculated as the 

sum of the counts in the initial 2 s minus a background derived from the counts in the 

final 10.2 s of IR stimulation, is presented in Figure 9.14.  The IRSL signal intensity 

increases steadily from 50°C to 250°C.  There is then a large increase in sensitivity at 

300°C and, again, at 350°C.  The signal then starts to decrease from 400°C to 500°C.  

The increase in IRSL intensity up to a stimulation temperature of 250°C agrees with the 

results for Mumba described in Section 7.4 and also with other studies (e.g., Bailiff and 

Poolton, 1989; Duller and Wintle, 1991; McKeever et al., 1997; Thomsen et al., 2008).   
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Figure 9.14: IRSL signal (calculated as the background-subtracted sum of the first 2 s of measured 
IRSL) plotted as a function of stimulation temperature. 
 

The IRSL signals were normalised to the first 0.2 s of stimulation time (i.e., the 

first data channel) to assess how the shape of the decay curve changed as a function of 

increased stimulation temperature (Figure 9.15a, c).  The normalised decay curves for 

each stimulation temperature were then divided by the normalised decay curve for IR 

stimulation at 50°C.  This data is plotted in Figure 9.15 (b and d) for the first 20 s of 

stimulation time to show how the IRSL decay curves differ in shape, relative to IRSL at 

50°C, over the early period of stimulation.  The shapes of the IRSL decay curves are 

similar for stimulation temperatures between 50°C and 200°C.  They then change at 

225°C and 250°C.  The rate of decay increases slightly from 50°C to 225°C, before 

decreasing at 250°C (Figure 9.15b).  The rate of decay then increases again at 300°C 

and 350°C (which has a similar decay curve shape to IR stimulation at 50°C) before 

decreasing slightly at 400°C.  The decay curves for IR stimulation at 450°C (which has 

a similar shape to IRSL at 250°C) and 500°C then change shape and rate of decay 

substantially.   

These patterns of changes in decay curve shape as a function of IR stimulation 

temperature are similar, but not identical, to those observed for K-feldspars from 

Mumba.  At Mumba, the changes were inferred to be the result of a substantial 

isothermal TL signal underlying the IRSL signal at stimulation temperatures above 

250°C.  When this unwanted isothermal TL signal was characterised and removed, the 

true response of IRSL to stimulation temperature could be assessed. 
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Figure 9.15: a and c, Normalised IRSL decay curves for various stimulation temperatures.  The 
normalised curves are shown in the two graphs to show the difference in decay curve shape for 
stimulation temperatures of 50-250°C (a) and from 300-550°C (c).  IRSL at 50°C is also shown in 
(c) for comparison.  The normalised decay curves (from a and c) were divided by the normalised 
decay curve for IRSL at 50ºC (b and d, respectively) to plot the decay rate at various elevated 
temperatures relative to the IRSL at 50°C over the first 20 s of IR stimulation.  Note that in (d), the 
IRSL signal measured at 500°C continues to increase to a ratio of 5.7 by 20 s of IR stimulation. 
 

9.5.1.2 Characterising the isothermal TL signal 

To characterise the isothermal TL signal for MB3, a second experiment was 

performed using the same two aliquots from the experiment described in the previous 

section (Section 9.5.1.1).  The aliquots were annealed at 500°C, given a laboratory beta 

dose of 120 Gy, preheated to 260°C for 60 s, then brought to an elevated temperature 

and held there while the isothermal TL was recorded for 100 s.  This procedure was 

repeated, and the isothermal TL recorded for elevated temperatures of 50°C, 100°C, 

150°C, 200°C, 225°C, 250°C, 300°C, 350°C, 400°C, 450°C and 500°C.  Results are 

presented in Figure 9.16, and are similar to the results of an analogous experiment 

performed on samples from Mumba (Figure 7.11).  The background-subtracted 

isothermal TL signal intensity (Figure 9.16b) was calculated in the same way as the 

IRSL signal intensity.  The isothermal TL signal is negligible up to a temperature of 

200°C, after which it increases slightly at 225°C and 250°C.  There is then a substantial 
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increase in the isothermal TL signal at 300°C, and again at 350°C.  From 400°C to 

500°C, the isothermal TL signal decreases, although a sizeable signal is still measured.  

The stimulation temperature of 350°C resulted in the brightest measured IRSL and 

isothermal TL signal from MB3.  The isothermal TL signal intensity for temperatures 

below 250°C is likely small because the 260°C preheat emptied most of the traps 

associated with TL at these temperatures. 

 

 
Figure 9.16: a, Isothermal TL curves measured by holding an aliquot at a specified temperature for 
100 s.  Curves have been normalised to the first 0.2 s of stimulation time to show differences in 
shape and decay rate.  b, The isothermal TL signal (calculated as the background-subtracted sum 
of counts in the first 2 s of stimulation) plotted as a function of stimulation temperature. 
 

 Normalised isothermal TL curves (normalised to their first 0.2 s of stimulation) 

are presented in Figure 9.16a to show how the shape of the isothermal TL signal 

changes with stimulation temperature.  Isothermal TL curves for temperatures of 50°C, 

100°C and 150°C are indistinguishable from background and were not included in the 

figure for clarity.  For IR stimulation temperatures of 200°C, 225°C and 250°C, the 

isothermal TL signal increases over the first ~10 s of stimulation time before 

decreasing.  The shape of the isothermal TL curves at temperatures of 200°C and 225°C 

are similar, with the latter being ~8 times brighter than the former.  At 250°C, after 

reaching a peak at ~10 s, the signal decays more quickly than either 200°C or 225°C.  

The decay rate for the isothermal TL curves then increase at 300°C and again at 350°C 

and 400°C.  The curves for 350°C and 400°C are similar in shape despite the signal 

intensity of the latter being ~60% that of the former.    The decay rate then decreases at 
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450°C and 500°C, at which point the shape of the isothermal TL curve becomes 

markedly different, decaying to a substantially higher background, similar to what was 

observed for the IRSL signal at 500°C (Figure 9.15c). 

 

9.5.1.3 Assessing the dependence of the isothermal TL-subtracted IRSL signal on 

stimulation temperature 

 Since all measurements presented in this section were made on the same 

aliquots, the isothermal TL curves (Figure 9.16) could be subtracted from the measured 

IRSL curves (Figure 9.15a, c) to show the luminescence response to IR stimulation at 

elevated temperatures without the underlying isothermal TL signal (Figure 9.17).  These 

results more appropriately show the dependence of IRSL on stimulation temperature.  

Figure 9.17b shows the dependence of the isothermal TL-subtracted IRSL signal 

intensity on stimulation temperature.  The signal increases in a systematic way up to 

250°C.  There is then a large increase in signal intensity at 300°C, after which the signal 

begins decreasing.  The largest decrease in signal intensity is between 350°C and 

400°C, after which it continues to decrease up to 500°C.  These results differ from those 

for Mumba (Figure 7.12), which, after a systematic increase up to 250°C, exhibited no 

change up to 300°C and then a slow decrease of signal intensity at higher temperatures. 

 

 
Figure 9.17: a, Normalised isothermal TL-subtracted IRSL decay curves at specified stimulation 
temperatures.  Curves are normalised to show the dependence of the rate of decay and shape of the 
IRSL signal on stimulation temperature.  All curves are normalised to the first 0.2 s of stimulation 
time.  b, The isothermal TL-subtracted IRSL signal (calculated as the background-subtracted sum 
of the first 2 s of measured IRSL) plotted as a function of stimulation temperature. 
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Normalised isothermal TL-subtracted IRSL decay curves are displayed in Figure 

9.17a to show how the rate of decay of the IRSL signal changes with stimulation 

temperature.  As discussed in Chapter 7, two different patterns have been reported in the 

literature for the way in which the shape of the IRSL decay curve changes with 

increases in stimulation temperature up to ~250°C.  Duller and Wintle (1991) and 

McKeever et al. (1997) observed that the decay rate of the IRSL curves increased with 

increasing stimulation temperature.  This behaviour was also observed for K-feldspars 

from Mumba (Section 7.4.2.4).  Alternatively, Poolton et al. (2002a) and Thomsen et al. 

(2008) reported that the decay curve shape did not change with increasing stimulation 

temperature for their samples.  The results for Moche Borago are more similar to those 

reported by Poolton et al. (2002a) and Thomsen et al. (2008), and are in contrast to the 

results from Mumba (Figure 7.12).  Figure 9.17a indicates that there is very little change 

in IRSL decay curve shape for MB3 at stimulation temperatures of between 50°C and 

400°C.  The rate of IRSL decay then decreases substantially at 450°C and 500°C, and 

decays to a higher absolute background level.   

 

9.5.1.4 Comparing IRSL from Mumba and Moche Borago 

 The experiments that have been described in the previous three subsections 

(Sections 9.5.1.1–9.5.1.3) were similar to those described in Section 7.4.2 for Mumba.  

A comparison of the results from the two sites suggests that there may be a TL peak in 

MB3 analogous to the optically insensitive 350°C TL peak in MR9.  The isothermal TL 

signal attains a maximum intensity at 350°C for both MB3 and MR9, indicating that 

there is a large amount of charge that can be thermally evicted in the TL region around 

350°C.  This may be associated with the results of the measured IRSL signal intensity 

(Figure 9.14 and Figure 7.8b), for which there is a large increase at 300°C for both MB3 

and MR9.  For Mumba, this was explained as being the result of the accumulation of 

charge in the trap associated with the 350°C TL peak over the previous cycles of 

irradiation, preheating and IR stimulation.  The accumulated charge, which began to be 

isothermally evicted when the IR stimulation temperature was held at 300°C, suggested 

that the trap associated with the 350°C TL peak was relatively optically insensitive 

(Section 7.4.2).  This was supported by subsequent experiments in which IR 

stimulations at elevated temperatures were followed by a 500°C heat treatment (an 
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experiment that was not performed on MB3).  When the latter was included, the 

increase in IRSL intensity at 300°C was considerably reduced, most likely because the 

heat treatment thermally removed all charge from the 350°C TL peak after each cycle, 

preventing the progressive accumulation of charge.   

For MB3, the fact that the measured IRSL signal intensity at 350°C is larger 

than that at 300°C (i.e., in contrast to what was observed for MR9) should be addressed.  

The increase in signal intensity at 350°C may be a function of the low sensitivity of the 

IRSL signal compared to the TL signal for MB3.  The dim IRSL means that the large 

isothermal TL signal at 350°C would add proportionally more to the measured IRSL 

signal at 350°C for MB3 than for MR9.  This interpretation is supported by the 

observation that when the isothermal TL is subtracted from the measured IRSL, the 

resulting signal intensity at 350°C is lower than that at 300°C (i.e., in contrast to what is 

observed for the measured IRSL signal, but in agreement with the results from MR9).  

While not conclusive, these results are consistent with the presence of an optically less-

sensitive TL peak in MB3 analogous to the TL peak at ~350°C in MR9. 

 There are several substantial differences in the response of the IRSL signal to 

stimulation temperature between K-feldspars from Mumba and Moche Borago.  The 

different behaviours regarding the change in IRSL decay rate with stimulation 

temperature (Figure 9.17 and Figure 7.12) have the broadest implications.  For K-

feldspars from both sites, the IRSL signal intensity was shown to increase with 

stimulation temperature up to at least 300°C, in agreement with the literature (Duller 

and Wintle, 1991; McKeever et al., 1997; Poolton et al., 2002b; Thomsen et al., 2008).  

The differences between MB3 and MR9 lie in the rate of decay of the IRSL signal at 

different stimulation temperatures.  For MR9, the rate of decay increases with 

stimulation temperature up to ~400°C, in agreement with Duller and Wintle (1991) and 

McKeever et al. (1997).  This suggests that increases in the IR stimulation temperature 

may increase a thermally assisted process of recombination (Section 7.4.2).  For MR3, 

there is no change in IRSL decay rate with stimulation temperature up to ~400°C, in 

agreement with Poolton et al. (2002b) and Thomsen et al. (2008).  Thomsen et al. 

(2008) conclude that this relationship between IRSL decay rate and stimulation 

temperature suggests that tunnelling recombination dominates IRSL production at the 

stimulation temperatures measured, and that thermal assistance is not significant.    
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9.5.1.5 Summary of results for MB3 

 The potential benefits of using an elevated-temperature IR stimulation for 

luminescence investigations of MB3 are substantial.  They include the reduction of 

fading rate reported by several studies (Thomsen et al., 2008; Buylaert et al., 2009) and 

an increased IRSL yield at elevated temperatures (Duller and Wintle, 1991; McKeever 

et al., 1997; Poolton et al., 2002b).  The latter feature would be particularly beneficial 

for measurement of the relatively dim IRSL of MB3.  The measured IRSL signal from 

MB3 was shown to increase in intensity with stimulation temperature up to 350°C.  The 

isothermal TL signal was assessed and shown to be present at temperatures greater than 

200°C, attaining a maximum intensity at 350°C.  The isothermal TL signal was 

observed not to affect the IRSL signal for stimulation temperatures below ~200°C when 

a 260°C preheat was applied.  These results indicate that an IR stimulation temperature 

of 200°C is the highest that can be used to avoid the inclusion of any unwanted 

isothermal TL in the measured IRSL signal from Moche Borago. 

 

9.5.2 The post-IR IRSL signal 

The post-IR IR stimulation procedure was described in detail in Section 7.5.  

Briefly, it involves an IR bleach (100 s at 50°C) following the regenerative and test dose 

preheats, and prior to the measurement of IRSL at an elevated temperature (e.g., 225°C; 

Jain and Singhvi, 2001; Thomsen et al., 2008).  Several studies have reported that the 

post-IR IRSL signal is bleachable, can recover a known dose, and has a substantially 

lower rate of anomalous fading than the IRSL signal measured at 50°C (Thomsen et al., 

2008; Buylaert et al., 2009).  Results for K-feldspar separates from Mumba (Chapter 7) 

confirm these features of the post-IR (50°C) IRSL (225°C) signal, showing that the 

signal is bleachable, can recover a known laboratory dose, and has a lower rate of 

anomalous fading than the IRSL signals measured at all stimulation temperatures tested 

for MR9.  The post-IR IRSL signal was then used to obtain ages, which were in 

agreement with those obtained from single grains of quartz (see Chapter 8). 

Results from the stimulation temperature tests on K-feldspar separates from 

MB3 (Section 9.5.1) have implications for the potential use of a post-IR IR stimulation 

procedure.  Thus far, most uses of a post-IR IRSL procedure reported in the literature 

(e.g., Thomsen et al., 2008; Buylaert et al., 2009) and in this thesis have used an 
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elevated temperature IR stimulation of 225°C.  In Chapter 7, for K-feldspar from 

Mumba, it was shown that IRSL measured at, or above, 250°C included a substantial 

isothermal TL signal, suggesting that 225°C was the highest appropriate IR stimulation 

temperature.  In the case of MB3, there is a noticeable isothermal TL signal when IR 

stimulation is performed at 225°C and above (Figure 9.16).  The isothermal TL signal at 

225°C is approximately eight times greater than the isothermal TL signal at 200°C.  

This suggests that the highest stimulation temperature that could be used without any 

unwanted isothermal TL contribution is 200°C.  Therefore, the post-IR IR stimulation 

of MB3 was performed at 200°C, instead of the oft-used 225°C. 

 

 
Figure 9.18: IRSL decay curves produced during post-IR IRSL experiments performed on an 
aliquot of MB3.  a, IRSL decay curves shown for an IR bleach (100 s at 50°C) and the post-IR IRSL 
(100 s at 200°C).  The inset shows the same two decay curves normalised to the first 0.2 s of 
stimulation time to show difference in their decay curve shape.  b, Normalised decay curves for 
post-IR IRSL at various stimulation temperatures.  All of these decay curves were measured at the 
specified temperature following an IR bleach (at 50°C). 
 

Decay curves are presented in Figure 9.18a for an IR bleach (50°C) and a post-

IR IR stimulation (200°C) of K-feldspar from MB3.  These results are similar to those 

for Mumba (Figure 7.5.2), although they are different in magnitude.  The post-IR IRSL 

signal is ~54% as bright as the signal induced by the IR stimulation at 50°C that 

preceded it (Figure 9.18a).  In addition, the post-IR IRSL signal decays more slowly 

than the signal induced by the IR stimulation that preceded it.  This decrease in decay 

rate is consistent with the results from Mumba (Figure 7.13a) and with those reported 

by Thomsen et al. (2008).  When the temperature of the post-IR IR stimulation is varied 

between 50°C and 250°C (Figure 9.18b), the rate of decay is slowest for IR stimulation 

at 50°C, which produced very little luminescence.  The rate of decay increases from IR 
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stimulation at 50°C to stimulation at 200°C, at which temperature the signal decays the 

fastest.  The rate of decay then decreases for stimulation at 225°C and 250°C.  This 

pattern of change in the decay rate with increasing stimulation temperature is the same 

as that observed for standard IRSL (i.e., without a preceding bleach; Figure 9.17).  

Therefore, similar to the inference made in Section 7.5, the decrease in decay rates for 

stimulation temperatures above 200°C is thought to be the result of the underlying 

isothermal TL signal.  This corroborates the conclusion drawn in the previous section, 

that 200°C is the highest stimulation temperature that can be used for standard IR or for 

post-IR IR stimulation of MB3, to ensure that no unwanted TL signal underlies the 

IRSL signal. 

 

9.5.3 Assessing the optimal IR stimulation conditions for samples from Moche 

Borago  

In Section 7.6, it was demonstrated that IRSL at elevated stimulation 

temperatures and the post-IR IRSL signal performed as well as IRSL at 50°C in the 

SAR procedure, and had lower rates of anomalous fading, for samples from Mumba.  

To compare how various stimulation conditions performed in the SAR procedure, 

modified dose recovery experiments were performed on K-feldspar from MB3.  If this 

experiment had been performed in the conventional manner, five sets of three, ~1000-

grain aliquots (fifteen in total) would have been prepared and bleached in natural 

sunlight for at least three days.  Each set would then have been given a known 

laboratory dose, which would be measured using the SAR procedure.  There was not 

enough sample material remaining, however, to prepare 15 aliquots for a single 

experiment and leave enough grains for the measurement of De values.  As a result, 

three aliquots were repeatedly annealed at 500°C.  These aliquots were then given a 

laboratory dose of 120 Gy, which were then measured using SAR procedure (see Table 

3.2), consisting of regenerative doses of 60, 120, 180, 0 and 60 Gy, a test dose of 60 Gy, 

and a regenerative and test dose preheat of 260°C for 60 s.  The specified IR stimulation 

conditions were performed for 100 s.  After the given dose was measured using the 

SAR procedure, the aliquots were heated to 500°C and given a dose of 120 Gy, which 

was measured using the SAR procedure with a different set of IR stimulation 

conditions.  Five experiments were performed to test IR stimulation temperatures of 
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50°C, 100°C, 150°C and 200°C and a post-IR (50°C) IRSL (200°C) procedure.  It 

should be noted, however, that since this experiment was conducted using grains that 

had been annealed at 500°C, the applicability of the following results to natural grains 

may be limited.   

The IRSL intensity increased with stimulation temperature, as was expected 

following the results presented in Section 9.5.1.  The post-IR IRSL procedure resulted 

in an IRSL intensity that was ~40% of that produced by IRSL at 50°C, making it the 

weakest signal measured.  For this reason, larger uncertainties are associated with 

values produced by the post-IR IRSL procedure.  Results for the tests of SAR suitability 

(i.e., measured/given dose ratio, the recycling ratio and the recuperation value) are 

presented in Figure 9.19.  While all aliquots for all stimulation conditions were able to 

recover the given dose within 2σ, the only conditions for which all three aliquots 

recovered the given dose within 1σ are IRSL at 150°C, IRSL at 200°C and the post-IR 

IRSL procedure (Figure 9.19a).  Furthermore, as stimulation temperature is increased 

from 50°C to 200°C (including the post-IR IRSL at 200°C), the weighted mean 

measured/given dose ratio increases from 0.95 ± 0.01 to 0.99 ± 0.02. 

Results for the recycling ratios present a different pattern (Figure 9.19b).  All 

three aliquots recycled a duplicated dose within 1σ for all four elevated IR stimulation 

temperatures.  All aliquots stimulated using the post-IR IRSL procedure also produced 

satisfactory results, although only two of the aliquots recycled the duplicate dose within 

1σ.  The final SAR suitability test, the recuperation value, showed a different pattern.  

As the IR stimulation temperature was increased, the recuperation value decreased, 

from a weighted mean of 11.5 ± 0.3% at 50°C to 5.4 ± 0.2% at 200°C.  The post-IR 

IRSL procedure produced a similar recuperation value to that obtained for IR 

stimulation at 200°C (weighted mean of 6.1 ± 0.4%).  Only IR stimulation at 200°C and 

the post-IR IRSL procedure produced recuperation values at or below the 5% rejection 

threshold, and below the value (i.e., 6.3 ± 0.1%) accepted by Buylaert et al. (2008). 

 These results suggest that, in spite of the relatively high recuperation values, all 

of the stimulation conditions were capable of recovering a known dose within 2σ.  In 

addition, all aliquots for all stimulation conditions (with the exception of one aliquot 

from the post-IR IRSL set) recycled a duplicate dose within 1σ.  This validates the 

fading test procedures presented later in this chapter (Section 9.6.2).  The fading tests 
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are effectively duplicate regenerative doses repeated with varying amounts of delay 

time between the preheat and the measurement of the IRSL.  Since all aliquots for all 

stimulation conditions performed well in the recycling ratio test, it can be inferred that 

the measurement of fading rates using these stimulation conditions is valid.   

 

 
Figure 9.19: Results from experiments described in this section using three annealed aliquots of 
MB3.  The suitability of the SAR procedure was assessed for the various IRSL signals using three 
standard tests: a, Measured/given dose ratio, b, recycling ratio, and c, recuperation value 
([LN/TN]/[L0/Tx], where N is the given dose). 
  

9.6 Characterisation of anomalous fading in MB3 

 Anomalous fading is an ubiquitous feature of the luminescence signal of K-

feldspars (Wintle, 1973; Spooner, 1994b, Huntley and Lamothe, 2001; Huntley and 

Lian, 2006).  Any attempts to use K-feldspar separates as a luminescence dosimeter 

must either circumvent or correct for this malign phenomenon.  By characterising the 

anomalous fading behaviour of K-feldspar separates from Mumba (Chapter 7), the 

fading rate was reduced from ~15%/decade for IRSL measured at 50°C to ~1%/decade 

for the post-IR IRSL signal (Figure 7.17).  The lower fading rates meant that IRSL ages 
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corrected for fading were less reliant on the age-correction model and its associated 

limitations and uncertainties (e.g., Huntley and Lamothe, 2001), resulting in a more 

robust chronology.  Following the results for Mumba, investigations were undertaken 

into the fading behaviour of K-feldspar separates from Moche Borago, using sample 

MB3. 

  

9.6.1 Anomalous fading: TL 

 To observe how the TL signal of K-feldspar from MB3 was affected by 

anomalous fading, a storage experiment was performed.  Two aliquots consisting of 

~1000 grains of K-feldspar from MB3 were heated to 500°C at a rate of 5°C/s, and the 

TL of the natural signal was recorded (natural in Figure 9.20a).  They were then given a 

laboratory irradiation of 240 Gy and the TL was immediately measured (curve 1 in 

Figure 9.20a).  The aliquots were then given an identical laboratory irradiation and 

stored for ~15 hours before the TL was measured again (curve 2 in Figure 9.20a).  

Figure 9.20c presents these data, plotted on a log-linear y-axis.  The absolute TL 

intensity of the natural signal is much smaller than that of either laboratory-irradiation 

induced TL curve over the entire temperature range up to ~490°C.  The TL intensity is 

also substantially reduced over the entire temperature range after the 15 hour delay.  

When the two laboratory-irradiated glow curves are compared, the position of the main 

TL peak shifts slightly.  The TL measured immediately after irradiation peaks at 

~235°C, while the TL measured after the delay peaks at ~250°C. 

In the temperature range from 0 to 100°C, TL curve 2 is between 10 and 100 

times less bright than TL curve 1 (Figure 9.20c).  Between ~100°C and ~200°C, the 

amount of signal loss between the two curves is also large.  It is likely that the large 

difference between TL curves 1 and 2 below 200°C is the result of a thermally unstable 

TL signal, as opposed to the anomalous fading.  This can be inferred when the TL of the 

natural is compared to TL curve 1 and 2 (Figure 9.20c).  The natural TL curve does not 

begin to increase until ~200°C, compared to ~100°C for TL curve 2 and ~50°C for TL 

curve 1.  This progressive loss of signal in the low-temperature (<200°C) region of the 

glow curve with delay time suggests that the difference between TL curves 1 and 2 over 

the 100–200°C temperature range is the result of the loss of a short-lived, unstable TL 

signal, and the difference between the two curves above ~200°C is the result of longer-
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term anomalous fading.  This lends support to the use of a higher temperature (i.e., 

>200°C) preheat to remove the unstable, low-temperature component. 

 

 
Figure 9.20: The effect of anomalous fading on TL glow curve shape and size.  a, Three TL curves 
measured from the same aliquot.  TL curve 1 was measured immediately after a 240 Gy irradiation 
and TL curve 2 was measured approximately 15 hours after a 240 Gy irradiation.  b, To visualise 
the loss of TL signal with delay time, the two laboratory-irradiated TL curves are subtracted from 
one another (‘TL curve 2’ - ‘TL curve 1’).  c, The same dataset from (a), but plotted on a log-linear 
y-axis. 

 

The effects of anomalous fading can be visualised further by subtracting TL 

curve 1 from TL curve 2 (Figure 9.20b).  The resulting subtraction-curve is the mirror 

image of the TL glow curves, indicating that the TL signal is reduced throughout the 

entire temperature range.  The amount of signal loss between the two curves increases 

between ~100°C and ~200°C, with the greatest loss occurring at ~225°C (Figure 9.20b).  

After ~225°C, the amount of signal loss begins to decrease until ~400°C.  This may 

suggest that the effects of anomalous fading on the TL glow curve are greatest over the 

temperature range ~200°C to 400°C.  For temperatures above ~400°C, the two curves 

are similar, suggesting that the effects of anomalous fading on the TL signal may be 

smaller at higher temperatures (>400°C).  The idea that the high-temperature region of 

the TL curve suffers from less or no anomalous fading has been suggested previously 

by Guérin and Valladas (1980) who worked with volcanic, plagioclase feldspars.  They 

suggested that the malign effects of anomalous fading could be avoided by measuring 

the TL signal at approximately 600°C.  
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A second, similar anomalous fading experiment was performed to elucidate the 

effects of anomalous fading in the high-temperature region of the glow curve.  The 

same two aliquots were heated to 500°C.  They were then given a laboratory dose of 

240 Gy, preheated to 260°C for 60 s, and then their TL curves were measured up to 

500°C.  They were then given the same laboratory dose and preheated again.  They 

were then stored for 2700 s (~46 min) before their TL curves were measured.  A second 

TL curve was measured immediately after irradiation and preheating to check that there 

were no sensitivity changes.  Finally, the aliquots were given the same laboratory 

irradiation, followed by a preheat, and then stored for 15,300 s (~4.25 hr) before their 

TL curves were measured.  The purpose of this experiment was to eliminate the 

influences of the low-temperature TL components that may have obscured the effects of 

anomalous fading in Figure 9.20.  By preheating the aliquots to 260°C the low-

temperature TL peaks, which are not present in the natural, were removed from the 

laboratory-irradiated aliquots.  This allowed for the investigation of how anomalous 

fading affected the higher temperature regions of the TL curve. 

 Results for one representative aliquot are presented in Figure 9.21.  The two TL 

curves that were measured immediately after irradiation and preheating overlap (‘240 

Gy (1)’ and ‘240 Gy (2)’ in Figure 9.21a), indicating that no sensitivity changes 

occurred during the measurement of the ‘240 Gy + 2700 s’ TL curve.  All TL curves, 

regardless of storage time, have the same shape, with a large TL peak between ~300°C 

and 480°C, which peaks at 350°C.  Above 480°C, the each TL signal begins to increase 

slightly, suggesting that an unmeasured, higher temperature TL component may exist.  

When the TL curve measured after no delay is subtracted from the TL curve measured 

after a delay of 15,300 s (Figure 9.21b), the regions of the TL curve that are most 

affected by anomalous fading can be identified.  After storage, the intensity of the TL 

signal is reduced between ~250°C and ~490°C.  The loss in TL signal is a mirror image 

of the TL curves, with the trough at ~350°C.  Between ~490°C and 500°C, there is very 

little change in the TL signal before and after storage.  This corroborates the results 

presented in Figure 9.18, which suggested that the higher temperature region of the TL 

curve may suffer less from anomalous fading than the lower temperature region. 
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Figure 9.21: Anomalous fading in the TL curves from one aliquot of MB3.  a, The two TL curves 
that were measured immediately after irradiation and preheating overlap.  The other two TL 
curves were measured following different storage times between preheating and TL measurement.  
b, The difference between the TL curve measured after a 15,300 s storage time and the TL curve 
measured immediately after the second irradiation and preheat.  This shows the TL signal that has 
been lost due to anomalous fading. 
 

9.6.2 Assessing the rate of anomalous fading of the IRSL signal 

The TL tests described in the previous section confirmed that K-feldspar 

separates of MB3 suffer from anomalous fading.  Experiments were undertaken, 

therefore, to assess both the rate of anomalous fading of the IRSL signal and whether 

the observed fading showed a dependence on IR stimulation temperature.  The latter 

was shown to be the case for MR9, for which the fading rate decreased as the 

stimulation temperature was increased.  The rate of anomalous fading was measured as 

described in Section 7.6.2.1.  In this experiment, two ~1000-grain aliquots that had been 

previously subjected to multiple IR stimulations and heat treatments of 500°C were 

used.  They were given a dose of 120 Gy and immediately preheated (Auclair et al., 

2003) to 260°C for 60 s.  They were then stored for different durations of time that 

ranged from 695 s (~11.5 min) to 36,824 s (~10.3 hr) before being stimulated with the 

IR diodes for 100 s at the specified temperature.  Following the measurement of the 

resulting IRSL (Lx), a test dose cycle was performed that consisted of an irradiation of 
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30 Gy, a 260°C preheat for 60 s, and an IR stimulation for 100 s at the same 

temperature as the Lx measurement.  Stimulation temperatures of 50°C, 100°C, 150°C 

and 200°C were tested.  Each of these IR stimulation temperatures was shown to be 

capable of recycling a duplicate regenerative dose within 1σ (Section 9.5.3), indicating 

that the use of the standard fading measurement procedure was sound.  The fading rate 

of the post-IR IRSL signal was not measured, despite its ability to recycle a duplicate 

regenerative dose. 

This procedure was repeated seven times for various storage durations for each 

aliquot.  Similar to the experiment described in Section 7.6.2.1, the storage times used 

in this experiment were relatively short compared to those used in other studies.  The 

purpose of this experiment was not to correct a measured IRSL age, but to assess the 

fading rate for K-feldspar separates of MB3 and to compare the fading rates for various 

stimulation conditions.  This meant that the number and duration of different storage 

times needed only to be consistent for each stimulation condition.  After the 

measurements described above were performed, the rate of anomalous fading 

(normalised to a g-value of 2 days, g2days) was calculated for each aliquots, as described 

in Section 7.6.2.2.  

Representative results for one of the two aliquots of MB3 are presented in 

Figure 9.22.  The graphs show the weighted regressions from which the g2days values 

were calculated.  There is a decrease in the fading rate as the stimulation temperature is 

increased.  For both aliquots, the fading rate when IR stimulation was performed at 

200°C was ~57% of that for IR stimulation at 50°C.  The observed dependence of 

fading rate on stimulation temperature agrees with the findings of Thomsen et al. (2008) 

and with the results obtained for K-feldspar from Mumba (Chapter 7).  Despite the 

similar behaviour in response to stimulation temperature, the fading rates measured for 

K-feldspars from Moche Borago are significantly larger than any reported by Thomsen 

et al. (2008) and measured for Mumba (with the exception of IR stimulation at 50°C for 

500 s).  The mean fading rate for MB3 using IR stimulation at 50°C is approximately 

four times greater than that from Mumba (mean fading rates of 56 and 14 %/decade for 

MB3 and MR9, respectively).  The difference in mean fading rates at elevated 

stimulation temperatures (200°C for MB3 and 225°C for MR9) is also about four-fold 

(mean fading rates of 32 and 7 %/decade for MB3 and MR9, respectively).  The 
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unusually high rates of fading obtained for MB3 indicate that the measured fading rates 

cannot be representative of fading over geological timescales. 

 

 
Figure 9.22: Results of anomalous fading tests using an aliquot of K-feldspar from MB3.  The 
graphs show the regression lines used to calculate the g2days values displayed in each graph.  The 
fading rate calculations are for IRSL stimulation temperatures of 50°C (a), 100°C (b), 150°C (c) 
and 200°C (d).  The inset to (d) is the same data, replotted after the datapoint for a delay time of 10 
hr was removed.  Dashed lines indicate 2σ. 
 

It should be noted that fits produced by the fading data from the IRSL signal at 

higher temperatures (i.e., 150°C and 200°C, corresponding to Figure 9.22c and d, 

respectively) are poor.  None of the datapoints shown in Figure 9.22d lie within the 2σ 

band.  The poor fits are the result of the datapoints that lies at a delay time of 10 hr.  

When this datapoint is removed from the IRSL (200°C) dataset, the fit improves 

considerably (inset to Figure 9.22d), and the g2days value is reduced to ~14 %/decade.  
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When the datapoint at 10 hr is removed from the dataset plotted in Figure 9.22c, the fit 

also improves and the g2days value decreases (to ~26 %/decade) (inset to Figure 9.22c).  

This pattern of improved fit and decreased g2days values does not hold for the lower 

stimulation temperatures (Figure 9.22a, b).  The poor fits in Figure 9.22 (c and d) 

suggest that the fading rate measured for smaller delay times (<10 hr) may not represent 

the fading rate measured for longer delay times (>10 hr), implying that laboratory-

measured fading rates of the elevated-temperature (150°C and 200°C) IRSL signal of 

MB3 may not be representative of the fading rate over geological timescales.  Given the 

inconsistent fading behaviour of the elevated-temperature IRSL signal of K-feldspar 

from MB3, this signal is considered unsuitable for De determination. 

  

9.6.3 Discussion 

 K-feldspar separates from Moche Borago suffer from significantly more 

anomalous fading than K-feldspars from Mumba.  The disparity in fading rates between 

Moche Borago and Mumba may be a result of the different geological origins of 

sediments from these sites: sediments from Mumba are of metamorphic origin, whereas 

sediments from Moche Borago are of volcanic origin.  The ordering of aluminium and 

silicon atoms in the lattice of crystalline feldspars (the structural state) is largely 

determined by the thermal history of the mineral.  Volcanic feldspars, such as those at 

Moche Borago, typically crystallise at high temperatures and have a disordered 

structural state (Fattahi and Stokes, 2003a).  With the exception of Huntley and Lian 

(2006), who reported observing no difference between the fading rates of volcanic and 

sedimentary feldspars, there is general agreement in the literature that volcanic feldspars 

with a disordered structure tend to suffer from more anomalous fading than low-

temperature ordered feldspars (e.g., Spooner 1994b; Visocekas et al., 1994, 1998; 

Fattahi and Stokes, 2003a).  A comparison of the measured fading rates of K-feldspar 

from Mumba and Moche Borago support this consensus view.   

 The fading-correction model of Huntley and Lamothe (2001) is not expected to 

be valid for samples that are sufficiently old (with ages corresponding to De values that 

fall in the non-linear region of the dose-response curve) or that have high fading rates.  

The IRSL signal from K-feldspar samples from Liang Bua, Indonesia, also had a high 

measured fading rate and could not reliably be corrected for fading, prompting 
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Morwood et al. (2004) to conclude that their IRSL ages should be viewed as minimum 

estimates.  Given the atypically high fading rates measured in the laboratory for a 

sample from Moche Borago, the Huntley and Lamothe (2001) model would be 

inappropriate for calculating fading-corrected ages.  Consequently, any IRSL ages 

obtained for K-feldspars from Moche Borago should be considered as minimum 

estimates. 

 

9.7 De value, dose rate and minimum age estimates for MB3 

 To investigate the natural IRSL signal of MB3, two aliquots (each consisting of 

~1000 grains) were preheated to 260°C for 60 s, and stimulated with IR at 50°C for 100 

s (LN).  This was followed by a test dose cycle consisting of a 30 Gy beta dose, a 260°C 

preheat for 60 s, and an IR stimulation at 50°C for 100 s (TN).  The aliquots were then 

given a 60 Gy regenerative dose, preheated to 260°C for 60 s, and stimulated with IR at 

50°C for 100 s (Lx), followed by a test dose cycle (Tx).  The sensitivity-corrected IRSL 

signal following subsequent regenerative doses of 30, 90, 120, 180, 240 Gy and a repeat 

dose of 60 Gy were used to construct dose-response curves, on to which the sensitivity-

corrected natural signal (LN/TN) was projected to obtain a De estimate.   

Results suggest that the SAR procedure is suitable for MB3, at least in terms of 

the recycling ratio and extent of recuperation.  The weighted mean recycling ratio for 

both aliquots was 0.99 ± 0.06 and the weighted mean recuperation value was 5.7 ± 

1.0%.  Two IRSL decay curves are presented in Figure 9.23a: the natural IRSL signal 

and the IRSL signal following the first laboratory irradiation of 60 Gy.  While the shape 

and intensity of the two decay curves are similar, the normalised curves (inset to Figure 

9.23a) suggest that the laboratory-irradiated signal decays slightly more quickly than the 

natural.  A representative dose-response curve is presented in Figure 9.23b.  Both 

aliquots produced dose-response curves that grew to 240 Gy, but not at a linear rate.  

The curves were fitted by a saturating exponential function and the De values obtained 

for the two aliquots were 67.4 ± 22.6 Gy and 53.2 ± 3.4 Gy.  The weighted mean De 

(53.6 ± 3.4 Gy) and the measured dose rate were then used to calculate an age estimate 

for MB3 (Table 9.4).  No fading measurements were made for these aliquots, so the age 

presented in Table 9.4 is not corrected for anomalous fading and is, thus, considered as 

a minimum estimate of the actual depositional age. 
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Figure 9.23: Results for a representative aliquot of K-feldspar from MB3.  a, The natural IRSL 
signal and the signal produced following a 60 Gy regenerative dose.  The inset shows the same 
curves normalised to their initial 0.2 s stimulation interval.  b, Dose-response curve for the same 
aliquot, with the sensitivity-corrected natural intensity (LN/TN) shown as a solid square on the y-
axis. 
 

 
Table 9.4: Measured dose rate and De data used to calculate the fading-uncorrected age estimate 
for MB3.  The beta dose rate was measured using a GM-25-5 beta counter (see Section 4.2.3.2) and 
was corrected for beta attenuation (see Section 4.3).  The gamma dose rate is based on in situ 
gamma spectrometry measurements (see Section 4.2.3.1).  The cosmic-ray dose rate was calculated 
using the procedures described by Prescott and Hutton (1994) (see Section 4.2.2) and the total dose 
rate was corrected for the measured water content (see Section 4.3).  

 
 

 

9.7.1 Discussion of fading rate, De and age estimates for MB3 

Given the presence of a measurable natural IRSL signal, the fading rate 

measured in the laboratory (average of ~56 %/decade for IRSL at 50°C; Section 9.6.2) 

cannot be valid over longer time scales.  If it were, then a measurable natural signal 
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would not be expected.  Why, then, is the measured fading rate so high?  It is possible 

that K-feldspars from MB3 may have a high proportion of close trap-recombination 

centre pairs (i.e., those that tunnel and cause anomalous fading) compared to distant 

trap-recombination centre pairs (i.e., those that do not tunnel).  In nature, electrons 

would progressively accumulate in distant trap-recombination centre pairs, whereas the 

close trap-recombination centre pairs would remain empty due to tunnelling.  During 

laboratory irradiation, many electrons may become trapped in both close and distant 

trap-recombination centre pairs.  Therefore, the laboratory-induced IRSL signal (Lx) 

would likely be dominated by the recombination of electrons associated with close trap-

recombination centre pairs, whereas the natural IRSL signal (LN) would likely be 

dominated by the recombination of electrons associated with distant trap-recombination 

centre pairs.   

Since the origin of the laboratory-irradiated and natural IRSL signals may be 

different, it would be inappropriate to compare the two signals.  As the probability of an 

electron reaching a recombination centre is higher for close trap-recombination centre 

pairs (Poolton et al., 1994), then an IRSL signal dominated by close trap-recombination 

centre pairs would likely decay faster than an IRSL signal dominated by distant pairs, 

and this is borne out by the faster rate of decay of the regenerative-dose IRSL signal 

compared to the natural signal (Figure 9.23a).  Consequently, the projection of LN/TN on 

to the regenerated dose-response curve, and the resulting De estimate, may be invalid. 

The age estimate presented in Table 9.4 was calculated using the weighted mean 

of two De values and is considered a minimum estimate.  Given, 1) the caveats related 

to the measured De values, 2) that the fading rate was not measured for the IRSL signal 

from these two aliquots and, thus, no fading correction was made to the age, and 3) the 

ambiguity of many of the luminescence behaviours described in this chapter, including 

the unusually high fading rate, the fading-uncorrected age for K-feldspar from MB3 

should be regarded with caution. 

 

9.8 Conclusions 

The results of luminescence investigations of quartz and K-feldspar separates 

from Moche Borago, Ethiopia will be summarised in this section. 
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o The small quantities of quartz that could be extracted from the Moche Borago 

samples prevented the use of this mineral as a dating dosimeter.  Luminescence 

investigations of quartz from MB1 (the only sample from which quartz could be 

extracted) indicated that the OSL signal was weakly luminescent and possessed 

characteristics that made it unsuitable for burial dose estimation using the SAR 

procedure.  LM-OSL investigations showed that no fast component was present 

and that the OSL signal was dominated by slow components.  These results are 

in general agreement with those of other OSL investigations of volcanic quartz 

(e.g., Choi et al., 2006b; Tsukamoto et al., 2003, 2007; Westaway, 2009). 

o When luminescence investigations of K-feldspar separates from Moche Borago 

were undertaken, the blue TL and IRSL emissions, isolated using the standard 

blue filter combination (BG39 + Kopp 7-59), produced the brightest measured 

signal.  All subsequent measurements were performed using this filter 

combination. 

o The TL signal of natural aliquots of K-feldspar displayed two distinguishable 

humps/peaks at ~310°C and ~480°C, and did not begin increasing above 

background until ~200°C.  The TL glow curves for laboratory-irradiated aliquots 

possessed one broad TL peak, extending from ~100°C to ~400°C, centred on 

~230°C.  The large peak in the laboratory-irradiated TL signal was shown to 

have a large, thermally unstable component in the low-temperature region.  The 

TL signal in the region of ~350°C was inferred to be roughly analogous to the 

optically insensitive 350°C TL peak observed for samples from Mumba. 

o No discrete association could be made between the TL and IRSL signals for K-

feldspars from Moche Borago, as was feasible for Mumba.  Results suggest, 

however, that the IRSL may be associated with the lower temperature region of 

the TL signal. 

o Pulsed anneal experiments were inconclusive, resulting in two different 

possible relationships between preheat temperature and IRSL intensity.  

First, the IRSL signal could mostly be removed by heating up to ~300°C, 

indicating that the low-temperature region of the TL signal was 

associated with IRSL production.  Second, the IRSL signal could be 

removed by heating over the temperature range ~220°C to 400°C.  The 
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o In laboratory-irradiated aliquots, an IR stimulation was shown to remove 

the TL signal from low temperatures (<100°C) up to approximately 

370°C.  This suggests that the IRSL signal from Moche Borago K-

feldspars is associated with a lower temperature region of the TL curve 

(i.e., below 370°C) than is the IRSL signal from Mumba. 

o The thermally unstable, low-temperature TL component that may be associated 

with IRSL production was present in laboratory-irradiated aliquots but not in the 

natural signal.  This necessitated the use of a high-temperature preheat (i.e., 

260°C for 60 s) to remove the low-temperature, thermally unstable TL signal, so 

that accurate comparisons of the IRSL signal induced by natural and laboratory 

irradiations could be made. 

o The IRSL signal was shown to be dependent on stimulation temperature.   

o The measured IRSL output was shown to increase as stimulation 

temperature was increased from 50°C to 350°C.  For temperatures above 

200°C, a large isothermal TL signal, which attained maximum intensity 

at 350°C, was shown to underlie the IRSL signal.  When this signal was 

taken into account and subtracted, the true IRSL signal was shown to 

increase with stimulation temperature up to 300°C.   

o These results indicated that 200°C was the highest IR stimulation 

temperature that could be used for K-feldspars from Moche Borago, to 

avoid the inclusion of any unwanted isothermal TL in the measured 

IRSL signal.  Therefore, all post-IR IR stimulations were performed at 

200°C, instead of the often used temperature of 225°C, to avoid 

including the isothermal TL signal. 

o In contrast to the results from Mumba, the shape of the isothermal TL-

subtracted IRSL decay curve was shown to stay relatively constant as the 

IR stimulation temperature was increased from 50°C to 400°C. 

o Various IR stimulation conditions were tested to see if a given dose could be 

recovered: 
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o All aliquots recovered the given dose at 1σ or 2σ.  However, as the 

stimulation temperature was increased from 50°C to 200°C (including 

the post-IR IR stimulation at 200°C) the measured/given dose ratio 

increased systematically from ~0.95 to ~0.99. 

o As the IR stimulation temperature was increased from 50°C to 200°C 

(including the post-IR IR stimulation at 200°C), the recuperation value 

decreased from ~11% to ~5%. 

o All aliquots, aside from one, regardless of stimulation temperature, 

recycled a duplicate dose within 1σ experimental error.  This indicated 

that the SAR procedure could adequately correct for sensitivity changes 

and that the standard anomalous fading measurement procedure (see 

Section 7.6.2.1) should be applicable for K-feldspar from MB3. 

o As a caveat, this experiment was performed using aliquots that had 

previously been annealed.  Consequently, the results of this experiment 

may have limited applicability to natural aliquots. 

o Anomalous fading was shown to affect MB3 to a far greater extent than samples 

from Mumba. 

o Anomalous fading was shown to affect the intensity of the TL curve up 

to a temperature of at least ~490°C. 

o The IRSL signal was shown to fade significantly.  The fading rate of 

MB3 for all stimulation temperatures was approximately four times that 

of the IRSL signal measured at 50°C for samples from Mumba.  

However, the fading rate for MB3 was shown to decrease by ~43% as 

the IR stimulation temperature was increased from 50°C to 200°C. 

o Although De values could be estimated for K-feldspars of MB3 using the SAR 

procedure, they are unlikely to be reliable indicators of the burial dose, due to 

the high fading rate and the differences in shape of the IRSL decay curves 

induced by natural and laboratory irradiations.  The fading-uncorrected age 

calculated for MB3 should be regarded as a minimum estimate, given the 

caveats pertaining to the De and the unusually high fading rates measured for K-

feldspars of MB3. 
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The differences in luminescence properties and behaviours of K-feldspar 

separates from Moche Borago and Mumba are likely to be the result of differences in 

the geological origin of the minerals.  The volcanic origin of the sediments at Moche 

Borago may be the reason for their unusually high fading rates.  The ambiguity of many 

of the observed luminescence behaviours, the abnormally high fading rates, and 

concerns over the reliability of De estimates obtained using the SAR procedure, prohibit 

accurate age estimation using K-feldspar from Moche Borago. 
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Chapter 10: Discussion: a synthesis of available archaeological and 
palaeoenvironmental records 
 

Reliable OSL and IRSL chronologies were obtained for Mumba rockshelter, 

which is one of the few sites in East Africa that contains both MSA and LSA artefacts 

in its archaeological assemblage.  More noteworthy than the ‘MSA’ or ‘LSA’ 

designations, are the characteristics and changes of the stone artefact assemblages from 

unit to unit.  Thus, rather than being re-defined as ‘LSA’, the significance of the 

assemblage from Bed V is that it contains the first microlithic backed pieces (including 

geometric backed pieces), ostrich eggshell (OES) beads and ochre at Mumba.  This 

industry replaced the point-based Kisele MSA toolkit present in Bed VIA.  Differences 

and similarities between the toolkits of the two levels may be indicative of changes in 

technology and, thus, people, ideas and behaviours over time (Foley and Lahr, 2003).  

The luminescence chronology that has been described in this thesis can now be used to 

constrain the timing of technological and behavioural changes in the archaeological 

sequence of Mumba.   

 The inability to obtain reliable OSL or IRSL ages for samples from Moche 

Borago was unfortunate.  As a result, the archaeological sequence from the site remains 

temporally unconstrained by luminescence methods, and the toolkits from Moche 

Borago cannot be compared with other, concomitant technologies.  Likewise, changes 

in technologies and behaviours in the sequence cannot be interpreted in the context of 

temporally constrained palaeoclimatic and demographic reconstructions.  Moche 

Borago will, therefore, no longer be considered for discussion in this chapter. 

The first section of this chapter (Section 10.1) will be a discussion of the 

existing literature of the Late Pleistocene East African climate.  The second section 

(Section 10.2) will discuss how demographic change can instigate changes in 

technology and behaviour.  The existing genetic evidence for past population 

expansions and migrations will also be included.  The third section (Section 10.3) will 

discuss the major implications of the revised chronology for Mumba for the MSA and 

LSA archaeological record of East Africa.  Potential links between demographic and 

climatic change will also be discussed.  Finally, these lines of evidence will be 

synthesised in the final section (Section 10.4) for a discussion of the timing of, and 

potential reasons for, changes in technology and behaviour in East Africa. 
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10.1 Climate of East Africa 

10.1.1 Overview 

 The African climate can be broadly separated into zones with varying seasonal 

precipitation patterns (Nicholson, 2000; Gasse, 2000).  The most northerly and 

southerly zones exhibit a Mediterranean summer-dry climate.  The majority of 

precipitation is received during winter, as a result of the displacement of the mid-

latitude westerlies towards the equator (Chase and Meadows, 2007).  In southern Africa, 

this zone is referred to as the Winter Rainfall Zone (WRZ).  In both the north and the 

south, the zone of winter rainfall is flanked by subtropical arid deserts: the Sahara in the 

north, and the Namib and Kalahari in the south (Gasse, 2000). 

The tropical East African climate is complex and is influenced by multiple 

weather systems (Nicholson, 2000; Tierney and Russell, 2007; Trauth et al., 2009).  It 

has traditionally been thought that the tropical African climate is mainly governed by 

the position of the Intertropical Convergence Zone (ITCZ), the ‘meteorological 

Equator’ (Gasse, 2000), which is effectively the ascending limb of Hadley circulation.  

This tropical overturning circulation is driven by solar heating of air at the Equator, 

causing it to rise.  At the tropopause, the air turns and flows poleward until the 

subtropics are encountered (approximately 30°N and 30°S), where it descends and 

flows towards the Equator, causing the ‘trade winds’.  The rising air of the ITCZ results 

in the convective activity of thunderstorms, resulting in precipitation.  The position of 

the ITCZ varies over the course of the year, tracking the position of most intense 

summer solar heating.  Thus, the belts of land at the northern and southern range of the 

ITCZ migration have climates dominated by summer monsoonal rains and winter 

drought.  The area between the limits of the ITCZ receives two rainfall maxima each 

year as the ITCZ migrates back and forth.  Many studies have suggested that millennial-

scale changes in the mean position of the ITCZ were one mechanism that drove climatic 

variability during the Late Pleistocene (Tierney and Russell, 2007; Scholz et al., 2007; 

Carto et al., 2009). 

Additional variability in the East African climate results from Walker 

Circulation, such as the El Niño-Southern Oscillation (ENSO) (Gasse, 2000; Nicholson, 

2000; Masline and Christensen, 2007), the position of the Congo Air Boundary (Tierney 

et al., 2011) and the intensity of the Indian monsoon (Tierney and Russell, 2007; 
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Tierney et al., 2008, 2011; Trauth et al., 2010).  Tierney et al. (2008) used sediment 

records from Lake Tanganyika to associate periods of changing precipitation with 

isotopic records of changes in the Asian monsoon in China (Wang et al., 2001; Yuan et 

al., 2004).  During the “El Niño-like” phase of ENSO, the ITCZ is shifted in a southerly 

direction (Koutavas et al., 2002), the Indian monsoon is influenced due to modified 

Walker Circulation over the Indian Ocean (Tierney and Russell, 2007), and arid 

conditions intensify in areas of Africa (Masline and Christensen, 2007). 

Studies have also linked the position of the ITCZ and the intensity of the 

Indian/African monsoon to glacial/interglacial cycles (Carto et al., 2009).  The LGM, 

for example, has been characterised throughout various East African climate archives as 

being cold and dry (Shanahan and Zreda, 2000; Gasse, 2000; Johnson et al., 2002; 

Barker et al., 2003; Zech, 2006; Felton et al., 2007; Basell, 2008; McGlue et al., 2008; 

Tierney et al., 2008).  In addition, the Northern Hemisphere Heinrich Events appear to 

be synchronous with increased aridity and lake desiccation in East Africa as a result of a 

reduced monsoon intensity, reduced sea surface temperatures, or shifts in the position of 

the ITCZ (Scholz et al., 2003; Lamb et al., 2007; Tierney and Russell, 2007; Tierney et 

al., 2008, 2011; Carto et al., 2009; Stager et al., 2011).   Heinrich Events result from 

abrupt reductions in Meridional Overturning Circulation (‘thermohaline circulation’) 

due to injections of freshwater into the North Atlantic.   

The climate of East Africa is characterised by seasons of monsoonal rain 

alternating with seasons of drought.  Most current research suggests that the climate of 

tropical East Africa is generally governed by the position of the ITCZ and the intensity 

of the Indian monsoon, although the dynamics of large-scale Late Pleistocene changes 

in precipitation are incompletely understood.  Changes in East African precipitation also 

appear to be synchronised with MIS stages and Northern Hemisphere Heinrich Events. 

 

10.1.2 Archives of East African palaeoclimates 

Lake cores are the main archives used to reconstruct palaeoclimatic conditions 

in East Africa (e.g., Gasse, 2000; Barker et al., 2003; Scholz et al., 2003, 2007; Tierney 

et al., 2008).  However, several features of lake records make them questionable as 

unambiguous palaeoclimate proxies.  First, a recent study by Bergner et al. (2009) has 

demonstrated that changes in lake level and hydrochemistry do not necessarily represent 
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climatic changes.  Instead, they may result from ongoing tectono-magmatic and 

geomorphic processes in the East African Rift Valley, resulting in changes in rainfall 

amount and distribution, catchment size and runoff routes. 

Second, lake records differ widely between East African lakes over relatively 

short distances (Tryon et al., 2010).  For example, Scholz et al. (2007) examined 

continuous sediment-cores from Lake Bosumtwi in Ghana, and Lakes Malawi and 

Tanganyika in East Africa.  They identified coincident periods of drastically reduced 

lake-levels between ~135 and 127 ka, ~110 and 85 ka, and ~78 and 74 ka, and 

concluded that they were driven by regional changes in precipitation and evaporation, 

and not by tectonic activity or groundwater seepage.  In contrast, Bergner et al. (2009) 

identified diatomite beds associated with volcanic tuffs dated to ~141 to ~112 ka in the 

Lake Nakuru, Elmenteita and Naivasha basins, suggesting episodes of lake highstands.  

In the Lake Naivasha basin, diatomite beds associated with ages of ~110 and ~85 ka, 

provide evidence for additional highstands (Trauth et al., 2003; Bergner et al., 2009).  

Discrepancies of this type suggest that the climates of different regions of East Africa 

may have responded differently to Late Pleistocene climatic changes (Clement et al., 

2004; Scholz et al., 2007; Bergner et al., 2009; Tryon et al., 2010). 

Third, age models used to date events in lake cores often lack robustness beyond 

the range of radiocarbon dating.  For example, at least 15 calibrated 14C ages were used 

to construct the Malawi Drilling Project age model used by Scholz et al. (2007) for 

core-sediments younger 50 ka.  By contrast, the age model, which includes no estimated 

uncertainty, for core-sediments between 50 and 150 ka, is based on a linear regression 

fitted to two OSL, one inclination and six palaeointensity and 10Be ages.  Similarly, the 

age models of Barker et al. (2003), Scholz et al. (2003) and Felton et al. (2007) are 

based on multiple 14C ages that are fitted with regressions that are extrapolated to obtain 

older ages (see Table 10.1). 

Other archives, such as glaciations on Mt. Kenya dated by in situ cosmogenic 
36Cl measurements of boulders on moraines (Shanahan and Zreda, 2000), 

palaeopedological studies on Mt. Kilimanjaro (e.g., Zech, 2006) and climate modelling 

(e.g., Carto et al., 2009), can also be used to assess past climatic conditions.  

Unfortunately, no definitive link has been established between high latitude and tropical 

East African climatic conditions, complicating the use of high-resolution ice-core 
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records (e.g., NGRIP, 2004; EPICA, 2006) as East African palaeoclimatic proxies.  

Additionally, speleothem-derived palaeoenvironmental records from East Africa for this 

time period are non-existent.  The closest speleothem records are from Botswana 

(Holmgren et al., 1995), northeast South Africa (Holzkämper et al., 2009), the Levant 

(e.g., Bar-Matthews et al., 2000, 2003; Almogi-Labin et al., 2009; Vaks et al., 2007, 

2010) and Arabia (Fleitmann et al., 2003, 2011).  Lake cores, therefore, are currently the 

best palaeoclimate archive available for the region.  The study of sediment cores from 

Lake Malawi and Tanganyika by Scholz et al. (2007), despite its imprecise temporal 

constraints beyond 50 ka, provides one of the only continuous records of climate change 

between 150 and 0 ka in East Africa. 

An additional source of East African palaeoclimatic information comes from the 

eastern Mediterranean.  It has been shown that the output of the Nile River and the 

climate of the Levant are influenced by the position of the ITCZ and by African 

monsoons (Rossignol-Strick, 1983; Fleitmann et al., 2003; Revel et al., 2010; Vaks et 

al., 2010).  The palaeoclimate of these regions can, thus, be used as a proxy for 

precipitation levels in East Africa.  Unlike East Africa, there are many palaeoclimate 

archives available in the eastern Mediterranean, including high-resolution speleothems 

(Bar-Matthews et al., 2000, 2003; Almogi-Labin et al., 2009; Vaks et al., 2010) and 

marine cores (Revel et al., 2010). 

 

10.1.3 Late Pleistocene climate reconstructions 

There are few archives with continuous palaeoclimatic records that span the past 

70 to 125 ka.  It is, therefore, necessary to rely on a compilation of reconstructions from 

a variety of archives and regions.  Figure 10.1 presents a compilation of palaeoclimate 

reconstructions that have implications for precipitation levels in East Africa during the 

transition from MSA to LSA toolkits at Mumba (MIS 4 and 3).  Table 10.1 lists the 

study locations, proxies and details of the constructed age models for each 

reconstruction shown in Figure 10.1.  The records include lake-core, marine-core, 

speleothem and palaeosol records from East Africa and from the eastern Mediterranean.   
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10.1.3.1 MIS 5a (85–74 ka) 

Severe reductions in lake-level and concurrent increases in desertification prior 

to MIS 5a, have been identified from investigations of sediment records from Lake 

Malawi.  These ‘megadroughts’ occurred between 135 and 127 ka (the height of the 

MIS 6 glacial) and between 110 and 85 ka (Scholz et al., 2007; Cohen et al., 2007).  

Subsequently, during MIS 5a (~85–74 ka), the level of Lake Malawi increased (Scholz 

et al., 2007).  Higher East African lake levels during the MIS 5a interglacial are 

concurrent with increased sea levels, which were near or above modern-day levels 

(Hearty, 1998; Coyne et al., 2007; Dorale et al., 2010). 

The African monsoon was also strengthened during this period.  Revel (2010), 

investigating Nile River delta sediment records, identified a pluvial period (associated 

with a strengthened East African monsoon) from 98 to 72 ka.  These ages are associated 

with sapropels, dated by correlating planktonic foraminiferal δ18O records with the 

SPECMAP stack (Martinson et al., 1987) described by Kallel et al. (2000).  Fleitmann 

et al. (2003), investigating speleothems from Oman dating by U-series, reported that 

rapid speleothem deposition occurred during MIS 5a (between 82 ± 2 and 78 ± 3 ka), 

indicating increased rainfall. 

 

10.1.3.2 MIS 4 (74–60 ka) 

Palaeoclimate archives from the eastern Mediterranean and Arabia indicate that 

MIS 4 was extremely arid (Reichart et al., 1998; Leuschner et al., 2004; Revel et al., 

2010; Fleitmann et al., 2011).  Revel et al. (2010) suggest that the reduction in 

precipitation was the result of a weakened East African monsoon.  Geochemical studies 

of sediment cores from Lake Nkunga in Kenya (Ficken et al., 1998), and sediment cores 

from Lake Tanganyika (Scholz et al., 2003) and Lake Malawi (Scholz et al., 2007) 

indicate that lower lake levels and more arid conditions prevailed in East Africa for at 

least some of the period between 70 and 60 ka.  Scholz et al. (2007) also reported a 

period of East African megadrought in early MIS 4, between 78 and 74 ka. 

 

10.1.3.3 MIS 3 (60–24 ka) 

The transition from MIS 4 to MIS 3 is clearly seen in interpretations of Nile 

River hydrology (and, thus, East African rainfall) from eastern Mediterranean marine 
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cores.  Revel et al. (2010) interpreted 60 to 50 ka interval as representing a period of 

increased African monsoon intensity, bringing wetter conditions to East Africa and, 

thus, increasing the flow of the Nile River.  Increased precipitation at the beginning of 

MIS 3 is corroborated by the East African lake-core records (e.g., Felton et al., 2007; 

Tierney et al., 2010) and speleothem records from northeast South Africa (Holzkämper 

et al., 2009). 

Speleothem records from Botswana suggest that the period from 51 to 43 ka was 

wetter and warmer than the cooler and drier period between 27 and 21 ka (Holmgren et 

al., 1995).  Likewise, Barker et al. (2003), investigating sediment archives from Lake 

Massoko, concluded that lake levels were generally high, due to wetter conditions 

between 50 and 42 ka.  Between 42 ka and the LGM, lake levels were highly variable, 

with evidence for a drier climate than from 50 to 42 ka (Barker et al., 2003).  They 

concluded that Lake Massoko was very low, and that conditions were driest, during the 

LGM.  This agrees with many other studies that have shown that East Africa was 

generally cold and arid during the most recent glacial period, the LGM (e.g., Gasse, 

2000; Shanahan and Zreda, 2000; Johnson et al., 2002; Zech, 2006; Felton et al., 2007; 

McGlue et al., 2008; Tierney et al., 2008). 

 

10.1.3.4 Millennial-scale climatic variability 

From 70 ka onwards, superimposed on to these broad climatic patterns of arid 

glacials and wetter interglacials, there is evidence for brief and abrupt periods of climate 

change.  Zech (2006), working on palaeosols on Mt Kilimanjaro, identified a period of 

increased aridity that is associated with an uncalibrated radiocarbon age of 57 ± 9 ka 

BP, and likely represents a minimum estimate.  He suggested that it may be related to 

Heinrich Event 6 (~60 ka).  Likewise, Tierney et al. (2008) identified periods of abrupt 

and brief aridifications in sediment cores from Lake Tanganyika, the age model of 

which was generated using a regression constructed from 26 AMS 14C ages from 1.45 ± 

0.05 cal ka BP to 45 ± 0.4 cal ka BP.  While two of these events are estimated to have 

occurred at ~57 and ~47 ka, Tierney et al. (2008) explicitly states that “our age control 

is not sufficient to constrain their timing.”  However, based on a well-constrained period 

of aridification identified at 37.3 ± 0.9 cal ka BP that corresponds with Heinrich Event 

4, they interpreted the other periods of abrupt aridification as corresponding with 
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Heinrich Events 6 and 5.  Evidence for brief and abrupt aridification and reduced 

monsoon intensity in Africa related to Heinrich Events is also provided by Holmgren et 

al. (1995), Scholz et al. (2003), Tierney and Russell (2007), Lamb et al. (2007), Carto et 

al. (2009), Stager et al. (2011) and Tierney et al. (2011). 

 

10.1.3.5 Summary 

Our current understanding of the spatial and temporal effects of climate change 

in Late Pleistocene East Africa is incomplete (Tryon et al., 2010).  In addition, the 

imprecise temporal constraints beyond the range of 14C dating on lake-core records and 

the lack of speleothem records from East Africa limit the resolution of Late Pleistocene 

climate reconstructions.  However, by piecing together results from studies using 

different methods and archives, including continuous lake-core records (e.g., Barker et 

al., 2003; Scholz et al., 2003, 2007; Felton et al., 2007; Tierney et al., 2008, 2010), 

modelling studies (e.g., Carto et al., 2009), speleothem records from southern Africa 

(e.g., Holmgren et al., 1995; Holzkämper et al., 2009), and speleothem and marine 

records from the eastern Mediterranean (e.g., Almogi-Labin et al., 2007; Revel et al., 

2010), a broad picture of palaeoclimatic patterns in East Africa can be developed 

(Figure 10.1).  The picture that emerges suggests considerable variations over the Late 

Pleistocene, broadly coincident with glacial cycles.  East Africa likely experienced a 

period of increased humidity during MIS 5a (Scholz et al., 2007; Revel et al., 2010). 

There is then evidence that suggests that more arid conditions prevailed in East Africa 

during MIS 4 (Ficken et al., 1998; Scholz et al., 2007; Revel et al., 2010), which gave 

way to more humid and favourable conditions during MIS 3 (Felton et al., 2007; Revel 

et al., 2010; Tierney et al., 2010).  Superimposed on these broad climatic patterns, there 

is evidence for brief but abrupt shifts in climate during MIS 4 and 3, concurrent with 

Northern Hemisphere Heinrich Events (Tierney and Russell, 2007; Brown et al., 2007; 

Castañeda et al., 2007; Tierney et al., 2008; Carto et al., 2009).  Thus, MIS 3 is 

characterised as a period of generally more favourable climatic conditions, with 

ephemeral pulses of aridity.  The LGM is characterised by widespread aridification of 

much of sub-Saharan Africa. 
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10.2 Evidence for Late Pleistocene demographic change 

10.2.1 Demographic change as a driver of cultural change 

Much recent archaeological research and theory has focused on the role of 

demographic change as the stimulus for changes in technology and behaviour, 

especially the expression of ‘modern’ behaviour (e.g., Henshilwood and Marean, 2003; 

McBrearty, 2007; Kuhn and Stiner, 2007; Jacobs et al., 2008a; Jacobs and Roberts, 

2009; Zilhão et al., 2010; Nowell, 2010).  Studies by Shennan (2001) and Powell et al. 

(2009) have modelled the development and transmission of cultural innovation as a 

function of population size, density and mobility.  Both studies demonstrated that, as 

population size increases, innovations are more likely to appear, be maintained, and 

proliferate.  Powell et al. (2009) concluded that increased migratory activity (i.e., 

increased social interaction) between populations can have the same effect as increased 

absolute population size.  In both cases, the mean skill level of the population increases. 

 It has also been demonstrated that decreases in population size or migratory 

activity can have deleterious effects on a population’s technological complexity.  

Henrich (2004) developed a model to describe the loss of cultural complexity in 

Tasmania.  He modelled the loss of ‘cultural capital’ (e.g., technological and social 

complexity) and reductions in population density and connectedness, concluding that 

complex skills are preferentially lost as these two factors decrease.  This model is 

supported by the results of several studies (e.g., Riede, 2009; Kline and Boyd, 2010).  

Kline and Boyd (2010) investigated the technological complexity of island populations 

in Oceania around the time of European contact.  They found that islands with smaller 

populations had less complicated marine foraging technologies than did those with 

larger populations.  Riede (2009) used three case studies from the European UP and 

Mesolithic to associate decreasing population size with the loss of cultural complexity.  

He cited the abrupt shift from a complex, stylised microlithic toolkit to one that was 

more crude, less standardised, and macrolithic during the Irish Mesolithic.  

Environmental change was hypothesised to be the stimulus for demographic change.  

Riede (2009: 309) stated that “demography is the middle-range link between climatic 

changes and both biological and cultural evolutionary trajectories of human 

populations”, echoing Mandryk (1993: 67) who stated that, “although ultimately 

environmentally driven, the operative factor resulting in cultural failure is social.” 
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In regards to Pleistocene populations, Kuhn and Stiner (2007) convincingly 

discuss the proliferation of body ornaments (e.g., beads) during the later MSA and UP 

as a means of broadcasting social information to strangers who would be increasingly 

encountered when population density increases.  Likewise, Nowell (2010) has 

suggested that climatic amelioration following MIS 4 resulted in population growth, 

increasing contact and exchange networks between populations.  This encouraged the 

development of technological and social innovations and eventually led to the European 

UP.  In southern Africa, two early examples of ornaments and other technological and 

behavioural innovations occur in the Still Bay and Howiesons Poort Industries.  It has 

recently been suggested that these brief periods of technological and social ingenuity 

were the result of demographic changes (Jacobs et al., 2008a; Jacobs and Roberts, 

2009), possibly in response to environmental factors (Chase, 2010).  Zilhão et al. (2010) 

describe two Iberian sites associated with Neanderthals that contain pigment-coated 

shell beads dated to 50 ka – the same kind of artefacts cited as evidence for behavioural 

modernity of modern humans in northern and southern Africa (e.g., Henshilwood et al., 

2004; Bouzouggar et al., 2007; d’Errico et al., 2009).  They conclude that the capacity 

for ‘modern’ behaviour is not limited to humans with modern anatomy, and that these 

behaviours were expressed as a result of increases in population size and social 

complexity. 

It is clear that there is ample theoretical and empirical foundation for associating 

changes in technology and behaviour with changes in human demography.  Population 

expansions can be identified by investigating occupational intensification, changes in 

diet, and site distributions (e.g., Barut, 1994; Kuhn and Stiner, 2007; Basell, 2008).  As 

discussed in the following section, genetic studies of modern humans from various 

populations can also be used to infer expansions, reductions, and divergences of past 

populations. 

 

10.2.2 Genetic evidence for demographic changes. 

 Cann et al. (1987) were the first to show that DNA from modern human 

populations can be used to infer the demographic histories of ancestral populations, 

initiating a new field of research into human evolution.  While genetic studies have been 

informative about past population dynamics, they are often problematic and 
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controversial (Mellars, 2006; Endicott et al., 2009).  Endicott et al. (2009) point out that 

most mitochondrial DNA (mtDNA) studies rely on mutation rate estimates that use the 

human/chimpanzee divergence as a calibration reference.  They then demonstrate that 

two assumptions of this calibration are not unequivocally valid: 1) that the 

human/chimpanzee divergence occurred ~6 Ma ago, and 2) that the molecular 

evolutionary process has proceeded in a homogeneous, neutral, ‘clocklike’ manner since 

the human/chimpanzee divergence.  They also demonstrate that the common use of the 

rho summary statistic can lead to biased molecular age estimates.  Additional 

ambiguities in interpreting DNA studies arise from debates regarding the mutation rates, 

effects of natural selection on genes, and complications of past dispersals, back 

migrations, and bottlenecks (Excoffier and Schneider, 1999; Mellars, 2006; Endicott et 

al., 2009).  Excoffier and Schneider (1999) showed that more recent population 

bottlenecks can erase any signs of previous population expansions. 

 Despite these shortcomings, genetic studies still contribute greatly to the study 

of human evolution by providing evidence of population expansions, contractions, 

isolations and migrations of Pleistocene populations.  Broadly speaking, most DNA 

evidence is in agreement with the archaeological and palaeoanthropological evidence 

(White et al., 2003; McDougall et al., 2005, 2008), suggesting that anatomically modern 

humans arose between ~200 and ~150 ka ago (Maca-Meyer et al., 2001; Gonder et al., 

2007; Atkinson et al., 2008, 2009).  There is evidence that modern humans were not 

part of a panmictic population during the Late Pleistocene, however, instead living in 

geographically and genetically isolated populations (Watson et al., 1997; Knight et al., 

2003; Garrigan et al., 2007; Campbell and Tishkoff, 2008; Behar et al., 2008).  For 

example, Quintana-Murci et al. (2008) has demonstrated that the pygmy hunter-

gatherers of central Africa diverged from ancestral modern human populations ~70 ka 

ago. 

Although the specific demographic changes within Africa remain unclear, 

modern human populations expanded and dispersed during the mid- and later-Late 

Pleistocene.  Many studies have identified a significant expansion of the L3 

superhaplogroup, although estimates of the timing of the expansion range from ~85 to 

~55 ka ago (Watson et al., 1997; Maca-Meyer et al., 2001; Forester and Matsumura, 

2005; Macaulay et al., 2005; Atkinson et al., 2009).  Similarly, estimates of the 

325 
 



expansion of haplogroup M (derived from superhaplogroup L3) range from ~70 to ~50 

ka ago (Quintana-Murci et al., 1999; Macaulay et al., 2005; Hudjashov et al., 2007; 

Atkinson et al., 2008).  These age estimates for the expansion and divergence of 

haplogroups within the L3 superhaplogroup are especially important for discussions 

about dispersals of modern humans out of Africa, since L3 is the largest 

superhaplogroup within Africa and is the only superhaplogroup with lineages 

represented outside Africa.  Thus, the L3 superhaplogroup most likely evolved in Africa 

and then dispersed from Africa after a population expansion, giving rise to the M and N 

haplogroups.  This is supported by DNA evidence for accelerated growth of modern 

human populations in southern Asia (~52 ka), Australia (~48 ka) and Europe (~42 ka) 

(Atkinson et al., 2008), each of which carry a lineage derived from the L3 

superhaplogroup. 

 The amalgamated picture from the literature is one of modern humans emerging 

~200 ka ago, possibly in East Africa, where the oldest Homo sapiens fossils have been 

recovered (White et al., 2003; McDougall et al., 2005, 2008).  People may have lived in 

geographically isolated populations during much of the Late Pleistocene.  There is then 

evidence for expansions in certain populations, most notably the population that was 

ancestral to the modern day L3 superhaplogroup, some time between MIS 5a and 60 ka 

(Watson et al., 1997; Maca-Meyer et al., 2001; Forester and Matsumura, 2005; 

Macaulay et al., 2005; Atkinson et al., 2009). 

 

10.3 Integrating the MSA and LSA records at Mumba into a regional context 

 The OSL chronology for the deposits at Mumba provides temporal constraints 

on the archaeological sequence.  These constraints allow appropriate comparisons to be 

made between these assemblages and those from other sites in the region, enabling an 

assessment of temporal and spatial distributions of changes in technology and 

behaviour.  In this framework, three features of the archaeological sequence at Mumba 

merit further discussion.  First, the presence of obsidian from distant sources in the 

MSA and LSA deposits at Mumba is discussed, along with the associated implications 

for the existence of regional exchange networks.  Second, the transition from a typical 

MSA toolkit in Bed VI to a backed piece-based toolkit in Bed V is discussed and 

compared to other sites that exhibit similar technological transitions.  Third, the 
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emergence and proliferation of symbolic ornamentation at Mumba and other East 

African LSA sites is discussed. 

 

10.3.1 Distant raw material transportation: evidence for regional exchange 

networks 

The distance between a raw material source and the site of deposition of an 

artefact from that source has been used as an indicator of foraging range, special 

procurement journeys, long distance trade and extended social networks (Ambrose and 

Lorenz, 1990; Deacon and Wurz, 1996; Wurz, 1999, 2000; Ambrose, 2002, 2006, 2010; 

Marwick, 2003; Minichillo, 2006).  In cases where obsidian is the raw material in 

question, analysis of an artefact’s chemical composition can be used to identify the 

source outcrop from which it originated (e.g., Merrick and Brown, 1984; Merrick et al., 

1994), providing a minimum distance that the lithic travelled from procurement to 

disposal.  The obsidian artefacts found in Beds VIB, VIA, V and III at Mumba were 

sourced to outcrops in the Lake Naivasha region of southern Kenya, approximately 320 

km NE of Mumba (Figure 10.2) (Merrick and Brown, 1984; Mehlman, 1989).  These 

artefacts were deposited at Mumba from before 74 ± 4 ka to 37 ± 3 ka: a long period of 

time that spans the various climatic conditions of MIS 5, 4 and 3. 

There are two plausible explanations for the presence of distant obsidian in 

assemblages at Mumba.  First, the occupants of Mumba may have had a highly mobile, 

nomadic lifestyle, moving widely over the landscape and allowing them to directly 

procure obsidian from southern Kenya.  However, ethnographic data from 70 hunter-

gather cultures, compiled by Kelly (1983, 1995), indicated that the maximum, mean and 

modal territory radii were 140, 32 and 15 km, respectively.  It should be noted, 

moreover, that the only cultures that approached the maximum territory distance were 

from Arctic regions, and some of these cultures employed horse transportation 

(Marwick, 2003).  This estimate of a mean territorial distance is supported by Ambrose 

(2002, 2010), who wrote that the maximum diameter of hunter-gatherer home ranges, 

and, thus, a distance that may reflect direct procurement of a raw material, is 

approximately 40–45 km.  Thus, if the territory of Mumba’s MSA and LSA occupants 

included the southern Kenyan obsidian sources, it implies that their home ranges were 

five times larger than the maximum territory size observed ethnographically.  While this 
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scenario is possible, the available evidence suggests that a source located over 300 km 

away would very likely lie beyond the foraging range of a hunter-gatherer group’s 

territory (Merrick et al., 1994; Kelly, 1983, 1995).   

A more likely explanation for the presence of the obsidian from distant sources 

at Mumba is exchange.  Two lines of evidence support this explanation.  First, when 

ethnographic data regarding raw material transport distances are examined, it is clear 

that a source-to-use distance of 320 km would likely result from exchange.  Feblot-

Augustins and Perlés (1992) reported that, while movements of 100 km may be within 

the range of intentional ventures of mobile foraging groups, raw materials transported 

over 300 km resulted from exchange between groups.  Wobst (1976) reported that the 

maximum distance observed between groups involved in closed-system marriage 

networks was 300 km.  Merrick et al. (1994) concluded that the transfer of raw 

materials over distances of more than 140 km suggests the existence of exchange 

networks.   

The second line of evidence in support of exchange is the substantial body of 

evidence for large transport-distances of obsidian at other East African MSA sites (e.g., 

Merrick and Brown, 1984; Merrick et al., 1994).  A map showing the locations of MSA 

and LSA archaeological sites, and the three main sources of obsidian found at these 

sites, is presented in Figure 10.2.  Obsidian from the Kisele MSA levels at Nasera 

rockshelter in Tanzania were sourced from 240 km away, from Sonanchi, Eburru and 

Masai Gorge in Kenya (Mehlman, 1989).  The MSA sites of Songhor and Muguruk 

contain obsidian that has been sourced from Njorowa Gorge (145 km away) and Eburru 

and Sonanchi (~185 km away), respectively (McBrearty and Brooks, 2000).  Obsidian 

from the LSA Naisiusiu Beds assemblage was also traced to Sonanchi (Merrick and 

Brown, 1984; Mehlman, 1989).  There is additional evidence for distant obsidian in the 

MSA and LSA assemblages at the Kenyan sites of Lukenya Hill (105–135 km transport 

distance), Prospect Farm (75 km transport distance), and Prolonged Drift (45–55 km 

transport distance), all of which are in proximity to an abundance of alternative obsidian 

outcrops (Merrick et al., 1994; McBrearty and Brooks, 2000).  The regularity of the 

appearance of distantly sourced obsidian in many MSA and LSA assemblages in East 

Africa strengthens the hypothesis that regional exchange networks for raw materials 

existed in East Africa during the MSA and LSA.  This conclusion is consistent with 
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evidence, from regional MSA site distributions (Basell, 2008) and genetic studies 

(Atkinson et al., 2008, 2009; Quintana-Murci et al., 2008; Behar et al., 2008), for 

population expansions and migrations within Africa during MIS 5. 

It, thus, seems highly likely that the MSA and LSA inhabitants of Mumba who 

made the Sanzako, Kisele, Mumba and Nasera Industries had contact with, and/or 

exchanged goods and ideas with, people living in southern Kenya.  This proposition is 

consistent with the prevalence of distant obsidian at many other MSA sites in the 

region.  The oldest age obtained for the Kisele Industry (74 ± 4 ka), and the age of the 

Nasera Industry (37 ± 3 ka), provide a minimum age range for the existence of these 

networks at Mumba.  Since no OSL samples were collected from deposits associated 

with the Sanzako deposits of Bed VIB, the only available age estimates for these 

deposits are those reported by Mehlman (1989) and discussed in Section 2.5.  The 

available evidence suggests, therefore, that long-distance exchange networks existed 

across East Africa throughout at least parts of MIS 5, 4 and 3.   

 

 
Figure 10.2: Map showing various archaeological sites that have MSA and/or LSA archaeological 
assemblages with obsidian from distant sources.  The three main obsidian sources (Eburru, 
Sonanchi and Njorowa Gorge) are located around Lake Naivasha in Kenya.  Map modified from 
Merrick and Brown (1984). 
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10.3.2 The MSA/LSA transition 

Given the presence of typical MSA and LSA features in many ‘intermediate’ 

assemblages in East Africa, these terms may be ineffective for defining individual lithic 

industries in the Late Pleistocene.  For the purpose of this thesis, the definition of the 

Mumba Industry as MSA or LSA is less consequential than the transition from the Bed 

VIA point-dominated Kisele Industry to the microlithic, backed piece-dominated 

Mumba Industry.  This transition represents the MSA/LSA boundary, in the 

conventional parlance of the literature.  Here I apply the terms MSA and LSA to 

Mumba in the sense defined by the most recent publication on the assemblage: Diez-

Martín et al. (2009).   

 

10.3.2.1 The emergence of backed piece-based toolkits at Mumba 

The latest age obtained for deposits associated with a point-based MSA toolkit 

at Mumba is the upper Bed VIA age of 63 ± 6 ka.  Overlying this are the 57 ± 5 ka 

lower Bed V deposits, which contain the earliest backed piece-based Mumba Industry 

assemblage.  Together, these ages indicate that the inhabitants of Mumba transitioned 

from using a typical MSA toolkit to a more ‘LSA-like’ backed piece-based toolkit 

around 60 ka.  The youngest age for the upper Bed V deposits indicate that this toolkit 

was still in use 49 ± 4 ka ago. 

The timing of the transition from point-based to backed piece-based toolkits at 

Mumba is roughly synchronous with Heinrich Event 6, which also marks the transition 

from MIS 4 to MIS 3.  This represents a major climatic transition in East Africa, from a 

more arid climate before 60 ka to a more humid climate afterwards (see Figure 10.1).  

Many authors (e.g., Henshilwood and Marean, 2003; Foley and Lahr, 2003; Mellars, 

2006; McBrearty, 2007; Villa et al., 2010) have suggested that technological change is 

often the result of subsistence and environmental changes.  Given the concurrence of 

technological and climatic change at ~60 ka, it is reasonable to hypothesise that 

favourable changes in the environment at the beginning of MIS 3 may have led to 

increases in human populations around Lake Eyasi, leading to increased innovations, 

more varied technologies and altered subsistence strategies. 

 

 

330 
 



Chapter 10: Discussion 
 

10.3.2.2 Concurrent emergence of backed piece-based toolkits in East Africa 

The emergence of a backed piece-based toolkit at Mumba is not an isolated 

occurrence.  At least one assemblage in East Africa is associated with a relatively 

reliable chronology and may represent a potentially early occurrence of a backed piece-

based toolkit, namely, the LSA assemblage of the Naisiusiu Beds at Olduvai Gorge.  In 

addition, although it is not well temporally constrained, the Nasampolai Industry at 

Enkapune Ya Muto also contains a large proportion of backed pieces and has been 

suggested to be as old as 55 ka by Ambrose (1998).  Like the Mumba Industry, these 

two assemblages are dominated by backed microliths (Figure 10.3), and the Nasampolai 

Industry directly overlies a more typical MSA assemblage.   

The most recent chronologies for these sites indicate that backed piece-based 

toolkits first appear in the East African archaeological record at the beginning of MIS 3.  

The earliest backed pieces in East Africa occur synchronously in the Mumba Industry 

(57 ± 5 ka) and the LSA assemblage from the Naisiusiu Beds at Olduvai Gorge (60 km 

north of Lake Eyasi), which is associated with ESR ages, obtained from three equid 

teeth, of 59 ± 5 ka using an EU model and 62 ± 5 ka using a LU model (Skinner et al., 

2003; Section 1.5.1).  As discussed in Section 1.4.5, the EU model provides a minimum 

estimate of the age, and the actual age is likely to lie between estimates obtained using 

the EU and LU models (Grün, 2006).  Likewise, while the chronology is not reliable, 

the Nasampolai Industry is associated with an obsidian hydration age of 46.4 ± 2.8 ka, 

and Ambrose (1998) suggests that it may be as old as 55 ka based on sedimentation-rate 

estimates (Section 1.5.3).  Mehlman (1989) suggested that a Serengeti Plains 

counterpart to the Mumba Industry is present in Levels 8/9, 10 and 11 at Nasera 

rockshelter, and stated that “the Mumba Industry is almost certainly present below level 

XI at Kisese II rockshelter in central Tanzania (Inskeep, 1962), associated with OES 

beads.” (Mehlman, 1989: 365). 

The Mumba Industry, Naisiusiu Beds and Nasampolai Industry are the oldest 

backed piece-based assemblages at their respective sites and the former two represent 

the oldest such assemblages in East Africa associated with reliable chronologies.  

Several assemblages from other sites have also been attributed to the Mumba Industry, 

suggesting that it was relatively widespread in the East African Rift Valley.  The 

concurrent emergence of backed piece-based toolkits at Olduvai Gorge and Mumba 
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rockshelter during a time of climatic amelioration ~60 ka further supports the 

hypothesis that the emergence of these technologies may have been the result of modern 

humans adapting to more favourable environmental conditions.  This event may 

represent the spatio-temporal origin of backed piece-dominated toolkits in East Africa.  

 

 
Figure 10.3: Backed pieces from the Mumba Industry at Mumba rockshelter, Tanzania (modified 
from Mehlman, 1989: 286), the Naisiusiu Beds at Olduvai Gorge, Tanzania (modified from Leakey 
et al., 1972: 338), the Nasampolai Industry at Enkapune Ya Muto, Kenya (modified from Ambrose, 
1998: 386), and the Howiesons Poort Industry at Klasies River, South Africa (modified from Singer 
and Wymer, 1982: 96-97).  Note that the scale bar is applicable to all lithics. 
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10.3.2.3 Mumba Industry: is there a Howiesons Poort connection? 

The similarity between the backed pieces at Mumba and the Howiesons Poort 

Industries (Figure 10.3) has been noted previously (Deacon and Deacon, 1999; 

McBrearty and Brooks, 2000, but see Conard and Marks, 2006 for response).  Deacon 

and Deacon (1999) linked this to the distribution of modern ‘click’ language speakers in 

these two regions (i.e., northern Tanzania and southern Africa) to infer the presence of 

long distance dispersals and exchange of ideas in the sub-Saharan Late Pleistocene.  

Recent genetic studies have shown that the East and southern African ‘click’ speakers 

share a common ancestor, from which they diverged as early as ~55 ka ago (Tishkoff et 

al., 2007).  While the backed pieces of the Mumba Industry and Howiesons Poort are 

typologically similar, they differ technologically.  The Howiesons Poort backed pieces 

are blade-based, with blades produced from prismatic cores (Mode 4 following Clark, 

1968) (Wurz, 1999; Soriano et al., 2007).  No such study of the châine opératoire of the 

Mumba Industry backed pieces has been published, however, precluding the possibility 

of an appropriate technological comparison of the tools from both industries.  It has 

been noted, however, that few blade flakes or prismatic cores (i.e., blade cores: Bar-

Yosef and Kuhn, 1999) have been recovered from Bed V, which suggests that blades 

are not a common component of the Mumba Industry (Mehlman, 1989; Diez-Martín et 

al., 2009).  In addition, the northernmost site for which the Howiesons Poort Industry 

has been confidently identified (Cave of Hearths) is more than 2000 km south of 

Mumba rockshelter.  No sites located between Mumba and the Cave of Hearths dated to 

MIS 4 or early MIS 3 contain a backed piece-based toolkit similar to either industry, 

although it is likely that this is, at least in part, due to the paucity of excavated sites in 

this region.  Furthermore, genetic studies indicate that the San of southern Africa have 

been genetically isolated for most of the last 100 ka (Watson et al., 1997; Knight et al., 

2003; Behar et al., 2008), suggesting that they had limited contact with the inhabitants 

of other regions such as East Africa, although a recent study by Henn et al. (2011) 

provides evidence to the contrary.  Given the circumstantial nature of the evidence for a 

connection between the Howiesons Poort and Mumba Industries, and the lack of any 

technological comparison to support their similarity, any hypothesised link between the 

two remains speculative at best. 
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10.3.2.4 Symbolic ornaments associated with the Mumba Industry 

Personal ornaments (e.g., OES and shell beads) are a widely accepted marker of 

modern symbolic behaviour (Ambrose, 1998; d’Errico et al., 2003, 2005; Henshilwood 

et al., 2004; Kuhn and Stiner, 2007; Bouzouggar et al., 2007).  Beads have been 

identified in a variety of spatial and temporal contexts in the African MSA, including 

Morocco (~82 ka: Bouzouggar et al., 2007), South Africa (~75 ka: Henshilwood et al., 

2004; d’Errico et al., 2005, 2008) and Kenya (>40 ka: Ambrose, 1998).  Ambrose 

(1998), however, makes a case that the Kenyan age is substantially underestimated.  

Symbolic ornamentation, in the form of OES beads and ochre fragments, has been 

found in the Mumba Industry assemblages of upper Bed V, which have been dated here 

to 49 ± 4 ka (Chapter 6) 

While the evidence discussed in Section 1.2.2 demonstrates that all modern 

humans are likely to have had the capacity for symbolic behaviour, the presence of OES 

beads and bead fragments in the upper portion of the Mumba Industry is the first 

unequivocal evidence for modern, symbolic behaviour at the site.  The OSL age of 49 ± 

4 ka makes this the earliest, reliably dated evidence for symbolic ornamentation in East 

Africa.  This age estimate is consistent with the AAR age of ~52 ka obtained from an 

OES bead from Bed V, but for which no dating details or age uncertainty were provided 

(McBrearty and Brooks, 2000).  It is curious, however, that these artefacts appear only 

in the upper deposits of the Mumba Industry.  OES beads are found in association with 

the ‘Second Intermediate’ assemblage at Kisese II rockshelter (hypothesised to be 

equivalent to the Mumba Industry by Mehlman, 1989), but they are not associated with 

any of the other backed piece-based assemblages from the Naisiusiu Beds, the 

Nasampolai Industry or the Mumba Industry at Nasera.  As same technologies and 

typologies are found in all Bed V assemblages, it is likely that the toolmakers of Bed V-

lower were behaviourally very similar to, and practiced similar subsistence strategies to, 

the toolmakers of Bed V-upper.  There are three hypotheses that can readily explain the 

presence of symbolic artefacts in the upper, but not the lower, deposits of Bed V. 

First, the OES beads in upper Bed V may be intrusive from the overlying Bed 

III-lower deposits, which contain an abundance of OES beads.  OSL investigations of 

single grains of quartz, which can identify when post-depositional mixing has occurred 

(Roberts et al., 1999, 2000; Feathers et al., 2006; Jacobs et al., 2006b, 2008b; Bateman 

334 
 



Chapter 10: Discussion 
 

et al., 2007; David et al., 2007), do not support this hypothesis.  Sediment mixing was 

identified in the De distributions of OSL samples from Bed III (MR2 and MR3) and Bed 

VI (MR9), but the De distributions of samples from Bed V (MR6, MR7 and MR8) 

exhibited no evidence of post-depositional mixing (Section 6.3).  The spread in De 

values from Bed V samples were consistent with small-scale variations in the beta dose 

rate.  This is consistent with Prendergast et al. (2007), who reported that sediment 

mixing was not observed during archaeological investigations of the geological units 

that are associated with the Mumba Industry (Unit C-lower, Unit E and Unit G). 

Second, a case can be made that these materials were manufactured when Bed 

V-lower was accumulating, but that differences in sample sizes and sampling biases 

have rendered them archaeologically invisible.  Although the Köhl-Larsens found OES 

beads in Bed V, they interpreted them as intrusive and did not retain any (Mehlman, 

1989).  In both the 1977/81 and 2005 samples, after debitáge and shatter had been 

removed from consideration, the assemblages of Bed V-upper were far larger and 

denser than those of Bed V-middle and Bed V-lower.  Of the entire Bed V assemblage 

examined by Diez-Martín et al. (2009), upper Bed V contained 56% of the ‘cores’, 

‘flakes’, and ‘retouched tools’.  Likewise, of the 1977/81 assemblage of Mehlman 

(1989), Bed V-upper/middle contained 94% of all the ‘flaked tools’ and ‘cores’ 

(Mehlman, 1989: 276, 283).  In these uppermost Bed V assemblages, very few complete 

OES beads (seven and three from the 1977/81 and 2005 excavations, respectively: 

Mehlman, 1989; Diez-Martín et al., 2009) and ochre fragments (nine from the 2005 

excavation: Diez-Martín et al., 2009) were found, suggesting that these materials were 

exceptionally rare at Mumba.  Given the technological similarities of all Mumba 

Industry deposits (Diez-Martín et al., 2009), it is plausible that symbolic artefacts were 

present throughout Bed V.  In this scenario, the reason that beads were not found in the 

lower and middle Bed V assemblages is because of their rarity and because of the 

smaller size of these assemblages relative to those from upper Bed V.  If this scenario 

were true, then it would be an unfortunate coincidence that no symbolic artefacts were 

found in the lower deposits of Bed V in either of the excavations carried out subsequent 

to the Köhl-Larsens (i.e., in 1977/81 and 2005).   

A third hypothesis (preferred by this author) for the presence of OES beads in 

upper Bed V is that the lower artefact densities of Bed V-middle and V-lower are the 
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result of smaller, less concentrated human occupations of the rockshelter.  By contrast, 

the higher artefact density of Bed V-upper reflects a period of increased occupational 

intensity, due to a larger or more concentrated population.  Many researchers have 

modelled (Shennan, 2001; Powell et al., 2009) and suggested (d’Errico et al., 2005; 

Kuhn and Stiner, 2007; Jacobs and Roberts, 2009; Zilhão et al., 2010) that increases in 

population size, density and interaction are likely stimuli for innovations, such as 

ornamentation and symbolic behaviour (Section 10.2.1).  An increased population 

density during the accumulation of Bed V-upper may have resulted in increased social 

interaction, resulting in the first evidence for symbolic artefacts in the archaeological 

sequence at Mumba.   

The time of deposition of Bed V-upper corresponds with a period of abrupt 

climatic deterioration, possibly concurrent with Heinrich Event 5 (Scholz et al., 2003; 

Tierney et al., 2008).  Basell (2008) suggested that during periods of increased aridity, 

many parts of the East African Rift Valley, such as the plains, would have been less 

suitable for human habitation, encouraging hunter-gatherers to congregate near water 

sources and lake margins.  If Lake Eyasi retained water through this period of climatic 

deterioration, Mumba rockshelter’s proximity to the lake (2 to 4 km from the modern 

lake shore) would have made it a better shelter than the open environments of Olduvai 

Gorge and Nasera rockshelter.  Enkapune Ya Muto’s greater distance from Lake 

Naivasha (~15 km from the current lake shore) may also have made it less hospitable 

than Mumba.  The climatic deterioration and associated decrease in resource 

availability, coupled with the increased population density around water sources, may 

have resulted in increased population pressure in the region.  Kuhn and Stiner (2007) 

concluded that increases in population pressure would likely encourage the development 

of ornaments for social signalling.  Likewise, Ambrose (1998, 2002, 2010) has posited 

that ornamental beads, such as those from the East African LSA, may have been 

involved in an institutionalised system of delayed reciprocity and gift giving, similar to 

the hxaro of the modern Kalahari !Kung San (Wiessner, 1982, 1986).  These systems 

serve to strengthen regional social networks, enhancing survival prospects in 

environments of decreased resources.  After the return to more favourable conditions, 

populations may have retained these symbolic behaviours. 
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10.3.3 Nasera Industry of Bed III-lower 

The Nasera Industry was identified by Mehlman (1989) in the Bed III-lower 

deposits, dated to 37 ± 3 ka in this study.  Between Bed III-lower and Bed V-upper is a 

culturally sterile, gravity/beach deposit, Bed IV.  Thus, for some period of time after 49 

± 4 ka and ending before 37 ± 3 ka, the level of Lake Eyasi likely rose to submerge the 

rockshelter deposits, resulting in an occupational hiatus.  This time range for a high lake 

level for Lake Eyasi is consistent with the results of Holmgren et al. (1995) and Barker 

et al. (2003) who concluded that the period between ~50 and 42 ka ago was warm and 

wet in East Africa (Figure 10.1).  After occupation resumed, the tradition of making 

ornaments seemingly intensified, as bored stone balls were recovered and OES beads 

are abundant in Nasera Industry of Bed III-lower at Mumba.  Although the lithic 

artefact density is smaller, the density of symbolic artefacts in Bed III-lower is 

substantially greater than those of Bed V-upper.   

The Nasera Industry from Mumba is comprised of frequent scrapers, a low 

frequency of backed pieces and several classic MSA types that were not present in the 

Mumba Industry (see Section 2.4).  The most striking feature of the assemblage is the 

abundance of symbolic materials.  The Nasera Industry is also present in Levels 6 and 7 

at Nasera rockshelter, and this assemblage is typologically similar to that from Mumba.  

Mehlman (1989) suggested that the Nasera Industry is also present in, or is similar to, 

assemblages at Kisese II rockshelter in Tanzania and Lukenya Hill in Kenya.  

Typological similarities also exist between the Nasera Industry and the LSA Sakutiek 

Industry from Enkapune Ya Muto.  The latter industry is also dominated by scrapers, 

with several typical MSA types, but few backed pieces.   Furthermore, OES beads and 

bead fragments are abundant in the Sakutiek Industry.  Like the Nasera Industry at 

Mumba, it overlies a deposit containing a backed piece-dominated assemblage. 

A possible link between the makers of the Nasera Industry and the makers of the 

Sakutiek Industry is supported by evidence at Nasera and Mumba rockshelters for the 

long-distance transport of obsidian.  Obsidian from Levels 6 and 7 at Nasera rockshelter 

has been traced to sources in southern Kenya, providing further evidence that the 

inhabitants of northern Tanzania and southern Kenya were interacting when the Nasera 

Industry was being used.  The source of a single piece of obsidian recovered from 

Mumba Bed III-lower has not been established, as no analyses have been performed.  
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However, given that all other obsidian found at Mumba has been traced to the Lake 

Naivasha region of southern Kenya, it is reasonable to hypothesise that this was also the 

source of the piece recovered from lower Bed III. 

The chronologies associated with these toolkits are also similar.  The Sakutiek 

Industry is associated with and age range of 43.9 ± 2.3 to 40.7 ± 1.3 cal ka BP 

(calibrated from reported ages of 39.9 ± 1.6 to 35.8 ± 0.6 ka BP), which precedes, but 

overlaps with, the OSL age associated with the Bed III-lower Nasera Industry deposits 

at Mumba (36.8 ± 3.4 ka).  The Nasera Industry at Nasera rockshelter remains 

temporally unconstrained.   

Palaeoclimate reconstructions suggest that the climate was variable when the 

Nasera and Sakutiek Industries were being used.  There is evidence for increased 

warmth and humidity in East Africa between 50 and 42 ka (Holmgren et al., 1995; 

Barker et al., 2003).  This period of increased water availability is corroborated by 

evidence for the elevated level of Lake Eyasi for some time between 49 ± 4 and 37 ± 3 

ka.  However, there is evidence for ephemeral episodes of aridity in East Africa at 47 ka 

(Scholz et al., 2003; Tierney et al., 2008), 42 ka (Scholz et al., 2003), and 37 ka 

(Tierney et al., 2008), suggesting that this period is characterised by abrupt changes 

from wetter to drier climate.   

This evidence suggests that a new toolkit, associated with high frequencies of 

symbolic artefacts, emerged in the East African Rift Valley between ~44 and 40 cal ka 

BP, during a time of generally favourable, but variable climate.  What instigated this 

change?  Two related scenarios will be discussed in the following paragraphs.   

First, as discussed previously in this chapter, demographic changes may be 

associated with changes in culture and technological innovations (Shennan, 2001; 

Henrich, 2004; Powell et al., 2009; Riede, 2009; Kline and Boyd, 2010).  Likewise, 

increased size, density and interactions among populations of hominids were likely 

stimuli for the adoption of symbolic ornamentation (Kuhn and Stiner, 2007; Jacobs et 

al., 2008a; d’Errico et al., 2009; Jacobs and Roberts, 2009; Zilhão et al., 2010).  

Increasing population sizes and densities >40 ka ago, possibly associated with warmer, 

wetter conditions between 50 and 42 ka, seem to be a reasonable explanation, therefore, 

for the proliferation of symbolic ornaments at this time.  The increased artefact densities 
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associated with the Sakutiek Industry and the Nasera Industry at Nasera rockshelter are 

consistent with this scenario. 

During this time, Mumba rockshelter was submerged by Lake Eyasi, which was 

experiencing a highstand, possibly as a result of the warmer and wetter conditions.  The 

Nasera Industry was deposited at Mumba ~37 ka ago and is present in the deposits that 

directly overlie Bed IV, which contains evidence for the submersion the rockshelter 

(Mehlman, 1989; Prendergast et al., 2007).  The renewed occupation of Mumba during 

the deposition of Bed III-lower and, thus, the first evidence for the regression of Lake 

Eyasi, are coincident with Heinrich Event 4.  It is possibly that ephemeral climatic 

deterioration associated with this event may have lowered the level of Lake Eyasi 

enough to allow occupation by people who were already making the Nasera Industry 

and its associated symbolic artefacts. 

The second scenario involves the manufacture and use of ornamental beads as 

gifts to improve survival prospects during times of uncertain environments.  Ornamental 

beads are an important part of the Kalahari !Kung San hxaro system of gift-giving and 

delayed reciprocity, which serves to strengthen regional social and economic 

relationships (Wiessner, 1982, 1986).  Partners in the modern hxaro system are 

generally from areas with complementary resources.  This system of delayed reciprocity 

thus maintains a regional social safety net, ensuring each partner access to vital 

resources in uncertain or marginal environments (Ambrose, 1998, 2002).  The climatic 

instability between ~50 and ~35 ka may have prompted human populations in East 

Africa to adopt, or intensify their participation in, hxaro-like systems of gift-giving, to 

cope with unstable environments and ensure access to resources. 

 

10.3.4 Summary 

 The new temporal constraints on the archaeological sequence at Mumba have 

enabled insights to be gained into several significant areas of Late Pleistocene human 

behaviour.  A schematic illustration of the temporal and artefactual relationship among 

several of the MSA and LSA sites in East Africa is presented in Figure 10.4.   

Several features are of note.  First, the age of 74 ± 4 ka for the obsidian-bearing 

Bed VIA deposit at Mumba provides a minimum antiquity for the existence of long 

distance exchange networks in East Africa.  Given the presence of obsidian from a dis- 
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tant source in the underlying Bed VIB, these networks must have been in place earlier 

than ~74 ka, during MIS 5.  The evidence for obsidian in Beds VIB, VIA, V and III-

lower, the latter of which is here dated to 37 ± 3 ka, suggests that these networks 

remained in place throughout MIS 5, 4 and 3. 

 Second, the transition from point- to backed piece-dominated toolkits at Mumba 

appears to have occurred between 63 ± 6 ka and 57 ± 4 ka.  The earliest backed piece-

based toolkit at Mumba is contemporaneous with that of the LSA Naisiusiu Beds (~60 

ka).  This synchronous emergence of backed piece-dominated toolkits, corresponding to 

the climatic amelioration associated with the transition from MIS 4 to MIS 3 at ~60 ka, 

suggests that environmental change may have encouraged the development of new 

technologies. 

Third, the presence of OES bead artefacts 49 ± 4 ka ago, in the Bed V-upper 

deposits of the Mumba Industry, may be related to an abrupt period of aridity associated 

with Heinrich Event 5.  The relatively sudden and ephemeral nature of climatic 

deterioration may have encouraged populations to congregate near water sources and on 

lake margins, such as Lake Eyasi.  The increased population density, pressure and 

interaction may have encouraged the development of symbolic ornamentation as a 

means of social communication. 

 Fourth, at 37 ± 3 ka, the Nasera Industry (which is also present at Nasera 

rockshelter) emerged at Mumba, slightly postdating, though overlapping with the later 

ages for, the typologically and compositionally similar Sakutiek Industry.  Symbolic 

ornamentation proliferates at both of these sites.  The typological and ornamental 

similarities, coupled with the increases in artefact density at Nasera and Enkapune Ya 

Muto rockshelters and the presence of obsidian from southern Kenya at Mumba and 

Nasera rockshelters, suggest that the proliferation of OES beads at this time may be 

associated with an increase in population size, density and/or social networks in the East 

African Rift Valley during a period of climatic and environmental instability. 

 

10.4 Conclusions: a hypothesis 

 The OSL chronology obtained for the archaeological sequence at Mumba allows 

connections to be made between palaeoclimate reconstructions (Section 10.1), genetic 

evidence for demographic changes (Section 10.2) and the archaeological record 
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(Section 10.3) (Figure 10.5).  Given the evidence that population size influences 

technological and behavioural innovations (Shennan, 2001; Henrich, 2004; Powell et 

al., 2009; Reide, 2009), and that the size of human populations varied markedly during 

the Late Pleistocene, demographic pressure is a likely candidate as the operative factor 

in changes in behaviour.  The initial cause of changes in demography and resource 

availability may be environmental. 

 By 100 ka ago, modern humans were geographically dispersed from southern 

Africa to the Levant, and possibly as far east as the Arabian Peninsula (Armitage et al., 

2011).  This was not a panmictic population, however, as modern humans were likely 

living in geographically and genetically isolated populations (Watson et al., 1997; 

Knight et al., 2003; Garrigan et al., 2007; Campbell and Tishkoff, 2008; Behar et al., 

2008; Quintana-Murci et al., 2008).  There is a growing body of evidence for ‘modern’ 

behaviour by early modern humans (e.g., Vanhaeren et al., 2006) and non-modern 

hominins (e.g., Barham, 2002a,b; Zilhão et al., 2010), suggesting that humans had the 

cognitive capacity for modern behaviour prior to 100 ka, and that other factors (e.g., 

demographic pressures) were the triggers for their expression. 

 During MIS 5a (85–78 ka), the climates of eastern and northern Africa and the 

Levant became more favourable for human habitation.  Sea levels were near or above 

modern-day levels (Hearty, 1998; Coyne et al., 2007; Dorale et al., 2010).  The Arabian 

Peninsula was warm and humid (Reichart et al., 1998; Fleitmann et al., 2003; Leuschner 

et al., 2004), the African monsoon was strengthened (Revel et al., 2010) and Lake 

Malawi was experiencing a highstand (Scholz et al., 2007).  The more favourable 

climates at this time may have encouraged human population expansions.   Increases in 

North African population sizes and densities are consistent with evidence for increased 

symbolic expression and long distance social networks (Bouzouggar et al., 2007; 

d’Errico et al., 2009).   

The MIS 4 glacial (78–60 ka) was a period of climatic deterioration in many 

parts of the Old World.  There is abundant evidence for widespread aridity in Arabia 

(Reichart et al., 1998; Leuschner et al., 2004) and East Africa (Ficken et al., 1998).  

Lake Tanganyika shows two low lake-level regressions during MIS 4 (Scholz et al., 

2003).  The level of Lake Malawi was also substantially reduced for parts of MIS 4, 

suggesting megadrought conditions in East Africa between ~78 and 74 ka and increased  
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aridity between ~64 and 62 ka (Scholz et al., 2007).  Reduced precipitation in the region 

is supported by evidence that the East African monsoon was weakened during MIS 4 

(Revel et al., 2010).  Human populations were most likely geographically distributed 

and isolated across parts of sub-Saharan Africa.  There is evidence for the dispersal, 

isolation and possible extinction of groups of modern humans during this period.  The 

ancestors of modern-day Mbuti pygmies likely diverged from other human populations 

during MIS 4 (Quintana-Murci et al., 2008), perhaps due to climatically forced 

geographic isolation.  On the basis of palaeoclimatic and archaeological records, Shea 

(2008) contends that rapid climate change at the beginning of MIS 4 caused decreases in 

temperature and humidity, resulting in the extinction of modern humans in the Levant.  

During these periods of climatic deterioration, modern humans making MSA Kisele 

Industry artefacts were occupying Mumba rockshelter, and other sites in the East 

African Rift Valley, at low population densities. 

Following Heinrich Event 6, the transition to MIS 3 at ~60 ka resulted in 

climatic amelioration throughout much of Africa (Felton et al., 2007; Revel et al., 2010; 

Tierney et al., 2010).  In particular, during the period from 60 to 50 ka, humidity and 

rainfall increased in the Lake Tanganyika basin (Felton et al., 2007; Tierney et al., 

2010) and Lake Malawi rose to near-modern levels (Scholz et al., 2007).  There is 

additional evidence that the East African monsoon was strengthened between 60 and 50 

ka (Revel et al., 2010).  Nowell (2010) suggested that climatic amelioration at the start 

of MIS 3 may have caused increases in population size and density and associated 

increases in technological innovation.  There is genetic evidence for population 

expansions and dispersals within, and out of, Africa during this period (Watson et al., 

1997; Knight et al., 2003; Tishkoff et al., 2007; Atkinson et al., 2008).  Thus, following 

climatic amelioration during early MIS 3, an expanding human population in the East 

African Rift Valley may have adapted to more favourable environmental conditions by 

developing backed tool-based technologies.  This is manifested in the archaeological 

record as the synchronous appearance of the LSA assemblage from the Naisiusiu Beds 

and the Mumba Industry at the beginning of MIS 3.  The latter lithic industry has been 

identified at Mumba and Nasera rockshelters and may also be present at Kisese II 

rockshelter.  The LSA Nasampolai Industry at Enkapune Ya Muto may also represent 

an early backed piece-based toolkit. 
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 Around 50 ka ago, abrupt and brief climatic deteriorations, potentially linked to 

Heinrich Event 5 (Scholz et al., 2003; Tierney et al., 2008), may have rendered parts of 

the East African Rift Valley less suitable for human habitation.  This may have 

encouraged populations to congregate at shelters, such as Mumba, close to water 

sources and on lake margins, thus, increasing population densities and competition for 

limited resources.     This increased population pressure may have brought groups into 

contact with more people more often, resulting in increased social interaction and, 

potentially, an increased reliance on social networks and cooperation.  This may have 

provided the impetus for the emergence of symbolic ornamentation (e.g., OES beads) in 

East Africa.  The establishment and maintenance of robust social networks based on 

increased cooperation and interaction would have allowed humans to use the available 

resources more effectively (Ambrose, 1998, 2002, 2003, 2010), facilitating an enlarged 

population to survive brief periods of climatic deterioration.  This is reflected in the 

archaeological record of East Africa as increased artefact densities and the emergence of 

OES beads in the Mumba Industry of upper Bed V.   

 Following Heinrich Event 5, favourable climatic conditions may have returned 

through ~42 ka (Holmgren et al., 1995; Barker et al., 2003), resulting in a highstand for 

Lake Eyasi.  Ephermeral periods of climatic deterioration continued, however, through 

35 ka (Scholz et al., 2003; Tierney et al., 2008).  During this period, population 

densities and social interactions may have continued to increase in the East African Rift 

Valley, resulting in the proliferation of symbolic ornaments (OES beads) associated 

with a regional system of exchange serving to ensure access to resources.  The 

emergence of the Sakutiek Industry at Enkapune Ya Muto (~44–40 cal ka BP) and the 

high artefact-density of the Nasera Industry at Nasera rockshelter are consistent with 

this scenario.  The presence of obsidian, sourced to southern Kenya, in Levels 6 and 7 at 

Nasera rockshelter is consistent with the hypothesised association between the Nasera 

Industry of northern Tanzania and the Sakutiek Industry of southern Kenya.  It is also 

consistent with the hypothesised existence of regional exchange networks.  The Nasera 

Industry and associated OES beads were deposited at Mumba rockshelter (37 ± 3 ka) 

after the end of the Lake Eyasi highstand.  The first archaeological deposits after the 

Lake Eyasi highstand are coincident with Heinrich Event 4.  This synchronicity 

suggests that a brief period of aridity associated with Heinrich Even 4 may have caused 
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a regression in Lake Eyasi, allowing modern humans living on the lake margin to 

occupy the newly-exposed Mumba rockshelter.   

It is unclear whether occupation at Mumba continued through the LGM.  The 

pre-LGM (Bed III-lower) and post-LGM (Bed III-middle) assemblages from the site are 

typologically and compositionally different (Mehlman, 1989), although there are no 

large stratigraphic gaps in the sequence (Prendergast et al., 2007).  Furthermore, lithic 

and symbolic artefacts are found throughout Bed III (Prendergast et al., 2007).  It is 

clear that humans with LSA toolkits and OES bead traditions occupied Mumba 

rockshelter before (37 ± 3 ka) and after the LGM (16 ± 1 ka). 

The above synthesis of the revised chronology for the archaeological sequence 

at Mumba and existing archaeological, palaeoclimatic and demographic records for East 

Africa suggests that changes in human behaviour and technology are intimately linked 

to environmental conditions.  This is highlighted by the synchronicity of major 

technological, behavioural and environmental changes.  Backed piece-based toolkits 

emerged with the climatic amelioration at the start of MIS 3, and the first evidence for 

symbolic ornaments is synchronous with Heinrich Event 5.  Similarly, technological 

change and the proliferation of symbolic ornaments occurred during a period of 

favourable climate.  These temporal connections are highly suggestive of an intimate 

link between modern humans and their environment, although establishing a causal 

connection between climate and human response requires a much higher degree of 

resolution in the archaeological, demographic and environmental records. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 11: Conclusions 
 

Chapter 11: Conclusions 
 

 The main aim of this thesis was to provide a chronological framework for the 

MSA and LSA archaeological sequences of two sites in East Africa.  An improved 

chronology would help resolve the timing of the emergence and proliferation of 

microlithic backed-tool technologies and symbolic behaviours in the region during the 

Late Pleistocene.  To accomplish this, the OSL and IRSL properties of quartz and K-

feldspars from deposits containing MSA and LSA assemblages were investigated to 

assess their suitability for obtaining robust age estimates.  Recently developed 

analytical, procedural, optical stimulation and correction techniques were tested to 

overcome problems associated with the luminescence properties of the quartz and 

feldspar grains and the depositional and post-depositional processes that affected the De 

distributions. 

 

11.1 General luminescence findings 

1. Single-grain SAR measurements revealed substantial inter-grain variability in 

the OSL signal of quartz from Mumba.  This variability was characterised and 

five major classes of grain-type were identified, based on their behaviour during 

a SAR procedure.  The use of the pulsed-irradiation technique reduced the 

number of grains that produced hyperbolic dose-response curves.  Standard SAR 

suitability tests were used to identify and reject some grain types (e.g., Class-3 

type grains).  Using dose recovery experiments, grains that possessed other poor 

qualities, such as low-dose saturation levels and malign sensitivity changes, 

could then be identified and rejected from the dataset.  The OSL signals from the 

remaining grains were dominated by the fast component and could be used to 

recover a known dose.  When multi-grain aliquots of these samples were 

measured using the SAR procedure, the variability in grain-types resulted in an 

amalgamated signal that was dominated by poorly behaving grains.  This 

resulted in poor performances in tests of SAR suitability, an inability to recover 

a known dose, and large variability in the measured OSL and LM-OSL signal.  

These findings highlight the need for the investigation of single grains to 

identify variability in the OSL signal and accurately obtain dose estimates. 
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2. Using only the De values from grains that were dominated by a fast component 

and were suitable for using the SAR procedure, De distributions were obtained 

and analysed.  Grains that were likely intrusive or that had received an 

attenuated beta dose rate during burial could then be identified and rejected from 

the dataset.  The remaining De values were considered the most representative of 

the dose received during burial.  The measured dose rate could then be corrected 

for beta microdosimetry to obtain a depositional age for most of the Mumba 

samples.  Single-grain quartz OSL ages could not be obtained for some samples 

(e.g., MR10 from Bed VIA) due to the OSL signals being in saturation.  These 

samples were then investigated using K-feldspar separates. 

3. The TL and IRSL signals from K-feldspar separates of samples from Mumba 

were investigated with the aim of finding a luminescence signal that could be 

used to obtain accurate ages.  The findings of this research support the donor-

acceptor mode of IRSL production.  Two TL peaks were identified in the natural 

and laboratory-irradiated samples: at 350°C and 430°C.  The TL peak at 350°C 

was shown to be less optically sensitive than the 430°C peak.  An association 

was made between the IRSL signal and the high-temperature TL peak at 430°C, 

supporting the results of Murray et al. (2009).  The shape and intensity of the 

IRSL signal was shown to be largely dependent on stimulation temperature.  The 

maximum IR stimulation temperature that could be used without stimulating an 

isothermal TL signal was 225°C.   

4. The post-IR IRSL signal was characterised for K-feldspar separates from 

Mumba.  It was shown to be bleachable in natural sunlight and suitable for using 

the SAR procedure to recover a known dose.  Dose recovery experiments 

showed that other stimulation conditions (i.e., IR at 50°C and 225°C) were also 

suitable for recovering a known dose.  A comparison of fading rates revealed 

that, although fading was ubiquitous, the fading rate decreased with increasing 

stimulation temperatures of up to 225°C.  Additionally, the post-IR IRSL signal 

suffered the least anomalous fading out of all stimulation conditions tested (i.e., 

IR stimulation at 50°C, 225°C, 300°C and 350°C).  De values and fading rates 

were then measured for multi-grain aliquots of K-feldspar from Mumba, and 

these then used to obtain fading-corrected ages.  Fading-corrected IRSL ages 
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were consistent with single-grain OSL ages, for the three samples for which 

reliable OSL ages could be obtained.  This provided support for the ability of the 

post-IR IRSL signal from K-feldspars to give reliable age estimates for samples 

from Mumba. 

5. Quartz of volcanic origin from Moche Borago was shown to be very rare in the 

samples and did not contain a fast component, prompting the investigation of K-

feldspars from the same samples.  These K-feldspars of volcanic origin were 

shown to be very dim and to have very different TL and IRSL properties from 

the K-feldspars of metamorphic origin from Mumba.  No discrete association 

could be made between TL peaks and the IRSL signal.  The shape and intensity 

of the IRSL signal was shown to be largely dependent on stimulation 

temperature.  When various IR stimulation conditions were tested in dose 

recovery experiments, all aliquots were able to recover a known dose.  However, 

performance in tests of SAR suitability was improved, and the measured/given 

dose ratio was closer to unity, for IR stimulation at 200°C compared to lower 

stimulation temperatures.  Anomalous fading was shown to affect K-feldspars 

from Moche Borago to a greater extent than at Mumba.  The fading rate 

decreased as IR stimulation temperature was increased to 200°C, although the 

lowest fading rates (37 ± 4 %/decade) were still unacceptably high for fading 

correction using the model of Huntley and Lamothe (2001).  Given the lack of 

quartz and feldspar grains in the Moche Borago samples, the dimness of the 

luminescence signals from the minerals that were present, and the high rates of 

anomalous fading of the K-feldspars, reliable age determination using the 

procedures that were investigated was not possible for Moche Borago 

 

11.2 Implications of the OSL chronology for Mumba rockshelter on technological 

and behavioural evolution in East Africa 

 A numerical-age chronology could be obtained for the archaeological sequence 

from Mumba using single grains of quartz and multi-grain aliquots of K-feldspar.  The 

ages for upper Bed V obtained using both mineral grains were consistent with each 

other and with independent AAR age estimates of ~52 ka and 45 to 65 ka, reported by 

McBrearty and Brooks (2000).  The OSL and IRSL chronologies presented in this thesis 
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constrain the timing of transitions in technologies and behaviours at Mumba and 

provide insights into the possible reasons for these changes.  The main findings of the 

new chronology are as follows: 

1. Obsidian artefacts, some of which were traced to source outcrops 320 km from 

Mumba rockshelter in southern Kenya, were found in Beds VIB, VIA, V and 

III-lower.  The majority of available ethnographic evidence indicates that a 

transport distance of 300 km or more would result from procurement via 

exchange networks.  The frequent presence of distantly sourced obsidian at other 

MSA sites in East Africa is consistent with the hypothesised existence of 

exchange networks.  Since no OSL samples were collected from Bed VIB, the 

age obtained for Bed VIA provides only a minimum estimate for the existence 

of these networks.  Thus, the ages of 74 ± 4 ka and 37 ± 3 ka for Bed VIA and 

III-lower, respectively, provide a minimum estimate of the duration of time (~40 

ka) that long-distance exchange networks were in existence among the 

inhabitants of East Africa.  This time range spans the varied climatic conditions 

of MIS 5, 4 and 3. 

2. The OSL chronology provides temporal constraints for the transition from MSA 

to LSA toolkits at Mumba.  The OSL ages of 63 ± 6 ka for Bed VIA constrains 

the latest use of the MSA Kisele Industry.  The earliest deposits containing the 

backed piece-based Mumba Industry (lower Bed V) are associated with an age 

of 57 ± 5 ka.  Thus, the transition from point-dominated to backed piece-

dominated toolkits at Mumba occurred between these two time periods, around 

60 ka.  The age for the earliest Mumba Industry is synchronous with the earliest 

backed piece-dominated assemblage from the Naisiusiu Beds at Olduvai Gorge.  

The transition in technologies at Mumba and Olduvai is synchronous with the 

climatic transition at approximately 60 ka, when the arid conditions of MIS 4 

were replaced with more favourable conditions of MIS 3.  Together, these lines 

of evidence suggest that a backed piece-based toolkit emerged in East Africa 

concomitantly with climatic amelioration at the start of MIS 3. 

3. The OSL age of 49 ± 4 ka for upper Bed V temporally constrains the first 

evidence for symbolic materials in the archaeological sequence at Mumba.  This 

is the earliest evidence for OES beads at Mumba rockshelter and in the region of 
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East Africa.  The emergence of OES beads in the Mumba Industry at this time is 

coincident with the ephemeral climatic deterioration of Heinrich Event 5. 

4. The OSL age of 37 ± 3 ka for lower Bed III provides a temporal constraint for 

the emergence of the Nasera Industry at Mumba.  This LSA toolkit differs 

substantially from the underlying Mumba Industry and contains abundant 

symbolic materials in the form of OES beads, bored stone balls and engraved 

OES fragments.  The Nasera Industry is also present at Nasera rockshelter and is 

typologically similar to the Sakutiek Industry at Enkapune Ya Muto, which is 

also associated with abundant OES beads.  The age-range for the Sakutiek 

Industry suggests that it was made during a period of favourable climate, during 

which time Lake Eyasi was likely experiencing a highstand, which submerged 

Mumba rockshelter.  The timing of the emergence of the Nasera Industry at 

Mumba is consistent with the timing of the ephemeral climatic deterioration of 

Heinrich Event 4, which may have caused Lake Eyasi to recede and expose 

Mumba rockshelter for renewed human occupation. 

5. The robust OSL and IRSL chronology for Mumba rockshelter suggests that a 

relationship may exist between changes in technology and behaviour in East 

Africa and climate changes during the Late Pleistocene.  The coincidence of the 

three major technological and/or behavioural changes at Mumba with 

environmental changes in East Africa supports this hypothesis, although 

establishing a causal relationship between the two will require a substantially 

higher degree of resolution in the palaeoclimatic and archaeological records. 

 

11.3 Future research 

 The research described in this thesis has demonstrated that single-grain OSL and 

multi-grain post-IR IRSL investigations of quartz and feldspar, respectively, can be 

used to obtain reliable numerical ages for Late Pleistocene deposits in East Africa.  

Consequently, there is enormous potential for these dating techniques to constrain the 

timing of the MSA and LSA in this region.  The lack of reliable chronologies for this 

period in East Africa greatly restricts the ability of researchers to appropriately interpret 

the archaeological, palaeoenvironmental and genetic records to understand when, why 

and how modern human technologies and behaviours changed during the Late 
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Pleistocene.  The following areas of future research could build upon the results 

presented in this thesis: 

1. The accuracy and precision of luminesce dating can be improved.  Coupling 

single-grain dating with micromorphology studies of sediment can help 

elucidate the issue of beta dose rate heterogeneity (Jacobs and Roberts, 2007; 

David et al., 2007).  Multiple studies, including this thesis, have demonstrated 

that the post-IR IRSL signal from K-feldspars can be used to recover a known 

dose, fade minimally, and obtain an age as accurate as single-grain quartz ages.  

The post-IR IRSL procedure can, thus, be used to obtain accurate ages in cases 

where quartz is absent, the OSL signals are dim or saturated, and post-

depositional mixing is not significant.  Investigations into the luminescence 

properties of single grains of K-feldspar may be able to identify grains with 

IRSL signals that do not fade, much like single-grain investigations of quartz 

can be used to identify grains with poor OSL behaviours.  If grains whose IRSL 

signals fade are identified and rejected, there is no need to use the age correction 

procedure and its associated assumptions and limitations.  In addition, single-

grain K-feldspar analyses could be used to assess the various pre-depositional, 

depositional and post-depositional processes that may have affected the De 

distribution of each sample, enabling increased accuracy and precision on age 

estimates. 

2. To obtain chronological controls on the entire archaeological sequence at 

Mumba, stratigraphically secure OSL samples could be collected from deposits 

associated with the Sanzako Industry.  Since the quartz OSL signal will be 

saturated in these samples, the post-IR IRSL technique could be used to obtain 

ages from K-feldspar separates.  Temporally constraining the Sanzako Industry 

would place a chronological control on the first potential evidence for long-

distance exchange networks, in the form of distantly-sourced obsidian, at 

Mumba rockshelter. 

3. More MSA and LSA sites in East Africa need to be re-dated using modern 

methods, sample pretreatment techniques and data analysis procedures.  Sites 

that contain MSA and LSA assemblages associated with out-dated chronologies 

include Enkapune Ya Muto, Kisese II rockshelter, Nasera rockshelter, Lukenya 
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Hill, Prospect Farm and Prolonged Drift.  Methods such as OSL dating of quartz 

and IRSL dating of K-feldspar could potentially be used to obtain reliable 

chronologies for these sites.  Temporally constraining the emergence of backed 

piece-based toolkits, the emergence of symbolic materials and their proliferation 

at other sites in East Africa will be necessary to confirm or disprove the 

hypothesised association of these behavioural changes with contemporaneous 

changes in the environment and demography in the Late Pleistocene. 
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Appendix 1 
 

Appendix 1: Approximate number of grains on multi-grain aliquots 
 
 To prepare a multi-grain aliquot of quartz and feldspar grains, a silicone oil 

adhesive (Silkospray) was sprayed onto a 10 mm-diameter stainless steel disc through a 

mask of a specified diameter.  Mineral grains were then mounted onto the disc, adhering 

to the area covered in the oil in a monolayer.  The approximate number of 180–212 μm-

diameter grains that correspond to the various mask sizes used in this study are 

presented in Table A1.1. 

 
Table A1.1: Approximate number of 180–212 μm grains that were mounted onto stainless steel 
discs using a silicone oil adhesive applied to discs using masks of the specified diameters. 
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Appendix 2 
 

Appendix 2: Comparing de-convoluted LM-OSL curves  
 

 Several experiments described in Chapter 5 required the measurement, de-

convolution and comparison of multiple LM-OSL curves measured after regenerative 

and test doses for the same aliquot over the course of an LM-OSL SAR procedure 

(Section 5.1.3).  Several observations were made when various LM-OSL curves from 

the same aliquot were de-convoluted and compared.  To illustrate these observed 

patterns, an aliquot consisting of ~500 grains of quartz from MR7 was bleached in 

sunlight for at least three days.  It was given a dose (116 Gy), preheated to 260°C for 10 

s, and then stimulated by linearly ramping the blue LEDs from 0 to 90% over 3600 s 

while the LM-OSL was measured (Lx).  After the LM-OSL measurement, a test dose 

cycle was performed that consisted of a test dose of 11 Gy, a preheat of 220°C for 5 s, 

and a LM-OSL measurement for 3600 s (Tx).  This procedure was repeated five times, 

serving as an extended recycling ratio test, such as that built into the SAR procedure 

(Section 3.3.2.2).  Results, presented in Table A2.1, exhibit the following patterns: 

1. When de-convoluting a LM-OSL curve, as the number of components (N) was 

increased, the PIC and b values of the first component increased and the size of 

the first component (n) decreased.   

2. For any given aliquot, the PIC and b values decreased in a linear fashion with 

each progressive regenerative dose cycle (i.e., R1, R2 …R5) for a given value of 

N (e.g., Figure A2.1). 

3. When N was kept constant and the LM-OSL signal following a regenerative 

dose was compared to the LM-OSL signal following the subsequent test dose, 

the PIC and b values of the first component were always larger for the 

regenerative dose than for the test dose. 

4. The value of N that best fit the data (according to the sum of the squared 

residuals) was not necessarily the same for the regenerative and test doses.  For 

example, in Table A2.1, the best fit for the regenerative dose is N = 4, and the 

best fit for the test dose is N = 5.   
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Table A2.1: Results obtained by de-convoluting LM-OSL curves from a multi-grain aliquot of 
MR7.  The aliquot was given a regenerative dose (~116 Gy), preheated (260°C), and the LM-OSL 
was measured.  The aliquot was then given a test dose (~11 Gy), preheated (220°C), and the LM-
OSL was measured.  Both LM-OSL curves were then de-convoluted as described in section 3.5.2.2 
for N = 2, 3, 4, 5, and 6.  The b value, relative b values, and sum of squared residuals are shown for 
each de-convolution model (i.e., value of N). 

 
 
 

 

 
Figure A2.1: LM-OSL de-convolution results over five SAR measurement cycles for a single aliquot 
of MR7.  The LM-OSL curve was de-convoluted as described in section 3.5.2.2. 
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Appendix 2 
 

A2.1 Determining the number of component (N) 

Given the observations noted above, how should de-convoluted LM-OSL curves 

be compared to one another?  Ideally, the PIC and b values of the components that are 

being compared should be identical.  Li and Li (2006b) used LM-OSL signals to isolate 

the fast component for De estimation.  They encountered similar problems to those 

faced in this study, including the inability to clearly separate and identify components in 

the slower part of the LM-OSL signal.  They tested the effect of varying the peak 

position (related to the PIC and thus b value following Equation 2 in Li and Li, 2006b) 

of the fast component and concluded that fixing the peak position improved 

reproducibility and resulted in more accurate estimates of the intensity of the peak, 

resulting in more reliable dose-response curves.   

As a means of testing the observations of Li and Li (2006b) and to establish a 

procedure for choosing the value of N to use for comparing LM-OSL curves, the results 

from the experiment described in this appendix were analysed using the two methods 

described below: 

 

Method One: 

The N value was chosen for each Lx using the sum of the squared residuals 

measure of best fit.  The N value for each Tx was then chosen based on that 

which produced a b value closest to that for the preceding Lx. 

Method two: 

No measures of ‘best fit’ were used to choose the N value for either the Lx or Tx.  

Each LM-OSL curve was de-convoluted for N values of 2, 3, 4, 5 and 6, and the 

resulting parameters (b and n) were scrutinised.  The largest value of N that 

could be fit for each Tx (always either N = 5 or N = 6 for quartz from Mumba) 

was chosen.  This resulted in the b values of the fast component for all test dose 

LM-OSL signals being within a 0.10 s-1 range, for an individual aliquot.  The N 

value for each Lx was then chosen based on the N value that resulted in a fast 

component with a b value in the range produced by test doses.  In doing this, the 

fast components for all regenerative and test dose LM-OSL signals had b values 

within a range of 0.10 s-1. 
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Figure A2.2: Comparison of the Method 1 and Method 2 for analysing LM-OSL de-convolution 
data for a single aliquot (see text).  The error on each Lx/Tx value is displayed at 2σ.  The tables 
display the N value for both Lx and Tx for each Rx.  The b value for the fast component is also 
shown. 
 

 Results produced for one aliquot using both Method 1 and Method 2 are 

compared in Figure A2.2.  Since all regenerative and test doses were identical, and the 

SAR procedure was shown to be suitable for quartz from Mumba when the fast 

component was used (see Chapter 5), the sensitivity corrected signal of the fast 

component should be the same for all SAR measurement cycles (i.e., R1, R2 …R5). 

Method 1 produced a large spread in the b values obtained for the LM-OSL 

curves induced by both regenerative and test doses.  The b values varied from 1.08 to 

1.39 s-1, a range of 0.31 s-1.  The spread in b values was reduced considerably when 

Method 2 was used.  The 0.10 s-1 range in b values used for this aliquot was 1.07 to 1.17 

s-1.  The Lx/Tx values for four out of five SAR cycles (Rx) are consistent with each other 

at 2σ and the fifth value is within 5% of the other four.   

These results support the suggestion of Li and Li (2006b) that fixing the peak 

position (analogous to the b value) results in improved reproducibility.  Consequently, 

in all cases when two or more LM-OSL signals are compared in this thesis, Method 2 

was used to determine the optimal de-convolution model (i.e., value of N) for each LM-

OSL curve. 
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