University of Wollongong Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2006

Mass spectrometric studies of non-covalent biomolecular complexes

Thitima Urathamakul University of Wollongong, thitima@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Urathamakul, Thitima, Mass spectrometric studies of non-covalent biomolecular complexes, PhD thesis, Department of Chemistry, University of Wollongong, 2006. http://ro.uow.edu.au/theses/663

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Mass Spectrometric Studies of Non-Covalent Biomolecular Complexes

A thesis submitted in (partial) fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

University of Wollongong

by

Thitima Urathamakul

Bachelor of Science (Honours)

Department of Chemistry

October 2006

DECLARATION

I, Thitima Urathamakul, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The work has not been submitted for qualification at any other academic institution.

Thitima Urathamakul 24th October 2006

ACKNOWLEDGEMENTS

While this thesis is a culmination of three years' worth of work and study, my contribution in the form of its writing is but a small part of the overall process. The following is a list of people who have played an integral part in my life over the past several years – people who have provided me with guidance and support both immeasurable and invaluable. In short, people without whom this thesis would not have been possible.

Firstly, my supervisors Dr Jennifer Beck, Dr Stephen Ralph and Professor Margaret Sheil. Margaret, thank you for giving me the opportunity to complete my postgraduate research here at the University of Wollongong. You have never failed to help and encourage me through difficult times.

Steve, your enthusiasm has been a real driving force that has kept the ruthenium work (and my focus) on track. I have found your energy infectious and your ideas a constant source of inspiration.

Jenny, you have been an amazing supervisor throughout my time working with you. You have always found time to help me both academically and personally, your commitment to your students and your work is tremendous. You are my mentor and my confidant.

The three people mentioned above have been the best supervisors that any student could hope for.

Mr Larry Hick for his knowledgeable advice and assistance with the mass spectrometer. You have always been approachable and helpful to everyone. The lab is a warmer place with your presence. Larry, you are a legend.

Raj Gupta and Stephen Watt for their help in teaching me invaluable skills for the various instruments in the early stages of my degree. David Harman, Karin Maxwell, Stephen Blanksby, Roger Kanitz, Todd Mitchell, Jihan Talib, Karina Gornall, Linda Jessop, Michael Thomas, Jane Deeley, and other past and present members of the Mass Spectrometry group for making this a fun and enjoyable place to work.

Dr Nicholas Dixon and his group (Research School of Chemistry Australian National University) for their kindness in providing the proteins used in this study.

Dr Janice Aldrich-Wright (School of Science, Food and Horticulture, University of Western Sydney, Australia University of Western Sydney) for the ruthenium drugs used for the DNA work.

The Department of Chemistry, around which so much of my life has revolved over the past 8 years. The friendliness, support and guidance I have experienced during my time here have been truly memorable.

My family – my brothers, sister, and most especially my mother for all her support over the years and for giving me the opportunity to study overseas in the first place.

Last but not least, my dearest husband Min for all his endless support and patience, particularly during the tough time of writing up. Min, thank you for believing in me and for always being there for me.

PUBLICATIONS

Beck, J.L., Gupta, R., **Urathamakul, T**., Williamson, N.L.; Sheil, M.M., Aldrich-Wright, J. R. and Ralph, S.F. (2003) Probing DNA Selectivity of Ruthenium Metallointercalators Using ESI Mass Spectrometry. *Chem. Commun.*, **5**, 626-7.

Urathamakul, T., Beck, J.L., Sheil, M.M., Aldrich-Wright, J.R. and Ralph, S.F. (2004) A Mass Spectrometric Investigation of Non-Covalent Interactions Between Ruthenium Complexes and DNA. *Dalton Trans.*, **17**, 2683-2690.

Beck, J.L., **Urathamakul, T**., Watt, S.J., Sheil, M.M., Schaeffer, P.M. and Dixon, N.E. (2006) Proteomic Dissection of DNA Polymerisation. *Expert Rev. Proteomics*, **3**, 197-211.

Watt, S.J., Urathamakul, T., Schaeffer, P.M., Sheil, M.M., Dixon, N.E. and Beck,
J.L. (2006) Electrospray Ionisation Mass Spectrometry of Oligomers of *E. coli* DnaB
Helicase and Mutants. *Rapid Commun. Mass Spectrom.*, 21, 132-140.

ABSTRACT

Electrospray ionisation mass spectrometry (ESI-MS) was employed to investigate non-covalent associations of macromolecules with ligands, metal ions and other macromolecules. Firstly, ESI-MS was used to examine the interactions of six ruthenium compounds with three different DNA sequences (D1, D2 and D3). The relative binding affinities of these ruthenium compounds towards dsDNA was $[\operatorname{Ru}(\operatorname{phen})_2(\operatorname{dppz})]^{2^+} \geq [\operatorname{Ru}(\operatorname{phen})_2(\operatorname{dpqMe}_2)]^{2^+} >$ determined be: to $[Ru(phen)_2(dpqC)]^{2+} > [Ru(phen)_2(dpq)]^{2+} > [Ru(phen)_2(pda)]^{2+} > [Ru(phen)_3]^{2+}$ This order was in good agreement with that obtained from DNA melting temperature experiments. Competition experiments involving ruthenium compounds and organic drugs were also conducted to obtain information about the DNA binding modes of the ruthenium compounds. These studies provide strong support for the routine application of ESI-MS as a tool for analysis of non-covalent complexes between metallointercalators and dsDNA.

ESI-MS also proved to be a rapid and efficient tool for investigation of interactions between the N-terminal domain of ε (ε 186, the exonuclease proofreading subunit of *E. coli* DNA) and three different metal ions (Mn²⁺, Zn²⁺ and Dy³⁺). The dissociation constants (K_d) for binding of Mn²⁺, Zn²⁺ and Dy³⁺ to ε 186 were determined from ESI-MS data to be 38.5 x 10⁻⁶, 3.7 x 10⁻⁶ and 2.0 x 10⁻⁶ M, respectively. Despite binding the least tightly to the protein, incorporation of Mn²⁺ into the enzyme resulted in the highest enzymatic activity as measured by spectrophotometric studies. This suggested that Mn²⁺ is possibly the native metal ion present in ε 186. The ability of the metal ions to enhance ε 186 enzymatic activity was found to follow the order: $Mn^{2+} >> Zn^{2+} > Dy^{3+}$. The results of these experiments also provided evidence that the presence of two divalent metal ions was essential for efficient enzyme-catalysed hydrolysis.

The distribution of different oligomeric forms of wild-type *E. coli* DnaB helicase and DnaB helicase mutants (F102E, F102H, F102W and D82N) was examined using a factory-modified Q-ToF mass spectrometer equipped with a 32,000 m/z quadrupole. Previous experiments showed that the heptameric form of the wild-type protein was favoured in the presence of methanol (30% v/v). In the current work, mixtures of hexamer, heptamer, decamer and dodecamer were observed in solutions containing 1000 mM NH₄OAc, 1 mM Mg²⁺ and 0.1 mM ATP, pH 7.6. When the proteins were prepared in solutions containing a lower concentration of Mg²⁺ (0.1 mM), only the hexameric form was observed for all proteins except D82N, which showed a mixture of hexamer and heptamer. These observations suggest that the higher order structures were stabilised at high concentrations of Mg²⁺. In addition, the hexamers of DnaB and mutants ((DnaB)₆, (F102W)₆ and (D82N)₆) formed complexes with four to six molecules of the helicase loading partner, DnaC.

ESI-MS was used in conjunction with hydrogen/deuterium exchange studies to probe the unfolding mechanisms of linear and cyclised DnaB-N (the N-terminal domain of DnaB helicase) containing linkers comprised of different numbers of amino acid residues (3, 4, 5 and 9). The unfolding rates for all the cyclised proteins were about ten-fold slower than for the corresponding linear proteins. These observations suggest that enhancement of protein stability against unfolding could be achieved through cyclisation. Furthermore, the HDX data showed that all the proteins examined exhibited a rare EX1 mechanism at near neutral pH.

ABBREVIATIONS

ε186	N-terminal domain of ε
A ₄₂₀	Absorbance at 420 nm wavelength
ADP	Adenosine-5'-diphosphate
AMP-PNP	β , γ -imidoadenosine-5'-triphosphate
ATP	Adenosine 5'-triphosphate
BIRD	Blackbody infrared radiative dissociation
bp	Base pair
bpy	2,2'-Bipyridine
BSA	Bovine serum albumin
CD	Circular dichroism
CI	Chemical ionisation
CID	Collision-induced dissociation
Da	Dalton
DAPI	4',6-diamidino-2-phenylindole
DNA	Deoxyribonucleic acid
dppz	Dipyrido[3,2-a:2',3'-c]phenazine
dpq	Dipyrido[3,2-d:2',3'-f]quinoxaline
dpqC	Dipyrido[3,2- <i>a</i> :2',3'- <i>c</i>](6,7,8,9-tetrahydro)phenazine
dpqMe ₂	Dipyrido[6,7-d:2',3'-f]2,3-dimethylquinoxaline
DSC	Differential scanning calorimetry
dsDNA	Double-stranded DNA
DTT	D, L-Dithiothreitol
Dy(OAc) ₃	Dysprosium(III) acetate

ECD	Electron-capture dissociation
EDTA	Ethylenediaminetetraacetic acid
EI	Electron ionisation
EM	Electron microscopy
EPR	Electron paramagnetic resonance
ESI	Electrospray ionisation
FAB	Fast atom bombardment
FD	Field desorption
FTICR	Fourier transform ion cyclotron resonance
HDX	Hydrogen/deuterium exchange
HSQC	Heteronuclear single quantum correlation
HMQC	Heteronuclear multiple quantum correlation
НХ	Hydrogen exchange
ICP	Inductively coupled plasma
IR	Infrared
ITC	Isothermal titration calorimetry
k _{cat}	Turnover number (Michaelis-Menten kinetics)
K _d	Dissociation constant
kDa	Kilo Dalton
KF	Klenow fragment of Pol I (contains exonuclease domain)
kV	Kilovolts
NMR	Nuclear magnetic resonance
NOESY	Nuclear Overhauser effect spectroscopy
m/z.	Mass-to-charge ratio
MALDI	Matrix-assisted laser desorption ionisation

Mg(OAc) ₂	Magnesium(II) acetate
MLCT	Metal-to-ligand charge transfer
Mn(OAc) ₂	Manganese(II) acetate
Mr	Molecular mass
MS	Mass spectrometry
MWCO	Molecular weight cut off
NH	Amide hydrogen
NH ₄ OAc	Ammonium acetate
NMR	Nuclear magnetic resonance
NTP	Nucleoside triphosphate
PAGE	Polyacrylamide gel electrophoresis
PAP	Purple acid phosphatase
PD	Plasma desorption
Pda	9,10-diaminophenanthrene
PEG	Polyethylene glycol
phen	1,10-Phenanthroline
pm	Picometres
<i>p</i> NP-TMP	5'-p-nitrophenyl ester of thymidine-5'-monophosphate
Pol I	DNA polymerase I
Pol III	DNA polymerase III
Q-ToF	Quadrupole-time-of-flight
RNA	Ribonucleic acid
SPR	Surface plasmon resonance
SUPREX	Stability of unpurified proteins from rates of H/D exchange
ssDNA	Single-stranded DNA

- TMP Thymidine-5'-monophosphate
- Tris-HCl Tris (hydroxymethyl) amino methane hydrochloride
- UV Ultraviolet
- Zn(OAc)₂ Zinc(II) acetate

TABLE OF CONTENTS

DECLAR	ATIONi
PUBLICA	ATIONSiv
ACKNOV	VLEDGEMENTSü
ABSTRA	CTv
ABBREV	IATIONS viii
TABLE C	DF CONTENTSxii
LIST OF	FIGURES xvü
LIST OF	TABLES xx
Chapter 1	Introduction to Biological Mass Spectrometry1
1.1	Development of Biological Mass Spectrometry1
1.1 1.2	Development of Biological Mass Spectrometry
1.1 1.2	Development of Biological Mass Spectrometry
 1.1 1.2 1.2.1 	Development of Biological Mass Spectrometry 1 Current Ionisation Techniques Used in Biological Mass Spectrometry 3 Matrix-assisted laser desorption ionisation (MALDI) mass
 1.1 1.2 1.2.1 	Development of Biological Mass Spectrometry 1 Current Ionisation Techniques Used in Biological Mass Spectrometry Spectrometry 3 Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry 3 3
 1.1 1.2 1.2.1 1.2.2 	Development of Biological Mass Spectrometry 1 Current Ionisation Techniques Used in Biological Mass Spectrometry 3 Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry 3 Electrospray ionisation (ESI) mass spectrometry 5
 1.1 1.2 1.2.1 1.2.2 1.3 	Development of Biological Mass Spectrometry 1 Current Ionisation Techniques Used in Biological Mass Spectrometry 3 Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry 3 Electrospray ionisation (ESI) mass spectrometry 5 Non-Covalent Complexes 8
 1.1 1.2 1.2.1 1.2.2 1.3 1.3.1 	Development of Biological Mass Spectrometry 1 Current Ionisation Techniques Used in Biological Mass Spectrometry 3 Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry 3 Electrospray ionisation (ESI) mass spectrometry 5 Non-Covalent Complexes 8 Brief overview of techniques for studying non-covalent complexes 10
 1.1 1.2 1.2.1 1.2.2 1.3 1.3.1 1.3.2 	Development of Biological Mass Spectrometry 1 Current Ionisation Techniques Used in Biological Mass Spectrometry 3 Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry 3 Electrospray ionisation (ESI) mass spectrometry 5 Non-Covalent Complexes 8 Brief overview of techniques for studying non-covalent complexes 10 14
 1.1 1.2 1.2.1 1.2.2 1.3 1.3.1 1.3.2 1.3 	Development of Biological Mass Spectrometry 1 Current Ionisation Techniques Used in Biological Mass Spectrometry 3 Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry 3 Electrospray ionisation (ESI) mass spectrometry 5 Non-Covalent Complexes 8 Brief overview of techniques for studying non-covalent complexes 10 ESI-MS studies of non-covalent complexes 14 2.1 ESI-MS of protein-DNA complexes 15

1	.3.2.3	ESI-MS of dsDNA	
1	.3.2.4	ESI-MS of dsDNA-drug complexes	21
1	.3.2.5	ESI-MS of multimeric protein subunits	
1.4	Sco	pe of the Thesis	25
Chapter	r2 M	aterials & Methods	
2.1	Mat	terials	
2.2	Met	hods	
2.2.	.1 R	eactions of oligonucleotides with ruthenium compounds	
P	Prepara	tion of oligonucleotides	
P	Prepara	tion of 16-mer double-stranded DNA (dsDNA)	30
Т	<i>Fitration</i>	n of dsDNA with ruthenium complexes	30
C	Competi	ition for dsDNA among ruthenium compounds	31
C	Competi	ition between ruthenium compounds and organic drugs	32
N	I elting	temperatures of drug-DNA complexes determined	by UV
S	pectros	сору	33
2.2.	.2 Pi	reparation of proteins, protein-metal and protein-protein comp	plexes 34
L	Determi	nation of protein concentrations	34
Л	Aetal io	n binding to £186	35
S	Spectrop	photometric assay of £186 activity	
C	Oligome	erisation of DnaB and DnaB mutants	
F	Formati	on of $(DnaB)_6(DnaC)_x$ complexes	37
Ŀ	Hydroge	en/deuterium (H/D) exchange of linear and cyclised DnaB-N.	39
2.2.	.3 M	lass spectrometry	41
C	Conditie	ons for mass spectrometry	41

Process	sing data41
Chapter 3 N	Non-Covalent Interactions between DNA and
N	1etallointercalators
3.1 Str	ucture of DNA
3.2 DN	A-Drug Interactions
3.2.1 C	Covalent (irreversible) binding
3.2.2 N	Von-covalent (reversible) binding
3.3 Tra	ansition Metal Complexes57
3.4 Inte	eractions of Ruthenium-Based Intercalators with dsDNA
3.5 Ap	plications of Ruthenium and Other Metal-Based
Me	etallointercalators
3.6 Sco	ope of This Chapter 66
3.7 Res	sults and Discussion68
3.7.1 R	Reactions of ruthenium compounds with individual 16-mer duplexes 68
3.7.1.1	Titration experiments
3.7.1.2	Competition experiments between ruthenium compounds
3.7.1.3	DNA selectivity
3.7.1.4	Saturation experiments
3.7.1.5	DNA melting experiments
3.7.2 C	Competition experiments involving ruthenium compounds and organic
d	rugs
3.7.2.1	Competition between daunomycin and ruthenium compounds92
3.7.2.2	Competition between distamycin and ruthenium compounds98

3.8	Conclusions 101
Chapter 4	Investigation of Interactions of Metal ions with the Exonuclease
	Subunit of E. coli DNA Polymerase III
4.1	Introduction
4.2	Replication in Escherichia coli106
4.3	DNA Polymerases
4.4	DNA Polymerase III Holoenzyme109
4.4.1	Epsilon (ε)110
4.5	Metal Ions in Proteins and Enzymes112
4.5.1	Metal ion involvement in exonuclease activities of Pol I and Pol III115
4.6	Scope of This Chapter 118
4.7	Results and Discussion119
4.7.1	Binding of metal ions (Mn^{2+} , Zn^{2+} and Dy^{3+}) to $\varepsilon 186$ 119
4.7.2	Spectrophotometric assay of ɛ186 activity130
4.8	Conclusions
Chapter 5	Oligomeric Forms of Escherichia coli Replicative Helicase
	DnaB and Complexes with Its Loading Partner DnaC
5.1	Helicases
5.1.1	DnaB helicase
5.1.2	DnaC protein
5.2	ESI-MS of Large Macromolecular Complexes142
5.3	Scope of This Chapter

5.4	Results and Discussion145			
5.4.1	Oligomers of DnaB and DnaB mutants revealed by nanoESI-MS145			
5.4.2	Effect of Mg ²⁺ concentration on oligomerisation of DnaB and mutants			
5.4.3	Titration of DnaB, F102W and D82N with DnaC155			
5.4.4	Formation of complexes of DnaB and mutants with ADP 158			
5.5	Conclusions 160			
Chapter 6	Comparison of Unfolding Rates of Linear and Cyclised DnaB-N			
	using Hydrogen/Deuterium Exchange162			
6.1	Introduction162			
6.1.1	Protein splicing			
6.2	Hydrogen/Deuterium Exchange (HDX) 167			
6.3	Techniques for Probing Protein Conformational Dynamics and			
	Interaction Sites of Protein Complexes			
6.3.1	Hydrogen exchange coupled with mass spectrometry (HX MS) 171			
6.4	Cyclisation of the N-terminal Domain of DnaB (DnaB-N) 174			
6.5	Scope of This Chapter 176			
6.6	Results and Discussion			
6.6.1	Hydrogen/deuterium exchange rates177			
6.6.2	Effect of salt concentration on H/D exchange rates			
6.7	Conclusions 192			
REFERE	NCES			
APPENDICES				

LIST OF FIGURES

Figure 3.15 Negative ion ESI mass spectra of reaction mixtures containing a 3:3:1						
ratio of two ruthenium compounds and D179						
Figure 3.16 Crystal structure of Δ - α -[Rh[(R,R)-Me ₂ trien]phi] ³⁺ bound dsDNA 82						
Figure 3.17 DNA sequence selectivity of [Ru(phen) ₂ (dpqMe ₂)] ²⁺ 83						
Figure 3.18 DNA sequence selectivity of [Ru(phen) ₃] ²⁺						
Figure 3.19 Relative abundances of ions assigned to non-covalent complexes present						
in ESI mass spectra of reaction mixtures containing						
$[Ru(phen)_2(dpqC)]Cl_2$ and D2						
Figure 3.20 DNA melting curves for D2						
Figure 3.21 Negative ion ESI mass spectra of reaction mixtures containing						
ruthenium compound, organic drug and D294						
Figure 3.22 Negative ion ESI mass spectra of reaction mixtures containing						
ruthenium compound, organic drug D3						
Figure 4.1 Structural model showing the stoichiometry of E. coli DNA polymerase						
III holoenzyme subunits						
Figure 4.2 Proposed mechanism for hydrolysis of phosphodiester bonds by the $\boldsymbol{\epsilon}$						
subunit of DNA polymerase III117						
Figure 4.3 Positive ion ESI mass spectra (transformed to a mass scale) of £186 with						
increasing Mn ²⁺ concentrations						
Figure 4.4 Positive ion ESI mass spectra (transformed to a mass scale) of a 1:500						
mixture of ε 186:Mn ²⁺ before and after dialysis						
Figure 4.5 Relative abundances of ε 186, and complexes of ε 186 with different						
numbers of bound Mn ²⁺ ions in ESI mass spectra						
Figure 4.6 Relative abundances of ε 186, and complexes of ε 186 with different						
numbers of bound Zn ²⁺ ions in ESI mass spectra						

Figure 4.7 Relative abundances of $\varepsilon 186$ and $\varepsilon 186 + 1$ Dy ³⁺ in ESI mass spectra of
solutions containing different concentrations of Dy ³⁺ 129
Figure 4.8 Hydrolysis of <i>p</i> NP-TMP by ε 186 in the presence of different metal ions
Figure 5.1 Model of the three dimensional structure of DnaB hexamer constructed
from cryoelectron micrographs139
Figure 5.2 Electron micrographs after self-organising map algorithm analysis
showing different quaternary structures of the DnaB helicase at different
pH140
Figure 5.3 Models of the (DnaB) ₆ (DnaC) ₆ complex developed from electron
micrographs141
Figure 5.4 A schematic representation of the custom-built Waters Q-ToF Ultima [™]
Figure 5.5 X-ray crystal structure of the dimeric DnaB-N
Figure 5.6 Positive ion nanoESI mass spectra of full length DnaB and mutants 147
Figure 5.7 Positive ion nanoESI mass spectra of titration experiments of hexameric
DnaB and mutants with DnaC hexameric helicase with DnaC157
Figure 5.8 An expansion of the m/z range ~8920-9120 of the 34 ⁺ ion from the
nanoESI mass spectrum of F102H
Figure 6.1 Proposed mechanism of protein splicing
Figure 6.2 Kinetic mechanisms of amide hydrogen/deuterium exchange of native
proteins
Figure 6.3 NMR structures of 9-lin- and 9-cz-DnaB-N
Figure 6.4 ESI-MS analysis of HDX for 3-lin- and 3-cz-DnaB-N

Figure	6.5	Relative	abundance	plots	of	peaks	Α	and	В	obtained	during	HDX
		experime	nts for linea	r and	cyc	lised I	Dna	B-N	cor	ntaining o	different	linker
		lengths in	10 mM NH	[40Ac								184

Figure	6.8	Relative	abundance	plots	of	peaks	A	and	В	obtained	during	HDX
		experime	nts for linea	r and	cyc	lised I	Dna	B-N	cor	ntaining c	lifferent	linker
		lengths in	n 100 mM N	H ₄ OA	c							190

LIST OF TABLES

Table 2.1	Compositions of reaction mixtures used for competition experiments
	among ruthenium compounds and organic drugs
Table 2.2	Extinction coefficients (ε_{280}) used to determine protein concentrations 34
Table 2.3	Examples of compositions of $(DnaB)_6(DnaC)_x$, $(F102W)_6(DnaC)_x$ or
	(D82N) ₆ (DnaC) _x oligomerisation mixtures
Table 2.4	ESI-MS conditions used for the analysis of ruthenium-DNA and protein
	samples
Table 3.1	DNA melting temperatures obtained from reaction mixtures containing
	D2 and different ruthenium compounds

- **Table 4.1** Kinetics and equilibrium parameters for $\varepsilon 186$ treated with Mn^{2+} , Zn^{2+} or Dy^{3+} 134
- **Table 5.1** Calculated values of m/z for the 35^+ ion of hexameric DnaB ((DnaB)₆)and its complexes with ADP and magnesium.148
- Table 6.1
 Peptide sequences of the DnaB-N linkers used in this study.
 177
- Table 6.3
 Average numbers of amide protons exchanged obtained from solutions containing 10 and 100 mM NH4OAc

 182
- Table 6.4First order rate constants for unfolding of linear and cyclised DnaB-Nwith different linker lengths in 99% D2O, 10 mM NH4OAc.186
- Table 6.5First order rate constants for unfolding of linear and cyclised DnaB-Nwith different linker lengths in 99% D2O, 100 mM NH4OAc.192