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ABSTRACT 

Face recognition has gained extensive attention recently, with many applications in a 

broad range of domains such as access control in security systems and picture 

tagging in social network web sites. This project builds a 3D face database and 

recognizes the unknown 3D face images in comparison with the 3D face database. 

In 3D face images used in this thesis are acquired by a 3D data acquisition system 

based on Digital Fringe Projection Profilometry (DFPP). DFPP is an efficient 3D data 

acquisition system to capture 3D data, with its simple system structure, high 

resolution and low cost. The 3D database consists of thirty group images In each 

group, there are three images corresponding with three views with (i.e. left-side view, 

right-side view, and frontal view) at the same scale of the same subject. The scale is 

different from group to group. 

To achieve 3D face recognition, there are two parts devised: image alignment and 

comparison. In order to implement efficient and accurate image alignment, two steps 

which are coarse alignment and fine alignment are implemented. In the coarse 

alignment step, two 3D images are roughly aligned into a same coordinates system 

and roughly aligned. After the coarse alignment step, the two face images will be 

aligned closer and an initial estimated value will be given for the fine alignment. 

A modified partial Iterative Closest Point (ICP) method is proposed in the fine 

alignment step. The partial ICP method is an efficient alignment method for 3D data 
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reconstruction and 3D face recognition. It iteratively aligns the two point sets based 

on repetitive calculation of the closest points as the corresponding points in each 

iteration. However, if two 3D face images with different scales are from the same 

person, the partial ICP method does not work. In this thesis, the scaling effect problem 

of 3D face recognition has been solved. A 3×3 diagonal matrix as the scale matrix in 

each iteration of the partial ICP has been well designed. The probing face image 

which is multiplied by the scale matrix will keep the similar scale with the reference 

face image. Therefore even if the scales of the probing image and the reference image 

are different, the corresponding points can be accurately determined. The mean 

square distance between the two face images are compared to recognize that whether 

the two face images are from the same person or not. 

Based on the experiment results, the 3D face recognition can be achieved via the 

method proposed in this thesis. The mean square distance between two face images 

from the same person can reach to less than 0.05 while the two face images from the 

different persons can only keep 0.10 to 0.30. 
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CHAPTER 1 INTRODUCTION

Face recognition is one of the biometric techniques used in access control systems, 

surveillance systems, credit card payment systems, etc. Face recognition based on 2D 

face images has already been maturely developed [1]. In order to achieve higher 

accuracy, researchers introduce face recognition techniques based on 3D data which 

appeared in the late 20-th century and has been utilized widely recently. Although 3D 

images are more complicated than 2D images, they are invariant in illumination and 

accurate in geometric information which provides extra precision for the object 

recognition. This project aims to achieve the face recognition based on 3D data by a 

coarse-to-fine alignment and the distance comparison method. 

1.1 Background 

This project is one of the applications for the Digital Fringe Projection Profilometry 

(DFPP) data acquisition system. The DFPP data acquisition system is effective since 

it is characterized with high resolution, low errors and fast acquisition speed. The 3D 

data acquisition system used in this thesis generates the range images. A range image 

(depth map) comprises a 2D matrix, and each element in the matrix reflects the 

distance between one point on the object surface to the camera. Range images provide 

plenty of geometric information for 3D face recognition and are invariant in different 

illuminative conditions and viewpoints. 

The 3D face recognition technique in this thesis aims to compare an unknown face 
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(probing face) with the database to identify and recognize the unknown face which is 

a one-to-many matching problem. The database used in this thesis is built by the 

means of the DFPP data acquisition system. The images in the database feature two 

characteristics that need to be well considered: scaling effect and the 

partially-overlapped problem. In this thesis, a method to deal with these problems is 

developed. 

1.2 Contributions 

The key contributions made to the field of face recognition are: 

 A new 3D face database is built. It consists of 30 group images, whereby three 

images of a genuine person with three views—all with the same scale—are 

included in each group. In different groups, the scale of the three images is differ 

from other groups. 

 A 3D face recognition procedure which consists of two parts—image alignment 

and distance comparison—was designed. The image alignment consists of coarse 

alignment and fine alignment. A feature points extraction based coarse alignment 

method is developed. In the fine alignment part, a modified Iterative Closest 

Point (ICP) method addresses the scaling problem and the partially-overlapped 

problem. Thus, after the alignment, the different distances between the two face 

images (probing face image and reference face image from the database) are 

obtained and the 3D face recognition can be implemented via the comparison of 
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the different distances between the two face images. 

1.3 Outline of the Thesis 

This thesis consists of six chapters, organized as follows: 

 Chapter 1 presents the introduction and contributions of this thesis. 

 In Chapter 2, the literature pertaining to the 3D data acquisition and 3D face 

recognition methods is reviewed. In addition, feature-based, template-based and 

multi-model matching methods of 3D face recognition methods are described, 

addressing the issues inherent in each. 

 In Chapter 3, the procedure used to acquire the 3D facial data is described and a 

description of the 3D face database is given. 

 By comparing the face images from the database, a coarse-to-fine alignment and 

comparison strategy is designed in Chapter 4 and Chapter 5. A coarse alignment 

method is given in Chapter 4 to calculate a rough estimation motion based on the 

feature points between the probing face image and the reference image selected 

randomly from the database. 

 In Chapter 5, the fine alignment method and recognition method are presented, 

including the detailed of the modified partial ICP method, which can be used 

based on the face images after coarse alignment in Chapter 4. With the initial 

estimation motion calculated from Chapter 4, a more accurate fine alignment 
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method can be generated from this chapter. The 3D face recognition can be 

achieved by comparing the different distances between the two face images 

which have been finely aligned. 

 Chapter 6 provides the final discussion and conclusion of the thesis, as well as 

recommendations for the future work in this field. 
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CHAPTER 2 LITERATURE REVIEW

In this chapter is given an overview of recent techniques of 3D data acquisition and 

3D face recognition. First of all, the overview of 3D profilometry techniques is given 

including the DFPP technique. Then, existing 3D face recognition methods are 

presented which can be divided into three categories: feature-based matching 

methods; template-based matching methods and multi-model matching methods. In 

the summary, these methods are concluded and compared with their merits and 

drawbacks. 

2.1 3D Data Acquisition 

The 3D data acquisition technologies can be divided into two categories: contact 

measurement and non-contact measurement [2]. With contact measurement 

techniques, a mechanical arm is utilized to touch the probing object. The height of 

the object surface can be retrieved by recording the traces of mechanical arms. 

Instead of using mechanical probe, other techniques using another probe are also 

applied in 3D measurement, such as inertial [3] (gyroscope, accelerometer), 

ultrasonic trackers [4] and magnetic trackers [5]. In non-contact techniques, two 

categories are divided as follows: transmissive and reflective. Transmissive includes 

industrial Computed Tomography (industrial CT), Magnetic Resonance Imaging 

(MRI) and ultrasound. Reflective technologies consist of non-optical and optical 

technologies. The categories of 3D image acquisition technologies are illustrated in 

Figure 2.1. The data acquisition system in this project is a system based on capture 
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and analysis of the reflected optical fringe patterns, which belongs to the optical 

technology category. More detailed information will be introduced in Chapter 3. 

 

Figure 2.1: Range image acquisition techniques. 

2.2 3D Face Recognition 

2.2.1 Introduction 

It is known that researchers[6-8] have already given the surveys of existing face 

recognition methods. Gökberk, et al[6] compared the 3D face recognition methods 

by using 3D point coordinates, surface normals, curvature-based descriptors, 2D 

depth images, and facial profile curves. A decision level fusion technique is analyzed 

to classify the feature descriptors. Their literature only focused on the methods of 

feature descriptors based methods while Bowyer, et al[7] listed the existing face 

recognition methods not only feature descriptors based methods but also 
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template-based face recognition methods. The methods they mentioned are those of 

using multiple models: 2D intensity images and 3D face images. Smeets, et al[8] 

reviewed the 3D face recognition methods with emphasize on dealing with facial 

expressions. 

This section gives the review of face recognition methods based on range images. The 

height field of a range image is given in Figure 2.2. A 3D surface is placed on the top 

of the reference plane. The arrows in this figure are denoted as the height value of the 

surface. Range images could be presented in grey scale as shown in Figure 2.3. The 

range image gives direct, explicit geometric information and invariant to variations 

in lighting and viewpoint [9, 10]. As a result, using range images to achieve the face 

recognition is better than 2D image. 

The next three sections categorize the 3D face recognition methods based on 

feature-based matching methods, template-based matching methods and multi-modal 

matching methods. 

Surface

Reference Plane

Distance

 

Figure 2.2: Height field of a range image[10]. 
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Figure 2.3: An example of a range image comes from the database (shows in grey scale). 

2.2.2 Feature-Based Matching Methods 

The methods of using features extracted from the face surface to achieve face 

recognition, are reviewed in this section. The shape information contained in one 

object surface can be highly compressive as features. The feature-based matching 

methods can be divided into two main categories: local feature-based methods and 

global-feature based methods. 

Local features consist of surface curvatures, surface shape types, surface normal, and 

the angles between different surface normals. Researchers either base matching on 

one of these local features or combine them together so as to compare 3D face 

images. How to choose the local features is always a problem of ambiguity. The 

reason is that the local features are required to cover the uniqueness and 

completeness of the whole 3D image but avoid redundant information. 

Global feature-based methods are compressing the information of the whole 3D face 

image. Principal Component Analysis (PCA) based methods and Extended Gaussian 
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Image (EGI) based methods belong to this category. PCA is a highly compressive 

method which reduces the dimension of the 3D face image, by applying PCA, one 

3D face image can be described as a vector which will be easy to compare with other 

vectors. EGI based methods present the surface of 3D face images as surface normals, 

and the correlation between each 3D image is easy to compute. 

1. Local Feature Based Methods 

i. Curvature Based Methods 

This section describes the face recognition methods of curvature based methods. A 

surface in a 3D space can be recognized by its intrinsic curvatures. Several kinds of 

curvatures, such as principal curvatures, mean curvature (H) and Gaussian curvature 

(K), could be used as a tool to realize the face recognition. The curvature based 

methods usually segment a face surface into several different curves. Besl[11] in 

1986 categorized the free-form curves into eight different curves: peak, pit, ridge, 

valley, pat, minimal, saddle ridge and saddle valley surfaces. Whereas Dorai, et al[12], 

in 1997, segmented the curves into nine curves, which are spherical cap, dome, ridge, 

saddle ridge, saddle, saddle rut, rut, trough and spherical cup. This segmentation 

method has been utilized by many researchers to segment the surface type. Figure 2.4 

illustrates the segmentation of several different curves by Dorai, et al[12]. 
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Spherical cap Dome Ridge Saddle ridge Saddle

Saddle rut Rut Trough Spherical cup

Figure 2.4: Nine types of shape [12]. 

Before reviewing the literature, some definitions are listed below: 

 Normal curvature: denote 𝐶  as a non-singular curve on a smooth surface 𝐼 , 

denote 𝑇 as the tangent vector of 𝐶 at a point 𝑝, denote 𝒏 as the surface normal. 

The normal curvature 𝑁 at a point 𝑝 is the curvature of the curve projected onto 

the plane containing the tangent 𝑇 of the curve and the surface normal. 

 Principal curvatures: point 𝑝  on surface 𝐼  will have many curvatures, the 

principal curvatures consist of the maximum and minimum curvatures. 

 Mean curvature: the mean curvature 𝐻  at 𝑝  is the average curvature of the 

maximum curvature and minimum curvature. 

 Gaussian curvature: the Gaussian curvature 𝐾  at 𝑝  is the product of the 

maximum curvature and minimum curvature. 

Cartoux, et al in 1989[13] proposed a method based on principal curvatures to achieve 

face recognition and authentication. They used the property of quasi-symmetry in the 

human face to segment a face into two parts, and then found a bilateral symmetry plane. 
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The nearest neighbor rule was used to classify the different faces and from their 

report[13], we know that it is a robust method because the result they post achieved 

100% classification. In 1990s, Lee, et al[14] also used Gaussian curvature to segment 

the original range image into a set of different local curvatures, and compared two sets 

of segmented curvatures rather than two whole face images. In 1992, Gordon[15] 

divided the face image into two level features: the high level features which were the 

salient parts in the face image contained eyes, nose and head, and the low level 

features which were the properties of the nose, eyes and head, for example, the eye 

width, the maximum Gaussian curvature on the nose bridge and the head width. 

In 2001, Kim, et al[16] presented a method to extract features by using principal 

curvatures. They segmented the face image after real time normalization in order to 

find feature points of mouth, nose and eyes. In 2002, Campbell, et al[17] used the 

principal curvatures to determine the salient surface segments, then divided these 

segments into sub-regions[17], finally, the sub-regions set the unit of the surface. 

Moreno, et al[18] segmented pronounced curvatures based on HK curvatures (mean 

and Gaussian curvatures). According to the HK segmentation method[18], a point can 

be used as a sign for classification. In that paper[18], three kinds of points were used: 

Hyperbolic points (K < 0), Elliptical convex points (H < 0 and K > 0) and Elliptic 

concave points (H > 0 and K > 0). Bhanu, et al[19] used a scale-space filter to analyze 

the curvature based fiducial extraction and then set the face profile for the comparison. 

Sun, et al[20] used principal curvatures to classify the different surface types and 
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improved the result of Principal Component Analysis (PCA) based methods by 

Hesher, et al[9]. In 2006, Chang, et al[21] proposed a method based on HK curvature 

which can achieve recognition under varying facial expression. They only used the 

region of nose to do the matching, while Colombo, et al[22] used HK curvature with 

the nose and eyes regions to do the face registration. Akagündüz, et al[23] extracted 

interest points based on HK curvatures in 2009. They improved the HK curvature 

obtained from scale space so that it was invariant to scale and orientation. 

ii. Point Signature Based Methods 

Point signature is a descriptor, which compresses the characters of a certain mass of 

3D surface. The characters can be any information of the surface, for example, 

curvature, shape variation, angle difference at a specific point to the normal vector, 

and distance difference, etc. In order to enable the comparison of these characters 

more easily, researchers always represent the characters as a 1D histogram or 2D 

histogram. The researchers who use these feature descriptors to achieve the 

recognition are listed in this section. 

It was first presented by Chua, et al[24] in 1997. The definition of the point signature 

is[24]: Given a point 𝑝 at a 3D surface, known with normal vector 𝑵, we could build 

a sphere with radius 𝑟 and center 𝑝. The intersection of the sphere and the 3D surface 

is a 3D curve denoted as 𝐶. After setting a plane 𝑃 which is perpendicular to the 

normal vector on point 𝑝 and projecting the curve 𝐶 onto plane 𝑃 (Figure 2.5 (a)), 
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we will get a new curve 𝐶′ which is a circle on plane 𝑃 and a reference vector 𝒏𝒓, the 

projection distance from 𝐶′ to plane 𝑃 is a signed distance profile[25] (Figure 2.5 (b)). 

The corresponding distance to every angle is shown in Figure 2.5 (c). Each point on 

curve 𝐶 can be described as two properties[25] (Figure 2.6): 

 The signed distance from itself to the corresponding point on curve 𝐶′. 

 A clockwise rotation angle 𝜃 about 𝑵 from the reference direction 𝒏𝟐. 
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Figure 2.5: Point signatures: (a) contour of points at a fixed radius, (b) reference direction, (c) 
signature of distance profile from translated fitted plane[24]. 
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Figure 2.6: Examples of point signatures: (a) peak, (b) ridge, (c) saddle, (d) pit, (e) valley, (f) roof 
edge[24]. 

After the point signature presented in 1997, Chua, et al[25] proposed a method for 3D 

face recognition based on point signature. Because of the facial expressions, the whole 

face surface is a non-rigid surface, so they extracted the rigid parts from the whole face 

surface. In Figure 2.7, the face images of different facial expressions and rotations 

are given from Chua’s research while the results of rigid parts are illustrated in Figure 

2.8. 
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Figure 2.7: Face images of different facial expressions and rotations from Chua's research[25]. 

 

Figure 2.8: The lower faces (a)(b)(c) are the extracted rigid face regions of each of the first three persons 
in upper faces[25]. 

Lowe[26] presented a method that extracts distinctive invariant features from images, 

which can be used to perform reliable matching between different views of an object 

or scene in 2004. Lowe’s method is called Scale Invariant Feature Transform (SIFT), 

as it is invariant to illumination and scale changing. SIFT is representing one key point 

by using a 16×16 window to represent the orientations around it, which can be treated 

as a feature descriptor. A Gaussian weight function is also used to control the 

orientations in different points around the key points, the nearer the key points, the 

higher the value of the weight factor. Figure 2.9 is shown as an example of the 

descriptor computation in one key point. In 2009, Lo [10] presented a method which is 

called 2.5D SIFT. This method adds two more elements (slant and tilt) to one SIFT 
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descriptor which can be used in 3D images. 

 

Figure 2.9: One keypoint descriptor. In the left side image, it shows the gradient magnitude and 
orientation around one keypoint. The circle is denoted as the Gaussian window. On the right side 

image, it shows that the gradient magnitude and orientation are summed up in every 4×4 region. This 
figure gives a 2×2 descriptor compressed 8×8 samples area. [26] 

Other researchers used other information about the surfaces as the feature descriptors. 

Xu, et al[27] used the feature vector to describe shape variation information of the area 

in mouth, eyes and nose. Shan, et al[28] used shapeme histogram, which uses 

histogram of shape signature or prototypical shapes to do the recognition on partially 

observed query objects. Huang, et al[29] used the histogram proportion of depth 

differences to compare the various face images. 

2. Global Feature Based Methods 

i. Principal Component Analysis (PCA) Based Methods 

The dimension reduction technology is used in some of 3D face recognition methods, 

for instance, Principal Component Analysis (PCA) method. PCA method is a vector 

dimension reduction method, which is to find out the principal component of a vector 

and remove the noise and redundancy, in order to simplify a complex dimensional data 
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set into a low dimensional data set. PCA was first used in face recognition in the year 

1991 by Turk, et al[30] in 2D images. The main idea of PCA can be concluded as 

follows: 

Let the points be 𝒙𝟏,𝒙𝟐,𝒙𝟑, … ,𝒙𝑵, each of the point has the m-dimension, PCA aims 

to find out a vector which can be described with K variables, K < m, using the steps 

below: 

 Find out the average vector: 

The average vector can be calculated by: 𝝁 =  1
N
∑ 𝒙𝒊N
i= 1 , 

 Find out the covariance matrix of the differences of mean: 

The covariance matrix is 𝑪 =  1
N
∑ (𝒙𝒊 −  𝝁)(𝒙𝒊 −  𝝁)𝑻N
i=1 , where (𝒙𝒊 −  𝝁)  is the 

difference of mean for vector 𝒙𝒊. 

 Find out the eigenvectors and eigenvalues of the covariance matrix 𝐂: 

Note that a unit vector v as v(x), the value of v on the i-th data point can be represented 

as 𝒗(𝒙𝒊) =  𝒗𝑻(𝒙𝒊 −  𝝁), the variance of 𝑣 can be easily calculated by: 

 var(𝒗) =   1
𝑁
∑ 𝒗(𝒙𝒊)𝒗(𝒙𝒊)𝑻𝑁
𝑖=1 = 1

𝑁
∑ 𝒗𝑻(𝒙𝒊 − 𝝁)�𝒗𝑻(𝒙𝒊 − 𝝁)�

𝑻
𝑁
𝑖=1  

=  𝒗𝑻{∑ (𝒙𝒊 − 𝝁)(𝒙𝒊 − 𝝁)𝑻𝑁
𝑖=1 }𝒗 =  𝒗𝑻𝑪𝒗, (2.1) 

where the diagonal matrix of eigenvalues of 𝐂 is denoted as var(𝒗) and matrix v 
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contains m eigenvectors of covariance matrix 𝐂 and the length of the eigenvector is 

also m. 

 Arrange the eigenvectors: 

In this step, we need to put the eigenvectors as a decreasing eigenvalue order. 

 Select appropriate value of K: 

In order to select K as small as possible, the analysis of the distribution for each 

eigenvector is firstly required. We can use cumulative energy to decide the distribution 

for each eigenvector: g[𝑚] =  ∑ 𝐷𝐷𝐷[𝑞, 𝑞]𝑚
𝑞=1 , and then, if we need the eigenvectors 

containing 90% information of the whole vector, we decide K from the equation: 

g[𝑚=𝐾]
∑ 𝐷𝑖𝐷[𝑞,𝑞]𝑚
𝑞=1

≥ 90%. 

In 2003, Hesher, et al[9] presented the PCA method to reduce the dimensionality of 

range images, and used the nearest neighbor rule to realize the identification part, but 

this approach was not idealistically stable due to noise. The computational cost of 

PCA based methods is very low, nevertheless, the results of PCA are not accurate on 

the basis of the experiment results. Many researchers employ the PCA method in 

combination with other efficient methods to ensure accuracy. Blanz, et al[31] used a 

3D based PCA method in order to reach pose invariant. Chang, et al[32] presented the 

PCA method based on 2D and 3D face images in 2003. Russ, et al[33] used 3D face 

alignment for PCA. Li, et al[34] proposed an approach in which PCA is used as a tool 
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to achieve face normalization and the curve extraction, and after that, Iterative Closest 

Point (ICP) method is utilized to make the comparisons. 

ii. Extended Gaussian Image (EGI) Based Methods 

Gaussian Image is such an image that maps the surface normal for every point on the 

3D surface into a unit sphere (Gaussian sphere), the tail of which lies in the center of 

the unit sphere whereas the head lies on the surface. Extended Gaussian Image (EGI) 

can be obtained by placing a mass at each point equal to the surface area of the 

corresponding face[35]. The EGI is described in Figure 2.10 as below. 

 

Figure 2.10: Extended Gaussian Image can be thought as a collection of point messes on the Gaussian 
sphere. Each mass is proportional to the area of the corresponding face. Point masses on the visible 

hemisphere are solid mark and while others are open ones. The center of mass must be the center of unit 
sphere which is described as a little cross in the figure. [35] 

Lee, et al[14] is the first research group using EGI as the method for 3D face 

recognition. They utilized the mean and the Gaussian curvatures to segment the face 

into different convex regions. Then each convex region was represented onto the unit 

sphere which forms an Extended Gaussian Image was represented. They also 

interpolated the EGI since all of the face surface types cannot be included in the 

convex regions. At last, they used a graph matching algorithm based on the 
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correlation matrix between different regions to realize the matching part. In 1998, 

Tanaka, et al[36] proposed a method based on principal curvatures using a 3D vector 

sets correlation approach[36]. This approach didn’t require any local feature 

extraction or segmentation and the method of comparison was on the basis of 

Fisher’s[37] spherical correlation on EGI. A problem existing in EGI based methods 

is that EGI is not sensitive to image scale invariance, so the two images will not be 

distinguished via EGI based methods if the two images contain the same object but 

different size[38]. 

2.2.3 Template-Based Matching Methods 

This section reviews the face recognition methods which are based on the 

coordinates of 3D face images. 3D images have enough coordinates information so 

that researchers can use the coordinates to directly compare the difference. The 

algorithm of template matching methods is simple to understand, and widely 

applicable to different types of 3D images, for example, range images. Both Iterative 

Closest Point (ICP) based methods and Hausdorff distance based methods belong to 

this category. 

1. Iterative Closest Point (ICP) Based Methods 

Iterative Closest Point (ICP) is used for registration curves or free-form surfaces, as 

it is an efficient method for the 3D data reconstruction and the 3D face recognition. 

After giving a pre-estimated motion value (always the translation matrix 𝒕 and 
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rotation matrix 𝑹 of the two point sets), the two point sets could be aligned within 

several iterations. The ICP method is an iterative algorithm that will converge 

monotonically to the nearest local minimum of a mean-square distance metric[39]. 

Several methods can be used in the ICP method to compute the translation and 

rotation between the probing image and the image in the database, such as Singular 

Value Decomposition (SVD)[40], orthonormal matrices[41], unit quaternion, and 

dual quaternion (DQ)[42]. The results of these four methods are almost the same. 

More information about the comparison of these four methods can be found in [43] 

proposed by Eggert in 1997. 

The algorithm of ICP can be described like this: 

The INPUT of ICP: two 3D point sets, one is model point set 𝒙 = {𝒙𝒊}, 𝐷=1,2,…𝑙. 𝑙 is 

the number of points in 𝒙; the other is the reference point set 𝐷′; the initial value of 

rotation 𝑹0 and the translation 𝒕0. 

The OUTPUT of ICP: an optimal motion consists of a rotation matrix 𝑹 and a 

translation matrix 𝒕 between the two point sets. 

Iteration begins:(in I-th iteration) 

Step 1: Find the closest points 𝒚𝒊𝐼 (𝐷 = 1,2, … , 𝑙𝑚) in reference  𝐷′ corresponding to 

every point from model 𝒙𝒊𝐼. 

Step 2: Compute the motion between two point sets (by using either of the four 
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methods to compute 𝑹𝐼 and 𝒕𝐼). 

Step 3: Apply the motion to the model. 

The iteration ends if: 

The condition of termination is to satisfy the termination constraint. For the terminate 

condition, if ‖𝑹𝐼 − 𝑹𝐼−1‖ < 𝜀𝑅  and ‖𝒕𝐼 − 𝒕𝐼−1‖ < 𝜀𝑡 , the iteration ends, where 

𝜀𝑅 , 𝜀𝑡 are the thresholds for rotation and translation. For face recognition, the mean 

square distance between the two point sets should be compared in order to recognize 

whether the two point sets are from the same person or not. If the distance is smaller 

than a threshold, these two images are treated as the genuine face, otherwise these 

two face images are from different persons. 

ICP is a method which is very popular and used in surface registration and object 

recognition. Besl, et al[39] created the ICP for surface registration in 1992. This 

method is using the distances between two points corresponding to the two point sets 

to realize the surface location and recognition, but the drawback of this method is that 

it is only available if the first surface is one part of the second surface or the two point 

sets are totally overlapped. In the year 1994, Zhengyou Zhang[44] improved Besl’s 

method so that it can be used no matter the first surface is a sub-surface of the second 

one or not. 

Medioni, et al[45] built a 3D face database and tested their database to realize face 
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recognition based on ICP method in 2003. The database they built was presented with 

3D surfaces. Lu, et al[46] built a coarse-to-fine alignment strategy method by using 

Besl’s scheme to do the coarse alignment and Chen’s scheme as the fine alignment. 

Chang, et al[47] presented a new adaptive rigid multi-region selection method, which 

compared the independent multiple regions of the face surface. Then the results of the 

multiple matches were combined. Amor, et al[48] also used the coarse-to-fine strategy 

to do the recognition. They computed the rigid transformation of the two models and 

brought them together[48] for the first step, and in the second step they used the ICP 

method. In 2009, Tong, et al[49] used an anthropometric face model to estimate the 

face region which was a fast local region detection method, and an extension of ICP 

method was proposed to do the matching. They added an intensity coordinate i as the 

fourth-dimensional which formed a 4D point (x, y, z, i), the first three (x, y, z) 

coordinates were the spatial coordinates. 

The traditional ICP method cannot, however, handle such a case as the scales of the 

probing image and the reference image are different. Due to this problem, researchers 

have proposed several methods to solve it. In 2000, Zha, el al[50] utilized the 

extended signature images to establish the correspondence between the two images no 

matter whether these two images were in the same scale or not. Then the scale 

parameter (a scalar) can be computed by corresponding mean curvatures. Zinßer, et 

al[51] in 2005 estimated a scale factor between the two point sets in every iteration. At 

the same time, Ko, et al[52] used the ratio of the normal curvatures on two point sets as 
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the scale factor. Du, et al[53], in 2007, proposed a method where the scale was 

described as a 3×3 scale matrix, which had a boundary in order to avoid the 

phenomenon that the points of a set converge to a point of the other set. Du, et al[54] 

improved their method in order to estimate the initial parameters by using the 

eigenvalues and eigenvectors of covariance matrices of point sets in 2010. 

2. Hausdorff Distance Based Methods 

In comparison with ICP, in which the distance between point to point is used, it is 

known that Hausdorff distance is another distance calculation by which the distance 

between two point sets is calculated. In other words, Hausdorff distance does not 

need to compare the distance between point to point but point to plane. 

Achermann, et al[55] proposed a method using an extension of Hausdorff distance 

matching in 1997 and the result they reported could get a 100% recognition rate in 

some situations. Lee, et al[56] built a system which was based on depth-weighted 

Hausdorff distance using the principle of mean and Gaussian curvatures in the year 

2004. They combined the depth information and local curvature features together to do 

the person verification. Russ, et al[57] used an iterative method to update the two 

point sets, the constraint condition can be controlled by two variables: the ratio in set 

Y within a distance vale of point in set X, it is used to control the corresponding 

point, and the Hausdorff distance with the weight factor of the ratio as is used to fit 

the quality. 
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2.2.4 Multi-Modal Matching Methods 

The 3D image processing techniques have become more and more popular and 

researchers have started to use 3D surface to do the face recognition since 1990. There 

is no doubt that the 3D face recognition could get a more accurate result because much 

more information is contained in 3D images compared with 2D images. Some 

researchers have proposed methods combined 2D face recognition methods and 3D 

face recognition methods together in order to get a more robust result since the 2D 

face recognition techniques have become mature these years. 

Beumier, et al[58] used multi-modal recognition, they fused the 2D and 3D lateral 

profile and central profile together to increase the verification performance. Bronstein, 

et al[59] required a range image (geometry) and a 2D image (texture) to produce two 

sets of eigen decompositions to the flattened textures and the canonical images are 

employed to solve facial expressions. Chang, et al[32] used a PCA based method both 

in 2D and 3D images, based on their experiment results, sole 2D or 3D PCA based 

methods cannot give the accurate results while the combined 2D and 3D PCA method 

proved much better. They used a confidence-weighted variation of the 

sum-of-distance rule for the distances of 2D images and 3D face images. Tsalakanidou, 

et al[60] developed the approach based on range image and color information which is 

the color component (YUV) rather than intensity. Similarly with Chang, et al[32], they 

preferred the PCA method to do the face recognition. Godil, et al[61] also used a PCA 

based method to do color and 3D face recognition but the result was worse than Chang, 
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et al[32] because the data in the database contained more grid points and different 

normalization method. In 2005, Chang, et al[47] concluded that multi-modal based 

method can give the best result than 2D modal alone or 3D, and the fusion of several 

2D modals together can also produce a good result. Papatheodorou, et al[62] 

employed a 4D face data to do the face recognition. The 4D face data is a 3D geometry 

and a 2D texture map. They used ICP method with the 4D face data (x, y, z,𝛼𝛼), which 

α is the weighted factor implied in the contribution of the texture, so that the closest 

points were not only in the 3D images but also the textual difference. Mian, et al[63] at 

2007 presented a method which is efficient and robust to facial expressions based on 

ICP method[63]. 

2.3 Summary 

In consideration of this chapter in which the 3D face recognition methods have been 

categorized and reviewed, 3D face recognition can be divided into the following 

categories: feature-based matching methods; template-based matching methods and 

multi-modal matching methods. 

Feature-based matching methods are the fast matching methods widely used by many 

researchers. For example, in Lo, et al[64] 2.5D SIFT method, only about thirty points 

are extracted from a face image to recognize, by which a lot of time has been saved 

for computation. However, on the other hand, only such a few points extracted 

cannot contain all the face information. It is not safe to extract only a few points to 



2.3 Summary 

27 

compare the face images. A good way to use feature based methods is to combine 

these methods with other methods in order to achieve a high accurate result. In this 

thesis, the curvatures are used to select the feature points. Although there are only 

certain types of surface by using the curvatures to classify, the typical feature areas 

on the face images can be used so that the curvatures information is enough to 

compare. In addition, since the curvatures are the basic methods for surface feature 

analysis, it is easy to realize and speed up the computation of the curvatures. More 

details will be given in Chapter 4. 

Template-based matching methods are those where the whole face surface is matched 

without feature analysis. ICP is such a method that selected by many researchers as a 

baseline to compare with other methods. It is a very accurate method for image 

registration and object recognition. One drawback of traditional ICP[39, 44] is that it 

cannot handle the 3D images with different scales. Du, et al[54] proposed a method 

in which the scaling effects of the images have been considered. They estimated the 

scale factor by using the coordinates of the points on the face surface. However, they 

didn’t clarify that whether their method can deal with the partially-overlapped 

problem or not. 

Multi-model matching methods are the most accurate methods, but more resources 

are required of these methods compared with others. The algorithms of these 

methods will be more complex than other 3D image based methods since these 
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methods need both 2D image and 3D image to compare the face images. 
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CHAPTER 3 DATA ACQUISITION SYSTEM AND DATABASE

A 3D data acquisition system based on Digital Fringe Projection Profilometry (DFPP) 

is described in this chapter. It is an optic technique to obtain 3D images. A 3D face 

database which consists of 90 3D face images obtained from this DFPP system is 

built up. This 3D face database is used for 3D face recognition. The whole structure 

and procedure of the DFPP system are given in Section 3.1. The 3D face database is 

described in Section 3.2. 

3.1 DFPP System 

3.1.1 Introduction 

DFPP based 3D data acquisition system is an effective system of the non-contact 3D 

shape measurement. A DFPP based system consists of a CCD camera, a digital video 

projector and a computer, which is a simple 3D data acquisition system. The structure 

of the DFPP based system is illustrated in Figure 3.1. 
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(a) The fringe patterns projected onto the 
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(b) The fringe patterns projected onto the 
object. 

Figure 3.1: Structure of DFPP based system. 
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A DFPP based system projects pre-designed multiple fringe patterns onto a reference 

plane and then projects onto the probing object placed on the reference plane, both the 

fringe patterns on the reference plane and the deformed fringe patterns on the probing 

object can be collected by the camera. After the analysis of the two different groups 

of multiple fringe patterns, the height of the probing object surface to the reference 

plane can be retrieved. Because of the recent advanced developed digital projection 

technology, DFPP based systems are widely used because their structure is simple and 

the cost is low[65]. Figure 3.2 shows the six-step fringe patterns projection. Figure 

3.2(a) shows the six steps fringe patterns projected onto the reference plane and Figure 

3.2 (b) shows the same six-step fringe patterns projected onto the object. The 

reconstruction result is indicated in Figure 3.3 and the light effect is added to enhance 

the face image clearly. The reconstruction result gives the precise details of the face 

by using the data acquisition system. 

      

(a) The 6-step fringe patterns projected onto the reference plane. 

      

(b) The 6-step fringe patterns projected onto the probing object. 

Figure 3.2: Six steps fringe patterns projection. 
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Figure 3.3: Reconstruction result (by adding the light effect). 

3.1.2 Procedure of the DFPP System 

The procedure of the DFPP system can be concluded as three steps: fringe pattern 

projection and acquisition, fringe pattern analysis and calibration. 

1. Fringe Pattern Projection and Acquisition 

To obtain the surface of one object via the DFPP based data acquisition system, a 

group of fringe patterns to project have to be well-designed. The optic and mechanical 

systems can both create the fringe patterns in 1990s, such as a slide projector or 

interference of two laser beams, and the patterns are either Ronchi or sinusoidal 

gratings[66]. A lot of patterns can be generated and implemented in 2000s due to the 

software-driven nature associated with DFPP, and the fringe patterns have various 

selections such as trapezoidal patterns[67], triangular patterns[68, 69] and saw-tooth 

patterns[70]. 

The projector also needs to be determined. A projector which has a high contrast ratio, 

less screen door effect in order to reach the high measurement resolution is suitable for 

the DFPP system. The projector also requires a fast switching capability. There are 
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two kinds of popular projectors available in the market, Digital Light-processing 

Projects (DLP) projector and Liquid Crystal Display (LCD) projector. DLP projector 

performs better than LCD projector, with 0.0032 higher average accuracy and 0.0060 

smaller standard deviation, proposed by Yen, et al[71]. Gong, et al[72] reported that 

an off-the-shelf DLP projector could reach fast image switching of 120 frames per 

second in 3D shape measurement. 
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Figure 3.4: The ideal optical model of DFPP based system. 

The ideal optical model of the DFPP based system is demonstrated in Figure 3.4. It 

assumes that the light beams projected from the projector and collected in the camera 

are all parallel light beams, and the responses from the camera and projector are 

linear. 𝑥 axis is along the direction from the projector to the camera and 𝑧 axis is 
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vertical to the reference plane and point to the camera in Figure 3.4. The fringe 

patterns from the point P are projected to one point E on the object, and these fringe 

patterns will be collected by the camera at point C. The projector generates the fringe 

patterns with an input signal 𝐷0(𝑥). 𝐷0(𝑥) is a 2D signal. 𝐷0(𝑥) is projected onto 

the object and reflected at point E in Figure 3.4. The fringe patterns shift along the x 

direction. The reflected fringe patterns of 𝐷0(𝑥) will be collected at point C on the 

camera. If no object is placed on the reference, the reflected fringe patterns will be 

collected at point C’. The shift of the image from camera is 𝐶𝐶′����� and the fringe shift 

is 𝐴𝐴����. L is the distance between camera and reference plane, 𝐷𝑝𝑝 is the distance 

between the camera and the projector, h is the height of at point E on the object. 

The sinusoidal signal is used as the input signal in this thesis, 

 𝐷0(𝑥) = 𝑐𝑐𝐷(2𝜋𝜋𝑥),  (3.1) 

where 𝜋 denotes as the frequency of 𝐷0(𝑥). 

From Figure 3.4 it is easy to get that △ 𝐴𝐴𝐴 ∼△ 𝐶𝑃𝐴. We get the relationship below: 

 ℎ
𝐴𝐴����

= 𝐿−ℎ
𝐷𝑝𝑝

.   (3.2) 

Hence, the height value h is: 

 ℎ = 𝐴𝐴����∙𝐿
𝐷𝑝𝑝+𝐴𝐴����

.  (3.3) 

We can extend 𝐴𝐴���� and ℎ to all field along 𝑥, rewrite Equation (3.3), we will have 
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 ℎ(𝑥) = 𝛿(𝑥)∙𝐿
𝐷𝑝𝑝+𝛿(𝑥),  (3.4) 

where 𝛿(𝑥) is the fringe shift replaced from 𝐴𝐴���� and ℎ(𝑥) is the height value 

replaced from ℎ. 

Deformation of the fringe patterns happens when the object is placed onto the 

reference plane. In the next step, we discuss how to analyze the deformed fringe 

patterns to determine the height value of the object. 

2. Fringe Pattern Analysis 

In this step, the method of how to calculate the height values of the 3D surface based 

on the fringe pattern deformation is presented. The output from the projector can be 

denoted as: 

 𝐼1(𝑥) = 𝑢1[𝐷0(𝑥)].  (3.5) 

Here, a response function of the projector is obtained which is denoted as 𝑢1, since 

the assumption that the response of the projector is linear, 𝑢1 can be denoted as: 

 𝑢1(𝑥) = 𝑎1𝑥 + 𝑏1.  (3.6) 

After the lights propagation, the lights on the object surface are: 

 𝐼2(𝑥) = 𝑎2(𝑥)𝐼1(𝛼𝑥) + 𝑏2(𝑥),  (3.7) 

where 𝑎2(𝑥) is the light propagation attenuation, 𝑏2(𝑥) is the background light 
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between the projector and the surface. 

After the reflection on the surface, the light becomes: 

 𝐼3(𝑥) = 𝑟(𝑥)𝐼2(𝑥),  (3.8) 

where 𝑟(𝑥) is the reflection factor. 

Another light propagation attenuation happens between the reflected lights and the 

camera which is denoted as follows: 

 𝐼4(𝑥) = 𝑎4(𝑥)𝐼3(𝑥) + 𝑏4(𝑥).  (3.9) 

The output signal obtained from camera can be written as: 

 𝐷(𝑥) = 𝑢2�𝐼4(𝑥)�,  (3.10) 

where 𝑢2 is the response of the camera which is written as: 

 𝑢2 = 𝑎5𝑥 + 𝑏5.  (3.11) 

Combining the equations from (3.5) to (3.11), we have 

𝐷(𝑥) = 𝑎1 ∙ 𝑎2(𝑥) ∙ 𝑟(𝑥) ∙ 𝑎4(𝑥) ∙ 𝑎5 ∙ 𝐷0(𝛼𝑥) + 𝑏1 + 𝑏2(𝑥) + 𝑏4(𝑥) + 𝑏5 

= 𝐴(𝑥)𝑔(𝑥) + 𝐴(𝑥),   (3.12) 

Where 𝑔(𝑥) = 𝐷0(𝛼𝑥) , 𝐴(𝑥) = 𝑎1 ∙ 𝑎2(𝑥) ∙ 𝑟(𝑥) ∙ 𝑎4(𝑥) ∙ 𝑎5 , and 𝐴(𝑥) = 𝑏1 +

𝑏2(𝑥) + 𝑏4(𝑥) + 𝑏5. 
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The deformed fringe pattern can be calculated by: 

 𝐷𝑑(𝑥) = 𝐴′(𝑥)𝑔�𝑥 − 𝛿(𝑥)� + 𝐴′(𝑥).  (3.13) 

The symbol ′ means the real illumination of the acquiring environment reflectivity 

𝐴(𝑥) and background 𝐴(𝑥) will be changed. 

The output signal (the signal from the camera) is: 

 𝐷(𝑥) = 𝐴(𝑥) 𝑐𝑐𝐷 𝜙(𝑥) +  𝐴(𝑥).  (3.14) 

The deformed fringe pattern is: 

 𝐷𝑑(𝑥) = 𝐴′(𝑥) 𝑐𝑐𝐷 �𝜙�𝑥 − 𝛿(𝑥)��+  𝐴′(𝑥).  (3.15) 

The phase of the sinusoidal signal is denoted as 𝜙(𝑥) which can be written as: 

 𝜙(𝑥) = 2𝜋𝜋𝛼𝑥 = 2𝜋𝜋0𝑥,  (3.16) 

where 𝜋0 is the fringe frequency on the reference. The phase difference between 

𝐷(𝑥) and 𝐷𝑑(𝑥) is: 

 △ 𝜙(𝑥) = 𝜙(𝑥) −𝜙�𝑥 − 𝛿(𝑥)�.  (3.17) 

The phase shift is featured with a relationship with the phase difference: 

 𝛿(𝑥) = △𝜙(𝑥)
2𝜋𝑓0

.  (3.18) 

The height is: 
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 ℎ = 𝛿(𝑥)∙𝐿
𝐷𝑝𝑝+𝛿(𝑥) = △𝜙(𝑥)𝐿

2𝜋𝑓0𝐷𝑝𝑝+△𝜙(𝑥).  (3.19) 

The key to determine the surface height of the object is 𝛿(𝑥). 

The methods used to analyze the fringe patterns and reconstruct the 3D shape based on 

phase detection can be divided as: Fourier Transform Profilometry (FTP), 

Phase-Shifting Profilometry (PSP) and Phase Unwrapping. 

However, the sinusoidal or periodic input signals are required as the fringe patterns 

on the basis of phase detection methods, it is difficult to realize in practice because 

nonlinear intensity distortion inherent to digital video projectors. The shift detection 

based methods can solve this problem such as the double three-step phase-shifting 

algorithm[73] and gamma curve estimation look up table[74]. Shift detection based 

method utilizes the spatial shift maps rather than phase maps of the fringe patterns, and 

can avoid the nonlinear distortion. As a result, it does not require the pure sinusoidal or 

periodic fringe patterns, so a wide use range of light patterns can be used such as 

sinusoidal, triangular, and saw-tooth with or without distortions. 

Here, a method which is used to extract fringe phase with multiple fringe patterns is 

given. Phase Shifting Profilometry (PSP) method is used in the acquisition system. It 

was first proposed by Srinivasan [75]. 

The multiple fringe patterns projected from the projector can be described like this: 
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 𝐷𝑛 = 𝐴(𝑥) 𝑐𝑐𝐷 � 2𝜋𝑛
𝑁𝑠𝑠𝑠𝑝

+ 𝜙(𝑥)� + 𝐴(𝑥),𝑛 = 1,2,3, … ,𝑁𝐷𝑡𝑠𝑝,  (3.20) 

where 𝑁𝐷𝑡𝑠𝑝 is the number of the fringe patterns projected onto the object, it is also 

the step number of the PSP. The phase 𝜙(𝑥) can be calculated by: 

 𝜙(𝑥) = 𝛼𝑎𝑛−1
∑ 𝐷𝑛(𝑥) 𝐷𝑖𝑛�2𝜋𝑛/𝑁𝑠𝑠𝑠𝑝�
𝑁𝑠𝑠𝑠𝑝
𝑛=1

∑ 𝐷𝑛(𝑥) 𝑝𝑐𝐷�2𝜋𝑛/𝑁𝑠𝑠𝑠𝑝�
𝑁𝑠𝑠𝑠𝑝
𝑛=1

.  (3.21) 

Thus, the deformed fringe is: 

 𝐷𝑑𝑛(𝑥) = 𝐴′(𝑥)𝑐𝑐𝐷 � 2𝜋𝑛
𝑁𝑠𝑠𝑠𝑝

+ 𝜙(𝑥) +△𝜙(𝑥)� + 𝐴′(𝑥),𝑛 = 1,2,3, … ,𝑁𝐷𝑡𝑠𝑝 . (3.22) 

Combining Equation (3.20), (3.21) and (3.22) together, 𝛿(𝑥) can be determined 

from Equation (3.16) and (3.18). So than the surface height value is easy to calculate 

via Equation (3.19). 

3. Calibration 

The last procedure of the DFPP system is to do the 3D data calibration. From the 

previous section, the depth value of the object can be figured out by using the distance 

between the camera and reference L, the distance between camera and projector 𝐷𝑝𝑝 

and the signal frequency 𝜋0. However, all of these values are not the precise values, 

deformation exists in the real experiments. The response of the camera and the 

projector in the real experiment is non-linear. In addition, the assumption is given that 

the projector projects the parallel lights, while, in real experiment, the lights from the 

projector are not parallel. Due to these reasons, the calibration should be one of the 
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significant steps to get the real coordinates of the 3D object surface. 

The calibration is to convert the data from the height matrix to the real world 

coordinates. The height matrix is a 924 × 924 matrix from the data acquisition 

system, which means there are 924 × 924 pixels in the matrix. Each element in the 

matrix is the height value ℎ for every pixel (𝐷, 𝑗). The coordinates of this height 

matrix can be denoted as (𝑈𝑝,𝑉𝑝,ℎ). The real world coordinates can be denoted as 

(𝑥,𝑦,ℎ). This calibration is aimed to find out a relationship so that (𝑈𝑝,𝑉𝑝,ℎ) can be 

mapped to (𝑥,𝑦,ℎ).The conversion is related to the optical set-up parameters such as 

focal distance, reference plane location, fringe spacing, camera projection angle and 

geometric aberrations. These parameters all need to be considered. The calibration in 

this thesis is by using a calibration board marked with circles to establish a 

mathematical model from the fringe patterns projected to the reference plane. A 

calibration board used in the DFPP system is illustrated in Figure 3.5. The 9×11 

circles are located on the calibration board. There are four larger circles which are 

tagged the direction of the board. 

 

Figure 3.5: The calibration board. 
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3.2 Database 

3.2.1 Setup of the 3D Data Acquisition System 

The red/black fringe patterns are projected onto the reference and the probing faces 

to acquire 3D surfaces. The distance between the probing face and the camera is 

1300mm. In Figure 3.6 is shown the acquisition system and the position of a probing 

individual. Both the position of the reference plane and the camera are fixed. The 

camera is on the top of the projector while the connecting line between the center of 

the camera and the center of the projector is vertical to the horizontal plane. The 

camera and the projector are both vertically pointed to the reference plane. The 

distance between the camera and the projector is 330mm. A frame is to fix the 

position between the reference plane and the camera in order to get the constants 

𝐷𝑝𝑝 and L as shown in Figure 3.6. To get the best reconstruction results, the lights 

are always turned off in order to keep the acquisition environment in a relatively dark 

room. The position of the projector and the camera are shown in Figure 3.7. 

  

Figure 3.6: The acquisition system and position of one individual. 
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Figure 3.7: Position between the camera and the projector (camera on the top and projector on the 
bottom). 

In this thesis, the projector HITACHI CP-X260 is selected to project fringe patterns. 

The specifications of the projector are listed as below: 

 Type: 3 LCD. 

 Resolution: 1024x768 Pixels. 

 Throw Dist (m): 1.4-8.9. 

 Image Size (cm): 102-76. 

 Signal to noise ratio: 34.0 dB. 

In this thesis, Nikon AF-S 16-35mm lens and a DuncanTech MS3100 3-CCD camera 

is used to capture the fringe patterns. The specifications of this camera are: 

 Type: Area-scan, Colour RGB. 

 Resolution: 1392x1040 Pixels. 
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 Imager size (mm): 7.6x6.2. 

 Lens focal length (mm): 16-85. 

 Line rate: 8.032 kHz. 

 Frame rate: Up to 7.6 fps. 

 Pixel pitch: 4.65x4.65 m2. 

 Shutter speed: promising sharp images hand-held at shutter speeds up to four 

stops slower than would usually be possible 

3.2.2 Description of 3D Images in the Database 

Based on the DFPP data acquisition system, a small-sized 3D face database is built. 

The database consists of 30 group images, with 90 images in total. In each group, there 

are three images with the same scale, which are from the same person with different 

views (frontal view, left view and right view). The right profile is about +45° of 

rotation around the 𝑥 axis and the left profile is about -45° of rotation around the 𝑥 

axis. The scale of the three images may be varied in different groups. No facial 

expressions are contained in the face images. 

In Figure 3.8 are presented three face images in the database. The face images are 3D 

point clouds. In Figure 3.8 column (a) are shown the images captured from the camera. 

In Figure 3.8 column (b) and (c) are shown the reconstruction results. Column (b) is 

the reconstruction results shown by adding the light effect. Column (c) is the face 

images shown by point cloud which will be used in this thesis. There are over 
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100,000 points to describe one face image in the database. 

Frontal 

View 

   

Left View 

(-45°) 
   

Right View 

(+45°) 
   

 
(a) The images 

captured from the camera. 

(b) The reconstruction 
results (shown by adding light 

effect). 

(c) The reconstruction 
results (shown by points). 

Figure 3.8: One example of 3D profiles of one individual. 

More examples of the 3D face images are shown in Figure 3.9. All of the face images 

are obtained from the DFPP based 3D data acquisition system. Three views for one 

individual (left column: left view, middle column: frontal view, right column: right 

view in Figure 3.9) and one individual may have the varied scale factor with others. 
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Figure 3.9: Examples of 3D face images in the database (continue). 
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Figure 3.9: Examples of 3D face images in the database. 

3.3 Summary 

As we know, non-contact, accuracy and efficiency are the basic requirements for the 

3D surface measurement in many industry applications. The techniques based on 

Structured Light Projection (SLP) can meet such requirements. DFPP based data 

acquisition system is a typical SLP technique which is employed to obtain 3D face 

data in this thesis. 

The 3D face database consists of 30 groups of faces. Three different views, frontal 

view, left view and right view, are represented one individual. The 3D face images in 
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this 3D face database are utilized to test the proposed 3D face recognition method in 

this thesis.
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CHAPTER 4 FEATURE POINTS EXTRACTION AND 
ALIGNMENT

After the face database has been built up in Chapter 3, face recognition can be 

achieved by comparing the distances between the face images via the alignment 

process. A coarse-to-fine strategy is designed to complete the alignment which 

consists of two steps: coarse alignment which is described in this chapter and fine 

alignment which is discussed in the following chapter. The coarse alignment based 

on the feature points extraction is to give a rough motion value between two 3D face 

images (one probing face image and one reference image randomly selected from 

database) in order to coarsely align them. 

There are two objectives of doing the coarse alignment: firstly, coarse alignment can 

be obtained an initial estimated value which is required in the fine alignment; 

secondly, the computational expenses for the fine alignment will be reduced with 

coarse alignment. Once the initial estimated value is applied, the distances between 

the two point sets will be decreased a lot, in other words, the two point sets will get 

much closer after the coarse alignment process. It will be less time-consuming for the 

fine alignment step. 

4.1 Introduction 

In most of the coarse alignment methods, finding the correspondences is a key point 

for rough motion computation. The correspondences are extracted from two point sets 

by feature analysis. The correspondences can be either points, lines, curves, vectors or 
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surfaces. Extensive studies have been put on correspondences extraction, such as 

point signature method[24], spin image method[76], Ransac-based darces method[77]. 

However, such methods involve computation extensive pixel by pixel sorting 

operations to extract the features and thus time-consuming. In order to improve the 

speed, a line-based algorithm was proposed by Stamos and Leordeanu[78]. PCA 

method is a dimensional reduction method which can be categorized into the 

vector-based algorithm, the two face images can be treated as two vectors by using 

PCA and these two vectors are the correspondences of two point sets. Although PCA 

method is very fast, the results are not always accurate. Tarel, et al[79] used the 

polynomial model to align the two point sets, which is based on the surface 

correspondences, but the same drawback appeared with the point correspondences, 

the computational expense is too high to employ. 

The proposed method is to estimate the motion between two point sets by using feature 

points. A rotation matrix 𝑹, translation matrix 𝒕 and scale matrix 𝑺 are computed as 

the motion in the proposed coarse alignment method. The feature points selection is 

based on analysis of the shape types and curvatures. In the following section is 

discussed how to select the feature points and then the method of how to compute the 

initial estimation is given. 

4.2 Feature Points Extraction 

In this section is narrated the feature points extraction method. Firstly, three feature 
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point regions are manually selected and tagged. Secondly the curvatures are 

calculated on the three regions in order to select the precise corresponding feature 

points between two face images. 

4.2.1 Selecting and Tagging Feature Point Regions 

In the data acquisition system, three different views of the face are acquired, the 

right-side view, the left-side view and the frontal view. No matter the view changes, 

the three regions (the right corner of the left eye, the left corner of the right eye and the 

nose tip) always exist in the database. So three 7 × 7  rectangular regions are 

manually selected to cover the three regions in every face image. Tagging the three 

different regions is to categorize the corresponding points for further selection. Four 

feature points are extracted from the three feature point regions in the next step. 

4.2.2 Feature Points Selection 

The three feature regions are manually selected in the previous section. The regions 

selected by hand, however, may not be in the precise corresponding regions between 

the two face images. A method of finding the precise corresponding feature points is 

presented below. 

Once the feature point regions are decided manually, the four feature points will be 

determined. For the first feature point selection, the point is selected from the nose 

region which has the highest height value, which indicates the tip of nose. For other 

three feature points selection, the Shape Index (SI) value of every points in the three 
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7 × 7 regions are computed firstly. Then between the corresponding 7 × 7 region of 

reference image and model image, the two corresponding feature points can be 

selected if the two points on the reference and model have the closest SI value. 

The SI value at point 𝑝 is calculated by using the maximum (𝑘1) and minimum (𝑘2) 

curvatures. The maximum and minimum curvatures are called principal curvatures, 

the principal curvatures give the bent degree of the surface at point 𝑝  on a 

differentiable surface 𝐼. The red curvatures in Figure 4.1 are the principal curvatures. 

At the point 𝑝, a normal plane can be gotten which contains one normal vector and 

therefore a unique tangent will also be in the normal plane. The intersection line of the 

normal plane and the surface is a curve. Different normal planes will have different 

curves and the curvatures will be varied. 

Normal vector

Normal plane

Tangent plane
p

 

Figure 4.1: Principal curvatures. 

The detail of how to calculate the Shape Index at a given point 𝑝 is illustrated in 

Equation (4.1): 
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 𝑆𝐼(𝑝) =  1
2
− 1

𝜋
𝛼𝑎𝑛−1 𝑘1(𝑝)+𝑘2(𝑝)

𝑘1(𝑝)−𝑘2(𝑝)
.  (4.1) 

The maximum curvature 𝑘1 and minimum curvature 𝑘2 in point p are given: 

 𝑘1(𝑝) = 𝐻 + √𝐻2 − 𝐾,  (4.2) 

 𝑘2(𝑝) = 𝐻 + √𝐻2 + 𝐾,  (4.3) 

where 𝐻 is the mean curvature, 𝐾 is the Gaussian curvature. In Equation (4.4) is 

shown the calculation of the mean curvature at point p: 

 𝐻(𝑝) =  𝐻(𝐷, 𝑗) = 1
2

(𝑘1(𝐷, 𝑗) + 𝑘2(𝐷, 𝑗)),  (4.4) 

where the number i and j are denoted as the location of point 𝑝 which is in i-th 

row and j-th column of an image. Gaussian curvature equals to the product of the 

maximum curvature and minimum curvature at point 𝑝 (Equation (4.5)). 

 𝐾(𝐷, 𝑗) = 𝑘1(𝐷, 𝑗)𝑘2(𝐷, 𝑗).  (4.5) 

The mean curvature and Gaussian curvature at point 𝑝(𝐷, 𝑗) can be calculated via both 

the first and second partial derivatives as follows [80]: 

 𝐻(𝐷, 𝑗) =  
�1 + 𝑓𝑦2(𝑖,𝑗)�𝑓𝑥𝑥(𝑖,𝑗)+ �1+𝑓𝑥2(𝑖,𝑗)�𝑓𝑦𝑦(𝑖,𝑗)− 2𝑓𝑥(𝑖,𝑗)𝑓𝑦(𝑖,𝑗)𝑓𝑥𝑦(𝑖,𝑗)

2(�1+𝑓𝑥2(𝑖,𝑗)+ 𝑓𝑦2(𝑖,𝑗))3
,  (4.6) 

 𝐾(𝐷, 𝑗) =  𝑓𝑥𝑥
(𝑖,𝑗)𝑓𝑦𝑦(𝑖,𝑗)− 𝑓𝑥𝑦2 (𝑖,𝑗)

(1+ 𝑓𝑥2(𝑖,𝑗)+ 𝑓𝑦2(𝑖,𝑗))2
,  (4.7) 

where the first and the second partial derivatives at the given point 𝑝(𝐷, 𝑗) can be 
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calculated by using the depth value of point 𝑝 which is denoted as 𝐼(𝐷, 𝑗). 

 𝜋𝑥 = 𝜕𝐼
𝜕𝑥

= 𝐼(𝐷 + 1, 𝑗) − 𝐼(𝐷, 𝑗),  (4.8) 

 𝜋𝑦 = 𝜕𝐼
𝜕𝑦

= 𝐼(𝐷, 𝑗 + 1) − 𝐼(𝐷, 𝑗),  (4.9) 

 𝜋𝑥𝑥 = 𝜕2𝐼
𝜕𝑥2

= 𝐼(𝐷 + 1, 𝑗) + 𝐼(𝐷 − 1, 𝑗) − 2𝐼(𝐷, 𝑗),  (4.10) 

 𝜋𝑦𝑦 = 𝜕2𝐼
𝜕𝑦2

= 𝐼(𝐷, 𝑗 + 1) + 𝐼(𝐷, 𝑗 − 1) − 2𝐼(𝐷, 𝑗),  (4.11) 

 𝜋𝑥𝑦 = 𝜕2𝐼
𝜕𝑥𝜕𝑦

= 𝐼(𝐷 + 1, 𝑗 + 1) + 𝐼(𝐷 − 1, 𝑗 − 1) − 𝐼(𝐷 + 1, 𝑗 − 1) − 𝐼(𝐷 − 1, 𝑗 + 1).     (4.  

Now from the SI equation, SI value can be computed within the interval [0,1] at any 

arbitrary point. An example of the Shape Index values for nine shape types is shown in 

Figure 4.2. After computing the curvatures by using the first and second partial 

derivatives (Equation (4.8) to Equation (4.12)), the valid points are in the region of 

5 × 5 instead of 7 × 7. 

Spherical cap Dome Ridge Trough Spherical cupRutSaddle rutsaddleSaddle ridge
1.000 0.875 0.750 0.625 0.500 0.375 0.250 0.125 0.000

1.000 0.000

Figure 4.2: The Shape Index values of nine shape types. 

The corresponding feature points can be extracted by comparing the SI value of every 

point from the corresponding regions. As we know, the SI values of the 

corresponding points should be equal. Here the corresponding points can be 
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determined when the two points have the closest SI value after all of the points in the 

corresponding regions have been traversed. If the corresponding point pair is also the 

highest height value in the nose region which has been treated as the first feature 

point before, the corresponding point pair will be selected from the second closest SI 

value. 

4.3 Motion Computation and Alignment 

Once the feature points are selected, the motion between the four corresponding point 

pairs can be calculated to align the two face images in this section. The motion 

consists of the scale, the rotation and the translation. 

4.3.1 Scale Matrix Computation 

The scale matrix of two 3D point sets can be computed by using the coordinates of 

the points. The scale factor is the ratio of the two point sets coordinates. The 

constraint of using the coordinates of the points to compute the scale factor is the 

points which must be one-to-one correspondence. 

For the feature points on the model face image 𝒙 and feature points on the reference 

face image 𝒚, the covariance matrices 𝑪𝒙 and 𝑪𝒚 of 𝒙 and 𝒚 can be calculated. 

Thus, the scale factor 𝑺𝒊𝒏𝒊 can be obtained between the two data sets: 

 𝑆𝑖𝑛𝑖_𝑗 = 1
3
∑ 𝜇𝑗

𝜆𝑗
3
𝑖=0  (𝑗 = 1,2,3. ),  (4.13) 

where 𝜆𝑗 is the square root of the j-th eigenvalues of 𝑪𝒙, 𝜇𝑗 is the square root of the 
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j-th eigenvalues of 𝑪𝒚. 

The initial scale matrix can be written as: 

 𝑺𝒊𝒏𝒊 = �
𝑆𝑖𝑛𝑖_1 0 0

0 𝑆𝑖𝑛𝑖_2 0
0 0 𝑆𝑖𝑛𝑖_3

�.  (4.14) 

In the experiment, it is better to set a threshold for further fine alignment so as to 

keep the scale factor more accurate. Hence a threshold 𝛿 is set, and the scale factor 

𝑺 will be in the interval: 

 𝑺 ∈ [𝑺𝒊𝒏𝒊 − 𝛿,𝑺𝒊𝒏𝒊 + 𝛿],  (4.15) 

where 𝑺  is the scale factor computed from the fine alignment which will be 

discussed in the next chapter. If the threshold is set as a very small value, it means 

that the computed scale factor in fine alignment will be close to the initial scale 

factor 𝑺𝒊𝒏𝒊. Based on the experiment, the threshold 𝛿 equals to 0.12. To set a 

boundary will avoid the situation that the two face images are convergence to a small 

subset in the fine alignment. The new model face image will be applied by the scale 

matrix which can be denoted as: 

 𝒙𝒇𝒑 = 𝑺𝒊𝒏𝒊𝒙,  (4.16) 

where 𝒙 is the original model face image and 𝒙𝒇𝒑 is the model face image after the 

application of the scale effect, 𝑺 is the scale matrix. 
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4.3.2 Rotation and Translation Computation 

Dual quaternions method [42] is selected to compute the rotation and translation. The 

two feature point sets can be denoted as: 𝒙𝒇𝒑 = �𝒙𝒇𝒑𝒊�, 𝐷=1,2,3,4. Reference point 

set 𝒚𝒇𝒑 = �𝒚𝒇𝒑𝒊�, 𝐷=1,2,3,4. The objective function is: 

 ℱ(𝑹, 𝒕) = 𝑑2(𝒙𝒇𝒑,𝒚𝒇𝒑) = 1
4
∑ �𝑹𝒙𝒇𝒑𝒊 + 𝒕 − 𝒚𝒇𝒑𝒊�

24
𝑖=1 .  (4.17) 

Regarding the objective function, we can see that it is an optimization problem about 

how to find out the best rotation 𝑹 and translation 𝒕 so as to achieve the least 

squares. In 1843, Quaternions were firstly introduced by Hamilton. In 1873, Hamilton 

gave the preliminary sketch of biquaternions. In the late 20th Century, quaternions 

began to be used widely in computer graphics, computer vision, robotics, attitude 

control, control theory, signal processing and computer control, etc. Quaternions can 

be used to estimate the positions of objects in 3D space. Wahba Grace in 1965 [81] 

stated that the satellite attitude could be estimated by solving a least square problem. 

In 1977, Keat [82] found out a solution about how to compute the three-axis attitude of 

a spacecraft at a single time point by using quaternions. Till now, quaternions have 

been used extensively for parameterizing orientation. [42] 

A brief conclusion of the steps to compute the rotation and translation is given in this 

section, the basic definitions and equations of dual quaternions are demonstrated in 

Appendix. 

Quaternions are four-element vectors, the first three elements can be treated as a 3 × 1 
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vector, and the fourth element is a scalar component. A quaternion 𝒒� can be described 

like this: 

 𝒒� =  �

q1
q2
q3
q4

� = �
𝒒
q4�,  (4.18) 

where 𝒒 = [𝑞1, 𝑞2, 𝑞3]𝑇is a 3D vector which is equal to the values of the original 

coordinates, where T indicates the transpose of matrix, a scalar 𝑞4 which is set to 

zero in this thesis based on the experiments. 

Step 1: Compute matrices 𝑪𝟏 and 𝑪𝟐. 

 𝑪𝟏 =  −2∑ 𝑸�𝒚𝒊𝟎�
𝑇
𝑾(𝒙𝒊)𝑁

𝑖=1 ,  (4.19) 

 𝑪𝟐 =  −2∑ �𝑾(𝒙𝒊) − 𝑸�𝒚𝒊𝟎��
𝑁
𝑖=1 ,  (4.20) 

where 

 𝐖(𝒒�) = �
𝑞4𝑰 − 𝒌(𝒒) 𝒒

−𝒒𝑻 𝑞4
�,   (4.21) 

 𝐐(𝒒�) = �
𝑞4𝑰 + 𝒌(𝒒) 𝒒

−𝒒𝑻 𝑞4
�,   (4.22) 

 𝑲(𝒒) = �
0 −𝑞3 𝑞2
𝑞3 0 −𝑞1
−𝑞2 𝑞1 0

�.   (4.23) 

Step 2: Compute matrix A. 

 A =  1
2
� 1
2𝑙𝑚

𝑪𝟐𝑇𝑪𝟐 − 𝑪𝟏 − 𝑪𝟏𝑇�,  (4.24) 
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where 𝑙𝑚  is the number of corresponding point pairs. For coarse motion 

computation, 𝑙𝑚 = 4 which means there are four corresponding feature point pairs. 

Step 3: Compute the eigenvector 𝒒� corresponding to the largest positive eigenvalue of 

matrix A, compute 𝐬� from 𝒒�. 

 𝒔� = − 1
2𝑙𝑚

𝑪𝟐𝒒�.  (4.25) 

Step 4: Compute rotation 𝑹 and translation 𝒕. 

 𝑹 =  (𝑞42 − 𝒒𝑻𝒒)𝑰 + 2𝒒𝒒𝑻 + 2𝑞4𝑲(𝒒),  (4.26) 

 𝒑� = 𝑊(𝒒�)𝑇𝒔�,  (4.27) 

where the translation 𝐭 is the vector part of quaternion 𝒑�. 

4.3.3 Face Images Alignment 

The two face images can be aligned by using the motion computation method 

described in the previous sections. Once the scale matrix, rotation matrix and 

translation matrix have been computed, the motion which consists of the three 

matrices can be applied to the face images. An equation is given to align the two face 

images: 

 𝒙𝒊𝒏𝒊 = 𝑹𝒊𝒏𝒊𝑺𝒊𝒏𝒊𝒙 + 𝒕𝒊𝒏𝒊,  (4.28) 

where 𝑹𝒊𝒏𝒊 , 𝑺𝒊𝒏𝒊  and 𝒕𝒊𝒏𝒊  are the initial estimation of rotation, scale, and 
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transformation matrices, 𝒙 is the original probing face image, 𝒙𝒊𝒏𝒊 is the probing face 

image after applied the motion. The new probing face image 𝒙𝒊𝒏𝒊 can be aligned with 

the reference image by using Equation (4.28). 

4.4 Procedure of Feature Point Extraction and Alignment 

The procedure of feature points extraction and alignment can be concluded in this 

section (Figure 4.3). The INPUT is two face images, one is the probing face image 

and one is the reference which is selected randomly from the database. The OUTPUT 

is three matrices: scale matrix 𝑺𝒊𝒏𝒊, rotation matrix 𝑹𝒊𝒏𝒊, translation matrix 𝒕𝒊𝒏𝒊; a 

new probing face image applied the motion. 

Step 1: Selecting and tagging three corresponding feature regions in the human face. 

The three regions are selected from the left corner of the right eye, the right corner of 

the left eye, and the nose tip. 

Step 2: Extracting four feature points from the corresponding three feature regions by 

using the SI value. 

Step 3: Compute and apply scale matrix 𝑺𝒊𝒏𝒊, rotation matrix 𝑹𝒊𝒏𝒊 and translation 

matrix 𝒕𝒊𝒏𝒊 between the two face images on the basis of the four feature points. 
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Select three feature 
regions 
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Figure 4.3: Procedure of feature points selection. 

4.5 Implementation and Results 

In this section, two sets of experiments are given for feature points extraction and 

motion computation according to the methods demonstrated in the previous sections. 

The INPUT of the feature points extraction is two images, one is the model image and 

the other is the reference image selected randomly from the database. The SI values of 

the points in the feature point regions are needed to calculate by using the Equation 

(4.8) to (4.12). The OUTPUT of the feature points extraction is four feature points. 

A set of experiments for motion computation and alignment are based on the analysis 

of four feature points. The INPUT of the motion computation and alignment is the 

four feature points, and the OUTPUT is: three matrices: scale matrix 𝑺𝒊𝒏𝒊, rotation 

matrix 𝑹𝒊𝒏𝒊, translation matrix 𝒕𝒊𝒏𝒊; a new probing face image. 

4.5.1 Feature Point Extraction 

In this section, the experiments for four feature points selection are given. Two 

experiments are designed to test the accuracy of the proposed method of feature 
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points extraction. Experiment I is given the feature points extraction results when the 

input of the two face images are the genuine person, experiment II is given the 

feature points extracted from different persons. 

1. Experiment I 

The input of this experiment is two face images from the identical person with 

different views. The SI values of the corresponding regions (the right corner of the 

left eye) of two images are listed in Table 4.1.  

Table 4.1: Shape Index values of two corresponding regions ( both on the right corner of the left eye, 
one reference image and one model image ). 

Model Image Reference Image 

0.915 0.915 0.814 0.678 0.605 

0.500 0.522 0.565 0.466 0.516 

0.648 0.719 0.688 0.526 0.475 

0.724 0.814 0.849 0.713 0.457 

0.851 0.835 0.698 0.468 0.295 
 

0.753 0.702 0.589 0.427 0.285 

0.601 0.776 0.611 0.567 0.655 

0.473 0.305 0.474 0.557 0.567 

0.409 0.257 0.036 0.590 0.540 

0.350 0.103 0.338 0.500 0.637 
 

The left-side of Table 4.1 is the SI values in the right corner of the left eye region 

from the probing face image (model image), and the right-side is the SI values in the 

corresponding region from the reference image. The two points can be selected as the 

correspondences which belong to the corresponding regions if they have the closest SI 

value. In Table 4.1, the point of which SI value is 0.500 in model image has the 
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closest SI  value 0.500 in reference, so that these two points are treated as the 

corresponding point pair. 

After analysis of all three correspondences between two point sets, the feature points 

can be obtained as is shown in Figure 4.4. Figure 4.4(a) and (b) are the two figures 

come from the model image and the reference image which are from the same person 

with different views. The green areas are the feature point regions, the four points in 

red are the feature points after the analysis of the curvatures. The proposed method 

can extract the corresponding feature points from the results shown in Figure 4.4. 

 

(a) The feature points (reference). 

 

(b) The feature points (model). 
Figure 4.4: Four feature points selected based on proposed method (genuine face). 

2. Experiment II 

In this experiment, the feature points are extracted from different persons. The input 

of this experiment is two face images: one is the probing face image whereas the 

other is the reference face image from the database. The SI values of the region on 

the right corner of the left eye are listed in Table 4.2. 

The feature points extraction results are shown in Figure 4.5. The two figures (a) and 

(b) are the images come from different people, (a) is the reference image selected 



4.5 Implementation and Results 

62 

from the database and (b) is the model face image. The red points are the extracted 

feature points which indicate that the feature points can be selected even if the two 

face images from the imposter face. 

Table 4.2: Another group of Shape Index values of two corresponding regions ( both on the right 
corner of the left eye, one reference image and one model image ). 

Model Image Reference Image 

0.388 0.382 0.356 0.387 0.328 

0.325 0.318 0.297 0.344 0.345 

0.314 0.323 0.281 0.324 0.345 

0.318 0.352 0.292 0.316 0.346 

0.309 0.414 0.360 0.338 0.358 
 

0.753 0.702 0.589 0.427 0.285 

0.601 0.776 0.611 0.567 0.655 

0.473 0.305 0.474 0.557 0.567 

0.409 0.257 0.036 0.590 0.540 

0.350 0.103 0.338 0.500 0.637 
 

 

(a) The feature points (reference). 

 

(b) The feature points (model). 
Figure 4.5: Four feature points selected based on proposed method (different people). 

4.5.2 Motion Computation and Alignment 

This step is to calculate the motion of the two point sets based on the extracted feature 

points in the previous experiments and align the two point sets. Three experiments 

are designed to test the proposed method. Experiment I is to test the functionality and 

the accuracy of motion computation method by using the artificial data. Experiment 

II and III are using the real face images to achieve coarse alignment. The INPUT of 
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this step is two point sets (reference and model) with four corresponding feature 

points; the OUTPUT is a rotation matrix 𝑹𝒊𝒏𝒊, a translation matrix 𝒕𝒊𝒏𝒊, a scale matrix 

𝑺𝒊𝒏𝒊 and a new aligned probing face image. 

1. Experiment I 

One group of simulated data is used to test the functionality and accuracy of the 

motion computation method. Firstly a face image is selected from the database, and 

then the face image is manually moved with a rotation matrix 𝑹𝐷𝑖𝑚 and a translation 

matrix 𝒕𝐷𝑖𝑚 and decreased the size with a scaling matrix 𝑺𝐷𝑖𝑚. The three simulated 

matrices are listed as follows: 

 𝑹𝐷𝑖𝑚_0 = �
0.9924 −0.0868 −0.0872
0.0793 0.9931 −0.0868
0.0941 0.0793 0.9924

�,  (4.29) 

 𝒕𝐷𝑖𝑚_0 = �
0.1500
0.0500
0.0200

�,  (4.30) 

 𝑺𝐷𝑖𝑚_0 = �
0.8000 0.0000 0.0000
0.0000 0.8000 0.0000
0.0000 0.0000 0.8000

�.  (4.31) 

Because the second data set is obtained from the first one, the two point sets are 

totally overlapped and all of the points in point set one have the corresponding points 

in point set two. All of the points can be used via the proposed method to compute 

motion, the three matrices 𝑹𝐷𝑖𝑚_𝑖𝑛𝑖, 𝒕𝐷𝑖𝑚_𝑖𝑛𝑖 and 𝑺𝐷𝑖𝑚_𝑖𝑛𝑖are generated as follows: 
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 𝑹𝐷𝑖𝑚_𝑖𝑛𝑖 = �
0.9924 −0.0868 −0.0872
0.0793 0.9931 −0.0868
0.0941 0.0793 0.9924

�,  (4.32) 

 𝒕𝐷𝑖𝑚_𝑖𝑛𝑖 = �
0.0555
0.0396
0.1278

�,  (4.33) 

 𝑺𝐷𝑖𝑚_𝑖𝑛𝑖 = �
0.8000 0.0000 0.0000
0.0000 0.8000 0.0000
0.0000 0.0000 0.8000

�.  (4.34) 

Figure 4.6(a) is given the original status of the reference and the simulated data, the 

results after applied the motion computed based on the proposed method are given in 

Figure 4.6(b). The red point set in Figure 4.6(a) is the reference point set, the blue 

point set in Figure 4.6(a) is the artificial data. The blue point set in Figure 4.6(b) is the 

experiment result after applying the motion computed from the proposed method. The 

two point sets are totally overlapped so that only one color is shown in Figure 4.6(b). 

 

 

(a) The original status of reference and the 
artificial data. 

 

 

(b) The result after estimate the motion between 
the two point sets. 

Figure 4.6: Coarse alignment results of the artificial data. 
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To test the accuracy of the proposed method, the errors contained in the results are 

computed. The differences between the simulated values and the experiment results 

are used to show the error 𝒆𝒓𝒓. It can be denoted as: 

 𝒆𝒓𝒓𝑺 = �𝑺𝒔𝒊𝒔_𝒊𝒏𝒊 − 𝑺𝒔𝒊𝒔_𝟎�,  (4.35) 

 𝒆𝒓𝒓𝑹 = �𝑹𝒔𝒊𝒔_𝒊𝒏𝒊 − 𝑹𝒔𝒊𝒔_𝟎�,  (4.36) 

 𝒆𝒓𝒓𝒕 = �𝒕𝒔𝒊𝒔_𝒊𝒏𝒊 − 𝒕𝒔𝒊𝒔_𝟎�,  (4.37) 

where 𝒆𝒓𝒓𝑺, 𝒆𝒓𝒓𝑹 and 𝒆𝒓𝒓𝒕 are the errors of the scale, rotation and translation 

respectively. Comparing the real results computed with the pre-set initial data, it is 

obtained that 𝒆𝒓𝒓𝑺 = 0.0000, 𝒆𝒓𝒓𝑹 = 0.0000 for every element in the matrices 

while the error of the translation is higher than others which is equal to 

 𝒆𝒓𝒓𝑡 = �
0.0555 − 0.1500
0.0396 − 0.0500
0.1278 − 0.0200

� = �
0.0945
0.0104
0.1078

�.  (4.38) 

From the results shown in Figure 4.6 and the given error, the coarse alignment can be 

achieved very well for artificial data via the proposed method. The output rotation 

matrix 𝑹𝒔𝒊𝒔_𝒊𝒏𝒊, a translation matrix 𝒕𝒔𝒊𝒔_𝒊𝒏𝒊 and a scale matrix 𝑺𝒔𝒊𝒔_𝒊𝒏𝒊 will be the 

initial values for the fine alignment. 

2. Experiment II 

In this section, the real data which is required from the same person but with different 
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views is used to test the proposed method. The two point sets are from the same person 

shown in Figure 4.7. The initial status of the two face images is given in Column (a), 

and the status of the two face images after coarse alignment is shown in Column (b). 

The coordinates of the four feature points are extracted by using the feature points 

extraction method which are: 

 𝜋𝑝𝑟𝑠𝑓 = �

0.4143 0.3514 0.9767
0.3753 0.4620 0.4718
0.4685 0.4599 0.5044
0.3688 0.3037 0.9978

�,  (4.39) 

 𝜋𝑝𝑚𝑐𝑑 = �

0.4189 0.3458 0.9497
0.4502 0.4323 0.4319
0.5323 0.4356 0.4532
0.4959 0.2575 0.8684

�,  (4.40) 

where 𝜋𝑝𝑟𝑠𝑓  consists of the feature points coordinates from the reference and 

𝜋𝑝𝑚𝑐𝑑  consists of the feature points coordinates from model. Each row in the 

Equation (4.39) and (4.40) indicates the coordinates of one feature point. The four 

feature points in Equation (4.39) are corresponding to the four feature points in 

Equation (4.40). 

Based on these coordinates of the feature points, the motion can be calculated via the 

method given in Section 4.3 which can be listed: 

 𝑹𝑖𝑛𝑖 = �
0.9924 0.0944 −0.0789
−0.0868 0.9917 0.0944
−0.0872 0.0868 0.9924

�,  (4.41) 

 𝒕𝑖𝑛𝑖 = �
−0.0738
0.0221
0.0787

�,  (4.42) 
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 𝑺𝑖𝑛𝑖 = �
0.8722 0 0

0 0.8722 0
0 0 0.8722

�.  (4.43) 

 

 

(a) The original status of reference and the 
artificial data. 

 

 

(b) The result after estimate the motion between 
the two point sets. 

Figure 4.7: Coarse alignment results of the real data I (the two point sets are from the same 
person). 

The scale of the probing face image is getting closer to the reference image after the 

coarse alignment via the Equation (4.28), the two point sets are aligned via applying 

the motion computed from the feature points in the status of Column (b) compared 

with the status of Column (a). 

From the results of the scale matrix 𝑺𝑖𝑛𝑖, the threshold for the scale factor will be in 

the interval �𝑆𝑖𝑛𝑖_𝑗 − 𝛿, 𝑆𝑖𝑛𝑖_𝑗 + 𝛿�(given in Section 4.3), where 𝑆𝑖𝑛𝑖_𝑗 = 0.8722, 

here we have 𝑆𝑖𝑛𝑖_1 = 𝑆𝑖𝑛𝑖_2 = 𝑆𝑖𝑛𝑖_3 = 0.8722, 𝛿 = 0.1047. The boundary of the 

scale factor is [0.7675,0.9769]. 

The alignment result of another group of two point sets from the genuine person is 

shown in Figure 4.8. The initial status of the two face images is given in Column (a), 
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and the status of the two face images after coarse alignment is shown in Column (b). 

The coordinates of the four feature points are extracted by using the feature points 

extraction method which are: 

 𝜋𝑝𝑟𝑠𝑓 = �

0.2573 0.2886 0.7641
0.2509 0.2992 0.7333
0.1189 0.3951 0.7213
0.4002 0.3530 0.8999

�,  (4.44) 

 𝜋𝑝𝑚𝑐𝑑 = �

0.3711 0.2932 0.8777
0.3614 0.3019 0.8508
0.4510 0.3964 0.7820
0.9374 0.4009 0.6876

�.  (4.45) 

After computing the motion computation based on the feature points extraction, the 

two face images are tuned and getting closer in the status of Column (b) compared 

with the status of Column (a). The two point sets are aligned by using Equation 

(4.28). 

 

 

(a) The original status of reference and model 
images. 

 

 
(b) The result after estimate the motion between 

the two point sets. 

Figure 4.8: Coarse alignment results of the real data II (the two point sets are from the same 
person). 
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The output is three matrices: 

 𝑹𝑖𝑛𝑖 = �
0.8627 0.0755 −0.500
−0.0872 0.9962 0.0000
0.4981 0.0436 0.8660

�,  (4.46) 

 𝒕𝑖𝑛𝑖 = �
−0.1528
−0.0013
−0.3027

�,  (4.47) 

 𝑺𝑖𝑛𝑖 = �
0.9032 0 0

0 0.9032 0
0 0 0.9032

�.  (4.48) 

From the results of the scale matrix 𝑺𝑖𝑛𝑖, the threshold for the scale factor will be in 

the interval �𝑆𝑖𝑛𝑖_𝑗 − 𝛿, 𝑆𝑖𝑛𝑖_𝑗 + 𝛿� , where 𝑆𝑖𝑛𝑖_1 = 𝑆𝑖𝑛𝑖_2 = 𝑆𝑖𝑛𝑖_3 = 0.9032 , 

𝛿 = 0.1083. The boundary of the scale factor is [0.7948,1.0115]. 

3. Experiment III 

The two face images come from two imposter faces are compared in this section. The 

two point sets are from the different faces shown in Figure 4.9. The initial status of the 

two face images is given in Column (a), and the status of the two face images after 

coarse alignment is shown in Column (b). The two face images are getting closer in 

the status of Column (b) compared with the status of Column (a). 
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(a) The original status of reference and the 
artificial data. 

 

(b) The result after estimate the motion between 
the two point sets. 

Figure 4.9: Coarse alignment results of the real data III (the two point sets are from the 
different people). 

The coordinates of the corresponding feature points are extracted via the proposed 

method: 

 𝜋𝑝𝑟𝑠𝑓 = �

0.3037 0.4772 0.6127
0.4469 0.4816 0.6341
0.3579 0.3080 0.9967
0.3557 0.3102 0.9955

�,  (4.49) 

 𝜋𝑝𝑚𝑐𝑑 = �

0.3869 0.3688 0.9202
0.4169 0.4946 0.2318
0.3774 0.4252 0.5713
0.3774 0.4282 0.5446

�.  (4.50) 

The output is three matrices computed from the coordinates of the feature points via 

the proposed method: 

 𝑹𝑖𝑛𝑖 = �
0.9839 −0.1418 −0.1086
0.1157 0.9693 −0.2168
0.1360 0.2007 0.9702

�,  (4.51) 

 𝒕𝑖𝑛𝑖 = �
0.1072
−0.0102
0.2797

�,  (4.52) 

 𝑺𝑖𝑛𝑖 = �
0.8989 0 0

0 0.8989 0
0 0 0.8989

�.  (4.53) 
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All of the three matrices for the coarse alignment results are the input for the fine 

alignment. The scale factor will be in the interval [0.7910,1.0068]. Although the 

two face images are from different people, the two face images can be still aligned 

for further refine alignment and distance comparison. 

The two face images come from another groups of the imposter faces are compared 

as follows. The two point sets are from the different faces shown in Figure 4.10. The 

initial status of the two face images is given in Column (a), and the status of the two 

face images after coarse alignment is shown in Column (b). The distance between the 

two face images are closer in the status of Column (b) compared with the status of 

Column (a). 

 

 

(a) The original status of reference and the 
artificial data. 

 

 

(b) The result after estimate the motion between 
the two point sets. 

Figure 4.10: Coarse alignment results of the real data IV (the two point sets are from the 
different people). 

The coordinates of the corresponding feature points are extracted: 
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 𝜋𝑝𝑟𝑠𝑓 = �

0.3557 0.2972 0.9951
0.3254 0.2668 0.7384
0.4230 0.2777 0.8319
0.3080 0.4816 0.6422

�,  (4.54) 

 𝜋𝑝𝑚𝑐𝑑 = �

0.3738 0.1358 0.9134
0.2642 0.1148 0.9448
0.4063 0.1382 0.9765
0.1681 0.4146 0.7994

�.  (4.55) 

The output is three matrices calculated from the coordinates of the feature points via 

the proposed method: 

 𝑹𝑖𝑛𝑖 = �
0.9623 −0.0842 0.2588
0.1093 0.9904 −0.0842
−0.2493 0.1093 0.9632

�,  (4.56) 

 𝒕𝑖𝑛𝑖 = �
−0.4845
−0.2036
0.1508

�,  (4.57) 

 𝑺𝑖𝑛𝑖 = �
0.7428 0 0

0 0.7428 0
0 0 0.7428

�.  (4.58) 

All of the three matrices for the coarse alignment results and the two point sets are the 

input for the fine alignment. The scale factor will be in the interval [0.6537,0.8319]. 

4.6 Summary 

The feature point extraction and alignment method is introduced in this chapter. A 

curvature based feature points extraction method consisting of three steps is proposed 

to achieve coarse alignment. The three steps can be listed as following: three feature 

region selection, four feature point extraction, the motion computation and 

alignment. 
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As the experiment results show, no matter whether the two face images are from the 

genuine face or not, the corresponding feature points can be successfully extracted 

via the curvature based feature points extraction method. An efficient method to 

calculate the scale, rotation and translation matrices is given and evaluated by using 

different face images. 

Although the face images can be aligned after this chapter, it is still need to achieve 

fine alignment. A modified Iterative Closest Point method will be discussed for fine 

alignment in order to precisely tune the location of the face images. 
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CHAPTER 5 3D FACE RECOGNITION

The coarse alignment has aligned the probing face image and the reference face 

image closer, then the fine alignment is required for further refine the alignment and 

calculate the different distance between the two face images. The two face images 

with a different distance smaller that a threshold will be recognized as from the same 

person. In this chapter, a fine alignment method on the basis of the partial ICP 

method is proposed to deal with partially-overlapped problem and scaling effect 

problem. The 3D face recognition can be achieved by make the comparison of the 

different distance between the two face images after fine alignment. The procedure 

of 3D face recognition is also given in this chapter, a set of experiments are designed 

to test the proposed 3D face recognition method at the end of this chapter. 

5.1 Partial ICP Method 

The three images of different views for each individual are collected in the database 

as is described in Chapter 3, meaning that the three images are partially overlapped, 

some parts of one face image are not contained in another face image. In fine 

alignment, the partial ICP method is selected to deal with the partially-overlapped 

problem. 

5.1.1 Introduction 

The partial ICP method was firstly proposed by Zhang in 1994[44], before the partial 

ICP method has been proposed, the ICP method was firstly introduced by Chen in 
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1991[83] and Besl and Mckay in 1992[39]. The ICP method is the one that iteratively 

aligns two 3D point sets together by using the motion matrix computed from the 

corresponding point pairs. The important difference between the ICP method and the 

partial ICP method is that the latter method can deal with the two point sets which are 

partially overlapped. Due to this advantage, the partial ICP method can deal well with 

gross errors and appearance, disappearance and occlusion of the objects[44]. 

The objective function of the partial ICP method is: 

 ℱ(𝑹, 𝒕) =  1
∑ 𝑝𝑖𝑙
𝑖=1

∑ 𝑝𝑖𝑑2(𝑹𝒙𝒊 + 𝒕,𝐷′)𝑙
𝑖=1 ,  (5.1) 

where 𝒙𝒊 is the i-th point in the model point set, 𝑙 is the number of point in the model 

point set. 𝑹 is the rotation matrix (3×3) and 𝒕 is the translation matrix (3×1) between 

model point set and reference. 𝐷′ is the reference image, 𝑑2(𝑹𝒙𝒊 + 𝒕,𝐷′) is the 

square of the Euclidean distance from point 𝒙𝒊 to the surface 𝐷′. 𝑝𝑖 is a weight factor 

to decide whether the point pair is a corresponding point pair or not, 𝑝𝑖 could be 

equal to 0 or 1. If 𝒙𝒊 can be matched to one point in 𝐷′, 𝑝𝑖 takes 1, otherwise 𝑝𝑖 

takes 0. 

There being the case, 𝑝𝑖 = 1 is needed to be considered. The objective function 

becomes: 

 ℱ(𝑹, 𝒕) =  1
𝑙𝑚
∑ ‖𝑹𝒙𝒊 + 𝒕 − 𝒚𝒊‖2
𝑙𝑚
𝑖=1 ,  (5.2) 

where 𝒚𝒊 is the i-th corresponding point of 𝒙𝒊 in reference. 𝑙𝑚 is the number of the 
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correspondences. 

The ICP method always converges monotonically to a local minimum with respect to 

the mean square distance in the objective function[39]. This theorem indicates that the 

distance between the two point sets is decreasing through every iteration, in other 

words, the locations between the two point sets are getting closer recursively. 

In Figure 5.1 is illustrated the process and the results during the iterations of partial 

ICP method. The original status of two point sets are given in the very left-side in 

Figure 5.1, after given the three status during the iteration, the well alignment result 

is shown in the very right-side of Figure 5.1. The procedures of the partial ICP 

method can be divided into three steps to achieve fine alignment: (1) finding 

corresponding point pairs, (2) rejection unreasonable point pairs and (3) the rotation 

and translation computation and alignment. Then the two point sets will be aligned 

with several iterations of repeating these three steps. 

 

Figure 5.1: Alignment procedure in every iteration. 

5.1.2 Procedure of Partial ICP 

1. Finding of Corresponding Point Pairs 
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Since the pseudo corresponding point pairs are the closest point pairs in the two 3D 

point sets mentioned in the previous section, it is needed to figure out the points on 

the reference which have the closest distance for the corresponding points in model. 

The distance between one 3D point 𝒙 in model data set to the reference data set 𝐷ʹ is 

defined as: 

 𝑑(𝒙𝒊,𝐷′) =  min𝒚𝒊∈𝐷′ 𝑑(𝒙𝒊,𝒚𝒊),   (5.3) 

where 𝑑(𝒙𝒊,𝐷ʹ) is the minimum Euclidean distance between one 3D point 𝒙𝒊 from 

the model and the reference 𝐷′. Say 𝒚𝒊 is the closest point in the reference of 𝒙𝒊 in 

the model, 𝑑(𝒙𝒊,𝒚𝒊) is the Euclidean distance between the 3D point 𝒙𝒊 from model 

set and a 3D point 𝒚𝒊 from reference set. In Cartesian coordinates, 3D point 𝒙𝒊 = 

(𝑥1, 𝑥2, 𝑥3 ) and 𝒚𝒊  = (𝑦1,𝑦2,𝑦3 ). Where (𝑥1, 𝑥2, 𝑥3 ) and (𝑦1,𝑦2,𝑦3 ) are the 

coordinates of point 𝒙𝒊 and 𝒚𝒊. It can be described like this: 

 𝑑(𝒙𝒊,𝒚𝒊) = 𝑑(𝒚𝒊,𝒙𝒊) =  �(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + (𝑥3 − 𝑦3)2 = ‖𝒙𝒊 − 𝒚𝒊‖.     (5.4) 

The cost for finding out one closest point in reference is O(N𝑙), where l is the number 

of points in reference. The total cost for every point in reference is O(N𝑚N𝑙), where m 

is the number of points in model. It costs a lot of time and resources for computing the 

closest distance between the model point set and reference point set. To reduce the 

computational cost, K-D Tree method [84] is employed to find the closest points. 

K-D Tree is to build a new structure for points by segment the space into several 

parts. It can be used in the k-dimensional space. Here the 3D Tree is used to organize 
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the points. The worst searching time by using K-D Tree will be reduced to O(log N𝑙). 

2. Rejection of Unreasonable Point Pairs 

The core point of the partial ICP is to find out the corresponding point pairs between 

the two 3D point sets and reject the non-correspondences in order to deal with the 

outliers and disappearances. The pseudo correspondences have been selected in the 

previous step. Then the corresponding point pairs can be determined by using a 

distance threshold 𝐷𝑚𝑚𝑥. 

 

Figure 5.2: Discard unreasonable point pairs. 

The process of discarding the incorrect corresponding point pairs can be shown in 

Figure 5.2. In the left-hand side in Figure 5.2, there are five points in the model point 

set corresponding to three points in the reference point set, which are selected via the 

closest points selection criteria. However, there are two unreasonable point pairs 

indicated by the dash lines which connect the cross points in reference and the dots in 

the model. These two unreasonable point pairs need to be discarded by using the 

threshold 𝐷𝑚𝑚𝑥. The result after discarding the unreasonable point pairs is shown in 
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the right-hand side in Figure 5.2. As long as the distance of one point pair is larger 

than the threshold 𝐷𝑚𝑚𝑥, it will be discarded like the points denoted as cross in 

Figure 5.2, meanwhile, 𝑝𝑖 = 0 in the objective function (5.1). The remaining point 

pairs are the corresponding point pairs, and 𝑝𝑖 = 1. After several iterations, a two 

well-aligned point sets are obtained. 

The distance threshold 𝐷𝑚𝑚𝑥 is an adaptive threshold, its value will adjust the location 

to change the model. In iteration I, 𝐷𝑚𝑚𝑥𝐼 is denoted as the threshold. The 𝐷𝑚𝑚𝑥𝐼 is 

set as [44]: 

if µ < 𝒟,𝐷𝑚𝑚𝑥𝐼 =  µ + 3σ, 

elseif µ < 3𝒟,𝐷𝑚𝑚𝑥𝐼 =  µ + 2σ, 

elseif µ < 6𝒟,𝐷𝑚𝑚𝑥𝐼 =  µ + σ, 

else 𝐷𝑚𝑚𝑥𝐼 =  ξ. 

A parameter 𝒟 is set by user to judge whether the alignment is good or not. In this 

thesis, 𝒟 is set to be equal to the resolution of the reference point set for tolerance. µ 

is the mean distance of the distances between the closest point pairs from the model to 

the reference, σ is the deviation of the distances which are given by 

 µ = 1
𝑙𝑚
∑ 𝑑𝑖
𝑙𝑚
𝑖=1 ,   (5.5) 

 σ =  � 1
𝑙𝑚
∑ (𝑑𝑖 − 𝜇)2𝑙𝑚
𝑖=1 ,   (5.6) 

where 𝑑𝑖 is the distance between the i-th corresponding point pair. 𝑙𝑚 is the number 



5.1 Partial ICP Method 

80 

of the closest point pairs in current iteration. 

In the 𝐷𝑚𝑚𝑥𝐼 setting equation, there is a value ξ need to be set by the user as well. ξ 

is a threshold when the alignment is very poor to keep the distances convergence. To 

set ξ, a histogram is firstly built up when the case of µ > 6𝒟 happens (Figure 5.3). 

The horizontal axis is the normalized distances of the closest point pairs, the vertical 

axis is the number of points. Secondly, it is easy to find out the highest number of 

points and the distance which is the first valley after the highest number of points. 

Meanwhile, the number of the points corresponding to the distance at the first valley 

must not go far beyond 50% of the highest number of point. The value of ξ is 

determined equal to the distance corresponding to the first valley. The highest 

number of points is 46 when the distance is 0.065, according to the ξ selection 

criteria, ξ can be determined which is equal to 0.075, because there are 14 numbers 

of points in this distance, the ratio of which between the number of points 

corresponding to ξ and the highest number of points is 14/46=30.43% less than 50%. 
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Figure 5.3: Histogram of distances. 

3. Rotation and Translation Computation and Fine Alignment 

The rotation matrix 𝑹 and translation matrix 𝒕 can be computed via the Dual 

Quaternion method that has been already previously discussed in Section 4.3. The 

alignment is made by using the equation: 

 𝒙𝑰+𝟏 = 𝑹𝑰𝒙𝑰 + 𝒕𝑰,  (5.7) 

where 𝒙𝑰 is the model face image in the I-th iteration, 𝒙𝑰+𝟏 is the new probing face 

image after tuning with the I-th motion (rotation 𝑹𝐈 and translation 𝒕𝐈), 𝒙𝑰+𝟏 will 

be the input of the next iteration. Repeat these three steps during several iterations, 

the two point sets will be convergence to a global minimum. 

5.2 Scaling Effect Computation 

5.2.1 Introduction 

The partial ICP is an accurate method for data registration and object recognition, 
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however, it is a rigid transformation method without any consideration of its scaling 

effects. In the reality, the scaling effect exists in every face image in the database since 

the distances will be diverse between the different faces and the camera. In Figure 5.4 

is illustrated the reason why scale difference exists. Point O is the position of one 

pinhole camera. Position A and B are the positions of the probing object. We can see, 

from this figure, that the position of object 2 is closer to the camera than that of the 

object 1. In position C, we can get the images of the objects in the camera. It is shown 

that if the distance between the probing object and the camera is different, the scale in 

the images captured from the camera will be different as well. The larger the distance 

exists, the smaller scale will be gotten from the camera. 

o

Object 1Object 2

x

y

z
x

y

Pinhole camera

Perspective image

Object 2
Object 1

A B
C

 

Figure 5.4: Description of scale difference. 

If the partial ICP method is implemented without any modification, the scale 

difference will influence the recognition results. The results of the alignment of two 

scale different data sets via the partial ICP method are given in Figure 5.5. The point 
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sets both in blue and red are two artificial data sets. The one in red is treated as the 

reference and the other in blue is the model. The model is got by manually rotated, 

translated and reduced the scale from the reference. In Figure 5.5(a) is shown the 

initial status of two point sets, in Figure 5.5(b) is shown the results after applying 

partial ICP method, we can see that the two point sets with scaling effect cannot align 

together even the two point sets are from the same object. 

  

(a) Initial status of two artificial data sets. (b) Final status of two artificial data sets. 

Figure 5.5: Results of implementing partial ICP with scaling effect. 

5.2.2 Scaling Effect Computation 

Here a solution is presented to solve the scaling effects problem. Du, et al[54] gave 

an efficient method called Scaling ICP (SICP) to solve the scaling effect problem. In 

this thesis the proposed fine alignment method is using the scale matrix computation 

method from SICP combined with the partial ICP method. The scale matrix 

computation method can be described as listed below. 

If a scale matrix 𝐒 is inserted into the objective function (5.1), the new objective 

function will be: 
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 ℱ(𝑹,𝑺, 𝒕) =  1
∑ 𝑝𝑖𝑙
𝑖=1

∑ 𝑝𝑖𝑑2((𝑹𝑺𝒙𝒊 + 𝒕),𝐷′)𝑙
𝑖=1 . (5.8) 

The objective function of the matched point pairs becomes: 

 ℱ(𝑹,𝑺, 𝒕) =  1
𝑙𝑚
∑ ‖(𝑹𝑺𝒙𝒊 + 𝒕) − 𝒚𝒊‖2
𝑙𝑚
𝑖=1 ,  (5.9) 

where 𝒚𝒊 is the corresponding points in reference, 𝑙𝑚 is the number of corresponding 

point pairs. 

We need to achieve the minimum of the new objective function (5.9). 

If ℱ(𝑹,𝑺, 𝒕) =  1
𝑙𝑚
∑ ‖(𝑹𝑺𝒙𝒊 + 𝒕) − 𝒚𝒊‖2
𝑙𝑚
𝑖=1  has minimum, it will satisfy the 

following equation: 𝑑ℱ(𝒕)
𝑑𝒕

= 0. 

 𝑑ℱ(𝒕)
𝑑𝒕

= 2𝑺
𝑙𝑚
∑ ((𝑹𝑺𝒙𝒊 + 𝒕) − 𝒚𝒊) = 0𝑙𝑚
𝑖=1 .   (5.10) 

Hence, we have 𝒕 = 1
𝑙𝑚
∑ 𝒚𝒊
𝑙𝑚
𝑖=1 − 1

𝑙𝑚
∑ 𝑹𝑺𝒙𝒊
𝑙𝑚
𝑖=1 . 

Therefore, the objective function is as follows in order to achieve the minimum. 

 ℱ(𝑹,𝑺) =  1
𝑙𝑚
∑ �𝑹𝑺�𝒙𝒊 −

1
𝑙𝑚
∑ 𝒙𝒊
𝑙𝑚
𝑖=1 � − �𝒚𝒊 −

1
𝑙𝑚
∑ 𝒚𝒊
𝑙𝑚
𝑖=1 ��

2𝑙𝑚
𝑖=1 .  (5.11) 

In Section 4.3, the rotation matrix is given: 𝑹 =  (𝑞42 − 𝒒𝑻𝒒)𝑰 + 2𝒒𝒒𝑻 + 2𝑞4𝑲(𝒒). 

It is an orthogonal matrix. Thus, 𝑹𝑻𝑹 = 𝑰. Where 𝑰 is an identity matrix. 

Let: 

 𝒖𝒊 = 𝒙𝒊 −
1
𝑙𝑚
∑ 𝒙𝒊
𝑙𝑚
𝑖=1 ,  (5.12) 
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  𝒗𝒊 = 𝒗𝒊 −
1
𝑙𝑚
∑ 𝒚𝒊
𝑙𝑚
𝑖=1 .  (5.13) 

Then, 

 ℱ(𝐑,𝐒) =  1
𝑙𝑚
∑ ‖𝑹𝑺𝒖𝒊 − 𝒗𝒊‖2
𝑙𝑚
𝑖=1 = 1

𝑙𝑚
�∑ 𝒖𝒊𝑻𝑺𝟐𝒖𝒊

𝑙𝑚
𝑖=1 − 2∑ 𝒗𝒊𝑻𝑹𝑺𝒖𝒊

𝑙𝑚
𝑖=1 +

∑ 𝒗𝒊𝑻𝒗𝒊
𝑙𝑚
𝑖=1 � .    (5.14) 

Equation (5.14) can be treated as a parabola with respect to 𝑹 and 𝑺. To find out the 

minimum of this parabola, we can derive the partial differential equation as: 

 ∂ℱ(𝑹,𝑺)
∂𝑹

= 0,  (5.15) 

  ∂ℱ(𝑹,𝑺)
∂𝑺

= 0.  (5.16) 

In order to get the scale matrix from equation (5.14), we can get 

 ∂ℱ(𝑹,𝑺)
∂𝑺

= 2∑ 𝒖𝒊𝑻𝑺𝑬𝒋𝒖𝒊
𝑙𝑚
𝑖=1 − 2∑ 𝒗𝒊𝑻𝑹𝑬𝒋𝒖𝒊

𝑙𝑚
𝑖=1 = 0,  (5.17) 

where 𝑬𝒋 = 𝑑𝐷𝑎𝑔(0, … ,0,1,0, … ,0), (𝑗 = 1,2,3) is a diagonal matrix, j-th element is 1 

while others are 0. 𝑗 is a scalar which indicates the dimension. Here 𝑗 = 1,2,3 as is 

indicated that the data set is a 3D data set. 

Scale factor in j-th dimension 𝑆𝑗 could be computed from equation (5.17) 

 𝑆𝑗 =
∑ 𝒗𝒊

𝑻𝑹𝑬𝒋𝒖𝒊
𝑙𝑚
𝑖=1
∑ 𝒖𝒊

𝑻𝑬𝒋𝒖𝒊
𝑙𝑚
𝑖=1

.  (5.18) 

In coarse alignment section, it has been discussed that the scale matrix is set in the 
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interval of [𝑺𝒊𝒏𝒊 − 𝛿,𝑺𝒊𝒏𝒊 + 𝛿]. If 𝑆𝑗 ∈ �𝑆𝑖𝑛𝑖_𝑗 − 𝛿, 𝑆𝑖𝑛𝑖_𝑗 + 𝛿�, the minimum is the 

point which is nearest to the vertex of the parabola (5.14), the scale can be computed: 

 𝑆𝑗 = arg min𝑺∈[𝑺𝒊𝒏𝒊−𝛿,𝑺𝒊𝒏𝒊+𝛿] �𝒔 −
∑ 𝒗𝒊

𝑻𝑹𝑬𝒋𝒖𝒊
𝑙𝑚
𝑖=1
∑ 𝒖𝒊

𝑻𝑬𝒋𝒖𝒊
𝑙𝑚
𝑖=1

�.  (5.19) 

If 𝑆𝑗 < 𝑆𝑖𝑛𝑖 − 𝛿, 𝑆𝑗 =  𝑆𝑖𝑛𝑖 − 𝛿, if 𝑆𝑗 > 𝑆𝑖𝑛𝑖 + 𝛿, 𝑆𝑗 =  𝑆𝑖𝑛𝑖 + 𝛿. 

The scale matrix can be written on the basis of scale factor 𝑆𝑗: 

 𝑺 = �
𝑆1 0 0
0 𝑆2 0
0 0 𝑆3

�,  (5.20) 

where 𝑆1, 𝑆2, 𝑆3 are the scale factors of 𝑆𝑗, 𝑗 = 1,2,3. 

The other two matrices 𝑹 and 𝒕 can be compute by using Dual Quaternion method 

described in Section 4.3. 

5.3 Procedure of the Modified ICP Method 

5.3.1 Procedure 

The procedure of the proposed method is: 

The INPUT of the proposed method: two 3D point sets: model point set 𝒙𝒊, reference 

point set 𝐷′ , the initial value of rotation 𝑹0 , translation 𝒕0 , scale 𝑺0 , distance 

threshold 𝐷𝑚𝑚𝑥0. 

The OUTPUT of the proposed method: an optimal motion consists of a rotation 

matrix 𝑹, a translation matrix 𝒕 and a scale matrix 𝑺. 
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Iteration begins:(in I-th iteration) 

Step 1: find the closest points 𝒚𝒊𝐼 in reference  𝐷′ corresponding to every point from 

model 𝒙𝒊𝐼 . The number of the corresponding point pairs is 𝑙𝑚 . Discard the 

unreasonable closest point pairs with the distance threshold 𝐷𝑚𝑚𝑥𝐼. 

Step 2: compute the motion between two point sets (compute 𝑹𝐼, 𝒕𝐼 and 𝑺𝐼). 

Step 3: apply the motion to the model (𝒙𝒊𝐼+1 = 𝑹𝐼𝑺𝐼𝒙𝒊𝐼 + 𝒕𝐼), the objective function 

ℱ(𝑹, 𝒕) = 1
𝑙𝑚
∑ ‖𝑹𝐼𝑺𝐼𝒙𝒊𝐼 + 𝒕𝐼 − 𝒚𝒊𝐼‖2
𝑙𝑚
𝑖=1 =  1

𝑙𝑚
∑ ‖𝒙𝒊𝐼+1 − 𝒚𝒊𝐼‖2
𝑙𝑚
𝑖=1  achieves the 

minimum. 

Iteration ends if: 

The condition of termination is to satisfy the termination constraint. For the terminate 

condition, if ‖𝑹𝐼 − 𝑹𝐼−1‖ < 𝜀𝑅  and ‖𝒕𝐼 − 𝒕𝐼−1‖ < 𝜀𝑡 , the iteration ends, 𝒙𝒊~ =

𝒙𝒊𝐼. Where 𝜀𝑅 , 𝜀𝑡 are the thresholds for rotation and translation. 

The modified ICP method can be concluded in the flow chart below: 
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Figure 5.6: Flow chart of modified ICP method. 

5.3.2 Convergence Theorem 

The modified ICP method will converge to a global minimum after several iterations. 

The mean square distances of the corresponding point pairs in the objective function 

will be reduced during every iteration, whereas the location between reference and 

model will also get closer during the iteration. The convergence theorem and proof are 

listed below. 

Theorem: The modified ICP method is always convergence monotonically to a local 

minimum with respect to the mean square distance. 
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Proof: in I-th iteration, given two point sets: model point set 𝒙𝒊𝑰 and corresponding 

points 𝒚𝒊𝑰 in reference 𝐷′, scale matrix 𝑺𝐼, rotation matrix 𝑹𝐼, translation matrix 𝒕𝐼. 

Let 𝒙𝒊𝐼+1 = 𝑹𝐼𝑺𝐼𝒙𝒊𝐼 + 𝒕𝐼 which allows the objective function to be the minimal. 

According to Step 1 in the procedure of the modified ICP method and supposing that, 

in the I-th iteration, we have 𝑒𝐼 = 1
𝑙𝑚
∑ ‖𝒙𝒊𝐼 − 𝒚𝒊𝐼‖2
𝑙𝑚
𝑖=1 . Once applied the best scale 

𝑺𝐼 , rotation 𝑹𝐼  and translation 𝒕𝐼  is applied, the new square distance becomes: 

𝜀𝐼 = 1
𝑙𝑚
∑ ‖𝒙𝒊𝐼+1 − 𝒚𝒊𝐼‖2
𝑙𝑚
𝑖=1 . Because 𝜀𝐼  is the minimum, there is a relationship: 

𝜀𝐼 ≤ 𝑒𝐼. If 𝜀𝐼 > 𝑒𝐼, the least squares is larger than the identity transformation which is 

impossible. In the next iteration I+1, 𝑒𝐼+1 = 1
𝑙𝑚
∑ ‖𝒙𝒊𝐼+1 − 𝒚𝒊𝐼+1‖2
𝑙𝑚
𝑖=1  will be smaller 

than 𝜀𝐼 = 1
𝑙𝑚
∑ ‖𝒙𝒊𝐼+1 − 𝒚𝒊𝐼‖2
𝑙𝑚
𝑖=1  in the previous iteration. Because in I+1-th iteration, 

the process will repeat Step 1 to find out the closest point pairs with the point set 𝒙𝒊𝐼+1 

which is applied motion with 𝑺𝐼, 𝑹𝐼 and 𝒕𝐼. The square distance between 𝒙𝒊𝐼+1 and 

𝒚𝒊𝐼 is closer than before. If the closest distance is larger than it in Step 3 the previous 

iteration, it is not the closest distance. So we have: 0 ≤ 𝜀~ ≤ 𝑒~ ≤ ⋯ ≤ 𝑒𝐼+1 ≤ 𝜀𝐼 ≤

𝑒𝐼 ≤ ⋯ ≤ 𝜀1 ≤ 𝑒1, for all iteration. From this relation, it can be concluded that the 

proposed fine alignment method converges monotonically to a minimum with respect 

to the mean square distance. 

5.4 3D Face Recognition 

The 3D face recognition can be achieved by make the comparison of the different 

distance between the two face images. The point-to-point distance minimized by the 
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modified ICP method is used as the matching distance of the two face images 

(Equation (5.21)). 

 ℱ(𝑹,𝑺, 𝒕) =  1
𝑙𝑚
∑ ‖𝒙𝒊 − 𝒚𝒊‖2
𝑙𝑚
𝑖=1 ,  (5.21) 

where 𝒙𝒊 and 𝒚𝒊 are the i-th corresponding point pairs in the probing image and 

reference respectively, 𝑙𝑚  is the number of correspondences. ‖𝒙𝒊 − 𝒚𝒊‖2  is the 

square distance between the i-th corresponding point pair. ℱ(𝑹,𝑺, 𝒕) is denoted as 

Mean Square Error (MSE) for further comparison. If the matching distance is smaller 

than a threshold, the two face images are treated as the identical face, otherwise the 

two face images are from the imposter faces. 

The whole procedure of 3D face recognition is given in this section. In Figure 5.7 is 

shown the flowchart of the proposed method to achieve 3D face recognition. The 

procedure of 3D face recognition can be concluded as follows: 

INPUT: one probing face image which is needed to recognize. 

OUTPUT: the recognition result which is given after the database traversal. 

Iteration begins: 

Step 1: Select one face image from the database, this face image treated as the 

reference image. 

Step 2: Select the feature points to compute the motion and coarsely align the two 
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face images by the motion estimation. 

Step 3: Fine align the reference image with the model image on the basis of the 

modified ICP method. 

Step 4: Compute the mean square distance between the two point sets by using the 

equation MSE =  1
𝑙𝑚
∑ ‖𝒙𝒊𝐼+1 − 𝒚𝒊𝐼‖2
𝑙𝑚
𝑖=1 , where MSE is the Mean Square Error, 

meaning the mean square distance between the two point sets. 

Step 5: Compare the mean square distance. 

Iteration ends if: 

If MSE is smaller than a threshold, the two face images are treated as the same. The 

model image can be recognized after the images compared in the database. 

If no image in the database can satisfy the constraint condition, the probing face 

image is an unknown face image. 
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Figure 5.7: Flow chart of 3D face recognition method. 

5.5 Experiments 

Two sets of experiments are designed to test the proposed method of 3D face 

recognition. One is to test the functionality of the proposed method while the other is 

to compare its accuracy. 
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5.5.1 Experiment I 

The objective of experiment I is to test whether the proposed method can achieve to 

recognize the different face images or not. The input of this experiment is one model 

image and several reference images selected randomly from the database. Figure 5.8 

gives the initial status of two images from the imposter faces before alignment and 

results after using the proposed method. The left column in Figure 5.8 is shown the 

initial status of two face images, the middle column gives the coarse alignment result 

and the right column is the fine alignment result. The results are obtained by 

employing the proposed method. Although the two face images are aligned after 

applying the coarse alignment method, the two distinct face images cannot align 

together as the final alignment result shown in Figure 5.8. 

 

 

Original status 

 

 

Coarse alignment result 

 

 

Fine alignment result 

Figure 5.8: Alignment results of two imposter face images (imposter face 1). 

The corresponding Mean Square Error (MSE) value can be obtained by using the 

equation MSE =  1
𝑙𝑚
∑ ‖𝒙𝒊𝐼+1 − 𝒚𝒊𝐼‖2
𝑙𝑚
𝑖=1 , which is shown by the red star line 
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(imposter face 1) in Figure 5.12. The horizontal axis is the iteration time and the 

vertical axis is the MSE value. The MSE value is shown that the two face images are 

convergence to a minimum although the two face images are from different people. 

Another different face image is coming to compare with the probing face image in 

Figure 5.9. The left column in Figure 5.9 is given the initial status of two face images, 

the coarse alignment results are shown in the middle column, and the final results 

after fine alignment can be shown in the right column. The two face images are 

getting closer after the coarse alignment, but the two face images cannot align which 

is shown from the final results because these two face images are from different faces. 

The corresponding MSE is shown in the black square line (imposter face 2) in Figure 

5.12. 

 

 

Original status 

 

 

Coarse alignment result 

 

 

Fine alignment result 

Figure 5.9: Alignment results of two different face images (imposter face 2). 

Figure 5.10 shows the comparison of the probing face image with the third imposter 

face image. The left column in Figure 5.10 is given the initial status of two face 
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images, the coarse alignment results are shown in the middle column, and the final 

results after fine alignment can be shown in the right column. With the same situation 

of Figure 5.9, the two face images are getting closer after the coarse alignment, but 

the two face images cannot align shown from the final results. The corresponding 

MSE is shown in the green diamond line (imposter face 3) in Figure 5.12. 

 

 
 

Original status 

 

 
Coarse alignment result 

 

 

Fine alignment result 

Figure 5.10: Alignment results of two different face images (imposter face 3). 

Figure 5.11 shows the results of the two face images which are from the genuine 

faces but with different scaling effect. The left column in Figure 5.11 is shown the 

initial status of two face images, the middle column gives the coarse alignment result 

and the right column is the fine alignment result. The scale of the probing face image 

(blue face image) is becoming large, and the location between the two face images 

are getting closer. After utilizing the proposed 3D face recognition method, we can 

clearly see that the two point sets align well from the fine alignment results in Figure 

5.11. Meanwhile, MSE is quite close to 0 shown in the blue cross line in Figure 5.12. 
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Original status 

 

 

Coarse alignment result 

 

 

Fine alignment result 

Figure 5.11: Alignment results of two genuine face images. 

Figure 5.12 shows the MSE values of three groups of comparing different face 

images and one group of two images from the identical face. It is clear to show that if 

the two images come from the same person, the MSE will much less than the MSE 

value of imposter face images and close to the value of zero, in other words, after 

doing the coarse alignment and fine alignment, the proposed method will recognize 

the right face image from reference images by comparing MSE value. Meanwhile, the 

MSE value from Figure 5.12 is decreasing with the increasing iteration time which is 

shown the proposed method is a convergence method. 
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Figure 5.12: MSE of 3 different face images and one genuine face image. 

5.5.2 Experiment II 

This experiment is to compare the accuracy of the proposed method with the partial 

ICP method. Two experiments are contained in this set of experiment. The artificial 

data sets are firstly used to compare the accuracy of the proposed method and the 

partial ICP method followed by the real data sets. 

1. Artificial Data 

The input of this experiment is two artificial data sets are shown in the left-side of 

Figure 5.13. The one in red is treated as the reference and the other in blue is the 

model. The model is obtained by manually rotated, translated and reduced the scale 

from the reference. The results of the two genuine face images with the same scaling 

effects by using the partial ICP method are given in Figure 5.13. The results of using 

the proposed method to achieve fine alignment are shown in Figure 5.14. The 
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left-side status is the initial status of the two point sets and the alignment result is 

given in the right-side both in Figure 5.13 and Figure 5.14 which are shown that the 

fine alignment results are quite good. The MSE value can be calculated via Equation 

(5.21). The comparison of MSE can be shown Figure 5.15, the horizontal axis is the 

iteration time, the vertical axis is the MSE value, the MSE value of every iteration of 

the proposed method is shown as the solid line, the MSE value of every iteration of 

the partial ICP method is shown as the dash line. Both the proposed method and the 

partial ICP method can reach a similar small MSE value that can successfully 

achieve 3D data sets fine alignment. 

 

Original status 

 

Fine alignment result 

Figure 5.13: Alignment results of two artificial data sets with same scaling effects by using 
partial ICP method. 

 

Original status 

 

Fine alignment result 

Figure 5.14: Alignment results of two artificial data sets with same scaling effects by using 
proposed method. 
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Figure 5.15: MSE of artificial data sets with partial ICP and proposed method. 

2. Real Data 

This experiment is to compare the accuracy of the method with the partial ICP method 

with the real face images. The genuine face with the same scale is used by employing 

the partial ICP method and the proposed method. The two face images of the input are 

from the genuine person and without the scaling effect. The results of the two genuine 

face images with the same scaling effects by using the partial ICP method in the fine 

alignment method is shown in Figure 5.16. The left-side column is shown the initial 

status of the two face images, the middle column is shown the result after applying 

coarse alignment, the right-side column is shown the results after fine alignment 

which indicates that the two face images are aligned very well by using the partial 

ICP method. 
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Original status 

 

 

Coarse alignment result 

 

 

Fine alignment result 

Figure 5.16: Alignment results of two genuine face images with same scaling effects by 
using partial ICP method. 

 

 

Original status 

 

 

Coarse alignment result 

 

 

Fine alignment result 

Figure 5.17: Alignment results of two genuine face images with same scaling effects by 
using proposed method. 

The results of the two genuine face images with the same scaling effects by using the 

proposed method are given in Figure 5.17. Comparing with the result by using the 

partial ICP method, the fine alignment results by using the proposed method can 

reach the similar status with the partial ICP method. The MSE results of the two 

different methods are similar which is shown in Figure 5.18, which means the 
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proposed method can achieve the similar accuracy of the the partial ICP. 

 

Figure 5.18: MSE of the genuine face images with partial ICP and proposed method. 

5.5.3 Experiment III 

This experiment is to compare the computational time between the method coarse 

alignment method employed and just only fine alignment. The data used in this 

experiment is two face images from the same person and without the scaling effect. 

The genuine face with the same scale is used by employing the fine alignment method 

and the proposed method (both coarse alignment method and fine alignment method). 

The results of the two genuine face images with the same scaling effects by only using 

the fine alignment method is shown in Figure 5.19. The left-side column is shown the 

initial status of the two face images, the right-side column is shown the results after 

fine alignment which indicates that the two face images are aligned by using the fine 

alignment method. 
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Original status 

 

 

Fine alignment result 

Figure 5.19: Alignment results of two genuine face images with same scaling effects by using only fine 

alignment method. 

 

 

Original status 

 

 

Coarse alignment result 

 

 

Fine alignment result 

Figure 5.20: Alignment results of two genuine face images with same scaling effects by using proposed 

method. 

The results of the two genuine face images with the same scaling effects by using the 

proposed method are given in Figure 5.20. The MSE results of the two different 

methods are similar which is shown in Figure 5.18, which indicates the proposed 
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method only take no more than 10 iterations, the MSE value reaches 10−4,while it 

takes more than 40 iterations for the fine alignment method to reach the same level 

MSE of the proposed method. 

 

Figure 5.21: MSE of the genuine face images with partial ICP and proposed method. 

5.6 Summary 

The fine alignment method has been well presented in this chapter. Both the 

partially-overlapped problem and scaling effect problem have been solved via the 

fine alignment method. Combining with the scale matrix computation method, the 

proposed method can deal well with the partially-overlapped problem and scaling 

effects problem. The 3D face recognition method has also been thoroughly 

demonstrated in this chapter via the comparison of mean square distances between 

the face images. 
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Two sets of experiments are designed to test the functionality and accuracy of the 

proposed 3D face recognition method. The results of the experiments are shown that 

the proposed 3D face recognition method can be utilized so as to achieve the 

recognition of various face images. Meanwhile, the accuracy of the proposed method 

is keeping the same of the partial ICP method, which can be implemented to achieve 

3D face recognition. 
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CHAPTER 6 CONCLUSION 

A 3D face recognition method based on a modified ICP method is proposed for 

achieving 3D face recognition in this thesis. The proposed method consists of a 

coarse-to-fine alignment and the distance comparison to recognize the probing face 

image with the reference images from database. In the coarse alignment, a feature 

point extraction method is proposed to align the face images into a same coordinates 

system. A modified ICP method is proposed to overcome the partially-overlapped 

problem and scaling effect. 3D face recognition can be achieved by the different 

distance comparison between the two face images. The summary of this thesis is 

given in Section 6.1 and the future work is drawn and listed in Section 6.2. 

6.1 Thesis Summary 

This project aims to recognize the 3D face images. A 3D face database has been built 

up via the DFPP data acquisition system. There are 90 images for 30 people 

contained in this database. Three images corresponding to three different views with 

the same scale are represented one individual. The scales of different individuals may 

be different with one another. 

A coarse-to-fine strategy method is developed to achieve 3D face recognition. The 

scale matrix, rotation matrix and translation matrix are computed by using four 

feature points in order to roughly align the two face images in coarse alignment. The 

two face images are one probing face image and one reference image selected 
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randomly from the database. The four feature points are extracted based on the 

analysis of curvatures. The experiments of the coarse alignment method are carried 

out to evaluate the performance of the coarse alignment. 

A modified ICP method is given in fine alignment. In the database, there are three 

views to describe one face, therefore the disappearances will exist among these three 

face images. Meanwhile, the scaling effects are existed in the face images. The 

partially-overlapped problem can be solved by using a distance threshold 𝐷𝑚𝑚𝑥 

when the closest points are selected. A scale matrix 𝑺 is computed to deal with 

scaling effects problem. The whole procedure of the proposed 3D face recognition 

method is concluded in Chapter 5. A set of experiments are illustrated to verify the 

proposed method. The proposed method can achieve 3D face recognition and the 

accuracy is similar with the partial ICP from the results shown in Section 5.5. 

6.2 Future Work 

The 3D face recognition procedure by using the face database of DFPP based 

acquisition technique is stated in this thesis. However, some issues need to be further 

probed and developed in the future. 

 Firstly, more and more face images will be added into the face database, it is 

required much more memory to store them. It is necessary to save computation 

cost while processing these data. Extracting feature region and only processing 

the feature region from the face data will reduce the computation cost. In the 
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future, a method for feature region extraction can be discussed. 

 Secondly, an automatic feature extraction procedure can be developed. It is 

needed to design a fully auto feature extraction procedure in the coarse 

alignment part. 
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APPENDIX 

Dual Quaternions Method 

Quaternions are four-element vectors, the first three elements can be treated as a 3 × 1 

vector, and the fourth element is a scalar component. A quaternion 𝒒� can be described 

like this: 

 𝒒� =  �

q1
q2
q3
q4

� = �
𝐪
q4�,  (0.1) 

where 𝐪 = [𝑞1, 𝑞2, 𝑞3]𝑇is a 3D vector which is equal to the values of the original 

coordinates, where T indicates the transpose of matrix, a scalar 𝑞4 which is set to 

zero in this thesis based on the experiment. To compute the rotation and translation, 

another interpretation of quaternion is given: 

 𝒒� =  �
sin(𝜃/2)𝐧
cos(𝜃/2) �,   (0.2) 

where 𝜃 is a scalar of rotation angle, 𝒒� is a quaternion, 𝐧 = [𝑛1,𝑛2,𝑛3]𝑇 is a unit 

direction vector which describes the direction by using quaternion representation. This 

interpretation is called Euler Symmetric Parameters[42]. 

The dual number was first considered by the German geometer E. study (1862-1930) 

in the beginning of 20th century.[42] A dual angle was presented by using the idea of 

dual number in his research. The dual angle was defined as: 
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 𝜃� = 𝜃 +  𝜀𝑑,  (0.3) 

Where 𝜃� is a dual angle which represented the position between two lines in 3D space, 

𝑑  is the distance between two lines in 3D space, 𝜃 is the angle between the two lines. 

𝜀 is a parameter which indicates that it is the dual part in the dual angle expression. A 

dual angle has the property: 

 sin(𝜃�) = sin(𝜃 +  𝜀𝑑) = sin(𝜃) + 𝜀𝑑 cos(𝜃),   (0.4) 

 cos(𝜃�) = cos(𝜃 +  𝜀𝑑) = cos(𝜃) − 𝜀𝑑 sin(𝜃).   (0.5) 

Compared with the dual angle, a dual number can be described like: 

 𝑎� = 𝑎 + ε𝑏,   (0.6) 

where 𝑎  and 𝑏  are two real numbers, ε  is a parameter which follows the 

multiplication rule 𝜀2 = 0. 𝑎 is the real part of the dual number 𝑎� and 𝑏 is the dual 

part of 𝑎�. 

Dual numbers have their own properties of addition, subtraction and multiplication: 

 (𝑎 + 𝜀𝑏) ±  (𝑐 + 𝜀𝑑) = (𝑎 + 𝑐) ±  𝜀(𝑏 + 𝑑),  (0.7) 

 (𝑎 + 𝜀𝑏)(𝑐 + 𝜀𝑑) = 𝑎𝑐 + 𝜀(𝑎𝑑 + 𝑏𝑐).   (0.8) 

The product of a dual number 𝑎� and its conjugate 𝑎� is: 
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 𝑎�𝑎� = 𝑎2.   (0.9) 

The modulus of a dual number is: 

 |a�| = a.   (0.10) 

The idea of dual numbers can be extended to dual vectors, dual quaternions, etc.[42] 

Compared with a dual number, a dual number quaternion 𝒒� is described as follows: 

 𝒒� = 𝒒� + ε𝒔�,   (0.11) 

where 𝒒� and 𝒔� are two real quaternions. 𝒒� is the real part of the dual quaternion 𝒒�, 

𝒔� is the dual part of 𝒒�. A dual number quaternion has the same interpretation with 

quaternions: 

 𝒒� =  �

q1�
q2�
q3�
q4�

� = � 𝐪�q4�
�,   (0.12) 

where 𝐪�  is a dual 3D vector which equals to [q1�, q2�, q3�]𝑻 . The only difference 

between a quaternion and a dual quaternion is that every element in the above equation 

is a dual number. A dual quaternion consists of eight elements to represent the 3D 

motion for one object. According to equation (0.1), the dual quaternion has the similar 

relationship with the dual angle 𝜃� and dual vector 𝐧�: 

 𝒒� =  �
sin(𝜃�/2)𝐧�
cos(𝜃�/2)

�,   (0.13) 
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where 𝐧� is the dual vector contains the information about the rotation and translation 

for an object rotated and translated in a 3D space. 𝜃� is a dual angle stores the rotation 

and translation angle. 

A dual vector 𝐧� can be represented as: 

 𝐧� = 𝒏 + ε𝒑 × 𝒏.   (0.14) 

The dual angle 𝜃� can be represented as: 

 𝜃� = 𝜃 + 𝜀𝑑,   (0.15) 

where 𝒏 is a unit vector which is the direction to rotate and translate, 𝜃 is the rotation 

angle and d is the distance of translation along the unit vector 𝒏 passing by point 𝒑. 

Figure 0.1 illustrates the rotation and translation of the dual number quaternion. 

p

n
d

p′ P

 

Figure 0.1: the rotation and translation for point 𝒑. 
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We can place equation (0.14) and (0.15) into equation (0.11), by using the properties of 

the dual number, we can get: 

 sin �𝜃
�

2
� 𝐧� =  sin �𝜃

2
+ 𝜀 𝑑

2
� (𝒏 + ε𝒑 × 𝒏) 

 = 𝐧 sin �𝜃
2
� + 𝜀 𝑑

2
sin �𝜃

2
� 𝒏 + 𝜀 sin �𝜃

2
� (𝒑 × 𝒏).  (0.16) 

 cos(𝜃�/2) = cos(𝜃
2

+ 𝜀 𝑑
2

) = cos �𝜃
2
� + 𝜀 𝑑

2
cos �𝜃

2
�.   (0.17) 

Quaternion 𝒒� in equation (0.11) becomes  

 𝒒� = �
sin �𝜃

2
�𝒏

cos �𝜃
2
�
�.  (0.18) 

The dual part quaternion 𝒔� in equation (0.11) becomes 

 𝒔� = �
𝑑
2

sin �𝜃
2
�𝒏 + sin �𝜃

2
� (𝒑 × 𝒏)

𝑑
2

cos �𝜃
2
�

�.   (0.19) 

From equation (0.18) and (0.19), we can get the constraints: 

 𝒒�𝑻𝒒� = 1,   (0.20) 

 𝒔�𝑻𝒒� = 0.   (0.21) 

Two important 4×4 matrix in quaternions are given: 

 𝐖(𝒒�) = �
𝑞4𝑰 − 𝒌(𝐪) 𝒒

−𝒒𝑻 𝑞4
�,   (0.22) 
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 𝐐(𝒒�) = �
𝑞4𝑰 + 𝒌(𝐪) 𝒒

−𝒒𝑻 𝑞4
�.   (0.23) 

A rotation matrix 𝑹 which rotated by an angle 𝜃 and along the direction of unit 

vector 𝒏 = �𝑛𝑥,𝑛𝑦,𝑛𝑧� can be represented as a 3×3 matrix: 

𝑹 =

 �
cos 𝜃 + 𝑛𝑥2(1 − cos 𝜃) 𝑛𝑥𝑛𝑦(1 − cos 𝜃) − 𝑛𝑧 sin𝜃 𝑛𝑥𝑛𝑧(1 − cos 𝜃) − 𝑛𝑦 sin𝜃

𝑛𝑦𝑛𝑥(1 − cos𝜃) − 𝑛𝑧 sin 𝜃 cos 𝜃 + 𝑛𝑦2(1 − cos 𝜃) 𝑛𝑦𝑛𝑧(1− cos 𝜃) − 𝑛𝑥 sin𝜃
𝑛𝑧𝑛𝑥(1 − cos 𝜃) − 𝑛𝑦 sin 𝜃 𝑛𝑧𝑛𝑦(1 − cos𝜃) − 𝑛𝑥 sin𝜃 cos 𝜃 + 𝑛𝑧2(1 − cos 𝜃)

�.  

  (0.24) 

This matrix can be also written as: 

 𝑹 = [𝑰 cos 𝜃 + (1 − cos 𝜃)𝒏⨂𝒏 + (sin𝜃)𝒏 × 𝒏],   (0.25) 

where 𝑰 is the 3×3 identity matrix, 𝒏⨂𝒏 is the tensor product: 

  𝒏⨂𝒏 = �
𝑛𝑥2 𝑛𝑥𝑛𝑦 𝑛𝑥𝑛𝑧
𝑛𝑥𝑛𝑦 𝑛𝑦2 𝑛𝑦𝑛𝑧
𝑛𝑥𝑛𝑧 𝑛𝑦𝑛𝑧 𝑛𝑧2

�.   (0.26) 

The cross product 𝒏 × 𝒏 is: 

 𝒏 × 𝒏 = �
0 −𝑛𝑧 𝑛𝑦
𝑛𝑧 0 −𝑛𝑥
−𝑛𝑦 𝑛𝑥 0

�.  (0.27) 

From equation (0.25) and combine equation (0.1) and (0.2), we could get: 

 𝑰 cos 𝜃 = (cos2 �𝜃
2
� − sin2 �𝜃

2
�)𝑰 = (𝑞42 − 𝒒𝑻𝒒)𝑰,   (0.28) 
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 (1 − cos 𝜃)𝒏⨂𝒏 = (2 sin2(𝜃
2

))𝒏⨂𝒏 = 2𝒒𝒒𝑻,   (0.29) 

 (sin𝜃)𝒏 × 𝒏 = �2 sin 𝜃
2

cos 𝜃
2
�𝒏 × 𝒏 = 2𝑞4|𝒒|(𝒏 × 𝒏),   (0.30) 

where |𝒒| is the modulus of vector 𝒒. Let’s define a skew- symmetric matrix: 

 𝑲(𝒒) = �
0 −𝑞3 𝑞2
𝑞3 0 −𝑞1
−𝑞2 𝑞1 0

�.   (0.31) 

The new rotation matrix can be written as: 

 𝑹 =  (𝑞42 − 𝒒𝑻𝒒)𝑰 + 2𝒒𝒒𝑻 + 2𝑞4𝑲(𝒒),   (0.32) 

or 

 � 𝑹 𝟎
𝟎𝑻 1� = 𝐖(𝒒�)𝑻𝐐(𝒒�).   (0.33) 

As Figure 0.1 illustrates, an object rotated an angle of 𝜃, translated the distance d in 

the direction of the unit vector 𝒏 and passed by a point p. the translator vector t is: 

 𝒕 = 𝒑 + 𝑑𝒏 − 𝒑′ = 𝒑 + 𝑑𝒏 − 𝑹𝒑 = (𝑰 − 𝑹)𝒑 + 𝑑𝒏.   (0.34) 

In equation (0.25), we have the representation of rotation matrix 𝑹, in the last part of 

equation (0.25), we have 𝒏 × 𝒏 = 𝒌(𝒏) , 𝒏⨂𝒏  is equal to 𝑰 + 𝒌(𝒏)𝒌(𝒏) , and 

equation (0.25) can be written like: 

 𝐑 = [𝑰 cos𝜃 + (1 − cos 𝜃)𝒏⨂𝒏 + (sin𝜃)𝒏 × 𝒏] 

 = 𝐈 + 2 sin2(𝜃
2

)𝒌(𝒏)𝒌(𝒏) + sin 𝜃 𝒌(𝒏).   (0.35) 
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Then we replace 𝑹 in equation (0.34) by using  (0.35), we have: 

 𝒕 = (𝑰 − 𝑹)𝒑 + 𝑑𝒏 = −2 sin2 �𝜃
2
�𝒌(𝒏)𝒌(𝒏)𝒑 − sin 𝜃 𝒌(𝒏)𝒑 + 𝑑𝒏 

= 2 sin2 �𝜃
2
� 𝒏 × (𝒑 × 𝒏) + sin𝜃 (𝒑 × 𝒏) + 𝑑𝒏.   (0.36) 

By using equation (0.18) and (0.19), we have 

 sin2 �𝜃
2
� 𝒏 × (𝒑× 𝒏) = 𝒒� × 𝒔�,   (0.37) 

 sin𝜃 (𝒑 × 𝒏) + 𝑑𝒏 = 2 �1
2

sin𝜃 (𝒑 × 𝒏)� + 𝑑𝒏 = 2 �sin 𝜃
2

cos 𝜃
2

(𝒑 × 𝒏)� + 𝑑𝒏 

 = 2(q4𝐬 − s4𝐪).    (0.38) 

Therefore, place equation (0.37) and (0.38) into the translation vector 𝒕 equation 

(0.36), it can be written as: 

 𝒕 = 2(𝒒� × 𝒔� + q4𝐬 − s4𝒒).   (0.39) 

We can find that  

 𝐖(𝒒�)𝑻𝒔� = �
𝑞4𝑰 − 𝒌(𝒒) −𝒒

𝒒𝑻 𝑞4
� �
𝐬
𝐷4� = ��𝑞4𝑰 − 𝒌(𝒒)�𝐬 − 𝐷4𝒒

0
�.  (0.40) 

Place equation (0.39) into (0.40), we can get 

 𝒕� = �
1
2
𝒕

0
� = 𝐖(𝒒�)𝑻𝒔�.   (0.41) 

After we know the representations of rotation and translation in dual quaternions, we 

can determine the rotation and translation of one object in 3D space. Let 𝒙𝒊 is the 
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coordinate of one object in the 3D space, 𝒚𝒊 is the coordinate of the object after 

rotating by a rotation matrix 𝑹 and translating by a translation matrix 𝒕 in the same 

coordinate system. We have: 

 𝒚𝒊 = 𝒕 + 𝑹𝒙𝒊.   (0.42) 

If we use quaternions to represent the above equation, we have: 

 𝒚𝒊� = 𝐖(𝒒�)𝑻𝒔� + 𝐖(𝒒�)𝑻𝐐(𝒒�)𝒙𝒊� .    (0.43) 

Meanwhile, the direction quaternion of the object is: 

 𝒏𝒊� = 𝐖(𝒒�)𝑻𝐐(𝒒�)𝒏𝒊𝟎� .    (0.44) 

To compute the rotation and translation matrix, we need to minimize the error function 

extracted from equation (0.43) and (0.44), which means we use 𝒒� and 𝒔� to determine 

the minimum error 𝐄: 

 𝐄 = ∑ (𝒚𝒊𝟎� − 𝒚𝒊� )2𝑙
𝑖=1 + ∑ (𝒏𝒊𝟎� − 𝒏𝒊�)2𝑘

𝑖=1 ,   (0.45) 

where k and l are the number of points contains in the object and the direction 

quaternion, 𝒚𝒊𝟎�  and 𝒏𝒊𝟎�  are the computed quaternions, which mean these two 

quaternions are the theoretical values of the motions after the object applying the 

rotation matrix 𝑹 and translation matrix 𝒕. Here we have: 

 �𝒚𝒊𝟎� − 𝒚𝒊� �
2 = 𝒔�𝑻𝒔� + 2𝒔�𝑻 �𝑾(𝒙𝒊� ))−𝑸�𝒚𝒊𝟎���𝒒� − 2𝒒�𝑻𝑸�𝒚𝒊𝟎��𝑻𝑾(𝒙𝒊� )𝒒� + �𝒙𝒊�

𝑻𝒙𝒊� + 𝒚𝒊𝟎�
𝑻𝒚𝒊𝟎� �, 
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  (0.46) 

 (𝒏𝒊𝟎� − 𝒏𝒊�)2 = 2(1 − 𝒒�𝑻𝑸�𝒚𝒊𝟎��
𝑻
𝑾(𝒙𝒊� )𝒒�).  (0.47) 

Rewrite the error function by using the above two equations, we can get: 

 𝐄 = 𝒒�𝑻𝑪𝟏𝒒� + 𝒔�𝑻𝑪𝟐𝒔� + 𝒔�𝑻𝑪𝟑𝒒� + constant,   (0.48) 

where 

 𝑪𝟏 = −2∑ 𝑸�𝒚𝒊𝟎��
𝑻
𝑾(𝒙𝒊� )𝑘

𝒊=1 − 2∑ 𝑸�𝒏𝒊𝟎� �
𝑻
𝑾(𝒏𝒊�)𝑙

𝒊=1 ,   (0.49) 

 𝑪𝟐 = 𝑙𝑰,  (0.50) 

 𝑪𝟑 = 2∑ (𝑾(𝒙𝒊� ) − 𝑸�𝒚𝒊𝟎��)𝑙
𝒊=1 ,   (0.51) 

 constant = 2𝑘 + ∑ (𝒙𝒊�
𝑻𝒙𝒊� + 𝒚𝒊𝟎�

𝑻𝒚𝒊𝟎� )𝑙
𝑖=1 .   (0.52) 

Considered the constraints of 𝒒� and 𝒔�. The error function can be rewritten: 

 𝐄 = 𝒒�𝑻𝑪𝟏𝒒� + 𝒔�𝑻𝑪𝟐𝒔� + 𝒔�𝑻𝑪𝟑𝒒� + constant + 𝜆1(𝒒�𝑻𝒒� − 1) + 𝜆2(𝒔�𝑻𝒒�),  (0.53) 

where 𝜆1 and 𝜆2 are Lagrange multipliers. In order to get the minimum value from 

the error function, we can take the partial derivatives: 

 ∂𝐄
∂𝒒�

= �𝑪𝟏 + 𝑪𝟏𝑻�𝒒� + 𝑪𝟑𝑻𝒔� + 2𝜆1𝒒� + 𝜆2𝒔� = 0,   (0.54) 

 ∂𝐄
∂𝒔�

= �𝑪𝟐 + 𝑪𝟐𝑻�𝒔� + 𝑪𝟑𝒒� + 𝜆2𝒒� = 0.   (0.55) 
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From equation (0.55), we can get: 

 𝒔� = −�𝑪𝟐 + 𝑪𝟐𝑻�
−1

(𝑪𝟑𝒒� + 𝜆2𝒒�).   (0.56) 

To solve 𝜆2, we can multiply 𝒒� in equation (0.55) by considering the constraints of 

quaternions: 

 𝜆2 = −𝒒�𝑻𝑪𝟑𝒒�.   (0.57) 

Because 𝑪𝟑 is a skew matrix, 𝜆2 = 0, 

 𝒔� = −�𝑪𝟐 + 𝑪𝟐𝑻�
−1
𝑪𝟑𝒒�.   (0.58) 

Equation (0.54) becomes: 

 𝑨𝒒� = 𝜆1𝒒�,  (0.59) 

where 𝑨 = 1
2

(𝑪𝟑𝑻�𝑪𝟐 + 𝑪𝟐𝑻�
−1
𝑪𝟑 − 𝑪𝟏 − 𝑪𝟏𝑻). 

Thus 𝒒� is an eigenvector of matrix 𝑨 and 𝜆1 is the eigenvalue corresponding to the 

eigenvector 𝒒�. But matrix 𝑨 has four eigenvectors and we need to decide one of them 

in order to let the error function has the optimal result. We go back to equation (0.54) 

multiply by 𝒒�𝑻: 

 1
2
𝒒�𝑻 ��𝑪𝟏 + 𝑪𝟏𝑻�� 𝒒� = −1

2
𝒒�𝑻𝑪𝟑𝒓� − 𝜆1 = 𝒒�𝑻𝑪𝟏𝒒�.    (0.60) 

Multiply 𝒔�𝑻 to equation (0.55): 
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 1
2
𝒔�𝑻 ��𝑪𝟐 + 𝑪𝟐𝑻�� 𝒔� = −1

2
𝒔�𝑻𝑪𝟑𝒒� = 𝒔�𝑻𝑪𝟐𝒔�.    (0.61) 

Replace 𝒒�𝑻𝑪𝟏𝒒� and 𝒔�𝑻𝑪𝟐𝒔� in the error function, we can get: 

 𝐄 = constant − 𝜆1.   (0.62) 

In order to minimize the error, we need to keep 𝜆1 has the largest value. Because 𝜆1 

equals to one eigenvalue of matrix 𝑨, and matrix 𝑨 has four eigenvalues, here we 

select the largest eigenvalue equals to 𝜆1, and quaternion 𝒒� equals to the eigenvector 

which is corresponding to the largest eigenvalue. 
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