University of Wollongong

Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2009

TrainNet: a novel transport infrastructure for non real-time data delivery

Mohammad Zarafshan Araki University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Zarafshan Araki, Mohammad, TrainNet: a novel transport infrastructure for non real-time data delivery, ME-Res thesis, School of Electricial, Computer and Telecommunications Engineering, University of Wollongong, 2009. http://ro.uow.edu.au/theses/842

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

TrainNet: A Novel Transport Infrastructure for Non Real-Time Data Delivery

A thesis submitted in fulfilment of the requirements for the award of the degree

Master of Engineering (Research)

from

THE UNIVERSITY OF WOLLONGONG

by

Mohammad ZARAFSHAN ARAKI Master of Internet Technology (with Distinction)

> School of Electrical, Computer and Telecommunications Engineering 2009

ii

Abstract

To date, researchers have proposed many vehicular networks in which cars or buses act as a mechanical backhaul for transporting data. For example, a bus can be retrofitted with a computer and wireless card to automatically ferry data to/from rural villages without Internet connectivity. Alternatively, a person carrying a portable storage device can be used to link geographically disparate networks. These examples of challenged networks are characterized by frequent disruptions, long delays, and/or intermittent connectivity.

This thesis proposes TrainNet, a vehicular network that uses trains to transport latency insensitive data. TrainNet augments a railway network by equipping stations and trains with mass storage devices; e.g., a rack of portable hard disks. TrainNet has two applications. First, it provides a low cost, very high bandwidth link that can be used to deliver non real-time data. In particular, cable TV operators can use TrainNet to meet the high bandwidth requirement associated with Video on Demand (VoD) services. Moreover, TrainNet is able to meet this requirement easily because its links are scalable, meaning their capacity can be increased inexpensively due to the continual fall of hard disk price. Secondly, TrainNet provides an alternative, economically viable, broadband solution to rural regions that are reachable via a railway network. Therefore, using TrainNet, rural communities will be able to gain access to bandwidth intensive digital contents such as music, video, television programs, and movies cheaply.

A key problem in TrainNet is resource scheduling. This problem arises because stations compete for the fixed storage capacity on each train. To this end, this thesis is the first to propose three max-min scheduling algorithms, namely LMMF, WGMMF and GMMF, for use in challenged networks. These algorithms arbitrate the hard disk space among competing stations using local traffic information at each station, or those from other stations. To study these algorithms, the Unified Modeling Language (UML) is first used to construct a model of TrainNet, before a simulator is constructed using the DESMO-J framework. The resulting TrainNet simulator is then used to investigate the behavior of said max-min algorithms in scenarios with realistic traffic patterns. Results show that while LMMF is the fairest algorithm, it results in data loss and has the longest mean delay, the lowest average throughput, and the lowest hard disk utilization. Furthermore, Jain's fairness index shows WGMMF to be the least fair algorithm. However, it avoids data loss as is the case with GMMF, and achieves the best performance in terms of mean delay, averaged throughput, and hard disk utilization.

Statement of Originality

This is to certify that the work described in this thesis is entirely my own, except where due reference is made in the text.

No work in this thesis has been submitted for a degree to any other university or institution.

Signed

Mohammad Zarafshan Araki, 2009

Acknowledgments

This thesis would not have possible without the assistance of several people whom I wish to acknowledge. Firstly, my two supervisors, Dr. Kwan-Wu Chin and Dr. Raad Raad for their support and kindness and for giving me this opportunity. In particular, Dr. Kwan-Wu Chin, for recommending this study area and guiding me through difficult times. Secondly, my many learned and academic friends who have provided inspiration, in particular Dr. Jason Hughes from the University Archives, without whose humor and positive outlook, none of this would have been possible. Finally to Jooey for her patience, integrity, and empathy.

Contents

1	Intr	roduction 1		
	1.1	Motiva	ation	4
		1.1.1	Exabyte Traffic	4
		1.1.2	Rural Connectivity	6
	1.2	Thesis	Aims	6
	1.3	Contri	ibutions	7
		1.3.1	Publication	9
	1.4	Thesis	Structure	9
2	Lite	erature	e Review	10
	2.1	Challe	enged Networks	10
		2.1.1	Problems and Issues	12
	2.2	Solutio	ons	14
		2.2.1	General Purpose Communication Paradigms	16
	2.3	Vehicu	ılar Networks	19
		2.3.1	Drive-thru Internet	19
		2.3.2	Taxi Radio Dispatch System	19
		2.3.3	DieselNet	20
		2.3.4	CarTel	20

		2.3.5 KioskNet	21
	2.4	Routing, Congestion, and Security	21
		2.4.1 Routing	21
		2.4.2 Custody and Congestion	24
		2.4.3 Security	25
	2.5	Resource Allocation and Scheduling	25
		2.5.1 RAPID	26
		2.5.2 Scheduling in KioskNet	26
	2.6	Max-Min Fairness	27
		2.6.1 Max-Min Fair Applications	29
	2.7	Conclusion	30
3	Trai	inNet	32
	3.1	System Overview	32
	3.2	Example Applications of TrainNet	34
		3.2.1 Overview of CATV Networks	34
		3.2.2 Distributed VoD System using TrainNet	35
		3.2.3 Broadband Services over Rural WCATV	36
	3.3	TrainNet Model	38
	3.4	Summary	43
4	Ros	ource Scheduling	44
т	nes	ource Scheduling	1-1
	4.1	The Resource Scheduling Problem	44
	4.2	Scheduler	45
	4.3	Max-Min Fair Algorithms	46
		4.3.1 Local Max-Min Fair	46

		4.3.2	Global Max-Min Fair	49
		4.3.3	Weighted Global Max-Min Fair	53
	4.4	Summ	ary	56
5	Sim	ulation	n and Results	57
	5.1	Simula	ation Platform	57
	5.2	Simula	ation Model	58
		5.2.1	TrainNetSim	59
		5.2.2	TrafficGenerator	60
		5.2.3	Station	60
		5.2.4	TrainGenerator	62
		5.2.5	Train	63
		5.2.6	GlobalDispatcher	64
	5.3	Exper	iment Scenarios	66
	5.4	Traffic	Models	67
	5.5	Metric	cs	69
	5.6	Result	js	71
			First Come First Served	71
		5.6.2	Local Max-Min Fair	73
		5.6.3	Global Max-Min Fair	75
		5.6.4	Weighted Global Max-Min Fair	75
		5.6.5	Comparison of All Algorithms	80
		5.6.6	Throughput and Delay	83
	5.7	Conclu	usion	86

Bibliography

89

List of Figures

1.1	A deep space communication scenario demonstrating a scientist sending a software module to a weather station located on the planet Mars [1]	2
1.2	The InterPlaNetary Internet using a wireless backbone. $[2]$	3
1.3	The growth of traffic over core, metro, and access between 2007 and 2012 [3]	5
2.1	A public broadcast network comprising of mobile wireless device [4].	11
2.2	The overlay network approach where the DTN bundle protocol runs over different transport and lower layer protocols [5,6]. The dotted line shows the path in which applications exchange data.	16
2.3	Example of a tree-like protocol stack [7]	18
3.1	TrainNet being used to provide a low cost, very high capacity link to network A and B. POPs are represented by A.1, A.2, A.3, B.4, and B.5.	33
3.2	A typical CATV head-end based on HFC access technology $[8,9]$.	34
3.3	Deployment of a distributed VoD system using TrainNet	36
3.4	Deployment of broadband video services and Internet access over a wireless CATV	37
3.5	TrainNet in association with a distributed VoD system deployed over a large-scale CATV network. The dotted line shows the path through which video files are forwarded from VSP A to CATV head-end X via TrainNet.	39

3.6	TrainNet being used to augment a large-scale CATV network. Here, the global dispatcher is deployed over the Internet. The dotted lines linking station 5 and 6 to the dispatcher illustrates connections established over ADSL links. Moreover, the dotted line going from station 7 to the dispatcher demonstrates a con- nection that is established through the CATV backbone and the ADSL link between station 6 and the dispatcher	41
4.1	An example showing how the LMMF algorithm divides hard-disk $H^{5\to T}$ among the traffic leaving station 5	48
4.2	The dotted line shows the virtual traffic flow going from station i to j. Here, hard disk X and Y corresponds to $H^{i\to T}$ and $H^{T\to j}$ respectively.	49
4.3	An example in which the hard-disk $H^{5\to T}$ is divided between flow $f^{5\to 6}$, $f^{5\to 7}$, and $f^{5\to 8}$ using GMMF.	51
4.4	An example in which $H^{5\to T}$ is divided between the flow $f^{5\to 6}$, $f^{5\to 7}$, and $f^{5\to 8}$	55
5.1	TrainNetSim process lifecycle.	59
5.2	TrafficGenerator process lifecycle.	61
5.3	Station process lifecycle.	61
5.4	TrainGenerator process lifecycle	62
5.5	Train process lifecycle.	63
5.6	GlobalDispatcher process lifecycle	65
5.7	A scenario comprising of four stations, three service providers, three head-ends, five flows, and six hard disks.	66
5.8	Number of requests generated by the two user arrival models based on [10]	69
5.9	Capacity share allocated to each flow when using FCFS. $\ . \ . \ .$	71
5.10	Data loss rate per flow for the FCFS algorithm	72
5.11	Capacity share allocated to each flow when using LMMF. $\ . \ .$.	73
5.12	Data loss rate per flow for the LMMF algorithm	74

5.13	Data loss rate per flow for the GMMF algorithm	76
5.14	Capacity share allocated to each flow when using GMMF. $\ . \ .$	77
5.15	Data loss rate per flow for the WGMMF algorithm. \ldots .	78
5.16	Capacity share allocated to each flow when using WGMMF	79
5.17	Utilization of hard disk $H^{T \to 2}$ for all algorithms	80
5.18	Utilization of hard disk $H^{T \to 3}$ for all algorithms	81
5.19	Utilization of hard disk $H^{T \to 4}$ for all algorithms	82
5.20	Averaged aggregate throughput achieved by all algorithms	84
5.21	Mean aggregate delay achieved by all algorithms	85

List of Tables

2.1	A comparison of challenged and conventional networks $[1, 11, 12]$.	11
5.1	Competitions among virtual flows	67
5.2	Parameters and values for Equation 5.1 [10]. \ldots \ldots	68

List of Abbreviations

AAA	Authentication, Authorization, and Accounting
ADSL	Asymmetric Digital Subscriber Line
ARQ	Automatic Repeat Request
AS	Autonomous System
BGP	Border Gateway Protocol
CATV	Cable Television
DDoS	Distributed Denial of Service
DRR	Deficit Round Robin
DSL	Digital Subscriber Line
DTN	Delay Tolerant Networking
ECN	Explicit Congestion Notification
EIGRP	Enhanced Interior Gateway Routing Protocol
FCSF	First Come First Served
GMMF	Global Max-Min Fair
GPS	Generalized Processor Sharing
GSM	Global System for Mobile Communications
HFC	Hybrid Fiber Co-axial
HIBC	Hierarchical Identity-based Cryptography
HTTP	Hypertext Transfer Protocol
I/O	Input/Output
ICT	Information and Communication Technology
IP	Internet Protocol
IPN	InterPlaNetary Internet
IS-IS	Intermediate System to Intermediate System
ISP	Internet Service Provider

LAN	Local Area Network
LMMF	Local Max-Min Fair
MAP	Mobile Access Point
MANET	Mobile Ad hoc Network
MBF	Mobile Bundle Forwarder
MIM	Multipurpose Internet Mail Extensions
MPLS	Multiprotocol Label Switching
ONU	Optical Network Units
OSPF	Open Shortest Path First
PC	Personal Computer
PCMP	Persistent Connection Management Protocol
PDA	Personal Digital Assistant
PEP	Performance Enhancing Proxy
PKG	Private Key Generator
PKI	Public Key Infrastructure
POP	Point-of-Presence
QoS	Quality of Service
RAID	Redundant Array of Independent Disks
RMI	Remote Method Invocation
RPC	Remote Procedure Call
RTP	Real-time Transport Protocol
RTT	Round-Trip Time
SCTP	Stream Control Transmission Protocol
TCP	Transmission Control Protocol
UDP	User Datagram Protocol
UML	Unified Modeling Language
UUCP	Unix-to-Unix Copy Program
	Omx-to-Omx Copy I Togram
VoD	Video on Demand
VoD VSP	
	Video on Demand
VSP	Video on Demand Video Service Provider

WGMMF	Weighted Global Max-Min Fair
WiFi	Wireless Fidelity

This page is blank