University of Wollongong

Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2006

Reconstructing the Quaternary landscape evolution and climate history of western Flores: an environmental and chronological context for an archaeological site

Kira E. Westaway University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Westaway, Kira E, Reconstructing the Quaternary landscape evolution and climate history of western Flores: an environmental and chronological context for an archaeological site, PhD thesis, School of Earth and Environmental Sciences, University of Wollongong, 2006. http://ro.uow.edu.au/theses/562

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Reconstructing the Quaternary landscape evolution and climate history of western Flores: an environmental and chronological context for an

archaeological site

A thesis submitted in fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

UNIVERSITY OF WOLLONGONG

by

Kira E. Westaway

BSc. (Hons) University of Liverpool MSc. Royal Holloway, University of London MPhil. University of Hong Kong

GeoQUeST Research Centre

School of Earth and Environmental Sciences

2006

CERTIFICATION

I, Kira E. Westaway, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Earth and Environmental Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Kira E. Westaway

7th July 2006

Abstract

The recent discovery of a late-surviving new human species, Homo floresiensis, in western Flores has accentuated our lack of understanding of the history of the genus Homo in Asia and of the environmental challenges that may have influenced these hominins. Western Flores contains а wealth of archaeological and palaeoanthropological material with far-reaching implications for human evolution and for Indonesian, Australian and world archaeology. But the interpretation of this evidence has been hindered by a limited Quaternary context and age control for complex stratigraphies in a region of great geological instability and widespread environmental change.

Liang Bua in western Flores is a key site in the Indonesian archaeological record, providing evidence of cave occupation by *Homo floresiensis* and *Homo sapiens*, and human evolution and dispersal on the eastern side of Wallace's Line. In this study, archaeologically-relevant information has been gleaned from an interdisciplinary approach to the analysis of this site, and has established the timing of key events, such as the first exposure of the cave and the nature of, and influences on, human occupation of the cave. This approach incorporated studies of landscape evolution, river terrace and cave development, sedimentology of cave sediments, palaeoclimate signals in speleothems, and a dating strategy utilising novel approaches to luminescence dating.

The research reported here provides a chronological and environmental backdrop to the human occupation of Liang Bua. A maximum age of cave occupation is shown to correspond to the time of cave exposure (~190 ka), which also represents a minimum age for the human habitation of the area. In addition, this study has established an age range for the occupation of the cave by *Homo floresiensis* (95–11 ka), the time of the most intensive phases of occupation (74–61 and 17–11 ka), the depositional age of the holotype skeleton (36–14 ka), and the age of the oldest human skeletal remains found on Flores (95–74 ka). Through the integration of techniques, a framework for terrace development and landscape evolution has been developed to establish the Quaternary

setting in which the cave was formed and evolved. These techniques have also defined a sequence of geomorphological and sedimentological changes in the cave, enabling the reconstruction of the occupational environment. At least two zones of occupation have been identified: a zone established \sim 74–61 ka, and a later zone established \sim 18 ka.

The environmental backdrop for the arrival and dispersal of humans throughout Indonesia has been established via a palaeoclimatic and palaeoenvironmental analysis of speleothem records. These records contain evidence of multiple wet phases (110–98, 82–65, 49–39 and 17–5 ka) and a flourishing fauna. The timing of these wet phases correlate with evidence for channel and flowstone formation, episodic erosion events, and the most intensive periods of occupation in the cave. There is also evidence for a prolonged period of reduced rainfall (36–17 ka) in an organic-poor environment, the timing of which correlates with evidence of reduced erosion, pooling and less intense occupation. These correlations suggest that the occupational success of *Homo floresiensis* in this area was related to the contemporaneous environmental conditions, which, combined with the evidence for at least two volcanic events (one of which may have forced human migration), establish a link between hominids and their environment.

The results of this research indicate the value of using an interdisciplinary approach to investigate and interpret archaeological sites in Southeast Asia. By providing an environmental and chronological context for important archaeological finds, we can develop a better understanding of the prehistory of *Homo* in Asia.

Table of Contents

i
<i>iii</i>
v
xiii
xxi
xxv
xxvii

СН	APTER ONE: Introduction	_1
1.1	The origin and dispersal of the genus <i>Homo</i> 1.1.1 The Indonesian evidence 1.1.2 The Indonesian predicament	1 1 3
1.2	The selection of sites to address this problem	4
1.3	Aims and objectives	6
1.4	The originality of this study	6
1.5	Outline	7

2.1 Geological significance	10
2.2 Biogeographical significance	11
2.3 Climatic and environmental significance	13
2.4 Archaeological significance	
2.4.1 Worldwide models of human dispersal	18
2.4.2 Human colonisation of Australia	19
2.4.3 Human evolution and dispersal across Indonesia.	20
2.4.4 Indonesian evidence	20

55

SECTION II: Problems associated with the interpretation of the Indonesian record.	22
2.5 Establishing a chronological framework	23
2.6 Lack of Quaternary analysis	24
2.7 Lack of an interdisciplinary approach.2.7.1 West of Wallace's Line	26
2.7.2 East of Wallace's Line	29
SECTION III: Forging links between Quaternary analysis and Archaeology	30
SECTION IV: Assessment of potential Quaternary methodologies	31
2.8 Landscape evolution	31
2.8.1 Tropical karst	32
2.8.2 River terraces	33
2.8.3 Caves and caves sediments	34
2.9 Palaeoclimate indicators in the tropics: speleothems	35
2.9.1 Dating of speleothems	36
2.9.2 Speleothems and tropical palaeoclimates	37
2.9.3 Speleothems and tropical bio-productivity	41
2.10 Luminescence dating of a 'volcanic' province	43
2.10.1 OSL and TL dating of quartz from a volcanic region	44
2.10.2 OSL and TL dating of feldspars from a volcanic region	45
2.10.3 Potential of red emissions from quartz	46
2.10.4 Applications of luminescence to sediments	48
2.10.4a Luminescence dating of river terraces	48
2.10.40 Luminescence dating of cave sediments in	40
2 10 4c. Luminescence dating of archaeologically-relevant	49
issues	50
2.11 SUMMARY	51
CHAPTER THREE: Methodology	53
3.1 Karst development	53
3.2 Alluvial terraces	54

3.3 Cave morphology

3.4 Autogenic and allogenic cave sediments	57
3.4.1 Field analysis	57
3.4.2 Laboratory analysis	58
3.4.2.1 Particle size analysis	58
3.4.2.2 X-ray diffraction	59
3.5 Palaeoclimate analysis of speleothems	59
3.5.1 Field techniques	60
3.5.1.1 Selection of suitable caves	60
3.5.1.2 Selection of suitable speleothems	60
3.5.1.3 Sampling in the cave environment	61
3.5.1.4 Drilling equipment and techniques	62
3.5.1.5 Samples for isotopic tests	63
3.5.2 Laboratory techniques	65
3.5.2.1 Cutting the speleothem	65
3.5.2.2 Sampling the speleothems for TIMS U-series dating	66
3.5.2.3 Tests for isotopic equilibrium	66
3.5.2.4 Physical characteristics and growth rate	67
3.5.2.5 Macro-sampling techniques	68
3.5.2.6 Oxygen and carbon isotope techniques	69
3.5.2.7 Fluorescence spectrophotometry	70
3.5.2.8 Scanning of growth layers	71
3.6 TIMS U-series dating	72
3.7 Luminescence dating	72
3.7 Luminescence dating	72
 3.7 Luminescence dating. 3.7.1 Dose rate determination 3.7.1 1 Estimating field dose rates 	72 73 73
 3.7 Luminescence dating. 3.7.1 Dose rate determination 3.7.1.1 Estimating field dose rates 3.7.1.2 Estimating field water content variability 	72 73 73 74
 3.7 Luminescence dating. 3.7.1 Dose rate determination 3.7.1.1 Estimating field dose rates 3.7.1.2 Estimating field water content variability 3.7.1.3 Laboratory assessment of water content 	72 73 73 74 75
 3.7 Luminescence dating 3.7.1 Dose rate determination 3.7.1.1 Estimating field dose rates 3.7.1.2 Estimating field water content variability 3.7.1.3 Laboratory assessment of water content 3.7.1.4 Estimating the annual dose using high-resolution 	72 73 73 74 75
 3.7 Luminescence dating 3.7.1 Dose rate determination 3.7.1.1 Estimating field dose rates 3.7.1.2 Estimating field water content variability 3.7.1.3 Laboratory assessment of water content 3.7.1.4 Estimating the annual dose using high-resolution 	72 73 73 74 75 75
 3.7 Luminescence dating. 3.7.1 Dose rate determination 3.7.1.1 Estimating field dose rates 3.7.1.2 Estimating field water content variability 3.7.1.3 Laboratory assessment of water content 3.7.1.4 Estimating the annual dose using high-resolution gamma-ray spectrometry 3.7.2 Palaeodose determination 	72 73 73 74 75 75 75 76
 3.7 Luminescence dating	72 73 73 74 75 75 76 76
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76
 3.7 Luminescence dating	72 73 73 74 75 75 75 76 76 76 76 76
 3.7 Luminescence dating	72 73 73 74 75 75 75 76 76 76 76 76 77 77
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76 76 76 77 77 77
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76 76 76 77 77 78 78
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76 76 76 77 77 78 78 78 78
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 78 79
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76 76 76 76 77 77 78 78 78 78 78 79 79
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76 76 76 76 77 77 78 78 78 78 78 79 79 80
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 79 79 80 80
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76 76 76 76 77 77 78 78 78 78 78 79 79 80 80 80
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76 76 76 76 76 76 77 77 78 78 78 78 78 79 9 80 80 81 81
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76 76 76 76 76 76 77 77 78 78 78 78 79 79 80 80 81 81 82
 3.7 Luminescence dating	72 73 73 74 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 78 78 79 79 80 80 81 81 82

97

3.7.2.11 Stimulation of UV, blue and red emissions	82
3.7.2.11a Isothermal stimulation	83
3.7.2.12 The use of a preheat procedure	84
3.7.2.13 The use of a test dose to check for sensitivity change	84
3.7.2.14 Bleaching	85
3.7.2.15 Established OSL, IRSL and TL protocols	85
3.7.2.15a Single-aliquot and single-grain analysis:	
the SAR protocol	85
3.7.2.15b Linearly-modulated OSL (LM-OSL) and	
signal separation	86
3.7.2.15c Measuring the IRSL signal from K-feldspars	
using single-aliquots	87
3.7.2.15d Establishing the extent of anomalous fading	
in K-feldspars	87
3.7.2.16 Estimating the palaeodose using the bleachable red TL	
signal	88
3.7.2.16a The application of DAP to burnt stones	91
3.7.2.16b Extending DAP using a red-sensitive PMT	92
3.7.2.16c Additional validation test of DAP	92
3.7.2.17 Recovering a known dose	93
3.7.2.18 Estimating the palaeodose	93
3.7.2.19 Estimating error	94
3.7.2.20 Criteria for the acceptance of single-aliquots and single-	
grains	95

CHAPTER FOUR: *The application of suitable methodologies to the Indonesian samples*_____

4.1	Red emissions from quartz	.97
	4.1.1 Characterising the red TL signals	99
	4.1.2 Justification for DAP	102
	4.1.2.1 The origin of the bleachable red TL signal	102
	4.1.2.2 Selecting a suitable preheat	104
	4.1.2.3 The use of isothermal measurements	106
	4.1.2.4 The bleachable red TL signal	109
	4.1.2.5 Thermal stability of the red TL signal	113
	4.1.2.6 Determining the extent of sensitivity changes	115
	4.1.2.7 Palaeodose determination using a dual-aliquot protocol	
	(DAP)	119
	4.1.3 Examples and validation of DAP data	120
	4.1.3.1 Recycling ratios	123
	4.1.3.2 Recovering a known dose	124
	4.1.3.3 Comparison with other luminescence techniques: blue TL	
	and OSL single-aliquot	127
	4.1.4 Testing other methodological alternatives: a simple subtraction	128
	4.1.5 Comparison with other red emissions	129
	4.1.6 Further modifications/improvements to DAP	130

4.1.6.1 Single-aliquot analysis of the heat reset signal	130
4.1.6.2 Extending DAP using a red-sensitive PM tube	131
4.1.6.3 DAP applied to burnt stones	132
4.1.7 Summarising the potential of red emissions	132
4.2 UV emissions from quartz	133
4.2.1 OSL single-aliquot analysis of quartz	133
4.2.2 OSL single-grain analysis of quartz	136
4.2.3 LM-OSL single-grain: component analysis	138
4.3 Blue emissions from feldspars	140
4.3.1 IRSL single-aliquot for K-feldspars	140
4.3.2 Fading tests	142
4.4 Summary of red, UV and blue emissions: implications for the dating of the	
Indonesian samples	_143

CHAPTER FIVE: The first exposure of the cave	145
5.1 The former extent and nature of the cave	147
5.1.1 Geological influences	147
5.1.2 Tectonic influences	149
5.1.3 Tropical karstification	151
5.1.4 Cave development	155
5.1.4.1 Present cave systems in the Manggarai karst	155
5.1.4.2 Liang Bua cave system	162
5.1.4.3 The structure of the former cave system	167
5.1.4.4 Establishing a chronology for cave development	167
5.2 Potential mechanisms of exposure	170
5.2.1 Alluvial processes	171
5.2.1.1 The terraces	171
5.2.1.2 Theories of terrace formation and river location	176
5.2.1.3 Establishing a chronology for the terraces	181
5.2.2 The potential for cave collapse	187
5.2.3 Cave collapse and river invasion	188
5.3 Evidence of exposure	188
5.3.1 River invasion	188
5.3.2 The conglomerate deposit	190
5.3.2.1 Establishing a chronology for exposure	191
5.3.2.2 Scenarios for deposition	195
5.3.3 Speleothem precipitation	197
5.4 SUMMARY	199

tim	ng	201
6.1	The nature of the occupational environment	206
	6.1.1 The structure of sedimentation	206
	6.1.1.1 The conglomerate deposit	206
	6.1.1.2 The basal cave sediments	208
	6.1.1.3 The collapse material	210
	6.1.1.4 The oldest intensive occupation level	211
	6.1.1.5 The channel deposits by the east wall	212
	6.1.1.6 The eroded and reworked conglomerate	212
	6.1.1.7 The occupation level containing the skeleton	215
	6.1.1.8 Volcanic sediments	215
	6.1.1.9 The younger occupational levels and modern slopewash	216
	6.1.2 The dominance of water action	217
	6.1.2.1 Modifications by slopewash processes	217
	6.1.2.2 Channel formation	218
	6.1.2.3 Pooling of water	218
	6.1.2.4 Flowstone precipitation	219
6.2	The timing of human occupation	220
	6.2.1 Establishing a chronological framework for the cave deposits	220
	6.2.2 Establishing the validity of the chronological framework	230
	6.2.2.1 U-series dating of speleothems	230
	6.2.2.2 Luminescence dating of sediments: red emissions	231
	6.2.2.3 Luminescence dating of quartz: UV emissions	237
	6.2.2.4 Luminescence dating of feldspars: blue emissions	238
	6.2.3 Interpretation of the main sedimentary units at Liang Bua	238
	6.2.3.1 The conglomerate	240
	6.2.3.2 The basal cave sediments	243
	6.2.3.3 The collapse material	245
	6.2.3.4 The oldest intensive occupation level	245
	6.2.3.5 The channel deposits by the east wall	249
	6.2.3.6 The eroded and reworked conglomerate	249
	6.2.3.7 The occupation level containing the skeleton	250
	6.2.3.8 Volcanic sediments	252
	6.2.3.9 The younger occupation layers and modern slopewash	254
6.3	SUMMARY	256

CHAPTER SEVEN: Human occupation of the cave: Part II – volcanic andclimatic influences257

SECTION I: Volcanic influences	257
7.1 Volcanic sedimentology in the cave	257
7.2 The timing of volcanic events	259
SECTION II [.] Palaeoclimatic and palaeoenvironmental influences	262
7.3 Establishing the isotopic influences in the Indonesian region	263
7.3.1 Present-day isotopic influences	263
7.3.2 Isotopic influences during the LGM	270
7.4 The caves and speleothems chosen for palaeoclimate analysis	270
7.4.1 Liang Padut, Flores	271
7.4.2 Liang Luar, Flores	274
7.4.3 Liang Neki, Flores	275
7.4.4 Gua Gebang, Java	276
7.4.5 Gua Dawung (remnant cave), Java	279
7.5 Multi-proxy records in speleothems from either side of Wallace's Line	
7.5.1 Chronology	281
7.5.2 Growth rate	281
7.5.3 Physical characteristics	288
7.5.4 δ^{18} O record	288
7.5.5 δ^{13} C record	290
7.5.6 Fluorescence wavelength and intensity	290
7.5.7 Tonal intensity of the growth layers	293
7.6 Justification for the use of Indonesian speleothems	293
7.6.1 Hendy's test	293
7.6.2 Modern analogues	296
7.6.3 Contemporaneous speleothem records	297
7.6.4 Co-variance between δ^{18} O and δ^{13} C	298
7.6.5 Ratio between growth rate and isotopic values	301
	202
7.7 1 Derived 1, 50, 20 les	
7.7.1 Period 1: 50–39 ka 7.7.2 Deviced 2: 20, 20 let	304
7.7.2 Period 2: 39–30 Ka 7.7.2 Deriod 2: 26–17 kg	310 211
7.7.5 Period 3: 30–17 Ka	311 215
7.75 Derived 5: 15 - 11 kg	315
7.7.5 Period 5: 15–11 Ka	31/ 210
7.7.0 Period 6. 11–3 ka	518
7.8 Local, regional and global influences	319
7.8.1 Comparison with the sedimentological record from Liang Bua	319
7.8.2 Comparison with regional palaeoclimate records	321
7.8.3 Comparison with global palaeoclimate records	324
7.8.4 Comparison with the insolation record	326
79 SUMMARY	329

CHAPTER EIGHT: Implications for archaeological analysis and	nd
Interpretation	331
	221
8.1 Archaeologically-relevant information gained from this stud	y 331
8.1.1 First exposure of the cave	331
8.1.2 Nature and timing of occupation	333
8.1.3 Volcanic and climatic influences	334
8.2 Intensity of human occupation	
8.3 Implications for the archaeological record	340
8.3.1 Local implications	340
8.3.1.1 Significance of the site	340
8.3.1.2 Occupation of Liang Bua by Homo floresi	ensis 342
8.3.1.3 The survival of Homo floresiensis	343
8.3.1.4 The last Stegodon and Homo floresiensis r	emains: a local
extinction event?	344
8.3.1.5 An overlap between Homo floresiensis an	d modern
humans?	345
8.3.2 Implications for Indonesian archaeology	346
8.3.3 World wide implications: models of human dispers	al 346
8.3.4 Prospects for future research	347
8.4 The case for an interdisciplinary approach	
References	351
Appendices	383
Appendix I: Sedimentological charts used for field analysis	sis 383
Appendix II [.] A worked example of DAP	389
Appendix III: Landsat images of Flores and Java	395
Appendix IV: Plates	397
Appendix V [·] Particle size percentages	405
Appendix VI: Website addresses	
Appendix VII: Faunal list for Liang Bua	409
Appendix VIII: Peer-reviewed publications	411

List of Figures

Figure 1.1:	The Indonesian archipelago	2
Figure 2.1:	Orogeny in the Indonesian archipelago: the collision zone between the	
	Indian and Eurasian plates and southern Banda Arcs and Australia.	11
Figure 2.2:	The extent of continental shelf and ocean basin exposure within Indones	ia
	during the LGM, when the sea levels were approximately 120 m lower	
	than present day	13
Figure 2.3:	The location of the Indo Pacific warm pool (IPWP) and Western Pacific	
	warm pool (WPWP) in Southeast Asia.	14
Figure 2.4:	Schematic representations of the air masses controlling the weather in	
	Asia and their distribution in Southeast Asia	16
Figure 2.5:	A schematic cross section of the main archaeological sites in the Soa	
	Basin, Central Flores, showing the relative position, stratigraphy, finds	
	and age of each site2	29
Figure 2.6:	Limestone dissolution and speleothem development in a cave	
	environment	35
Figure 2.7:	Contemporary climate data for Java and Flores, incorporating rainfall,	
	temperature and δ^{18} O of rainwater	<u>_</u> 38
Figure 2.8:	Basic principles of optically stimulated luminescence dating.	44
Figure 2.9:	Stratigraphy and age of the rock shelter at Nauwalabila, northern	
	Australia	49
Figure 3.1:	Methods for mapping of the profile and plan of the caves in this	
	study	56
Figure 3.2:	The palaeomagnetic drill adapted from a Stihl chainsaw	61
Figure 3.3:	The techniques and equipment used for sampling the speleothems and	
	drilling the cores using a specially designed drilling box	<u>63</u>
Figure 3.4:	The strategy for collecting small calcite samples from one of the	
	hemispherical cores, using a Gemmasta saw	65
Figure 3.5:	Procedures for sampling the calcite core for palaeoclimate analysis.	68
Figure 3.6:	Procedural steps for using the dual-aliquot regenerative-dose protocol	
	(DAP)	<u>.</u> 89

___146

Figure 3.7:	Schematic diagram of total and bleachable TL dose-responses curves for
	Aliquot B90
Figure 3.8:	A schematic of growth curve construction and palaeodose
	determination94
Figure 4.1:	A comparison of the emissions generated by a single-aliquot of irradiated
	quartz98
Figure 4.2:	A photograph of the luminescence emitted by quartz from Flores99
Figure 4.3:	Red TL glow curves for naturally- and laboratory-irradiated aliquots of
	sample WR1, and laboratory-irradiated aliquots of sample LBS7-42100
Figure 4.4:	Pulse-anneal curves for a laboratory-irradiated aliquot of sample
	WR1103
Figure 4.5:	Red TL glow curves for naturally- and laboratory-irradiated aliquots of
	sample WR1105
Figure 4.6:	Comparison of red TL glow curves and red TL isothermal decay curves
	for sample LBS7-40106
Figure 4.7:	Results of bleaching experiments conducted on aliquots of sample LBS7-
	40111
Figure 4.8:	Thermal stability data obtained from isothermal lifetime experiments
	using aliquots of sample WR1114
Figure 4.9:	Investigations into the extent of sensitivity changes associated with the red
	TL signal, using fresh aliquots of sample WR1117
Figure 4.10	TL dose-response curves for aliquots of sample LBS4-32119
Figure 4.11	Examples of DAP data for samples LBS4-40 and LBS4-42121
Figure 4.12	: A photograph of the luminescence emitted by quartz from Java134
Figure 4.13	: The OSL single-grain data for sample WR-14 from a river terrace close to
	Liang Bua137
Figure 4.14	: Optically stimulated luminescence data for the Punung breccia sample
	(Pun-5)139
Figure 4.15	: Optical dating results using feldspars from Liang Bua141
Figure 5.1:	A Landsat image of Western Flores showing the lowland topography and

volcanic relief in the area around Ruteng._____

Figure 5.2:	The geological structure of western Flores, showing the main	
	lithology1	47
Figure 5.3:	The link between geology and landform in western Flores1	48
Figure 5.4:	The rates of tectonic uplift on Sumba Island inferred from a series of	
	raised coral-reef terraces in Cape Laundi, in the north of the island1	50
Figure 5.5:	The density and morphology of karst features in a 1.5 km^2 area within the	ie
	vicinity of Liang Bua1	52
Figure 5.6:	A geomorphological map of the study area, emphasising the location, an	d
	distribution of the main caves15	5
Figure 5.7:	The cave morphology of Liang Padut, showing the profile and plan of the	le
	chamber structure1	57
Figure 5.8:	The morphology of Liang Luar, showing a profile and plan of the passag	ge
	and chamber structure15	8
Figure 5.9:	The morphology of Liang Neki, showing a profile and plan of the passage	ge
	and chamber structure15	9
Figure 5.10	The differing effects of stress on a cave cross-section at certain depths	
	within the karst topography1	50
Figure 5.11	A schematic representation of chamber size versus elevation for the cav	es
	within a 3 km radius of LiangBua16	51
Figure 5.12	: The development of sink and source caves within the Manggarai karst	
	region1	52
Figure 5.13	A profile through Liang Bua Mountain showing the stacked and	
	interconnected nature of Liang Bua cave system16	3
Figure 5.14	A plan of Liang Bua16	4
Figure 5.15	Profile of Liang Bua16	5
Figure 5.16	A reconstruction of the extent of the former cave systems in the Liang	
	Bua cave system based on the present morphology and sedimentology o	f
	the caves and remnant cave structures1	68
Figure 5.17	: An estimated chronology for the stages of cave development in the Wae	;
	Racang valley1	70
Figure 5.18	The Wae Pecsi fluvial system from Ruteng to Reo1	71

Figure 5.19	A geomorphological map of the topography within the vicinity of Liang
	Bua, concentrating on the location and extent of the strath and alluvial
	terraces173
Figure 5.20	Profile of the Wae Racang valley from Golo Liang Bua to Golokoe
	village, showing the size and distribution of strath and alluvial
	terraces174
Figure 5.21	A profile of the Wae Racang valley (facing down river) from Golo
	Tendarukeng to Golo Wari, showing the size and distribution of alluvial
	terraces175
Figure 5.22	The estimated location of the Wae Racang during alluvial downcutting of
	the valley, based on the sedimentology and structure of the strath and
	alluvial terraces177
Figure 5.23	: Isothermal TL decay and dose-response curves for Aliquots A and B of
	terrace samples WR-1 and WR-13180
Figure 5.24	Estimated downcutting rates for the Wae Racang valley, and the relative
	elevation of the river throughout its formation185
Figure 5.25	The estimated elevation of the valley floor within the Wae Racang valley,
	the estimated chronology for the stages of cave development and the
	inferred rate of uplift from coral terraces on Sumba Island186
Figure 5.26	: Stratigraphy of the conglomerate cliff, showing the stratigraphic relations
	of the basal, middle and upper conglomerate layers to the flowstone
	capping189
Figure 5.27	: Isothermal TL decay and dose-response curves for Aliquots A and B of
	conglomerate sample LBC-36 and LBC-37193
Figure 5.28	A schematic of the geomorphological events that occurred within the Wae
	Racang valley before and after the exposure of Liang Bua198
Figure 6.1:	Stratigraphic section and sedimentary log of the Sector I excavation at
	Liang Bua 202
Figure 6.2:	Stratigraphic section and sedimentary log of the Sector III excavation at
	Liang Bua. 203
Figure 6.3:	Stratigraphic section and sedimentary log of the Sector IV excavation at
	Liang Bua. 204

Figure 6.4:	Stratigraphic section and sedimentary log of the combined Sector VII/XI
	excavations at Liang Bua205
Figure 6.5:	The nine, main sedimentary units in Liang Bua cave based on the
	sedimentary characteristics of Sectors I, III, IV, and VII/XI207
Figure 6.6:	Particle size analysis of the Liang Bua sediments showing examples of the
	coarser sediments and finer sediments209
Figure 6.7:	The sedimentary structure of the remnant in situ conglomerate deposit,
	from the conglomerate cliff to the stalagmite mound214
Figure 6.8:	The location of the samples collected for luminescence, U-series, C^{14} and
	ESR/U-series combined dating techniques. 221
Figure 6.9:	Isothermal TL decay and dose-response curves for Aliquots A and B of
	cave sediment samples LBS4-30 and LBS4-28229
Figure 6.10	A schematic of the composite stratigraphy in Liang Bua, showing the red
	TL ages obtained from the bleachable signal and the ages derived from
	alternative dating techniques232
Figure 6.11	Red TL dating results compared with the results of independent dating
	techniques233
Figure 6.12	A comparison of luminescence dating methods with independent dating
	techniques, in sites in the Southern Mountains of Java234
Figure 6.13	A comparison of the results produced by the two luminescence
	techniques237
Figure 6.14	A schematic representation of the geomorphic evolution of Liang Bua at
	~190 ka241
Figure 6.15	A schematic representation of the geomorphic evolution of Liang Bua at
	~130 ka242
Figure 6.16	A schematic representation of the geomorphic evolution of Liang Bua at
	~100 ka244
Figure 6.17	A schematic representation of the geomorphic evolution of Liang Bua at
	~70 ka246
Figure 6.18	A schematic representation of the geomorphic evolution of Liang Bua at
	~50 ka248
Figure 6.19	A schematic representation of the geomorphic evolution of Liang Bua at
	~18 ka251

Figure 6.20	: A schematic representation of the geomorphic evolution of Liang Bua at
	~1-12 ka253
Figure 6.21	: A schematic representation of the geomorphic evolution of Liang Bua at
	<11 ka255
Figure 7.1:	Using the heat-reset red TL signal from the Indonesian samples to identify
	past heating episodes that may be related to volcanic eruptions260
Figure 7.2:	The spatial distribution of rainfall within Indonesia264
Figure 7.3:	The spatial variation in the stable-isotope composition of rainwater
	resulting from three main effects: latitude, temperature and amount of
	rainfall265
Figure 7.4:	The relationship between the amount of rainfall, temperature and the $\delta^{18}O$
	of rainwater for Jakarta and Jayapura stations266
Figure 7.5:	An example of the temperature effect on the global distribution of $\delta^{18}O$ in
	modern rainwater. 267
Figure 7.6:	The relationship between the amount of rainfall and the $\delta^{18}O$ of rainwater
	for the Jakarta station269
Figure 7.7:	Details of the six speleothems chosen for palaeoclimate analysis from
	Flores and Java273
Figure 7.8:	Profile and plan of Gua Gebang cave, in the Gunung Sewu province of
	eastern Java278
Figure 7.9:	The location of Dawung remnant cave and the position and stratigraphic
	context of flowstone sample SPJ11280
Figure 7.10	: The rate of calcite precipitation for the six speleothems analysed,
	according to the results of the U-series chronology285
Figure 7.11	: Composite δ^{18} O record from 118 to 5 for the six speleothem records from
-	Flores and Java289
Figure 7.12	: Composite δ^{13} C record from 118 to 5 for the six speleothem records from
8	Flores and Java. 291
Figure 7.13	: Palaeoenvironmental analysis of sample SPJ3 using two different
8	proxies. 292
Figure 7.14	Palaeoenvironmental analysis of sample SPI3 using the tonal intensity of
	the growth layers.

Figure 7.16: Contemporaneous records from Flores and Java. Figure 7.17: The flore state of the s	_298
Figure 7.17: Test for co-variance between the carbon and oxygen isotopes for the	
Indonesian samples	_299
Figure 7.18: Comparison of the relationship and strength of co-variance against δ^1	⁸ O
values for the speleothem samples	_300
Figure 7.19: Comparison of growth rates with the range of isotopic variation for a	l six
speleothem samples analysed	302
Figure 7.20: Correlating between the multi-proxy data for stalagmite SPJ3 (Java),	from
47 to 5 ka	_305
Figure 7.21: Growth rates versus δ^{18} O values for samples SPJ3 and SP15	<u>.</u> 306
Figure 7.22: The δ^{13} C record from SPJ3 compared with the estimated rainfall reco	rd
for Java	_307
Figure 7.23: A schematic of the proposed expansion and contraction of the OMT a	nd
the shift in zone of convergence during a 47 ka period, as inferred from	n
the δ^{18} O variability in the speleothem records	_314
Figure 7.24: The composite δ^{18} O record from 118 ton 5 ka compared with the time	ng
of geomorphological events in Liang Bua.	_320
Figure 7.25: δ^{18} O and δ^{13} C isotope variations in speleothems from Java and Flores	
compared with palaeoclimate records from the region.	322
Figure 7.26: δ^{18} O and δ^{13} C isotope variations in speleothems from Java and Flores	
compared with global palaeoclimate records.	325
Figure 7.27: Composite δ^{18} O isotope variations in speleothems from Java and Flor	es
compared with global insolation patterns	327
	0/
Figure 8.1: Summary of the archaeologically-relevant information gained from us	ing
an interdisciplinary approach to the analysis of Liang Bua evidence.	332
Figure 8.2: The intensity of occupation for the nine, main sedimentary units deriv	ed
from the stone tool counts	_336
Figure 8.3: The intensity of occupation for the nine, main sedimentary units deriv	ed
from the bone count	_337

Figure 8.4:	The intensity of occupation for the nine, main sedimentary units compared	d
	with the events in the cave, the environment and climate outside the cave,	
	and the timing of volcanic events339	
Figure 8.5:	The location of karst areas for potential interdisciplinary research within	

Southeast Asia.	3	348
Southeast / Isla.		70

List of Tables

Table 2.1:	The extent of tropical cooling during the LGM according to different	
	proxies for palaeotemperature change1	7
Table 2.2:	The theories behind the two most popular schools of thought regarding	3
	human dispersal18	3
Table 2.3:	Selected archaeological sites in Australia with occupation ages ranging	g
	from 60 to 40ka1	9
Table 2.4:	Selected examples of interdisciplinary approaches that have aided the	
	archaeological interpretations of important sites worldwide and	
	specifically in Southeast Asia1	9
Table 2.5:	Selected U-series dating applications of speleothem records3	6
Table 2.6:	Examples of speleothem records as proxies for palaeoclimate	
	conditions3	9
Table 2.7:	The isotopic characteristics of modern rainwater in Flores and	
	Java4)
Table 2.8:	Strategies to avoid tropical speleothem records that have been affected	l
	by kinetic effects4	1
Table 2.9:	Some suggested solutions to deal with the problem of anomalous	
	fading of blue emissions from feldspars4	5
Table 2.10	Examples of investigations into the red TL properties of volcanic	
	quartz4	7
Table 2.11	: Selected contributions of OSL dating to archaeologically-relevant	
	issues5	1
Table 3.1:	Some characteristic landforms found in tropical karst regions54	1
Table 3.2:	Sedimentary evidence for channel or overbank deposits within	
	terraces55	;
Table 3.3:	Speleogenetic and karst hydrological phases of cave development5	7
Table 3.4:	Characteristics of suitable and unsuitable caves for palaeoclimat	e
	analysis60)
Table 3.5:	Characteristics of stalagmite deposits that indicate their suitability for	
	palaeoclimate analysis6	1

Table 3.6: Isotopic tests applied to the speleothems sampled from the four cave
locations in Flores and Java67
Table 3.7: The integration periods used for quartz and K-feldspars measured by
IRSL, OSL and TL techniques94
Table 4.1: A summary of the dose recovery experiments implemented to identify
suitable measurement conditions for DAP108
Table 4.2: Recycling ratios, thermal transfer percentages and D_0 values for the
unbleachable and bleachable red TL signals from selected Indonesian
samples123
Table 4.3: A summary of the dose recovery experiments using the red emissions
from quartz as a means of justifying the procedures and measurements
conditions used within DAP125
Table 4.4: Preliminary DAP results using the new red sensitive PM tube on
samples with typically dim red emissions from Java131
Table 4.5: A summary of the results using DAP with the more sensitive red PM
tube for a selection of Indonesian samples132
Table 4.6: A summary of the dose recovery experiments used to identify suitable
measurement conditions for analysing the UV signal from single-
aliquots of samples from Java135
Table 4.7: The results of the components analysis on natural LM-OSL signals
from sample Pun-5140
Table 4.8: The results of published components analysis and their resulting
photoionisation cross-sections140
Table 4.9: The results of the LM-OSL analysis of the Javanese samples. 140
Table 5.1: A comparison of the karst landforms found in two tropical karst areas
in Flores and Java151
Table 5.2: A description of the caves, and the five main cave systems within the
vicinity of Liang Bua154
Table 5.3: The features of the two predominant cave forms in the Manggarai
karst region161

Table 5.4:	The five strath and alluvial terraces of the Wae Racang valley within	n
	the vicinity of Liang Bua1	72
Table 5.5:	Red TL dating of sediments at Liang Bua, including dose rate data,	
	equivalent doses, and optical ages	178
Table 5.6:	OSL single-grain results for a selection of the terrace samples from	
	Liang Bua valley1	83
Table 5.7:	The sedimentary characteristics of the three layers comprising the	
	conglomerate deposit at the rear of Liang Bua1	90
Table 5.8:	Uranium-series dating of flowstones in Liang Bua, including ages an	nd
	supporting data1	92
Table 5.9:	Two alternative scenarios for the geomorphological evolution and	
	early archaeological record of Liang Bua	196
Table 6.1:	Particle size analysis of selected layers within the Liang Bua	
	stratigraphy	208
Table 6.2:	X-Ray diffraction analysis of the composition of selected layers with	hin
	the Liang Bua stratigraphy2	210
Table 6.3:	Red TL dating of cave sediments at Liang Bua, including dose rate	
	data, equivalent doses, and TL ages	224
Table 6.4:	Optical dating of sediments at Liang Bua, including dose rate data,	
	equivalent doses, and optical ages2	26
Table 6.5:	Uranium-series dating of flowstones from Liang Bua, including age	S
	and supporting data	227
Table 6.6:	Independent dating techniques applied to charcoal and teeth from	
	Liang Bua, including ages and supporting data	228
Table 6.7:	A chronology for the main sedimentary units in the cave	239
Table 6.8:	Average sedimentation rates for the sectors in Liang Bua using a	
	combination of red TL dating, ¹⁴ C, U-series and ESR/U-series	
	combined	239
Table 6.9:	The average sedimentation rates for each of the nine main sedimentation	ary
	units.	239

Table 7.1:	X-Ray diffraction analysis of the volcanic layers that comprise the	
	volcanic sedimentary units within the Liang Bua stratigraphy	258
Table 7.2:	Maximum log likelihoods for component populations	261
Table 7.3 :	Temperature and humidity measurements for the caves utilised in t	the
	palaeoclimate analysis	_271
Table 7.4:	U-series dating of speleothem from Flores and Java, including age	S
	and supporting data.	_282
Table 7.5:	An assessment of the colour, porosity and transparency of each of	the
	speleothem samples.	_286
Table 7.6:	An analysis of modern analogues of past isotope variability, using	drip
	water and modern calcite sampled from Liang Padut and Gua	
	Gebang	_297
Table 7.7:	The results of the five tests for isotopic equilibrium for all the	
	speleothem samples analysed	_303
Table 7.8:	Trends in the proxy data sets for all of the speleothem records	
	combined	_304
Table 7.9:	Interpretation of multi-proxy evidence for sample SPJ3	_ 309
Table 7.10	: Summary of the inferred climatic and environmental changes	
	inferred from the palaeoclimate and palaeoenvironmental analysis	of
	the speleothem samples	_329

List of Abbreviations and Symbols

Luminescence	
TL	Thermoluminescence
OSL	Optically stimulated luminescence
PMT	Photomultiplier tube
SA	Single-aliquot
SAR	Single-aliquot regeneration
SARA	Single-aliquot regeneration and additive dose
DAP	Dual-aliquot protocol
SG	Single-grain
CW-OSL	Continuous-wave optically stimulated luminescence
LM-OSL	Linearly-modulated optically stimulated luminescence
UV	Ultra-violet (less than 380 nm wavelength)
IR	Infrared
IRSL	Infrared stimulated luminescence
Gy	Grays (unit of absorbed dose)
nm	Nanometers (unit of measurement for wavelengths of light)
eV	Electron-volt (1 eV = $1.602 \times 10^{-19} \text{ J}$)
mW	Milli-Watt (unit for measurement of power: $1000 \text{ mW} = 1 \text{ W} = 1$
	joule per second)
exp	Exponential
Lo	Initial sensitivity corrected luminescence measurement
L _n	Sensitivity corrected luminescence values
In	A point where the initial sensitivity corrected luminescence
	divided by the subsequent measurements (L_p/L_0) is equal to -1.
D_0	A curve fitting parameter that describes the characteristic
-	saturation dose $(\frac{2}{3})$ saturation)
I _{max}	The saturation TL intensity
S	Escape frequency factor
S	Seconds
kc	Thousand counts
kc/s	Thousand counts per second
Ε	Trap depth
Κ	Absolute temperature using the Kelvin scale
k	Boltzmann's constant $(1.380658 \times 10^{-23} \text{ J/K})$
±	Plus and minus an error margin
b	Detrapping probability
σ	Photoionisation cross-section
∞	Infinity (used when one side of the distribution cannot be
	statistically determined)
τ	Lifetime of an electron in a trap
a.u.	Arbitrary units
σ_{OD}	Over-dispersion
L	Maximum log likelihood
BIC	Bayes Information Criterion
	-

Quaternary	
ka	Thousand years $(1 \text{ ka} = 1000 \text{ years})$
Ma	Million years (1 Ma = $1,000,000$ years)
LGM	Last Glacial Maximum
MIS	Marine isotope stage
μm	Microns (unit of measurement for grain sizes)
Ø	Phi (unit of measurement for grain sizes)
Palaeoclimate	
SST	Sea surface temperature
IPWP	Indo-Pacific warm pool
WPWP	Western-Pacific warm pool
ITCZ	Inter-tropical convergence zone
TWT	Trade wind trough
CMT	Continental monsoon trough
OMT	Ocean monsoon trough
ENSO	El-Ninó southern oscillation
CLIMAP	Climate long-range investigation, mappings, and prediction
	project
PAGES	Past global change
δ	Delta – used to describe the ratio between stable isotopes e.g., ${}^{18}O/{}^{16}O$ and ${}^{13}C/{}^{12}C$
%0	Parts per thousand

Acknowledgements

This study would not have been possible without the advice and assistance of several organisations and many individuals. I am very grateful to the following organisations: the University of Wollongong (for a University Postgraduate scholarship and Tuition Fees Waiver scholarship) the Australian Research Council (for fieldwork assistance through 'Astride the Wallace Line' project) ARKENAS (for continued support, advice and assistance in the field), the Geological Survey of Indonesia (for valuable advice regarding fieldwork and stratigraphic interpretation) the University of Queensland (for processing the U-series samples) the Australian National University Research School of Earth Sciences (for stable isotope analysis) and the University of Newcastle (for fluorescence spectrophotometry).

It is a pleasure to thank the following individuals: Dr Jian-xin Zhao (for U-series analysis, advice and continual enthusiasm), Dr. Mike Gagan and Heather Gagan (for stable isotope analysis, valuable machine time, expert advice and immense support) Russell Drysdale (for palaeoenvironmental analyses and valuable speleothem knowledge), Dr. Paul Carr and David Carrie (for XRD analysis and processing), Brian Jones and Adam Switzer (for particle size analysis), Alan Chivas and David Wheeler (for stable isotope analysis and constructive comments), Thomas Sutikna, Wahyu Saptomo, Jatmiko, Rokus Awe Due, Wasisto, Gupi and Tip Lancaster (for tireless field assistance and support while in Indonesia), the Luminescence group at the University of Wollongong especially José Abrantes, Hiro Yoshida and Zenobia Jacobs (for luminescence discussions, processing, analysis and support), Helen Morgan Harris (for editorial assistance) and the members of Wollongong dance club (for maintaining a level of sanity). I would like to express my gratitude to Professor 'Bert' Roberts for creating this unbelievable opportunity, for continual guidance, support and supervision above and beyond the role of a supervisor, and to Professor Mike Morwood for providing, inspiring, encouraging this research and for taking a chance on a 'feisty' dive instructor from Thailand. Finally, I would like express my deepest appreciation to Mrs Pamela Westaway and Lee Westaway for making this long-held dream become a reality, and for their unwavering support and encouragement, without which there is no doubt that I could have completed (or even started) this journey.

This research is dedicated to Richard Charles Westaway, who believed in making every day count, and who is still an inspiration to all of his family.