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Abstract 

 

ABSTRACT 
 

The commercially available lithium-ion cells, which are the most advanced among the 

rechargeable battery systems available so far, employ polycrystalline microsized 

powder as the electrode materials, which functions as the Li-ion insertion hosts. With 

the advancement of nanotechnology, there is an interest in the replacement of 

conventional materials by nanostructured materials. The use of nanoparticles in 

composite electrodes for Li-ion batteries may have considerable kinetic advantages due 

to the reduction of the diffusion length for lithium-ion insertion into the active mass, 

and also because of the reduction of the overall charge transfer resistance of the 

electrodes. In this doctoral work, several nanostructured materials were examined and 

characterized for possible application as electrode materials in Li-ion rechargeable 

batteries. Among the anode candidates studied were free-standing single-walled carbon 

nanotube (SWCNT) paper, lead oxide (PbO) and lead oxide-carbon (PbO-C) 

nanocomposite, and carbon-coated silicon (Si-C) nanocomposite materials. Meanwhile, 

several cathode candidates were also studied: nanostructured vanadium oxide (V2O5), 

lithium trivanadate (LiV3O8) nanoparticles, and lithium manganese oxide (LiMn2O4) 

thin film electrode. 

 

Free-standing SWCNT paper electrodes have been synthesized by a simple filtration 

method via positive pressure. The free-standing electrode was produced without any 

binder or metal substrate, which reduced the weight significantly. The free-standing 

SWCNT paper electrodes were also flexible and had good electrical conductivity. With 

the addition of both carbon black and nanosized Si particles, the electrical conductivity 

and specific capacity of the free-standing SWCNT paper electrode were greatly 

enhanced, so that they retained a capacity of 400 mAh g-1 beyond 100 cycles. A new 

approach has been used to prepare nanostructured PbO and PbO-C composites via the 

spray pyrolysis technique. The prepared powders consist of fine nanocrystalline PbO 

homogeneously distributed within an amorphous carbon matrix with highly developed 

surface area. The combination of spray technology and carbon addition increased the 

specific surface area (above 6 m2 g-1) and the conductivity of PbO, and also improved 

 xiii



Abstract 

 xiv

the specific capacity, with a reversible capacity above 100 mAh g-1 retained beyond 50 

cycles. An effective, inexpensive, and industrially oriented approach was applied to 

produce carbon-coated Si nanocomposites. Carbon-coated Si nanocomposites spray-

pyrolyzed in air at 400 oC showed the best cycling performance, retaining a specific 

capacity of 1120 mAh g-1 beyond 100 cycles, with a capacity fading of less than 0.4 % 

per cycle. The beneficial effect of the carbon-coating in enhancing the dimensional 

stability of the Si nanoparticles appears to be the main reason for this markedly 

improved electrochemical performance. 

 

One-dimensional (1D) nanostructures of V2O5 have been successfully synthesized via a 

precipitation process followed by heating in vacuum at 300 oC. The increase in 

crystallinity and higher yield of one-dimensional nanostructured oxides contributed 

significantly to the improved capacity and enhanced cycle life. V2O5 nanoparticles were 

also synthesized via the flame spray pyrolysis (FSP) process in air. They showed an 

improved cycle life when the cut-off potential for discharging was increased from 1.5 V 

to 2.5 V. The significant capacity loss when discharging to 1.5 V is possibly related to 

the dissolution of vanadium active mass and the structural changes upon cycling in the 

larger potential span. The flame spray pyrolyzed V2O5 nanoparticles show excellent 

cyclability when cycled between 2.5 V and 4.0 V vs. Li/Li+, retaining a discharge 

capacity of 120 mAh g-1 beyond 100 cycles at a cycling rate of 100 mA g-1. LiV3O8 

nanoparticles (~24 nm in size) have been synthesized by FSP for the first time. The as-

synthesized LiV3O8 nanoparticles proved to be a promising cathode material for lithium 

rechargeable batteries, retaining a specific discharge capacity of 180 mAh g-1 beyond 50 

cycles. A series of LiMn2O4 thin films on either Si (100) or stainless steel substrate were 

successfully prepared via pulsed laser deposition (PLD). The as-deposited LiMn2O4 thin 

films on stainless steel substrate are highly lithium- and oxygen-deficient, as confirmed 

by ERDA/RBS and Raman analysis. Lithium and oxygen content increased when the 

pulse rate was increased, leading to thicker films. However, the LiMn2O4 thin film with 

the lowest deposition pulse rate (or thinnest film) exhibited the best electrochemical 

performance, retaining a charge capacity of 48 μAh cm-2 μm-1 beyond 100 cycles. 
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NOMENCLATURE 

 

• List of Symbols 

Symbol Name Unit 

ai Activity of species i mol dm-3 

C Concentration M 

C-rate Rate of charge or current density mA g-1 or μA cm-2 

CC Charge capacity Ah kg-1 or mAh g-1 

CD Discharge capacity Ah kg-1 or mAh g-1 

Cdl Double-layer capacitance F m-2 

DP Average crystal size nm 

d Distance between atomic layers in a 

crystal 

Å or nm 

dt Tube diameter nm 

dt-s Target-substrate distance cm 

E Potential of half-reactions V or mV 

Edc DC potential V or mV 

Ef Final potential V or mV 

Ei Initial potential V or mV 

Es Switching potential V or mV 

E0 Standard electrode potential V or mV 

E0,(-) Negative electrode potential V or mV 

E0,(+) Positive electrode potential V or mV 

ΔE0, U0 Cell potential V or mV 

f Frequency Hz  

ΔG0 Standard Gibbs free energy J mol-1 

I Current A or mA 

K Shape factor of the average crystallite (dimensionless) 
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Nomenclature 

• List of Symbols (con’t) 

Symbol Name Unit 

L Crystal size nm 

Mp Mass of the target atom kg or g 

Mr Mass of the incident ion kg or g 

m, mi Mass of species i kg or g 

N0 Number of pulses (dimensionless) 

n Number of electrons exchanged or integer (dimensionless) 

Pd Downstream pressure bar 

PO2 Oxygen background pressure mbar 

Pu Upstream pressure bar 

Pv Power density W dm-3 

p Specific power W kg-1 

Q Solution flow rate mL min-1 

Q Capacity Ah or mAh 

Qirrev Irreversible capacity loss % 

qth Theoretical specific charge capacity Ah kg-1 or mAh g-1 

Rn Reversible capacity at cycle n Ah kg-1 or mAh g-1 

Rct Charge-transfer resistance Ω  

Q Capacity Ah or mAh 

Qirrev Irreversible capacity loss % 

qth Theoretical specific charge capacity Ah kg-1 or mAh g-1 

Rn Reversible capacity at cycle n Ah kg-1 or mAh g-1 

Rct Charge-transfer resistance Ω  

SBET Specific surface area m2 g-1 

T Temperature K or oC 

Ts Substrate temperature K or oC 

t Time h 

v Scan rate mV s-1 

vi Stoichiometric coefficients of species i (dimensionless) 

WV.th Theoretical energy density Wh dm-3 

wth Theoretical specific energy Wh kg-1 

Δx Amount of guest species mol 
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Nomenclature 

• List of Symbols (con’t) 

Symbol Name Unit 

β Full width at half maximum in radians radians 

ωRBM RBM frequency cm-1 

λ Wavelength of the incident X-ray beam nm 

φ Laser fluence J cm-2 

θ Angle of incidence º or degrees 

σ Electrical conductivity S cm-1 

τ Pulse width ns 

 

• List of Fundamental Constants 

Quantity Symbol Value Power of Ten Unit 

Avogadro constant NA 6.022 1023 mol-1 

Boltzmann constant k 1.381 10-23 J K-1 

Elementary charge e 1.602 10-19 C 

Faraday constant F = NA × e 9.6487 104 C mol-1 

Gas constant R = NA × k 8.319 100 J K-1 mol-1 

 

• List of Conversion Factors 

Value Equivalence 

1 eV 1.602 × 10-19 J 

86.5 kJ mol-1 

8066 cm-1 

1 cm-1 1.986 × 10-23 J 

1 μm 10-6 m 

1 nm 10-9 m 

1 Å 10-10 m 
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Nomenclature 

• List of Abbreviations 

Abbreviation Meaning 

AFM Atomic force microscopy 

a.u. Arbitrary unit 

BET Brunauer Emmett Teller 

CB Carbon black 

CCCC Computer controlled cell capture 

CNT Carbon nanotube 

CV Cyclic voltammetry 

CVD Chemical vapor deposition 

DC Disordered carbon 

dc Dynamic current 

DEG Diethylene glycol 

DMC Dimethyl carbonate 

DWCNT Double-walled carbon nanotube 

EC Ethylene carbonate 

EDS Energy dispersive spectroscopy 

EIS Electrochemical impedance spectroscopy 

ERDA Elastic recoil detection analysis 

ETH Swiss Federal Institute of Technology 

EV Electric vehicle 

FE-SEM Field-emission scanning electron microscopy  

FSP Flame spray pyrolysis 

FWHM Full width at half maximum 

hcp Hexagonal-close-packed 

HEV Hybrid electric vehicle 

HR-TEM High-resolution transmission electron microscopy 

IPRI Intelligent Polymer Research Institute 

ISEM Institute for Superconducting and Electronic Materials 

JCPDS Joint committee on powder diffraction standards 

LTB Lithium tert-butoxide 

MWCNT Multi-walled carbon nanotube 

Ni-Cd Nickel-cadmium 
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• List of Abbreviations (con’t) 

Abbreviation Meaning 

Ni-MH Nickel-metal hydride 

NMP 1-methyl-2-pyrrolidinone 

NMR Nuclear magnetic resonance 

NNI National nanotechnology initiative 

NRA Nuclear reaction analysis 

OCP Open circuit potential 

OEM Original equipment manufacturer 

PC Propylene carbonate 

PLD Pulsed laser deposition 

PSI Paul Scherrer Institute 

PSPD Position sensitive photo-detector 

PVDF Polyvinylidene fluoride 

PZT Piezo-electric 

RBM Radial breathing mode 

RBS Rutherford backscattering spectrometry 

R & D Research and development 

rms Root mean square  

SAEDP Selected area electron diffraction pattern 

SEI Solid-electrolyte interphase 

SEM Scanning electron microscopy 

SEM Scanning electron microscopy 

SHE Standard hydrogen electrode 

SS Stainless steel 

SWCNT Single-walled carbon nanotube 

TEM Transmission electron microscopy 

TGA Thermogravimetric analysis 

THF Tetrahydrofuran 

TMO Transition metal oxide 

UV Ultra-violet 

XRD X-ray diffraction 
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