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Abstract 

 

This work presents a fine microstructure and local misorientation study of various oxide phases in 

the tertiary oxide scale formed on a hot-rolled steel strip via electron back-scattering diffraction 

(EBSD). Local strain in individual grains of four phases, ferrite (α-Fe), wustite (FeO), magnetite 

(Fe3O4) and hematite (α-Fe2O3), has been systematically analysed. The results reveal that Fe3O4 has 

a lower local strain than α-Fe2O3, in particular, on the surface and inner layers of the oxide scale. 

The multiphase oxides along the cracking or α-Fe2O3 penetration generally develop a high local 

misorientation. Localised stain along the cracks demonstrates that the misorientation tends to be 

strong near grain boundaries. The high fraction of small Fe3O4 grains accumulate at the 

oxides-substrate interface, which leads to a dramatic increase in the intensity of local stain. This 

variation is due mainly to the phase transformation among the oxide phases, i.e., the Fe3O4 particles 

during their nucleation and growth. The combined action of stress relief and re-oxidisation is 
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proposed to explain the formation of Fe3O4 seam at the oxides-steel interface. The present study 

offers an intriguing insight into the deformation behaviour of the tertiary oxide scale formed on 

steels, and may help with understanding the stress-aided oxidation effect of metal alloys. 
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1. Introduction 

 

Metallic oxides (scales) formed on the substrate have posed a serious obstacle to ensuring a 

defect-free surface of steels during hot rolling [1, 2]. In a conventional production line, these oxide 

scales can generally be classified as primary, secondary and tertiary scales [3]. The tertiary scale is a 

particular case generated during the finishing rolling and the subsequent cooling down to ambient 

temperature [1, 4]. This is because the downstream processing of hot-rolled steel depends greatly on 

the nature of the tertiary oxide scale. 

 

In most cases, a multi-layered oxide scale formed on a steel at high temperature consists of a thin 

outer layer of hematite (α-Fe2O3), an intermediate layer of magnetite (Fe3O4), and an inner layer of 

wustite (Fe1-xO, with 1–x ranging from 0.83 to 0.95, to be abbreviated as FeO) just above the steel 

substrate [5, 6]. By contrast, the tertiary oxide scale at room temperature comprises mainly Fe3O4 

and α-Fe2O3 because the unstable FeO will decompose into Fe3O4 and ferrite (α-Fe) below the 

eutectoid temperature of FeO at 570 °C [7, 8]. Nevertheless, the distributions of these oxide phases 

depend largely on the heat treatment and atmospheric conditions during hot rolling, and the alloying 

elements in the steel composition [2, 9]. In particular, the precipitation of Fe3O4 usually leads to the 

formation of a fine-grained Fe3O4 layer at the FeO/steel substrate interface, and is also referred to as 

the ‘magnetite seam’ [3, 10]. The duplex Fe3O4 layers differ in their microstructure rather than the 

concentration of oxide phases near the oxides/steel interface. Normally, the upper layer is columnar 

in microstructure, whereas in the lower layer adjacent to the steel substrate is much finer grained 

such that the grains tend to be equiaxed [11]. The loss of contact at the oxide/steel interface is 

almost invariably associated with the fine-grained Fe3O4 layer during hot deformation or continuous 

cooling. The magnetite seam does not result in growth rates which are greatly different from those 

of growth by the conventional process, where a classic three-layered oxide scale is formed [3, 11]. 
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The occurrence of Fe3O4 microstructure is also dependent primarily on the microstructure of the 

steel substrate, such as orientation, alloying elements, temperature and oxidation time, but its effect 

on whether a magnetite seam is formed is not clear. 

 

The stress relief in oxide scale could be a potential explanation for the formation of magnetite seam 

[12]. In this point of view, the internal stress state and plastic deformation of oxide scale play a 

significant role on the integrity of oxide scale [13, 14], such as magnetite seam bonding to the steel 

substrate. In general, internal stresses are induced by the growth of oxides, thermal expansion 

mismatch, and applied forces [15], some of which originate from many different causes. In early 

studies, the Pilling-Bedworth ratio (PBR) was used to explain the growth stress [16], while the 

stress relaxation mechanism was also considered in some explorations [17]. Recently, the growth 

stress evolution in multilayered oxides on pure iron was systematically investigated [10]. The 

relationships between the type of oxide scale and elastic strain, the thickness and integrity of the 

oxide scale, were presented in an oxide failure mode map [18]. Some models were proposed to 

evaluate the residual stress [15, 17], and thereby to predict the integrity of oxide scale formed on 

steels during hot rolling and cooling processes [18, 19]. Most of these models are based on a 

parabolic growth law and thermal mismatch without considering the growth stress and rolling 

forces. Some experiments were designed to examine blistering due to oxide growth stresses during 

isothermal oxidation [20]. A recent experiment reveals that the presence of α-Fe precipitates in a 

Fe3O4 matrix could lead to a rough interface which would enhance the adherence of oxide scale [21]. 

In addition, the mechanical properties of oxide scale at temperatures ranging from 650 to 1050 C 

can be characterised as brittle, mixed, or ductile, based on its integrity [22]. The conclusions drawn 

from these elegant previous studies seem to indicate that thin oxide scales behave plastically at high 

temperatures when the deformation is limited to low reductions [23]. Apart from these, it is believed 

that the fine-grained magnetite seam near the substrate could be triggered by stress relief in the 
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oxide layer based on Fe3O4 creep strain under growth stress at 450 °C [10]. This localised oxidation 

is related to local stress intensity such as oxide (or oxide and substrate) creep and grain orientation. 

It is therefore expected to provide a mechanism for cracks propagation resulted from the 

accumulation of local stress [12]. However, the physical basis for this has not been well established. 

 

In the present study, we aim to evaluate the local strain extracted from the local misorientation in 

tertiary oxide scale after hot rolling-accelerated cooling (HR-AC) process. Three subsets, namely, 

the surface, intermediate and inner layers, have been divided to identify the microstructural and 

misorientation relationships of the transformation among FeO, Fe3O4 and α-Fe2O3. A strain analysis 

using electron back-scattering diffraction (EBSD) has been conducted to investigate the local 

misorientation characteristics of different phases (α-Fe, FeO, Fe3O4 and α-Fe2O3) in the divided 

three subsets. The distribution of local misorientation in these phases and their grain boundary 

characters have then been used to evaluate the deformation behaviour of the tertiary oxide scale. 

 

2. Experimental method 

 

2.1 Material and HR-AC tests 

 

The material used was a micro-alloyed low-carbon steel for an automotive beam. Its chemical 

compositions are listed in Table 1. The steel strips were cut into a sheet sample of 400 × 100 × 3 

mm
3
. These samples were then ground to a surface finish of 0.5 μm using SiC papers with 2400 

mesh, and cleaned in a solution of acetone prior to HR-AC tests. 

 

HR-AC experiments were performed on a 2-high Hille 100 experimental mill combined with an 

accelerated cooling system. Full details of the experimental instruments can be found elsewhere 

[24]. The following procedure was carried out for every HR-AC test. Each sheet was reheated to 



6 
 

900 °C at a rate of 1.7 °C /s under a high purity nitrogen atmosphere, and held for 15 min to ensure 

a uniform temperature and homogenise the austenite grains. The reheated sheet was then rolled with 

a thickness reduction of 28% at a rolling speed of 0.3 m/s without any lubrication, followed by an 

accelerated cooling with a cooling rate of 28 °C/s. Finally, the hot-rolled sheet was air-cooled to 

obtain the tertiary oxide scale at room temperature. In this case, the temperature at which free 

cooling commences is 619 °C. This temperature is similar to the coiling temperature in the 

conventional hot rolling process. 

 

2.2 Analytical methodology 

 

Samples were cut from the centre of the hot-rolled sheet along the rolling direction (RD)–normal 

direction (ND) plane. In order to fit into the sample holder of the ion milling stage, the samples 

were sectioned into blocks of dimensions 20 × 20 × 7.8 mm
3
 using a Struers Accutum-50 cutting 

machine. After gold deposition of the samples, the edges for cross sectional analysis were ground 

using SiC papers with 2000 mesh, and then ion-milled at 6 kV for 5 h using a TIC020 system. 

Microstructural characterisation was studied using a JEOL JSM 7001F Schottky field emission gun 

(FEG) scanning electron microscope (SEM) with a Nordlys-II (S) EBSD detector, operated at an 

acceleration voltage of 15 kV, a probe current of around 2–5 nA, a working distance of 15 mm, and 

a step size of 0.125 µm. 

 

2.3 Analytical procedure 

 

Post-processing of acquired dataset was carried out using Channel 5 software, where both local 

misorientation and strain data were extracted from the EBSD maps. The result of kernel average 

misorientation analysis depends sensitively on the initial noise reduction and the selection criteria 
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for neighbouring points. In the noise reduction, an angular resolution for the grain reconstruction 

was maintained at a constant value of 2° in order to reduce orientation noise and retain orientation 

contrast/texture information. Correspondingly, 2°≤θ<15° misorientations are defined as low-angle 

grain boundaries (LAGBs), whereas the high-angle grain boundaries (HAGBs) are θ≥15°. As such, 

a grain boundary can be classified geometrically in terms of the relative misorientation between the 

neighboured grains. In phase analysis, a combined EBSD–EDS analysis technique was also used to 

prevent the misindexing and further improve phase identification [25, 26]. Some other 

post-processing details can be found in our previous study [25]. The EBSD phase maps were finally 

divided into four subsets comprising α-Fe, Fe3O4, Fe1-xO and α-Fe2O3 for local strain analysis. 

Orientation distributions of the four subsets were calculated based on the orientations of collected 

individual grains. 

 

The latter point of local strain analysis is what one selects as the criteria for discarding neighbouring 

points. Local strain analysis here was constructed using the Kernel average misorientation approach 

[27]. The local misorientation between the neighbouring pixels within an individual grain was used 

for representing the local strain caused by the plastic strain [27, 28]. The average misorientation of 

that point with all of its neighbours is calculated on the condition that misorientations exceeding a 

tolerance value are excluded from averaging calculation. The tolerance value for the judgment of 

grain interior is generally equal to 5°. Generally, the predetermined tolerance angle is between 3 and 

12.5° [29]. The tolerance angle of 5° here was chosen in order to avoid the overlapping of the grain 

groups in this case, which could be derived from the propagation of some cracks beyond the 

initiating grains [30]. Since the point-to-point misorientation is often small it is sometimes difficult 

to discriminate the actual misorientation from the measured orientations, which has an error 

associated with it of 0.5-1° [31]. Hence, misorientations larger than 5° were regarded as grain 

boundaries. No overlapping in averaged area was considered. The misorientation for the local strain 
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evaluation was taken based on the averaged map in this study. 

 

3. Results 

 

3.1 Microstructure characterisation 

 

EBSD inverse pole figure (IPF) and grain boundary map in Fig. 1 illustrate a specific grain 

orientation and microstructure of the oxide sample at a thickness reduction of 28% and a cooling 

rate of 28 °C/s. Fig. 1b and c show the colour coded for the individual grains in IPF orientation map, 

displaying their absolute orientations relating to a stereographical triangle. Fig. 1b is for the cubic 

symmetry material, such as FeO, Fe3O4 and α-Fe, and Fig. 1c for the trigonal α-Fe2O3. In Fig. 1d 

grain boundary map, 2º≤ θ < 15º misorientations are defined as LAGBs, whereas, the HAGBs are θ 

≥ 15º. In any case, the intermediate Fe3O4 layer in the IPF and grain boundary maps develops a 

columnar-shape microstructure between the outer granular grains and the globular inner layer. 

Indeed, the multi-layered microstructure, i.e. the columnar shape in the upper layer and the refined 

grains in the lower layer, is the typical Fe3O4 seam as addressed elsewhere [11]. Previous studies 

[32, 33] have indicated that the granular shape of FeO is elongated along the oxide/steel interface at 

high temperature, and they are likely to remain intact there after the diffusion of cations and 

electrons. Therefore, in this case of micro-alloyed low carbon steel, the layered microstructure can 

be attributed to the decomposition from thermally grown FeO above 570 °C. 

 

EBSD phase map of the deformed sample (Fig. 2a) indicates the distribution of oxide phases 

formed on the steel substrate. The oxide scale consists of a two-layered microstructure with a thin 

outer layer of α-Fe2O3 and an inner duplex Fe3O4 layer. The retained FeO and eutectoid α-Fe 
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disperse over the Fe3O4 matrix. α-Fe2O3 near the surface gradually penetrates into the cracks within 

the oxide scale, as shown in Fig. 2a (inset A).  

 

Based on the microstructural examination of oxide scale, it has been possible to identify, in three 

distinct subsets, the microstructural and local misorientation relationships of oxide phases. The first 

morphological type is the surface layer that is characterised by a high fraction of trigonal α-Fe2O3 

and a relatively small area fraction of cubic Fe3O4 or retained FeO constituent (Figs. 2a (inset A) 

and 3a). The second morphological type comprises a crack in the intermediate layer, where α-Fe2O3 

forms along the crack edges in the Fe3O4 matrix with scattering retained FeO (Figs. 2a (inset B) and 

4a). At the oxides-substrate interface, the fresh steel protrudes into the oxide scale due to different 

plastic flows of the oxide scale and steel substrate, as shown in (Figs. 2a (inset C) and 5a). This is 

the third case that the detail analysis performs on. 

 

As seen in Fig. 2b, each pixel in the corresponding local misorientation map is coloured as a function 

of the average misorientation between the given pixel and all of its neighbours. Misorientation 

greater than 5° is excluded for this map construction. This is because the definition of grains in 

EBSD differs from that used in tradition metallography. In EBSD, two neighbouring scan points 

belong to the same grain if the misorientation between them is less than some value prescribed by a 

default value. Here the default grain tolerance angle of 5° is enough for our purpose in this 

relatively low loading test thereby localised deformation. In comparison with EBSD phase map (Fig. 

2a), it reveals that the multiphase oxides generally exhibit a higher misorientation. In particular, this 

large misorientation developed around the cracking concurrently the penetration of α-Fe2O3 (Fig. 2a 

(inset B)) or Fe3O4 (Fig. 2a (inset C)). These regions of high local misorientation are mentioned to 

be in areas with a fine grain size. Similar results have been given to show us what the grain 

structure looks like in IPF and grain boundary maps (Fig. 1). Note that a combined EBSD/EDS 
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analysis technique was also used to prevent the misindexing and further improve phase 

identification [25, 26]. In doing so, similar crystal structures presented here can be distinguished in 

particular when there are fine grains. The high fraction of local misorientation occurred in the 

subsets is probably due to the accumulation of considerable plastic strain and the attendant 

generation of misfit dislocations in the multiphase oxides [34, 35]. The mechanics could effectively 

accommodate the substantial dilatational misfit strain associated with the oxidation of Fe
2+

 to Fe
3+

. 

 

3.2 Distribution of local misorientation in the surface layer of α-Fe2O3/Fe3O4 

 

Fig. 3 shows the representative local strain analysis of the surface layer from Fig. 2a (inset A). As 

seen in the EBSD phase map (Fig. 3a) and deformation map of the same location (Fig. 3b) 

measured as local misorientation, there is a high level of misorientation in mix phases around cracks 

compared to the pure Fe3O4 matrix. It is widely believed that heavily deformed areas in the 

microstructure typically reveal high values of the local misorientation. In addition, Fig. 3c-f 

indicates the statistical distributions of local misorientation for different phases, together with their 

regression curves optimised using the log-normal distribution. The probability density function is 

defined by [27, 28]: 

 

𝑓(𝑀𝐿) =
1

(ln𝑆)𝑀𝐿√2𝜋
exp [−

1

2
(
ln𝑀𝐿 − ln𝑀𝑎𝑣𝑒

ln𝑆
)
2

] 
(1) 

 

where ML and S are the local misorientation and standard deviation, respectively, and Mave is the 

mean value of the distribution which can be calculated by the following equation: 

 



11 
 

𝑀𝑎𝑣𝑒 = exp [
1

𝑁
∑ln{𝑀𝐿(𝑝𝑖)}

𝑁

𝑖=1

] 
(2) 

 

where N is the number of data. It should be noted that only grains consisting of more than 10 points 

were included in the calculation; whereas smaller grains were ignored. The local misorientation 

distribution seems to be well-represented by a lognormal distribution. This was the same for the 

following figures and other measurements made in this study. 

 

As seen in Fig. 3 c-f, there is a marked difference between different phases in surface layer. The 

mean local misorientation of Fe3O4 has a relatively low value (Mave=0.45°) compared to that of α-Fe 

(Mave=1.07°) and α-Fe2O3 (Mave=0.93°). It implies that the strain energy is rather low during the 

deformation in the surface layer of Fe3O4 [36]. This can be verified in Fig. 3g that small grain 

boundaries occur in α-Fe2O3 along a straight line a-b in Fig. 3a. The distribution of misorientation 

angles in cubic crystals has a cutoff at 62.8°, whereas trigonal α-Fe2O3 has a maximum cutoff at 95° 

[28]. The distribution of misorientations was inhomogeneous and different grain by grain. 

Particularly, the misorientation tends to be large near grain boundaries. It is thus clear that the strain 

energy is easy for the coarse-grained structure to store during the high temperature deformation 

[36]. 

 

3.3 Distribution of local misorientation in the intermediate layer of Fe3O4 

 

Representative arrangements of one cracks in the intermediate oxide layer from Fig. 2a (inset B) are 

shown in Fig. 4. The morphologies shown in Figs. 3a and 4a are the similar α-Fe2O3 around the 

crack edges. The misorientation map in Fig. 4b also shows highly localised deformation fields 

around the cracks. A result that suggests that some of the energy supplied by the cracking could 
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have been dissipated by plastic work and resulted in misorientation tracked in Fig. 4b. In order to 

reveal the deformation mechanism, the variations in local misorientation in different phases have 

been investigated, as shown in Fig. 4 c-f. In analogy to the surface layer, there is a similar trend of 

the average local misorienation for these four phases in the intermediate oxide layer. The mean local 

misorientation of Fe3O4 has a relatively low value (Mave=0.66°) compared to that of α-Fe 

(Mave=0.81°) and α-Fe2O3 (Mave=1.11°). A possible explanation is that the penetrated α-Fe2O3 and 

decomposed α-Fe share the relatively small grain size along the cracks. This is because the larger 

grains suffer from a higher degree of plastic deformation compared to the smaller grains [37]. The 

misorienation profile along the cracking line (Fig. 4g) further verifies that there are a high fraction 

of grain boundaries at misorientation angles above 62.8°, which belongs to trigonal α-Fe2O3. 

 

3.4 Distribution of local misorientation in the oxides-substrate interface layer of Fe3O4 

 

Compared to the outer oxide layers, a noticeable feature in the oxides-substrate interface is free of 

α-Fe2O3 phase, as shown in Fig. 5a. Also, the fresh steel protrudes into the oxide scale at a high 

deformation due to different plastic flows of the oxide scale and steel substrate [38]. Accordingly, 

the high intensity of local misorientation (Fig. 5b) can also be detected along this oxides-substrate 

interface. The variation of local misorientation could occur in the Fe3O4 particles during their 

nucleation and growth phase. This is also confirmed by previous studies on the formation of the 

magnetite seam at the oxides-substrate interface [39]. Similarly, the trend of the average local 

misorienation developed in Fig. 5 c-e is that Fe3O4 has a minimum value (Mave=0.19°) compared to 

that of α-Fe (Mave=4.18°) and FeO (Mave=0.67°). It is noted that the high value of average local 

misorienation in α-Fe may attribute to the disturbance from the steel substrate itself. The 

pronounced difference is the high fraction small grains accumulated at the oxides-substrate interface. 

This can be confirmed that the misorientation profile in the oxide layer along the line h-i (Fig. 5a 
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and f) indicates the relatively sparse grain boundaries and thereby a large grain size here. On the 

contrary, Fig. 5f reveals that much more grain boundaries occur at the oxide-substrate interface 

along the line j-k in Fig. 5a. This finding provides an intriguing insight to delineate the formation 

mechanism of the magnetite seam, whatever the stress relief [10, 12], and further re-oxidisation [11]. 

Moreover, the characters of these grain boundaries in the magnetite seam may have formed to 

strains accommodated to this process. 

 

3.5 Phase boundary between α-Fe2O3 and Fe3O4 

 

The use of EBSD allows us to characterise the grain and phase boundaries with respect to their 

misorientation. A representative orientation relationship across the phase boundaries (between the 

cubic Fe3O4 and the trigonal α-Fe2O3) was obtained on the basis of several EBSD measurements of 

cross section areas. Fig. 6 illustrates the lattice correlation boundaries between Fe3O4 (Mt) and 

α-Fe2O3 (Hm). This relationship corresponds to the matching planes and direction 

{111}Mt||{0001}Hm and {110}Mt||{1120}Hm (see grey boundaries in Figs. 3a and 4a). In most cases, 

these boundaries have a relatively high deviation 3° from the lattice correlation of 

{111}Mt||{0001}Hm. The same case occurs in the lattice correlation of {110}Mt||{1120}Hm. Although 

large angle deviation may be described from both lattice correlations up to 55° to 

{111}Mt||{0001}Hm and up to 30° to {110}Mt||{1120}Hm, the most frequent deviation angle of the 

correlation {111}Mt||{0001}Hm is not above 5°, delimitated by the dashed line in the Fig. 6. In regard 

to the correlation {110}Mt||{1120}Hm, the high frequency ranges 28-30° (in Fig. 6). Nevertheless, 

the favoured basal slip, i.e., aligning {0001} planes, normally dominates in trigonal α-Fe2O3 [28]. 

Similarly, it is believed that the correlation {111}Mt||{0001}Hm also plays the major role in the 

analysis of phase boundaries. In any case, two direct evidences here can be responsible for 

oxidation as the main process responsible for the growth of new grains of interior α-Fe2O3: 1) the 
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coincidence of the orientation of the planes {111}{0001} and {110}{1120}, 2) the presence of the 

boundaries of low angle with specified lattice correlation of {111}Mt||{0001}Hm and 

{110}Mt||{1120}Hm. Therefore, the α-Fe2O3 crystals inside the Fe3O4 are the result of a direct 

transformation process. Thereby, the influence of phase boundaries between Fe3O4 and α-Fe2O3 on 

misorientation will be discussed next. 

 

4. Discussion 

 

Given the fact that the distributions of normalised plastic strain do not change significantly with the 

level of macroscopic strain, it means that it is sufficient to focus on one level of macroscopic plastic 

strain for further analysis [40]. Due to the local misorientation correlated with the fine step size as 

well as the magnitude of the macroscopic plastic strain, the relationship between these parameters 

can be used to estimate the degree of the local plastic strain [37, 39]. Fig. 7 shows the relationship 

between the nominal plastic strain, εp, and the averaged local misorientation for a fine step size of 

0.125 µm in this study. The averaged local misorientation for unstrained conditions is set to 

Mave=0.1. For the estimation of local plastic strain, a linear regression of the data above 10% plastic 

strain can be modified as [37]: 

 

𝜀𝑝 =
𝑀𝐿 − 0.1

−0.0027𝑑2 + 0.0041𝑑
 

(3) 

 

where the strain is given in percent and step size d. In this study, the step size is set as 0.125 μm. 

 

As seen in Fig. 7, the local plastic strain varies drastically in various oxide phases. Fe3O4 has the 

relatively low values of plastic strain below 7.2%, where a high value occurs in the surface layer of 

the oxide scale. It suggests that there is rather low strain energy during the deformation in the Fe3O4 
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layer compared to the α-Fe2O3 layer and steel substrate. This is because the stress relief caused by 

some cracking of oxide scale could occur during the high temperature deformation, thereby lead to 

the different misorientation distributions in magnetite seam. This left less energy available for 

cracks growth, the oxidation of α-Fe2O3 or decomposition of FeO.  

 

Nevertheless, note that the aim of the present study has been to clarify the magnitude and the 

origins of plastic strain heterogeneity in the tertiary oxide scale deformed under conditions where 

multi-phases dominates. Finding a correlation between local misorienation and macroscopic plastic 

strain is one thing to achieve this. While the origins of the local misorientations can be due to 

plastic strain, local plastic strain is not simply correlated to macroscopic plastic strain, particularly 

for anisotropic materials Fe3O4 and α-Fe2O3 here. That means that the estimated plastic strain does 

not correspond to the nominal plastic strain [27]. This is because the local misorientation correlates 

with the geometrically necessary dislocations rather than the magnitude of deformation. The 

estimated local plastic strain just shows the typical local misorientation that is observed under the 

plastic strain. Therefore, the local plastic strain is determined not only by applied plastic strain but 

also by geometry of grain structure [41, 42], crystal orientation [23, 43]. 

 

As it is the case for the plastic strain presented here, the second thing is possible that the spatial 

heterogeneity of the plastic strain amplitude is linked to the underlying crystallographic orientation 

of the grain and also grain size. In Figs. 3b and 4b, localised plasticity that is initiated in small 

cracks near α-Fe2O3 grains spreads in the form of narrow strain bands throughout the oxide scale. 

Moreover, those regions where significant local heterogeneities in α-Fe2O3 distribution govern show 

the strain heterogeneity. The variation in crystallographic orientations at oxide/steel interface (Fig. 1) 

also suggests that the effect of crystallographic orientation could be more dominant than the effect 

of grain size for the initiation of plasticity in this case. It is noted that trigonal α-Fe2O3 rather than 
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cubic Fe3O4 is strongly anisotropic and involves different microscopic mechanisms such as 

mechanical twinning and dislocation glide [44, 45]. Thus, the mismatch between α-Fe2O3 and Fe3O4 

are often considered to be responsible for various peculiar features of plastic flow [46]. However, 

previous study [29, 44] reveals that intragranular plastic strain heterogeneity have revealed plastic 

strains as large as 5 times the macroscopic tensile strain. Large local strains were found to be 

statistically linked to proximity to grain boundaries. This infers the importance of interactions 

between neighbouring grains. Thus, it can be expected that local strains can be influenced by phase 

boundaries in oxide scale, as the processes at each individual boundary are controlled by its 

properties. 

 

In addition, our results reveal that the phase relationships between Fe3O4 and α-Fe2O3 is 

{111}Mt||{0001}Hm and {110}Mt||{1120}Hm in presence of low angle boundaries (Fig. 6). This infers 

that the growth of new α-Fe2O3 grains occurs in the vicinity of the grain boundaries in the Fe3O4 

grains. It is well known that in dual-phase steels a higher α-Fe fraction experiences local plastic 

deformation due to the martensitic phase transformation [47]. Similarly, the certain local plastic 

deformation in tertiary oxide scale could occur due to phase transformation among oxide phases. 

More importantly, the local misorientation map (Fig. 2) illustrates considerable orientation gradients 

spreading from the Fe3O4– α-Fe2O3 phase boundaries into the Fe3O4 grain interior. Thus, the local 

misorientation can influence crack propagation or initiation in oxide scale. As such, the plastic 

strain assessment and strain quantity within individual grains are essential for understanding the 

material susceptibility to cracks at various loading conditions and heat treatments [48]. Since the 

spatial distribution of plastic strain has been quantified at the microstructural scale for the tertiary 

oxide scale, we are still under the way to understand the local strain behaviour in cubic Fe3O4 and 

trigonal α-Fe2O3. Our results provide a deep insight to understand the nature of defects and their 

distribution within the tertiary oxide scale, thereby to control the formation of oxide scale during 
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steel processing at high temperature. 

 

5. Conclusion 

 

Local strain/misorientation evolution of four phases (α-Fe, FeO, Fe3O4 and α-Fe2O3) in tertiary 

oxide scale formed on a Nb-V-Ti steel subjected to a thickness reduction of 28% and cooling rate of 

28 °C/s have been quantitatively characterised via EBSD, and systematically analysed. The 

following conclusions can be drawn. 

 

(1) The regions with the multiphase oxides in the tertiary, particularly along the cracking edges and 

the penetration of α-Fe2O3, generally develop a relatively high local misorientation. 

 

(2) Distribution of local misorientation in surface layer of oxide scale reveals that Fe3O4 has a 

relatively low local strain compared to α-Fe2O3. The misorientation tends to be large near grain 

boundaries.  

 

(3) The deformation behaviour in the intermediate oxide layer demonstrates that the large grains 

suffer from a high degree of plastic deformation compared to the small grains. Localised stain fields 

can be identified in the penetrated α-Fe2O3 and decomposed α-Fe along the cracking lines. 

 

(4) The high fraction of small Fe3O4 grains accumulate at the oxides-substrate interface. This leads 

to a dramatic increase in the intensity of local stain. The variation of local misorientation is due to 

the Fe3O4 particles during their nucleation and growth. 

 

(5) Fe3O4 has the relatively low values of plastic strain below 7.2%. The stress relief caused by 
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some cracking of oxide scale could occur during the high temperature deformation, and lead to the 

different misorientation distributions in magnetite seam. The understanding we have gained as to 

how the local misorientation and grain boundaries take place could aid in the choice and design of 

the tertiary oxide scale available during hot strip rolling. 
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List of Figures captions 

 

Fig. 1 EBSD (a) inverse pole figure (IPF) orientation map, and (d) grain boundary map of the 

oxidised sample at a thickness reduction of 28% and a cooling rate of 28 °C/s; a colour key for the 

(b) cubic symmetry α-Fe, FeO, and Fe3O4, (c) trigonal α-Fe2O3. 

Fig. 2 EBSD (a) phase map for α-Fe, FeO, Fe3O4 and α-Fe2O3; (b) local misorientation map, of the 

sample; and insets (A) surface, (B) intermediate, (C) oxides-substrate interface, layer. 

Fig. 3 A zoom-in view of the EBSD (a) phase map, (b) local misorientation map of surface layer, 

inset A in Fig. 2; corresponding to the distribution of local misorientation in the (c) α-Fe, (d) FeO, 

(e) Fe3O4, (f) α-Fe2O3; (g) misorientation distribution along the line a-b in Fig. 3a. 

Fig. 4 A zoom-in view of the EBSD (a) phase map, (b) local misorientation map of intermediate 

layer, inset B in Fig. 2; corresponding to the distribution of local misorientation in the (c) α-Fe, (d) 

FeO, (e) Fe3O4, (f) α-Fe2O3; (g) misorientation distribution along the line c-d in Fig. 4a. 

Fig. 5 A zoom-in view of the EBSD (a) phase map, (b) local misorientation map of oxides-substrate 

interface layer, inset C in Fig. 2; corresponding to the distribution of local misorientation in the (c) 

α-Fe, (d) FeO, (e) Fe3O4; misorientation distribution along the (f) line h-i, and (g) line j-k, in Fig. 

5a. 

Fig. 6 Histogram of the lattice correlation boundaries between [110] of Fe3O4 and [11 0] of 

α-Fe2O3, and [111] of Fe3O4 and [0001] of α-Fe2O3. 

Fig. 7 Relationship between averaged local misorientation Mave and macroscopic plastic strain in 

tertiary oxide scale with different phases. 

Table 1 Chemical compositions of the studied steel. 

  

2



25 
 

 

Fig. 1 EBSD (a) inverse pole figure (IPF) orientation map, and (d) grain boundary map of the 

oxidised sample at a thickness reduction of 28% and a cooling rate of 28 °C/s; a colour key for the 

(b) cubic symmetry α-Fe, FeO, and Fe3O4, (c) trigonal α-Fe2O3. 
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Fig. 2 EBSD (a) phase map for α-Fe, FeO, Fe3O4 and α-Fe2O3; (b) local misorientation map, of the 

sample; and insets (A) surface, (B) intermediate, (C) oxides-substrate interface, layer. 
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Fig. 3 A zoom-in view of the EBSD (a) phase map, (b) local misorientation map of surface layer, 

inset A in Fig. 2; corresponding to the distribution of local misorientation in the (c) α-Fe, (d) FeO, 

(e) Fe3O4, (f) α-Fe2O3; (g) misorientation distribution along the line a-b in Fig. 3a. 

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

 

 

F
re

q
u

e
n

c
e

y

Local misorientation (M
L
) / deg

 Measurement data

 Log-normal distribution

1 2 3 4 5 6 7 8 9
0

20

40

60

80

 

 

M
is

o
ri
e

n
ta

ti
o
n
 
/
d
e
g

Distance / m

Ferrite MagnetiteWustite Hematite

(a)

0 1 2 3 4

5 μm

(b)

5 μm

a

b

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

 

 

F
re

q
u
e
n
c
y

Local misorientation (M
L
) / deg

 Measurement data

 Log-normal distribution
Model

Equation

Reduced Chi-S
qr

Adj. R-Square

fe

fe

fe

fe

(c) Ferrite

A A

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

 

 

F
re

q
u
e
n
c
e
y

Local misorientation (M
L
) / deg

 Measurement data

 Log-normal distribution
Model

Equation

Reduced Chi-S
qr

Adj. R-Square

feo

feo

feo

feo

(d) Wustite

(e) Magnetite

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

 

 

F
re

q
u

e
n

c
e

y

Local misorientation (M
L
) / deg

 Measurement data

 Log-normal distribution

(f) Hematite

ba

(g)



28 
 

 

Fig. 4 A zoom-in view of the EBSD (a) phase map, (b) local misorientation map of intermediate 

layer, inset B in Fig. 2; corresponding to the distribution of local misorientation in the (c) α-Fe, (d) 

FeO, (e) Fe3O4, (f) α-Fe2O3; (g) misorientation distribution along the line c-d in Fig. 4a. 
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Fig. 5 A zoom-in view of the EBSD (a) phase map, (b) local misorientation map of oxides-substrate 

interface layer, inset C in Fig. 2; corresponding to the distribution of local misorientation in the (c) 
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α-Fe, (d) FeO, (e) Fe3O4; misorientation distribution along the (f) line h-i, and (g) line j-k, in Fig. 

5a. 

 

Fig. 6 Histogram of the lattice correlation boundaries between [110] of Fe3O4 and [11 0] of 

α-Fe2O3, and [111] of Fe3O4 and [0001] of α-Fe2O3. 
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Fig. 7 Relationship between averaged local misorientation Mave and macroscopic plastic strain in 

tertiary oxide scale with different phases. 
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Table 1 Chemical compositions of the studied steel. 

Elements C Si Mn P Cr S Al N Nb +V+ Ti Fe 

wt.% 0.1 0.15 1.61 0.014 0.21 0.002 0.034 0.003 0.016-0.041 Bal. 
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