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Expansion of Co-Compact Convex Spacelike
Hypersurfaces in Minkowski Space by their

Curvature
BEN ANDREWS, XUZHONG CHEN, HANLONG FANG &

JAMES MCCOY

ABSTRACT. We consider the expansion of co-compact convex
hypersurfaces in Minkowski space by functions of their curva-
ture, and prove under quite general conditions that solutions
are asymptotic to the self-similar expanding hyperboloid. In
particular, this implies a convergence result for a class of special
solutions of the cross-curvature flow of negatively curved Rie-
mannian metrics on three-manifolds.

1. INTRODUCTION

There is a great deal of literature concerning the evolution of hypersurfaces by
geometric heat equations in Euclidean space, particularly concerning evolution by
mean curvature [Hu1,Hu2,W2,W3,HS1,HS2,HS3,SW,A7,CM,W1], but also
including many other evolution equations in which the speed is a nonlinear func-
tion of the principal curvatures [T, C, Ge1, U, A1, A3, A4, HI, A5, AMZ, ALM].
There is an analogous situation for spacelike hypersurfaces in Minkowski space,
and in particular the evolution of spacelike hypersurfaces by mean curvature flow
has received considerable attention (see, e.g., [E1, E2, E3]); see also [Ge2, Ge3,
Ge4], where spacelike hypersurfaces are deformed by inverse mean curvature flows
in more general Lorenzian background spaces.

In this paper, we are interested in the evolution of convex spacelike hypersur-
faces by nonlinear functions of the principal curvatures. We restrict our attention
to the situation of co-compact hypersurfaces, where the hypersurface is invari-
ant under a discrete group of ambient isometries, and the quotient with respect
to this group is compact. This is a rather special situation, which excludes many
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difficult cases studied in previous work on the mean curvature flow (see [E3], for
example). In particular, such hypersurfaces are always comparable to a hyper-
boloid at infinity. Our motivation to understand this case arises in part from an
interesting relation between these evolution equations for hypersurfaces and the
cross-curvature flow, a fully nonlinear parabolic evolution equation introduced
by Chow and Hamilton [CH] for negatively curved metrics on compact three-
manifolds. Our results on evolving spacelike hypersurfaces (specifically, where
the hypersurface is of dimension three, and the speed in the direction of the unit
normal vector ν is equal to the Gauss curvature K), amount to analysis of an inter-
esting class of special solutions for the cross-curvature flow. Rather little is known
about solutions of the cross-curvature flow in general (see [B, MC, KY, DKY, Gl,
CNSC, CSC]). We discuss the relation between Gauss curvature flow and cross
curvature flow in Section 12.

The flows we consider are as follows: denote the first fundamental form of an
embedding X by g, and the second fundamental form by h. We consider func-
tions F(h,g) of the form F = f (κ1, . . . , κn), where κi is the ith principal curva-
ture (i.e., the ith eigenvalue of h with respect to g), and f is a smooth symmetric
function defined on the positive cone Γ+ = {(x1, . . . , xn) | mini xi > 0}, which
is increasing in each argument and homogeneous of degree one. We define the
“dual” function F∗ by F∗(A,g) = F(g,A)−1 for A positive definite, which means
that F∗(r, ḡ) = f∗(r1, . . . , rn), where r1, . . . , rn are the eigenvalues of the matrix r

with respect to the inner product ḡ, and f∗(x1, . . . , xn) = f (x
−1
1 , . . . , x−1

n )
−1.

Our primary result is the following theorem.

Theorem 1.1. Let S = F(h,g)α, where

F = f (κ1, . . . , κn) =
1

f∗(κ
−1
1 , . . . , κ−1

n )
,

and suppose that one of the following is true:
(1) Either 0 < α ≤ 1, f is concave, and f = 0 on the boundary of Γ+;
(2) or 0 < α ≤ 1 and both f and f∗ are concave;
(3) or 0 < α ≤ 1, f∗ is concave and f∗ = 0 on the boundary of Γ+;
(4) or 0 < α ≤ 1 and n = 2;
(5) or α > 1, f∗ is concave and zero on the boundary of the positive cone, and

κi > κj implies (∂f/∂κi)κi ≥ (∂f/∂κj)κj .
It follows that, for any co-compact spacelike uniformly locally convex initial embedding
X0 : M̃ → Rn,1, there exists a unique co-compact solution X : M̃ × [0,∞) → Rn,1 of
the flow

(1.1)
∂X

∂t
= Sν.

The rescaled embeddings given by X̃(p, t) = X(p, t)/((1+α)F(I, I)αt)1/(1+α) con-
verge in C∞ to a limiting embedding with image equal to the future timelike hyper-
boloid Hn.
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The condition in case (5) is unusual, but includes several cases of interest,
including f = E1/k

k for k = 1, . . . , n (see Section 11 for details). In particular, the
application to the cross-curvature flow involves the Gauss curvature flow, which is

contained in case (5) with α = n and f = E1/n
n , in which case ḟ i∗ri = ḟ

j
∗rj for all

i and j.
Theorem 1.1 is in some regards less difficult to prove than the corresponding

results for Euclidean hypersurfaces (see, e.g.,[AMZ]), although each case requires
slightly different treatment, and the estimation of principal curvatures in cases
(2), (3), and especially (5) is very delicate. The results are somewhat stronger than
those known in the Euclidean setting: for example, speeds given by powers of
ratios of elementary symmetric functions of principal curvatures

S = (Ek/Eℓ)
α/(k−ℓ), 0 ≤ ℓ < k ≤ n,

are contained in case (2) for α ≤ 1, and in case (5) for α > 1 if ℓ = 0. In the
Euclidean setting, it was shown in [AMZ] that such flows are definitely not well
behaved in the Euclidean setting (in the sense that smooth solutions can develop
curvature singularities before they shrink to a point) unless either α = 1 or ℓ = 0,
and the results for ℓ = 0 are established only for α = 1 except in a few special cases.
The examples given in [AMZ] can be modified to show that the assumptions of
Theorem 1.1 are close to optimal: for example, the condition that F∗ must be
zero on the boundary of the positive cone for α > 1 is essentially necessary, and
for α ≤ 1, at least the restriction of F to a boundary face of the positive cone must
be inverse concave. It is not clear whether the extra condition in case (5) can be
removed, but an inspection of the proof shows that it can certainly be weakened.

One reason for the comparative simplicity of the evolution of spacelike hy-
persurfaces is the fact that the self-similar expanding hyperboloids become com-
parable to each other for large times, in contrast to the situation for contracting
Euclidean spheres.

We have not included in Theorem 1.1 some cases that are somewhat more
general but require considerable work to prove, such as cases where f∗ may not be
concave, but the restriction of f to a boundary face of Γ+ is inverse concave. The
proofs and statements of these cases are analogous to those in the Euclidean case
proved in [AMZ, Theorems 4–7].

2. SPACELIKE HYPERSURFACES

We consider the Minkowski space Rn,1, which is the vector space Rn+1 equipped
with the Minkowski inner product x · y = −x0y0 +

∑n
i=1xiyi. A vector v in

Rn,1 is called spacelike, timelike, or null if the “length” v · v is positive, negative,
or zero. A timelike vector is called future timelike if it has positive first component,
and past timelike if the first component is negative. The hyperbolic space Hn

embeds naturally into Rn,1 as the future timelike unit sphere, that is,

H
n = {x | x · x = −1, x0 > 0}.
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2.1. Computations on the hypersurface. We consider complete hypersur-
faces described by embeddings X : M̃ → Rn,1. The embedding is assumed to be
spacelike, so the induced inner product g(u,v) = X∗(u) ·X∗(v) is positive def-
inite at each point. In this case, we can associate with each point x ∈ M̃ a unique
future timelike normal vector ν ∈ H.

We briefly describe the local differential geometry of spacelike hypersurfaces,
indicating in particular where differences occur with the Euclidean setting. We
define the second fundamental form h ∈ Sym2(TM) by the following formula:
for any tangent vector fields U and V on M̃,

(2.1) U(X∗V) = h(U,V)ν +X∗(∇UV).

Here, as in the Euclidean case, ∇ is the Levi-Civita connection of the metric g.
Similarly, we define the Weingarten map as the derivative of the normal: since
ν · ν = −1, we have ν · ν∗(U) = 0 for any vector U , so that ν∗(U) is entirely
tangential to X(M̃), and we can write

(2.2) ν∗U = X∗(A(U)),

where A ∈ End(TM) is the Weingarten map. Differentiating the identity X∗(U)·
ν = 0 yields a relation between A and h (the Weingarten relation):

0 = V(X∗U) · ν +X∗U · ν∗V = −h(U,V)+X∗U ·X∗(A(V))(2.3)

= −h(U,V)+ g(U,A(V)).

The second fundamental form satisfies the Codazzi identity ∇ihjk = ∇jhik
as in the Euclidean case. However, a crucial difference arises in the Gauss equations
relating the intrinsic curvature of the metric g to the second fundamental form:
we have

(2.4) Rijkℓ = hjkhiℓ − hikhjℓ,

which differs from the Euclidean Gauss equation in the sign of the right-hand
side.

2.2. Computation using support functions. The support function machin-
ery for convex bodies is very convenient for dealing with evolution of convex hy-
persurfaces in Euclidean space. Similarly, there is a support function formalism
for spacelike convex hypersurfaces in Minkowski space, which we now describe.
Given a convex hypersurface X(M̃), the support function u : Hn → R is defined
by u(z) = inf{−z · p | p ∈ X(M̃)}. In particular, for a co-compact uniformly
convex hypersurface (see Section 3 below), z is well defined on all of Hn, and the
hypersurface can be reconstructed from u by the following embedding:

(2.5) X̄ = uz − z∗(∇̄u),
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where ∇̄ is the Levi-Civita connection of the standard (induced hyperbolic) metric
on Hn. The principal curvatures κ1, . . . , κn of X(M̃) (defined as the eigenvalues
of the second fundamental form h with respect to the induced metric g) can
then be computed as the reciprocals of the eigenvalues r1, . . . , rn of the positive
definite bilinear form rij = uḡij − ∇̄i∇̄ju (since the map X is the inverse of
the Weingarten map, and we have ∂iX = rikḡkℓ∂iz). We accordingly refer to
r1, . . . , rn as the principal radii of curvature. As in the Euclidean case, the matrix
r satisfies a Codazzi-type identity: ∇̄irjk = ∇̄jrik.

3. CO-COMPACTNESS

We further assume that there is a subgroup G of the group Isom+(Rn,1) of future-
preserving isometries of Rn,1 such that, for each T ∈ G, T(X(M̃)) = X(M̃), and
G acts properly discontinuously on M̃. G is then the fundamental group of the
quotient M = M̃/G, and acts by isometries on M̃ with the induced metric g. We
assume that the quotient M is compact.

Example 3.1. Simple examples of this situation can be constructed as fol-
lows. Take any group G of isometries of the hyperbolic space Hn which acts co-
compactly (e.g., the fundamental group of a compact hyperbolic manifold acting
by deck transformations on the universal cover Hn). Each isometry of hyper-
bolic space is given by the restriction of some Isom+(Rn,1) transformation, so G is
naturally a subgroup of Isom+(Rn,1) with compact quotient. Co-compact hyper-
surfaces with this symmetry can be constructed by taking the normal graph over
Hn of any smooth function defined on the quotient.

The tensors g, h and A are well defined on M : if T ∈ G, then T∗ is an
isometry from TxM̃ to TT(x)M̃ , and νTx = T∗(νx) for any x ∈ M̃. It follows that
hTx(T∗U,T∗V) = h(U,V) and T∗(Ax(U)) = ATx(T∗U).

3.1. The linear representation. Note that the future-preserving isometries
Isom+(Rn,1) of Rn,1 have the form z ֏ Lz+b, where b ∈ Rn,1, and L is a linear
transformation in O+(n,1), the space of future-preserving linear transformations
preserving the Lorentzian inner product. Thus, the inclusion of G in Isom+(Rn,1)
can be written in the form

(3.1) g(z) = L(g)z + b(g),

and we have

L(g2g1)z + b(g2g1) = g2g1(z) = L(g2)(g1z)+ b(g2)

= L(g2)L(g1)z + L(g2)b(g1)+ b(g2)

for all z ∈ Rn,1 and g1, g2 ∈ G. In particular, the linear part of this inequality
implies that the map L : G → O+(n,1) is itself a representation. We call this the
linear representation of G.
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3.2. The support function and standard co-compact hypersurfaces. If M̃
is such that the inclusion of G in Isom+(Rn,1) is contained in the linear part
O+(n,1) for some choice of origin—that is, b(g) = 0 for all g ∈ G in equation
(3.1)—we say that the hypersurface is standard. The standard hypersurfaces are
somewhat easier to work with: in particular, the support function u is then well
defined on the quotient H/L(G), since in this case we have

u(L(g)z) = inf{−L(g)z · p | p ∈ X(M̃)}

= inf{−L(g)z · L(g)p | p ∈ X(M̃)}

= inf{−z · p | p ∈ X(M̃)} = u(z),

for each g ∈ G, since L(g)p ranges over X(M̃) when p does. In the non-standard
case, the support function is defined on M̃ but not on M : the support function
is O+(n,1) invariant but not Isom+(Rn,1) invariant. In particular, maximum
principle arguments involving the support function in the general case must take
into account the behaviour at infinity.

4. EVOLUTION EQUATIONS

4.1. Evolution equations on the hypersurface. We follow the notational
conventions of [AMZ], in particular using the following expressions for the speed
S. We write S(h,g) = S(A) = F(A)α, where F is homogeneous of degree 1,
smooth, invariant under change of basis, and strictly increasing on the positive
cone: (d/ds)F(A+sB) > 0 whenever B is nonzero and positive semi-definite. We
denote by Ḟ ij the derivative of F with respect to the components of A, so that

d

ds
F(A+ sB) = Ḟ ijBij.

Also, F can be expressed in the form F = f (κ1, . . . , κn), where f is a smooth
symmetric function on Rn that is increasing in each argument and homogeneous

of degree one. We denote ḟ i = ∂f/∂κi. In an orthonormal frame of eigenvectors
for A, the matrix Ḟ is also diagonal, with diagonal entries equal to ḟ i (see [A5,
Theorem 5.1]). Similarly, we denote by F̈ the second derivatives of F with respect
to components of A, and by f̈ the second derivatives of f with respect to the
principal curvatures.

Evolution equations for geometric quantities on the hypersurface can be de-
duced by following the corresponding arguments from the Euclidean case. The
evolution of the induced metric g is computed as follows:

∂

∂t
gij =

∂

∂t

(
∂X

∂xi
·
∂X

∂xj

)
=

∂

∂xi
(Sν) ·

∂X

∂xj
+
∂X

∂xi
·
∂

∂xj
(Sν)(4.1)

= SAki gkj + SgikA
k
j = 2Shij.
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The evolution of the unit normal is as follows. We have 0 = (∂ν/∂t) · ν, and

(
∂

∂t
ν

)
·
∂X

∂xi
=
∂

∂t

(
ν ·

∂X

∂xi

)
− ν ·

∂

∂xi
(fν)

= −ν ·

(
∂S

∂xi
ν + SAki

∂X

∂xk

)
=
∂S

∂xi
,

from which it follows that

(4.2)
∂ν

∂t
=
∂S

∂xi
gij

∂X

∂xj
= ∇S.

The evolution of the second fundamental form is as follows:

∂

∂t
hij =

∂

∂t

(
∂ν

∂xi
·
∂X

∂xj

)
(4.3)

=
∂

∂xi

(
∂S

∂xk
gkℓ

∂X

∂xℓ

)
·
∂X

∂xj
+
∂ν

∂xi
·
∂

∂xj
(Sν)

= ∇i∇jS + SA
p
i A

q
jgpq.

If we introduce the canonical spacetime connection (as in [AH, Section 6.3] or
[AB, Section 2.3]) by setting ∇t ∂i = Sh

p
i ∂p, this then becomes

(4.4) ∇thij =
∂

∂t
hij − h(∇t ∂i, ∂j)− h(∂i,∇t ∂j) = ∇i∇jS − Sh

p
i hpj .

An evolution equation for the speed follows. Since ∇tgij = 0,

(4.5)
∂

∂t
S(h,g) = Ṡij∇thij = Ṡ

ij∇i∇iS − SṠ(h
2).

Equation (4.4) may be converted to the form of a parabolic equation by using a
version of Simons’s identity obtained by applying the Codazzi and Gauss identi-
ties:

∇i∇jhkℓ = ∇i∇khjℓ = ∇k∇ihjℓ + Rikj
phpℓ + Rikℓ

phjp

= ∇k∇ℓhij + hjkh
p
i hpℓ − hijh

p
khpℓ + hkℓh

p
i hjp − hiℓh

p
khjp.

Symmetrising in (i, j) and in (k, ℓ) gives the required identity:

(4.6) ∇(i∇j)hkℓ = ∇(k∇ℓ)hij − hijh
p
khpℓ + hkℓh

p
i hjp.
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This is very similar to the corresponding Euclidean identity, but with the signs
of the curvature terms reversed. Substituting this in the evolution equation (4.3)
gives the following:

∇thij = Ṡ
kℓ∇i∇jhkℓ + S̈(∇ih,∇jh)− Sh

p
i hpj

(4.7)

= Ṡkℓ
(
∇k∇ℓhij − hijh

p
khpℓ + hkℓh

p
i hjp

)
+ S̈(∇ih,∇jh)− Sh

p
i hpj

= Ṡkℓ∇k∇ℓhij + S̈(∇ih,∇jh)+ (Ṡ(h)− S)h
p
i hpj − hij Ṡ(A

2).

This may also be written in the following form, since S = Fα:

∇thij = αF
α−1Ḟkℓ∇k∇ℓhij +αF

α−1F̈(∇ih,∇jh)(4.8)

+ α(α− 1)Fα−2∇iF∇jF

+ (α− 1)Fαh2
ij −αF

α−1Ḟ(A2)hij .

In this case, (4.5) takes the following form:

(4.9)
∂

∂t
Fα = αFα−1Ḟ ij∇i∇jF

α −αF2α−1Ḟ(h2).

The evolution equations (4.8) and (4.9) are identical to the Euclidean counterparts
(see [AMZ, Lemma 9]), except that all of the curvature terms have their sign
reversed. Since h and g are well defined on M , equations (4.7)–(4.9) hold on M
and not just on M̃ .

4.2. Evolution equations in the Gauss map parametrisation. The evolu-
tion equation (1.1) yields an evolution equation for the support function u on M̃ :
since u(z, t) = −X ◦ ν−1(z) · z,

∂u

∂t
=

(
−
∂X

∂t

∣∣∣∣
ν−1(z)

−X∗

(
∂

∂t
ν−1(z)

))
· z(4.10)

= S
∣∣
ν−1(z) = s

(
1
r1
, . . . ,

1
rn

)
.

Here, S = F∗(r)−α, where F∗ is the dual function of F , defined by F∗(A) =
F(A−1)−1. Equation (4.10) implies evolution equations for the speed and for the
matrix r:

∂

∂t
F−α∗ = −αF−(1+α)∗ Ḟkℓ∗

(
∂u

∂t
ḡkℓ − ∇̄k∇̄ℓ

∂u

∂t

)
(4.11)

= αF−(1+α)∗ Ḟkℓ∗ ∇̄k∇̄ℓF
−α
∗ − αF−(1+2α)

∗ Ḟ∗(ḡ).
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The evolution equation for r can be computed as follows: from the definition of r,

∂

∂t
rij =

∂u

∂t
ḡij − ∇̄i∇̄j

∂u

∂t
= −∇̄i∇̄jF

−α
∗ + F−α∗ ḡij

= α∇̄i(F
−(1+α)
∗ ∇jF∗)+ F

−α
∗ ḡij

= αF−(1+α)∗ ∇̄i∇̄jF∗ −α(1+α)F
−(2+α)
∗ ∇̄iF∗∇̄jF∗ + F

−α
∗ ḡij

= αF−(1+α)∗ Ḟkℓ∗ ∇̄i∇̄jrkℓ +αF
−(1+α)
∗ F̈kℓ,mn∗ ∇̄irkℓ∇̄jrmn

− α(1+α)F−(2+α)∗ ∇̄iF∗∇̄jF∗ + F
−α
∗ ḡij.

A Simons-like identity holds:

∇̄i∇̄jrkℓ = ∇̄i∇̄krjℓ = ∇̄k∇̄irjℓ + R̄ikj
p
rpℓ + R̄ikℓ

p
rjp

= ∇̄k∇̄ℓrij + ḡkjriℓ − ḡijrkℓ + ḡkℓrij − ḡiℓrkp .

On symmetrisation, this becomes

(4.12) ∇̄(i∇̄j)rkℓ = ∇̄(k∇̄ℓ)rij − ḡijrkℓ + ḡkℓrij .

This gives the following (noting that Ḟ(r) = F):

∂

∂t
rij = αF

−(1+α)
∗ Ḟkℓ∗ ∇̄k∇̄krij +αF

−(1+α)
∗ F̈kℓ,mn∗ ∇̄irkℓ∇̄jrmn(4.13)

− α(1+α)F−(2+α)∗ ∇̄iF∗∇̄jF∗

+ (1−α)F−α∗ ḡij +αF
−(1+α)
∗ Ḟ∗(ḡ)rij .

Again, these are the same as in the Euclidean case (see [AMZ, Lemma 10]), but
with the signs of the curvature terms reversed.

In general, equation (4.10) holds on Hn, but not on the quotient Hn/L(G)
except in the standard case. However, equations (4.11)–(4.13) hold on the quo-
tient since r is invariant under isometries.

5. SHORT-TIME EXISTENCE OF SOLUTIONS

Although the map X is defined on the spatially non-compact space M̃ × [0, T ),
we can use the co-compactness to produce a co-compact solution for a short time
relatively easily (i.e., without concern for the behaviour at infinity).

We will show that the evolving hypersurfaces can be written for a short time as
normal graphs over the initial hypersurface, and that the graph function is defined
on M rather than M̃. Specifically, we construct a solution X : M̃ × [0, δ) → Rn,1

of the form

(5.1) X(ϕ(x, t), t) = X(x,0)+u(π(x), t)ν(x,0),
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for some δ > 0, where π : M̃ → M is the projection, ϕ(·, t) is a diffeomorphism
of M̃ for each t (commuting with the deck transformations on M̃ corresponding
to the covering map π), and u : M×[0, δ)→ R is a smooth function. We produce
u as the solution of a scalar parabolic equation on the compact manifold M .

The geometric invariants of a hypersurface given as a normal graph of the
form (5.1) can be computed directly as follows. Writing X0 = X(·,0) for the
initial embedding and ∂0

i = (∂/∂x
i)X0 for the initial coordinate tangent vectors

in some local coordinates for M̃, the coordinate tangent vectors of the embedding
Xt(x) = X(ϕ(x, t), t) are given by

(5.2) ∂ti :=
∂

∂xi
(X0 + ũν0) = (δ

p
i + ũ(h

0)
p
i ) ∂

0
p +∇iũν0,

where h0 is the second fundamental form of X0, where ν0 is the unit normal of
X0, and where ũ = u◦π . From this, the following expression for the unit normal
νt of Xt follows:

(5.3) νt = σ−1(ν0 + [(g0 + ũh0)−1]kℓ∇ℓũ ∂
0
k),

where

(5.4) σ =

√
1+ gpq0

[
(I + ũh0)−1

]k
p

[
(I + ũh0)−1

]ℓ
q∇kũ∇ℓũ.

The induced metric is computed from (5.2):

(5.5) gtij = ∂
t
i · ∂

t
j =

(
δ
p
i + ũ

(
h0
)p
i

)(
δ
q
j + ũ

(
h0
)q
j

)
g0
pq −∇iũ∇jũ.

The second fundamental form is given as follows:

(5.6) htij = ν
t · ∇0

i ∂
t
j = σ

−1
{
∇0
i∇jũ+ ũ

(
h0
)p
i (h

0)pj + (h
0)ij

− [(g0 + ũ(h0))−1]rp∇r ũ(∇jũh
0
ip +∇iũh

0
jp +u∇

0
ph

0
ij)
}
.

Differentiating equation (5.1) with respect to t, and taking the inner product with
ν0, we obtain the following expression for the time derivative of ũ if X evolves
according to (1.1):

(5.7)
∂ũ

∂t
=
∂X

∂t
· ν0 = σS(ht, gt),

where gt and ht are given in terms of ũ by equations (5.5) and (5.6). In par-
ticular, this has the form ∂ũ/∂t = S[∇0∇ũ,∇u,u,x], where S is smooth and
strictly monotone in the first argument, so this is a scalar fully nonlinear par-
abolic equation for ũ. Furthermore, the equation is invariant under the deck
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transformations on M̃, and so is well defined as an equation on M . We define
ũ(x, t) = u(π(x), t), where u is the solution of the corresponding equation on
the compact manifoldM . We leave it to the reader to check that one can solve for
the diffeomorphisms ϕ(·, t) to produce from this a co-compact solution of the
original equation (1.1).

6. ESTIMATES ON SUPPORT FUNCTION AND SPEED

IN THE STANDARD CASE

6.1. Upper and lower bounds on the support function. From the evolution
equation (4.10), we have the following. Let

ũ(t) = (u1+α
0 + (1+ α)t)1/(1+α).

Then, (d/dt)ũ(t) = ũ(t)−α, so we can write

∂

∂t
(u− ũ) = F∗(r)

−α − ũ−α = F∗(r)
−α − F∗(ũg)

−α

= akℓ(∇̄k∇̄ℓ(u− ũ)− ḡkℓ(u− ũ)),

where akℓ = α
∫ 1

0
F−(1+α)∗ Ḟkℓ∗

∣∣
(1−s)r+sũg ds is positive definite since F∗ is increas-

ing. It follows by the maximum principle that positivity or negativity of u− ũ is
preserved. If u− ≤ u(x,0) ≤ u+ for all x ∈ M , then

(6.1) (u1+α
− + (1+α)t)1/(1+α) ≤ u(x, t) ≤ (u1+α

+ + (1+α)t)1/(1+α).

In particular, this implies that u((1 + α)t)−1/(1+α) converges uniformly to 1 as
t →∞ (if the solution exists for all time).

6.2. Upper and lower bounds on the speed. In this situation, there are
upper and lower bounds on the speed that hold in great generality. It is useful to
first rewrite the evolution for u as follows:

∂

∂t
u = αF−(1+α)∗ Ḟkℓ∗ ∇̄k∇̄ℓu−αF

−(1+α)
∗ Ḟ∗(ḡ)u+ (1+ α)F−α∗ .

The latter equation together with equation (4.11) yields an evolution equation for
uFα:

∂

∂t
(uFα∗ ) = αF

−(1+α)
∗ Ḟkℓ∗ ∇̄k∇̄ℓ(uF

α
∗ )

− 2α2F−(2+α)∗ Ḟkℓ∗ ∇̄kF∗∇̄ℓ(uF
α
∗ )+ (1+α).
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Thus, upper and lower bounds on uFα∗ − (1 + α)t are preserved. We then let
c− = infM×{0}(uFα∗) and c+ = supM×{0}(uF

α
∗). Then, for any t > 0 in the

interval of existence,

(6.2) c− + (1+ α)t ≤ uF
α
∗ (x, t) ≤ c+ + (1+α)t,

for all x ∈ M . When combined with (6.1), this gives strong upper and lower
bounds on F∗, which imply in particular that F∗((1 + α)t)−1/(1+α) converges
uniformly to 1 as t ∈ ∞ (again, if we assume long-time existence).

7. BOUNDS ON SUPPORT FUNCTION AND SPEED

IN THE GENERAL CASE

In the general case, upper and lower bounds on the speed can still be obtained
very generally. In order to derive such bounds, it is necessary first to obtain some
control on the support function.

Lemma 7.1. There exist r > 0 and R > 0 such that, for any z0 ∈ H
n, there

exist p−(z0) and p+(z0) for which

−p−(z0) · z + R ≤ u(z,0) ≤ −p+(z0) · z + r

for every z ∈ Hn, with equality holding throughout when z = z0.

Proof. By compactness of M , there exist 0 < r ≤ R such that we have
that |v|2/R ≤ h(v,v) ≤ |v|2/r for all v ≠ 0 in TM (equivalently, we have
r ḡ(v, v) ≤ r(v, v) ≤ Rḡ(v,v) for all v ∈ TM). Given z0 ∈ H

n, we choose
p+(z0) = X̄(z0,0) − rz0 and p−(z0) = X̄(z0,0) − Rz0. We shall also let
u+(z) = u(z,0) + p+(z0) · z − r and u−(z) = u(z,0) + p−(z0) · z − R.
Then,

u+(z) = −X̄(z,0) · z + (X̄(z0,0)− rz0) · z − r

= (X̄(z0,0)− X̄(z,0)+ r(z − z0)) · z.

In particular, u+(z0) = 0 and ∂iu+|z0 = 0, and rij[u+] = rij[u] − r ḡij ≥ 0.
Thus, along any geodesic γ from z0 in Hn,

d

ds

(
cosh2

s
d

ds

(
u+

cosh(s)

))
= −r[γ′, γ′] cosh(s) ≤ 0,

from which it follows that u+ ≤ 0 everywhere. Similarly, u− ≥ 0, as required. ❐

Corollary 7.2. With r , R, p−(z0), and p+(z0) as in Lemma 7.1, for every
z ∈ Hn and every t ∈ [0, T ),

− p−(z0) · z + (R
1+α + (1+α)t)1/(1+α)

≤ u(z, t) ≤ −p+(z0) · z + (r
1+α + (1+α)t)1/(1+α).
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Proof. The proof uses the maximum principle, but some care is required to
control the behaviour near infinity. For any ε > 0 and fixed z0 ∈ Hn, let
vε(z, t) = u(z, t) + p−(z0) · z − εz · z0. Then, vε(z,0) ≥ R for all z, and
vε(z,0) ≥ −εz · z0 →∞ as z → ∞ in Hn. Also, for each ε > 0,

∂

∂t
vε = F∗(r[vε])

−α.

In particular, while the solution remains smooth, (∂/∂t)vε is bounded, and so
v(z, t)ε → ∞ as z → ∞ in Hn for each t in the interval of existence. It follows
that v(·, t) attains an interior minimum, and the maximum principle implies that
vε ≥ (R1+α + (1 + α)t)1/(1+α). Taking ε → 0 gives the desired lower bound on
u(z, t). The proof of the upper bound is similar. ❐

The speed bounds can now be proved by using an identity related to one
employed for mean curvature flow by Smoczyk [S] (see also [AMZ, Theorem 14]).

Proposition 7.3. If u(z,0)+ p · z ≥ 0 for all z ∈ Hn, then

u(z, t)− (1+α)F∗(z, t)−α + p · z ≥ 0 for all z ∈ Hn and t ≥ 0.

If u(z,0)+ p · z ≤ 0 for all z ∈ Hn, then

u(z, t)− (1+α)F∗(z, t)−α + p · z ≤ 0 for all z ∈ Hn and t ≥ 0.

Proof. If w = u+ p · z − (1+α)tF−α∗ (for any p), then

∂

∂t
w = αF−(1+α)∗ Ḟkℓ∗ (∇̄k∇̄ℓw − ḡkℓw).

In the first case of the proposition, w(z,0) ≥ 0 for all z ∈ Hn. Choose any fixed
z0 ∈ H

n, and letwε = w+εz0·z with ε > 0, so thatwε > 0 andwε(z,0)→∞ as
z → ∞ in Hn. Since F−α∗ is bounded in the interval of existence (by compactness
ofM),wε(z, t)→∞ as z →∞ inHn for each t > 0 in the interval of existence. In
particular, wε attains an interior minimum, and the maximum principle applies
to prove that this minimum remains non-negative. Thus, wε(z, t) ≥ 0 for each
ε > 0, and sending ε to zero yieldsw(z, t) ≥ 0 for all z ∈ Hn and all t ≥ 0 in the
interval of existence. The proof of the second case is similar. ❐

Corollary 7.4. For every z ∈ Hn and every t > 0 in the interval of existence of
the solution,

(R1+α + (1+ α)t)1/(1+α) − R

(1+α)t

≤ F−α∗ (z, t) ≤
(r 1+α + (1+α)t)1/(1+α) + R − r

(1+α)t
.
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Proof. To prove the lower bound, fix z0 ∈ H
n. By Lemma 7.1, there is a point

p+(z0) such that u(z,0)+p+(z0) · z ≤ r for all z ∈ Hn. Let p = p+(z)− rz0.
Then,

u(z,0)+ p · z = u(z,0)+ p+(z0) · z − rz0 · z ≤ r − rz · z0 ≤ 0,

with equality holding for z = z0. Hence, Proposition 7.3 applies to give that
u(z, t)+ p · z − (1 + α)tF−α∗ ≤ 0 for each z ∈ Hn and t > 0 in the interval of
existence. Applying this for z = z0 gives

F−α∗ (z0, t) ≥
u(z0, t)−u(z0,0)

(1+ α)t
.

Finally, Corollary 7.2 implies

u(z0, t)−u(z0,0) ≥ (R1+α + (1+α)t)1/(1+α) − R.

It follows that

F−α∗ (z0, t) ≥
(R1+α + (1+α)t)1/(1+α) − R

(1+ α)t
,

as claimed.
Proof of the upper bound follows a similar pattern. Fixing z0 ∈ H

n as before,
Lemma 7.1 implies the existence of p−(z0) such that u(z,0) + p−(z0) · z ≥ R,
with equality for z = z0. Proposition 7.3 implies that

u(z, t)+ p−(z0) · z − (1+α)tF−α∗ (z, t) ≥ 0 for all z and t ≥ 0,

so that F−α∗ (z, t) ≤ u(z, t) + p−(z0) · z/((1 + α)t). Corollary 7.2 then gives
u(z, t) + p+(z0) · z ≤ (r 1+α + (1 + α)t)1/(1+α). Also note that, from Lemma
7.1, u(z0,0) + p+(z0) · z0 = r and u(z,0) + p−(z0) · z0 = R, and therefore
(p+(z0)− p−(z0)) · z0 = r − R. It follows that

u(z0, t)+ p−(z0) · z0 = u(z0, t)+ p+(z0) · z0 + (p−(z0)− p+(z0)) · z0

≤ (r 1+α + (1+α)t)1/(1+α) + R − r ,

and hence

F−α∗ (z0, t) ≤
(r 1+α + (1+ α)t)1/(1+α) + R − r

(1+α)t
. ❐

The upper speed bound provided by Corollary 7.4 degenerates as t → 0.
However, since the short-time existence result provides an upper bound on the
speed for small times, we have bounds on the speed for all times:

F−α∗ ≤ (C + (1+α)t)−α/(1+α).
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8. BOUNDS ON PRINCIPAL CURVATURES

Different arguments are required to establish bounds on principal curvatures for
the various classes of flows considered. The following subsections treat each case
of Theorem 1.1 in turn.

8.1. Bounds on the principal curvatures: f concave and f |∂Γ+ = 0. If f
is concave and 0 < α ≤ 1, then equation (4.8) implies

(8.1) ∇thij ≤ αF
α−1Ḟkℓ∇k∇ℓhij − (1− α)F

αh2
ij −αF

α−1Ḟ(A2)hij .

Combining this with the evolution equation (4.9) for Fα gives

∇t

(
hij
Fα

)
≤ αFα−1Ḟkℓ∇k∇ℓ

(
hij
Fα

)
(8.2)

+ 2α2Fα−2Ḟkℓ∇kF∇ℓ

(
hij
Fα

)
− (1−α)F2α

(
hij
Fα

)2

.

The speed bounds of Corollary 7.4 therefore imply that the maximum of

(1+ t)(1−α)/(α+1)F−ακmax

does not increase if it is large, and it follows that there exists a constant C such
that

κmax ≤ CF
α(1+ t)(α−1)/(1+α) ≤ C(1 + t)−1/(1+α).

Therefore, κi/F ≤ C̃ where C̃ is a constant independent of t. Since κi/F is
homogeneous of degree zero and approaches infinity on the boundary of Γ+, there
exists ε > 0 such that κmin ≥ εκmax. Therefore,

κmin ≥ ε(1+ t)−1/(1+α)

by the lower speed bound. It follows that there exist constants 0 < C− < C+ such
that

(8.3) C−(1+ t)−1/(1+α) ≤ κi(x, t) ≤ C+(1+ t)−1/(1+α)

for all x ∈ M and t in the interval of existence.

8.2. Bounds on the principal curvatures: F and F∗ concave. The key step
in cases (2) and (3) of Theorem 1.1 is an estimate on the smallest principal curva-
ture (or largest principal radius), which is closely related to the estimate proved in
[AMZ, Lemma 11] in the case α = 1 in the Euclidean setting.

We consider the evolution equation for the tensor Gij = F−α∗ rij , and ap-
ply the tensor maximum principle (see [Ha1, Theorem 9.1], and particularly the
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refinement proved in [A5, Theorem 3.2]) to bound the maximum eigenvalue.
Equations (4.13) and (4.11) yield the following evolution equation for Gij :

∂

∂t
Gij = αF

−(1+α)
∗ Ḟkℓ∗ ∇̄k∇̄ℓGij − 2αF−(1+α)∗ Ḟkℓ∗ ∇̄kF

−α
∗ ∇̄ℓrij(8.4)

+ αF−(1+2α)
∗ F̈kℓmn∗ ∇̄irkℓ∇̄jrmn

− α(1+α)F−(2+2α)
∗ ∇̄iF∗∇̄jF∗ + (1− α)F−2α

∗ ḡij

= αF−α∗ Ḟkℓ∗ ∇̄k∇̄ℓGij − 2αF−1
∗ Ḟkℓ∗ ∇̄kF

−α
∗ ∇̄ℓGij

+ 2αrijF−1
∗ Ḟkℓ∗ ∇̄kF

−α
∗ ∇̄ℓF

−α
∗

+ αF−(1+2α)
∗ F̈kℓmn∗ ∇̄irkℓ∇̄jrmn

− α(1+α)F−(2+2α)
∗ ∇̄iF∗∇̄jF∗ + (1− α)F−2α

∗ ḡij .

At a point where a maximum of the largest eigenvalue of Gij occurs, choose an
orthonormal basis for THn that diagonalises r (hence also G) with eigenvalues
in decreasing order, so that the maximum eigenvalue of Gij is r1F−α∗ . Note
that Ḟ∗ is then also diagonal at the maximum point, and the second deriva-
tives F̈∗ can be written in terms of the derivatives of f∗ by using the expression
in [A1, Equation 2.23]. The speed bound of Corollary 7.4 and the result of
[A5, Theorem 3.2] imply that there exists C such that the maximum eigenvalue
of Gij − C(1+ t)(1−α)/(1+α)ḡij is decreasing, provided the following holds at the
maximum point:

Q : = αF−(1+2α)
∗ F̈kℓmn∗ ∇̄1rkℓ∇̄1rmn −α(1+α)F

−(2+2α)
∗

(
∇̄1F∗

)2

+ 2αr1F
−1
∗

∑

k

Ḟk∗(∇̄kF
−α
∗ )2

− 2αF−(1+α)∗ sup
Γ
Ḟk∗(2Γ

p
k ∇̄kG1p − (Γpk )

2(Gpp −G11)) ≤ 0.

The optimal choice of Γ is obtained by completing the square, giving

Q = αF−(1+2α)
∗ F̈kℓmn∗ ∇̄1rkℓ∇̄1rmn −α(1+α)F

−(2+2α)
∗ (∇̄1F∗)

2

+ 2αr1F
−1
∗

∑

k

Ḟk∗(∇̄kF
−α
∗ )2 + 2αF−(1+α)∗

∑

k,p

Ḟk∗
(∇̄kG1p)2

Gpp −G11
.

Multiplying through by α−1F1+2α
∗ gives the following:

αF1+2α
∗ Q =

∑

k,ℓ

f̈ kℓ∗ ∇̄1rkk∇̄1rℓℓ + 2
∑

k>ℓ

ḟ k∗ − ḟ
ℓ
∗

rk − rℓ
∇̄1r

2
kℓ − (1+α)

(∇̄1F∗)2

F∗

+ 2r1

∑

k

ḟ k∗

(
∇̄kF−α∗
F−α∗

)2

+ 2Fα∗
∑

k,p

ḟ k∗
(∇̄kG1p)2

F−α∗ (rp − r1)
.
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We note that ∇̄kG1p = ∇̄k(F−α∗ r1p) = F−α∗ ∇̄kr1p for p ≠ 1 at the maximum
point, while ∇̄kG11 = 0. This gives the following:

∑

k,ℓ

f̈ kℓ∗ ∇̄1rkk∇̄1rℓℓ + 2
∑

k>1

ḟ k∗ − ḟ
1
∗

rk − r1

(
∇̄kr11

)2
+ 2

∑

k>ℓ>1

ḟ k∗ − ḟ
ℓ
∗

rk − rℓ

(
∇̄1rkℓ

)2

−
(1+α)F∗
αr2

1

(
∇̄1r11

)2
+ 2

∑

k

ḟ k∗
r1

(
∇̄kr11

)2
+ 2

∑

k

∑

p>1

ḟ k∗
rp − r1

(
∇̄1rkp

)2

=
∑

k,ℓ

f̈ kℓ∗ ∇̄1rkk∇̄1rℓℓ + 2
∑

k>1

ḟ k∗ − ḟ
1
∗

rk − r1

(
∇̄kr11

)2
+ 2

∑

k>ℓ>1

ḟ k∗ − ḟ
ℓ
∗

rk − rℓ

(
∇̄1rkℓ

)2

−
(1+α)F∗
αr2

1

(
∇̄1r11

)2
+ 2

∑

k

ḟ k∗
r1

(
∇̄kr11

)2

+ 2
∑

k>1

ḟ 1
∗

rk − r1

(
∇̄kr11

)2
+ 2

∑

k,p>1

ḟ k∗
rp − r1

(
∇̄1rkp

)2
.

The concavity of f∗ implies that the terms on the first line are all non-positive.
The remaining terms are all manifestly non-positive except for the fifth term. Con-
sider the terms which involve (∇̄kr11)2 with k > 1: these are

2
∑

k>1

ḟ k∗ − ḟ
1
∗

rk − r1
(∇̄kr11)

2 + 2
∑

k>1

ḟ 1
∗

rk − r1
(∇̄kr11)

2 + 2
∑

k>1

ḟ k∗
r1
(∇̄kr11)

2

= 2
∑

k>1

ḟ k∗

(
1

rk − r1
+

1
r1

)
(∇̄kr11)

2 = 2
∑

k>1

ḟ k∗
rk

r1(rk − r1)
(∇̄kr11)

2.

This leaves only the terms involving ∇̄1r11 to consider: these are (omitting those

in the f̈∗ term, which are non-positive)

(
−

1+α
α

f∗
r
2
1

+ 2
ḟ 1
∗

r1

)
(∇̄1r11)

2

=

(
−

1+ α
α

∑

k>1

ḟ k∗rk
r
2
1

+
α− 1
α

f 1
∗

r1

)
(∇̄1r11)

2.

In cases (2) and (3), this term is again non-positive since α ≤ 1. Therefore, the
maximum principle applies to show that r11F−α∗ ≤ C(1+t)(1−α)/(1+α), and hence
r11 ≤ C(1+ t)1/(1+α).

In case (2), the argument of Section 8.1 gives κmax ≤ C(1+t)−1/(1+α). The ar-
gument above gives rmax ≤ C(1+t)1/(1+α), so that κmin ≥ C(1+t)−1/(1+α). Thus,
all principal curvatures of the hypersurface are comparable to (1+ t)−1/(1+α), and
an estimate of the form (8.3) holds.
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8.3. Bounds on the principal curvatures: F∗ concave and F∗|∂Γ+ = 0.
In case (3), the estimate rmax ≤ C(1 + t)1/(1+α) holds by the argument of the
previous section. Since the speed bounds also give F∗ ≥ C(1+t)1/(1+α), it follows
that rmax/F∗ ≤ C. This quantity is scaling invariant, and approaches infinity on
the boundary of the positive cone; thus, it defines a properly contained sub-cone
of the positive cone. It follows that rmax/rmin ≤ C for some C, so all principal
curvatures are comparable to each other and to F∗. In particular, an estimate of
the form (8.3) holds.

8.4. Bounds on the principal curvatures: n = 2. The argument to control
principal curvatures in this case is closely related to the main result of [A6]: the
key step is to compute the evolution equation for G = (κ2 − κ1)2/(κ2 + κ1)2.
The equations are identical, except that the sign is reversed in the “reaction” terms
involving curvature alone. Thus, the calculation in Section 5 of [A6] gives

∂G

∂t
= Ṡij∇i∇jG+ (Ġ

ijS̈kℓmn − ṠijG̈kℓmn)∇ihkℓ∇jhmn

− Ġ(h)Ṡ(h2)+ (α− 1)SĠ(h2).

Since G is homogeneous of degree zero, the term involving Ġ(h) is zero. The
reaction terms are therefore

−(1− α)SĠ(h2) = −4(1−α)S
κ1κ2(κ2 − κ1)2

(κ2 + κ1)3
≤ 0.

The gradient terms Q = (ĠS̈ − ṠG̈)(∇h,∇h) are the same as in the situation of
[A6], and so are given at the maximum point by

Q = SĠ1

(
α(α− 1)

κ2
2

+
2α

κ2(κ2 − κ1)

)
(∇1h22)

2

+ SĠ2

(
α(α− 1)

κ2
1

−
2α

κ1(κ2 − κ1)

)
(∇2h11)

2.

If κ2 > κ1, then Ġ2 is non-negative, while the terms is the second bracket are both
non-positive; and Ġ1 is non-positive, while the terms in the first bracket are

α

κ2
2(κ2 − κ1)

((α− 1)(κ2 − κ1)+ 2κ2)

=
α

κ2
2(κ2 − κ1)

((α+ 1)κ2 − (1−α)κ1) ≤ 0,

since κ2 ≥ κ1. Hence, Q ≤ 0 and the maximum of G is non-increasing. This
implies a bound on the ratio κmax/κmin, and combining this with the speed bound
gives estimates above and below on principal curvatures of the form (8.3).
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8.5. Bounds on the principal curvatures: the case α > 1. In case (5),
the computation from Section 8.2 can again be applied: the argument there
shows that the maximum eigenvalue of F−α∗ rij − C(1+ t)−(α−1)/(α+1)ḡij is non-
increasing, provided we can show that the terms involving ∇̄1r11 are non-positive
(the condition α ≤ 1 was not used in controlling any of the other terms). These
terms are given by

(
−

1+α
α

∑

k>1

ḟ k∗rk
r
2
1

+
α− 1
α

f 1
∗

r1

)
(∇̄1r11)

2.

The assumption of case (5) is that ḟ iκi > ḟ jκj for κi > κj . This can be translated
to an inequality between the derivatives of f∗, as follows: since f∗(r1, . . . , rn) =

f (r−1
1 , . . . , r

−1
n )

−1, the derivative is given by ḟ i∗ = f
−2ḟ ir−2

i . Therefore, we have

ḟ i∗ri = f
−2ḟ ir−1

i = f−2ḟ iκi. If ri > rj , then κi < κj and so

ḟ i∗ri − ḟ
j
∗rj = f

2(ḟ iκi − ḟ
jκj) ≤ 0.

In particular, this implies that ḟ k∗rk ≥ ḟ
1
∗r1 for all k > 1. Substituting this in the

terms above gives the following upper bound:
(
−(n− 1)

1+α
α

+
α− 1
α

)
ḟ 1
∗

r1
(∇̄1r11)

2.

This is non-positive, so we obtain rmax ≤ C(1+ t)1/(1+α), applying the maximum
principle. The upper bound on κmax follows as in case (3) since f∗ is zero on the
boundary of the positive cone, and the estimate (8.3) holds as before.

9. HIGHER REGULARITY AND LONG-TIME EXISTENCE

In this section, we establish bounds on higher derivatives of curvature and all
derivatives of the embedding for a solution of (1.1), and deduce that the solutions
exist for all time. The estimates will also be important in the next section in
proving convergence to hyperboloids.

The basic regularity result is as follows.

Proposition 9.1. Let X : M̃ × [0, a] → Rn,1 be a co-compact solution of (1.1)
satisfying the hypotheses of Theorem 1.1, and suppose there exists C > 0 such that

C−1 ≤ κi(x, t) ≤ C

for all x ∈ M̃ and t ∈ [0, a], and i ∈ {1, . . . , n}, Then, there exists a constant
C̃k for each k ≥ 1, depending only on a, C, and F , such that on M̃ × [a/2, a], the
following estimates hold:

C̃−1
1 g̃ ≤ g(x,t) ≤ C1g̃ and |∇̃(k)X|g̃ ≤ C̃k

for each k ≥ 2, where g̃ and ∇̃ are the metric and connection induced on M̃ the
embedding at time a/2.
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Proof. The argument is similar to that given in [AMZ, Theorem 5], and em-
ploys the same strategy as [Ha1] and [Hu1], beginning with estimates on higher
derivatives of curvature, then deducing estimates on derivatives of the embedding
itself. The details differ slightly in the various cases of Theorem 1.1, and we indi-
cate the steps in each case briefly.

In cases (2), (3), and (5), where f∗ is concave, the assumed bounds on cur-
vature make the evolution equation (4.10) uniformly parabolic. The estimates of
Evans [E4] or Krylov [K] apply to give Hölder continuity of the second derivatives.
Schauder estimates then apply to the evolution equations for higher derivatives to
produce Ck,α estimates for the solution away from t = 0. In particular, there are
estimates on all derivatives of curvature.

The bounds on the derivatives of the embedding follow. First, the evolution
equation (4.1) for the metric g and the bounds on principal curvatures show that
the metrics at different times are all comparable. The evolution equation for the
kth derivative of the embedding involves only derivatives of curvature up to order
k, and so gives bounds on the kth derivative for each k ≥ 2 (see, e.g., the argument
given in [AB, Theorem 3]).

In case (1) where f is concave, Hölder continuity of second derivatives can
be deduced by writing the evolving hypersurfaces as graphs: the graph function
then satisfies a uniformly parabolic fully nonlinear evolution equation with con-
cave dependence on the second derivatives from the evolution equation, and the
Evans-Krylov estimates apply. The higher regularity again follows using Schauder
estimates, and the argument to bound the derivatives of the embedding is un-
changed.

Finally, in case (4) the special regularity results of [A2] apply (to either equa-
tion (4.10) or the graphical evolution equation) to give Hölder continuity of sec-
ond derivatives. The rest of the argument is the same as for the other cases. ❐

Corollary 9.2. Under the assumptions of Theorem 1.1, the solution X exists on
M̃ × [0,∞).

Proof. If the maximal time of existence T is finite, the estimates above give
uniform bounds on all derivatives of the embedding, and also on the time deriva-
tives of these. In particular, the embeddings Xt are Cauchy in Ck for each k as
t approaches T , and hence converge in C∞ to an embedding XT . Applying the
short-time existence result to XT extends the solution to a longer time interval,
contradicting the assumption that T is the maximal time of existence. ❐

10. UNIFORM HIGHER REGULARITY AND CONVERGENCE

Scaling-invariant bounds on all higher derivatives of the curvature for the evolv-
ing hypersurfaces can now be established, by using the scaling properties of the
equation. Let X : M̃ × [0,∞) → Rn,1 be a solution of (1.1). For fixed τ ∈ (0, T ),
define Xτ : M̃ × [0,∞)→ Rn,1 by

Xτ(z, t) = τ
−1/(1+α)X(z, τt).
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Then, Xτ is again a solution of equation (1.1), which is co-compact with the
inclusion of G in Isom+(Rn,1) given as in equation (3.1) by

gτ(z) = L(g)z + τ
−1/(1+α)b(g).

The bounds established in the previous sections imply the following bounds for
Xτ : the bounds on the support function from Corollary 7.2 give

−
p−(z0) · z

τ1/(1+α)
+

(
R1+α

τ
+ (1+α)t

)1/(1+α)

≤ uτ(z, t) ≤ −
p+(z0) · z

τ1/(1+α)
+

(
r 1+α

τ
+ (1+α)t

)1/(1+α)

.

The speed bounds of Corollary 7.4 give the following for t ≥ 0:

(
R1+α

τ
+ (1+ α)t

)1/(1+α)

−
R

τ1/(1+α)

(1+ α)t
(10.1)

≤ Fτ(x, t)
α ≤

(
r 1+α

τ
+ (1+α)t

)1/(1+α)

+
R − r

τ1/(1+α)

(1+α)t
.

In particular, the speed Fατ has positive bounds above and below independent of
τ on M̃ × (a, b) (for τ not close to zero) for any 0 < a < b < ∞, and converges
to ((1 + α)t)−α/(1+α) as τ approaches infinity. Similarly, the principal curvature
bound (8.3) implies that the principal curvatures of Xτ have positive upper and
lower bounds independent of τ on M̃ × (a, b) (away from τ = 0).

Bounds in C0,β on the second fundamental form now follow, by slightly dif-
ferent arguments for each case of Theorem 1.1. In case (1), Fα is concave, and
the Krylov-Safanov estimates can be applied (e.g., to the scalar equation given by
describing the evolving hypersurface as a graph). In cases (2), (3), and (5), f−α∗
is a concave function of the principal radii of curvature, and the Krylov-Safonov
estimate can be applied to equation (4.10). Finally, in case (4), the estimates of
[A2] can be applied.

Schauder estimates now imply bounds on all higher derivatives of the curva-
ture, and it follows that the time of existence is infinite (by the same argument as
presented in [Ha1] or [Hu1]).

Finally, the estimate of Corollary 7.2 implies that Xτ(·, ·) converges locally in
Hausdorff distance to the expanding unit future hyperboloid as τ →∞. Standard
interpolation inequalities imply that the principal curvatures of these hypersur-
faces converge locally uniformly to 1, and the co-compactness and higher regular-
ity then imply that the rescaled hypersurfaces converge in Ck for every k to the
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hyperboloid (an argument similar to that in [Hu1] must be used to show that the
map Xτ(·,0) converges, as well as the image hypersurface). This completes the
proof of Theorem 1.1.

11. ELEMENTARY SYMMETRIC FUNCTIONS IN CASE (5)

For application of Theorem 1.1, it is useful to know which of the commonly
used examples are covered in the various cases. Many examples satisfying the
conditions of cases (1)–(4) are included in [AMZ]. Here, we will establish the
most important examples covered by case (5) of the theorem: namely, the flows

with speed S = Eα/kk , where Ek is the kth elementary symmetric function of the

principal curvatures. Note that in this case, f = E1/k
k , and f∗ = (En/En−k)1/k,

which is concave and zero on the boundary of the positive cone. The following
proposition therefore shows that these flows satisfy the requirements of case (5) of
Theorem 1.1 for α > 1:

Proposition 11.1. Let Ek be the kth elementary symmetric function, defined on
the positive cone Γ+. If f = E1/k

k , then ḟ iκi ≥ ḟ jκj for κi > κj .

Proof. By definition,

Ek(κ1, . . . , κn) =
∑

A⊂{1,...,n}
|A|=k

∏

ℓ∈A

κℓ.

The derivative with respect to κi can be computed as follows: Ek is a linear func-
tion of κi, with a factor κi appearing in each term in the sum corresponding to a
set A with i ∈ A:

Ėik =
∑

A⊂{1,...,n}
|A|=k, i∈A

∏

ℓ∈A\{i}

κℓ.

Therefore,

Ėikκi =
∑

A⊂{1,...,n}
|A|=k, i∈A

∏

ℓ∈A

κℓ.

If i ≠ j, then this can be expanded as follows:

Ėikκi =
∑

A⊂{1,...,n}
|A|=k, i,j∈A

∏

ℓ∈A

κℓ +
∑

A⊂{1,...,n}
|A|=k, i∈A, j∉A

∏

ℓ∈A

κℓ

= κiκj
( ∑

B⊂{1,...,n}\{i,j}
|B|=k−2

∏

ℓ∈B

κℓ
)
+ κi

( ∑

C⊂{1,...,n}\{i,j}
|C|=k−1

∏

ℓ∈C

κℓ
)
.
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It follows that

Ėikκi − Ė
j
kκj = (κi − κj)

( ∑

C⊂{1,...,n}\{i,j}
|C|=k−1

∏

ℓ∈C

κℓ
)
.

In particular, if κi > κj , then Ėikκi − Ė
j
kκj ≥ 0. Finally, if f = E1/k

k , then

ḟ i = (1/k)E−(k−1)/k
k Ėik for each i, and the result follows. ❐

The reader may check that the flows defined by f =
∏n
k=1 E

αk/k
k satisfy the

conditions of case (5) of Theorem 1.1 for any α1, . . . , αn ≥ 0 with
∑n
k=1αk = 1.

12. APPLICATION TO THE CROSS-CURVATURE FLOW

In [CH], Chow and Hamilton introduce an interesting fully nonlinear heat flow
for negatively (or positively) curved metrics on a three dimensional manifold,
called the “cross curvature flow” (hereafter abbreviated “XCF”). We discuss the
formulation of this below. The discussion in [CH] relates principally to the neg-
atively curved case, and the authors give strong indications that the XCF should
deform any negatively curved metric on a compact three-manifold to a hyperbolic
metric, modulo scaling. This result is not yet known, and our purpose here is to
show that this does indeed hold for metrics that are locally isometrically embed-
dable in Minkowski space R3,1.

Chow and Hamilton define the cross curvature tensor as follows. First, the
Einstein tensor is defined by Pij = Rij−

1
2Rgij. This is the tensor with eigenvalues

equal to the principal sectional curvatures, and can alternatively be defined by

(12.1) P ij =
1
4
µiabµjcdRabcd,

where µ is the (dual) volume form. The cross curvature tensor (which Chow and
Hamilton denote by hij, but that we denote Xij to avoid confusion with the
second fundamental form) is defined if P is invertible by

(12.2) Xij = (detP)(P−1)ij .

Alternatively, the following expression defines Xij without the assumption that P
is invertible:

(12.3) Xij =
1
2
µiabµjcdP

acPbd.

In particular, if we work in a frame where P is diagonal, then so is X:

(12.4) P =



λ 0 0
0 µ 0
0 0 ν


 =⇒ X =



µν 0 0
0 λν 0
0 0 λµ


 .
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Our interest here is in the case where the metric g is embeddable (locally) with
some second fundamental form hij , in either Euclidean space R4 or Minkowski
space R3,1. Then, the Gauss equations give the following expression for the cur-
vature tensor, where we take γ = 1 for embedding into R4, and γ = −1 for
embedding into R3,1:

(12.5) Rabcd = γ(hachbd − hbchad).

From equation (12.1), we then have

P ij =
γ

4
µiabµjcd(hachbd − hbchad) =

γ

2
µiabµjcdhachbd.

In particular, in a frame that diagonalises h, we also have P diagonal (hence, also
X):

(12.6) h =



a 0 0
0 b 0
0 0 c


 =⇒ P = γ



bc 0 0
0 ac 0
0 0 ab


 .

By equation (12.4) we have (calculating in the same frame)

(12.7) X =



a2bc 0 0

0 ab2c 0
0 0 abc2


 = Kh,

where K = deth = abc.
The cross-curvature flow is defined by

(12.8)
∂

∂t
gij = −2γXij.

In particular, in the case where the metric is locally embeddable, this becomes

∂

∂t
gij = −2γKhij .

Comparison with equation (4.1) shows that the metric induced by a solution of
Gauss curvature flow in Minkowski space satisfies the cross-curvature flow with
γ = −1, and Lemma 9 of [AMZ] shows that the induced metric of a solution of
Gauss curvature flow in R4 satisfies the cross curvature flow with γ = 1.

Buckland [B] established that the cross-curvature flow with γ = 1 has a
unique solution for any positively curved smooth initial metric on a compact
three-manifold, and the cross-curvature flow with γ = −1 has a unique solu-
tion for any initial metric with negative sectional curvatures on a compact three-
manifold. It follows that in the locally embeddable case, the solution of XCF with
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a negatively curved initial metric is precisely the induced metric of the solution
of Gauss curvature flow we construct in this paper. In particular, we proved that
the evolving hypersurfaces under Gauss curvature flow approach the hyperboloid
modulo scaling, and therefore the metric approaches a hyperbolic metric modulo
scaling.

The corresponding result in the case γ = 1 is not known: it is not known
whether convex compact hypersurfaces become spherical under the Gauss cur-
vature flow in Rn+1 for n ≥ 3 (although in the case of antipodally symmetric
hypersurfaces, this follows from the results of Firey [F] together with the methods
of [A4]). See [A3] for the case n = 2.
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