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Summary

� The sensitivity of photosynthetic metabolism to temperature has been identified as a key

uncertainty for projecting the magnitude of the terrestrial feedback on future climate change.

While temperature responses of photosynthetic capacities have been comparatively well

investigated in temperate species, the responses of tropical tree species remain unexplored.
� We compared the responses of seedlings of native cold-adapted tropical montane rainforest

tree species with those of exotic warm-adapted plantation species, all growing in an interme-

diate temperature common garden in Rwanda. Leaf gas exchange responses to carbon diox-

ide (CO2) at different temperatures (20–40°C) were used to assess the temperature responses

of biochemical photosynthetic capacities.
� Analyses revealed a lower optimum temperature for photosynthetic electron transport rates

than for Rubisco carboxylation rates, along with lower electron transport optima in the native

cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temper-

atures were generally exceeded by daytime peak leaf temperatures, in particular in the native

montane rainforest climax species.
� This study thus provides evidence of pronounced negative effects of high temperature in

tropical trees and indicates high susceptibility of montane rainforest climax species to future

global warming.

Introduction

Observations have unequivocally demonstrated increasing global
surface air temperatures (Hartmann et al., 2013), and global cli-
mate change models project a continuation of temperature
increase over the coming century, irrespective of the chosen emis-
sion scenario (IPCC, 2013; Burrows et al., 2014). As temperature
is one of the most important environmental factors controlling
physiological processes (Hughes, 2000; Poethig, 2003; Root
et al., 2003; Hegland et al., 2009), increased temperature is
expected to have significant effects on the fitness of all living
organisms.

Improving the understanding of the effect of temperature on
terrestrial plant species is particularly important, as most migrate
far more slowly than would be necessary to remain in a suitable
climate under mid- and high-range rates of global warming
(IPCC, 2013, 2014). Furthermore, terrestrial vegetation has
important biogeochemical, hydrological and biophysical inter-
actions with the atmosphere and its responses thus affect both
local and global climate (Denman et al., 2007; Bonan, 2008). In
particular, it is paramount to understand the responses of plant

primary production to climate change in order to project terres-
trial feedbacks on the carbon cycle along with the potential of the
terrestrial biosphere to be either mitigative or promotive to fur-
ther global warming (Cox et al., 2000; Cao et al., 2001; Bonan,
2008). The sensitivity of photosynthetic metabolism to tempera-
ture has been identified as the most important uncertainty with
respect to projections of the magnitude of the terrestrial feedback
on future climate change, highlighting the need for a better
understanding of plant photosynthetic responses to high temper-
ature (Booth et al., 2012).

In global vegetation models, photosynthesis of terrestrial plants
is modelled using the well-established biochemical model of pho-
tosynthesis developed by Farquhar et al. (1980; Sellers et al.,
1997; Pitman, 2003; Prentice et al., 2007). This model requires
parameters of two photosynthetic capacities; the maximum car-
boxylation rate of ribulose-1,5-bisphosphate carboxylase/oxygen-
ase (Rubisco; Vcmax) and the maximum rate of electron transport
(Jmax), necessary to regenerate ribulose-1,5-bisphosphate. The
maximum rates of photosynthetic carboxylation and electron
transport depend on multiple factors, of which the most impor-
tant include light (Carswell et al., 2000; Kenzo et al., 2006),
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nutrient availability (particularly nitrogen and phosphorus;
Kattge et al., 2009; Domingues et al., 2010; Mercado et al.,
2011) and intercellular carbon dioxide (CO2) concentration (Ci),
which is dependent on stomatal conductance (gs; Farquhar &
Sharkey, 1982), as well as temperature (Kattge & Knorr, 2007).
Increasing temperature causes Jmax and Vcmax to rise to a maxi-
mum followed by a rapid decrease at supraoptimal temperatures
(Berry & Bj€orkman, 1980; Medlyn et al., 2002a). Electron trans-
port is considered to be particularly sensitive to high tempera-
tures, because of its greater dependence on membrane stability
(Murakami et al., 2000; Sage & Kubien, 2007). Thus, the tem-
perature at which the maximum rates occur, the optimum tem-
perature (Topt), is often found to be significantly lower for Jmax

than for Vcmax (Walcroft et al., 1997; Dreyer et al., 2001; Medlyn
et al., 2002a).

In temperate tree species, the Topt values for Vcmax, Jmax and
leaf net photosynthesis (An) correlate with the prevailing temper-
ature regimes (Battaglia et al., 1996; Dreyer et al., 2001; Medlyn
et al., 2002a; Kattge & Knorr, 2007; Gunderson et al., 2010).
Furthermore, plant photosynthesis has been shown to acclimate
to prevailing growth temperature by shifting its Topt, particularly
that of Jmax, towards the temperature of the ambient air if sub-
jected to warming (Battaglia et al., 1996; Cunningham & Read,
2002; Kirschbaum, 2004; Hikosaka et al., 2006; Gunderson
et al., 2010). Photosynthetic thermal acclimation abilities have
also been demonstrated in studies taking advantage of tempera-
ture differences with season (Battaglia et al., 1996; Gunderson
et al., 2000; Medlyn et al., 2002a; Crous et al., 2013), altitude
(Cavieres et al., 2000; Zhang et al., 2007) and provenance (Hill
et al., 1988; Gunderson et al., 2000; Cunningham & Read,
2002; Medlyn et al., 2002b).

While the photosynthetic temperature responses of temperate
tree species are comparatively well studied, the responses of tropi-
cal tree species remain unexplored (Medlyn et al., 2002a; Kattge
& Knorr, 2007; Gunderson et al., 2010). This is unfortunate, as
tropical forests are inhabited by over half of all plant and animal
species on Earth, represent one-fourth of the global terrestrial car-
bon storage and are responsible for at least one-third of the global
primary production (Denman et al., 2007; Bonan, 2008; Beer
et al., 2010; Zhou et al., 2013). Tropical forests play a crucial role
in regulating both regional and global climate (Lewis, 2006), and
better understanding of the effect of increased temperature on
tropical forests is therefore paramount (Denman et al., 2007).
Most studies investigating the photosynthetic temperature
responses of tropical trees have focused on responses of An and
not the underlying biochemical mechanisms (i.e. Jmax and Vcmax).
They predominantly focus on species and ecosystems in South
America, primarily Amazonia (Rada et al., 1996; Clark et al.,
2003; Wittich et al., 2012; Cheesman & Winter, 2013), South
East Asia (Mori et al., 1990; Ishida et al., 1999) and Australia
(Pearcy, 1987; Read, 1990; Cunningham & Read, 2002),
whereas to date, no temperature response assessments have been
conducted on tropical African trees. These studies have indicated
that tropical trees may have a more narrow optimum temperature
range, with An quickly declining as temperatures become subopti-
mal or supraoptimal, compared with temperate and boreal

species. This is believed to be a consequence of adaptation to a
more stable climate and may imply that tropical species are more
sensitive to future temperature increases (Berry & Bj€orkman,
1980; Read, 1990; Battaglia et al., 1996; Cunningham & Read,
2002; Way & Oren, 2010). Observations of considerable
declines in growth rates of tropical trees resulting from only sub-
tle increases in air temperature (Clark et al., 2003; Feeley et al.,
2007; Doughty & Goulden, 2008; Way & Oren, 2010) further
support this hypothesis. Tropical forests are thus suspected of
being close to a thermal threshold, above which CO2 uptake is
strongly reduced (Doughty & Goulden, 2008).

This study aimed to improve the limited understanding of
temperature responses of tropical primary production by provid-
ing the first temperature response assessments of photosynthetic
capacities (i.e. Jmax and Vcmax) in tropical tree species. This was
achieved by examining leaf gas exchange responses to CO2 at dif-
ferent temperatures (20–40°C) in three native cold-adapted,
tropical montane rainforest species and three common exotic
warm-adapted plantation species, in an intermediate temperature
common garden in Rwanda. We hypothesized that: (1) Jmax is
more sensitive to high temperature than Vcmax, as has been found
in temperate and boreal tree species. (2) Cold-adapted native
montane rainforest species have lower photosynthetic optimum
temperatures (i.e. Topt for Jmax, Vcmax and An) than warm-
adapted exotic plantation species, as a consequence of adaptation
to the species’ climate of origin, which is not erased by acclima-
tion to the common garden conditions. (3) The optimum tem-
peratures of photosynthesis are commonly exceeded in the native
tropical species growing in the common garden, but not in the
exotic plantation species, demonstrating limited acclimation abil-
ity and high sensitivity to future global warming.

Along with increased temperatures, climate change also
includes continued increases in atmospheric CO2 concentrations
(Ca; IPCC, 2013, 2014). The expected CO2 rises are predicted to
increase the optimum temperature of photosynthesis, such that
the negative effects of increased temperature will be mitigated
(Long, 1991; Cao et al., 2001; Kirschbaum, 2004; Lloyd &
Farquhar, 2008). A fourth hypothesis explores the temperature
sensitivity under higher atmospheric CO2 concentration condi-
tions, according to the photosynthesis model parameterized for
the investigated species: (4) in a moderate climate change sce-
nario for year 2100 (IPCC, 2013, 2014), a 50% increase in
atmospheric CO2 concentration cancels the negative effects of
3°C warming such that heat-induced reductions in photosynthe-
sis remain similar compared with today.

Materials and Methods

Study site and plant material

The study was carried out on seedlings cultivated in the Rwasave
nursery, located on the edge of the Ruhande Arboretum
(Rwanda; 2°360S, 29°440E; c. 1640 m above sea level (asl)) and
surrounded by vegetation in all directions. At a meteorological
station c. 2 km from the arboretum (1765 m asl; Nsabimana
et al., 2009), the average day and night air temperatures at 7.5 m
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above ground were 20.8 and 17.1°C, respectively, the average rel-
ative humidity was 74% and annual rainfall was 1231 mm during
2006–2013. The climate of the region is tropical humid and the
difference in mean temperature between the warmest and coldest
months is 1.5°C. The rainfall is bimodal with most rain in
March–May and lighter occurrence in September–December,
separated by a major drought period in June–August and a mod-
erately dry period in January–February. Maximum temperatures
and the average diurnal temperature range at the meteorological
station are provided in Table 1.

Daytime air temperature (Model TinyTag Plus 2; Gemini
Data Loggers Ltd, Chichester, UK; placed inside self-ventilating
radiation shields) at 1.8 m above ground in the nursery was simi-
lar to that at 1.8 m above ground at the meteorological station,
but predawn temperature was c. 3°C lower at the lower location
of the nursery. The vertical variation in air temperature was con-
siderable, with the temperatures at 1.8 and 0.4 m above ground
being 2°C and 4°C higher compared with the temperature at
7.5 m in the nursery.

The taxa selected (Table 2) were either native tropical montane
rainforest tree species or silviculturally important exotics, planted
in the Ruhande Arboretum one to two generations ago. The
native species included two climax taxa from the Meliaceae fam-
ily, Carapa grandiflora Sprague and Entandrophragma excelsum
(Dawe & Sprague) Sprague, along with one pioneer species from
the Rosaceae family, Hagenia abyssinica (Bruce) J. F. Gmelin.
Carapa grandiflora is a dominant species in transitional Afromon-
tane rainforest and has an altitudinal distribution ranging
between 1600 and 2500 m asl (White, 1983; Fischer &
Killmann, 2008; Bloesch et al., 2009). Entandrophragma excelsum
is a dominant species in Afromontane rainforest and occurs
between 1500 and 2100 m asl (White, 1983; Fischer & Kill-
mann, 2008; Bloesch et al., 2009) and H. abyssinica, which is the
diagnostic species for H. abyssinica forest, occurs at altitudes of
1800–3400 m asl (White, 1983; Fischer & Killmann, 2008;

Bloesch et al., 2009). The plant material of the three native spe-
cies originates from the Nyungwe national park montane rainfor-
est (Rwanda; 2°150–2°550S, 29°000–29°300E; 1500–2950 m asl).
At a meteorological station located at Uwinka (2°2804300S,
29°1200000E; 2465 m asl; Nsabimana, 2009), the average day and
night air temperatures at 7.5 m above ground were 15.7 and
13.5°C, respectively, the relative humidity was 81%, and annual
rainfall was 1879 mm during 2007–2013. At another meteoro-
logical station located at 1935 m asl in Nyungwe, the annual
mean temperature was 1.5°C higher than at Uwinka. Maximum
temperatures and average diurnal temperature range experienced
at Uwinka are provided in Table 1.

Three common exotic plantation taxa were selected to repre-
sent warm-adapted exotics (Table 2): two Myrtaceae species,
Eucalyptus microcorys F. Muell and Eucalyptus maidenii F. Muell,
along with a deciduous pioneer species from the Meliaceae fam-
ily, Cedrela serrata Royal. Eucalyptus maidenii occurs in temperate
southern coastal New South Wales and Victoria, Australia (Hill,
1991), whereas E. microcorys is distributed in warmer subtropical
coastal areas of New South Wales and Queensland, Australia
(Hill, 1991). Cedrela serrata is known to occur from Central to
South East Asia (Orwa et al., 2009). Maximum temperatures and
average diurnal temperature range experienced by the exotic spe-
cies in their known native distributions are provided in Table 1.

The seedlings were cultivated in pots containing clay soil from
the surrounding area (ISAR, 2011) and were irrigated twice daily
with water sourced from the local creek. The pots were placed in
monospecific plots, some partially shaded from the sun by basic
shade houses. Seedling dimensions are provided in Table 2.

Gas exchange measurements

Gas exchange measurements were completed on two seedlings
per day during July and August 2011. One fully developed sun
leaf with a healthy appearance (i.e. normal colouration and no

Table 1 Temperature parameters (°C) for Nyungwe montane rainforest, the common garden of Ruhande Arboretum, and the known native distribution of
three exotic tree species

Air temperature parameter

Nyungwe
montane
rainforest1

Common
garden2

Eucalyptus

microcorys3
Eucalyptus

maidenii3
Cedrela

serrata4,5

Mean diurnal range6 2.2 3.7 11.5 12.0 10.7
Mean daily maximum of warmest month7 19.2 24.8 26.9 24.3 n/a
Mean monthly maximum of warmest month8 22.1 27.5 33.1 32.6 29.6
Mean annual maximum9 22.6 27.8 40.8 40.4 n/a

Data for the native species refers to footnotes 1 and 2 and for the exotic species to footnotes 3–9. Values for the exotic species are based on climate
extracted for coordinates where species observations have been recorded (Eucalyptus: 5598 records, 1940–2012; Cedrela serrata: nine records, dates not
available). n/a, data not available.
1Measured at Uwinka meteorological station at 2465m above sea level (asl) during 2007–2013.
2Measured at a nearby (c. 2 km away) meteorological station at 1765 m asl during 2006–2013.
3ALA (2014).
4GBIF (2014).
5Hijmans et al. (2005).
6Mean diurnal range (average of years 1950–2000; °C).
7Daily maximum of warmest month (average of years 1927–1995; °C).
8Monthly maximum of warmest month (average of years 1957–2004; °C).
9Annual maximum (average of years 1957–2004; °C).
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visible damage) was measured on each seedling and five to six
seedlings per species were investigated. The species to be mea-
sured each day was selected randomly and different monospecific
plots within the nursery were used for each replicate when avail-
able.

Measurements of the response of An to varying Ci (A–Ci

curves) were conducted at leaf temperatures (Tleaf) of 20, 25,
30, 35 and 40°C using an LI–6400XT Portable Photosynthesis
System equipped with an LED light source as well as an
expanded temperature control kit (Li-Cor Inc., Lincoln, NE,
USA). The measurements were conducted at a photosynthetic
photon flux density of 1800 lmol m�2 s�1 and were
commenced as soon as leaf temperature and gs were stable.
The A–Ci curves included measurements at the following CO2

concentrations of air entering the leaf chamber: 400, 60, 125,
225, 400, 800, 1200, 1600, 2000 and 400 lmol mol�1. As a
result of difficulties in measuring at 40°C with acceptable lev-
els of gs (> 0.015 mol H2Om�2 s�1) and reaching 20°C on
hotter days, not all desired leaf temperatures could be mea-
sured for some replicates. As a result, the temperature range
for the native species C. grandiflora was 20–35°C (i.e. no mea-
surements were completed at 40°C), four replicates were possi-
ble at 20°C for the exotic species E. maidenii and three
replicates were possible at 40°C for the native species
E. excelsum.

A sensitivity analysis was performed to assess the possible influ-
ence of cuticular transpiration on the estimated values of Jmax

and Vcmax. In this analysis, cuticular conductance was assumed to
be 2% of maximum gs (at 20°C), which is typical for nonsuccu-
lents (Larcher, 2003). Subtraction of this cuticular conductance
from the original value of gs (and the consequent recalculation of
Ci) had relatively small effects on the parameterization of Vcmax

and Jmax. In C. grandiflora at 35°C and E. excelsum at 40°C (the
measurements with lowest gs), the mean effects on Jmax and Vcmax

were +3 and +8%, respectively, while the effects for the other
species or temperatures were considerably smaller. Results for
Jmax temperature responses are thus only slightly influenced by
possible cuticular transpiration. The larger influence on Vcmax is
probably a minor concern, as lack of discernible peaks within the
measured temperature range for half of the species introduced a
comparatively large uncertainty regarding the Vcmax high temper-
ature responses (see the ‘Photosynthetic temperature responses’
subsection).

Parameterization of photosynthesis models

The photosynthesis model by Farquhar et al. (1980), with modi-
fications of photosynthetic temperature dependences (Bernacchi
et al., 2001; Medlyn et al., 2002a), was used to parameterize the
photosynthetic capacities Vcmax and Jmax, as well as the nonpho-
torespiratory CO2 release in the light (Rd), from A–Ci curve data
using the least-square method. The rates of Vcmax-limited photo-
synthesis (Ac) and Jmax-limited photosynthesis (Aj) were esti-
mated using Eqns 1 and 2:

Ac ¼ 1� C�

Ci

� �
Vcmax�Ci

Ci þ Kcð1þ O
Ko
Þ � Rd Eqn 1

Aj ¼ J
Ci � C�

4Ci þ 8C� � Rd Eqn 2

(Kc and Ko, Michaelis–Menten constants for CO2 and O2,
respectively; Γ*, the CO2 concentration at which the carboxyla-
tion reaction of Rubisco equals the oxygenation reaction.) Values

Table 2 Information on species native distribution, average plant height, leaf size (taken as 0.79 length9width), leaf mass per unit area, leaf nitrogen
content per unit area (Na) and mass (Nm) and leaf phosphorus content per unit area (Pa) and mass (Pm)

Species Native distribution
Plant
height (m)

Leaf
size (cm2)

Leaf mass per
unit area
(g m�2) Na (g m�2) Pa (mg m�2) Nm (%) Pm (%)

Carapa

grandiflora1,2,3
East African montane
forest endemic

0.85� 0.04 85.9� 6.6A 81.4� 3.4A 2.14� 0.09A 106� 10AB 2.63� 0.08A 0.13� 0.01A

Entandrophragma

excelsum2,3,4
Central East
African forest

0.23� 0.02 35.7� 4.3B 55.5� 2.0BC 1.33� 0.04B 172� 14A 2.39� 0.10A 0.31� 0.03B

Hagenia

abyssinica2,3
African montane
forest endemic

0.39� 0.05 24.0� 2.9B 44.4� 2.8C 1.58� 0.11B 86.4� 17B 3.56� 0.14B 0.20� 0.04AB

Cedrela serrata5 South-east Asia 0.82� 0.03 19.2� 1.6B 56.8� 2.9BC 2.18� 0.20A 96.2� 12AB 3.82� 0.24B 0.17� 0.02A
Eucalyptus
maidenii6

East Australia;
NSW and VIC

0.89� 0.06 60.2� 9.3C 65.5� 1.5B 2.26� 0.11A 82.5� 7.9B 3.45� 0.16B 0.13� 0.01A

Eucalyptus

microcorys6
East Australia;
NSW and QLD

0.35� 0.04 15.7� 1.1B 67.6� 8.0AB 1.83� 0.18AB 145� 42AB 2.80� 0.20A 0.20� 0.05AB

Among species *** *** *** *** ** *** ***
Native vs exotic ns ns ns ns ns ns ns

Species investigated include native tropical montane species (Carapa grandiflora, Entandrophragma excelsum and Hagenia abyssinica) and exotic planta-
tion species (Cedrela serrata, Eucalyptus maidenii and Eucalyptus microcorys). Values represent mean� SE. The significance of results from ANOVA (spe-
cies comparison) and Student’s t-test (native vs exotic species) is reported as: ns, P > 0.05; **, P < 0.01; ***, P < 0.001. The same capital letter indicates no
significant difference between species according to Tukey’s post hoc test.
1Kenfack (2011). 2Bloesch et al. (2009). 3Fischer & Killmann (2008). 4Lemmens (2008). 5Orwa et al. (2009). 6Brooker & Klenig (2006).
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(at 25°C) and temperature sensitivities of Γ*, Kc and Ko were
taken from Bernacchi et al. (2001). Values of Rd are not reported
because A–Ci curve based estimates of Rd are subject to rather
large uncertainty.

Leaf mesophyll conductance to CO2 was not estimated and
therefore apparent Vcmax and Jmax values were determined, based
on Ci rather than the CO2 concentration at the chloroplast. The
uncertainty of the values of curvature of the light response (0.9)
and quantum yield of electron transport (0.3 mol electrons
mol�1 photons) used when calculating Jmax from actual electron
transport (J) has only a slight effect on the estimated value of Jmax

(Medlyn et al., 2002a). The only a priori restriction placed on the
Vcmax and Jmax determination through A–Ci fitting was that data
points with Ci below 100 lmol mol�1 were forced to be Vcmax-
limited. Triose phosphate use limitation of photosynthesis, which
mainly occurs at high Ci and low temperature (Sage, 2002), was
not observed in the A–Ci curves of the present study (data not
shown). As a consequence of low gs at higher temperatures, the Ci

did not reach values high enough for An to be limited by the rate
of electron transport in some A–Ci curves. Determination of Jmax

required that An was clearly limited by J in at least one data point,
for which the value predicted by electron transport limitation was
> 10% lower than that predicted by carboxylation limitation
(according to data at lower Ci). Inclusion of Jmax data also
required that there were at least two Jmax values for each species
and temperature combination. As a result, Jmax data were unavail-
able for 20 of the 150 A–Ci curves obtained; mainly values at
high temperatures in the exotic species C. serrata and the native
species C. grandiflora and E. excelsum.

The temperature responses of photosynthetic capacities were
determined by regressing Vcmax and Jmax against measured Tleaf

using a peaked Arrhenius equation (Eqn 3), where a deactivation
term accounts for the negative effects at higher temperatures
(Medlyn et al., 2002a):

f Tkð Þ ¼ kopt

Hdexp
Ha Tk�Toptð Þ

TkRTopt

� �

Hd �Ha 1� exp
Hd Tk�Toptð Þ

TkRTopt

� �� � Eqn 3

(Ha, the activation energy (kJ mol�1); Topt, optimum tempera-
ture (°K); kopt, the value of Jmax or Vcmax at Topt (lmol m�2 s�1);
Hd, the deactivation energy (kJ mol�1); Tk, the measured leaf
temperature (°K); R, the universal gas constant (8.314 J
mol�1 K�1).) By fitting the observed data to Eqn 3, Ha, Topt, kopt
and Hd could be estimated. However, the peaked Arrhenius
equation is overparameterized if all four parameters are allowed
to vary (Dreyer et al., 2001; Medlyn et al., 2002a; Kattge &
Knorr, 2007) and, in such a case, data may be insufficient to reli-
ably estimate all parameters. Therefore, following the method of
previous studies on temperate and boreal species, Hd was held at
a constant 200 kJ mol�1 for all species (Medlyn et al., 2002a;
Kattge & Knorr, 2007). In an analysis where Hd was also allowed
to vary, it was only significantly different from 200 kJ mol�1 in
one case (Vcmax in E. maidenii).

As all replicates did not have data covering the entire tempera-
ture range, Eqn 3 was fitted to data pooled for each species. Fitted
parameters were considered to significantly differ between two
species if P ≤ 0.01, that is, if the following relationship between
mean values (x) and SE was true:

x1 � x2ð Þ � 2:58
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

1 þ SE2
2

q
[ 0 Eqn 4

While the probability of obtaining at least one significant dif-
ference by pure chance is 14% (1 – 0.9915) when making 15 pair-
wise comparisons, the probability of obtaining at least two
significant differences (as found here; Table 3) is just 2%.

Net photosynthesis temperature responses

To estimate biochemical limitations of An at varying tempera-
tures, the Farquhar et al. (1980) photosynthesis model parame-
ters from each A–Ci curve were used to calculate An at a common
Ci and saturating photosynthetic photon flux density
(1800 lmol m�2 s�1), for each leaf replicate and measurement
temperature. The intercellular to ambient CO2 concentration
ratio (Ci:Ca) was assumed to be 0.7. As the global ambient CO2

concentration at the time of measurement was 389 lmol mol�1

(Thoning et al., 2014), the common Ci was set to a constant
value of 272 lmol mol�1. In an additional analysis to assess the
effect of 50% elevated CO2 concentration on photosynthetic
temperature optimum, An was calculated at a common Ci of
408 lmol mol�1.

In order to also account for stomatal limitations of An at
increasing temperature, a third analysis was conducted in which
the decrease in Ci with increasing temperature and leaf-to-air
vapour pressure deficit (VPD) was calculated according to a cou-
pled stomatal-photosynthesis model assuming optimal stomatal
behaviour (AnT; Medlyn et al., 2011). The atmospheric vapour
pressure was held constant at 1.6 kPa (the mean predawn value
from the nearby meteorological station, which varied little over
the year and remained fairly constant during the day). The Ci

concentrations calculated with this stomatal behaviour model
were, for each 5°C increase between 20 and 40°C, 284, 253, 229,
209 and 192 lmol mol�1. For a +50% atmospheric CO2 con-
centration scenario, the corresponding values were 427, 380,
344, 314 and 287 lmol mol�1.

The temperature responses of An at Ci of 272 lmol mol�1

(An272) and Ci of 408 lmol mol�1 (An408) were parameterized
for each leaf replicate using nonlinear regression of a second-
order equation (S€all & Pettersson, 1994; Battaglia et al., 1996;
Gunderson et al., 2010), where An(T) is the An (lmol m�2 s�1)
at a given air temperature T (°C) and Aopt is the An at the opti-
mum temperature (Topt):

AnðT Þ ¼ Aopt � bðT � ToptÞ2 Eqn 5

Eqn 5 was fitted to An272 and An408 data for individual leaves,
and the significance of differences in Topt among species and
provenances (i.e. cold-adapted vs warm-adapted) was determined
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by one-way ANOVA and Student’s t-test, respectively. Five leaves
that had restricted An272 or An408 temperature ranges, and pre-
sumably as a result of this did not peak within the range of avail-
able data, were excluded from the analysis. Eqn 5 was not applied
to the AnT data as its highest values were commonly found at or
near the lower end of the measured temperature range (i.e. there
was often no discernible peak).

Leaf traits and energy balance

Leaf size (length and width) was recorded with a ruler to the near-
est millimetre. A hole punch (13 mm diameter) was used to col-
lect discs from each leaf, avoiding major veins, in order to
determine leaf mass per unit area (LMA) and leaf nitrogen and
phosphorus content expressed per unit area (Na and Pa, respec-
tively) and mass (Nm and Pm, respectively). The collected leaf
material was oven-dried at 70°C for at least 48 h before dry mass
was recorded. The discs were milled using a ball mill with stain-
less steel grinding jars (Model MM 301; Retsch, Haan, Ger-
many). Leaf nitrogen content was determined using an elemental
analyser (EA 1108; Fison Instruments, Rodano, Italy). Leaf phos-
phorus content was determined by extracting and oxidating leaf
phosphorus into phosphate (Valderrama, 1981), followed by
determining phosphate content through spectrophotometry
(Ames, 1966). Eighteen leaf samples were analysed for phospho-
rus content using a different method, inductively coupled plasma
mass spectrometry (ICP-MS; Basic Suite 1VE1; ACME Analyti-
cal Laboratories, Vancouver, BC, Canada), in order to calibrate
the spectrophotometric method.

Data on gs (at 25°C) and leaf dimensions, together with micro-
meteorological data collected at 7.5 m above ground from the
local meteorological station, were used to model the annual mean
leaf temperature (modelled Tleaf) of horizontal leaves at the hot-
test hour of the day (15:00 h) for each species. As a result of the
large variation in vertical air temperature, the micrometeorologi-
cal input data for the Tleaf modelling were corrected for the 3°C
higher temperature at canopy height (c. 1.0 m) and the corre-
sponding vertical difference in VPD (assuming no variation in
absolute air humidity). The horizontal wind speed at canopy
height was estimated by assuming a logarithmic wind profile
(Campbell & Norman, 1998). The micrometeorological data
used in the energy balance calculations included mean annual air
temperature (26.0°C; 23.0°C at 7.5 m), wind speed (0.45 m s�1;
1.52 m s�1 at 7.5 m), total incoming irradiance (381Wm�2)
and VPD (2.12 kPa; 1.57 kPa at 7.5 m) at 15:00 h. In an addi-
tional analysis, Tleaf was estimated based on mean daytime
(06:30–18:30 h) environmental conditions at canopy height (air
temperature 23.9°C; wind speed 0.35 m s�1; incoming radiation
285Wm�2; VPD 1.36 kPa). Leaf energy balance equations were
taken from Campbell & Norman (1998), with particular atten-
tion being paid to expressing variables on a relevant leaf area basis
(i.e. one- or two-sided). The photosynthetically active radiation
was assumed to be 50% of the total incoming radiation.

Leaf temperatures were also measured with infrared thermom-
eters (Model IR-66; CEM, Shenzhen, China) on seedlings of all
species except the exotic species E. microcorys. TheseT
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measurements were conducted on similarly sized plants growing
in the nursery in March 2014, under sunny conditions in the
early afternoon (13:00–15:00 h) of four days. On each day, Tleaf

was measured on 20–30 leaves per species, selecting leaves with a
horizontal leaf angle.

Results

Photosynthetic temperature responses

Values of Jmax and Vcmax at 25°C differed among all six spe-
cies (Table 3; Fig. 1; Jmax: P < 0.01; Vcmax: P < 0.01), but all
had a similar Jmax to Vcmax ratio (J : V ; mean 1.75� 0.07
SE), except for H. abyssinica which had a mean ratio of
2.29� 0.14 SE (P < 0.001). The native species, E. excelsum
and C. grandiflora, had the lowest values of both Jmax and
Vcmax (Table 3; Fig. 1). Additionally, gs at 25°C differed sig-
nificantly among species (P < 0.01; Table 3), in a similar
pattern as for photosynthetic capacities. Comparisons between
native tropical montane species and the exotic plantation spe-
cies demonstrated that native species had significantly lower
values of Vcmax (P = 0.04) and higher J : V ratios than exotic
species (P = 0.01), while Jmax and gs did not differ between
these two groups (Table 3).

Both Jmax and Vcmax at 25°C had significant positive relation-
ships with leaf nitrogen content, expressed on both an area (Na)
and a mass basis (Nm; P ≤ 0.04; Fig. 2); however, stronger rela-
tionships were found for Nm (Fig. 2). Leaf nitrogen content also
differed significantly among species (P < 0.01; Table 2), where
higher Nm was found in C. serrata, E. maidenii and H. abyssinica,
and higher Na was found in C. serrata, E. maidenii and
C. grandiflora. The species also differed in LMA (P < 0.01;
Table 2), with the highest values found in C. grandiflora and the
lowest in H. abyssinica. Neither LMA nor leaf nutrient content
significantly differed between native and exotic taxa (Table 2).

The leaf phosphorus content also differed among species
(P < 0.01), but not between native and exotic taxa (Table 2). The

response of Jmax and Vcmax at 25°C to leaf phosphorus content
varied among species, on both a mass (Pm) and an area basis (Pa;
data not shown). The data could therefore not be pooled, as for
the response to leaf nitrogen content, and data replication was
deemed insufficient to conclude that there were any effects of leaf
phosphorus content on photosynthetic capacities at an individual
species level.

The activation energy (Ha) of Vcmax and Jmax did not signifi-
cantly differ among species, but Ha was generally higher for Vcmax

than for Jmax (paired t-test: P = 0.002). Ha for Vcmax was also sig-
nificantly higher in the native than in the exotic species (P = 0.04;
Table 3), while Ha for Jmax did not differ between the two
groups.

Values of Topt for Vcmax and Jmax differed among species and
ranged between 29.3 and 38.3°C and between 34.6 and 41.9°C,
respectively (Table 3; Fig. 1). Values of Topt were lower for Jmax

than for Vcmax in native species, but not in exotics (Table 3;
Fig. 1). Native species also had significantly lower Topt for Jmax

than exotic species (P = 0.01), whereas Topt for Vcmax did not dif-
fer (Table 3).

For Jmax, the temperature response curves had clear discernible
peaks within the measured temperature range, particularly for the
three native species (Fig. 1a). Similarly, clear peaks within the
temperature responses for Vcmax could be produced for
E. excelsum, H. abyssinica and C. serrata. However, the lack of
clear peaks causes uncertainty in the Topt estimates of Vcmax for
the remaining three species, particularly C. grandiflora, for which
measurements only occurred up to 35°C (Fig. 1b).

Three different parameters of An were determined: An at a con-
stant Ci : Ca ratio of 0.7 (An272); An at a constant Ci : Ca ratio of
0.7 in an atmosphere with 50% higher CO2 concentration
(An408) and An at a Ci : Ca ratio that decreased with increasing
temperature, as predicted by an optimal stomatal behaviour
model (AnT; Medlyn et al., 2011; Fig. 3). The optimum tempera-
tures of An272 and An408 did not significantly differ among species
or between native and exotic species (Table 3). The average Topt

values for An272 and An408 across species were 26.3°C (� 0.85

(a) (b)

Fig. 1 Responses of (a) maximum electron
transport rate (Jmax) and (b) maximum rate
of Rubisco carboxylation (Vcmax) to
temperature. Species include native tropical
montane species (closed symbols and solid
lines) and exotic species (open symbols and
dashed lines). Error bars indicate� SE. Lines
represent the fitted peaked Arrhenius
equations.
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SE) and 29.0°C (� 0.75 SE), respectively (Figs 3a,b, 4). The AnT

at ambient atmospheric CO2 concentrations was negatively
affected by temperatures above 20–25°C in all species and its
Topt could thus not be confidently estimated (Fig. 3c). This dem-
onstrates that, when stomatal responses are also considered, pho-
tosynthetic optima drastically decrease. For a +50% atmospheric
CO2 concentration scenario, AnT peaked at 24–27°C (Fig. 3d).
In a sensitivity analysis, we assessed the influence of a 6% down-
regulation in Vcmax under elevated CO2; a typical response of
trees to growth in elevated CO2 (Ainsworth & Long, 2005). Such
down-regulation had only a minor effect on Topt of An408, which
was increased from 29.0 to 29.5°C (� 1.2 SE) across all species
(Supporting Information Fig. S1).

Leaf temperatures in relation to photosynthetic optimum
temperatures

Leaf width, length and gs (Table 2) along with micrometeoro-
logical parameters were used to model the annual mean Tleaf

of the six species at the hottest hour (15:00 h) in the common
garden. Modelled Tleaf values were considerably higher for
species with large leaves and low gs as compared with species
with smaller leaves and/or higher gs (Fig. 4; Table 2). Conse-
quently, C. grandiflora and E. excelsum (large leaves, low gs)
were found to have the highest modelled Tleaf and
E. microcorys (small leaves, high gs) had the lowest, while the

other species had intermediate values of leaf size, gs and mod-
elled Tleaf. Field measurements collected at 15:00 h on four
days in March 2014 confirmed the pattern of differences in
modelled Tleaf among species (Fig. 4). During these observa-
tions, air temperature at the meteorological station was
25.3°C; that is, somewhat above the mean annual air temper-
ature at 15:00 h of 23.0°C. Estimates of Tleaf based on aver-
age daytime (06:30–18:30 h) environmental conditions were
1–2°C lower than the estimates for 15:00 h (Fig. 4).

As the optimum temperature of photosynthesis (Jmax, Vcmax,
An272 and An408) refers to leaf temperature, the results were com-
pared with modelled and observed Tleaf values in order to deter-
mine acclimation capacity to the temperature of the common
garden and potential sensitivity to global warming. Daytime
mean and peak Tleaf greatly exceeded the Topt for Jmax in the
native species C. grandiflora and E. excelsum (Fig. 4). In
H. abyssinica and C. serrata, values of Tleaf and Topt for Jmax were
similar, while the two Eucalyptus species had considerably lower
Tleaf than Topt for Jmax. Daytime mean and peak Tleaf values were
similar to Topt for Vcmax in C. grandiflora, E. excelsum and
C. serrata but lower than Topt for Vcmax in the other three species
(Fig. 4). As for Jmax, the difference between optimal temperatures
of photosynthetic capacities and Tleaf was largest (c. 10°C) for the
two Eucalyptus species.

The optimal temperature of An at a Ci of 272 lmol mol�1 was
26.3°C averaged across all six species (� 0.85 SE), and thus

(a) (b)

(c) (d)

Fig. 2 Linear regressions of (a, b) maximum
Rubisco carboxylation rate (Vcmax) and (c, d)
maximum electron transport rate (Jmax) at
25°C with increasing leaf nitrogen (N)
content. N content is expressed on a mass
basis (a, c; Nm) and an area basis (b, d; Na)
for native tropical montane species (closed
symbols) and exotic plantation species (open
symbols).
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significantly lower than daytime mean and peak Tleaf in all species
(Fig. 4; Table 3). Increasing the CO2 concentration by 50%
increased the average optimum temperature of An by 2.7°C, from
26.3 to 29°C, across all six species (Fig. 4; Table 3). The Topt for
An408, however, remained significantly below Tleaf in all species
except E. microcorys. The exceedance of Topt for both An272 and
An408 by Tleaf was largest in the two climax montane rainforest
tree species C. grandiflora and E. excelsum.

Accounting also for stomatal responses to increasing VPD as
temperature rises, peak daytime Tleaf exceeded the Topt for AnT in
all species under ambient CO2 concentrations (Figs 3c, 4). For
a +50% atmospheric CO2 concentration scenario, Tleaf exceeded
the Topt for AnT in all species except E. microcorys (Figs 3d, 4).

Discussion

The overall objective of this study was to improve the limited
understanding of temperature responses of photosynthesis in
tropical tree species. This study has provided the first temperature
response assessments of photosynthesis in tropical African mon-
tane trees and, to the best of our knowledge, the first estimates of
temperature responses of photosynthetic capacities (i.e. Jmax and
Vcmax) in tropical tree species.

Hypothesis (1) predicted that Jmax would be more sensitive to
increased temperature than Vcmax, which was confirmed for the
tropical montane species, with Topt being 5–7°C lower for Jmax

than for Vcmax (Table 3). This finding conforms to the concept of
a greater dependence of electron transport than of Rubisco car-
boxylation on thylakoid membrane stability and, thus, higher
sensitivity to high temperatures (Murakami et al., 2000; Sage &
Kubien, 2007). It is also consistent with findings of previous
studies on temperate and boreal species (Dreyer et al., 2001;
Medlyn et al., 2002a; Kattge & Knorr, 2007). In contrast to the
native montane rainforest species, the exotic plantation species
had similarly high Topt for both Jmax and Vcmax (Table 3). The
Topt values for Jmax in the exotic species were in the upper range
of those reported previously (Kattge & Knorr, 2007), indicating
that the photosynthesis of these species is well adapted to high
temperatures.

Hypothesis (2) predicted that the native montane species
would have lower optimum temperatures for photosynthesis
than the exotic plantation species, as a consequence of being
adapted to a cooler climate combined with expected lower
acclimation ability (Cunningham & Read, 2002; Way &
Oren, 2010). This was confirmed for Jmax but not for Vcmax

(Table 3; Figs 1, 4), suggesting that thylakoid electron trans-
port capacity does not readily acclimate to the environmental
conditions of the common garden in the native montane species.
This implies that there are genetically controlled differences in
photosynthetic temperature responses between the native and
exotic species of this study, relating to their adaptations to a
colder or warmer origin.

(a) (b)

(c) (d)

Fig. 3 Temperature responses of net
photosynthetic rates are shown at (a) a
common ambient atmospheric [CO2] of 272
lmol mol�1 (An272), (b) a common elevated
atmospheric [CO2] of 408 lmol mol�1

(An408), (c) a temperature-dependent
intercellular [CO2] that decreases from 284
lmol mol�1 at 20�C to 192 mol mol�1 at
40�C in ambient atmospheric [CO2] (AnT),
and (d) a temperature-dependent
intercellular [CO2] that decreases from 427
to 287 lmol mol�1 in elevated atmospheric
[CO2] (see Net photosynthesis temperature
responses section in Materials and Methods),
for native tropical montane species (closed
symbols and solid lines) and exotic plantation
species (open symbols and dashed lines).
Error bars indicate� SE. Lines represent the
fitted net photosynthesis equation (Eqn 5).
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The apparent contradiction of native and exotic species having
different Topt for Jmax but not for An at a common Ci (An272 and
An408) is caused by An at CO2 concentrations of 272 and
408 lmol mol�1 typically being Vcmax limited. The Topt for
Vcmax was not significantly different between native and exotic
species (Table 3).

Hypothesis (3) predicted that limited acclimation ability of the
native montane rainforest species would cause their estimated
photosynthetic optimum temperatures to be frequently surpassed
by their leaf temperatures, whereas the exotic plantation species,
adapted to a warmer and more variable climate (Table 1), would
not be as susceptible to high temperatures and thus would be bet-
ter acclimated to the common garden conditions. This hypothesis
was confirmed by the finding of very large (c. 10°C) exceedances
of Topt for An272 by Tleaf at the hottest hour of the day in the two
climax montane rainforest species, C. grandiflora and E. excelsum,
compared with considerably smaller but significant exceedances
in the other species in the common garden (Table 3; Fig. 4). The
larger exceedances in the two climax montane rainforest species
compared with the other species were related to differences in leaf
energy balance, rather than differences in An optimum tempera-
tures (Table 3; Fig. 4). The large interspecific variation in Tleaf

highlights the importance of considering leaf traits influencing
the leaf energy balance (i.e. leaf size and gs) when evaluating plant
sensitivity to air temperature and global warming. Different spe-
cies grown together may have similar physiological temperature
responses but still experience very different degrees of heat stress
as a result of differences in their leaf energy budgets.

Our results demonstrate that photosynthesis of native montane
rainforest climax tree species (i.e. C. grandiflora and E. excelsum)
grown in a c. 5°C warmer habitat (Table 1) regularly operates at
supraoptimal temperatures with respect to biochemical limita-
tions (i.e. An272; Fig. 4), and that this situation is worsened if also

considering stomatal limitations (AnT; Fig. 3c). Our results thus
support earlier suggestions that the commonly observed midday
dips in photosynthesis are linked to supraoptimal temperatures
and that tropical trees may be especially susceptible to warming
(Clark et al., 2003; Clark, 2004; Doughty & Goulden, 2008).
The finding of tropical climax species being particularly sensitive
to high temperature is also in line with evidence from investiga-
tions of warming effects on the growth of tropical South Ameri-
can seedlings. For example, Cheesman & Winter (2013) have
demonstrated a stronger negative effect of warming on growth in
seedlings of tropical climax species than in those of tropical pio-
neer species. While not conclusive or directly applicable to
mature forest, this suggests that warmer ambient temperatures
have the potential to threaten seedling growth and recruitment
and potentially migration and survival rates of tropical montane
rainforest climax species (Medjibe et al., 2014; Zhu et al., 2014).
This may also affect not only canopy species, but co-occurring
biota which may not be able to persist in nonclimax vegetation
communities (Poulsen et al., 2011).

Hypothesis (4), predicting that a moderate climate change
scenario (+50% increased atmospheric CO2 concentration and
+3°C) would have minimal effects on heat-induced reductions
in photosynthesis, was corroborated by the finding that 50%
increased atmospheric CO2 concentration increased the opti-
mum temperature of An by 2.7°C across all species (Table 3).
This finding of balancing effects of projected increases in
CO2 and temperature on the Topt exceedances of photosyn-
thesis in tropical trees is in line with findings by Lloyd &
Farquhar (2008). While heat-induced reductions in the photo-
synthesis of a given species may be unaltered by concurrently
rising atmospheric CO2 and temperature, global warming will
probably affect the competitive balance between tropical tree
species with different magnitudes of optimum temperature

Fig. 4 Leaf temperatures in relation to
photosynthetic optimum temperatures. Leaf
temperatures are observations from four
clear days (TLobs; red; 28.3�C air temperature
at 1 m above ground) or modelled estimates
based on mean annual weather data (TLmod;
orange; upper values for 15:00 h weather;
lower values for mean 06:30–18:00 h
weather) for the native tropical montane
species Carapa grandiflora,
Entandrophragma excelsum and Hagenia

abyssinica and the exotic plantation species
Cedrela serrata, Eucalyptus maidenii and
Eucalyptus microcorys. Also shown are
optimum temperature (Topt) of maximum
electron transport rate (Jmax; yellow) and
maximum Rubisco carboxylation rate (Vcmax;
blue). Error bars indicate� SE. Horizontal
lines indicate the optimum temperature for
net photosynthesis at a constant internal
[CO2] of 272 (Topt for An272; solid line;
26.3°C) and 408 lmol mol�1 (Topt for An408;
dashed line; 29°C).
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exceedances. Our results (Fig. 4) as well findings in earlier
experiments (Cheesman & Winter, 2013; Zhu et al., 2014)
indicate that such effects would be to the disadvantage of
montane rainforest climax species, which may be outcompeted
by species exhibiting smaller heat-induced reductions in pho-
tosynthesis; that is, pioneer species or species adapted to a
warmer climate.

In conclusion, results presented here demonstrate that the pho-
tosynthesis of seedlings of cool-adapted montane rainforest climax
tree species is very sensitive to high temperature. The leaf tempera-
tures of sunlit foliage at the hottest hour of the day in these species
(c. 40°C) greatly exceeded the photosynthetic optimum tempera-
tures, as a result of low transpiratory cooling (i.e. low gs) and ineffi-
cient heat dissipation (i.e. large leaf size). Furthermore, montane
rainforest tree species had lower optimum temperatures for Jmax

compared with warm-adapted exotic plantation species, indicat-
ing that they do not readily acclimate to the c. 5°C warmer condi-
tions in the common garden. Our results suggest that montane
rainforest climax species may be particularly sensitive to future
global warming and highlight the urgent need for more research
on thermal responses of photosynthesis (considering biochemical
and stomatal limitations as well as leaf energy balance) in tropical
trees in order to better assess their sensitivity to global warming.
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Fig. S1 Temperature responses of net photosynthesis at an ele-
vated atmospheric [CO2] of 408 lmol mol�1 (An408) using 6%
lower Vcmax values.
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