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 Abstract 

Severe plastic deformation (SPD) has been the subject of intensive investigations in recent 

years because of the unique physical and mechanical properties of ultrafine grained (UFG) 

materials fabricated by this technique. Equal channel angular pressing (ECAP) is the most 

frequently used SPD technique due to its efficiency in grain refinement. The deformation 

mechanism during the ECAP process is very complicated and it has always been assumed to be 

a simple shear along the intersecting plane of two ECAP channels in most published literatures. 

A number of experiments and numerical simulations have revealed that the simple shear based 

theory could not accurately predict the microstructure development, plastic strain (or strain 

rate) distributions and texture evolutions. Even though many studies have contributed to 

understanding of the deformation mechanism of the ECAP process, some research areas have 

still not been fully explored, such as texture modelling. Up to now, few texture simulations in 

the literatures have been carried out based on the real full-scale ECAP process and most of 

them were conducted using the simple shear theory. Therefore, a systematic study on modeling 

of texture evolution of the real ECAP process and investigation of the effects of the ECAP 

parameters on texture evolution are essential. 

In the present study, a crystal plasticity finite element method (CPFEM) model has been 

developed to offer a systematic understanding of the deformation behavior and texture 

evolutions of single crystals, bicrystals and a polycrystal during the full scale ECAP processes. 

The developed CPFEM model has been validated by comparing the simulation results with the 

experimental observations. 

Three-dimensional and two-dimensional simulations have been performed for ECAP of 

aluminium single crystal using a die with the square cross-section. It has been found that both 

simulations predict similar textures, plastic strain and strain rates distributions. However, the 

three-dimensional simulation is very time-consuming. In order to save the computing time, the 

two-dimensional CPFEM model has been used in the following studies. 



 Abstract 
 

v 
 

Texture simulation has been carried out for ECAP of aluminium single crystal which has the 

initial slip plane (-1 -1 -1) parallel to the theoretical shear plane, and the slip direction [-1 1 0] 

parallel to the theoretical shear direction of the ECAP die. It has been seen that the 

deformation is inhomogeneous along the thickness of the sample and three matrix bands 

develop after the ECAP process. The predominant crystal rotation is around the transverse 

direction and the corresponding rotation angles in these matrix bands are 60°, 0° and 90°, 

respectively. The CPFEM model has been applied to investigations of the influences of mesh 

conditions, friction conditions, outer corner angle (OCA) and inner corner radius (ICR) of the 

ECAP die on texture evolution. It has been found that: 1) Coarse meshes (total elements of the 

sample: 600 and 2400) fail to capture the main texture features observed in the experiment; 2) 

The gap between the die and the sample in the outer corner decreases with increasing 

coefficient of friction (µ) and µ=0.05 and 0.1 can predict satisfactory texture; 3) A larger OCA 

leads to a decrement in the processing load but a larger rigid body rotation region in the 

bottom part of the deformed samples; 4) A larger ICR leads to a larger strain but less efficiency 

in grain refinement because the number of matrix bands along the thickness decreases with the 

ICR. 

Deformation and texture evolution of copper single crystal have also been simulated. It has 

been found that they are significantly influenced by the ECAP die channel angle and initial 

crystallographic orientations. The magnitudes of strain and the strain rate gradually decrease 

with increasing the die channel angle and the crystal rotation angles in the bottom part are 

dependent on the die channel angle. 

The CPFEM simulations of the multi-pass ECAP processes with Routes A (90° rotation between 

two passes) and C (180° rotation between two passes) have been conducted with the help of 

the mesh-to-mesh solution (MTMS) mapping technique. It has been found that Route C leads to 

more matrix bands along the billet thickness direction than Route A after four ECAP passes. This 

indicates that Route C is more effective in grain refinement. 

The ECAP process of bicrystals has been simulated using the CPFEM model. The initial 

crystallographic orientations of two grains are [1 2 3] II extrusion direction, [-4 -1 2] II insertion 
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direction and [1 2 3] II extrusion direction, [4 1 -2] II insertion direction, respectively. Different 

results are obtained when the same bicrystal is rotated by 180° in the entry channel before the 

ECAP process. The grain boundary leads to a large variation of plastic strain, and stress and 

shear strength.  

A polycrystalline structure has been implemented in the CPFEM model to simulate the ECAP 

process of aluminium polycrystal. The simulation results show that predicted textures are in 

good agreement with the experimental results. It has been found that the strain in the 

polycrystal is comparable to those in the single crystals and bicrystals. However, the 

crystallographic rotation patterns are different to the single crystals. In addition to large 

crystallographic rotation around the transverse direction in ECAP of single crystals, large 

rotations around the extrusion direction and insertion direction have also been observed in 

ECAP of polycrystal. 
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Notations 

ARB Accumulative roll bonding 

a1 Constant for fαβ (no junction) 

a2 Constant for fαβ (Hirth lock) 

a3
 Constant for fαβ (coplanar junction) 

a4
 Constant for fαβ (glissile junction) 

a5 Constant for fαβ (sessile junction) 

  Symmetrical part of the coefficient matrix of velocity gradient 

BCC Body centered cubic 

  Fourth order tensor of the elastic modulus 

   Tensor of elastic moduli 

Ci Deformation inhomogeneity index 

CCC Cylinder covered compression 

CEC Cyclic extrusion compression 

CPFEM Crystal plasticity finite element method 

  Stretch rate tensor 

   Elastic part of the stretch rate tensor 

   Rate of the elastic stretching in the lattice coordinate system 

   Plastic part of the stretch rate tensor 

δ  Virtual form of the rate of deformation 

  Grain strain tensor 

 ̇ Rate of Grain strain tensor 

EBSD Electron backscatter diffraction 
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ECAE Equal channel angular extrusion 

ECAP Equal channel angular pressing 

ED Extrusion direction 

  Total deformation gradient 

 ̇ Time derivative of the total deformation gradient 

   Elastic part of the total deformation gradient 

 ̇  Time derivative of the total deformation gradient 

     Inverse of    

   Plastic part of the total deformation gradient 

 ̇  Time derivative of the plastic part of the total deformation gradient 

     Inverse of    

 ( )  Contribution of slip system α to    

   Transposition of   

FCC Face centered cubic 

FSW Frictional stir welding 

    Strength of a particular slip interaction between two slip systems α 

and β 

   Skewed part of the coefficient matrix of velocity gradient 

g Orientation matrix 

  Fourth order hardening parameter tensor 

HCP Hexagonal close packed 

HPT High pressure torsion 

HPTT High pressure tube twisting 

    Instantaneous hardening moduli 

   Hardening modulus during easy glide 
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   Hardening modulus just after the initial yield 

  Second order unit tensor 

ICR Inner corner fillet radius 

  Jacobian matrix 

  Velocity gradient 

   Elastic part of velocity gradient 

   Plastic part of  velocity gradient 

   Transposition of   

MDE Multiple direct extrusion 

MDF Multidirectional forging 

 ( ) Normal vector of slip plane of α-th slip system in the current 

configuration 

  
( )

 Normal vector of slip plane of α-th slip system in the reference 

configuration 

N Number of active slip systems 

N Shape functions 

n Rate sensitive exponent 

ND Normal direction 

OCA Outer corner angle 

OIM Orientation imaging microscopy 

ODF Orientation distribution function 

PDZ Plastic deformation zone 

 ( ) Symmetrical part of Schmid factor 

  Latent hardening parameter 

 ( ) Asymmetrical part of Schmid factor 
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  Orthogonal rotation tensor 

RD Rolling direction 

SFE Stacking fault energy 

SPD Severe plastic deformation 

 ( ) Slip direction vector of slip plane of α-th slip system in the current 

configuration 

  
( )

 Slip direction vector of slip plane of α-th slip system in the reference 

configuration 

 ( )  ( ) Schmid factor 

TD Transverse direction 

TE Twist extrusion 

THPS Tube high pressure shearing 

∆t Time increment 

   Kirchhoff stress in the reference configuration 

 ̇ Material rate of Kirchhoff stress 

 ̇ 
  Rate of the Kirchhoff stress in the intermediate configuration 

 ̇  Material rate of the Kirchhoff stress in the lattice coordinate system 

 
 

 Kirchhoff stress 

 
 

 

 
Jaumann rate of Kirchoff stress 

  Right stretch tensor 

UFG Ultrafine grained 

  Left stretch tensor 

  Velocity of the material point 

   Nodal velocities 
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δ  kinematically admissible virtual velocity field 

VPSC Visco-plastic self-consistent 

  Spin tensor 

   Elastic part of spin tensor 

   Plastic part of spin tensor 

  Position of material point in the initial configuration 

  Position of material point in the current configuration 

  Tensor product 

α Slip system α 

β Slip system β 

 (α) Shear strain of slip system α 

  
(α)

 Reference value of shear strain of slip system α 

 ̇(α) Shear rate of slip system α 

 ̇ 
(α)

 Reference value of shear rate of slip system α 

 (α) Resolved shear stress of slip system α 

  
(α)

 Current strength of slip system α 

   Breakthrough stress where large plastic flow begins 

   Initial critical resolved shear stress 

  Cauchy stress 

φ ECAP die channel angle 

φ1, φ, φ2 Three Euler angles 

ψ Outer corner angle 

µ Friction coefficient  
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Chapter 1 Introduction 

Over the last two decades, severe plastic deformation (SPD) techniques have attracted a lot of 

interest due to their abilities of the synthesis of bulk ultra-fine grained (UFG) materials [1-3]. Up 

to now, many different SPD techniques have been proposed and developed, including equal 

channel angular pressing (ECAP) [4-7], high pressure torsion (HPT) [8-16], accumulative roll 

bonding (ARB) [17-23], conshearing [24-27], cyclic extrusion-compression (CEC) [28-30] and so 

on. The ECAP process is one of the most widely used SPD techniques [4]. 

Material texture is defined as a microstructural property describing the crystallographic 

orientation distribution of the grains. Texture can influence many aspects of material behavior 

including plastic anisotropy, formability, fracture and work hardening [2]. Unlike conventional 

large plastic deformation techniques, texture evolution during the ECAP process is very 

complicated. The ECAP process is often idealized as a simple shear deformation along the 

intersecting plane of the two channels in a negative sense [31]. For the face centered cubic (FCC) 

materials, ideal ECAP textures are often described by two partial fibers, namely {1 1 1}||SP (A 

fiber) and <1 1 0>||SD (B fiber), where SP and SD are the ideal shear plane and shear direction, 

respectively [2, 31, 32]. Many experimental studies [33-45] revealed that the difference 

between the measured ECAP textures and theoretical simple shear textures is significant. A 

second shear plane (perpendicular to the intersecting plane of two channels) model has been 

proposed to interpret the above-mentioned difference by Starink and co-workers [46]. 

However, satisfactory results have not been achieved. Therefore, a systematic study of texture 

evolution during the ECAP process is very necessary. 

In addition to the experimental measurement, texture modeling offers a unique opportunity to 

investigate how texture evolves during plastic deformation [2]. Most of the ECAP texture 

simulations were carried out based on the Taylor-type model [43, 45, 47-49] and self-consistent 

model [43, 50-53]. Several studies [54-58] were conducted using the decoupled crystal plasticity 

finite element method (CPFEM) model. The simulation results [41, 47, 59] revealed that the 
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Taylor model always failed to give good quantitative predictions and led to the significant 

overestimations of the texture strengths compared to the experimental results. A better 

prediction of the positions of the ideal ECAP texture components can be obtained by the self-

consistent model [38, 43, 60], but the predicted texture strength is still not in satisfactory. Thus 

far the CPFEM model has been recognized as one of the best models for predicting the 

deformation textures [61]. Unfortunately, all the CPFEM simulations in the published literatures 

were conducted in a decoupled manner. For a decoupled CPFEM method:  a FEM simulation is 

carried out first to predict the deformation history, and then the deformation history is used as 

input parameters in a texture model to predict texture evolution during deformation. Therefore, 

the influence of crystallographic orientation on the strain distributions at each material point 

cannot be considered. By contrast, the deformation history will be updated together with 

texture in a coupled CPFEM model which leads to a better texture evolution and strain 

distributions. Therefore, the fully-coupled CPFEM simulations of the full-scale ECAP process by 

considering the real deformation history, frictional condition and ECAP die geometry are 

essential for a better understanding of the deformation behavior and texture evolution during 

the ECAP process, for the aim of future industrial engineering application of ECAP. 

This thesis consists of 8 chapters set out as follows: 

Chapter 2 presents a brief overview of the ECAP process. The existing models used in the ECAP 

research, including the simple shear model, analytical model, physical model and finite element 

method model, are introduced. The advantages and disadvantages of the ECAP texture 

simulation methods have been reviewed.  

Chapter 3 introduces the crystal plasticity theory and rate-dependent hardening model which 

will be used to simulate texture evolutions during the ECAP process. The procedures describing 

the development of the CPFEM model have been outlined. For the first time, texture evolutions 

of aluminium single crystal and copper single crystal during ECAP have been simulated and the 

developed CPFEM models have been verified by comparing the simulation results with the 

experimental measurements. 
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Chapter 4 presents the CPFEM simulations of aluminium single crystals during the ECAP process. 

The influences of plane strain assumption, mesh condition, frictional condition, sample 

dimension and ECAP die geometries, including the outer corner angle and inner corner fillet 

radius, on the deformation behavior and texture evolution are investigated in detail. 

Chapter 5 presents the CPFEM simulations of the ECAP process of copper single crystals. The 

influences of the frictional condition, ECAP die geometry and initial crystallographic 

orientations of copper single crystals are carefully examined. 

Chapter 6 shows the CPFEM simulations of aluminium single crystals during the multi-pass ECAP 

process. The deformation behavior and texture evolution history in Route A and Route C are 

compared. 

Chapter 7 extends the CPFEM simulation of the ECAP process from single crystal to bicrystals 

and polycrystal. The influence of grain boundaries in the bicrystals will be discussed and 

simulated textures of an aluminium polycrystal will be investigated in detail. 

Chapter 8 summarizes the research findings obtained in this thesis and some suggestions for 

future research are also offered. 
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Chapter 2 Literature Review 

This chapter contains a substantial amount of information on topics considered essential to 

understanding of deformation mechanism and simulation of texture evolution during the equal 

channel angular pressing process. 

2.1 Severe Plastic Deformation 

UFG materials are defined as polycrystalline materials having very small grains, with average 

grain sizes between 100 nm and ~1 µm [1]. In recent years, UFG materials have attracted a lot 

of interest due to their unusual physical and mechanical properties, such as high strength and 

damping properties, lower temperature superplasticity and elevated toughness and high 

magnetic properties [8, 9]. These materials are very attractive for use in a range of applications 

from biomedical to aerospace industries. 

There are two basic and complementary approaches used to fabricate the UFG materials [1, 62]. 

The first approach is ‘bottom-up’ approach, which fabricates the UFG materials from individual 

atoms or nanoscale building blocks such as nano-particles. The major ‘bottom-up’ approaches 

are gas condensation, ball milling, and electrodeposition [63, 64]. Another approach is called 

‘top-down’ approach, which fabricates the UFG structures from coarse grained materials. The 

first approach is often limited by production of fairly small samples, together with some 

degrees of residual porosity and contamination. In contrast, the ‘bottom-up’ approach has 

overcome the above mentioned problems [1, 9]. 

The ‘top-down’ approach mainly adopts severe plastic deformation techniques. Up to now, 

many different SPD techniques have been developed, such as HPT [1-3, 8-16], ECAP [1-9, 62, 

65], ARB [17-23], conshearing [24-27], multidirectional forging (MDF) [66-68], cyclic extrusion-

compression (CEC) [28-30], cyclic expansion-extrusion (CEC) [69], multiple direct extrusion 

(MDE) [70], twist extrusion (TE) [71, 72], axisymmetric forward spiral extrusion (AFSE) [73], 

simple shear extrusion (SSE) [74-76], high pressure tube twisting (HPTT) [77-79], frictional stir 
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welding (FSW) [80-83], cylinder covered compression (CCC) [84, 85] and tube high pressure 

shearing (THPS) [86]. These techniques are fundamentally different, but they all introduce large 

plastic strain during deformation to achieve significant grain refinement. In the following text, 

several frequently used SPD techniques, namely HPT, ARB and ECAP will be summarized. 

 

Fig. 2.1 Schematic illustration of the HPT process [87]. 

The HPT process was first proposed by Bridgeman in 1952 [88], but it only attracted scientific 

interest within last fifteen years. Fig. 2.1(a) shows a schematic illustration of the HPT process 

where the sample is usually machined into a thin disk, as shown in Fig. 2.1(b) [87]. The radius (r) 

and thickness (h) of the sample are normally less than 20 mm and 0.8 mm, respectively. During 

the HPT process the sample is located between the plunger and the support and then subjected 

to a compressive pressure (P) of several GPas. Shear strain will be introduced into the disk by 

rotating the plunger with the help of friction, as indicated in Fig. 2.1(a). The deformed sample 

does not break even at very high strains due to high imposed pressure [8]. With this method, a 

mean grain size of ~100 nm can be obtained subjected to a pressure of 6 GPa and with an 

overall strain of ~7 from an initial single crystal [10]. However, the microhardness and 

microstructures of the HPT processed sample are extremely inhomogeneous, as shown in Fig. 

2.2 [89, 90] and Fig. 2.3 [87], respectively. 
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Fig. 2.2 (a) Microhardness profiles of nickel processed by the HPT process at two different applied 

pressures [89] and (b) Contour map of the microhardness across the surface of high purity Al processed 

by the HPT process at a pressure of 2.5 GPa for 5 turns [90]. 
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Fig. 2.3 TEM microstructures of nickel processed by HPT through N=5 turns, (a) edge, P=1 GPa, (b) center, 

P=1 GPa, (c) edge, P=3 GPa, (d) center, P=3 GPa, (e) edge, P=9 GPa, and (f) center, P=9 GPa [87]. 

During the HPT process, the shear strain is proportional to the distance from the center of the 

disk. The true logarithmic strain (εtrue) can be estimated by [89] 

        (
    

 
)      (2.1) 
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where h is the thickness of the disk, r is the radius and N is the number of revolutions, as 

shown in Fig. 2.2(b). 

 

Fig. 2.4 Schematic illustration showing the principle of the ARB process [19]. 

Compared with the HPT process, the ARB process is a recently developed SPD technique used 

to manufacture the UFG sheet material. It was first proposed by Saito et al. [19, 20]. Fig. 2.4 is a 

schematic illustration of the ARB process where two sheets of similar dimensions are joined 

together by rolling. This rolled sheet is then cut in half, and the two halves are placed together 

and rolled again. This process can be repeated without decreasing the thickness of the sheet if 

the reduction is maintained to 50% for every rolling pass. Ultra-high plastic strain can be 

obtained by the ARB process and in theory, there is no limit. 
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Fig. 2.5 TEM microstructures and the matching SAD patterns of ARB processed AA5083 by (a) 2, (b) 4, 

and (c) 6 cycles [91]. 
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The ARB process is very effective in grain refinement, and the average grain sizes of about 200 

nm and 80 nm can be obtained in AA5083 with an initial average grain size of 25 µm after four 

and six rolling cycles respectively, as shown in Fig. 2.5 [91]. During the ARB process the 

microhardness increases rapidly after the first rolling cycle and then it dwindles until it becomes 

saturated by further ARB cycles, as shown in Fig. 2.6 [91]. The saturation of hardness at high 

cycles is caused by the steady-state density of dislocation due to a dynamic balance between 

the generation and annihilation of dislocation caused by the dynamic restoration phenomena 

[91]. The main drawback of the ARB process is its poor bond strength, although it can be 

improved by the application of nano-particles before stacking [17, 22]. 

 

Fig. 2.6 The variation of microhardness along the thickness of the ARB processed AA5083 [91]. 

In practice ARB can be assumed as a plane strain deformation process, which means that the 

effective plastic strain during ARB can be estimated by [22] 

  
 

√ 
   

  

  
        (2.2) 



 Chapter 2 Literature review 

 

11 
 

where h0 is the initial thickness of the stacked sheets, hf is the final thickness after the ARB 

process and N is the number of rolling cycles. If the reduction per rolling cycle can be 

maintained at 50%, Equation (2.2) can be simplified to the form [20] 

             (2.3) 

The HPT process is only suitable for small disk samples, while the ARB process is only suitable 

for sheet metals. 

2.2 ECAP 

ECAP, also called equal channel angular extrusion (ECAE), was first proposed by Segal and his 

co-workers who wanted to transform simple shear into ordinary and effective production 

operations [4]. The ECAP process has drawn significant attention since the early of 1990s [1, 3-6, 

8, 9, 92]. The principle of ECAP is illustrated schematically in Fig. 2.7 [93]. In ECAP, a bar shaped 

billet is pressed through a die that has two channels with an equal cross-section intersecting at 

an angle φ which varies from 60° to 150° [2]. During the ECAP process, the sample undergoes 

no change in its cross-section so it can be processed repeatedly to attain exceptionally high 

strains. Compared to the HPT and ARB processes, ECAP is capable to fabricate large bulk UFG 

materials and thus it is the focus of this study. 

 

Fig. 2.7 Schematic illustration of the ECAP process [50]. 
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The microstructure evolution during the ECAP process is influenced by different factors such as 

stacking fault energy [1, 94-96], die channel angle [97, 98], outer corner angle [1], number of 

ECAP passes [1, 3, 22, 94, 99, 100], extrusion speed [1, 93, 101], deformation temperature [22, 

102, 103] and so on. 

The effective plastic strain during ECAP can be calculated by [104] 

   
 

√ 
*    (

 

 
 
 

 
)        (

 

 
 
 

 
)+     (2.4) 

where    is the accumulated equivalent plastic strain, N is the number of ECAP passes, φ is the 

die channel angle and ψ is the outer corner angle. 

 

Fig. 2.8 The four fundamental processing routes in the ECAP process: (a) Route A, (b) Route Ba, (c) Route 

Bc, and (d) Route C [105]. 

During the ECAP process, the sample typically has a square or circular cross-section, which 

means it can be rotated clockwise or counter-clockwise about the longitudinal axis prior to the 

following processing passage. There are four basic processing routes as summarized in Fig. 2.8, 

where in Route A the sample is processed repetitively without any rotation; in Route Ba the 

sample is rotated 90° in alternate directions between each pass; in Route Bc the sample is 
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rotated 90° in the same direction between consecutive passes; and in Route C the sample is 

rotated 180° between two passes [105]. 

 

Fig. 2.9 The slip systems viewed on the X, Y, and Z planes for the consecutive ECAP passes using 

processing Routes A, Ba, Bc and C [1]. 

The slip systems for different ECAP routes are schematically shown in Fig. 2.9 [1]. In Route A 

there are two separate shearing planes that intersect at 90° between two passes, in Route Ba 

there are four separate shearing planes that intersect at 120° between two passes, while in 

Route Bc the shear in the first pass is cancelled by shear in the third pass, and shear in the 

second pass is cancelled by shear in the fourth pass. In Route C the shear continues on the 

same plane in each consecutive pass but the shear direction is reversed. Therefore, the cubic 
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element is restored every 4 passes in Route BC and every 2 passes in Route C, while the 

distortions become more acute when using routes A and Ba [106]. 

It is obvious that the ECAP process is a discontinuous process where a sample needs to be 

reinserted into the die after each ECAP pass. From an industrial application perspective these 

operations are both labor intensive and time consuming [1]. In order to improve the efficiency 

of fabrication, the modified ECAP processes have been developed. 

The first development is called equal cross-section lateral extrusion (ECSLE), which uses two 

parallel channels [107-109]. Fig. 2.12 shows the principles of this process, where φ is the 

intersecting angle and K is the displacement between two parallel channels [108]. During this 

process average subgrain size of ~0.4 µm can be obtained when the strain is about 10 [107]. 

The required number of processes can obviously be reduced to form UFG structures with this 

approach, but the inhomogeneity depends on the parameters φ and K [108, 109]. 

 

Fig. 2.10 (a) Principle of ECAP with parallel channels where φ is the intersecting angle and K is 

displacement between two channels, and (b) general view of the die set [108]. 
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The second development is the rotary die ECAP process [110-112], or called the side extrusion 

process [113]. A schematic illustration of the rotary die ECAP process is shown in Fig. 2.11 [110]. 

Two channels with equal cross-sections intersecting at 90° are placed into the die. Three 

punches with equal lengths are inserted in the channel, one in the vertical channel and the 

other two in the horizontal channels, as shown in Fig. 2.11(a). The left punch can move freely 

but the other two are confined. The sample is inserted into the vertical channel and then 

pressed with a plunger. The die is rotated 90° after the first cycle so that the sample can be 

pressed again, as shown in Fig. 2.11(b-c). The process of manufacturing Al-11mass%Si alloy up 

to a maximum of 32 passes was successfully conducted at 623 K [111]. The main disadvantage 

of this process is that more processing cycles are required than conventional ECAP to obtain a 

sufficiently homogeneous microstructure [112]. 

 

Fig. 2.11 Schematic illustration of the rotary die ECAP process at (a) the initial state, (b) after one pass, 

and (c) after rotating the die 90° [110]. 

The third development is continuous ECAP, including continuous confined strip shearing (C2S2) 

[114], conshearing [24-27] and equal channel angular rolling (ECAR) [115]. The common feature 

of these approaches is the combination of conventional rolling and ECAP. However, only limited 

results with small range of materials has been reported till now for these techniques. More 

work is needed to provide a detailed assessment of any potential industrial application of these 

techniques to produce large quantities of materials [1]. 
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2.3 Deformation Models of the ECAP Process 

2.3.1 Simple Shear Model 

The simple shear model has been widely used to describe the material deformation during the 

ECAP process [44, 45, 47, 57, 58, 116-120]. It was proposed by Segal et al. [4-7] for ideal ECAP 

conditions, including no rounding of the inner and outer corners, perfectly plastic material, and 

frictionless surfaces [2]. According to the simple shear model, the sample undergoes simple 

shear along the intersecting plane of two channels during the ECAP process. However, it is 

almost impossible to meet these ideal conditions in practice. 

Generally, simple shear on the intersecting plane can be represented by the displacement 

gradient tensor (   ) as (X’-Y’-Z’ reference system in Fig. 2.8) 

    (
   
   
   

)      (2.9) 

where γ is the shear strain. Accordingly, the corresponding displacement gradient in the ECAP 

reference (     ) can be derived from     by a clockwise rotation of θ=φ/2 around the 

transverse direction and written as (X-Y-Z reference system in Fig. 2.7) 

       (
               
               
   

)    (2.10) 

For the ECAP die with channel angle of φ=90°, the magnitude of the shear strain is about  =2. 

2.3.2 Analytical Model 

In order to understand the deformation mechanism of the ECAP process, many analytical 

analyses [4, 5, 43, 48, 51-53, 104, 121-132] have been carried out. For example, a strain 

estimation equation (Equation (2.4)) that considers the influence of the die channel angle, the 

outer corner angle, and the number of ECAP passes, has been widely used since it was 

proposed by Iwahashi et al. [104]. This equation was improved by Luis [126, 127] based on an 

upper bound solution by considering the influence of the inner corner. In 1999, Segal [5] 
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proposed an analytical model using a slip line field and velocity hodograph. It has been found 

that there are three different systems of macroslip planes that occur during ECAP and the 

deformation history can be divided into three different steps: (i) simple shear along slip line AO, 

(ii) simple shear along α-slip lines inside the central fan AOB (or called ‘shear fan’ [2]), and (iii) 

simple shear along the slip line BO, as shown in Fig. 2.12 [5]. According to the slip line solution 

[121], round corner channels result in the reduction of pressure and increment of friction in the 

outlet channel. 

 

Fig. 2.12 Deformation history of material elements during the ECAP process based on an analytical 

analysis [5]. 
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Fig. 2.13 Description of the flow field by flow lines, n indicates the value of the exponent in the 

proposed flow function determined by finite element calculations [43]. 

A flow line model is recently proposed by Toth and co-authors [43]. It uses a flow line function 

to describe material deformation during ECAP for a 90° die in order to avoid discontinuity of the 

deformation process in the classical simple shear model. The material flow in the ECAP die can 

be better approximated by the following flow function 

  (   )  (   )  (    )
      (2.11) 

where d is the diameter of the die, x0 defines the incoming (and outgoing) position of the flow 

line, and n is a parameter used to describe the possible shapes of the flow lines as indicated in 

Fig. 2.13 [43]. The flow line is circular when n=2 and it is a simple shear model when n is infinity. 

The flow field has been validated by comparison with finite element calculations of the ECAP 

process. It has also been seen that the flow line model performed well in texture predictions 

[43, 48, 51-53, 125]. 
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2.3.3 Physical Model 

Physical modeling with a suitable material is very important because a clear observation of the 

material flow pattern during the ECAP process, the influence of ECAP die wall friction and a true 

representation of the starting microstructure of the feedback are all possible with this method. 

However, only limited work is available on physical modeling [133-138] so far. 

The first physical model of the ECAP process was reported by Wu et al. [134] in 1997. Then this 

model was used to examine the methods of estimating strain [4, 104], where layered plasticine 

billets of different colors were pushed through plexiglass extrusion jigs allowing the process to 

be observed in operation. It has been found that only the experimental data from the center of 

the billets matched reasonably well with the theoretical values, but there were significant 

differences near the jig walls. Han et al. [138] conducted an in-situ physical modeling 

experiment to investigate the geometrical aspect of deformation during the ECAP process. It 

has been revealed that deformation only takes place in a fan shaped region and the basic 

mechanism of shear deformation is the difference in the flow route or flow path induced by the 

geometrical character of the ECAP die. In practice, the initial shape of the constituents of the 

billet did not affect the final refinement of the microstructure [136] and the strain rate of 

process did not essentially affect the character of non-uniformity in the distribution of shear 

strain [133, 137]. 

The disadvantage of the physical model is that the material used is generally plasticine which 

may not have a mechanical behavior that is identical to metal [136]. 

2.3.4 Classic Finite Element Method Model 

The classic finite element method (FEM) model has been widely used to simulate the ECAP 

process. The first FEM study was conducted by Prangnell et al. [139] who reported that a corner 

gap in the outer corner leads to a non-uniform distribution of strain in the deformed sample. It 

has been proven in many experiments [1] that the development of a corner gap significantly 

influences the inhomogeneous grain refinement and microstructure evolution. The size of the 

corner gap is measured by the angle about the inner corner that subtends the points where the 
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billets make contact with the entry and exit channel [140]. The corner gap usually decreases in 

size with an increasing outer corner angle. The classic FEM analysis can be used to investigate 

the effects of different factors, such as number of passes, processing route, ECAP die geometry, 

material constitutive behavior, frictional condition, back-pressure, thermal condition and so on, 

on the strain, strain rate, and stress distributions in the deformed sample. These analyses are 

very important and valuable for design as well as for defining the processing limits for 

producing large volumes of homogeneously UFG materials. However, the classic FEM model is 

unable to predict textures. 

There is no doubt that the frictional condition between the sample and channels in the die has 

a strong influence on the required processing loads, development of corner gaps, plastic 

deformation heterogeneity, inhomogeneous grain refinements and texture evolution. However, 

there are some contradictory results and the study is still essential. For instance, it has been 

found that strain and inhomogeneous deformation increase with the friction according to the 

study [139], but Yang and Lee [141] stated that the frictional condition does not affect the 

distribution of strain, while Li et al. [142] reported that when the material fills the die, it has 

little influence on the shape of plastic deformation zone (PDZ) but some influence on the local 

variation of strain rates at the inner and outer corner regions. Specifically, an increase of 

friction leads to a higher plastic strain rate in the inner corner and variation of the strain rates 

near the outer corner region. Besides, Wei et al. [143] revealed that the strain distribution is 

relatively more uniform with friction than without friction and they attributed this to the back 

pressure induced by friction. Therefore, they have concluded that friction is not the source of 

non-uniform strain distribution. In addition, Balasundar and Raghu [144] stated that they have 

found obvious differences between the Coulomb friction model and the shear friction model 

during the simulation of ECAP process. 

The FEM mesh is important, but few studies have considered this influence. As can be seen in 

Ref. [142], there is a large difference between mesh with 839 elements and mesh with 3379 

elements. In order to save computing time, most of the FEM studies were carried out based on 

the assumption of plane strain condition in the middle longitudinal plane of the billet, and 
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reasonable results have been obtained. However, three-dimensional simulations to evaluate 

the deformation heterogeneity in the transverse direction [145-150] and simulate the routes Ba 

and Bc [146, 148, 151] are still very important because they cannot be simulated using two-

dimensional models at all. Generally, three-dimensional simulations predict similar trends of 

heterogeneity along the X and Y directions with the two-dimensional simulations. It has been 

found that with the rounded corner dies, the undeformed bottom layer was larger in the three-

dimensional FEM model than in the two-dimensional model [152]. In addition, the deformation 

heterogeneity along the Z direction decreases with an increasing outer corner angle [152] and it 

changes with the number of ECAP pass [151]. This deformation may not be symmetrical about 

the central plane for a circular cross-section, and the average plastic strain and the deformation 

inhomogeneity index along the Z direction increase with the coefficient of friction [150]. 

2.4 ECAP Texture Measurement 

2.4.1 Texture Representation and Measurement Techniques 

Texture is defined as preferred orientation and it is very important due to its influence on 

material properties such as Young’s Modulus, Poisson’s ratio, strength, ductility, toughness, 

electrical conductivity, and so on [153]. Texture is commonly represented by Miller indices, the 

pole figure, the inverse pole figure or orientation distribution function (ODF). 

The main advantage of the Miller indices notation is that it highlights important planes {h k l} 

and directions <u v w> which are parallel to the principle directions in the sample. For example, 

the notation of {h k l}<u v w> during rolling indicates that the direction <h k l> is parallel to the 

normal direction (ND) and the direction <u v w> is parallel to the rolling direction (RD). The pole 

figure is a two-dimensional representation of three-dimensional orientation information 

projected from the reference sphere. One direction must be chosen as a pole during projection 

and ND is typically chosen to be in the north pole of the sphere during rolling. The inverse pole 

figure is similar to the pole figure and it is the orientation that represents the sample 

coordinate system in the crystal coordinate system. Inverse pole figures are often used for axial 

symmetric samples, where only one of the axes is prescribed. ODF is a three-dimensional 
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representation of textures and it is able to offer a quantitative evaluation with the help of Euler 

angles, which are shown in Fig. 2.14 [153]. It should be noted that there are several different 

conventions for describing the Euler angles, with the most widely used being the Bunge’s 

convention [154]. 

 

Fig. 2.14 Diagram showing how rotation through the Euler angles   , φ,   , in the order 1, 2, 3 as 

shown describes rotation between the sample and crystal axes [153]. 

The orientation matrix (g) can be expressed with the three Euler angles as [153] 

                  (2.5) 

where the three rotation matrices (   ,   ,    ) can be written as 

    (
           
            
   

)     (2.6) 
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)      (2.7) 
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)     (2.8) 
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According to the scale of the measured area, texture measurement can be divided into two 

groups, namely macrotexture analysis and microtexture analysis. Macrotexture represents the 

bulk texture of a particular sample and is measured from a large number of grains by means of 

X-ray diffraction or neutron diffraction. Microtexture is measured by Kikuchi patterns with the 

electron diffraction under an electron microscope and represents the texture of individual 

grains. The most widely used measurement is the electron backscatter diffraction (EBSD) 

technique. 

2.4.2 Main Characteristics of Measured ECAP Texture 

Up to now, texture evolution during the ECAP process has been studied for a wide range of 

metals and alloys, such as Al single crystals and alloys [2, 22, 33, 34, 46, 47, 49, 96, 119, 135, 

155-171], Ni single crystals [172-176], Nb single crystals [177, 178], Cu single crystals, bi-crystal 

and alloys [2, 36, 38-41, 59, 96, 98, 159, 179-190], low carbon steels [42, 45, 60, 167, 191-193], 

magnesium alloys [44, 194-200], Ti alloys [44, 148, 201-203] and so on. It has been found that 

the ideal textures of polycrystalline materials after ECAP can be defined directly from those in 

simple shear by counter-clockwise rotation of θ=φ/2 around the transverse direction, assuming 

that simple shear takes place along the plane of intersection of the two channels in a negative 

direction [2, 4, 31, 32]. ECAP textures depend strongly on the crystal structures and ideal 

texture components have been determined for face-centered cubic (FCC) and body-centered 

cubic (BCC) polycrystalline materials in terms of pole figures as shown in Fig. 2.15 and Fig. 2.16, 

respectively [31]. 

It should be noted that during the ECAP process, the Miller index {h k l}<u v w> denotes an 

orientation that has an {h k l} plane parallel to the normal plane (or Y plane) and an <u v w> 

direction parallel to the extrusion direction (or X direction), and {h k l}<u v w>θ indicates an 

counter-clockwise rotation of θ around the transverse direction (or Z direction) (Fig. 2.7). For 

FCC structures, there are two partial fibers {1 1 1}θ and <1 1 0>θ. The fiber {1 1 1}θ contains four 

ideal components of   ,  ̅ ,    
  and    

 , while the fiber <1 1 0>θ contains   ,  ̅ ,   ,  ̅ ,   . 

The corresponding Miller indices and Euler angles have been summarized in Table 2.1 [2, 31]. 
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Fig. 2.15 {1 1 1} pole figures showing the main ideal orientations and fiber textures for FCC materials 

after one ECAP pass with φ=90°. (the arrows indicate the direction of shear) [31]. 

 

Fig. 2.16 {1 1 0} pole figures showing the main ideal orientations and fiber textures for BCC materials 

after one ECAP pass with φ=90°. (the arrows indicate the direction of shear) [31]. 
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Table 2.1 Euler angles and Miller indices for the ideal orientations of FCC materials after one ECAP pass 

with φ=90°die [2, 31]. 

Notation 
Euler angles (°) Miller index 

{h k l}<u v w>    φ    

   45 35.26 45 (9 1 4)[1 11 -5] 

 ̅  225 35.26 45 (-1 -11 5)[-9 -1 -4] 

   
  80.26/260.26 45 0 (8  1 -1)[1 -4 4] 

 170.26/350.26 90 45  

   
  9.74/189.74 45 0 (1 -4 4)[8 1 -1] 

 99.74/279.74 90 45  

   45/165/285 54.74 45 (15 4 11)[7 26 -19] 

 ̅  105/225/345 54.74 45 (-7 -26 19)[-15 -4 -11] 

   135/315 45 0 (3 3 4)[2 2 -3] 

 45/225 90 45  

 

The fibers and ideal orientations for BCC materials can be found in Fig. 2.16 and they can be 

related to those for FCC materials in Fig. 2.15 by an exchange of the slip planes {h k l} and slip 

directions <u v w>. Experimental results have shown significant influence of the processing 

routes, number of passes, substructure evolution, temperature, stacking fault energy, and ECAP 

die geometry on the development of ECAP textures [2]. For example the components     ̅  

has been strengthened continuously with the increasing number of passes in pure copper 

processed in Route A [40]. In addition, the orientation distribution along the {1 1 0}θ and <1 1 

1>θ fibers is more uniform in Routes A and C than Ba and Bc [42]. Fig. 2.17 shows the ODF 

sections of textures for aluminium and copper after one ECAP pass [50]. As shown, textures are 

quite different to each other in that differences are primarily attributed to their initial textures, 
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material properties and microstructure evolution, all of which will decrease with an increasing 

number of passes. 

 

Fig. 2.17   =constant ODF sections of textures measured after one ECAP pass for (a) copper, 

and (b) aluminium [50]. 



 Chapter 2 Literature review 

 

27 
 

It is worthy to note that, texture evolutions in single crystals are different to the polycrystalline 

materials during the ECAP process, particular after the first pass. The experimental results 

revealed only two orientation components (initial orientation and the 60° rotated component) 

in the deformed aluminium and copper single crystals [33, 179, 181], where the slip plane (-1 -1 

-1) was parallel to the theoretical shear plane and the slip direction [-1 1 0] was parallel to the 

theoretical shear direction. The relationship between the crystallographic orientation and 

theoretical shear plane was observed in Refs. [161, 179, 181] by rotating the crystals around 

the transverse direction. Al 20° crystal led to a 40° rotated orientation component [204] and Al -

20° led to a 60° rotated component [161] after the ECAP process where ‘-’ indicated the 

counter-clockwise rotation. 

2.5 ECAP Texture Simulations 

Up to now, a lot of effort has been devoted to simulating texture evolutions during the ECAP 

process and these studies can be categorized into three groups. The first group was based on 

the Taylor-type texture models, the second group used the self-consistent models, and the last 

group used the CPFEM model. 

2.5.1 Taylor-type Models 

One of the earliest and most widely used texture models, referred as fully constrained (FC) 

model, was proposed by Taylor [205]. This model is based on the assumption that each grain is 

subjected to the same plastic strain as the macroscopic plastic strain. In the FC model, five 

components of the plastic strain increment need to be prescribed and five independent slip 

systems are generally necessary to comply with these conditions. As a consequence of its 

assumption, the FC-Taylor model often leads to an upper-bound estimate for the overall 

strength of textures. It is widely recognized that textures predicted by the FC-Taylor model are 

in a fairly good qualitative agreement with those experimentally observed for both FCC and BCC 

materials. However, there are two main discrepancies, including the shift of major texture 

components and the excessive stronger intensity than the actual measurements [206, 207]. In 

addition, the FC-Taylor model rapidly becomes inaccurate at large strains [2]. 
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In order to improve the FC-Taylor model, the relaxed constraints (RC) theory has been proposed 

[206-208]. The RC-Taylor model allows for some of the strain components in the grain to differ 

from the average one. It has been found that predicted textures based on the RC-Taylor model 

are in better agreement with experiments than the FC-Taylor model, particularly for large strain 

rolling and torsion. However, the relaxation is based on the grain shape and stress continuity 

considerations and not in the relative stiffness of grain and matrix [209]. In practice, the RC-

Taylor model does not resolve the problem of nonuniqueness in the choice of active systems 

and there is the added task of specifying model criteria for relaxing compatibility requirements. 

 

Fig. 2.18 {1 1 1} pole figures of textures in the deformed billets after various passes via Route Bc. (a) 

experimental results, (b) simulation results with FC-Taylor model based on simple shear deformation, 

and (c) simulation results with FC-Taylor model based on FEM calculated deformation history [41]. 

Up to now, the Taylor models have been widely used to simulate texture evolution during the 

ECAP process [38, 39, 41, 43, 45, 47-49, 59, 60, 191, 210-215]. For example Pithan et al. [210] 

used the FC-Taylor model to explain the existence of the copper-orientation {1 1 2}<1 1 1> and 

brass-orientation {1 1 0}<1 1 2> in the ECAP processed AA5056. Gholinia et al. [49] applied this 
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model to simulate deformation textures in aluminium alloy after the ECAP process with die 

channel angles of 90° and 120°. Messemaeker et al. [45] calculated the rotation fields for IF 

steel subjected to the ECAP process via Routes A, Ba, Bc and C up to 4 passes. It has been found 

that the results for Routes Ba and Bc are less self-evident, due to the change of shear plane 

between two passes. Li et al. [59] simulated texture along three flow lines at the top, middle 

and bottom regions in the processed copper after 16 passes. The influence of strain path in 

copper alloy was also examined by Li et al. [41] using FC-Taylor model based on the 

deformation histories calculated by simple shear model (FC/SS) and FEM (FC/FEM). Their 

simulation results have been compared with the experimental results for Route Bc as shown in 

Fig. 2.18 and for Route C as shown in Fig. 2.19. It has been found that the measured texture 

indices after 16 passes in Route Bc is 4.3, while the simulated values are 16.5 with FC/SS and 

25.4 with FC/FEM, respectively. In another study, even larger difference in the texture strength 

by two and three orders in magnitude between simulations and experiments have been 

observed by Ferrasse et al. [47], where the simulated material was high purity Al0.5Cu alloy and 

the influences of strain path, number of passes and initial textures were considered. Their 

simulation results revealed a continuous texture strengthening with the number of passes, as 

shown in Fig. 2.20. 
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Fig. 2.19 {1 1 1} pole figures of textures in the deformed billets after 1 to 4 passes via Route C. (a) 

experimental results, (b) simulation results with the Taylor model based on simple shear deformation, 

and (c) simulation results with the Taylor model based on FEM calculated deformation history [41]. 

In order to improve prediction of the deformation fields in ECAP, a flow line model was 

developed by Toth et al. [43]. It has been found that the Taylor constitutive laws implemented 

into this flow line model could give a better texture prediction, at least up to two ECAP passes. 

The results revealed that the measured intensities of texture components were well 

reproduced and the differences in the tilts from the ideal positions did not exceed 5°. 

Simulation results of IF steel in Ref. [60] indicated that textures developed during the ECAP 

processes with different die channel angles can be approximately related by a rotation about 

the axis normal to the flow plane. In a recent report, Gu and Toth [38] used a Taylor-type model 

to simulate the texture development in polycrystalline oxygen-free high conductivity (OFHC) 

copper deformed in route C for up to two passes. Their results showed that the magnitude of 
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the shear strain increment played an important role in predicting texture evolution during 

strain reversal. However, the acceptable agreement between simulations and experiments can 

only be obtained when the strain increment is very large. 

 

Fig. 2.20 The Taylor model predicted (a, c, e) and experimental (b, d, f) measured {1 1 1} pole figures for 

(a-b) one pass, (c-d) four passes in Route A, and (e-f) four passes in Route C for the high purity Al0.5Cu 

alloy [47]. 
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Although the Taylor-type models could give reasonable description of ECAP textures, but they 

failed to give good quantitative predictions. Significant overestimations of the texture strengths 

in all cases except for the even-numbered passes in route C have been obtained. It should be 

noted that, even the method FC/FEM performed better in predicting the texture characteristics, 

but it led to more texture strength than the method FC/SS, and both methods failed to 

accurately predict textures for even-numbered passes in Route C in both the strength and 

characteristics. 

2.5.2 Self-consistent Model 

In the Taylor theory, the strain uniformity fulfills the compatibility condition but not the 

equilibrium condition at the grain boundaries. In order to overcome this limitation, self-

consistent approaches have been proposed by Hill [216], Hutchinson [217], and Iwakuma and 

Nemat-Nasser [218]. In Ref. [219], a large deformation viscoplastic self-consistent (VPSC) 

polycrystal theory was formulated, where each grain was assumed to be a single ellipsoidal 

inclusion in a homogeneous equivalent medium to predict textures in tension, compression, 

rolling, and torsion. Based on this assumption, the average stress and strain rate over all the 

grains is consistent with the equivalent microscopic magnitudes. Therefore, each grain can 

deform differently in the VPSC model depending on its directional properties and the strength 

of the interaction with its surroundings. However, self-consistent methods must struggle with 

the non-linearity of the relationship between stress and plastic strain or strain rate, because 

they implicitly use linearizations of this material model for the strain field surrounding the 

inclusion [61]. 
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Fig. 2.21 {1 1 0} pole figures of textures in the deformed IF steel after 1-4 passes of ECAP process (120° 

die) via Routes (a) A, (b) Bc and (c) C simulated by the VPSC model using the FEM predicted deformation 

history for each pass [60]. 
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The VPSC model has been applied to simulate texture evolution of the ECAP process [38, 41, 43, 

50-53, 59, 60, 170, 182, 194, 195, 215, 220-230]. Toth et al. [43] used this model to simulate 

texture evolution of copper up to three passes in route A. Their results revealed that the VPSC 

model was able to reproduce textures well for the first two passes, but failed in the third pass 

performing as the Taylor-type models. In the VPSC simulations [59], the advances including a 

grain co-rotation scheme and an implementation of an empirical criterion for grain subdivisions 

based on grain shape were applied. As shown in Table 2.2, the VPSC model led to better 

agreement with the experimentally measured textures than the Taylor-type models for all the 

positions, except for s=0.5 and 0.9 where the two models were approximately similar. The 

simulations were extended from the Routes A and C in Ref. [59] to the Route Bc in Ref. [41]. The 

VPSC model was also applied to simulation of the ECAP process of IF steel under Routes A, Bc 

and C [60]. Their results revealed that the VPSC/FEM model reproduced well the main features 

and satisfactorily predicted the texture strengths in Routes Bc and C and, to a lesser extent, 

route A as shown in Fig. 2.21. However, according to the report [38], both the Taylor and VPSC 

models failed to predict the strain reversal texture in Route C and they returned texture to 

initial state every second pass. In addition to the FCC and BCC materials, the HCP materials such 

as magnesium single crystal [230] and alloy ZK60 [228] have also been simulated by the VPSC 

model. 

In general, improvement of texture prediction has been achieved by the self-consistent model 

compared to the Taylor-type models. However, the predicted texture strength is still not in 

satisfactory. As shown in Fig. 2.22(b), both the Taylor-type model and VPSC model predicted 

wrong textures compared to the experimental results. 
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Fig. 2.22 {1 1 1} pole figures of the experimental textures and simulated textures using the Taylor model 

and VPSC models with the shear increment of 0.005 for (a) the first pass, and (b) the second pass [38]. 

 

Table 2.2 Maximum intensity in {1 1 1} pole figure (P) and texture index (T) of the experimental and 

simulated textures at different thickness positions in the deformed billet after the first pass [59]. 

Position 
P   T   

Experiment Taylor VPSC Experiment Taylor VPSC 

s=0.1 6.8 12.2 6.9 5.5 7.7 4.5 

s=0.5 10.4 12.2 7.6 7.9 7.5 4.4 

s=0.7 7.1 11.8 7.4 6.1 6.8 3.9 

s=0.8 5.9 11.3 7.1 4.7 6.0 3.3 

s=0.9 6.0 6.5 6.3 3.1 1.8 1.7 
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2.5.3 CPFEM Model 

In contrast to the Taylor-type model and VPSC model, another texture modeling approach is to 

implement the crystal plasticity constitutive laws in the finite element framework. This method 

is called the crystal plasticity finite element method (CPFEM) model and has been recognized as 

the best model for simulating texture evolution during plastic deformation [61]. In the CPFEM 

model, local heterogeneity can be considered. Therefore, the deformation and orientation 

rotation of a material point depend on both its initial crystallographic orientation and the 

crystallographic orientations of its neighbors. According to the reports [231, 232], the main 

advantage of the CPFEM model is its ability to solve crystal mechanical problems under 

complicated internal and external boundary conditions. In addition, various constitutive 

formulations for plastic flow and hardening, based on not only dislocation mechanism [233, 

234], but also other mechanisms such as mechanical twinning [235, 236], can be added. This 

could result in that one type of deformation mechanism occurs at some material points, while 

other deformation mechanisms or a mixed mechanism may occur at remaining material points 

[231]. However, the requirement of huge calculation time limits the extensive use of the CPFEM 

model in engineering applications. 

Compared to the Taylor-type models and VPSC model, limited studies based on the CPFEM 

model have been conducted to investigate texture development during the ECAP process. The 

first application was performed by Li et al. to simulate the texture evolution in one ECAP pass of 

pure aluminium and copper [58]. They have evaluated the performance of the CPFEM model by 

comparing the simulation results with experimental measurements by neutron diffraction. At 

the same time, comparison with predictions by the VPSC model was also carried out, as shown 

in Fig. 2.23. It has been found that the CPFEM predictions agreed better with the experimental 

textures than those simulated using the VPSC model with or without enforcing grain co-rotation. 

On the other hand, Wu et al. [120] used the CPFEM model to study grain refinement and 

texture evolution in route C during multiple-pass of ECAP. Texture evolution in route C has also 

been simulated by Li et al. [57] for one to four passes, while another study examined up to 20 

ECAP passes [120]. Based on the CPFEM simulations [56], the influences of the processing route 
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and the die channel angle on slip activities and grain refinement have been successfully 

explained. 

 

Fig. 2.23 {1 1 1} pole figures and ODFs for the textures in the Al after one pass of ECAP process: (a) 

experimental results, (b and c) simulated by the CPFEM model using the 1EPG and 8 EPG meshes, (d and 

e) simulated by the VPSC model without and with enforcing grain co-rotation [58]. 
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Fig. 2.24 Lattice rotation fields in the range of 20° × 20° × 20° around ideal orientations for FCC materials 

in ECAP deformation: (a)    
 , (b)    

 , (c)    
 , (d)   , (e)   , and (f)   . Left: phi2=constant section, and 

right: phi2=constant section. The direction and length of an arrow signify, respectively, the direction and 

magnitude of the rotation vector [167]. 

Recently, Li studied the orientation stability in ECAP for FCC and BCC polycrystalline materials in 

[167, 192] and for HCP polycrystalline materials [44] using the CPFEM model. Fig. 2.24 shows 

the lattice rotation fields around ideal orientations in ECAP deformation. The results revealed 

that the ideal orientations are meta-stable under rate-sensitive conditions, and their stability 

generally increases with the decrease of strain rate sensitivity. The CPFEM model was also 

adopted by Jung et al. [54] to investigate texture evolution and deformation heterogeneity 

during the ECAP process and the upsetting of pure aluminium AA1050 by implementing a rate-

dependent polycrystalline theory into an in-house program, CAMPform3D. It has been found 
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that friction was the crucial factor to govern anisotropic deformation. Besides, Kalidindi et al. 

[55] conducted a CPFEM simulation and assumed that the macroscale deformation field could 

be represented by a set of equi-spaced streamlines. They stated that their results showed 

better agreement with the measuremental results compared against the other reported model 

in the literature when the same deformation history was used. 

2.6 Summary and Research Scope of this Thesis 

The ECAP process is one of the most widely used SPD techniques and is very effective in grain 

refinement and improving the strength of materials. The main advantage of this technique is its 

capability to introduce large amounts of plastic strain without changing the overall dimensions 

of the billets. A number of experimental researches on the microstructure evolution and 

texture development during the ECAP process have been conducted for a wide range of 

materials, including aluminium single crystals and alloys, Cu single crystals, bicrystal and alloys, 

interstitial-free steels, titanium alloys, magnesium alloys and so on. Many models have been 

developed to help understanding the deformation mechanism of the ECAP process. Simple 

shear along the intersecting plane of the entry channel and exit channel is the most frequently 

used model to represent the deformation mode during the ECAP process. In practice, a simple 

shear model is only suitable for the ideal conditions, including the frictionless condition, and 

ECAP dies with sharp angles, and perfect plastic materials. These ideal conditions are very 

difficult to achieve because deformation always deviates from simple shear due to the 

significant influences of the ECAP die channel angle, outer corner angle, inner corner angle, 

processing route, number of passes, frictional condition, material property, and initial 

crystallographic orientation, and so on. 

FEM simulations have revealed the fan shaped PDZ due to the development of a dead zone in 

the outer corner region during the ECAP process which leads to a non-uniform plastic strain 

distribution, inhomogeneous grain refinement and texture evolution in the deformed billet. The 

dead zone obviously decreased with the increasing friction coefficient and the application of 

back pressure. Generally, the plastic strain in the bottom part of the billet was much lower than 
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the upper region after deformation. Meanwhile, many studies on the predictions of ECAP 

texture have also been conducted to gain a better knowledge of the texture evolutions and the 

influencing factors during this specific deformation technique by comparing the simulated 

textures with the experimental results. Generally, the predicted textures based on the FEM 

deformation history are stronger than those obtained by the simple shear model due to the 

larger shear strain component in the FEM predicted displacement gradient. 

However, most of the ECAP textures in the literature have been simulated by a combination of 

the Taylor model or VPSC model with the deformation histories provided by the simple shear 

model, or the flow line model or FEM simulations, and even then they failed to capture the 

main features and intensities of experimental textures in the even numbered passes in Route C. 

Even the application of the advanced texture model, namely CPFEM model, only improved 

slightly compared to the VPSC model when the deformation history was predicted from the 

simple shear model. However, none of the CPFEM simulations of the ECAP process in the 

literature were carried out based on the deformation history of the real full-scale ECAP process. 

All these simulations have been conducted in a decoupled manner and the influence of 

crystallographic orientations on the strain distributions at each material point during the ECAP 

process has been neglected when they predict the deformation history. In practice, the 

simulated texture will be significantly influenced by the degree of accuracy in describing the 

ECAP deformation. Furthermore, the texture predictions of initial single crystals and differences 

in texture between two-dimensional and three-dimensional model during the ECAP process 

have never been reported. Studies on the influence of frictional condition, sample dimension, 

ECAP die geometry, processing routes and initial crystallographic orientations on the texture 

evolutions in single crystals are essential for these fundamental investigations. 
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Chapter 3 Development and Verification of the 

CPFEM Model 

A CPFEM model has been developed in the thesis to simulate the ECAP process. This chapter 

presents the basic concepts of crystal plasticity theory and implementation of crystal plasticity 

laws into a commercial FEM framework. The experimental measured results [33, 179] have 

been used to validate the capability of the developed CPFEM model. 

3.1 Crystal Plasticity Theory 

As a general scheme of notation, vectors in the subsequent context are written as boldface 

lowercase letters (e.g., a), tensor and matrices are written as boldface capital letters (e.g., A). 

Cartesian components of vectors and tensors are written as, ai and Aij, respectively. All inner 

products are indicated by a single dot and the tensor product is indicated as ‘ ’. The 

superscript ‘-1’ of a matrix (e.g., A-1) indicates the inverse and the superscript ‘T’ of a matrix 

((e.g., AT)) denotes the transposition of this matrix. The summation convention is used for Latin 

indices but summations over crystallographic slip systems are indicated explicitly. Time 

derivatives are denoted by superposed dots. 

3.1.1 Kinematical Theory 

The quantitative description of kinematical theory for the mechanics of elastic-plastic 

deformation of crystals stems from the early work of Taylor [205] and Hill [237], where they 

proposed that material flows through the crystal lattice via dislocation motion. The kinematical 

theory used in the present CPFEM model follows the procedures used by Asaro [238], Asaro 

and Rice [239], and more recently by Si and Huynh [233, 240]. 
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Fig. 3.1 Multiplicative decomposition of the deformation gradient   into elastic deformation part and 

plastic deformation part. 

It has been assumed in this study that crystalline material under load undergoes a 

crystallographic slip due to dislocation motion on the active slip systems and elastic 

deformation including stretching and rotating of the crystal lattice [233, 238-243]. Three 

configurations are used for mathematical convenience as shown in Fig. 3.1. The initial 

configuration corresponds to the undeformed state of the element and the current 

configuration to the deformed state of the element. The intermediate configuration is obtained 

from the current configuration when relaxing the lattice elastic stretching and rotation. 

Therefore, the total deformation gradient can be decomposed into two components as 

  
  

  
             (3.1) 

where   is the total deformation gradient,   is the position of the material point in the current 

configuration,   is the position of material point in the initial configuration,    is the 

deformation gradient combined the stretching and rotation of the crystal lattice, and    is the 

deformation due to plastic shearing on crystallographic slip systems and can be written as 
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   ∑  ( )  ∑    ( )(  
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        (3.2) 

where  ( )  is the contribution of α-th slip system to   ,  ( ) is the shear strain of α-th slip 

system, I is a second-order unit tensor and N is the number of active slip systems. 

The Green strain tensor can be expressed by 

  
 

 
(     )       (3.3) 

In the initial configuration, the crystal slip system α consists of a slip direction   
( )

 lying in a slip 

plane with normal vector of   
( )

. Both   
( )

 and   
( )

 are taken to be unit vectors and are 

orthogonal. 

  
( )
   

( )
        (3.4) 

They do not change during crystallographic slip from the initial configuration to the 

intermediate configuration but convert with the lattice when the lattice is stretched and 

rotated. The slip direction vector   
( )

 can be given in a deformed configuration by 

 ( )       
( )

       (3.5) 

The normal to the slip plane   
( )

 after deformation can be written as 

 ( )    
( )
            (3.6) 

It should be noted that  ( ) and  ( ) are generally not in unit vectors, but remain orthogonal. 

 ( )   ( )          (3.7) 

The current velocity gradient is evaluated from the deformation gradient by 

  
  

  
 
  

  

  

  
  ̇               (3.8) 

    ̇             (3.9) 
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       ̇                 (3.10) 

where   is the velocity of the material point,    is the elastic part of the velocity gradient and 

   is the plastic part of the velocity gradient.    is related to the shear strain rate  ̇( ) of the α-

th slip system by 

   ∑  ̇( ) 
    ( )  ( )     (3.11) 

      ( ) ( )  ( )     (3.12) 

The velocity gradient can be uniquely decomposed into a symmetrical part and a skewed-

symmetrical part as 

            (3.13) 

  
 

 
(    )      (3.14) 

  
 

 
(    )      (3.15) 

where   and   are called the stretch rate tensor and spin tensor, respectively.   is generally 

called the rate of deformation. The tensors   and   can also be decomposed into the elastic 

stretching and lattice rotation part (   and   ), and the plastic part (   and   ), as follows: 

              (3.16) 

             (3.17) 

The components of the two tensors (  and  ) can be expressed by the velocity   and the 

coordinate   as, 

    
 

 
(
   

   
 
   

   
)      (3.18) 

    
 

 
(
   

   
 
   

   
)      (3.19) 

According to Equations (3.8), (3.10), (3.16) and (3.17),    can be derived as 
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             ̇                (3.20) 

And then    in Equation (3.16) and    in Equation (3.17) can be expressed as 

   ∑  ( ) ̇( ) 
         (3.21) 

where  ( ) has been defined as 

 ( )  
 

 
( ( )  ( )   ( )  ( ))     (3.22) 

Similar to   , the tensor    in Equation (3.17) can also be expressed as 

   ∑  ( ) ̇( ) 
         (3.23) 

where  ( ) has been defined as 

 ( )  
 

 
( ( )  ( )   ( )  ( ))     (3.24) 

For convenience,  ( )  ( )  is usually called the Schmid factor. Therefore,  ( ) and  ( ) are 

the symmetrical and asymmetrical part of the Schmid factor, respectively. 

The derivatives of Equations (3.5) and (3.6) yield 

 ̇( )     ( )       (3.25) 

 ̇( )    ( )        (3.26) 

By differentiating Equation (3.3), the rate of change of Green’s Lagrangian strain can be written 

as 

 ̇  
 

 
( ̇      ̇)             (3.27) 

According to the polar decomposition theory, the deformation gradient   in Equation (3.1) can 

be expressed by two alternative forms as 

            (3.28) 

            (3.29) 
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where   is the orthogonal rotation tensor,   is the right stretch tensor,   is the left stretch 

tensor. Both tensors   and   are positive definite symmetric tensors. And they satisfy the 

condition of 

             (3.30) 

            (3.31) 

Therefore,   in Equations (3.14) and (3.16) can be expressed as 

   ̇           (3.32) 

And then   can be expressed by 

  (  
 

 
   ) (  

 

 
   )

  

     (3.33) 

where ∆t is the time increment. Accordingly, Equation (3.32) can also be expressed as 

  
 

  
(   )(   )        (3.34) 

3.1.2 Constitutive Equations 

It has been assumed that the crystal’s elasticity is unaffected by slip. According to the 

description of Hill and Rice, the elastic constitutive law takes the form 

 
  
            (3.35) 

  (     )     (  
    

 )     (3.36) 

where   is the fourth order tensor of the elastic modulus, 
 
 

 

 is the Jaumann rate of Kirchoff 

stress. It has been assumed that    is the Kirchhoff stress in the reference configuration at a 

time t+∆t, and it is also the Kirchhoff stress in the current configuration at a time t. According to 

the description in Section 3.1.1, deformation occurs first by crystallographic slip from the 

reference configuration to the intermediate configuration, and then lattice stretching and 

rotation from the intermediate configuration to the current configuration. It is assumed that 
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the change in stress caused by the slip and lattice stretching is  ̇   , where  ̇  is the stress rate 

in the reference configuration. The stress     ̇    will be rotated to the current configuration. 

The rotation tensor is  . The Kirchhoff stress   in the configuration can be expressed by 

   (    ̇   ) 
       (3.37) 

Taking the time derivative of Equation (3.33) it can be obtained as 

 ̇    ̇  
   ̇(    ̇   ) 

   (    ̇   ) 
    ̇  

          (3.38) 

where  ̇ is the material rate of Kirchhoff stress.   ̇  
  is defined as the Jaumann rate of 

Kirchhoff stress (
 
 

) on axes that rotate with the material. Therefore, Equation (3.34) can be 

written as 

 
 
  ̇             (3.39) 

If deformation from the intermediate to the current configuration alone is taken into account 

then Equation (3.35) can be rewritten as 

 
  
  ̇            ̇ 

        (3.40) 

where 
 
  

 is the Jaumann rate of Kirchhoff stress on axes that rotate with the lattice and  ̇ 
  is the 

rate of the Kirchhoff stress in the intermediate configuration. 

The difference between Equations (3.35) and (3.36) can be obtained as 

 
  
 
 
 
 ∑  ( ) ̇( ) 

        (3.41) 

where  ( ) is defined by 

 ( )   ( )    ( )     (3.42) 

The lattice is elastically stretched along the lattice axis. The lattice stretching can be described 

in the lattice coordinate system by 
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 ̇              (3.43) 

where  ̇  is the material rate of the Kirchhoff stress in the lattice coordinate system,    is the 

rate of the elastic stretching in the lattice coordinate system,    is the elastic moduli tensor. 

Provided the rotation tensor between the lattice coordinate system and the current 

configuration is   , the elastic deformation rate    in the current configuration can be linked 

to    by the following equation 

         
       (3.44) 

The rate of Kirchhoff stress in the intermediate configuration can be expressed by 

 ̇ 
       ̇   

        (3.45) 

Therefore, according to Equations (3.27) and (3.42), the Jaumann rate 
 
  

 in Equation (3.37) can 

be written as 

 
  
    ̇   

        (3.46) 

Equations (3.41) and (3.43) can be rewritten as 

   (  
    

 )          (3.47) 

 ̇  (  
    

 )  
 
  

       (3.48) 

Substituting Equations (3.44) and (3.45) into Equation (3.40) yields Equation (3.32). 

According to Equations (3.32) and (3.37), we can have 

 
 
     ∑ (   ( )   ( )) ̇( ) 

       (3.49) 

It was assumed that slip is the only plastic deformation mechanism. The resolved shear stress 

on each slip system can be used as the vital variable to evaluate plastic flow. The resolved shear 

stress  ( ) can be calculated from 



 Chapter 3 Development and verification of the CPFEM model of the ECAP process 
 

49 
 

 ( )   ( )         (3.50) 

Taking the time derivative gives 

 ̇( )  (   ( )   ( ))  (  ∑  ( ) ̇( ) 
   )     (3.51) 

The relationship of the Cauchy stress   and the Kirchhoff stress is 

            (3.52) 

and J is defined as 

  
 

| |
        (3.53) 

Therefore, the constitutive law based on Cauchy stress can be expressed as 

   (  (    ( ))) 
  

 
  
        (3.54) 
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      (3.55) 

 ̇( )  (   ( )   ( )    ( ))  (  ∑  ( ) ̇( ) 
   )   (3.56) 

3.1.3 Hardening Model 

The rate-dependent theory has been extensively and successfully applied in crystal plasticity 

studies to overcome the long standing problem of non-uniqueness in the choice of the active 

slip systems which are inherent in conventional rate-independent theory [233, 238, 239, 241-

245]. The rate-dependent power law was first introduced by Hutchinson [246] in 1976 to study 

the steady creep properties of face centered cubic and ionic polycrystals. Since then it has been 

successfully used by Asaro [238, 242], Asaro and Needleman [243], and Toth [244], in their 

researches. It has been noted by Peirce et al. [241] that the rate-independent plasticity can be 

treated as the limit of rate-dependent plasticity. This study follows the above mentioned rate-

dependent power law, which relates the resolved shear stress τ(α) to the shear strain rate  ̇( ) 

on a slip system identified by the index α, as follows: 
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      (3.57) 

and 

   ( )  ,
      
     

      (3.58) 

where  ̇ 
( )

is the reference value of the shear strain rate which is taken to be a constant for all 

slip systems. n denotes the rate sensitive exponent and the rate insensitivity limit is n →infinit. 

Both parameters  ̇ 
( )

 and n are the material characters. Parameter   
( )

 is a variable used to 

describe the current strength of the slip syatem α. 

 

Fig. 3.2 A typical curve of resolved shear stress versus shear strain in a slip system for a FCC single crystal. 

(Point ‘A’ denotes where secondary slip commences) [247] 

Fig. 3.2 shows a typical shear stress and shear strain curve for a FCC crystal with the tensile axis 

oriented with a standard triangle, and where it reflects three different stages [247]. Stage-1 is 

the easy glide stage where the corresponding hardening rate is very low and almost constant. 

By contrast, Stage-2 is a rapid hardening stage where the hardening rate is also almost constant, 

but much higher than in Stage-1. Stage-3 is a parabolic hardening region where the hardening 
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rate decreases continuously until fracture occurs [247]. According to Basinski et al. [248], 

layered structures are formed in Stage-1 while more cell structures develop in Stage-3. To 

complete the hardening model, the rate of hardening of the critical resolved shear stress on 

each slip system is assumed to be a linear combination of the shear strain rates on all systems 

as 

 ̇ 
( )
 ∑     ̇

( ) 
          (3.59) 

The self-hardening and latent hardening moduli are shown in Equations (3.60) and (3.61) as 

    *(     )    
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]   (3.60) 

         for α=β      (3.61) 

    is instantaneous hardening moduli that include the self-hardening of each system (α=β) and 

latent hardening (α≠β). The parameter   is a latent hardening parameter and    is the 

reference value of slip.   is the shear strain and    is the initial critical resolved shear stress.    

is the breakthrough stress where large plastic flow begins and    is the hardening modulus just 

after the initial yield, while    is the hardening modulus during easy glide. Parameter     

represents the magnitude of the strength of a particular slip interaction between two slip 

systems α and β and it depends on the geometric relationship between two slip systems. The 

factors     are given in terms of five constants [247]: 

(i) a1 (no junction): the resultant Burgers vector from slip systems α and β is parallel to the 

original one; 

(ii) a2 (Hirth lock): the resultant Burgers vector is not energetically admissible; 

(iii) a3 (coplanar junction): the resultant Burgers vector is on the same slip plane as the original 

ones; 

(iv) a4 (glissile junction): the resultant Burgers vector is energetically admissible and on one of 

the two slip planes; 
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(v) a5 (sessile junction): the resultant Burgers vector is energetically admissible but not on either 

of the two slip planes; 

3.2 Development of the CPFEM Model 

3.2.2 Fundamental Equations of FEM 

It is well known that the equilibrium for problems neglecting the body forces can be expressed 

by the virtual work principle in rate form 

 
SV

dSδdVδ: vfDσ       (3.62) 

where V is the volume of the solid body in the current configuration; S is the bounding surface 

of the volume V; σ is the Cauchy stress; f is the surface traction per unit of the current area; δv 

is the kinematically admissible virtual velocity field and δD is the virtual form of the rate of 

deformation. 

According to FEM theory, a solid body is divided into n elements, where each element is 

associated with m nodal points. The velocity field in each element is interpolated by 

interpolation functions   (shape functions), which link the velocity field ( ) to the nodal 

velocities (  ) as follws, 

            (3.63) 

The deformation rate   and spin tensor   can be expressed as 

            (3.64) 

            (3.65) 

  and   are the symmetrical part and the skewed part of the coefficient matrix of velocity 

gradient, respectively. 

Therefore, the equilibrium equation (Equation (3.)) can be rewritten as 
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nTnT
vfNvσB   :dS:dV

SV
     (3.66) 

Accordingly, the constitutive relationship for the rate-dependent materials can be described in 

incremental form as follows 

 
 
          (3.67) 

  is the fourth order hardening parameter tensor. The derivative of the Cauchy stress with 

respect to    can be calculated as follows 
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The Jacobian matrix ( ) can be expressed as 

 
SV

dSdV):( TNBHσGGσBK
TT     (3.69) 

The hardening parameter tensor   must be calculated based on the constitutive law to 

determine  . 

3.2.2 Implementation of Crystal Plasticity Theory in FEM 

In this study, the crystal plasticity constitutive model is implemented into the implicit finite 

element code Abaqus/Standard using the user material subroutine (UMAT), where the material 

properties can be defined and the data can be exchanged with Abaqus [249] UMAT has two 

functions. The first one is to make sure that the stress state of the material is at the current 

increment and calculate all state variables. The second function is to calculate the Jacobian 

matrix of the current material configuration. The stability and rate of convergence are 

significantly influenced by the material constitutive model. 

In the developed CPFEM model, the following seven groups of data need to be provided in the 

input file [250]: 

(i) Elastic moduli of materials; 
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(ii) Number of sets of potentially activated slip systems considered; 

(iii) Initial crystallographic orientations in the sample coordinate system; 

(iv) Shear strain rate depending on the resolved shear stress and current strength; 

(v) Self and latent hardening moduli; 

(vi) The forward gradient time integration parameter and the parameter determining whether 

the small deformation theory or the theory of finite strain and finite rotation is used in the 

analysis; 

(vii) Parameters for the iteration method; 

The loading history has been divided into many steps where deformation is assumed to be 

static in each step. When the UMAT is first called, the step will be initialized and the orientation 

and slip systems will be defined. The linear system within the iterative Newton-Raphson 

scheme is solved using LU decomposition. At the starting time t of the incremental step the 

stresses, logarithmic strains, rotation increments, time increment and solution dependent 

variables are provided. Then the slip systems will be determined according to the input 

parameters and the spin tensor will be calculated. Then the slip direction and normal of the slip 

plane will be calculated. Accordingly, all the variables and Jacobian matrix can be obtained by 

the related equations, as shown in Section 3.1. All the values of state variables will be updated 

and transferred to the next step if the Jacobian matrix converges, and then the iteration of the 

next increment will be calculated. Otherwise, the time increment will be estimated and iterated. 

This procedure will be repeated and finally terminated until the deformation is finished. 

3.3 Verification of the developed CPFEM Model 

Two-dimensional CPFEM simulations of the ECAP process of aluminium and copper single 

crystals have been carried out. In order to verify the developed CPFEM model for the ECAP 

process, the simulated textures will be compared with the experimental results. 
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3.3.1 ECAP of Aluminium Single Crystal 

(This part has already been published in Acta Materialia (2011)) 

An aluminium single crystal was processed by the ECAP process in a recent work [33]. The 

experimental ECAP die has a square cross-section with dimensions of 4 × 4 mm2, 90° die 

channel angle and 30° outer corner angle. The initial crystallographic orientation of the 

aluminium single crystal is an ideal shear texture component ‘A’, which means the slip plane (-1 

-1 -1) is parallel to the theoretical shear plane of the ECAP die and the slip direction [-1 1 0] is 

parallel to the theoretical shear direction, respectively. 

In order to save computing time, a two-dimensional CPFEM simulation is conducted to model 

the above mentioned experiment with assumption of plane strain condition on the central 

plane of the sample. The ECAP die geometry used in Ref. [33] is set in the CPFEM model, as 

illustrated in Fig. 3.3. During FEM simulation the punch and die channels are considered as rigid 

bodies and the sample is defined as deformable body. The sample has an initial rectangular 

geometry of 23.2 (in length) × 4 (in width) mm2 and it is meshed into 6369 plane strain four-

node elements (element id: CPE4R), with 33 elements along the width of sample, as shown in 

Fig. 3.3. The coordinate system is also depicted in the figure, namely the X, Y, and Z axis 

representing the extrusion direction (ED), normal (or vertical) direction (ND) and transverse 

direction (TD), respectively. It should be noted that the coordinate system in the experiment 

[33] was left-hand, while the system in the present study is right-hand. During the ECAP process, 

a constant processing velocity of 2.4 mm/s along the –Y axis is applied. The frictional condition 

between the sample and the ECAP die is considered by setting the coefficient of friction µ=0.1 

according to the study by Li and co-authors [142]. 

Table 3.1 The strain rate sensitivity component and parameters of aluminium single crystal used in the 

hardening model as Equation (3.60). 

n  ̇  (s-1)    (MPa)    (MPa)     (MPa)    (MPa) 

300 0.0001 100 0.01 6.3 6 
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Fig. 3.3 Geometry of the ECAP die, initial mesh and {1 1 1} pole figure of aluminium single crystal used in 

this simulation. 

The simulated material is an aluminium single crystal with an identical initial crystallographic 

orientation to the experiment, as shown in Fig. 3.3 in terms of the {1 1 1} pole figure. According 

to the study by Franciosi et al. [251], the factors fαβ for aluminium in the Equation (3.22) are set 

as: a1=a2=a3=1.75, a4=2, and a5=2.25. The other material parameters used in the hardening 

model are listed in Table 3.1. They are evaluated by fitting the simulated stress-strain curve 

with the experimental results under plane strain compression. The elastic moduli tensor for 

aluminium has been expressed as 
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    (3.70) 

where    =112000 MPa,    =112000 MPa, and    =112000 MPa, respectively. In the deformed 

materials with FCC structure, it is assumed that slips occur on the {1 1 1} slip planes along the 
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<1 1 0> slip directions. Their combination defines 12 different slip systems as indicated in the 

Table 3.2. 

Table 3.2 Notations of the slip systems for the FCC materials considered in this study. 

Number Slip system Slip plane Slip direction 

1 a1 (1 1 1) [0 -1 1] 

2 a2 (1 1 1) [1 0 -1] 

3 a3 (1 1 1) [-1 1 0] 

4 b1 (-1 1 1) [1 0 1] 

5 b2 (-1 1 1) [1 1 0] 

6 b3 (-1 1 1) [0 -1 1] 

7 c1 (1 -1 1) [0 1 1] 

8 c2 (1 -1 1) [1 1 0] 

9 c3 (1 -1 1) [1 0 -1] 

10 d1 (1 1 -1) [0 1 1] 

11 d2 (1 1 -1) [1 0 1] 

12 d3 (1 1 -1) [-1 1 0] 

 

The simulation is terminated when the majority of the aluminium single crystal has passed 

through the intersecting zone of the entry channel and exit channel. Simulation is performed 

using the HPC cluster of the University of Wollongong and the computing time has been 

compared using different number of CPU at the same time. It has been found that the 

application of four CPUs at the same time is the best choice which takes about 150 hours to 

finish this simulation. Ref. [33] reported the measured {1 1 1} pole figures for four selected 

positions labeled as 1-4 in their deformed sample. To validate the developed CPFEM model for 

the ECAP process of aluminium single crystal, the {1 1 1} pole figures based on the simulation 

results at the similar positions are plotted and compared in Fig. 3.4. Those positions 1-4 in the 

experiment [33] are denoted as Positions P1 – P4 in Fig. 3.4. 



 Chapter 3 Development and verification of the CPFEM model of the ECAP process 
 

58 
 

 

Fig. 3.4 Comparisons of the {1 1 1} pole figures between the CPFEM simulation and experimental 

measurements (upper panel: simulation results; lower panel: experiment results [33]): (a) Initial 

crystallographic orientation, (b) Position P1, (c) Position P2, (d) Position P3, and (e) Position P4. 

Fig. 3.4(a) shows the initial crystallographic orientations used in the simulation and experiment 

while Fig. 3.4(b-e) shows that the simulated pole figures have captured all the features shown 

in the experimentally measured pole figures. It should be mentioned that there is much less 

resolution in the simulated pole figures than in the measured ones because the dimension of 

the elements is much larger than the resolution used in the experiment [33]. In Fig. 3.4(b) for 

Position P1, the structure remains a single crystal and the crystallographic orientation is rotated 

from the initial orientation. Fukuda et al. [33] interpreted that the rotation angle was about 60° 

around the Z axis (Y axis in their paper) in the counter-clockwise sense. This rotation angle is 

confirmed by this simulation. The pole figure measured at Position P2 reveals a strong rotated 

component together with a weak initial crystallographic orientation. The simulation predicts 

both crystallographic orientations at almost the same positions in the pole figure. The initial 

crystallographic orientation and the rotated orientation can also be seen in the measured and 

predicted pole figures at Positions P3 and P4. The good agreement between the simulation and 

the experiment demonstrates that the CPFEM model of the ECAP process in this study can 

predict accurate textures for the aluminium single crystal. 
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3.3.2 ECAP of Copper Single Crystal 

(This part has already been published in Materials Science and Engineering A (2012)) 

In this study, the ECAP process experiment of copper single crystal [179] has also been 

simulated to validate the developed CPFEM model. The ECAP die used for ECAP of copper single 

crystal in Ref. [179] was the same as the one used for ECAP of aluminium single crystal in Ref. 

[33]. According to the studies [247, 252], the factors fαβ for copper can be chosen as 

a1=a2=a3=8, a4=15, and a5=20. Three elastic moduli are    =168400 MPa,    =121400 MPa, 

and    =75400 MPa. The other parameters used for the hardening law are listed in Table 3.3. 

The initial crystallographic orientation for copper single crystal is designed as: the slip plane of 

(-1 -1 -1) and the slip direction of [-1 1 0] are parallel to the theoretical shear plane and shear 

direction of the ECAP die, respectively. 

Table 3.3 The strain rate sensitivity component and parameters in the hardening law for copper single 

crystal. 

n  ̇  (s-1)    (MPa)    (MPa)     (MPa)    (MPa) 

20 0.0001 90 1.5 1.3 1 

 

For the convenience of simulation, the ECAP die and punch are modeled as rigid body and the 

sample is defined as deformable body. It is meshed into 6369 elements as the same as the 

aluminium single crystal described in the last Section. A constant punch speed of 0.04 mm/s 

along –Y direction is used and the processing is terminated when approximately three-fourths 

of the sample is pressed through the intersection part of two channels. The Coulomb friction 

model with coefficient of 0.1 is used to consider the real frictional condition and the processing 

is assumed at room temperature. The simulation is terminated when the majority of the copper 

single crystal has passed through the intersecting zone of the entry channel and exit channel. 



 Chapter 3 Development and verification of the CPFEM model of the ECAP process 
 

60 
 

 

Fig. 3.5 Comparisons of the {1 1 1} pole figures between the experimental measurements [179] (upper 

panel) and the CPFEM simulation (lower panel): (a) Position 1, (b) Position 2, and (c) Position 3. 

In the experiment [179], the textures after the ECAP process were examined using the 

orientation imaging microscopy (OIM) for three selected positions, as shown in Fig. 3.5. The 

labels of 1-3 in this figure correspond to the Labels 0, 3, and 4, respectively, in Ref. [179]. It is 

obvious that the Position 1 is located in the entry channel while Positions 2 and 3 are located in 

the exit channel. Both the experiment and simulation at Position 1 reveal an almost the initial 

crystallographic orientation which confirms that the crystal lattices do not significantly rotate at 

this position before entering the main PDZ. The experimental measurement at Position 2 shows 

the initial crystallographic orientation together with a rotated orientation by 60° around the Z 

axis in a counter-clockwise direction from the initial orientation. Furukawa et al. [159, 180] 
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states that the counter-clockwise rotation is due to the shear plane spreading at the outer arc 

of curvature at the point where the two channels intersect. In Fig. 3.5(b), both the initial 

orientation and the 60° rotated component have been observed at this position, but some extra 

orientation scattering in the simulated {1 1 1} pole figure exists, which indicates the influence of 

frictional condition on the texture heterogeneity at Position 2. It should be noted that the 

experiment was conducted using a MoS2 lubricant which could reduce the frictional effect 

between the sample and the ECAP die channels. The simulated {1 1 1} pole figure at Position 3 

in Fig. 3.5(b) is consistent with the experiment result in Fig. 3.5(a), which indicates an 

orientation rotated about 60° around the Z axis from the initial crystallographic orientation. 

Therefore, it can be concluded that the CPFEM model developed in this study can predict 

accurate texture evolution during ECAP of copper single crystal. 

3.4 Summary 

This chapter is summarized as follows: 

(1) The development of a CPFEM model has been introduced. In the model used in this study 

the deformation has been decomposed into two parts: crystallographic slip due to dislocation 

on the active slip systems and elastic deformation that includes stretching and rotation of the 

crystal lattice. The rate-dependent material constitutive law has been applied to overcome the 

problem of non-uniqueness in the choice of active slip systems which is inherent in the rate-

independent theory [233, 238, 240-245]. The hardening model proposed by Wu and Bassani 

[247, 252] has also been used because it can accurately capture the three different hardening 

stages in a slip system, namely low hardening in Stage-1, rapid hardening in Stage-2, and 

parabolic hardening in Stage-3. 

(2) A detailed implementation of crystal plasticity theory into the commercial finite element 

code (Abaqus) has been described. Abaqus/Standard offers a user subroutine interface where 

the mechanical constitutive behavior of material different from the Abaqus program library can 

be defined. 
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(3) For the first time CPFEM simulations of ECAP of aluminium single crystal and copper single 

crystal have successfully been conducted. The simulation results have been compared with the 

reported experimental results. It has been found that the simulated results agree well with the 

experimental observations. This clearly indicates that the developed model can be used to 

accurately predict the texture evolutions for FCC materials during the ECAP process. 
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Chapter 4 Investigation of ECAP of Aluminium 

Single Crystals 

The aim of this chapter is to carry out a systematic study on ECAP of aluminium single crystals. 

Difference between two-dimensional and three-dimensional simulations has been investigated. 

The effects of mesh conditions, frictional conditions, sample size, outer corner angle and inner 

corner fillet radius of an ECAP die on the inhomogeneous plastic deformation and texture 

evolution will be discussed in details. 

4.1 Inhomogeneous Deformation and Texture Evolution 

(This part has already been published in Acta Materialia (2011)) 

The CPFEM simulation procedure of ECAP of aluminium single crystal has been given in Chapter 

3 in details. In this section, the nature of inhomogeneous deformation and texture evolution of 

aluminium single crystal during the ECAP process will be analysed. 

4.1.1 Macroscale Deformation Behaviour 

Fig. 4.1(a) shows the mesh in the deformed billet at the time step where the top surface of the 

billet is 4.2 mm away from the entry of the die corner. The shape of the billet in the die corner 

shown in the figure is similar to the experimental observation by an optical microscope in Ref. 

[33]. It seems that the billet has filled in the whole die. However, a careful inspection indicates 

that there is a non-contact area, as marked in the figure, in the outer corner of the die. The 

deformed mesh in Fig. 4.1(a) shows that deformation heterogeneity exists along the X axis 

before point ‘S’ but after point ‘S’ the deformation tends to be homogeneous along the X axis, 

indicating that the billet was deformed under a steady-state condition. The region behind point 

‘S’ is now called the steady-state deformation region and herein most of the analyses will be 

conducted in this region. 
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Fig. 4.1 Mesh distortions and distribution of effective plastic strain rate in the deformed billet: (a) mesh 

distortions, and (b) effective plastic strain rate. 

Five circular regions, marked as ‘A-E’ in Fig. 4.1(a), have been enlarged to give more details of 

the mesh distortions. Region A is located in the entry channel and shows that the elements in 

this region are slightly distorted, indicating that deformation has already taken place in the 

entry channel. Region ‘B’ was chosen from the die corner. The elements in this region are 

subjected to shear deformation. Another feature in Region ‘B’ is that the elements are 

stretched, which means that the deformation is not simple shear deformation, and that tension 

and compression deformation has also been imposed onto the billet. Regions ‘C’ and ‘D’ 

represent the upper part and lower part of the deformed billet in the steady-state deformation 

region respectively. It is clear that after deformation the elements have been distorted and 

oriented at certain angles with respect to the X axis, as shown in Region ‘C’. The rotation angle 

of the element decreases as the distance (d) from the top surface increases, until d=3.3 mm. It 

is interesting to observe that the elements in Region ‘D’ exhibit different deformation 
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behaviour, such that the elements in the upper part of Region ‘D’ are highly distorted, whereas 

in the lower part the elements are slightly distorted. It was reported from a number of 

experiments that the undistorted region encompasses 5~20% of the billet thickness [253]. In 

our simulation the thickness of this region is 17.5% of the billet. Region ‘E’ is located in the 

unstable deformation region. An undulating localized flow band can be seen in this region. The 

band is roughly parallel to the intersecting line between two channels, which is consistent with 

the experimental observation [5]. Segal [5] and Figueiredo et al. [254] attributed the reason for 

flow localization to the flow softening, but we observed this phenomenon using the work 

hardening model, as shown in Equation (3.57). As can be seen, the flow localization band 

includes alternate layers of highly sheared and rotated elements. Large local stress gradients 

exist in the unstable deformation region which activate different slip systems in the 

neighbouring elements and induce elements to rotate in different directions. Some elements 

become softer, while others become harder. The former are subjected to more shear 

deformation while the lattices in the latter need more rotation to accommodate local strain. 

Fig. 4.1(b) shows the distribution of effective plastic strain rate ( ̅̇) in the deformed billet. The 

main plastic deformation zone (PDZ) spreads about the intersecting plane in the die corner. It 

can be seen that the deformation in the entry channel extends from the surface to the middle 

of the billet and the material near the right hand side surface of the entry channel is subjected 

to more deformation than the left hand side surface. As with the prediction by the VPSC model, 

( ̅̇) significantly changes from the inner corner to the outer corner and the PDZ can be divided 

into two parts based on the pattern of the strain rate. The upper part of the PDZ has a fan-like 

shape that covers the major portion of the PDZ. The lower part of the PDZ includes two small 

deformation regions near the surface of the billet, between which a rigid body rotation region 

exists that in turn corresponds to the non-contact region shown in Fig. 4.1(a). 

4.1.2 Crystal Rotation Patterns 

In order to analyze the rotation of the crystallographic orientation during the ECAP process, the 

misorientation of each node relative to the initial crystallographic orientation has been 

partitioned into three components which represent the crystal rotation angles around the X, Y 
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and Z axes, respectively. The partitioned method proposed by Wert et al. [234] has been 

adopted in this study. Contour maps of crystal rotation angles around the X, Y, and Z axes are 

shown in Fig. 4.2(a-c), respectively. The positive value means the counter-clockwise (CCW) 

rotation and the negative value indicates the clockwise (CW) rotation. It can be seen from Fig. 

4.2 that the crystallographic orientation rotates along all three directions. The crystal rotation 

angle around the Z axis (TD) is much larger than the other two rotation directions. This is 

consistent with the experimental observations of single crystal and polycrystalline materials [33, 

253]. According to Equation (3.32), the rate of material rotation ( ̇) can be expressed as 

 ̇            (4.1) 

where   is the material rotation tensor and   is the spin tensor, as defined in Section 3.1. 

According to Equation (3.17), the component    caused by the slip and    caused by the 

lattice rotation and stretching. Therefore,    represents the rate of rotation of the 

crystallographic orientation. Under a plane strain condition   for rotations around the X and Y 

axes are zero. Since the slip directions are oriented in all three dimensions, the slip rotation 

components (  ) around the X and Y axes always exist. To retain zero material rotations 

around X and Y axes, the lattices must rotate around the X and Y axes to compensate for the 

rotation induced by slips. Therefore, the lattice rotations around the X and Y axes are non-zero. 

It can be seen that in the steady-state deformation region the distributions of crystal rotations 

around all three axes are heterogeneous. In Fig. 4.2(a), the crystal rotation angles around the X 

axis in the middle part of the billet are larger than those in the top and bottom parts. The 

distribution of the rotation angle around the Y axis is different from that around the X axis. The 

large rotation area in Fig. 4.2(b) locates in the top part of the billet, while in the bottom part the 

rotation angle around the Y axis is small. According to the distribution of the rotation angle 

around the Z axis, as shown in Fig. 4.2(c), the steady-state deformation region can be divided 

into three sub-regions: the top half part with about 60° Z-axis rotation, the region between 1/2 

and 3/4 of the billet thickness from the top surface with about 0° Z-axis rotation and the 

remaining region with about 90° Z-axis rotation. 
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Fig. 4.2 Distributions of crystal rotation angles in the billet: (a) contour map of crystal rotation angle 

around the X axis, (b) contour map of crystal rotation angle around the Y axis, (c) contour map of crystal 

rotation angle around the Z axis, and (d) crystal rotation angle along line AA’ marked in (a). 

The crystal rotation angles along the line AA’ marked in Fig. 4.2(a) were selected and shown in 

Fig. 4.2(d). All rotation angles vary along the billet thickness and the crystal rotation around the 

Z axis is larger than those around the X and Y axes. It is clear that there are three regions with 

distinct rotation angles around Z axis. Liu et al. [255] conducted cold rolling of aluminium single 

crystal with initial Cube orientation. They found that the crystal rotated mainly around TD and 

the crystal was subdivided macroscopically and symmetrically into four parts, designated matrix 

bands, along the thickness by the TD rotation. The crystal rotation angle varies significantly in 

the regions between the matrix bands, defined as transient bands. Fig. 4.2(d) depicts three 

matrix bands M1, M2, and M3 through the thickness of the ECAP processed billet. The TD (Z-

axis) rotation angles in three matrix bands are about 60°, 0° and 90°, respectively. Position P1 

marked in Fig. 4.1(a) is located in M1. Therefore, a nearly 60° Z-axis rotation was observed in 
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the {1 1 1} pole figure, as shown in Fig. 3.5(b). Since positions P2-P4 are located in the transient 

bands, both 0° and 60° rotations have been seen in the corresponding {1 1 1} pole figures. Ref. 

[33] did not show any result near the bottom surface (M3 region) nor discussed the sub-grain 

formation in the experimental work. However, the sub-grain formation can be quantified by the 

misorientation angles predicted by the current simulation. It can be seen from Fig. 4.2 that the 

misorientation angles around the Z axis are about 60° between M1 and M2 and 90° between 

M2 and M3, respectively. These misorientation angles are greater than the angle of 15° 

commonly used to define a large-angle grain boundary. This indicates that the initial single 

crystal has been split into three grains after one pass of the ECAP process.  

4.1.3 Slip Trace 

Fig. 4.3 shows the simulated slip traces in the billet based on the CPFEM model. Three slip 

systems with the larger magnitudes of the accumulative shear strain are selected for each 

element. The intersecting line between a slip plane and the transverse plane (Z plane) is plotted 

by a segment of straight line centered at the integration point of the element, the direction of 

which infers the orientation of the slip trace. The length of the straight line represents the 

relative magnitude of accumulated shear strain. The black, blue and red colors refer to the slip 

systems with the first largest magnitude, the second largest magnitude and the third largest 

magnitude of the accumulative shear strain, respectively. Six selected regions, marked as ‘A-F’, 

are enlarged to give details of the slip traces. In Region ‘A’, the single slip system a3 (defined in 

Table 3.2) is activated. In Region ‘B’, the primarily activated slip system is d1. However, in the 

area near the surface another slip system (a3) is also activated, which may be due to friction. 

The evolution of the slip traces can be observed through Region ‘C’, which is located in the 

upper part of the PDZ. Accompanying the lattice rotation, the slips tend to occur simultaneously 

on different systems. It can be seen that the activated slip develops from a single-slip system or 

a double-slip systems to a multi-slip system. Region ‘D’, also located in the PDZ, exhibits a 

different slip trace pattern. Only one slip system (a3) is active for the majority portion of Region 

‘D’ and the accumulative shear strain on this slip system increases as the material moves 

through the PDZ. It can be observed that most slip traces in Region ‘D’ are parallel to each other, 
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indicating that the lattice rotation is negligible. Region ‘E’ and ‘F’ were chosen from the 

deformed billet. The main difference between these two regions is that the material in Region 

‘E’ is subjected to multiple slips, while the deformation in Region ‘F’ is governed by one 

dominant slip. It is also found that the magnitude of the accumulative shear strain of the 

primary slip system in Region ‘F’ is larger than in Region ‘E’. 

 

Fig. 4.3 Simulated slip traces in the aluminium single crystal during the ECAP process. 

In the experiment of Ref. [33] the crystal was oriented so that the {1 1 1} slip plane was parallel 

to the ideal shear plane of the ECAP die and the <1 1 0> slip direction lays parallel to the 

direction of shear. This orientation was expected to be stable during the ECAP process if the 

billet was deformed by the slip on the desired slip system, as predicted by simple shear theory. 

However, the experimental observation showed both initial crystallographic orientation and a 

60° rotated orientation in the deformed billet. Fukuda et al. [33] interpreted these results using 

shear factors which are based only on the initial positions of the slip systems with respect to 

the applied shear. As pointed out by Beyerlein and Toth [2], shear factors cannot give precise 

information on slip activity, the latter being dependent on the stress state as well. 
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4.1.4 Heterogeneity along Thickness 

According to the results shown in the last section, it is natural to ask the question: what is the 

basic mechanism behind the observed phenomena? To answer this question, three tracer 

elements marked by ‘I-III’ in Fig. 4.2(c) will be analysed in this section. They belong to three 

matrix bands M1, M2, and M3, respectively. 

Fig. 4.4 shows the crystal rotation angles around three axes, shear strain rates on 12 slip 

systems, three stress components (  : normal stress along the X axis;   : normal stress along 

the Y axis;    : shear stress on the Z plane) and three strain rate components (  ̇: normal strain 

rate along the X axis;   ̇: normal strain rate along the Y axis;   ̇ : shear strain rate on the Z 

plane) for tracer-element I as functions of the moving distance from its initial position. The 

positions at the entry and exit of the die corner are marked by dashed lines in the figure. It can 

be seen from Fig. 4.4(a) that the lattice starts to rotate at the moving position of ~10 mm. The 

change of the Z-axis rotation angle is faster than the others. In the die corner the lattice 

rotation around the X axis changes the direction from CW to CCW, while the rates of change of 

the Z-axis rotation angle and the Y-axis rotation angle increase monotonically. This increase in 

the Z-axis rotation angle is more significant and it becomes the dominant rotation component 

at the exit of the die corner. The Z-axis rotation occurs roughly in two regions with regard to the 

moving distance: 10-14 mm (before the die corner) and 14-15.3 mm (within the die corner). In 

the 10-14 mm region, the magnitudes of normal stresses increase significantly and the shear 

stress (   ) remains at a relatively large value of 50 MPa. This leads to multiple slips. Five active 

slip systems have been observed in Fig. 4.4(b) for the 10-14 mm region. Fig. 4.4(d) shows that 

the magnitude of shear strain rate (  ̇ ) is larger than those of normal strain rates (  ̇ and   ̇). 

This indicates that friction plays an important role in this region. It is interesting to see that 

seven slip systems are activated in the die corner (14-15.3 mm region), some of which have 

large shear strain rates, as shown in Fig. 4.4(b). It is reasonable to expect that the Z-axis 

rotation is affected by multiple slips which correspond to the abrupt increase of the Z-axis 

rotation angle in the 14-15.3 mm region. 
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Fig. 4.4 Results for tracer-element I as functions of moving distance from initial position: (a) crystal 

rotation angles, (b) shear strain rates, (c) stresses, and (d) strain rates. 

Fig. 4.5 shows the results for tracer-element II. The Z-axis rotation angle of tracer-element II 

slightly increases before the element moves into the die corner. The major difference in the Z-

axis rotation angle between tracer-element I and II exists in the die corner. Unlike the 

significant increase in the Z-axis rotation angle for tracer-element I, the Z-axis rotation angle of 

tracer-element II decreases in the die corner and then stabilizes at a very small value. This gives 

a near-initial orientation in the matrix band M2. The major feature in Fig. 4.5(b) is that a single-

slip system dominates the plastic deformation, even though multi-slip occurs before and within 

the die corner. The magnitude of the shear strain rate of the dominant slip system in Fig. 4.5(b) 

is smaller than that of tracer-element I in Fig. 4.5(b). Since tracer-element II is located lower 

than tracer-element I, the activation distance of the former is larger than the latter, and 
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therefore the accumulated shear strain on the primary slip system of tracer-element II is larger 

than tracer-element I, as shown in Region ‘F’ of Fig. 4.3. In the die corner, both the stresses and 

strains of tracer-element II are smaller than their counterparts in Fig. 4.4. 

 

Fig. 4.5 Results for tracer-element II as functions of moving distance from initial position: (a) crystal 

rotation angles, (b) shear strain rates, (c) stresses, and (d) strain rates. 

Fig. 4.6 shows the results for tracer-element III. It can be seen from Fig. 4.6(a) that the Z-axis 

rotation angle increases dramatically from 15° to 90° as the element moves within the moving 

distance range of 11.5-14 mm. This range corresponds to the rigid body rotation region locating 

between two small deformation regions in the lower part of the PDZ, as shown in Fig. 4.1(b). 

Close inspection reveals that the multi-slip mainly occurs in two small deformation regions. The 

shear strain rate of the primary slip system has opposite directions in these two regions. This 

results in near-zero slip after the element leaves the die corner. A comparison of stresses and 
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strains in Figs. 4.4-6 indicates that tracer-element III has similar magnitude of stresses and 

strains in the die corner as tracer-element II, but both of them have smaller magnitudes of 

stresses and strains than tracer-element I.                         

The calculated material rotation angles for tracer-elements I and II are 63.5° and 58.3°. For 

tracer-element I, the plastic deformation in the die corner is completed within a short distance, 

resulting in a larger local strain gradient (or strain rate) and shear strain rates on the slip 

systems, as shown in Fig. 4.4(b) and (d). From the hardening model (Equation (3.60)), the 

resolved shear stress on the primary slip system is much larger than the critical shear stress. 

This also leads to larger resolved shear stresses on other slip systems. The consequence is that 

several slip systems are activated simultaneously. It can be seen from Region ‘E’ of Fig. 4.3 that 

the activated slip systems orientate along different slip directions. They provide opposing 

contributions to   , resulting in a small   . The lattice must rotate to accommodate the 

material rotation required by deformation, namely the lattice rotation angle is close to the 

material rotation angle (63.5° for tracer-element I). For tracer-element II, the deformation zone 

in the die corner has been enlarged so the strain gradients (or strain rates) have been reduced, 

resulting in a small shear strain rate on the primary slip system. According to the hardening 

model, a smaller shear strain rate requires a resolved shear stress slightly larger than the critical 

value, which is not high enough to generate visible shear strains on other slip systems. This 

results in a dominant slip system observed in the die corner for tracer-element II (Fig. 4.5(b)). 

The single dominant slip can generate a large rotation (  ) to accommodate the whole 

material rotation ( ). Therefore, the lattice rotation (  ) is not needed for tracer-element II, 

leading to almost initial orientation after deformation. In the lower part of the die corner such 

as tracer-element III, the materials are mainly subjected to deformation in two small regions, 

between which a rigid body rotation region exists. It can be seen from Fig. 4.6(b) that the shear 

strain rates are relatively small and slips in two small deformation regions occur in the opposite 

directions. In the rigid body rotation region, the billet loses contact with the die, leading to the 

stresses being too small to induce large slip. This results in a very small   . However, without 

large slips in the lower part of the die corner the die geometry requires a 90° material rotation. 
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Therefore, the lattice must rotate about 90° around Z axis to accommodate the required 

material rotation. 

 

Fig. 4.6 Results for tracer-element III as functions of moving distance from initial position: (a) crystal 

rotation angles, (b) shear strain rates, (c) stresses, and (d) strain rates. 

Based on the above analysis, it can be demonstated that the geometry of the die plays a very 

important role in the texture evolution and heterogeneity along the thickness direction during 

ECAP process. When the strain gradient is large (such as tracer-element I), multi-slip can be 

activated. The material rotation induced by slips is negligible and the lattice rotation 

dominantes the whole material rotation requested by deformation. When the strain gradient is 
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small (such as tracer-element II), the single dominant slip is the main slip mechanism, which can 

satisfy the required material rotation in the absence of the lattice rotation. Therefore, the 

lattice remains at the initial orientation after deformation. There is a rigid body rotation region 

in the lower part of the die corner where the lattice rotates by the die channel angle in this 

region. The inhomogeneous texture evolution along the thickness direction of such oriented 

aluminium single crystal during the ECAP process is obvious shown in Fig. 3.2. 

4.2 Three-dimensional Simulation of ECAP 

In order to examine the accuracy of two-dimensional plane strain assumption, a three-

dimensional CPFEM simulation of the ECAP process has been carried out. Three-dimensional 

classical FEM simulation of the ECAP process [145, 148-150, 256] have been reported. However, 

to the author’s knowledge this is the first three-dimensional CPFEM simulation of the ECAP 

process. 

In the three-dimensional simulation, the simulated ECAP die geometry is exactly the same as 

the one used in Section 3.3.1. The ECAP die has a square cross-section with dimensions of 4 × 4 

mm2 and is assumed as rigid body in the simulation. The die channel angle is 90° and the outer 

corner angle is 30°. The aluminium single crystal has a total length of about 24 mm and is 

defined as deformable body in the simulation. It has been meshed into 27945 C3D8R elements, 

which is defined as an 8-node linear brick and reduced integration with hourglass control [249]. 

To provide the consistency of the previous simulations, the friction coefficient µ is set to 0.1. 

The initial crystallographic orientation and the other material parameters for aluminium single 

crystal can be found in Chapter 3. 

Fig. 4.7 shows the mesh in the deformed crystal. As can be seen, the deformation is not uniform 

along both the X axis and Y axis. Along the X axis, similar distorted elements to the two-

dimensional simulation in Fig. 4.1(a) can be observed. In contrast along the Y axis, the elements 

in the upper part have been sheared more than in the lower part. Apart from the 

inhomogeneous deformation in the leading head, steady-state deformation region has been 

obtained and all the results will be analyzed in this region. 
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Fig. 4.7 Mesh distortions in the three-dimensional CPFEM simulation of the ECAP process of aluminium 

single crystal. 

Fig. 4.8 shows the distribution of plastic strain in the cross-section of the deformed billet (2 mm 

away from the exit of the die corner, namely X=6 mm). It is obvious that the strain distribution 

is not uniform along the thickness direction (or Y axis), but homogeneous along the transverse 

direction (or Z axis). According to the distribution of strain along the Y axis, three regions can be 

distinguished, namely part of the upper half, the middle 1/4 thickness, and the lower 1/4 

thickness. The strain in the upper region is slightly smaller than the middle part, where the 

deformation pattern is very complicated and includes shearing, tension and compression. The 

smallest strain is located in the bottom part. This should be attributed to the outer corner angle 

of the ECAP die which leads to the rigid body rotation. 
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Fig. 4.8 Contour of strain distribution in the cross-section (X=6 mm) of the deformed aluminium single 

crystal during the ECAP process. 

Fig. 4.9(a-c) shows the variation of the effective plastic strain and strain components along 

three selected lines parallel to the Z axis (lines of Y=3.6, 2 and 0.4 mm representing different 

parts along thickness direction) as marked in Fig. 4.8. It is clear that the strain components   , 

    and     are almost zero for all three lines. The effective plastic strain on the line of Y=3.6 

mm in the upper region is slightly smaller than that of Y=2 mm in the middle part, but larger 

than that of Y=0.4 mm in the lower region. Fig. 4.9(d) shows the variation of the effective 

plastic strain between three selected lines parallel to the Y axis (line of Z=-1.8, 0, and 1.8 mm 

representing different planes along transverse direction) as marked in Fig. 4.8 and the results 

agree with each other. 
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Fig. 4.9 Variation of the effective plastic strain and logarithmic strian components along the Z axis and Y 

axis in the steady-state deformation region. (a) on the line of Y=3.6 mm, (b) on the line of Y=2 mm, (c) 

on the line of Y=0.4 mm, and (d) comparison of the effective plastic strain along the thickness direction 

between two-dimensional and three-dimensional simulations. (LE33 is normal component of logarithmic 

strain along the Z axis, LE13 and LE23 are shear components on the Y and X planes, respectively) 

A deformation inhomogeneity index,   , was defined to quantify the degree of deformation 

inhomogeneity along the Z axis after the ECAP process proposed by Li et al. [142] as: 

   (
         

 ̅
)      (4.1) 

where     ,      and   ̅represent, respectively, the maximum, minimum and average of the 

effective plastic strains along the Z axis. 
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Calculation reveals that the indexes    for three lines of Y=3.6, 2 and 0.4 mm are very small, 

with a corresponding index of 0.09, 0.1, and 0.12, respectively. These results indicate a 

relatively homogeneous deformation along the transverse direction when the die has a square 

cross-section. However, the index for the lines of Z=-1.8, 0 and 1.8 mm are very large. The 

corresponding indexes are 1.42, 1.39, and 1.41, respectively, which shows significant 

inhomogeneous deformation along the Y axis. 

Fig. 4.9(d) shows a comparison of the effective plastic strain between the three-dimensional 

and two-dimensional simulations, with the result being very good agreement. Therefore, 

according to the results shown in Fig. 4.8 and Fig. 4.9, it can be concluded that similar strain 

distribution can be obtained from both the three-dimensional and two-dimensional simulations 

when the ECAP die has a square cross-section. 

Nine different positions marked P1 to P9 in Fig. 4.8 are selected to study texture evolution 

along the thickness direction (Y axis) and the transverse direction (Z axis). Positions P1-P3 are 

located in the line of Z=-1.8 mm. Positions P4-P6 are located in the middle line of Z=0 mm and 

Positions P7-P9 are located in the line of Z=1.8 mm. The texture has been studied in terms of {1 

1 1} pole figures, as shown in Fig. 4.10. It is obvious that texture evolution is not uniform along 

the Y axis as predicted by the two-dimensional simulation shown in Section 4.1. A 

crystallographic orientation rotated about 60° from the initial component around the Z axis has 

been observed for Positions P1, P4, and P7 which are located in the upper region along the 

thickness direction. Both the initial and rotated crystallographic orientations exist in the middle 

region (Positions P2, P5, and P8) and a nearly 90° rotated orientation component in the bottom 

part (Positions P3, P6, and P9). The {1 1 1} pole figures along three lines Y=3.6, 2, and 0.4 mm 

shown in Fig. 4.10 are similar, which indicate that uniform texture evolution along the 

transverse direction for aluminium single crystal was deformed by ECAP with the die having a 

square cross-section. 
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Fig. 4.10 Simulated {1 1 1} pole figures for the selected positions marked in Fig. 4.8 according to the 

three-dimensional CPFEM simulation of the ECAP process of aluminium single crystal. 

The crystal rotation patterns of aluminium single crystal are analyzed based on the three-

dimensional CPFEM simulation results using the method proposed by Wert and et al. [234]. Figs. 

4.5(a), (b) and (c) show the results for lines of Z=-1.8, Z=0 and Z=1.8, respectively. As can be 

seen, there are similar crystal rotations for three lines, which are also similar to the result from 

the two-dimensional CPFEM simulation. The predominant crystal rotation is around the Z axis 

and the crystal rotation angles around X axis and Y axis are much smaller. Three matrix bands 

predicted by two-dimensional simulation, marked in Fig. 4.11(d), are also seen by three-
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dimensional simulation. The corresponding Z-axis crystal rotation angles are about 60°, 0°, and 

90°, respectively. 

    

    

Fig. 4.11 Variation of crystal rotation angles around the X, Y and Z axes along the thickness direction in 

the steady-state deformation region. (a) on the line of Z=-1.8 mm; (b) on the line of Z=0 mm; (c) on the 

line of Z=1.8 mm; (d) comparison of the crystal rotation angles around the Z axis on the three selected 

lines Z=-1.8, 0 and 1.8 mm. 

In this section, it has been found that the three-dimensional CPFEM simulation leads to a 

similar distribution of strain and texture evolution along the thickness direction to the two-

dimensional simulation. However, the CPU time for the three-dimensional simulation is about 

7.5 times more than the two-dimensional simulation which is around one week. Therefore, it is 

reasonable to assume the plane strain condition in the simulations of the ECAP process for the 



 Chapter 4 Factors influencing the ECAP process of aluminium single crystals 
 

82 
 

die with a square cross-section and all the remaining simulations will be two-dimensional to 

save computing time. It should be mentioned that, the other solid elements have been tried 

during the simulation and the results indicated that the elements CPE4R (two dimensional 

model) and C3D8R (three dimensional model) lead to shorter computation time and reasonable 

agreement with experimental measurements. 

4.3 Influence of Mesh Condition 

According to Li et al. [142], the strain distribution is sensitive to the mesh conditions, even in a 

steady state deformation region during the ECAP process. This section will examine the 

influence of mesh condition on deformation behaviour and texture evolution using the CPFEM 

model introduced in Chapter 3. 

The simulated material is still aluminium single crystal with the same initial crystallographic 

orientation as Sections 3.3.1. The same geometries of the ECAP die and sample are used. Four 

different meshes are studied, using 10, 20, 34, and 60 elements along the thickness direction, 

respectively. The corresponding number of the total elements are 600, 2400, 6369, and 12000, 

as shown in Fig. 4.12. They will be called Mesh 600, Mesh 2400, Mesh 6369 and Mesh 12000 in 

the following text, respectively. 
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Fig. 4.12 Comparison of mesh distortions in the deformed aluminium single crystal between different 

mesh conditions. (a) Mesh 600, (b) Mesh 2400, (c) Mesh 6369, and (d) Mesh 12000. 

Fig. 4.12(a-d) shows the mesh distortions in the deformed billet for 600, 2400, 6369, and 12000 

meshes, respectively. The significant difference between Mesh 600 and the other three meshes 

has been observed. In Fig. 4.12(a), very coarse mesh leads to a failure of filling the ECAP die. 

There is a large gap between the sample and the ECAP die in the outer corner and exit channel. 

The outer corner gap is represented by the arc of ‘AB’, as marked in Fig. 4.12(a). For Mesh 600 

the sample undergoes both shear and bending during ECAP, and the corner gap decreases 

obviously as the number of elements increase from 600 to 6369. Mesh 12000 leads to a similar 
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corner gap to Mesh 6369, as shown in Fig. 4.12(c) and (d). Note that the mesh distortions in the 

bottom for Mesh 600 and 2400 are similar and they have been sheared more than those of 

Mesh 6369 and 12000, where the obvious rigid body rotation part can be observed. 

 

 

Fig. 4.13 Variation of (a) effective plastic strain, and (b) von Mises stress along the thickness at different 

mesh conditions. 

Fig. 4.13 shows a comparison of plastic strain along the thickness direction for different meshes. 

It is obvious that Mesh 600 and Mesh 2400 fail to simulate the rigid body rotation part in the 

bottom of the sample and both of them lead to a smaller strain than Meshes 6369 and 12000. 

The average values of the effective plastic strain along the thickness direction for Meshes 600, 

2400, 6369, and 12000 are 0.818, 0.926, 1.287, and 1.275, respectively.  
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The influence of the mesh condition on texture evolution of aluminium single crystal during the 

ECAP process has also been studied. Three positions as marked in Fig. 4.12(b) are selected to 

plot {1 1 1} pole figures. As can be seen, Position P1 is in the entry channel before entering the 

PDZ area and Positions P2 and P3 are located in the exit channel. The corresponding {1 1 1} pole 

figures are shown in Fig. 4.14 and Position P1 is characterized as the initial crystallographic 

orientation for all the mesh conditions. For Mesh 600, as shown in Fig. 4.14(a), Positions P2 and 

P3 have similar crystallographic orientations which is an ~50° rotated component from the 

initial orientation around the Z axis in a counter-clockwise direction. Slightly larger rotation 

angles are observed in Fig. 4.14(b) for Mesh 2400 at both Positions P2 and P3 than for Mesh 

600. The rotation angle is about 60° and a slight orientation scattering can also be observed at 

Position P3. In contrast, Fig. 4.14(c) shows similar pole figures for Mesh 6369 to Fig. 4.14(d) for 

Mesh 12000 at Positions P2 and P3. The {1 1 1} pole figure at Position P2 reveals a single 

crystallographic orientation with about 60° rotation from the initial orientation while the pole 

figure at Position P3 indicates the presence of both initial crystallographic orientation and the 

rotated orientations. Therefore, it can be concluded that texture evolution during the ECAP 

process has been significantly influenced by the mesh condition. Meshes 6369 and 12000 are 

able to capture the main characters of texture evolution of aluminium single crystal during 

ECAP and lead to a good agreement with the experimental results, as observed by Fukuda et al. 

[33]. In contrast, Meshes 600 and 2400 fail to predict accurate textures. 
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Fig. 4.14 Influence of mesh condition on the {1 1 1} pole figures for the selected positions as marked in 

Fig. 4.12(b). (a) Mesh 600, (b) Mesh 2400, (c) Mesh 6369, and (d) Mesh 12000. 

4.4 Influence of Frictional Condition 

(This part has already been published in Journal of Materials Science (2010)) 
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Up to now a number of classic FEM simulations have been conducted to investigate the 

influence of the frictional condition between the sample surfaces and die walls during the ECAP 

process [139, 141-144, 257]. All these studies adopted the classic constitutive law for plastic 

deformation, which is unable to predict texture evolution. One of the main objectives of this 

section is to investigate the influence of frictional condition on texture evolution during the 

ECAP process, which has not been seen in the published literature. 

The Coulomb friction model is used in the simulations. The coefficient of friction varies from 0 

to 0.2 with an increment of 0.05. Other simulation conditions are the same as the previous 

study in Section 4.2 and 4.3. Two-dimensional CPFEM simulations are carried out with Mesh 

6369 to save computing time. 

It is worthy of noting that the simulation with µ=0.2 could not be finished due to very poor 

convergence caused by severe mesh distortion. Discussion in the following text will be 

conducted for µ=0-0.15. 

Fig. 4.15 shows the distributions of effective plastic strain rate ( ̇), in the billets for different 

frictional conditions. It can be seen that deformation already occurs in a small area within the 

entry channel even for the frictionless condition shown in Fig. 4.15(a). When friction is applied 

to the interface between the wall of the die and the surface of the billet (Fig. 4.15(b)-(d)), 

deformation is induced in the vicinity of the right side interface in the entry channel which 

extends from the right side to the left side. Under a frictionless condition, the PDZ is relatively 

narrow but with friction the PDZ can be divided into two parts based on the pattern of  ̇. The 

upper part of the PDZ is fan shaped and covers a major portion of the PDZ. The lower part of 

the PDZ includes two small deformed regions near the surface of the billet between which 

there is a region of rigid body rotation. A large corner gap exists for the frictionless case, while 

the corner gap almost disappears when the coefficient of friction is increased to 0.05. The billet 

has filled the whole corner of the die for cases with µ=0.1 and 0.15, which is consistent with 

results reported by Li et al. [59]. However, a careful inspection indicates that there is a non-

contact area between points A and B in the outer corner of the die. This will intensify the 

inhomogeneous deformation in the billet. 
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Fig. 4.15 Distribution of effective plastic strain rate in the billet during the ECAP process. (a) µ=0, (b) 

µ=0.05, (c) µ=0.1, and (d) µ=0.15. 

The simulated {1 1 1} pole figures for four different friction coefficients were compared in Fig. 

4.16 with the experimentally measured results at two selected positions labelled 1 and 2 in Fig. 

4.15(a). At Position 1 (upper panel of Figure 4.16), the experimental observation shows that the 

structure remains a single crystal and the crystallographic orientation has been rotated from 

the initial orientation. Fukuda et al. [33] found that the rotation angle is 60° around the Z axis (Y 

axis in their paper) in a counter-clockwise sense. Fig. 4.16 shows that all the simulation results 

agree with the experimental measured result at Position 1. The measured pole figure at 

Position 2 reveals a rotated orientation and an initial orientation, but the simulation for the 

frictionless case only predicts the rotated orientation and the rotation angle is larger than the 
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experimental value shown in Fig. 4.16(b). By contrast, the simulations with µ=0.05 and 0.1 

predict both the initial orientation and rotated component. When the friction coefficient is 

increased to 0.15, except for the initial orientation, an unexpected orientation appears in the 

pole figure (lower panel in Figure 4.16(e)). Comparisons in Figure 4.16 indicate that the 

coefficient of friction between 0.05 and 0.1 can provide good texture predictions. 

 

Fig. 4.16 Comparison of the {1 1 1} pole figures between the CPFEM simulations and experiment. The 

upper panel is for Position 1 and the lower panel is for Position 2. (a) Experiment [33], (b) µ=0, (c) µ=0.05, 

(d) µ=0.1, and (e) µ=0.15. 

A quantitative analysis regarding the influence of the frictional condition on the crystallographic 

rotation angles was carried out using the partition method proposed by Wert et al. [234]. 

According to the results shown in Section 4.2, the crystallographic orientation rotates in three 

dimensions for this initial crystallographic orientation so only the rotation around the 

transverse direction (Z axis) will be considered and discussed in this section. Fig. 4.17 shows the 

contour maps of the crystallographic orientation rotation angles for all cases. As mentioned 

before, a positive value of the rotation angle indicates a counter-clockwise rotation and a 

negative value indicates a clockwise rotation. For the convenience of analysis, the billet is 

divided into three regions marked as A, B, and C, along the billet thickness as shown in Fig. 
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4.17(a). Regions A, B, and C roughly correspond to the three matrix bands M1, M2, and M3 

shown in Fig. 4.2(d), respectively. All the simulations predict a similar 60° Z-axis rotation in the 

upper part of the deformed billet, namely Region A. It seems that friction does not affect the 

texture in the main portion of Region A. A careful inspection reveals that the Z-axis rotation 

angle in the vicinity of the top surface of the deformed billet increases slightly with the 

coefficient of friction due to the direct frictional effect on the top surface. The comparison in 

Fig. 4.17 shows that friction significantly affects texture evolution in the lower part of the 

deformed billet, namely Regions B and C. As shown in Fig. 4.17(a), the frictionless condition 

does not generate the initial orientation in Region B. A striation with a Z-axis rotation angle of 

about 25° is inserted in the region with 60° Z-axis rotation. In addition, the Z-axis rotation angle 

in Region C for the frictionless case is smaller than other cases while Fig. 4.17(b) and (c) shows 

that cases of µ=0.05 and 0.1 exhibit similar results. Three matrix bands for both cases are 

parallel to the X axis which indicates that the texture is heterogeneous along the billet thickness, 

but it is relatively homogeneous along the X axis, at least in the steady state region. When a 

higher friction (µ=0.15) is applied, as shown in Fig. 4.17(d), Region C near the bottom surface 

has a similar rotation angle to µ=0.05 and 0.1, but the case of µ=0.15 has a different texture 

pattern in Region B where the texture is no longer homogeneous along the X axis. This region is 

partitioned into several small matrix bands. Based on above analysis, it can be found that the 

major difference in texture for various friction coefficients are located in Region B where the 

frictionless condition even does not generate an initial orientation. Continuous matrix bands 

with an initial orientation are formed in the cases of µ=0.05 and 0.1, while a higher friction 

(µ=0.15) leads to the development of separate small matrix bands in Region B. It is clear that 

texture evolution in Region B was inherited from the PDZ so it can be concluded that the 

frictional condition affects the texture in Region B through the PDZ. The inhomogeneous matrix 

bands in Region B also results in slightly more crystallographic rotation around the X and Y axes 

in the {1 1 1} pole figure, as shown in Fig. 4.16(e). Friction increases the back pressure in the 

exit channel and results in a smaller outer corner gap. The difference in the corner gap 

significantly affects the distribution of stresses in the lower part of the PDZ, but it has very little 

effect in the upper part of the PDZ. Therefore, texture in Region B depends on the frictional 
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condition, while texture in Region A does not change. Texture in Region C is mainly determined 

by the rigid body rotation, which is strongly relative to the die geometry. Therefore, a slight 

influence of friction on texture in Region C is observed. 

 

Fig. 4.17 Crystal rotation angles around the transverse direction (Z axis) during the ECAP process for 

different coefficients of friction. (a) µ=0, (b) µ=0.05, (c) µ=0.1, and (d) µ=0.15. 

According to the distributions of the effective plastic strain rate and crystal rotation angles, it 

can be concluded that µ=0.05 performs better so the remaining study of the ECAP process of 

aluminium single crystals will be conducted using the coefficient of friction of µ=0.05. 

4.5 Influence of Sample Size 

(This part has already been published in Computational Materials Science (2013)) 
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Due to the promising properties of UFG materials produced by the ECAP process, a few 

successful attempts to scale up the sample to a larger size for potential use in industrial 

applications [258-263] have been reported. Till now, the mass of the largest ECAP sample can 

reach 32.7 kg for aluminium alloy and 110 kg for copper alloy [263], but the influence of sample 

size during the ECAP process has only recently been discussed and very few studies have been 

reported. Berbon et al. [93] was the first one to investigate the sample size and stated that the 

result was significantly influenced by friction when the cross-section of the sample was less 

than 5 mm. This has not been confirmed in the experiment by Fukuda et al. [33, 157, 179] and 

Furukawa et al. [96, 158, 160, 161, 180]. In addition, the previous study [264] suggested that 5 

mm was not the lowest limit for a satisfactory ECAP process. Meanwhile, Horita et al. [258] 

have experimentally investigated the effect of the sample dimension on the grain refinement 

and mechanical properties of aluminium alloys with diameters ranging from 6 mm to 40 mm. 

Suo and co-workers have examined the strain inhomogeneity by classic FEM simulation with 

sample varying in diameter from 8 mm to 20 mm [262]. However, the influence of the sample 

size on texture evolution during the ECAP process has not been reported. 

This section studies how the sample size influences the deformation and texture evolution of 

aluminium single crystals during the ECAP process. To the author’s knowledge, this is the first 

crystal plasticity FEM study to investigate the relationship between texture and sample 

dimension during ECAP. The initial crystallographic orientation is the same as that described in 

Section 3.3.1 and the coefficient of friction is set to 0.05. The two-dimensional simulations have 

been conducted and all the samples meet the condition where the length (l) is not less than five 

times the width of the sample (d), in order to reach steady-state deformation. Four different 

cases with sample width varying from 2 mm to 40 mm were investigated. In Case I: d=2 mm and 

l=10 mm; Case II: d=4 mm and l=20 mm; Case III: d=10 mm and l=55 mm; and in Case IV: d=40 

mm and l=200 mm. 

First, the influence of sample size on the required load has been studied. In Fig. 4.18(a), the 

load as a function of the ratio of displacement to the sample width is plotted for Case I. It is 

apparent that deformation during the ECAP process takes three steps, which is similar to the 
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results reported by Kim [265]. The deformation history during ECAP process has been recorded 

as shown in Fig. 4.19. In Step 1 the load increased rapidly from zero because the initial 

undeformed head part of the sample (marked as points ‘AB’ in Fig. 4.19) goes through the PDZ 

and the volume of the deformed part increases. In Step 2 the front part of the sample exits the 

PDZ and starts bending towards the upper surface of the exit channel and the load increases 

slowly to the peak load point, as shown in Fig. 4.18(a). Step 3 starts when there is enough 

interaction between the sample and the exit channel, where the load decreases gradually due 

to a decrease in the contact area within the entry channel. The load-displacement curves for 

four cases I-IV are compared in Fig. 4.18(b). Similar trend is observed, apart from a slight 

discrepancy due to the frictional effect. The frictional effect will increases as the sample 

becomes larger even if it is not the dominant factor in determining the ECAP load [258]. The 

peak loads of four cases have been summarized in Table 4.1. 
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Fig. 4.18 Simulated load curves for aluminium single crystals having different sample widths varying 

from 2 mm to 40 mm during the ECAP process. 

Fig. 4.19 shows the simulated mesh distortions in the deformed sample having a width of d=2 

mm. The distortion here is not uniform along the width even in the steady-state region. In the 

enlarged upper and centre areas, the grids change in shape from a rectangle in the entry 

channel to a parallelogram after passing through the PDZ, but with different angles (θ) as 

shown in Fig. 4.19(d), which is about 40.3° in the upper area and 26.8° in the centre, 

respectively. In contrast, there is almost no shearing in the shape of the rectangular grid in the 

lower area as it passes through the PDZ. There are similar deformed meshes for the other three 

cases, but they are not presented in this section. The deformation heterogeneities in these 
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three regions are consistent with the work performed by Kalidindi et al. [55], where the 

macroscale deformation fields during ECAP were idealized as a set of equi-spaced streamlines. 

Table 4.1 The average values of the effective plastic strain ( )̅, shear strength ( ̅ ), von Mises stress ( ̅), 

peak force, and the deformation inhomogeneity index (  ) along the width of the sample after the ECAP 

process. 

Cases  Peak force (N)   ̅   ̅ (MPa)  ̅ (MPa)    

I 569 1.178 46.603 92.132 1.571 

II 2621 1.161 45.084 87.622 1.267 

III 16307 1.205 42.709 84.717 1.456 

IV 281760 1.159 40.499 82.349 1.325 

 

 

Fig. 4.19 The deformation history of the ECAP process and the simulated mesh distortions for the 

sample width of d=2 mm. 
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The distribution of the calculated shear strength (  ) along the width of the sample in the 

steady state region after ECAP have been shown in Fig. 4.20. It is obvious that approximately 

three deformation regions along the width of the sample, i.e. the upper half part, the centre 

region between 1/2 and 3/4 of the width from the top surface, and the lower quarter region, 

can be distinguished. The result in the upper region is relatively uniform, unlike those in the 

centre and lower regions. As can be seen, four cases have shown similar trends except for a 

slight decrease in the shear strength as the sample width increases. It is also interesting to note 

that almost the same results are obtained for the larger samples, e.g. case III and case IV, as 

shown in Fig. 4.20. 

 

Fig. 4.20 Distribution of calculated shear strength along the width of the sample of aluminium single 

crystals with d=2-40 mm after the ECAP process. 
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Figure 4.21 Distribution of the calculated effective plastic strain along the width of the sample of 

aluminium single crystals with d=2-40 mm after the ECAP process. 

Fig. 4.21 and Fig. 4.22 show the distributions of the effective plastic strain and von Mises stress 

(σ) along the width of the sample, respectively. Very similar results are observed for all cases, 

except for a minor discrepancy in the smallest sample size (case I) which is affected the most by 

the frictional condition. The smallest strain and stress are located at the bottom of the sample, 

independent of the width since the deformation in this region is characterized as rigid body 

rotation due to the presence of an outer corner angle, as shown in Fig. 4.19. 

 

Fig. 4.22 Distribution of the calculated von Mises stress along the width of the sample of aluminium 

single crystals with d=2-40 mm after the ECAP process. 
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The deformation inhomogeneity index is calculated according to the Equation (4.1) for all four 

cases listed in Table 4.1. Moreover, the average values of the shear strength (  ̅) and von Mises 

stress ( ̅) are also calculated based on the simulation results. The deformation is very 

inhomogeneous along the width of the sample for all four cases. The average value of 

simulated effective strain does not vary much among these samples. All cases have a similar 

deformation inhomogeneity index    as shown in Table 4.1. In Fig. 4.23(a), both   ̅ and  ̅ show 

a similar tendency of decreasing as the sample width increases from 2 mm to 10 mm and 

dropped slightly from 10 mm to 40 mm. Fig. 4.23(b) reveals a similar trend for the average of 

effective plastic strain which is consistent with the theory suggested by Iwahashi [104]. 

To better understand the influence of the sample width on the deformation heterogeneity, the 

distribution of effective plastic strain rate representing the plastic deformation zone was 

studied. The distribution of component   ̇ is shown in Fig. 4.24 for all the samples. The 

simulated PDZ shapes are consistent with the results for strain hardening materials in Ref. [142]. 

As can be seen, the magnitude of the effective plastic strain rate decreases gradually from the 

inner corner to the outer corner. The PDZ is a narrow banded region at the inner corner which 

becomes broader along the intersecting plane of the entry and exit channels, which means that 

the inhomogeneous PDZ leads to the three inhomogeneous plastic deformation areas shown in 

Fig. 4.19(d) and a non-uniform distribution of the shear strength, von Mises stress, and 

effective plastic strain along the width of the sample as shown from Fig. 4.20 to Fig. 4.22. 



 Chapter 4 Factors influencing the ECAP process of aluminium single crystals 
 

99 
 

 

Fig. 4.23 (a) The deviation of the average values of shear strength and von Mises stress along the width 

of the sample for all four cases. (b) Comparison between the calculated effective strain and theoretical 

value during the ECAP process. 

In the previous chapter the activity of slip systems of aluminium single crystal during the ECAP 

process were examined at a sample width of 4 mm. Here, a comparison for different sample 

widths has been done. According to the results shown in Fig. 4.20, the deformation is not 

uniform along the sample width and three macroscale deformation fields have developed. 

Therefore, three elements representing these regions are studied, i.e. Element I belongs to the 

upper region, Element II belongs to the center region, and Element III is located at the lower 

region. 
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Fig. 4.24 Distribution of the effective plastic strain rate component   ̇ in the plastic deformation zone 

for different sample widths during the ECAP process. 

The results for a sample width of d=2 mm are shown in Fig. 4.25 as a function of the ECAP time, 

where the shear rates are zero before entering and exiting the PDZ. It also shows that it takes 

the shortest time to pass through the deformation zone in the upper region, which is consistent 

with the shape of the PDZ (a narrow banded region at the inner corner becomes wider towards 

the outer corner) as indicated in Fig. 4.25. For Element I in the upper region the results reveal 

that multi-slip systems are activated simultaneously. The slip system c1 ((1 -1 1)[0 1 1]) has the 

largest magnitude of shear rate of ~0.25, followed by the slip systems d1 ((1 1 -1)[0 1 1]), d2 ((1 

1 -1)[1 0 1]) and b1 ((-1 1 1)[1 0 1]). It should be noted that the slip systems c1 and d1 have the 

same slip direction [0 1 1], and d2 and b1 have the same slip direction [1 0 1] as indicated in 

Table 4.2, whereas in the center region there is a single dominant slip system a3, (1 1 1)[-1 1 0], 
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which is consistent with the initial orientation. The shear rates of these slip systems are very 

small in the lower region due to the rigid body rotation in the outer corner of the ECAP die. 

 

Fig. 4.25 The shear rates for three selected elements in the deformed sample with d=2 mm as a function 

of ECAP time: Element-I belongs to the upper region, Element-II belongs to the center region and 

Element-III belongs to the lower region. 

The results for case II can be found in Section 4.1. Fig. 4.26 and Fig. 4.27 show similar tendency 

for Case III (d=10 mm) and for Case IV (d=40 mm), respectively. However, the magnitude of the 

shear rates decreases rapidly as the width of the sample increases, which is 0.25 at d=2 mm and 

0.04 at d=40 mm for slip system c1 in the upper region of the deformed samples. The shear rate 

decrement is attributed to the same processing velocity being applied to all samples. It takes 

longer to pass through the deformation zone when the die channel is wider, and it results in a 

lower strain rate and strain rate gradient in the PDZ during the ECAP process. 
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Fig. 4.26 The shear rates for three selected elements in the deformed sample with d=10 mm as a 

function of ECAP time: Element-I belongs to the upper region, Element-II belongs to the center region, 

and Element-III belongs to the lower region. 
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Fig. 4.27 The shear rates for three selected elements in the deformed sample with d=40 mm as a 

function of ECAP time: Element-I belongs to the upper region, Element-II belongs to the center region, 

and Element-III belongs the lower region. 

Fig. 4.28 shows the contour maps of crystallographic rotation angles around Z axis for all four 

samples. As can be seen, the predominant Z-axis crystal rotation pattern for the initially ideal ‘A’ 

orientation is independent of the sample size and similar trends are noted for all samples. In Fig. 

4.28(a) for Case I, the crystal is subdivided macroscopically into three matrix bands marked M1, 

M2, and M3, and two transition bands marked T1 and T2 along the width of the sample as 

depicted. The Z-axis rotation angles are about 60°, 0° and 90° in M1 to M3, respectively. These 

results are very similar to Case II, as shown in Fig. 4.2 (reproduced in Fig. 4.28(b)). Fig. 4.28(c) 

and (d) show the similar values of Z-axis rotation angles in these matrix bands for Cases III and 

IV. It should be noted that the crystal rotation angles in Fig. 4.28 are different from the angles θ 
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defined in Fig. 4.19, which only reflect the macroscopic distortion of the meshes during the 

ECAP process. 

 

Fig. 4.28 Contour maps of crystal rotations around the Z axis during the ECAP process for all four 

samples. (a) d=2 mm, (b) d=4 mm, (c) d=10 mm, and (d) d=40 mm. 

Fig. 4.29 shows the crystal rotation heterogeneities around three directions on the plane of AA’ 

marked in Fig. 4.28(a) for all cases. The results indicate that the crystal rotation patterns are 

independent of the sample widths in the steady-state deformation region. Obviously, the X-axis 

rotation is characterized as clockwise rotation while the Y-axis rotation is in a counter-clockwise 

direction in the matrix band M1. But both rotation angles are very small compared to the Z-axis 
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rotation angle. The main difference in Fig. 4.29 lies in the matrix band M2, which should be 

attributed to the strain rate gradient in the PDZ shown in Fig. 4.24. 

  

   

Fig. 4.29 Crystal rotations around X, Y, and Z axes along the width of the sample in the deformed 

aluminium single crystals with d varying from 2 mm to 40 mm during the ECAP process. 

The {1 1 1} pole figures of three selected positions in each sample are plotted in Fig. 4.30, 

together with the initial crystallographic orientations. The selected positions are marked in Fig. 

4.28(a), where Position P1 lies in M1, Position P2 lies in T1, and Position P3 lies in M3. As can be 

seen, all the samples lead to similar {1 1 1} pole figures, which indicate that texture evolution is 

independent of the dimension of the sample. 
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Fig. 4.30 The simulated {1 1 1} pole figures at three selected positions in the deformed samples as 

marked in Fig. 4.28(a). (a) d=2 mm, (b) d=4 mm, (c) d=10 mm, and (d) d=40 mm. 

There are a few experimental reports on the orientation changes during the ECAP process of 

aluminium single crystals having the same initial crystallographic orientation and different ECAP 

die geometries [33, 34, 160, 164, 165]. These results can be used to validate the finding 

obtained in this section. According to the comparison made in Fig. 4.16, the simulation results 

of Case II agree with the experiment [33, 160] at d=4 mm. The samples in Ref. [34, 35, 163, 164] 

have a circular cross-section with 10 mm in diameter. Therefore, their experimental results can 
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be compared with Case III. The orientation measurements by EBSD in Ref. [34] revealed that 

there was no obvious crystallographic rotation in the central part of the ECAP processed billet 

on the ED-ND plane. As results shown in Fig. 4.28(c) and Fig. 4.29(c), the position measured in 

[34] should be located in the matrix band M2, where the crystallographic orientation is 

characterized by the initial orientation component. 

4.6 Influence of Outer Corner Angle 

(This part has already been published in Computational Materials Science (2013)) 

It is well known that the ECAP process was invented by Segal in 1972 [1] and in its early design 

the ECAP die had very sharp angles, as shown in Fig. 4.31(a). However, it is very hard to achieve 

a perfectly sharp angle when manufacturing an ECAP die, so most ECAP experiments were 

conducted with a non-zero outer corner angle (OCA), as shown in Fig. 4.31(b) [104]. The most 

widely used values of OCAs are about 20° and 30°, but unfortunately no reasonable 

explanations have been given. Few studies have been carried out to understand the influence 

of the OCAs. Therefore, a systematical study of the OCAs is very essential, especially on its 

influence on texture evolution during the ECAP process. 

 

Fig. 4.31 The geometry of an ECAP die with, (a) very sharp outer corner angle [4], and (b) with a non-

zero outer corner angle [104]. 
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Table 4.2 Detailed parameters in the simulations used to study the influence of OCAs. 

Case number Value of OCA Mesh number Channel width µ 

I 0° 6369 4 mm 0.05 

II 10° 6369 4 mm 0.05 

III 20° 6369 4 mm 0.05 

IV 30° 6369 4 mm 0.05 

V 40° 6369 4 mm 0.05 

VI 60° 6369 4 mm 0.05 

VII 90° 6369 4 mm 0.05 

 

This section will examine the influence of OCAs on the deformation behaviour and 

development of crystallographic orientation of aluminium single crystal subjected to the ECAP 

process. The simulations were two-dimensional, and the billet was 23.2 mm long and 4 mm 

wide. The initial crystallographic orientation is the same as described in the previous sections. 

The ECAP die channel angle was fixed to 90° and width of the channel was set to 4 mm. A 

friction coefficient of µ=0.05 was selected according to Section 4.4. Nine different OCAs varying 

from 0° to 90° were studied specifically and the detailed simulation parameters are listed in 

Table 4.2. 

In Fig. 4.32, the required pressure for ECAP at different OCAs is given as a function of the 

deformation time. It can be seen that, most cases have a similar tendency. Three steps can be 

found in Fig. 4.32, i.e. (1) a rapid increment due to the undeformed head part of the sample, (2) 

a slow increment because the front part exits the PDZ and bends upward, and (3) a relatively 

steady-state deformation. It has also been found that the required maximum pressure 

decreases with an increasing OCA from 0° to 90°. 
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Fig. 4.32 The pressure required for processing different OCAs in terms of deformation time. 

 

Fig. 4.33 Distribution of the effective plastic strain for different OCAs along the thickness in the 

deformed billet. 
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Fig. 4.34 Average values of the effective plastic strain for different OCAs during the ECAP process. 

The influence of the OCA on the effective plastic strain along the thickness of the deformed 

samples is shown in Fig. 4.33. It is clear that the OCA has a significant influence on the 

distribution of plastic strain through the thickness. The lower region of the sample undergoes 

less deformation with an increasing OCA and the corresponding effective plastic strain 

obviously decreases. A larger OCA leads to a larger portion of the thickness experiencing rigid 

body rotation in the bottom part, and this portion reaches almost 0.5 when the OCA is 90°, as 

shown in Fig. 4.33. In contrast, the strains in the upper region for all cases are almost the same, 

except for case VII which has a large gap between the sample and the upper surface of the exit 

channel, as shown in Fig. 4.35(g). The average values of the effective plastic strain for different 

OCAs are shown in Fig. 4.34. The OCA from 0° to 30° leads to a similar effective plastic strain 

while the effective plastic strain decreases gradually as the OCA increases from 30° to 90°. The 

simulation results agree well with the calculations based on the theory [104] shown in Fig. 4.34, 

except that OCA=90° which should be attributed to the development of the exit channel gap 

not being considered in the theory [104]. 
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Table 4.3 The average values of the effective plastic strain ( )̅, shear strength ( ̅ ), von Mises stress ( ̅), 

peak force, and the deformation inhomogeneity index (  ) for different OCAs. 

OCA Peak force (N)   ̅  ̅ (MPa)  ̅  (MPa)    

0° 3195.2 1.213 114.431 46.793 0.972 

10° 3128.3 1.269 102.902 46.788 0.927 

20° 3115.0 1.238 106.252 47.451 1.129 

30° 2927.7 1.161 87.622 45.084 1.267 

40° 2769.5 1.115 93.687 45.522 1.428 

60° 2498.1 0.996 85.728 42.178 1.539 

90° 2030.3 0.645 101.907 40.434 2.407 

 

Comparisons of the required processing peak force, effective plastic strain, von Mises stress, 

shear strength, and deformation inhomogeneity index for different OCAs have been shown in 

Table 4.3. It is obvious that a larger OCA results in a smaller processing force and plastic strain, 

but leads to more inhomogeneous deformation along the thickness direction. For example, the 

peak force is about 3200 N at OCA=0° and 2000 N at OCA=90°. In contrast to the von Mises 

stress OCA has a minor influence on the shear strength. 

The influence of OCA on the PDZ has been studied in terms of the plastic strain rate 

components. Due to the plane strain deformation   ̇=-  ̇, only the components   ̇ and   ̇  are 

plotted in Fig. 4.35. The maximum value of   ̇ is near the inner corner for all cases and the 

magnitude decreases along the intersecting plane from the inner corner to the outer corner. 

The maximum value of   ̇ decreases with the OCA and is about 0.14 at OCA=0° and about 0.03 

at OCA=90°. The dead zones are clearly shown in Fig. 4.35(a)-(c) and it decreases gradually with 

the OCA. After a careful examination the non-contact area between the sample and the die is 

also observed at OCA=30°, but the sample almost fills the ECAP die corner when OCA≥30°. 

However, gaps develop in the exit channel at OCA=90° as shown in Fig. 4.35(g) which was also 
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observed by Li et al. [142]. The PDZ shapes have been influenced significantly by the OCA as 

shown in Fig. 4.35. For an OCA equals to 0° and 10° in Fig. 4.35(a-b), there is a relatively narrow 

PDZ, but it expands quickly into the entry and exit channels when the outer corner angle rises. 

The PDZ can be divided into two parts; the upper part is fan shaped and covers a major portion 

of the PDZ, while the lower part of the PDZ includes two small deformed regions near the 

surface of the sample. From the distribution of strain rate component   ̇ , there is almost 

negative simple shear along the intersecting plane in the upper part while the lower part is 

characterized as rigid body rotation due to the outer corner angle or corner gaps. However, the 

PDZ for OCA=30° is different from the other OCAs shown in Fig. 4.35(g). 
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Fig. 4.35 Distribution of the plastic strain rates for different OCAs. (a) OCA=0°, (b) OCA=10°, (c) OCA=20°, 

(d) OCA=30°, (e) OCA=40°, (f) OCA=60°, and (g) OCA=90°. 
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Fig. 4.35 Continued. 

In order to study the influence of the OCAs on the development of crystallographic orientation 

in aluminium single crystals, three positions on the deformed samples (marked as P1, P2, and 

P3) are selected to plot the {1 1 1} pole figures, as shown in Fig. 4.36. P1 is located in the upper 

part, P2 is located in the middle part and P3 is located in the bottom part. As can be seen, the 

orientation is mainly characterized as a 60° rotated component from the initial crystallographic 

orientation about the transverse direction for all OCAs except where OCA=90°. The {1 1 1} pole 

figure at P1 in Fig. 4.36(g) indicates a 90° rotation, which should be attributed to the gaps in the 

exit channel as shown in Fig. 4.36(g). The pole figures at Position P2 reveal two orientation 

components, i.e. the initial crystallographic orientation and a 60° rotated component when 

OCA≤30°. In contrast, there is only a 60° rotated orientation when OCA≥40°. At Position P3, all 

the {1 1 1} pole figures indicate an orientation with 90° rotation from the initial one due to the 

rigid body rotation [172]. 
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Fig. 4.36 Simulated {1 1 1} pole figures at three selected positions for different OCAs. (a) OCA=0°, (b) 

OCA=10°, (c) OCA=20°, (d) OCA=30°, (e) OCA=40°, (f) OCA=60°, and (g) OCA=90°. 
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The crystal rotation angles along the thickness direction are shown in Fig. 4.37. According to the 

study in Section 4.1, Z-axis rotation is the predominant crystal rotation for aluminium single 

crystals with an initially ideal ‘A’ orientation during the ECAP process. Therefore, only the Z-axis 

rotated component is given in Fig. 4.37. The crystal rotation pattern varies significantly for 

different OCAs. There are three matrix bands connected by two transition bands along the 

thickness direction. The crystal rotation angle in the matrix band located in the upper part is 

about 60°, while the rotation angle in the matrix band located in the bottom part is about 90°. 

Between those two matrix bands, a matrix band oriented with initial crystallographic 

orientation develops. Because position P2 is located in the transition band, both the initial 

orientation and the 60° rotated component can be observed, but with an increment of OCA 

from 40°, no matrix band with initial orientation developed. The majority of the sample was 

oriented with a 60° rotated orientation.   

 

Fig. 4.37 Crystal rotation angles about the transverse direction (Z axis) along the thickness after the 

ECAP process. 

Therefore, the OCA has a significant influence on the plastic deformation heterogeneity, 

distribution of strain and stress, and texture evolution during the ECAP process. In order to 

reduce the formation of dead zones and processing force, an ECAP die with OCA=20° or 30° 

would be a better choice. 
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4.7 Influence of Inner Corner Fillet Radius 

A number of studies [126, 127, 266, 267] considering the influence of the inner corner fillet 

radius (ICR) have been reported. Luis [126, 127] has proposed an upper bound solution and an 

FEM model to determine the total load necessary to extrude the materials and proposed an 

improved solution of strain estimation as shown in the following equations: 
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where r is the inner corner fillet radius, R is the outer corner fillet radius, L0 is the ECAP die 

channel width and φ is the ECAP die channel angle. 

Yoon and Kim [266] stated that a round inner corner with an angle up to 9° was acceptable in 

the classic finite element simulations for reproducing a sharp inner corner. In Ref. [267] the 

experimental results revealed that a die with two equal fillet radii at the inner and outer corner 

is less effective than a conventional ECAP die for producing homogeneity within the billets. 

Unfortunately all the studies mentioned above only focused on a limit range of ICRs so a 

systematically study on the influence of the ICRs is essential, especially on texture evolution 

during the ECAP process, which has never been reported yet. 

The study in this section is an extension from the previous CPFEM simulations. In order to focus 

on the influence of ICRs, the ECAP die parameters will be set the same as the previous studies, 

namely a die channel angle of 90° and an OCA of 30°. All the samples have the same rectangular 

geometry of 23.2 × 4 mm2 and were meshed into 6369 CPE4R elements. The simulated material 

is still an aluminium single crystal oriented with the ideal ‘A’ orientation. The coefficient of 

friction was set to 0.05 and a processing speed of 2.4 mm/min was applied. In this section, 

seven different ICR values will be assessed: ICR=0, 0.3, 0.5, 1, 2, 3, and 4 mm, respectively. 
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Fig. 4.38 The required processing pressures for different ICRs in terms of deformation time. 

Fig. 4.38 shows the required processing pressure for different ICRs varying from 0 to 4 mm. 

Similar to observation in Fig. 4.18 and Fig. 4.32, three similar deformation stages can be seen in 

Fig. 4.38. The slop of load-time curve decreases from the first stage (the head part enters the 

PDZ) to the third stage (steady-state deformation) for all ICRs. It is obvious that increasing ICR 

leads to decreases of both the required peak load and the slope of first deformation stage. 
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Fig. 4.39 Distribution of (a) effective plastic strain and (b) von Mises stress for different ICRs along the 

thickness in the deformed aluminium single crystals. 

Fig. 4.39 shows the distribution of effective plastic strain and von Mises stress for different ICRs 

along the thickness in the deformed aluminium single crystals. It is interesting to find that the 

results slightly change for ICR≤1 mm in Fig. 4.39(a). The strain in the upper 3/4 region is 

relatively stable and decrease rapidly in the lower 1/4 region. However, the average effective 

plastic strain rises gradually with an increasing ICR when ICR≥2 mm. In addition, the strain 

increases rapidly in the upper 1/4 region and it is relatively stable in the lower 3/4 region. On 

the other hand, the larger ICR leads to a smaller stress in the upper part of the billet shown in 

Fig. 4.39(b). 
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Table 4.4 shows the change in the required peak force, plastic strain, stress, and shear strength. 

It is obvious that it is beneficial for saving the load by increasing the ICR. The required peak 

extrusion force decreases gradually with the Ir and it is about 2973.3 N at ICR=0 mm and about 

1961.8 at ICR=4 mm. The influence of ICR on the deformation inhomogeneity can also be 

observed in Table 4.4. The larger ICR leads to the smaller index    (Equation (4.1)). It is very 

interesting to find that a larger ICR results in a larger plastic strain, this is opposite to the 

influence of OCAs studied in Section 4.6. 

The simulated plastic strains have been compared with predictions by the analytical models 

developed by Iwahashi [104] (Equation 2.4) and Luis-Perez [126] (Equations 4.2 and 4.3) shown 

in Fig. 4.40. The CPFEM simulation results reveal a slight variation in the plastic strains at 

relatively smaller fillet radius, i.e. ICR≤1 mm. When the ICR exceeds 1 mm, the plastic strain 

increases gradually and there is a linear relationship, as shown in Fig. 4.40. The calculations 

based on Equation (2.2) indicate the same strain for all ICRs because the influence of the fillet 

radius is neglected. The predicted strain is acceptable at relatively small ICRs (≤0.5 mm), but the 

deviation becomes larger for the larger ICRs. By contrast, the calculations based on Equations 

(4.2) and (4.3) reveal the linear increment relationship between the plastic strain and the ICR. 
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Fig. 4.40 Distribution of effective plastic strain for different ICRs along the thickness direction in the 

deformed billets. 

 

Table 4.4 The required peak force, average values of effective plastic strain, von Mises stress and shear 

strength, and the deformation inhomogeneity index. 

ICR (mm) peak force (N)   ̅  ̅ (MPa)   ̅ (MPa)    

0 2973.3 1.146 109.3351 46.109 1.265 

0. 3 2927.7 1.161 87.622 45.084 1.267 

0. 5 2909.9 1.194 106.302 44.797 1.241 

1 2767.2 1.195 92.209 42.987 1.232 

2 2590.3 1.332 91.808 42.996 1.207 

3 2505.4 1.445 94.712 42.504 1.015 

4 1961.8 1.598 93.414 39.617 0.928 
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Fig. 4.41 Distribution of plastic strain rates for different ICRs. (a) ICR=0 mm, (b) ICR=0.3 mm, (c) ICR=0.5 

mm, (d) ICR=1 mm, (e) ICR=2 mm, (f) ICR=3 mm, and (g) ICR=4 mm. 
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Fig. 4.41 Continued. 

Fig. 4.41 shows the distribution of the plastic strain rates   ̇ and    ̇  during ECAP process for all 

ICRs considered in the present study. Because the deformation was assumed to be in a plane 

strain condition the strain rate   ̇ has the same magnitude as   ̇ but with the opposite sign. It is 

interesting to find that there is an obvious strain rate gradient from the inner to the outer 

corner. As can be seen, the aluminium single crystal undergoes more plastic deformation near 

the inner corner than the outer corner when ICR is less than 1 mm. The deformation pattern is 

characterized as simple shear along the intersecting plane close to the inner corner but rigid 

body rotation in the outer corner. However, the bottom region undergoes more shear 

deformation and the top region undergoes less shear deformation at larger ICR as shown in Fig. 

4.41(e-g). The less shear deformation in the top region is attributed to the larger round inner 

corner angle, which induces rigid body motion flow due to less constraint against the crystal 

flow. According to the results shown in Fig. 4.41, for an ECAP die with an OCA given by 30°, it 

can be concluded that a round inner corner with an ICR up to 1 mm is acceptable to reproduce 

a sharp inner corner. 

The influence of ICR on the crystallographic orientation development of an aluminium single 

crystal has been studied as shown in Fig. 4.42. Three positions in the ECAP processed samples, 
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marked as P1, P2, and P3 in Fig. 4.41 respectively, are selected. It is clear that the ECAP die with 

ICR≤1 leads to similar {1 1 1} pole figures at all three positions. The crystallographic orientation 

at Position P1 is a 60° rotated component from the initial ideal ‘A’ orientation. The {1 1 1} pole 

figures at Position P2 reveals the presence of both the rotated component and initial 

orientation. By contrast at Position P3, it has been found that the orientation development 

after ECAP is characterized as the 90° rotation from the initial orientation about the TD in a 

counterclockwise direction. The difference between the {1 1 1} pole figures at Positions P1 and 

P3 should be attributed to two different deformation patterns, namely there are more shear in 

the top region and more rigid body rotation in the bottom region. 

However, different orientation developments are observed when ICR exceeds 1 mm, as shown 

in Fig. 4.42(e-g). When ICR=2 mm, the 90° rotated component from the initial crystallographic 

orientation appears at Position P1. The {1 1 1} pole figure at Position P2 reveals two 

orientations, i.e. the initial orientation together with a 50° rotated component, while it 

indicates only slight scattering from the initial orientation at Position P3. It should be noted that 

the pole figures at Position P1 are different even at ICR=3 mm and ICR=4 mm. Fig. 4.42(f) shows 

the 60° and 90° rotated orientations but only the 60° rotation from the initial orientation is 

observed in Fig. 4.42(g). By contrast, the {1 1 1} pole figures reveal the remains of initial 

orientation at Positions P2 and P3 for both ICR=3 mm and ICR=4 mm. 
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Fig. 4.42 Simulated {1 1 1} pole figures at three selected positions for (a) ICR=0 mm, (b) ICR=0.3 mm, (c) 

ICR=0.5 mm, (d) ICR=1 mm, (e) ICR=2 mm, (f) ICR=3 mm, and (g) ICR=4 mm. 
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Fig. 4.43 shows the TD component of crystal rotation angles. It is clear that the crystal rotation 

patterns are similar when ICR≤1 mm. There are three matrix bands connected by two transition 

bands. The crystal rotation angle is about 60° in the upper matrix band (the top 1/2 region), 0° 

in the middle matrix band (the region between 1/2 and 1/4 of the thickness from the top 

surface), and 90° in the lower matrix band (the bottom 1/4 region). However, the crystal 

rotation angle is significantly influenced by the inner corner angle when ICR>1 mm. When ICR=2 

mm, five matrix bands developed along the thickness direction. The TD rotation angle is about 

90° in the top 1/4 region, 60° in the region between 1/4 and 1/2 of the thickness from top, 0° in 

the region between 1/2 and 3/4 of the thickness from the top surface, 60° in the region 

between 3/4 and 7/8 of the thickness, and 20° in the bottom 1/8 region as shown in Fig. 4.43. It 

is obvious that the upper matrix band is characterized as 90° rotation when ICR≥2 mm, which 

should be attributed to the rigid body rotation in the upper region during the ECAP process. For 

ICR=3 mm, there are three matrix bands from the top surface and the corresponding size is 1/8, 

3/8 and 1/2 of the thickness, respectively. Their rotation angles are 90°, 60° and 0°. For ICR=4 

mm, the rotation angle decreases gradually along the thickness from the top surface and the 

lower 5/8 region is characterized by almost zero rotation. 

 

Fig. 4.43 Influence of ICR on the Z-axis rotation angles along the thickness of the deformed aluminium 

single crystals after the ECAP process. 
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The simulation results reveal that there is a significant influence of the inner corner angle or 

ICRs on the plastic deformation inhomogeneity and development of crystallographic 

orientations. For an ECAP die with OCA=30°, an inner fillet radius up to 0.5 mm can lead to 

similar results as having a sharp inner corner. Even larger plastic strain can be achieved by 

increasing the inner fillet radius, but it is less effective for grain refinement because the number 

of matrix bands along the thickness has been decreased. 

4.8 Summary 

Chapter 4 is summarized as follows: 

(1) For an aluminium single crystal initially oriented with ideal ‘A’ orientation, the simulation 

results revealed that the crystallographic orientation rotates in three directions and the 

predominant rotation is around the Z axis during the ECAP process. The distributions of crystal 

rotation angles are heterogeneous through the thickness, and the sample was subdivided into 

three matrix bands along the thickness. The corresponding Z-axis rotation angles in three matrix 

bands are about 60°, 0° and 90°, respectively. According to the simulated slip traces, it has been 

found that multi-slip systems can be activated in the large strain gradient region and the lattice 

rotation dominates the material rotation. When the strain gradient is small, a single dominant 

slip is the main slip mechanism and the lattice remains at the initial orientation after 

deformation. A region of rigid body rotation was observed in the lower part of the die corner 

and the lattice rotation angle is about 90°. 

(2) For an ECAP die with a square cross-section, deformation is inhomogeneous along the 

thickness but can be treated as uniform along the transverse direction. The strain components 

along the Z axis can be neglected. It has been found that a three-dimensional CPFEM simulation 

of the ECAP process gives similar results to a two-dimensional simulation. Therefore, it is 

reasonable to apply two-dimensional CPFEM model to study the deformation and texture 

evolution during the ECAP process. 
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(3) The results reveal the significant influence of mesh conditions on the plastic deformation 

and texture evolutions of aluminium single crystals during the ECAP process. The outer corner 

gap between the sample and ECAP die obviously decreases as the element number increases 

from 600 to 2400 and it will remain similar when the element number is larger than 2400. Mesh 

6369 predicted similar plastic strain and textures as Mesh 12000. In contrast, Mesh 600 and 

Mesh 2400 fails to capture the rigid body rotation in the bottom part of the deformed billets 

and they are unable to predict the texture observed in the experiments [33, 268]. Therefore, 

the sample should be meshed fine enough to simulate texture accurately in the ECAP 

simulation. 

(4) Four cases with different coefficient of friction of µ=0, 0.05, 0.1 and 0.15 have been 

simulated. It has been found that the coefficients µ=0.05 and 0.1 can capture the major texture 

features observed in the experiments and µ=0.05 predicts a slightly better texture than µ=0.1. 

The frictional condition significantly affects texture evolution in the region (Region B) between 

1/2 and 3/4 of the billet thickness from the top surface. Cases of µ=0.05 and 0.1 predict a 

matrix band with an initial orientation in this region and the matrix band is parallel to the X axis. 

However, this matrix band does not appear in the simulation with µ=0. When the coefficient of 

friction is high (µ=0.15), Region B consists of separate small matrix bands. Friction affects 

texture in Region B through the PDZ. Different friction conditions changes the shape of the 

corner gap and in turn influences the distribution of stresses in the lower part of the PDZ. As a 

result, texture in Region B is different for different frictional conditions.  

(5) For the first time the influence of sample size on texture evolution during the ECAP process 

has been studied systematically by considering a sample width varying from 2 mm to 40 mm. It 

has been found that the deformation (including the distribution of effective plastic strain, von 

Mises stress, and shear strength, and the activity of slip systems) of an aluminium single crystal 

is independent with the sample dimension during the ECAP process and three similar 

deformation steps have been observed for all cases. Larger samples for the industrial 

applications can be analogized by examining the smaller samples in the laboratory. 
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(6) Nine ECAP dies with different OCAs are simulated to study its influence on the deformation 

heterogeneity and texture evolution of aluminium single crystal during the ECAP process. The 

processing pressure decreases gradually with the OCA. A similar distribution of the effective 

plastic strain is obtained when OCA≤30°, while the effect plastic strain decreases with the 

increasing OCA when OCA>30°. A significant influence of OCA on the PDZ shape and texture 

evolution is observed.  The thickness of the rigid body rotation part in the billet bottom rises 

gradually and it covers nearly 1/2 of the whole billet thickness when OCA=30°. The initial 

crystallographic orientation disappears after the ECAP process when OCA exceeds 30°. 

According to the simulation results, an ECAP die with OCA=20° or 30° will be suggested in order 

to reduce the formation of the dead zone and the processing force. 

(7) Seven dies with different ICRs are simulated. For a die having a channel width of 4 mm, the 

simulation results show similar distributions of the effective plastic strains when ICR is less than 

1 mm. The strain increases gradually with the ICR when the ICR exceeds 1 mm. The simulated {1 

1 1} pole figures suggested a strong influence of the ICRs on texture evolutions in the upper 

quarter region and lower quarter region when the ICR is larger than 1 mm. The 90° rotated 

crystallographic orientation from the initial orientation at Position P1 has been observed at 

ICR≥2 mm while the rotation angle is 60° for the smaller ICRs (ICR≤1 mm). In contrast, the pole 

figures reveal the existence of initial orientation in the bottom at larger ICRs but 90°rotated 

components at smaller ICRs. Therefore, the ICR in a reasonable range (e.g. 1 mm for the die 

with channel width of 4 mm) can be used when manufacturing the ECAP die. 
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Chapter 5 Investigation of ECAP of Copper Single 

Crystals 

In this chapter, the study has been extended to simulate the ECAP process of copper single 

crystals. The deformation behaviour and texture evolution of copper single crystals during ECAP 

will be discussed in detail. 

In recent years, a few works about the ECAP processing of single crystals with different metals 

have been reported, including aluminium [96, 158, 159, 161, 181, 204, 264, 268-271], 

magnesium [198, 199], nickel [172, 174-176], niobium [177, 178], and copper single crystals [96, 

159, 179, 180, 183, 185-188, 272-278]. In Refs. [198, 199], Seda and co-workers conducted 

ECAP experiments of magnesium single crystals with different initial orientations at 503 K. Their 

results showed that an orientation of [0 0 0 1] and <1 0 -1 0> axes with respect to the die 

geometry significantly influences the activation of various deformation modes and resulting 

texture evolution. Sandim et al. [177] examined the microstructure evolutions of niobium single 

crystals with a well chosen crystallographic orientation ([2 1 1] parallel to the ED) deformed by 

ECAP at room temperature using SEM and EBSD. They stated that the microstructure of the 

crystal following one ECAP pass was fully subdivided by regularly spaced shear bands coexisting 

with non-sheared regions, and the shear bands having a lamellar structure displayed 

misorientations of about 40-60° related to the non-sheared regions. The corresponding 

microstructure and texture heterogeneities in initially cube oriented nickel single crystals were 

investigated in Refs. [175, 176]. It has been found that the main texture after the ECAP process 

consists of a TD rotated cube, a split C component and a partial B fibre. Besides, copper has 

attracted a lot of interest. Miyamoto et al. [186] conducted the first investigation on copper 

single crystals deformed by ECAP. It was found that the billet exhibited shear bands after the 

first ECAP pass and was fragmented most in terms of grain size and orientation scattering after 

four passes. Then several studies on copper single crystals were reported by Miyamoto and co-

workers [187, 188, 272, 273, 275]. They divided the end crystal orientations, macroscopic 
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heterogeneity and dislocation structures into three groups. In group I, the billet had banded 

structures with considerable orientation splitting and contained mainly extended, sharp and 

layered dislocation boundaries; in group II, the microstructures contained equiaxed cell 

boundaries but with a non-uniform shape and size; and in group III, the billets were 

macroscopically homogeneous with layered dislocation boundaries. The microstructure and 

texture evolution of copper single crystals after ECAP have also been examined by Fukuda and 

Furukawa [96, 159, 179, 180] using the optical microscopy, orientation imaging microscopy and 

transmission electron microscopy. Their experimental results revealed that the subgrain width 

(~0.2 µm) in copper is significantly smaller than that in aluminium (~1.3 µm) with the same 

initial crystallographic orientations after one ECAP pass. However, most studies of copper single 

crystals focus on the experiments and an effective modelling is essential. This chapter will 

investigate the ECAP process of copper single crystals by a CPFEM model. The influence of 

friction, die geometry and initial crystallographic orientations on the deformation behaviour 

and orientation development will be studied in detail. 

5.1 Influence of Friction 

(This part has already been published in Materials Science and Engineering A (2012)) 

In Chapter 3, it has been proven that the developed CPFEM model is able to accurately predict 

texture evolution of copper single crystals during the ECAP process. This section is aiming to 

examine the influence of frictional conditions between the copper single crystals and ECAP die. 

In the simulations the channel angle is 90° and the OCA is 30°. For the initial crystallographic 

orientation: the crystallographic directions [-1 9 4], [-11 1 -5] and [-1 -1 2] are parallel to the X, Y 

and Z axes, respectively. The plane strain deformation was assumed in the simulations. The 

simulated sample had a rectangular shape with 20 mm in length and 4 mm in width, and was 

meshed into 6369 CPE4R elements. Three friction coefficients, namely µ=0.05, 0.1 and 0.15 are 

compared. The material parameters used in the CPFEM simulation of copper have already been 

given in Section 3.3. The ECAP process was simulated with a constant extrusion velocity of 0.04 
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mm/s along the –Y direction and the simulation was terminated when approximately three 

fourths of the sample was pressed through the die. 

It should be noted that the friction coefficient µ=0.15 led very poor convergence and the 

simulation even failed to achieve a steady-state ECAP deformation. Therefore, the following 

analysis was only conducted for the coefficients of friction µ=0.05 and µ=0.1 at the processing 

time t=450 s. 

Figs. 5.1(a) and (b) show the deformed meshes of copper single crystals for µ=0.05 and µ=0.1, 

respectively. In Fig. 5.1(a), the inhomogeneous deformations along the X and Y axes have been 

observed. The most significant mesh distortion is found in the bottom part of the leading head. 

In the entry channel, severe deformation is induced on the right side close to the inner corner 

while the shape of the elements is almost not changed until entering the intersecting zone of 

two channels. It is clear that the elements close to the bottom of the exit channel are still in 

rectangular shape. An outer corner gap between the sample and ECAP die exists as represented 

by the arc of ‘AB’. 

 

Fig. 5.1 Mesh distortions of copper single crystals during the ECAP process under frictional conditions of 

(a) µ=0.05, and (b) µ=0.1. 
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The mesh distortions for µ=0.1 shown in Fig. 5.1(b) is similar to the case of µ=0.05. The careful 

inspection shows that the dead zone in the outer corner observed in Fig. 5.1(a) has disappeared 

at the higher friction which induces the larger back pressure [279]. In addition, the larger 

coefficient of friction results in more extension of the induced deformation close to the inner 

corner of the die. 

Fig. 5.2 shows the distributions of the plastic strain rates   ̇, and   ̇  in the deformed copper 

single crystals with the coefficient of friction varying from 0.05 to 0.1 after a steady-state 

deformation is obtained. The distribution of the plastic strain rate is often used to describe the 

PDZ during the ECAP process. As observed in Fig. 5.2(a) for µ=0.05, deformation was first 

induced in the vicinity of the right side interface of the entry channel. Similar phenomenon was 

predicted by the flow line model and finite element analysis [48, 142, 280-282] for different 

materials. Material close to the inner corner is subjected to a higher strain and strain gradient 

than that close to the outer corner. Severe deformation near the inner corner provides a higher 

compressive force onto the material near the right side interface of the entry channel, which in 

turn results in higher friction stress at the right side interface and quite a significant plastic 

strain rate. It is clear that the magnitude of the strain rates significantly changes from the inner 

corner to outer corner. The maximum value exists near the inner corner and the value in the 

central area is higher than the outer corner, where the deformation is characterized as rigid 

body rotation. These results are consistent with the flow line model [125]. The strain rate is 

zero in the exit channel which indicates that the plastic deformation is finished when the 

material passes the lower boundary of the PDZ. The result in this study is similar to the 

observations by an in-situ physical modelling experiment shown in [138]. 

The strain rate contours for µ=0.1 are shown in Fig. 5.2(b). It has been found that an increase in 

the coefficient of friction leads to a slightly more expanded strain rate distribution in the vicinity 

of the right side of the entry channel along the vertical and horizontal directions. The 

distribution of the strain rate   ̇ in the intersecting zone for µ=0.1 is similar to µ=0.05 but more 

heterogeneity of   ̇  in the central part for µ=0.1 has been observed. 
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Fig. 5.2 Distributions of the simulated plastic strain rates in the deformed copper single crystals during 

the ECAP process with (a) µ=0.05 and (b) µ=0.1. 

The deformation heterogeneity in the deformed copper single crystal along the thickness has 

also been investigated. Fig. 5.3 shows variations of the plastic strain through the sample 

thickness. Distribution of the effective plastic strain for µ=0.05 and 0.1 are compared in Figs. 

5.3(a). In general, similar trend is observed for both coefficients of friction. As can be seen, the 

strain increases gradually with an increasing distance from the top surface and then decreases 

rapidly in the bottom part. It is obvious in Fig. 5.3(a) that the strain distribution in the upper 1/4 

part is more sensitive to the friction than the lower half part. In contrast, the stress has been 

examined which shows a similar variation along the thickness for both coefficients of friction. 

Figs. 5.3(b) and 5.3(c) show the variations of the plastic strain components for µ=0.05 and µ=0.1, 

respectively. It is clear that the values of    and    are much smaller than that of     in the 

upper 1/4 part and all three components are almost zero in the bottom. In contrast, large 
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tension along the X axis and compression along the Y axis exist in the middle part. The different 

strains close to the top surface for µ=0.05 and µ=0.1 are consistent with the mesh distortions 

shown in Fig. 5.1 and PDZs shown in Fig. 5.2. 

    

 

Fig. 5.3 Variation of the (a) effective plastic strain, and the logarithmic plastic strain components for (b) 

µ=0.05 and (c) µ=0.1 along the sample thickness in the ECAP processed copper single crystals. 

Fig. 5.4 shows the simulated {1 1 1} pole figures for five positions labelled as P1, P2, P3, P4, and 

P5, as shown in Fig. 5.5(c). It is obvious that the pole figure at Position P1 in Fig. 5.4(a) for 

µ=0.05 is consistent with the simulation for µ=0.1 and the experimental results in Ref. [179]. At 

Position P2, the corresponding {1 1 1} pole figure for µ=0.05 revealed an initial crystallographic 

orientation together with a 60° rotated component which agree well with the experimental 

measurement [179]. In contrast, an extra orientation scattering has been observed for µ=0.1 
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apart from these two components observed for µ=0.05. Positions P4 and P5 are located near 

the top surface and bottom of the deformed samples, respectively. Both coefficients of friction 

lead to similar orientations at Positions P3-P5, as shown in Fig. 5.4. As can be seen, the 

simulated {1 1 1} pole figure is characterized by an initial crystallographic orientation at P3, a 60° 

rotated component at P4 and an almost 90° rotated component at P5. Therefore, it can be 

concluded that texture evolution in copper single crystals during the ECAP process is relevant to 

the frictional conditions between the sample and the die and µ=0.05 can give a better texture 

prediction compared to the experimentally measured pole figures [179]. 

 

Fig. 5.4 Comparisons of the {1 1 1} pole figures for five selected positions P1-P5 marked in Fig. 5.5(c) 

between simulation results with different friction coefficients (a) µ=0.05 and (b) µ=0.1. 

The calculated crystallographic rotation has been divided into three components around the X, 

Y, and Z axes. Fig. 5.5 shows the contour maps of the crystal rotation angles around all three 

axes in the deformed billet for µ=0.05. It is apparent in Fig. 5.5 that the crystal rotates in three-

dimensions and predominantly around the Z axis for copper single crystals with the studied 

initial crystallographic orientation. Fig. 5.5(a) implies that the crystal rotation around the X axis 

is very small, varying between -5° and 5°. The positive rotation around the X axis mainly 
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happens in the middle part of the billet while the upper and lower parts are characterized by 

negative rotation. It can be seen in Fig. 5.5(b) that the crystal rotation around the Y axis is 

negative in the lower part and positive in the upper part. The rotation angle varies between -5° 

to 10° and the layer-type distribution of the rotation angle around the Y axis parallel to the X 

axis can be observed in Fig. 5.5(b). By contrast to the rotations around both the X and Y axes, 

there is a large variation in the Z-axis rotation as shown in Fig. 5.5(c). Apart from the 

inhomogeneous distributions in the leading head and tail of the billet, the Z-axis rotation angles 

can generally be divided into three parts, which are roughly parallel to the X axis, along the 

thickness direction. The upper part has a rotation angle of about 60°, the middle part about 0° 

and the lower part about 90°. This leads to splitting of the initial single crystal into three parts 

with different texture components. 

Similar to the aluminium single crystal with the same initial orientation in Section 4.1, three 

matrix bands and two transition bands through the thickness developed in the copper single 

crystals after one pass of the ECAP process, as shown in Fig. 5.5(c). Three matrix bands are 

marked as M1, M2, and M3 while the transition bands are marked as T1 and T2, respectively. 

The rotation angles around the Z axis in three matrix bands are approximately 60°, 0° and 90°, 

respectively. The strain rate varies from the inner corner to the outer corner in the PDZ and 

multi-slip systems are activated in M1 while the single dominant slip system is activated in M2. 

This results in 60° rotation in M1 and zero rotation in M2. Due to the geometry of the ECAP die, 

the material must rotate about 90° around the Z axis in M3 and therefore, the lattices must 

rotate about 90°. Position P2 indicated in Fig. 5.5(c) is located in the transition band (T1) 

between M1 and M2, leading to both 60° and 0° rotations observed in the corresponding pole 

figures (Fig. 5.4(a-c)). Position P3 lies in M1, therefore only a 60° rotation is observed in the {1 1 

1} pole figure. 
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Fig. 5.5 Contour of crystal rotation angles in the steady-state deformation region of the ECAP processed 

copper single crystals. (a), (b), and (c) indicate the rotation components around the X, Y, and Z axes for 

µ=0.05, respectively and (d) indicates the rotation component around the Z axis for µ=0.1. The numbers 

(1)-(5) marked in (c) indicates the selected positions P1-P5. Matrix bands and transition bands are 

marked as ‘M’ and ‘T’, respectively. 

In order to study the influence of friction on the crystal rotation patterns during the ECAP 

process of copper single crystal, the results for two different coefficients (µ=0.05 and µ=0.1) are 

compared. Since the crystal rotation components around the X and Y axes are much smaller 

than the rotation component around the Z axis, only the contour of the Z-axis rotation angle for 

µ=0.1 is plotted in Fig. 5.5(d). It can be seen that a larger friction coefficient results in more 

inhomogeneous crystal rotation around the Z axis. In addition, similar matrix bands and 

transition bands to the µ=0.05 case can be found. The Z-axis rotation angle in the vicinity of the 

top and bottom surfaces of the deformed samples increases slightly with the coefficient of 
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friction. It has also been observed that several matrix bands inclined at about 20° to the X axis 

developed along the billet axis. 

 

 

Fig. 5.6 Crystal rotation angles around the X, Y, and Z axes along the sample thickness in the exit channel 

at 1.5 mm away from the intersecting zone. (a) µ=0.05 and (b) µ=0.1. 

Fig. 5.6(a) and (b) shows the partitioned crystal rotation angle components in the steady-state 

deformation region about 1.5 mm away from the main PDZ in the exit channel, as a function of 

the distance from the top surface for µ=0.05 and µ=0.1, respectively. It can be seen from Fig. 

5.6(a) that the crystal rotation angles around both the X and Y axes are relatively small and the 

crystal mainly rotates around the Z axis. Three matrix bands (labelled M1, M2, and M3) and two 
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transition bands (labelled T1 and T2) are also shown in Fig. 5.6(a) but the crystal is split into 5 

matrix bands along the thickness for the larger friction coefficient (µ=0.1), as indicated in Fig. 

5.6(b). Compared to the case of µ=0.05, the matrix band in the central part has been divided 

into three small matrices (M2, M3, and M4) in the case of µ=0.1. This clearly indicates that the 

friction condition has an obvious influence on inhomogeneous texture evolution during the 

ECAP process. 

5.2 Influence of ECAP Die Channel Angles 

This section studies the influence of the ECAP die channel angles on the plastic deformation and 

development of crystallographic orientations of copper single crystals during the ECAP process. 

According to the previous studies, it has been found that the die channel angle has the most 

significant influence compared to the other geometry parameters including the channel width, 

outer corner angle and inner corner fillet radius. Therefore, this section will investigate the 

influence of the ECAP die channel angle during ECAP of copper single crystals. 

In the previous section, a die channel angle of φ=90° has been studied. In this section, another 

two different die channel angles φ=75° and 105° have been analysed using the CPFEM model. 

Two-dimensional simulations based on plane strain assumption were conducted. The billet has 

an initial rectangular geometry of 26 mm (in length) by 4 mm (in width). 8000 elements have 

been used in the simulations. The die channels and punch are assumed to be a rigid body and 

the friction coefficient µ is set to 0.05 for all the simulations because it gives a better texture 

prediction compared with the experimental results shown in Section 5.2. Copper single crystal 

with the same initial crystallographic orientation, namely [-1 9 4] || ED and [-11 1 -5] || ID, is 

investigated. Simulations were terminated when 4/5 of the sample passed through the 

intersecting zone of the ECAP die. 

5.2.1 φ = 75° 

Fig. 5.7 shows the mesh distortions and distribution of plastic strain in the copper single crystal 

during the ECAP process with a die channel angle of 75°. Apart from inhomogeneous 
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deformation in the leading head part, relatively uniform steady-state region along the billet axis 

has been achieved. From Fig. 5.7(a), it can be observed that the mesh near the right side of the 

entry channel is already distorted before entering the intersecting zone due to the change of 

material flowing direction around the inner corner. The mesh distortions are not uniform along 

the sample thickness, as marked by line L-L’ in Fig. 5.7(a). Compared to the shear deformation 

in the upper part of the sample, the elements in the bottom show that the main deformation 

pattern is rigid body rotation. Fig. 5.7(b) shows the plastic strain distribution in the deformed 

sample. There are three regions with different magnitudes of the plastic strain along the sample 

thickness and the plastic strain in the bottom part is very small. 

 

Fig. 5.7 Mesh distortions and plastic strain distribution in the deformed copper single crystal during the 

ECAP process with a die channel angle of 75°. 
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The deformation behaviour of a copper single crystal with a die channel angle of 75° was 

studied with the help of plastic strain rate contours as shown in Fig. 5.8. Similar to the 90° die, 

the magnitude of the plastic strain rate change significantly from the inner corner to the outer 

corner. The strain rate contours indicated a slight plastic deformation at the right side of the 

entry channel before entering the intersecting zone. A careful examination shows the existence 

of a corner gap (or dead zone) between the sample and die, represented by two points ‘A’ and 

‘B’ in Fig. 5.8(a). This result is consistent with the early report [283], where a corner gap, less 

sheared bottom region and a front transient inhomogeneous deformation region were also 

observed. In addition, no corner gap developed when a sharp outer corner angle was used [284, 

285]. 

 

Fig. 5.8 Distribution of the plastic strain rate components (a)   ̇ and (b)   ̇  in the deformed copper 

single crystal during the ECAP process with a die channel angle of 75°. 
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Fig. 5.9 Plastic strain rates for four tracked elements as function of the deformation time during the 

ECAP process with a die channel angle of 75°. 

Four elements at different selected positions are tracked. The histories of the plastic strain 

rates and plastic strains of four elements are shown in Fig. 5.9 and Fig. 5.10, respectively. It is 

clear that the elements close to the inner corner (right side of the sample) start to deform 

earlier than the elements close to the outer corner (left side of the sample). Element-1 is 

tensioned in the X direction and compressed in the Y direction at the early stage, and then 

shear is induced which becomes the dominant deformation pattern when the element is close 

to the inner corner. Severe deformation is observed when the element entered into the 

intersecting zone where the magnitudes of all three strain rates rise rapidly and then decrease 

to zero when the element exit the PDZ. The sign of   ̇  changes from negative to positive after 

passing through the ideal shear plane as shown in Fig. 5.9. For Element-2, tension, compression, 
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and shear are induced at the same time before the element enters the PDZ, and the magnitude 

of   ̇  is larger than   ̇ and   ̇. However, the magnitude of   ̇   of Element-2 is similar to those 

of   ̇ and   ̇ in the PDZ. It has been found that the elements (Element-3 and Element-4) close to 

the outer corner are subjected to compression in the X direction and tension in the Y direction 

before entering the intersecting zone, and then tensioned in the X direction and compressed in 

the Y direction in the PDZ. This is different to Element-1 and Element-2, which are tensioned in 

the X direction and compressed in the Y direction during the whole plastic deformation 

procedure. The magnitude of   ̇  of Element-3 is smaller than those of   ̇ and   ̇ in the PDZ. 

Compared to the other three elements, the strain rates of Element-4 are very small. This can be 

contributed to the rigid body rotation due to the presence of an outer corner angle. 

    

    

Fig. 5.10 Logarithmic plastic strain components for four tracked elements as function of the deformation 

time during the ECAP process with a die channel angle of 75°. 



 Chapter 5 CPFEM simulation of the ECAP process of copper single crystals 
 

145 
 

As can be seen in Fig. 5.10, the magnitude of shear strain is slightly smaller than the normal 

components when Element-1 is in the entry channel, but it increases rapidly when the element 

enters the PDZ while the normal components gradually decreases. Element-3 has the largest 

shear strain after ECAP process than the other three elements and the strain components for 

Element-4 are much smaller due to the different deformation pattern.  

 

Fig. 5.11 Variations of the Logarithmic plastic strain components along the sample thickness (line L-L) in 

the deformed copper single crystal during the ECAP process with a die channel angle of 75°. 

In order to study the deformation homogeneity of the sample, the variations in the plastic 

strains along the sample thickness L-L’, as depicted in Fig. 5.7(a), are plotted in Fig. 5.11. The 

sample thickness L-L’, is depicted in Fig. 5.7(a). It is obvious that there are three distinguished 

regions according to the strain distributions along the thickness of the sample. In the upper 40% 

of thickness, the shear strain component (   ) increased slowly and the normal strain 

components (   and   ) are zero. The middle 40% of thickness has uniform results and the 

maximum shear strain has been observed in this region. The remaining 20% of the thickness is 

almost uniform with a very small plastic strain, as shown in Fig. 5.11(a). The average effective 

strain value was 1.407, which was slightly higher than the theoretical value (1.234) calculated 

by Iwahashi et al. [104]. 
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Fig. 5.12 Simulated {1 1 1} pole figures for eight selected positions in the deformed copper single crystal 

during the ECAP process with a die channel angle of 75°. (Positions P1-P4 are located in the entry 

channel and positions P5-P8 are located in the exit channel marked in Fig. 5.6(b)) 

Eight positions (P1-P8) are selected to study texture evolution during the ECAP process with a 

die channel angle of 75°. The positions are marked in Fig. 5.7(b), positions P1-P4 are located in 

the entry channel and positions P5-P8 are located in the exit channel. A texture analysis is 

conducted in terms of {1 1 1} pole figures. It is clear that the orientation does not change at 

position P1 which is far away from the PDZ. Plastic deformation is induced when the material 

gets close to the PDZ, which leads to the changes of crystallographic orientation. The {1 1 1} 

pole figures at positions P2-P4 reveal the variation from the initial crystallographic orientation. 

There is more orientation scattering at P2 than P3 and P4, as shown in Fig. 5.12, which should 

be attributed to the more severe plastic deformation induced on the right side of the sample. 

The pole figure at P5 indicates a single orientation rotated from the initial orientation by 70° 

around the Z axis in a counter-clockwise direction. By contrast, the pole figure at P6 reveals the 

presence of an initial crystallographic orientation and a rotated component. The 

crystallographic orientations at P7 and P8 are characterized by the initial orientation and a 105° 

rotated component, respectively. 
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Fig. 5.13 Variation of crystal rotation angles along the thickness of the sample (line L-L) in the deformed 

copper single crystal during the ECAP process with a die channel angle of 75°. 

The crystal rotation patterns for copper single crystal subject to ECAP with an acute channel 

angle die are studied shown in Fig. 5.13. Similar to the 90° die, the crystal rotates in three 

dimensions and the dominant rotation is around the transverse direction. There are three 

distinguished matrix bands along the thickness connected by two transient bands. In the upper 

matrix band (upper 40% of the thickness), the crystal rotation angles around X, Y, and Z axes are 

-20°, 15°, and 75°, respectively, where a negative sign means clockwise rotation and a positive 

sign means counter-clockwise rotation. The crystal rotation angles are almost zero around all 

three axes in the middle matrix band (about 30% of the thickness), which leads to the 

remaining initial crystallographic orientation at P7 in Fig. 5.12. In the lower matrix band (nearly 

20% of the thickness in the bottom), the crystal only rotates around the Z axis. The deformation 

in the last matrix band is characterized by the rigid body rotation and the rotation angle is 

about (π- φ), which equals to 105° in this study. 

5.2.2 φ=105° 

Fig. 5.14 shows the mesh distortions and plastic strain distribution in the deformed copper 

single crystal during the ECAP process with the die having a channel angle of 105° and an OCA 

of 10°. As can be seen, the elements in this case have not been deformed as seriously as in the 

die with channel angles of 75° and 90°. Fig. 5.14(a) reveals a large dead zone in the outer corner 
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and some gaps between the sample and the exit channel, which lead to an inhomogeneous 

plastic strain distribution in the deformed sample, as shown in Fig. 5.14(b). The largest strain 

exists in the left corner of the head part. The deformation process is found to be different to 

the die channel angles of 75° and 90°. In this case, the left corner of the head part sticks to the 

bottom of the die first, and then the sample starts to fill the deformation zone and flow to the 

exit channel at the same time. 

 

Fig. 5.14 Mesh distortions and plastic strain distribution in the deformed copper single crystal during the 

ECAP process with a die channel angle of 105°. 
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Distribution of the stress in the plastic deformation zone examined and the maximum stress is 

near the inner corner and decreased gradually to the outer corner. Fig. 5.15 shows the PDZ 

during ECAP with a die channel angle of 105° and the dead zone in the outer corner is described 

by the arc marked by two points ‘A’ and ‘B’. According to the strain rates contours, plastic 

deformation is not symmetrical to the ideal shear plane (intersecting plane of two channels). 

The magnitudes of the strain rates decrease from the inner corner to the outer corner and are 

much smaller compared to the die channel angles of 75° and 90° as shown in Fig. 5.8 and Fig. 

5.2, respectively. 

 

Fig. 5.15 Distribution of the plastic strain rate components (a)   ̇ and (b)   ̇  in the deformed copper 

single crystal during the ECAP process with a die channel angle of 105°. 
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Fig. 5.16 Plastic strain rates for four tracked elements as function of the deformation time during the 

ECAP process with a die channel angle of 105°. 

Four elements are tracked to study the deformation history during ECAP. The strain rates as 

functions of time for four elements are shown in Fig. 5.16. It can be seen that Element-1 and 

Element-2 are tensioned in the X direction and compressed in the Y direction before entering 

the intersecting zone, while the other two elements are tensioned in the Y direction and 

compressed in the X direction. The magnitudes of the strain rate components for Element-1 are 

slightly larger than the other three elements. In addition, the deformation time is shortest for 

Element-1 because it is located close to the inner corner. Element-4 undergoes the longest 

deformation due to its localization close to the outer corner. 
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Fig. 5.17 Variation of the Logarithmic plastic strain components along the thickness of the sample (line L-

L’) in the deformed copper single crystal during ECAP with a die channel angle of 105°. 

The deformation homogeneity along the thickness of the sample is analysed in terms of 

variation of the plastic strain, as shown in Fig. 5.17. It is obvious to find that the strain is very 

small in the upper 15% of the sample thickness due to the development of an exit channel gap 

as shown in Fig. 5.14 and Fig. 5.15. The gap leads to the decrement of the deformation degree. 

In the middle 65% of the thickness, the shear strain component (   ) is slightly larger than the 

normal strain components. In the lower 20% of the thickness, the shear strain gradually 

decreases to zero but the normal strains remained almost constant. These results are different 

to the results for the die channel angles of 75° in Fig. 5.11 and 90° in Fig. 5.3. 
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Fig. 5.18 Predicted {1 1 1} pole figures for eight selected positions in the deformed copper single crystal 

during the ECAP process with a die channel angle of 105°. 

Eight positions (P1-P8) are selected to investigate the texture evolution of copper single crystal 

during ECAP with the die channel angle of 105°. The positions of eight positions are marked in 

Fig. 5.14(b) and the corresponding pole figures are shown in Fig. 5.18. It is obvious that only the 

initial crystallographic orientation is seen in the {1 1 1} pole figures at positions P1-P4, which 

are located in the entry channel and there is nearly no deformation. Position P5 is located close 

to the top surface and its pole figure indicates a rotated component (about 75°) from the initial 

crystallographic orientation. Positions P6 and P7 have a similar {1 1 1} pole figure which have a 

~60° rotation in a counter-clockwise direction. The rotation angle at position P8 is equal to the 

die channel angle 75°. 
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Fig. 5.19 Variation of crystal rotation angles along the thickness of the sample in the deformed 

copper single crystal during the ECAP process with a die channel angle of 105°. 

It can be concluded from Fig. 5.19 that the crystal rotation patterns of copper single crystal in 

the case of φ=105° are very different to those of φ=75° and φ=90°, where three distinguished 

matrix bands were observed along the sample thickness after the ECAP process. It is clear that 

in this case no obvious matrix can be seen. It is clear that the predominant crystal rotation is 

around the transverse direction (Z axis) but the major difference between three cases lies in the 

X-axis rotation component. The crystal rotation angle around the X axis is much larger in this 

case and remains almost constant through the thickness with a value of 20° in a counter-

clockwise direction. By contrast, the component around the Y axis varies slightly between 0° 

and 10°. There are two reasons for these observations: the first reason is that the 105° die 

induces less plastic deformation, and the second reason is the significant influence of the gaps 

developed between sample and the die (the large outer corner gap and the gaps in the exit 

channel as shown in Fig. 5.14). 

5.3 Influence of Initial Crystallographic Orientations 

(This part has already been published in Steel Research International (2013)) 

In order to study the influence of the initial crystallographic orientation, four different copper 

single crystals, namely Crystal A, B, C, and D are investigated. In Crystal A, the (-1 -1 -1) slip 
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plane is rotated by 20° in a clockwise direction around the transverse direction from the 

theoretical shear plane (intersecting plane of two channels) and the [-1 1 0] slip direction is 

rotated by 20° in a clockwise direction around the transverse direction from the theoretical 

shear direction of the ECAP die. This results in that the crystallographic orientations along the X 

axis, Y axis and Z axis are [-0.3969 0.8849 0.244], [-0.8221 -0.2244 -0.5233] and [-1 -1 2] as listed 

in Table 5.1, respectively. In Crystal B, the rotation angle is the same as Crystal A but in a 

counter-clockwise direction. Therefore, the slip direction [-1 1 0] inclines 65° to the X direction. 

In Crystal C the slip plane (0 1 0) is parallel to the theoretical shear plane and the slip direction 

[1 0 0] is parallel to the ideal shear direction. In Crystal D the slip plane (1 1 -2) and slip direction 

[1 1 1] coincides with the theoretical shear plane and shear direction, respectively. The 

relationship between the initial crystallographic orientations of these four copper single crystals 

and the coordinate are listed in Table 5.1 in details. 

Table 5.1 The relationship between the crystallographic orientations of four studied copper single 

crystals and the coordinate system X-Y-Z during the ECAP process. 

Copper single 

crystals 
X direction (ED) Y direction (ND) Z direction 

(TD) 

A [-0.3969 0.8849 0.244] [-0.8221 -0.2244 -0.5233] [-1 -1 2] 

B [0.224 0.8221 0.5233] [-0.8849 0.3969 -0.244] [-1 -1 2] 

C [1 -1 0] [1 1 0] [0 0 1] 

D [0.1196 0.1196 0.9856] [0.6969 0.6969 -0.1691] [-1 1 0] 
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Fig. 5.20 Mesh distortions for four copper single crystals with different initial crystallographic orientation 

after ECAP with a 90° ECAP die: (a) Crystal A; (b) Crystal B; (c) Crystal C, and (d) Crystal D. 

Four copper single crystals have the same sample size (26 mm × 4 mm) and the same meshes 

(8000 elements). The coefficient of friction µ=0.05. Simulations were conducted with an ECAP 

die channel angle of 90° and an OCA of 30°. 
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The mesh distortions of four copper single crystals are shown in Fig. 5.20. A significant influence 

of initial crystallographic orientation can be clearly observed. Different initial orientation leads 

to different head shape and mesh distortion after the ECAP process. A region marked ‘AB’ in 

the steady-state deformation region of each crystal is selected to examine the deformation 

heterogeneity along the thickness, as shown in Fig. 5.20. As the enlarged parts show, 

deformation is not uniform through the thickness and it depends strongly on the initial 

crystallographic orientation. In Crystal A a gap (called ‘exit channel gap’) between the sample 

and the upper surface of the exit channel develops. This means that the elements near the 

upper surface undergo less shearing than those in the middle part. Rigid body rotation without 

severe plastic deformation has been observed for the elements near the sample bottom. The 

rigid rotation angle is about 50° as indicated in Fig. 5.20(a). The deformation in Crystals B and C 

are much more uniform along the thickness than Crystals A and D because of the smaller dead 

zones in the outer corner. It is obvious that the smaller corner gap leads to a narrower rigid 

body rotation region at the sample bottom. The angles of the corner gaps shown in Fig. 5.20 are 

15°, 10°, and 40° in Crystals B, C and D respectively. These values are compared in Table 5.2. 

Table 5.2 The angle of the outer corner gap, average value of the effective plastic strain ( )̅ and 

deformation inhomogeneity index (  ) for all four copper single crystals after the ECAP process. 

Crystals Corner gap (°)   ̅    

A 50 0.8948 1.6332 

B 20 1.0605 0.9849 

C 10 1.3163 0.8991 

D 40 1.0787 1.2037 
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Fig. 5.21 Contour of distribution of the plastic strain rates in (a) Crystal A, (b) Crystal B, (c) Crystal C, and 

(d) Crystal D. (the upper panel shows the   ̇ and the lower panel shows the   ̇  ) 

Fig. 5.21 shows the contours of the distributions of the plastic strain rates for four copper single 

crystals during the ECAP process. The results indicate the deviation of deformation from an 

ideal simple shear along the intersecting plane of two channels for all four copper single crystals. 

In Crystal A there is a very wide PDZ which is attributed to the large gaps in the outer corner 

and exit channel, as shown in Fig. 5.21(a). In Crystals B, C, and D, the fan-shaped PDZs are 

observed. 

The effective plastic strains along the sample thickness for all four crystals are plotted in Fig. 

5.22. According to the distribution of effective plastic strain, three different regions in crystals A 

and D and two different regions in crystals B and C along the thickness can be seen. The 

deformation inhomogeneity index (  ) in Table 5.2 indicates that crystal C leads to the most 

homogeneous plastic deformation along the thickness. 
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Fig. 5.22 Distribution of the effective plastic strain along the billet thickness for all four copper single 

crystals after ECAP. 

The influence of initial crystallographic orientation on texture evolution during ECAP of copper 

single crystals is shown in Fig. 5.23. Four different positions marked in Fig. 5.24(a) are selected 

to plot the corresponding {1 1 1} pole figures. As can be seen, position P1 is located in the entry 

channel before entering the PDZ and positions P2-P4 are located in the exit channel after 

passing through the PDZ. Fig. 5.23(a) shows the textures for Crystal A. The pole figure at 

position P1 indicates the initial crystallographic orientations. By contrast, the pole figures at 

positions P2 and P3 are similar and a rotation of 20° from the initial crystallographic orientation 

in a counter-clockwise direction can be observed. At position P4, the pole figure reveals a 

component with 90° rotation. These simulation results are consistent with the experimental 

measurements reported by Fukuda et al. [179]. The textures for Crystal B are shown in Fig. 

5.23(b) and only the initial crystallographic orientation is seen at position P1 and a 40° rotated 

component exists at positions P2 and P3. Fig. 5.23(c) and Fig. 5.23(d) show the simulated 

textures for Crystal C and Crystal D, respectively. It can be found that both the positions P2 and 

P3 have the similar {1 1 1} pole figures and the rotation angles are 60° in Crystal C and 20° in 

Crystal D. On the other hand, position P4 is located in the bottom part and the rotation angle is 

almost 90° which equals the ECAP die channel angle used in this study for all the copper single 

crystals. 
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Fig. 5.23 Comparisons of the CPFEM simulated {1 1 1} pole figures at selected positions for copper single 

crystals during the ECAP process: (a) Crystal A, (b) Crystal B, (c) Crystal C, and (d) Crystal D. 
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Fig. 5.24 The contour of crystal rotation angles around the Z axis in the ECAP processed copper single 

crystals with different initial crystallographic orientations. (a) Crystal A, (b) Crystal B, (c) Crystal C, and (d) 

Crystal D. 

For a better understanding of the influence of initial crystallographic orientations on texture 

evolution of copper single crystals during the ECAP process, the crystal rotation angle for each 

sample was divided into three components. It has been found that the major rotation is around 

the Z axis for all the crystals. Therefore, only the Z-axis rotation components have been 

compared as shown in Fig. 5.24. As can be seen in Fig. 5.24, the rotation angle is uniform along 

the X axis but non-uniform along the sample thickness for all four copper single crystals. 

According to these results, the matrix bands (MBs) along the sample thickness can be 

distinguished. As shown in Fig. 5.24(a) for crystal A, positions P2 and P3 belong to the same 

matrix band which leads to the similar {1 1 1} pole figures in Fig. 5.23. 
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Distributions of the crystal rotation angles along the sample thickness are compared in Fig. 5.25 

for all four copper single crystals. As can be seen, Fig. 5.25 reveals that crystal rotation is 

predominant around the Z axis (transverse direction) for all four crystals. These results are 

different to the copper single crystal studied in Section 5.1. The magnitude of crystal rotation 

angle is strongly dependent on the initial crystallographic orientation. In Section 5.1, a matrix 

band with initial crystallographic orientation has been observed but it does not exist in the four 

copper single crystals studied in this section. As shown in Fig. 5.25, three obvious matrix bands 

can be seen in crystals A and D and the misorientation angles between these matrix bands are 

very large. In contrast, only two matrix bands are seen in crystals B and C and the 

misorientation angles are much smaller. 

   

   

Fig. 5.25 Distribution of crystal rotation angles around three axes along the thickness of the sample 

during the ECAP process: (a) Crystal A, (b) Crystal B, (c) Crystal C, and (d) Crystal D. 
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5.5 Summary 

In this chapter the deformation behaviour and texture evolution of copper single crystals during 

the ECAP process have been studied in detail. The summaries are listed as follows. 

(1) It has been found that the friction condition has an obvious influence on the deformation 

heterogeneity and texture evolution in copper single crystals during the ECAP process. The 

plastic strain distribution is much more sensitive to the friction in the upper half part of the 

deformed samples than in the lower part, and µ=0.05 provided a better texture prediction than 

µ=0.1 compared with experimental results. 

(2) The simulation results indicate that the crystallographic orientation of a copper single crystal 

having an initial ‘A’ orientation during the ECAP process with a 90° die rotates in three 

dimensions and the dominant rotation direction is around the Z axis. The crystal has been split 

into three matrix bands connected by two transition bands through the thickness of the billet at 

µ=0.05. The corresponding Z axis rotation angle in three matrix bands are about 60°, 0°, and 90°, 

respectively. 

(3) The mesh distortions, stress and strain distributions, and texture evolution of copper single 

crystals are strongly dependent on the ECAP die channel angle. The die with an obtuse channel 

angle (φ=105° and 135°) leads to a larger outer corner gap than that with an acute channel 

angle (φ=75°), or right angle (φ=90°). The magnitudes of effective plastic strain and strain rate 

decreased gradually with the increasing die channel angle. The crystal rotation angle around 

the Z axis in the bottom part is dependent on the die channel angle and is equal to (180°-φ) 

where φ is the ECAP die channel angle. 

(4) An initial crystallographic orientation of a copper single crystal had a significant influence on 

the development of a corner gap, inhomogeneous mesh distortion, PDZ shape, and distribution 

of plastic strain in the billet after ECAP. A larger corner gap leads to the decrement of the 

average value of plastic strain and the increment of deformation inhomogeneity index Ci along 

the thickness of the billet. The largest    in crystal A was about 1.633 and the smallest value 

was about 0.899 in crystal C. The simulation results also revealed that the texture evolution and 
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crystal rotation patterns depended strongly on the initial orientation. There were three 

distinguished matrix bands along the thickness in crystals A and D, but only two matrix bands in 

crystals B and C. The thickness of the matrix band in the bottom part increased with the larger 

outer corner gap. 
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Chapter 6 CPFEM Simulation of Multi-pass ECAP 

Process 

In Chapters 4 and 5, CPFEM simulations of single pass ECAP process of aluminium and copper 

single crystals have been conducted, respectively. This chapter studies deformation behavior 

and texture evolution of aluminium single crystals during the multi-pass ECAP process under 

Routes A and C using a CPFEM model. Such work has not been reported in the published 

literature. The major challenge in the simulation of the multi-pass ECAP process is that the 

mesh becomes significantly distorted and the simulation often encounters convergence 

problem. In order to solve this problem, one of the adaptive meshing techniques, known as 

mesh to mesh solution (MTMS) mapping analysis [286], has been used in the simulation of the 

multi-pass ECAP process. 

6.1 Adaptive Meshing Techniques 

Three different adaptive meshing techniques are available in the commercial finite element 

software Abaqus: Arbitrary Lagrangian Eulerian (ALE) adaptive meshing, varying topology (VT) 

adaptive remeshing, and mesh to mesh solution (MTMS) mapping analysis [286]. A brief 

introduction to these three adaptive meshing techniques is given in the following text. 

6.1.1 ALE Adaptive Meshing Analysis 

ALE adaptive meshing provides control of mesh distortion. A single mesh definition that 

gradually becomes smoother within the steps of the analysis has been used. A high quality 

mesh can be maintained throughout the analysis by allowing the mesh to move independently 

of the material, even when large deformation or loss of material occurs. In an ALE analysis the 

element can only be defined as a single material, so a Lagrangian adaptive mesh domain will be 

created. The domain as a whole will follow the material originally inside it, which is the proper 

physical interpretation for most structural analyses. ALE analysis in Abaqus/Standard is 
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intended to solve Lagrangian problems and to model the effects of ablation, or wear of 

materials. It can also be used in geometrically nonlinear static, steady-state transport, coupled 

pore fluid flow, and stress, and coupled temperature-displacement procedures. However, the 

application of ALE analysis in Abaqus/Standard is limited due to the following four reasons. 

Firstly, initial mesh sweeps cannot be used to improve the quality off the initial mesh definition 

and secondly, the diagnostic capabilities are limited. Thirdly, this analysis is not intended to be 

used in general classes of large deformation problems and finally, the material properties of the 

fluid do not change as a result of smoothing the mesh [286]. 

6.1.2 VT Adaptive Remeshing Analysis 

VT adaptive remeshing involves the iterative generation of multiple dissimilar meshes to 

determine a single, optimized mesh used throughout the analysis, with the aim of minimizing 

the number of elements and cost of the solution. Therefore, VT adaptive remeshing can be 

used to obtain a mesh which provides a balance between the cost of the analysis and the 

desired accuracy. When incorporating the VT adaptive remeshing into the Abaqus/CAE model, 

the remeshing rules and the remeshing area should be defined first. Then the error indicator 

output variables, the sizing method and size constraints are required. A new and smoother 

mesh in the specified regions will finally be created by sweeping iteratively over the adaptive 

mesh domain. During each sweep of the mesh, nodes in the domain are relocated based on the 

current positions of neighboring nodes and elements to reduce element distortion. In a typical 

sweep a node is moved a fraction of the characteristic length of any element surrounding the 

node. The increasing number of sweeps leads to the increment of the intensity in each adaptive 

meshing increment. The default number is one. Finally the neighboring regions will also be 

remeshed. 

VT adaptive remeshing is very helpful to improve the quality of the simulation results, especially 

in conditions where: (i) it is hard to design an adequately refined mesh near a region of interest; 

and (ii) it is not certain how refined a mesh is required to reach a particular level of accuracy. 

However, several limitations of the application exist. For example, Abaqus/CAE is required and 

only Abaqus/Standard procedures are supported. Besides, only three kinds of elements with 
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special shapes including planar continuum triangles and quadrilaterals, shell triangles, and 

quadrilaterals and tetrahedrals can be used [286]. 

6.1.3 MTMS Mapping Analysis 

MTMS mapping is a remeshing analysis technique where a mesh significantly deformed from its 

original configuration is replaced by a mesh of better quality and the analysis is able to continue. 

In MTMS mapping, each mesh subsequent to the initial configuration reflects a solution 

dependent deformed configuration of the model and indicates a component of the overall 

analysis history. The solution variables will be propagated from one analysis to the next. 

When applying the MTMS mapping analysis, it is very important to decide when to remesh. This 

can be done by examining the magnitude of strains that occur during the phase of the analysis. 

One possible criterion for remeshing is extreme element distortion in areas where high strain 

gradients need to be resolved accurately. Another criterion is solution discontinuity. Significant 

discontinuity suggests that remeshing should have done at an earlier increment before too 

much distortion occurs, or the meshes are not fine enough. 

During the MTMS mapping analysis, all the files needed for restart and the output database 

must be required for the old job. The interpolation technique is used to obtain the solution 

variables at the nodes of the old mesh by extrapolating all values from the integration points to 

the nodes of each element, and then averaging these values over all similar elements abutting 

each node. Then the location of each integration point in the new mesh is obtained with 

respect to the old mesh. The variables are interpolated automatically from the nodes of the old 

element to the integration points of the new element. It should be noted that the boundary 

conditions are not carried out over from the old mesh to the new mesh. The boundary 

conditions applied at the beginning of the remeshed analysis should normally be the same as 

those in effect at the step and increment selected from the initial analysis. Although the 

boundary conditions can be altered, the problem may fail to converge if the structure is a long 

way from an equilibrium state. There are no restrictions on applying boundary conditions and 

loads in the MTMS mapping analysis. 
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Another advantage of MTMS mapping analysis is that any of the mechanical constitutive 

models available in Abaqus can be used and there is no restriction on agreement between 

material models in the old and new analyses. The application of MTMS mapping analysis is 

supported for the following five procedures, such as ‘Static stress analysis’, ‘Quasi-static 

analysis’, ‘Fully coupled thermal-stress analysis’, ‘Coupled pore fluid diffusion and stress 

analysis’ and ‘Geostatic stress state’. However, it is only suitable for the continuum elements 

[286]. 

There are several reasons to choose the MTMS mapping approach in this study: 

(1) The ALE analysis is not good at general classes of large deformation problems, whereas 

the ECAP process is one of the severe plastic deformations which definitely belong to 

the problem of large deformation and therefore the ALE analysis is not suitable in this 

study [286]. 

(2) The VT adaptive remeshing analysis is not good at controlling distortion and is only 

available for the analyses submitted from Abaqus/CAE [286]. 

(3) The MTMS mapping is suitable to any constitutive models and there is no restriction on 

agreement between material models in the old and new analyses [286]. 

In order to examine the capability of the MTMS mapping approach, the {1 1 1} pole figures are 

plotted based on the data before and after the MTMS mapping. Fig. 6.1(a) shows the deformed 

mesh after the first-pass ECAP process. A new sample with a new mesh is then created in order 

to simulate the second pass, as shown in Fig. 6.1(b). The MTMS mapping approach is used to 

transfer all the variables from the nodes of the old mesh (the box part in Fig. 6.1(a)) to the new 

mesh (Fig. 6.1(b)). The new mesh with all the transferred variables will be used in the 

simulation of the second ECAP pass. Fig. 6.1(c) shows the {1 1 1} pole figures before the MTMS 

mapping (along line A-B marked in Fig. 6.1(a)) and Fig. 6.1(d) demonstrates the {1 1 1} pole 

figure after the MTMS mapping (along line A’-B’ marked in Fig. 6.1(b)). It is obvious that 

excellent agreement between two pole figures has been obtained by comparing Fig. 6.1(c) and 

(d). This clearly indicates that the MTMS mapping approach is an adaptive remeshing method 

suitable for simulations of the multi-pass ECAP. 
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Fig. 6.1 (a) The deformed mesh after the first pass of ECAP process, (b) New mesh based on the MTMS 

mapping analysis from the steady-state region of deformed mesh in (a), (c) {1 1 1} pole figure along line 

A-B marked in (a), and (d) {1 1 1} pole figure along line A’-B’ marked in (b). 

6.2 CPFEM Simulation of Route A 

In this section, the deformation heterogeneity and texture evolution history of an aluminium 

single crystal subjected to ECAP up to four passes in Route A are studied in detail. 

The geometry of the ECAP die simulated in this section is the same as the one used in Section 

4.1. The coefficient of friction µ was set to 0.05. The material used in these simulations was an 

aluminium single crystal initially oriented with: (-11 1 -5)[-1 9 4], where (-11 1 -5) parallel to the 

normal plane and [-1 9 4] parallel to the extrusion direction. Details of the parameters used in 

the simulations are given in Table 6.1. The ECAP process up to 4 passes under Route A has been 

simulated. 
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Table 6.1 The details of parameters used in the simulations of Route A. 

Pass number Length (mm) Width (mm) Elements Nodes µ 

1 50 4 16000 16441 0.05 

2 35.5 4 12000 12341 0.05 

3 26 4 8000 8241 0.05 

4 20.5 4 8000 8241 0.05 

 

The study in Chapter 4 showed that the head and tail parts of the simulated samples are 

subjected the significantly distorted deformation, which often causes the convergence problem 

in the simulations of the following pass. Therefore, a long sample was used in the first pass 

simulation in order to obtain a long steady-state deformation region. Only the steady-state 

region will then be remeshed by the MTMS mapping approach and used for the simulation of 

the second pass. The similar procedure has been applied to the simulations of the consequent 

third and fourth passes. 
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Fig. 6.2 Scheme of the Route A of the ECAP process used in the simulations. 

In practice, the die remains the same position and the sample needs to be re-inserted into the 

die to implement the multi-pass ECAP. However, for convenience, the ECAP of Route A is 

simulated in this study as schematically demonstrated in Fig. 6.2. In the simulation the ECAP die 

was rotated by 90° around the Z axis in a counter-clockwise direction after each pass. The 

computing time of the first pass is about 400 hours using the HPC cluster in University of 

Wollongong using four CPUs at the same time. 

Fig. 6.3 provides the effective plastic strain distribution along the thickness of the sample after 

ECAP up to four passes in Route A. It can be seen that the deformation is not uniform along the 

thickness and the difference between the maximum and minimum effective plastic strain 

increases obviously with the number of ECAP passes. The bottom part has the minimum 

effective plastic strain because of the smallest plastic deformation due to the outer corner 

angle in every pass in Route A. In contrast, the upper 75% region undergoes more severely 

plastic deformation and accumulates more plastic strain, as shown in Fig. 6.3. Similar results 

have also been seen in a published paper [141]. 
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Fig. 6.3 Effective plastic strain distribution along the thickness of the billet after ECAP in Route A. (‘top’ 

means close to the inner corner and ‘bottom’ means close to the outer corner). 

Fig. 6.4 compares the average of simulated effective plastic strain with predictions by an 

analytic model used in Ref. [104]. As can be seen, very good agreement has been obtained. The 

average simulated effective plastic strain is about 1.962 after the second pass, 2.987 after the 

third pass and 3.993 after the fourth pass. 

 

Fig. 6.4 Comparison of effective plastic strain between the FEM simulation and empirical theoretical 

calculations for Route A during up to 4 ECAP passes. 
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Fig. 6.5 Distribution of plastic strain rate   ̇ and   ̇  in the deformed billet during the (a) first pass, (b) 

second pass, (c) third pass, and (d) fourth pass of ECAP in Route A. 

Fig. 6.5 shows the distributions of plastic strain rates   ̇ and   ̇  in the deformed billet during 

up to 4 ECAP passes in Route A. Similar to the first pass, the plastic deformation in other passes 
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deviates from the simple shearing along the intersecting plane of the entry and exit channels. It 

is apparent that Passes 1 and 3 have the same ideal shear plane and Passes 2 and 4 have the 

same ideal shear plane, as shown in Fig. 6.5. Two sets of ideal shear planes intersect at an angle 

of 90° [1, 287]. The magnitude of strain rates gradually decreases from the inner corner to the 

outer corner and a fan shape of   ̇ can be observed for each pass. It is interesting to find that 

the sign of shear component   ̇  around the inner corner changes from negative to positive 

after passing through the intersecting plane in the odd passes (the first and third passes), while 

it changes from positive in the entry channel to negative in the even passes. In addition, plastic 

deformation is induced in the entry channel close to the intersecting zone during the first ECAP 

pass but it is not obvious in the consequent passes. As can be seen in Fig. 6.5, the plastic 

deformation is not uniform along the intersecting plane which leads to an inhomogeneous 

microstructure and microhardness along the thickness of the billet [200, 288]. This feature will 

be inherited from the former process in Route A because plastic deformation near the outer 

corner is always smallest in each pass. In contrast, more plastic deformation can accumulate in 

the upper region. 

For a better understanding of the deformation history in Route A, four Elements 1-4 initially 

located in the cross-sectional plane of the middle length of the sample each pass (marked in Fig. 

6.2) are selected to monitor the effective plastic strain, strain rate, activity of slip systems, and 

texture evolution. The distance of these elements from the left side (close to the outer corner) 

is approximately 0.3, 1.2, 1.7, and 3.7 mm, respectively. 
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Fig. 6.6 Variation of plastic strain rates of (a) Element 1, (b) Element 2, (c) Element 3, and (d) Element 4 

during the first pass of ECAP as a function of the processing time. 

Fig. 6.6 shows the variation of strain rates during the first pass of the ECAP process for all four 

selected elements as a function of the processing time. As can be seen, the magnitude of strain 

rates increase from Element 1 to Element 4, which means that the gradients of the strain rates 

increase from the outer corner to the inner corner during the first ECAP pass. Besides the shear 

component   ̇ , large normal components   ̇ and   ̇ can also be observed for Elements 2-4, 

which indicates that deformation is not only characterized as simple shear, it is also 

compression along the -Y axis and tension along the X axis. The compression and tension are 

much larger than shear in the PDZ, especially for Element 4 near the inner corner. 
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Fig. 6.7 Variation of plastic strain rates of (a) Element 1, (b) Element 2, (c) Element 3, and (d) Element 4 

during the second pass of ECAP in Route A as a function of the processing time. 

Fig. 6.7 shows the variation of plastic strain rates during the second ECAP pass in Route A for all 

four tracked elements as a function of processing time. These results indicate that the trends 

during the second pass in Route A are similar to the first one, as shown in Fig. 6.6. Element 1 

still has the smallest strain rates and Element 4 has the largest strain rates. These elements 

undergo tension along the Y axis and compression along the –X axis because the ECAP die is 

rotated in the second pass shown in Fig. 6.2. In practice the plastic deformation mechanism is 

the same during the two consecutive ECAP passes in Route A [105]. Similar trends of strain 

rates variation for all four selected elements have been obtained in the following third and 

fourth passes.  
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Fig. 6.8 The history of crystallographic orientations development of four tracked elements (a) Element 1, 

(b) Element 2, (c) Element 3, and (4) Element 4 during the ECAP process in Route A up to four passes. (N 

indicates the pass number) 

Fig. 6.8 shows the simulated {1 1 1} pole figures for the four tracked elements in Fig. 6.2 to 

study the development history of their crystallographic orientations in Route A. It should be 

noted that all the {1 1 1} pole figures are plotted on the ED-ID plane. For Element 1, the {1 1 1} 

pole figures indicates a crystallographic orientation component with almost 90° rotation around 

the Z axis in a counter-clockwise direction from the initial orientation for all the passes. As 
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discussed in the previous chapters, the development of this orientation is attributed to the rigid 

body rotation in the outer corner. For Element 2, crystallographic orientation remains at the 

initial component after the first and third passes, but a 60° rotation in a clockwise direction is 

seen during the second and fourth passes. In addition, a rotation of almost -20° around ID 

during the third pass and rotations of about 15° around ED and -15° around ID during the fourth 

pass have been observed in Fig. 6.8(b), where positive angle means the counter-clockwise 

rotation and negative angle means the clockwise rotation. The {1 1 1} pole figures in Fig. 6.8(c-d) 

reveal that Element 3 and Element 4 have the similar crystallographic orientation, but the 

orientation is different from pass to pass. 
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Fig. 6.9 The shear strain rates of four tracked elements (a) Element 1, (b) Element 2, (c) Element 3, and 

(d) Element 4 during the ECAP process of 2-4 passes in Route A. 
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Fig. 6.9 Continued. 

Why are the crystallographic orientations different for these four tracked elements during ECAP 

in Route A? The answer can be found from Fig. 6.9, where the activity of 12 slip systems has 

been studied. Fig. 6.9(a) shows the shear strain rates of 12 slip systems for Element 1 during the 

2, 3 and 4 ECAP passes. As can be seen, the shear strain rates of all activated slip systems for 
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this element are very small during each pass. Fig. 6.9(b-d) show the shear strain rates for 

Elements 2, 3 and 4, respectively. It is worthy to note that the negative shear strain rate 

indicates the slip along the negative slip direction on the same slip plane, or the slip along the 

positive slip direction on the negative slip plane. As can be seen, the activated slip systems are 

not the same for Element 2 in each pass even though the increments of plastic strain are the 

same. From the theory introduced in Chapter 3, the shear strain rate of each slip system ( ̇( )) 

relates to the resolved shear stress ( ( )) of this slip system. According to Equations (3.50) and 

(3.22), the crystallographic orientation during the current configuration influences the resolved 

shear stress, which in turn determines the activity of this slip system. Therefore, different slip 

systems could be activated in two consecutive passes for the same element. Main activated slip 

systems in Fig. 6.9(b) for Element 2 are b1, a3, d2, a1, b2 and d1 (order from the magnitude 

decrement of shear strain rate) during the second pass, and c1, b1, d2, c2, d1 and a3 during the 

third pass, and a3, c1, d3, a1 and d2 during the fourth pass. It is obvious that the activated slip 

systems are almost the same for Element 3 and 4 but with different magnitudes. The 

predominant slip system for these two elements is a3 during the second pass, b1 during the 

third pass and c1 during the fourth pass as shown in Fig. 6.9(c-d). 

Fig. 6.10 shows the crystal rotation angles of the four tracked elements in Route A. Because the 

crystal rotation angles for the first pass of aluminium single crystal has been studied in Chapter 

4 already, only the rotations during the second, third and fourth passes have been shown here. 

In Fig. 6.10(a), three matrix bands along the billet thickness can be seen. In the upper matrix 

band, the crystal rotation angles are relatively small. In the middle matrix band, there is a large 

rotation around TD and the angle is around 60° in a clockwise direction. In the lower matrix 

band, the rotation is mainly around TD and the rotation angle is almost 90°. The crystal 

rotations for the third pass have been studied in Fig. 6.10(b), where four matrix bands along the 

thickness direction exist. It is obvious that the predominant rotation is still around TD but 

relative large rotation around ID can also be seen. Fig. 6.10(c) shows the crystal rotation angles 

for the fourth pass. Very large rotations around ID and TD are seen in the upper matrix band 

and the rotation angles are about -40° and 60°, respectively. It is obvious that there are five 
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matrix bands along the billet thickness. The number of matrix bands shown in Fig. 6.10 can 

reflect the capability of grain refinement during the ECAP process in Route A. 

    

 

Fig. 6.10 Crystal rotation angles along the billet thickness during ECAP in Route A. (a) second pass, (b) 

third pass, and (c) fourth pass. 

6.3 CPFEM Simulation of Route C 

In this section, an extended study to Route C has been conducted. The deformation and texture 

evolution during up to four ECAP passes in Route C will be investigated systematically. In order 

to make a comparison, the same die geometry, material and initial crystallographic orientation 

with Route A are used in the CPFEM simulations of Route C. Fig. 6.11 is the schematically 

illustration of Route C used in the simulations. For convenience, the ECAP die is rotated by 180° 
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around the Z axis after each pass to replace the equivalent rotation of samples in Route C 

defined in Ref. [1]. It should be noted that the ED and ND coincide with the X and Y axes in the 

first and third passes but they are parallel to the –Y and –X axes respectively during the second 

and fourth ECAP passes in Fig. 6.11. 

 

Fig. 6.11 Scheme of Route C in the ECAP process used in the simulations. 

Fig. 6.12 shows the variation of effective plastic strain in the deformed billets along the 

thickness direction in Route C from 1 to 4 ECAP passes. The top surface and the bottom surface 

have almost the same level of effective plastic strain in Route C after the second ECAP pass. 

This is because the bottom part undergoes rigid body rotation when passing through the outer 

corner in the first pass and then undergoes more plastic deformation when crossing the inner 

corner in the second pass. However, the region close to the top surface is subject to more 

plastic deformation in the first pass but less deformation in the second pass. Therefore, similar 

plastic strain level has been obtained in these two regions after two ECAP passes. Relatively 

uniform distribution of strain can only be seen in the middle 50% of the thickness. It can be 
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found by comparisons of Fig. 6.3 and Fig. 6.12 that the influence of the ECAP route on the strain 

level in the middle part of the billet thickness is negligible.  

 

Fig. 6.12 Varitation of effective plastic strain along the sample thickness after ECAP during up to four 

passes in Route C. (‘top surface’ means close to the inner corner) 

 

Fig. 6.13 Comparison of the effective plastic strain between the CPFEM simulations and empirical 

theoretical calculations after ECAP in Route C. 
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The effective plastic strains for up to four ECAP passes in Route C have been calculated 

according to the equation proposed by Iwahashi et al. [104]. Comparison of the average 

effective plastic strains predicted by the present simulations and the equation proposed by 

Iwahashi et al. [104] has been shown in Fig. 6.13. As can be seen, a good agreement has been 

obtained. The simulated strains are slightly larger than the preiction by Iwahashi’s equation for 

all the passes. However, the simulation results are slightly smaller than the analtical model in 

Route A except for the first ECAP pass. In Fig. 6.13, the simulated effective strains are about 

2.174, 3.132 and 4.206 after the second, third and fourth passes, respectively. 

In Fig. 6.14, the distributions of plastic strain rates   ̇ and   ̇  in the deformed billet from 1 to 4 

ECAP passes in Route C are shown. The shapes of the strain rates distribution from the inner 

corner to the outer corner are similar for all passes. It should be noted that after an even 

number 2N (N=1 and 2 in this study) of ECAP passes in Route C, the top region and the bottom 

region undergoes N times of rigid body rotation respectively, which means that similar plastic 

strain accumulated for these two regions, as shown in Fig. 6.12. For the ideal deformation 

mechanism in ECAP (simple shearing along the intersecting plane), the plastic strain should be 

restored after every even number of passes [1]. However, from Fig. 6.14 we can see the 

obvious deviation of the deformation pattern from the ideal simple shearing. The 

microstructure evolutions observed in Ref. [60] also confirmed that deformation could not be 

totally recovered in Route C due to the deformation deviating from simple shear. 
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Fig. 6.14 Distribution of plastic strain rates   ̇ and   ̇  in the deformed billet during the (a) first pass, (b) 

second pass, (c) third pass, and (d) fourth pass of ECAP in Route C. 
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Fig. 6.15 Variation of the strain rates of (a) Element 1, (b) Element 2, (c) Element 3, and (d) Element 4 

during the second pass of ECAP in Route C as a function of the processing time. 

Four elements marked in Fig. 6.11 have been tracked to study the strain rate, and texture 

evolution in Route C. Element 1 and Element 4 are located near the edges while the Element 2 

and Element 3 are in the middle region. 
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Fig. 6.16 The development history of crystallographic orientations of four selected elements (a) Element 

1, (b) Element 2, (c) Element 3, and (4) Element 4 during ECAP in Route C. 

Fig. 6.15 only shows the strain rates during the second ECAP pass because the results for the 

first pass has already been shown in Fig. 6.6. The results reveal that the biggest difference 

between the first and second pass exists for Elements 1 and 4. Element 1 has the smallest 

magnitudes of strain rates during the first pass but the largest magnitudes of strain rates during 

the second pass. In contrast, Element 4 has the largest strain rates during the first pass but the 
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smallest during the second pass. The results for the third and fourth passes are similar to the 

first and second passes, respectively. 

Fig. 6.16 indicates the simulated {1 1 1} pole figures for the tracked elements. Fig. 6.16(a) shows 

the history of orientation development for Element 1. As can be seen, the orientation of 

Element 1 after the second pass has a 30° rotated component around TD in a clockwise 

direction from the initial orientation. The final crystallographic orientation of Element 1 after 

the fourth pass is rotated about -48° from the initial orientation around TD. As for Element 2, a 

60° TD rotated component develops after the second pass and the same orientation has been 

obtained after the fourth pass. However, the orientation at the third pass is different to that of 

the first pass which remains as the initial crystallographic orientation as shown in Fig. 6.16(b). 

The orientation rotates around 30° in the third pass. Fig. 6.16(c-d) show the {1 1 1} pole figures 

for Elements 3 and 4, respectively. As discussed in Chapter 4, these two elements have the 

same orientation during the first pass because they are located in the same matrix band with a 

crystal rotation of 60° around TD. During the second pass, Element 3 has the initial 

crystallographic orientation while the orientation of Element 4 is slightly rotated away from the 

initial component around both TD and ID. The pole figures of Element 3 after three and four 

ECAP passes are similar. It has been seen that the orientation has rotated about 60° around TD 

from the initial orientation. It is interesting to find that the orientation of Element 4 almost 

does not change during the third and fourth passes and the {1 1 1} pole figures are similar to 

that of the second pass. 
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Fig. 6.17 The shear strain rates of four tracked elements during ECAP in Route C. (a) Element 1, (b) 

Element 2, (c) Element 3, and (d) Element 4. 
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Fig. 6.17 Continued. 

Fig. 6.17 shows the shear strain rates for the tracked elements during the ECAP process in 

Route C to study the slip systems activity. Significant differences to the results of Route A can 

be seen. It is obvious that the shear strain rates of Element 1 during the odd number pass and 

Element 4 during the even number passes are very small. This is caused by the rigid body 
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rotation. The results for Elements 2 and 3 reveals the activation of multi-slip systems during 

Passes 2-4. The predominant slip systems (with a maximum magnitude of shear strain rate) for 

Element 2 are a3 during the second pass, and b1 during the third and fourth passes. On the 

other hand, the slip systems c1 and d1 have the largest and second largest shear strain rates for 

Element 3 during the 2-4 ECAP passes. Therefore, it can be concluded that there is a significant 

influence of positions in the entry channel on the slip system activity during ECAP in Route C, 

which leads to different textures shown in Fig. 6.18. 

    

 

Fig. 6.18 Crystal rotation angles along the billet thickness direction during ECAP in Route C. (a) second 

pass, (b) third pass and (c) fourth pass. 

Fig. 6.18 shows the variation of crystallographic rotation angles along the billet thickness 

direction in Route C. In Fig. 6.18(a), eight matrix bands are seen. Two matrix bands near the top 
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and bottom surfaces have the similar rotation angle of about 60° around TD, but in an opposite 

direction. The number of matrix bands developed during the third pass in Fig. 6.18(b) is the 

same as the second pass. It is worthy to note that large crystal rotations around ED and ID have 

been observed in the matrix band close to the sample bottom and the rotation angles are the 

same with the TD rotation, which is nearly 40° in a clockwise direction. Fig. 6.18(c) shows that 

ten matrix bands exist along the sample thickness after the fourth ECAP pass. The largest 

rotation angle is about 90° around TD and there is no matrix bands having the zero rotations 

which exists after the first ECAP pass as shown in Fig. 4.2(d). As can be seen from Fig. 6.18, the 

predominant crystal rotation remains around TD for all the passes in Route C, while large ID 

rotation exists in Route A. It can be concluded that the crystal rotation pattern is dependent on 

the ECAP route. Clearly, more matrix bands have developed in Route C than Route A. This 

indicates that Route C is more effective in grain refinement than Route A. 

6.5 Summary 

In this chapter, the multi-pass ECAP process of aluminium single crystal has been simulated. The 

following summaries can be made: 

(1) Three adaptive meshing techniques available in Abaqus are introduced, namely the ALE 

analysis, VT adaptive meshing and MTMS mapping approach. The MTMS mapping analysis has 

been finally used to simulate the multi-pass ECAP process because the ALE analysis is not good 

at large deformation problems such as SPD techniques, and the VT adaptive remeshing analysis 

is not good at controlling distortion and is only available for the analyses submitted from 

Abaqus/CAE. Another advantage of the MTMS method is that it can be used with any material 

models. Capability of the MTMS mapping approach is examined by comparing the {1 1 1} pole 

figures before and after the MTMS mapping analysis. Good agreement suggests that this 

approach is suitable for texture simulations during the multi-pass ECAP of aluminium single 

crystals. 

(2) The influence of the processing routes on the inhomogeneous deformation and texture 

evolution is significant by comparing the results in Routes A and C. The simulated strains for 
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both routes agree well with predictions by the analytical models. It has been found that the 

accumulated strain in Route A is slightly smaller than Route C. The strain distributions reveal 

that Route C leads to a more uniform deformation than Route A. Four elements have been 

tracked in both routes and it has been found that texture evolution and slip system activity are 

strongly influenced by the ECAP route and number of passes. Investigation of crystal rotation 

angles suggests that more matrix bands develop in Route C and Route C is more effective in 

grain refinement than Route A. 
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Chapter 7 CPFEM Simulation of ECAP Process of 

Aluminium Bicrystals and Polycrystal 

In the previous chapters, the deformation behavior and texture evolution during the ECAP 

process of single crystals have been studied. In this chapter the study will be extended to 

investigate ECAP processing of bicrystals and polycrystal. 

Bicrystals give us the chance to discern the individual influence of the grain boundary and the 

different crystallographic orientations of the component grains. To the best of my knowledge 

the study of the ECAP process of bicrystals by Han et al. [36] is the only one available in the 

published literatures. In their study, four Cu bicrystals with the same initial crystallographic 

orientations but different grain boundary positions with respect to the ECAP die were 

specifically designed to examine the evolution of the initial grain boundaries and development 

of the shear bands. However, their experimental results mainly revealed the microstructure 

evolutions close to the grain boundaries and developments of the shear bands and slip bands, 

whereas the influence of grain boundaries on the crystallographic orientation changes has not 

been studied in detail. The present study is the first simulation of the ECAP process of bicrystals. 

Compared to the limited studies of single crystals and bicrystals, numerous experimental and 

modeling investigations have been conducted on the ECAP process of polycrystals. According to 

Beyerlein and Toth [2], the predicted texture during the ECAP process is significantly influenced 

by the texture models and deformation histories. As mentioned in Section 2.5, most of the 

texture simulations of polycrystals during the ECAP process were carried out using the Taylor-

type model or VPSC model [31, 50, 59, 100], which often fail to agree with the experimental 

results. Even though several studies [55, 57, 58, 120] were based on the advanced crystal 

plasticity model, satisfactory predictions were still not obtained due to the assumption of 

simple shear in these models. Therefore, the present study will be the first attempt to simulate 
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texture evolution of polycrystals by considering the deformation history of the real full-scale 

ECAP process using the CPFEM model. 

7.1 CPFEM Simulation of Aluminium Bicrystals 

The simulated ECAP die is the same as that used in the previous studies. Two cases (Case 1 and 

Case 2) have been investigated. Two single crystals (Crystal1 and Crystal2) are used in the 

simulations. But their relative positions are different in Case 1 and Case 2 as demonstrated in 

Fig. 7.1. The grain boundaries were designed to be parallel to the Y axis. Two crystals have the 

same dimensions of 2 × 23 mm2 which have been meshed into 4000 elements. In Crystal1, the 

crystallographic plane (-4 -1 2) is parallel to the normal plane (ND or Y axis) and the 

crystallographic direction [1 2 3] is parallel to the X axis (or ED) in Crystal 1. In Crystal2, the 

crystallographic plane (4 1 -2) is parallel to the ND and the crystallographic direction [1 2 3] is 

parallel to the ED. The corresponding Euler angles of two component grains are (-61.44°, 65.91°, 

153.43°) and (61.44°, 114.09°, 26.57°), respectively. For convenience, the corresponding {1 1 1} 

pole figures of these two component grains have been shown in Fig. 7.1. 

Like the previous studies, the die was assumed to be a rigid body and the sample was simulated 

as a deformable body. The coefficient of friction (µ) was set to 0.05 and the processing speed (v) 

was set to 2.4 mm/min. 
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Fig. 7.1 Illustration of the sample geometry, initial crystallographic orientations of two component grains 

in the aluminium bicrystal (Case 1). 

Fig. 7.2 shows the mesh distortions in two simulation cases. In the figure, Crystal1 is highlighted 

by the red color. In Case 1, as shown in Fig. 7.2(a), significant mesh distortions occur in the 

leading head of specimen in the vicinity of grain boundary and a small corner gap develops in 

the outer corner, represented by the arc of ‘AB’. As can be seen, the grain boundary after 

deformation in Case 1 is almost parallel to the X axis in the steady state deformation region. 

Similar observations were reported in the experiment of the ECAP processed copper bicrystal 

[36]. Inhomogeneous distortions along the thickness were found in both grains in Case 1. It is 

interesting to observe that the mesh of Crystal2 is distorted more near the grain boundary than 

other locations, whereas in Crystal1, there are more distortions in the middle part than the 

place closer to the grain boundary. 
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Fig. 7.2 Mesh distortions of the aluminium bicrystals: (a) Case 1 and (b) Case 2 during the ECAP process. 

(the grain denoted as Crystal1 is highlighted in red). 

However, very different result has been observed in Case 2. Fig. 7.2(b) shows a longer 

inhomogeneous leading head and a larger corner gap for Case 2 compared to Case 1. In Case 2 

the grain boundary is wavy in the steady state deformation region. In Crystal1 the mesh is 

deformed quite uniform along the thickness but in Crystal2, there was more mesh distortion 

around the area close to the grain boundary. It should be noted that the thickness of Crystal2 

becomes slightly smaller than the initial thickness due to compression in the entry channel 

before entering the PDZ. 

Fig. 7.3 shows the distributions of the von Mises stress and plastic strain rate components in 

the deformed specimen in Case 1. It is clear that the stress distribution is very inhomogeneous 

along the X axis and Y axis and the von Mises stress in Crystal1 is slightly larger than in Crystal2. 

According to Fig. 7.3(b-d), the fan-shaped PDZ has been partitioned into two sections and the 

strain rate gradient is larger in Crystal2 than in Crystal1. Besides, the length of Crystal2 along 

the intersecting line is shorter than that of Crystal1. Compared to the normal strain rates   ̇ 

and   ̇, the shear strain rate   ̇   has scattered more into the entry channel and exit channel in 

Crystal2. 
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Fig. 7.4 shows the distributions of the von Mises stress and plastic strain rate components in 

Case 2. As can be seen, the results are different to those of Case 1. The von Mises stress in 

Crystal1 is still larger than that in Crystal2. In addition, the scattering of the strain rate   ̇  is 

much smaller and confined into a relatively narrow band. The length of Crystal1 along the 

intersecting line is longer than that of Crystal2. The distribution of strain rates around the place 

close to the outer corner is less uniform in Case 2 than Case 1. 

 

Fig. 7.3 Distributions of (a) von Mises stress and plastic strain rate components (b)   ̇, (c)   ̇ and (d)   ̇  

in the deformed specimen of Case 1. 
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Fig. 7.4 Distributions of (a) von Mises stress and plastic strain rate components (b)   ̇, (c)   ̇ and (d)   ̇  

in the deformed specimen of Case 2. 

Fig. 7.5 shows the variation of the effective plastic strain along the thickness direction as a 

function of the distance from the top surface in both simulation cases. In Case 1 it is clear that 

the strain in Crystal1 increases slowly from the top surface and increases rapidly close to the 

grain boundary, whereas the strain in the lower part (Crystal2) can be divided into three parts 

which include a rapid decrement close to the grain boundary, a relatively uniform part in the 

middle of the crystal, and a gradual decrement at the bottom. On the other hand, a different 

result can be found in Case 2. The strain in 75% of the thickness in the upper crystal (Crystal2) is 

similar to Case 1, and then there was a rapid decrement in the remaining 25% of the thickness 

close to the grain boundary. Compared to the upper crystal, the strain in the lower crystal 

(Crystal1) decreased gradually from the grain boundary to the bottom. The average values of 

the effective plastic strains along the thickness are 1.234 and 1.321 in Case 1 and Case 2, 

respectively. 
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Fig. 7.5 Variation of effective plastic strains along the thickness in both bicrystals. 

Fig. 7.6 shows the variations of the von Mises stress, shear component of the stress, and the 

shear strength along the thickness direction in both simulation cases. It is obvious that a 

significant influence of the grain boundaries can be observed. Fig. 7.6(a) indicates that the von 

Mises stresses near the grain boundaries and surfaces of the die are larger than the other 

locations. In addition, the upper crystal in Case 1 has a smaller von Mises stress than Case 2, but 

the stress in the lower crystal of Case 1 is larger than the corresponding result in Case 2. From 

Fig. 7.6(b) and (c), it is clear that the grain boundary leads to a large fluctuation in the shear 

stress and shear strength in both cases during the ECAP process. It should be noted that the 

results are different in the crystals with the same initial crystallographic orientation when they 

are located in the different positions in the ECAP die.    
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Fig. 7.6 Variation of the (a) von Mises stress, (b) shear component of the stress (S12), and (c) shear 

strength along the thickness in both simulation cases. 

In order to study the influence of the grain boundary on texture evolution, three different 

positions are selected, as shown in Fig. 7.2(a), to plot the {1 1 1} pole figures. Position P1 is 

located in the vicinity of the grain boundary, Position P2 is in the middle part of the crystals, 

and Position P3 is furthest away from the grain boundary and close to the surfaces of the die. 

The pole figures of Case 1 are shown in Fig. 7.7. It is obvious that the {1 1 1} pole figure of 

Position P1 in the upper crystal (Crystal2) indicates a 40° rotated orientation from the initial 

crystallographic orientation around the Z axis. As can be seen, there was almost a 60° rotated 

orientation component at Position P2, while the rotation angle is slightly smaller and the pole 

figure at Position P3 indicates a 50° rotated orientation. In contrast in the lower crystal 

(Crystal1) the {1 1 1} pole figures for the three positions are different from those in the upper 
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crystal. The pole figure at Position P1 is characterized as a 60° rotated component around the Z 

axis from the initial crystallographic orientation and the pole figure at Position P2 indicates a 40° 

rotation. As for Position P3, the pole figure revealed a 90° rotation which should be attributed 

to the rigid body rotation due to the existence of the OCA of the ECAP die and development of 

a corner gap during the ECAP process. 

 

Fig. 7.7 Simulated {1 1 1} pole figures of three selected positions (P1-P3 marked in Fig. 7.2(a)) in both 

component grains in Case 1. 
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Fig. 7.8 Simulated {1 1 1} pole figures of three selected positions (P1-P3 marked in Fig. 7.2(a)) in both 

component grains in Case 2. 

Fig. 7.8 shows the simulated {1 1 1} pole figures for Case 2. In the upper crystal (Crystal1), the 

pole figure at Position P1 indicates a 60° rotated component around the Z axis with a small 

scattering. The pole figures at Positions P2 and P3 are similar, which indicates a 40° Z-axis 

rotated orientation. In addition, there is a slight rotation of almost 15° around the Y axis in the 

pole figures at Positions P2 and P3. The {1 1 1} pole figure of the lower crystal (Crystal2) reveals 

a 60° Z-axis rotated orientation and a 90° Z-axis rotated orientation at Positions P1 and P3, 

respectively, whereas these are two orientations existing simultaneously at Position P2. 

According to the above results, it can be concluded that the grain boundary has a significant 

influence on the plastic deformation behavior, such as mesh distortion and the shape of the 

PDZ, the strain and stress distributions, and the crystallographic orientation evolutions during 

the ECAP process. 
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7.2 CPFEM Simulation of Aluminium Polycrystal 

The main objectives of this section is to investigate the deformation heterogeneity and texture 

evolution of aluminium polycrystal subjected to one pass of the ECAP process using the CPFEM 

simulation. 

The simulated billet was rectangular and was 22 mm long by 4 mm wide, and it was meshed 

into 8000 elements (with 40 elements along the width). The ECAP die was the same one used in 

the previous section and was assumed to be a rigid body during the FEM simulation. The punch 

and billet were defined as a rigid body and deformable body, respectively. A constant 

processing speed of 2.4 mm/s was given along the –Y axis and the coefficient of friction µ was 

set to 0.05. 

In order to validate the polycrystal simulation model developed in the present study, an ECAP 

experiment has been performed. The material used in ECAP was commercially pure aluminium 

AA1050. Billets were cast and heat treated at 456° for one hour and then air cooled to the room 

temperature. The chemical composition of this aluminium alloy is shown in Table 7.1 and the 

ECAP instrument is shown in Fig. 7.9(a). The optical microstructure of the annealed aluminium 

alloy was observed with a Leica DMRM microscope, where the sample was round, polished with 

a Struers TegraPol-21 polishing machine to an OPS finish and then etched with Barker’s reagent. 

The grain size was measured using the linear intercept method. The textures before and after 

the ECAP process were measured by X-ray diffraction using X’Pert MRD goniometer with Cu Kα 

radiation at 45 kV and ~40 Ma, where the sample was fround and polished with a Struers OPS 

finish to ensure a flat surface. Pole figure and ODFs were calculated using X’Pert texture 

software after defocusing and background correction [22]. 

The ECAP die in Fig. 7.9(a) has a cross-section of 20 × 20 mm2, an intersection angle of 90° and 

an OCA of 20°. The annealed AA1050 was cut into 20 × 20 × 100 mm3 billets. In the experiment, 

the four longer faces of the billet were prepared to obtain a mirror like finish by grinding on 

abrasive paper and electro-polishing and then coated in a MoS2 lubricant prior to processing. 

ECAP experiment was conducted at room temperature. 
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Table 7.1 Chemical composition of aluminium alloy AA1050 used in this study [22]. 

wt % Si Fe Cu Mn Mg Zn Ti Al 

AA1050 0.25 0-0.4 0.05 0.05 0.05 0.05 0.03 Balance 

 

      

Fig. 7.9 (a) Photo of the experimental instrument for ECAP and (b) Optical microstructure of the 

annealed aluminium alloy AA1050 before ECAP. 

Fig. 7.9(b) indicates the optical microstructure of the annealed AA1050 before the ECAP process. 

The average grain size measured from Fig. 7.9(a) is about 600 µm. The distribution of the grain 

size is shown by bars in Fig. 7.10(a). A normal distribution function is used to fit the measured 

grain size distribution. The fitting result is also displaced by a red line in Fig. 7.10(a). The 

average value and standard deviation of the measured grain size are 540 µm and 195 µm, 

respectively. 
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Fig. 7.10 (a) The experimental measured distribution of grain size and (b) the calculated distribution of 

grain size for the simulation based on the experimental result, and (c) the simulated grain shapes and 

initial meshes of the billet in the model before the ECAP process. 

In the present study the polygons built by planar Voronoi diagram will be used to represent 

two-dimensional grain shapes which were found better to describe the real grain shapes than 

the regular circle and ellipse [240]. Each polygon contains one seed and the number of seeds 

will be controlled to determine the average size of the polygons. Because the total planar area 

was fixed as 4 × 22 =88 mm2, the number of polygons should be about 280 to meet the 

measured average grain size. The polygons generated by Voronoi diagram are shown in Fig. 

7.10(c) and each polygon represents one grain. The distribution of size of the generated 

polygons and the corresponding fitting curve are shown in Fig. 7.10(b). The average value and 

standard deviation of the fitting curve are 560 µm and 218 µm, respectively. These values are in 

good agreement with the experimental values. It is obvious from comparison of Fig. 7.9 and Fig. 

7.10 that the grain sizes and shapes used in the simulation are consistent with the 

experimentally measured results. 



 Chapter 7 CPFEM simulation of the ECAP process of aluminium bicrystals and polycrystals 
 

207 
 

Initial crystallographic orientation of the AA1050 alloy before ECAP has been shown in terms of 

{1 1 1} pole figure in Fig. 7.11(a) and   =0° ODF section in Fig. 7.12(a). It can be seen that the 

initial texture of annealed AA1050 alloy can be characterized as a strong Cube texture from 

both the {1 1 1} pole figure and ODF section. A Matlab program has been developed to allocate 

the crystallographic orientation to each orientation according to the measured texture. The {1 1 

1} pole figure and the ODF section generated by the Matlab program are shown in Fig. 7.11(b) 

and Fig. 7.12(b), respectively. It can be seen that good agreement in Fig. 7.11 and Fig. 7.12 has 

been obtained. 

 

Fig. 7.11 Initial {1 1 1} pole figure of the annealed AA1050 alloy before ECAP: (a) experimental 

measurement [22] and (b) Matlab program generated result used for simulation. 
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Fig. 7.12 Initial texture of the annealed AA1050 before the ECAP process in terms of   =0° ODF section 

(a) experimental measurement [22] and (b) Matlab program generated result used for simulation. 

The other material parameters used in the simulation for pure aluminium, such as the elastic 

moduli, Poisson ratio and density are the same as those described in Chapter 3. It takes 

approximately 500 hours using four CPUs to finish this simulation. 

Fig. 7.13(a) shows the deformed mesh of the polycrystal after the ECAP process. As can be seen, 

the mesh distortion is not uniform along the billet axis and billet thickness. This result is very 

different to those of single crystals and bicrystals in the previous studies. Some macro-bands 

parallel to the intersecting line of two channels developed in this polycrystal but the mesh 

distortion in the bottom of the sample was different from the upper region because of the 

influence of the OCA. In addition, an outer corner gap is also seen in Fig. 7.13(a) as marked by 

the arc of ‘AB’. 
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Fig. 7.13 (a) Mesh distortion and (b) Distribution of the plastic strain in the aluminium polycrystal during 

the ECAP process at t=480 s. 

The distribution of plastic strain in the deformed aluminium polycrystal is shown in Fig. 7.13(b). 

It is clear that the strain is not uniform along the billet axis and the strain in the leading head 

and undeformed part are very small, while a larger strain has accumulated in the middle part. 

Along the thickness direction the strain was less in the bottom than the upper region. 
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Fig. 7.14 Distributions of (a) von Mises stress and plastic strain rates (b)   ̇, (c)   ̇ and (d)   ̇  in the 

deformed polycrystal during the ECAP process. 

In order to gain a better understanding of the deformation behavior of this aluminium 

polycrystal during the ECAP process, the simulated results around PDZ has been analyzed in 

detail. Fig. 7.14 shows the distribution of the von Mises stress and plastic strain rates. Fig. 

7.14(a) indicates that the von Mises stress at the intersecting zone of two channels is different 

to the case of single crystals shown in Chapter 4. The largest magnitude of stress here is about 

269.1 MPa close to the inner corner. Fig. 7.14(b-d) shows the distributions of plastic strain rates 

  ̇,   ̇ and   ̇ , respectively. For the normal components   ̇ and   ̇, the largest values are close 

to the inner corner and the magnitudes decrease gradually along the intersecting plane from 

the inner to the outer corner. Compared to the single crystal, the fan-shaped PDZ in the 

polycrystal only expanded slightly. 

 

 



 Chapter 7 CPFEM simulation of the ECAP process of aluminium bicrystals and polycrystals 
 

211 
 

    

 

Fig. 7.15 Variation of (a) Effective plastic strain, (b) von Mises stress and (c) Shear strength along the 

thickness in the ECAP processed aluminium polycrystal. 

As shown in Fig. 7.13(a), an inhomogeneous mesh distortion is observed in the deformed 

polycrystal. Therefore, three planes away from the PDZ at distances of 2 mm, 6 mm, and 10 mm, 

are compared. These three planes are denoted as X=6, X=10, and X=14, respectively. Fig. 7.15(a) 

shows the variation of the effective plastic strain along the thickness direction for three planes. 

The average effective plastic strains are 1.315, 1.1.267 and 1.294, respectively. In contrast, 

there are more differences between the planes shown in Fig. 7.15(b) for the von Mises stress, 

and in Fig. 7.15(c) for the shear strength. As can be seen, the planes X=6 and X=14 have the 

similar trends with more fluctuations than the plane X=10. 
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Fig. 7.16 Variation of the logarithmic plastic strains at (a) X=6, (c) X=10, and (e) X=14 and the stress 

components at (b) X=6, (d) X=10, and (f) X=14 along the thickness in the ECAP processed aluminium 

polycrystal. 
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Detailed information on the plastic strain and stress for three selected planes are shown in Fig. 

7.16. The strains of three planes are similar and the shear component is larger than the normal 

components for all these planes. Nearly 75% of the thickness had relatively uniform strains at 

the plane X=6, as shown in Fig. 7.16(a) and at the plane X=14 in Fig. 7.16(e), while it was about 

85% for the planes X=10, as shown in Fig. 7.16(c). At the plane X=6 the strains in the lower 

quarter are much smaller than the upper three quarters. On the other hand, the stress 

distributions shown in Fig. 7.16(b), (d) and (f) reveal that the stress state is complicated and 

different along the thickness. For example at the plane X=6, the stress state is characterized as 

tension along the X axis close to the top surface and compression along the X axis and shear 

near the bottom. The stress state at the plane X=14 is similar to the plane X=6, but different to 

the plane X=10 which is significantly influenced by the formation of shear bands, as shown in 

Fig. 7.13(a). 

The average von Mises stress along the billet thickness has been calculated and it is 98.214 MPa 

at the plane X=6, 82.465 MPa at the plane X=10, and 81.735 MPa at the plane X=14 respectively 

as listed in Table 7.2. In addition, the average shear strengths of three planes are 51.055 MPa, 

48.219 MPa and 43.823 MPa, respectively. It has been found that the plane X=6 has the largest 

von Mises stress and shear strength compared to the other two selected planes. For a better 

understanding of the deformation behavior along the thickness direction in the deformed 

polycrystal, the deformation inhomogeneity index introduced by Li et al. [142] is calculated for 

three planes and listed in Table 7.2. The results are consistent with the observation in Fig. 

7.13(a) and the plane X=10 has the smallest index due to the least influence of the macro-bands. 

In contrast, the plane X=14 had the largest deformation heterogeneity index of about 1.319, 

while a slightly smaller index of about 1.279 is obtained at the plane X=6. 
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Table 7.2 The list of average values of effective plastic strain ( )̅, von Mises stress ( ̅), shear strength ( ̅ ), 

and the deformation inhomegeneity index (  ) along the billet thickness at three selected planes in the 

ECAP processed aluminium polycrystal.  

Selected planes   ̅  ̅ (MPa)   ̅ (MPa)    

X=6 1.315 98.214 51.055 1.279 

X=10 1.267 82.465 48.219 1.188 

X=14 1.294 81.735 43.823 1.319 

 

 

Fig. 7.17 {1 1 1} pole figures of the aluminium polycrystal of (a) CPFEM simulation result, (b) 

experimental measurement [22] and (c) the main ideal orientations in FCC materials after the ECAP 

process [31]. 

Texture evolution of this aluminium polycrystal during the ECAP process has been studied. Fig. 

7.17(a) indicates the {1 1 1} pole figure calculated from the CPFEM simulation results and Fig. 

7.17(b) shows the experimentally measured {1 1 1} pole figure after the ECAP process of the 

annealed AA1050. The main ideal orientations of FCC materials after the ECAP process are 

shown in Fig. 7.17(c) [31]. Comparison of the pole figures in Fig. 7.17(a) and Fig. 7.17(b) 

indicates that the CPFEM model simulated texture agrees well with the experimental measured 

texture. As can be seen, both the typical {1 1 1} fiber and <1 1 0> fiber of shear textures shown 
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in Fig. 7.17(c) for the FCC materials have been observed in the simulated texture and measured 

texture. 

 

Fig. 7.18 Simulated {1 1 1} pole figures of ECAP processed aluminium polycrystal at four different 

positions of (a) Position P1, (b) Position P2, (c) Position P3, and (d) Position P4 as marked in Fig. 7.13(a). 

In order to study the texture evolution heterogeneity along both the axis of the billet and the 

billet thickness, eight different positions at two different planes in the deformed billet are 

selected, as shown in Fig. 7.13(a), to plot the {1 1 1} pole figures. The area of each position is set 

to 1 mm (along the X axis) by 0.5 mm (along the Y axis). 

Fig. 7.18 shows the simulated {1 1 1} pole figures at Positions P1-P4 which are located at the 

same plane, as shown in Fig. 7.13(a). It is obvious that texture evolution is not uniform along 

the thickness and there are significant differences among the four {1 1 1} pole figures. In Fig. 
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7.18(a) for Position P1, the pole figure shows a strong <1 1 0> fiber with slightly a weak {1 1 1} 

fiber. The <1 1 0> fiber becomes weaker at Position P2 in Fig. 7.18(b), while the {1 1 1} fiber is 

stronger than P1. In contrast, at Position P3, as shown in Fig. 7.18(c), both fibers can be 

observed and it is obvious that the {1 1 1} fiber is stronger than the <1 1 0> fiber. It should be 

noted that texture at Position P4 is different to the other three positions. At Position P4 the 

ideal shear components disappear and the pole figure indicates the rotated Cube orientation 

together with scatterings. 

 

Fig. 7.19 Simulated {1 1 1} pole figures of ECAP processed aluminium polycrystal at four different 

positions of (a) Position P5, (b) Position P6, (c) Position P7, and (d) Position P8 as marked in Fig. 7.13(a). 

Fig. 7.19 shows the simulated {1 1 1} pole figures for Positions P5-P8. It is obvious that an 

almost ideal shear texture can be observed at Positions P5 and P6, as shown in Fig. 7.19(a-b). At 

Position P7 in Fig. 7.19(c), the {1 1 1} fiber and <1 1 0> fiber are very weak and the main texture 
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component is the rotated Cube orientation. The {1 1 1} pole figure at Position P8 is shown in Fig. 

7.19(d) where the {1 1 1} fiber and <1 1 0> fiber cannot be seen. Only the rotated Cube 

orientation with scattering and some other intermediate components appear. The main feature 

of the {1 1 1} pole figure at Position P8 is similar to P4. 

 

Fig. 7.20 Crystal rotation angles around three axes along the thickness in the ECAP processed aluminium 

polycrystal at plane X=6. 

Fig. 7.20 shows the variation of crystal rotation angles along the thickness direction at the plane 

X=6. It is obvious that there are very large rotation angles around the Z axis, although there are 

also large rotations around the X and Y axes. Comparison of Fig. 7.18 and Fig. 7.19 indicates that 

the largest difference lies in Positions P3 and P7, both of which are located at similar 

thicknesses, as shown in Fig. 7.13(a). On the other hand there is also a slight difference in the 

upper regions at Positions P1-P2 and P5-P6, which can be attributed to the inhomogeneous PDZ 

and development of macro-bands. Therefore, it can be concluded that texture evolution of the 

aluminium polycrystal is not uniform along both the billet axis and billet thickness during the 

ECAP process. 

7.3 Summary 

In this chapter, the following conclusions can be drawn: 
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(1) According to the CPFEM simulation of aluminium bicrystals, significant influences of grain 

boundaries on the mesh distortion, development of outer corner gap, PDZ shape, and 

distribution of plastic stress and strain during the ECAP process have been observed. It has 

been found that existence of the grain boundary leads to a rapid change of the effective plastic 

strain, von Mises stress, and shear strength along the thickness of the billet. In addition, the 

simulated {1 1 1} pole figures reveal that texture evolution is not uniform in both component 

grains and are relevant to their locations in the ECAP die.  

(2) The present study is the first attempt to conduct the simulation of the ECAP process of 

polycrystal using a crystal plasticity model fully coupled with modeling of the real ECAP process 

deformation history. The major challenge of such work is the implementation of the realistic 

information of material, such as grain size, grain shape, and crystallographic orientation into 

the CPFEM model. In order to validate the simulation, the experiment has been carried out to 

obtain the initial texture, microstructure and distribution of grain sizes. A Matlab program is 

used to implement the experimentally measured information into the CPFEM model. It has 

been found that the simulation results of AA1050 alloy agree well with the experimental results 

and the theoretical ECAP textures for FCC materials in literature. The deformation and texture 

evolution are not uniform along both the axis of the billet and the billet thickness in the ECAP 

processed polycrystal. 
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Chapter 8 Conclusions and Suggestions for Future 

Work 

8.1 Conclusions 

In this work, a CPFEM model of the ECAP process has been developed to simulate the 

deformation behavior and texture evolution of single crystals, bi-crystals, and polycrystals 

having FCC structures. It should be noted that the simulations of ECAP of single crystals and 

bicrystal have never been conducted. The influencing factors such as plane strain assumption, 

mesh condition, sample dimension, frictional condition, ECAP die geometry and the processing 

route have been examined in detail. The following conclusions can be drawn: 

(1) The crystal plasticity theory and a rate-dependent hardening law were introduced and the 

development of the CPFEM model by implementing the crystal plasticity constitutive model 

into the UMAT in a commercial finite element code (Abaqus) was described. For the first time, 

the CPFEM simulations of the full-scale ECAP processes of aluminium and copper single crystals 

have been conducted. The simulated results agreed well with the experimental measurements. 

This indicates that the developed CPFEM model can accurately predict texture evolution during 

the ECAP process. 

(2) The deformation behavior and texture evolution of aluminium single crystals during the 

ECAP process have been simulated for the first time. It has been found that for the single crystal 

initially oriented with ideal ‘A’ orientation, plastic deformation and development of 

crystallographic orientations were not uniform along the sample thickness. Three-dimensional 

crystal rotation patterns have been observed and the predominant rotation was found to be 

around the transverse direction. In addition, three matrix bands were obtained along the 

thickness connected by two transition bands. The corresponding rotation angles of these matrix 

bands are 60°, 0°, and 90°, respectively, from the top surface. The slip traces have been studied 

which revealed that multi-slip could be activated in the large strain gradient region and lattice 
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rotation dominated the material rotation. In contrast, single dominant slip was the main slip 

mechanism when the strain gradient was small and the lattice remained at the initial 

orientation after the deformation. At the bottom of the sample, the deformation was 

characterized as rigid body rotation due to the presence of the OCA of the ECAP die and 

development of the corner gaps between the sample and the die. It should be noted that 

simulation of slip traces during ECAP has never been conducted before. 

(3) Comparison of the results of three-dimensional simulation and two-dimensional simulation 

of the ECAP process indicated that it was reasonable to assume that deformation in the ECAP 

die with a square cross-section satisfied the plane strain condition. It has been found that the 

simulated deformation behavior and textures were significantly influenced by the mesh 

conditions. When the mesh had less than or equal to 2400 elements, the simulations failed to 

capture the rigid body rotation in the bottom part. Different frictional conditions led to the 

different PDZs and the coefficient of friction of 0.05 performed best in predicting textures 

compared to the experimental results. In addition, the plastic deformation and development of 

crystallographic orientations were strongly influenced by the OCAs and ICRs of the ECAP die, 

whereas the sample width varying from 2 mm to 40 mm didn’t significantly influence the 

simulation results. Finally, the major research conclusions obtained in the lab-scale tests are 

applicable for scaling up of the ECAP process for the industrial application. 

(4) Simulations revealed similar textures and crystal rotation patterns of copper single crystals 

to aluminium single crystals during the ECAP process when they had the same initial 

crystallographic orientation of ‘A’. It has been found that the deformation inhomogeneity was 

strongly influenced by the frictional conditions and the ECAP die channel angles. An obtuse 

channel angle (φ=105° and 135°) led to a larger outer corner gap than an acute channel angle 

(φ=75°) or right angle (φ=90°). Besides, initial crystallographic orientation was another 

important factor influencing the formation of outer corner gap, mesh distortion, distribution of 

plastic stress and strain, deformation inhomogeneity, and texture evolution and crystal rotation 

pattern. 
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(5) A mesh mapping approach is indispensable in the simulations of the multi-pass ECAP 

processes. It has been proved that the MTMS mapping technique in Abaqus can satisfy the 

requirement of the multi-pass ECAP simulation. The ECAP processes of aluminium single 

crystals in Route A and Route C have been successfully simulated for up to four ECAP passes. 

The results indicated that different slip systems were activated at different ECAP passes in both 

routes, which led to the different textures. Compared with Route A, Route C had more uniform 

deformation after even number of ECAP passes. However, Route C had a stronger grain 

refinement capability than Route A. 

(6) CPFEM simulations of the ECAP process of aluminium bi-crystals revealed that grain 

boundary significantly influence deformation heterogeneity and texture evolution along both 

the billet axis and the billet thickness. Different PDZ, distribution of plastic stress, strain and 

shear strength and texture evolution have been obtained by rotating the same bi-crystal 180° 

around its longitudinal direction. A new construction method of polycrystal structure was 

introduced which can be used to accurately transfer the experimentally measured texture into 

simulation model. Based on this method, the ECAP process of an annealed polycrystalline 

AA1050 alloy has been performed. It has been found that textures were inhomogeneously 

distributed along both the billet axis and the billet thickness after deformation and crystal 

rotation patterns were different to those observed in ECAP of single crystals. 

8.2 Suggestions for Future Work 

The following areas are suggested to be conducted to continue the research from this work. 

The experiments and simulations of the bi-crystals during the ECAP process considering the 

initial crystallographic orientations of the component grains need to be carried out to 

investigate in depth the influence of grain boundaries with different initial misorientations on 

the deformation behavior and texture evolutions. 
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Multi-pass ECAP process of polycrystals needs to be simulated to understand the influence of 

processing routes and number of ECAP passes on texture evolution, especially Routes Ba and Bc, 

which cannot be simulated using two-dimensional model. 

The CPFEM model has been proved to be a very effective and powerful tool to simulate the 

deformation behavior and texture evolution of FCC materials during the ECAP process in this 

work. It is strongly recommended that the fully-coupled CPFEM simulations of the ECAP 

processes of BCC and HCP materials need to be conducted. The other deformation mechanism 

such as twinning needs to be considered in the crystal plasticity theory in order to accurately 

simulate the deformation of the HCP materials. 
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