
University of Wollongong
Research Online

Faculty of Science, Medicine and Health - Papers:
part A Faculty of Science, Medicine and Health

2015

Riverine Li isotope fractionation in the Amazon
River basin controlled by the weathering regimes
Mathieu Dellinger
University of Southern California

Jerome Gaillardet
Institut Universitaire de France

Julien Bouchez
Institut de Physique du Globe de Paris

Damien Calmels
Universite Paris-Sud

Pascale Louvat
Institut de Physique du Globe de Paris

See next page for additional authors

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Dellinger, M., Gaillardet, J., Bouchez, J., Calmels, D., Louvat, P., Dosseto, A., Gorge, C., Alanoca, L. & Maurice, L. (2015). Riverine Li
isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochimica et Cosmochimica Acta, 164 71-93.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37025276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
https://ro.uow.edu.au
https://ro.uow.edu.au/smhpapers
https://ro.uow.edu.au/smhpapers
https://ro.uow.edu.au/smh


Riverine Li isotope fractionation in the Amazon River basin controlled by
the weathering regimes

Abstract
We report Li isotope composition (δ7Li) of river-borne dissolved and solid material in the largest River
system on Earth, the Amazon River basin, to characterize Li isotope fractionation at a continental scale. The
δ7Li in the dissolved load (+1.2‰ to +32‰) is fractionated toward heavy values compared to the inferred
bedrock (−1‰ to 5‰) and the suspended sediments (−6.8‰ to −0.5‰) as a result of the preferential
incorporation of 6Li into secondary minerals during weathering. Despite having very contrasted weathering
and erosion regimes, both Andean headwaters and lowland rivers share similar ranges of dissolved δ7Li
(+1.2‰ to +18‰). Correlations between dissolved δ7Li and Li/Na and Li/Mg ratios suggest that the
proportion of Li incorporated in secondary minerals during weathering act as the main control on the
δ7Lidiss across the entire Amazon basin. A "batch" steady-state fractionation model for Andean and lowland
rivers satisfactorily reproduces these variations, with a fractionation factor between weathering products and
dissolved load (αsec-disαsec-dis) of 0.983 ± 0.002. Two types of supply-limited weathering regimes can be
identified for the lowlands: "clearwaters" with dominant incorporation of Li in secondary minerals, and "black
waters" (e.g., Rio Negro) where dissolution of secondary minerals enhanced by organic matter produces low
δ7Li. Apart from the black waters, the δ7Li of Andean and lowland rivers is negatively correlated to the
denudation rates with the lowest δ7Li corresponding to the rivers having the highest denudation rates. In
contrast, the main tributaries draining both the Andes and the lowlands have higher δ7Li compared to other
rivers. We propose that part of the dissolved Li derived from weathering in the Andes is re-incorporated in
sediments during transfer of water and sediments in floodplains and that this results in an increase of the
dissolved δ7Li along the course of these rivers. Unlike other rivers, the dissolved δ7Li in the main tributaries is
best described by a Rayleigh fractionation model with a fractionation factor αsec-disαsec-dis of 0.991.
Altogether, the control imposed by residence time in the weathering zone and floodplain processes results in
(i) a non-linear correlation between dissolved δ7Li and the weathering intensity (defined as W/D) and (ii) a
positive relationship between the dissolved Li flux and the denudation rate. These results have important
implications for the understanding of past ocean δ7Li and its use as a paleo weathering proxy.

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details
Dellinger, M., Gaillardet, J., Bouchez, J., Calmels, D., Louvat, P., Dosseto, A., Gorge, C., Alanoca, L. &
Maurice, L. (2015). Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering
regimes. Geochimica et Cosmochimica Acta, 164 71-93.

Authors
Mathieu Dellinger, Jerome Gaillardet, Julien Bouchez, Damien Calmels, Pascale Louvat, Anthony Dosseto,
Caroline Gorge, Lucia Alanoca, and Laurence Maurice

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers/3141

https://ro.uow.edu.au/smhpapers/3141


Riverine Li isotope fractionation in the Amazon River basin controlled by the
weathering regimes

Mathieu Dellingera,b, Jerome Gaillardetb,c, Julien Bouchezb, Damien Calmelsd, Pascale Louvatb, Anthony
Dossetoe, Caroline Gorgeb, Lucia Alanocaf, Laurence Mauricef

aDepartment of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
bInstitut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, CNRS, F-75005 Paris, France

cInstitut Universitaire de France, Paris, France
dUniversité Paris-Sud, Laboratoire GEOPS, UMR 8148 - CNRS, Orsay, F-91405, France

eSchool of Earth and Environmental Sciences, University of Wollongong, Wollongong NSW 2522, Australia
fGéosciences Environnement Toulouse, Universite Paul Sabatier, Toulouse, 31400, France

Abstract

We report Li isotope composition (δ7Li) of river-borne dissolved and solid material in the largest River
system on Earth, the Amazon River basin, to characterize Li isotope fractionation at a continental scale.
The δ7Li in the dissolved load (+1.2� to +32�) is fractionated toward heavy values compared to the
inferred bedrock (-1� to 5�) and the suspended sediments (-6.8 to -0.5�) as a result of the preferential
incorporation of 6Li into secondary minerals during weathering. Despite having very contrasted weathering
and erosion regimes, both Andean headwaters and lowland rivers share similar ranges of dissolved δ7Li
(+1.2� to +18�). Correlations between dissolved δ7Li and Li/Na and Li/Mg ratios suggest that the
proportion of Li incorporated in secondary minerals during weathering act as the main control on the
δ7Lidiss across the entire Amazon basin. A "batch" steady-state fractionation model for Andean and lowland
rivers satisfactorily reproduces these variations, with a fractionation factor between weathering products and
dissolved load (αsec−dis) of 0.983. Two types of supply-limited weathering regimes can be identified for the
lowlands : "clearwaters" with dominant incorporation of Li in secondary minerals, and "black waters" (e.g.
Rio Negro) where dissolution of secondary minerals enhanced by organic matter produces low δ7Li. Apart
from the black waters, the δ7Li of Andean and lowland rivers is negatively correlated to the denudation rates
with the lowest δ7Li corresponding to the rivers having the highest denudation rates. In contrast, the main
tributaries draining both the Andes and the lowlands have higher δ7Li compared to other rivers. We propose
that part of the dissolved Li derived from weathering in the Andes is re-incorporated in sediments during
transfer of water and sediments in floodplains and that this results in an increase of the dissolved δ7Li along
the course of these rivers. Unlike other rivers, the dissolved δ7Li in the main tributaries is best described by a
Rayleigh fractionation model with a fractionation factor αsec−dis of 0.991. Altogether, the control imposed by
residence time in the weathering zone and floodplain processes results in (i) a non-linear correlation between
dissolved δ7Li and the weathering intensity (defined as W/D) and (ii) a positive relationship between the
dissolved Li flux and the denudation rate. These results have important implications for the understanding
of past ocean δ7Li and its use as a paleo weathering proxy.

Keywords: Lithium isotopes, Amazon River, Weathering, Floodplains, Denudation

1. Introduction1

Silicate weathering is one of the key geological processes influencing the long-term evolution of climate2

through the consumption of atmospheric CO2 (Walker et al., 1981; Berner et al., 1983). Identifying how3
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silicate weathering fluxes relate to potential controlling parameters is thus critical to unravel past climatic4

variations (Berner, 1990; Dupré et al., 2003; West et al., 2005). Conflicting results about the respective roles5

of climatic, tectonic and lithological parameters in setting chemical weathering fluxes have been reported6

(Walker et al., 1981; Raymo and Ruddiman, 1992; Gaillardet et al., 1999; West et al., 2005; Dixon and7

von Blanckenburg, 2012; West, 2012; Maher and Chamberlain, 2014). In order to gain insight into the8

respective role of these parameters, the direct quantification of paleo-weathering rates and intensities can9

be achieved using records of geochemical proxies for chemical weathering (e.g. Sr, Nd, Os, Be isotopes)10

(Raymo and Ruddiman, 1992; Willenbring and Von Blanckenburg, 2010; Li and Elderfield, 2013; Torres11

et al., 2014; Cogez et al., 2015). However, most of those proxies do not necessarily trace specifically past12

silicate weathering fluxes or intensity and a reliable geochemical weathering proxy is still lacking (Raymo13

and Ruddiman, 1992; Willenbring and Von Blanckenburg, 2010).14

Over the last 15 years, numerous studies on soil and river water have shown that Li isotopes is a promising15

proxy for silicate weathering reactions (for a recent review see Burton and Vigier (2011)). This is because16

Li is mainly hosted in silicate minerals (Kisakurek et al., 2005; Millot et al., 2010c), while not involved17

in the biological turnover (Lemarchand et al., 2010) and its isotopes (6Li and 7Li) are fractionated by18

chemical weathering (Huh et al., 1998; Pistiner and Henderson, 2003). Laboratory experiments have shown19

that mineral dissolution produces no Li isotope fractionation (Pistiner and Henderson, 2003; Wimpenny20

et al., 2010a) unlike the precipitation of secondary weathering products (Vigier et al., 2008; Millot et al.,21

2010b) and adsorption of Li onto mineral surface phases (Zhang et al., 1998; Pistiner and Henderson, 2003;22

Millot and Girard, 2007). In river basins, the lithium isotope composition (δ7Li) of the dissolved load is23

generally higher (by +6 to +42�) than corresponding δ7Li values of bedrock and suspended sediments24

(Kisakurek et al., 2005; Pogge von Strandmann et al., 2006, 2008; Vigier et al., 2009; Lemarchand et al.,25

2010; Pogge von Strandmann et al., 2010; Millot et al., 2010c; Henchiri et al., 2014). It has been suggested26

that the fractionation of Li isotopes in the dissolved load traces either silicate weathering intensity (Huh27

et al., 1998, 2001; Kisakurek et al., 2005; Pogge von Strandmann et al., 2006, 2008, 2010; Millot et al.,28

2010c), silicate weathering fluxes (Vigier et al., 2009), fluid residence time (Wanner et al., 2014) or exchange29

processes between water and sediments (Wimpenny et al., 2010b; Tipper et al., 2012; Pogge von Strandmann30

et al., 2012).31

The recently published Li isotope seawater record over the Cenozoic by Misra and Froelich (2012) reveals32

a 9� increase of the ocean δ7Li over the last 60 Myr. This has been interpreted as reflecting an increase33

of the δ7Li of continental riverine input implying a large shift of the continental weathering regime (from34

"supply-limited" to "weathering-limited") as a result of increased uplift and denudation rates from early35

Cenozoic up to now (Misra and Froelich, 2012; Li and West, 2014; Froelich and Misra, 2014; Wanner et al.,36

2014). However, the parameters controlling Li isotope fractionation during chemical weathering and the link37

between Li isotope composition in river water and weathering regime are still poorly understood, especially38

at the continental scale.39

Herein, we investigate the Li isotope composition of the riverine products (water and sediments) transpor-40

ted by the largest river system on Earth, the Amazon River. This allows us to study Li isotope fractionation41

by chemical weathering at a continental scale, in a relatively unpolluted area with various climatic regimes42

ranging from wet tropical to cold conditions, and spanning a very large range of runoffs, altitudes, bedrock43

types and denudation regimes. We show in particular how the weathering regime (supply vs. kinetic limi-44

tation) and the geomorphic setting (hillslopes vs. floodplains) influence the Li mass balance and therefore45

Li isotope fractionation. Based on these findings, we provide clues on how to interpret the Li isotope sedi-46
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mentary record archived in carbonates and terrigenous sediments in terms of past variations in continental47

weathering intensity and style.48

2. Settings49

The Amazon River basin is the largest river basin on Earth in terms of discharge, basin area, and one50

of the largest in terms of total denudation (Meade et al., 1979; Gaillardet et al., 1999). We define 4 main51

geomorphic areas in the Amazon Basin :52

1. The Andes correspond to the Andean Cordillera where the relief ranges from about 6700 m to 500 m53

with steep slopes and high erosion rates. The northern part of the Andes (Peru and Ecuador) is drained by54

the tributaries of the Solimões River (Napo, Tigre, Morona, Pastaza, Maranon, Huallaga and Ucayali rivers)55

while the main tributaries of the Madeira River (Madre de Dios, Beni and Mamore rivers) drain the southern56

part of the Andes (Bolivia). In the Madeira basin, the lithology is relatively uniform and corresponds almost57

exclusively to low-grade uplifted Paleozoic silicate sedimentary rocks with a few Tertiary and Quaternary58

sedimentary deposits (e.g. in the Alto Beni river basin) (Stallard and Edmond, 1983; Dosseto et al., 2006b;59

Moquet et al., 2011). In the Solimões basin, the lithology comprises both sedimentary and igneous rocks of60

intermediate composition, essentially andesites in the active volcanic belt in Ecuador (Stallard and Edmond,61

1983). The runoff increases from 150 mm/yr in the south (Mamore River basin) to 3400 mm/yr in the north62

(Moquet et al., 2011). Rivers draining the Andes are typically called the "white waters" (Gibbs, 1967) with63

high suspended sediment concentrations ([SPM]) from 500 to 5000 mg/L (Guyot et al., 1996; Aalto et al.,64

2006; Wittmann et al., 2011). The silicate weathering rates (referred here as "W") in these river basins range65

from 7 to 75 t.km−2.y−1 with a mean value at 22 t.km−2.y−1 for the Andean area (Moquet et al., 2011).66

In the Andes, the weathering regime is said to be "weathering-limited" or almost equivalently "kinetically-67

limited" (Stallard and Edmond, 1983), meaning that the primary minerals are not completely weathered68

before being eroded away (West et al., 2005).69

2. The lowlands and forelands, with a relief below 500 m, have lower slopes than the Andean part and70

are formed by Tertiary and Quaternary sediments eroded from the Andes. Those sediments have typical71

PAAS-like ("Post Archean Australian Shales") composition except for some formations in the Solimões basin72

which have andesitic provenance signature (Roddaz et al., 2005). Rivers draining exclusively the lowlands73

are more diluted and have lower suspended sediment content than Andean rivers (< 100 mg/L). The silicate74

weathering rates of lowland rivers are generally lower than 12 t.km−2.y−1 (Moquet et al., 2011).75

3. The Guyana and Brazilian shields (500-3000 m altitude) lithology corresponds essentially to the76

Precambrian basement formed by intermediate to acid igneous and metamorphic rocks and a few sedimentary77

rock outcrops. Those areas are covered by very thick soils and have very low denudation rates (Stallard and78

Edmond, 1983; Gaillardet et al., 1997). The [SPM] is generally no greater than 20-30 mg/L (Gaillardet et al.,79

1997; Moreira-Turcq et al., 2003; Wittmann et al., 2011). Two types of river water draining the shield terrains80

have been described by Stallard and Edmond (1983) : "clear waters" that drain lateritic (kaolinite-rich) soils81

and have low dissolved organic carbon content (DOC) and "black waters" draining forest areas with podzolic82

soils composed almost exclusively of quartz and having very high DOC content. Silicate weathering rates83

are very low ranging from 1 to 10 t.km−1.y−1 (Gaillardet et al., 1997; Bouchez et al., 2014).84

4. Floodplains correspond to low relief environments adjacent to a stream where sediments and water85

deriving from the high elevation Andes are continuously deposited and exchanged with the main channel86

(Dunne et al., 1998; Bourgoin et al., 2007; Bouchez et al., 2012). As a result, river sediments can have a87
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residence time in the basin much longer than their residence time in soils (Dosseto et al., 2006a,b) and88

therefore be the locus of significant weathering reactions (West et al., 2002; Lupker et al., 2012; Bouchez89

et al., 2012; Frings et al., 2014).90

River discharge and sediment fluxes of Amazon rivers are monitored by the HyBAm (Hydrology of the91

Amazon Basin, http ://www.ore-hybam.org) international program since more than two decade. In addition,92

mid-term and long-term sediment fluxes have been determined using cosmogenic radionuclides (103 year time93

scale) and fission track analyses (106 year time scale) (Safran et al., 2005; Wittmann et al., 2011).94

3. Sampling and analytical methods95

3.1. Sampling and major, trace elements concentration measurements96

Water, suspended sediments and river bed sand samples were collected during several sampling cruises97

between 1989 and 2008. This sample set includes rivers sampled during both low and high water stages. These98

samples have been already characterized for major, trace element and isotope composition (Sr, Nd, U) and99

detailed information about analytical methods are available elsewhere (Gaillardet et al., 1997; Dosseto et al.,100

2006a,b; Bouchez et al., 2011, 2012). Briefly, river water samples were collected in acid-washed polypropylene101

containers and then filtered on site using Teflon filtration units (0.2 µm porosity). Before the analysis,102

the aliquots for cations, trace elements and isotope analyses were acidified with ultrapure HNO3 to pH 2.103

Major anions, cations, silica and Li concentrations were measured by ion chromatography, and trace element104

concentrations by quadrupole ICP-MS. All samples were stored in a cold room at 4◦C.105

3.2. Li isotope measurements106

For the dissolved load, a sample volume of 5 to 100 mL was evaporated in Teflon beakers at a temperature107

of about 90◦C. The residue was then dissolved in 16 N distilled HNO3 and heated at 100◦C during at least108

24 h to oxidise organic matter, and dried down again at 90◦C. For the sediments, the acid digestion method109

used is described in Dellinger et al. (2014) and Li was then separated from the matrix by ion-exchange110

chromatography using a method modified from James and Palmer (2000) and described in Dellinger et al.111

(2014). Purified samples were kept until measurement as solid salts in Teflon beakers in order to avoid112

"ageing" of the solutions through Li adsorption or leaching of organic matter from container walls. Li isotope113

composition was measured using a MC-ICP-MS Neptune (Thermo Scientific, Bremen) at the laboratory114

of Geochemistry and Cosmochemistry at IPG Paris. Details on the analytical procedure are available in115

Dellinger et al. (2014). Accuracy and reproducibility of the isotopic measurements were checked through116

reported analyses of the IRMM-016 international standard solution, SRM rock standards, and seawater.117

Repeated measurements of the basalt reference materials JB-2 yielded δ7Li = +4.47 ± 0.53� (±2σ, n = 30118

separations and 15 digestions) and for BHVO-2, δ7Li = +4.34 ± 0.41� (±2σ, n = 6 digestions). Repeated119

measurements of the seawater NASS-5 reference material yielded δ7Li = +30.91 ± 0.26� (±2σ, n = 7120

separations). Seven samples were duplicated and these duplicates agree within less than 0.60�.121

The Li concentration and isotope composition of Amazon river sediment depth-profiles have been pu-122

blished and discussed elsewhere (Dellinger et al., 2014). In the present study, the existing dataset has been123

extended to include Li concentration and isotope composition of surface SPM samples from small Beni river124

tributaries and shield/lowland rivers. It should be mentioned that for a few rivers, the SPM and waters125

analysed here have not been collected at the same time. When it is the case, it is notified in the main text126

or in the figures.127
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4. Results128

4.1. Major elements in the dissolved load129

Major and trace elements data are given in table (1) and agree (within 30%) with monthly time-series130

reported by Moquet et al. (2011). Major and trace element variability in the Amazon River has been131

extensively discussed elsewhere (Stallard and Edmond, 1981, 1983, 1987; Gaillardet et al., 1997; Elbaz-132

Poulichet et al., 1999; Mortatti and Probst, 2003; Moquet et al., 2011). Briefly, river TDS (Total Dissolved133

Solid) range from 2 to 200 mg/L with the lowest values for the shield rivers and some Andean catchments.134

Solimões tributaries draining outcrops of halite and evaporites have the highest TDS values (Stallard and135

Edmond, 1983; Moquet et al., 2011). Calcium (Ca) and magnesium (Mg) are always the dominant cations136

compared to sodium (Na) and potassium (K) except in some sodium-rich tributaries of the Solimões draining137

saline formations. Magnesium concentration is generally higher in the Madeira River basin (up to 350138

µmol/L) compared to the Solimões River basin (maximum 100 µmol/L). Shield rivers (black and clear139

waters) have very low cation concentration (except for K) compared to other rivers.140

4.2. Lithium concentration and isotope ratios141

Dissolved lithium concentrations ([Li]diss) in the Amazon River basin span two orders of magnitude142

ranging from 0.03 to 1.7 µmol/L, with a mean concentration of 0.32 µmol/L (SD=0.37, n=54) close to the143

worldwide riverine average of 0.27 µmol/L (Gaillardet et al., 2014; Misra and Froelich, 2012) and the original144

estimate of Huh et al. (1998). Our values are in good agreement with data on some Amazon tributaries145

published by Huh et al. (1998). The rivers draining the Amazonian shield and the Lowlands have the lowest146

[Li]diss, between 0.03 and 0.12 µmol/L (Fig. 3). The major tributaries of Solimões and Madeira rivers have147

intermediate Li content between 0.06 and 0.60 µmol/L while the Andean rivers from the Beni River basin148

have the highest Li concentration (0.5 to 1.7 µmol/L).149

The dissolved Li isotope composition (δ7Lidiss) displays a large range of variation from +1.2 to +32.9�150

and is fractionated toward high values compared to source rocks (Fig. 2). The suspended sediments have151

more homogeneous δ7Li values and are slightly enriched in 6Li compared to source rocks (Fig. 2). The range152

of dissolved δ7Li values is comparable to the range defined by other rivers (Li and West, 2014). The δ7Li of153

the Amazon River mainstream at Óbidos ranges between +16.2 and +19.3� depending on the hydrological154

conditions. The maximum difference in δ7Li between two samples of the same river at different times is 9.2�155

for the Negro River and 6.5� for the Madeira River (if we include samples from the study of Huh et al.156

(1998) for both rivers), 4.6� for the Beni River at Rurrenabaque, 3.2� for the Amazon River and less than157

2� for other rivers (Tapajós, Trombetas, Madre de Dios, Mamore and Beni at Riberalta). Therefore, only158

the Negro and Madeira rivers show some seasonality, most likely relating to relative contributions of their159

tributaries. The homogeneity of the dissolved δ7Li in the water column has been checked by measuring 3160

samples collected at different depths at Óbidos, which yields similar results within analytical uncertainty161

(± 0.5 to 1�). Andean rivers have lower δ7Lidiss (+3.8 to +16�) than other mountainous river (Kisakurek162

et al., 2005; Millot et al., 2010c). The δ7Li of the Negro River are the lowest ever measured in running163

surface waters (Li and West, 2014; Wanner et al., 2014). The Mamore River has the highest δ7Lidiss value164

of the sample set measured here (around 31�).165

A bell-shaped relationship is observed between δ7Lidiss and Li concentration (Fig. 3). For rivers having166

[Li]diss lower than 0.20 µmol.L−1, Li concentration is positively correlated with δ7Lidiss values, while for167

rivers having [Li]diss higher than 0.20 µmol.L−1, Li concentration is negatively correlated with δ7Lidiss. A168
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clear regional distribution can be observed with rivers having common geomorphological features also sharing169

similar Li concentration and isotope composition. Rivers having [Li]diss higher than 0.4 µmol.L−1 correspond170

to the Beni River and its tributaries with δ7Lidiss values systematically lower than 16�. Shield and lowland171

rivers have the lowest Li concentration and display δ7Li values from +2 to +16�. Therefore, Andean172

and shield rivers, which are characterized by drastically distinct erosion and weathering conditions, display173

similar ranges of Li isotope composition. Finally, rivers having intermediate [Li]diss (0.06-0.60 µmol.L−1)174

correspond to major tributaries of Solimões and Madeira rivers, which drain both the Andes and the lowland175

areas (Madre de dios, Mamore and Madeira rivers) and to the Amazon River at Óbidos. Compared to rivers176

draining only the Andes or the Amazonian plain, they have a much higher δ7Lidiss, generally higher than177

16�.178

5. Sources and isotope fractionation of Li in the Amazon River and tributaries179

5.1. Partitioning of Li between dissolved and suspended loads180

Following Gaillardet et al. (2014) and Bouchez et al. (2013), the proportion of lithium transported in181

the suspended load (eLi in %) can be calculated by the Eq. (1) :182

eLi =
[SPM]× [Li]sed

[SPM]× [Li]sed + [Li]diss
× 100 (1)

with [SPM] being the concentration of suspended sediments (in g/L), [Li]sed and [Li]diss the Li concen-183

tration in sediments (in ppm) and water (in ppb) from Dellinger et al. (2014) and Tables (1 and 2). Here we184

use the long-term average of sediment fluxes derived from both sediment gauging (Meade et al., 1979; Guyot185

et al., 1996; Wittmann et al., 2011) and comogenic nuclides (Wittmann et al., 2011) when available (values186

are reported in Table S1) rather than the instantaneous sediment flux measured the day of the sampling187

because daily SPM concentration can vary over three orders of magnitude depending on the hydrological188

stage (e.g. Armijos et al., 2013). Between ∼ 40 and 97% of Li is transported in the solid form in the Amazon189

rivers (Fig. 4). For most of the river samples, this proportion is higher than 95%. The lowland rivers, es-190

pecially those draining the shields have the highest proportion of Li transported in the dissolved load, (e.g.191

Tapajós and Trombetas rivers). This difference between lowland and Andean rivers is consistent with the192

results for the Orinoco River (Huh et al., 2001). It should be noted that this calculation does not take into193

account the variability in [Li]sed with depth and especially the decrease of Li concentration in suspended194

sediments toward the bottom of the river due to the dilution with quartz minerals (Dellinger et al., 2014).195

The predominant form of Li transported in the Amazon River basin is thus the solid phase in agreement196

with what was found at the global scale (Misra and Froelich, 2012; Li and West, 2014).197

5.2. Source of dissolved lithium198

In the Amazon basin, potential sources of dissolved Li include rainwater, dissolution of evaporites, car-199

bonates and silicates. As Li is not a nutrient, vegetation is not expected to be a significant sink or source200

of Li. In the following we estimate the proportion of Li deriving from each source and demonstrate that201

dissolved Li in Amazon rivers is mostly sourced from silicate weathering.202
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5.2.1. Atmospheric inputs203

Only few data on Li concentration and isotope composition of rainwater have been reported so far (Pis-204

tiner and Henderson, 2003; Pogge von Strandmann et al., 2006, 2010; Lemarchand et al., 2010; Millot et al.,205

2010a). These studies have shown that Li in rainwater derives from both marine aerosol and silicate mineral206

dust. Following Gaillardet et al. (1997), we assume that dust-derived trace elements in rainwater are sourced207

from the Amazon Basin itself and perform a correction only for marine aerosols using the characteristics of208

modern seawater. The seawater Li/Cl ratio is on average equal to 5.10−5 (Millot et al., 2010c) and its δ7Li209

= +31� (Millot et al., 2007). The concentration of the element X deriving from atmospheric input is :210

[X]rain = [Cl]rain ×
�
X

Cl

�

ocean

(2)

The maximum estimated chlorine concentration deriving from marine inputs ([Cl]rain) has been assumed211

to be 20 µmol.L−1 for large Amazon tributaries (Gaillardet et al., 1997) and 3 to 8 µmol.L−1 for the eastern212

river basins in Bolivia, Peru and Ecuador (Stallard and Edmond, 1981; Moquet et al., 2011). The calculated213

[Li]rain is low, with a maximum estimated contribution of rainwater-derived Li of ∼ 2% for the shield rivers,214

0.5-1% for the main tributaries (Solimões, Madeira and Amazon at Obidos) and less than 0.1% for Andean215

rivers. The dissolved δ7Li is therefore not corrected for atmospheric input because the estimated shift of Li216

isotope composition associated with this marine contribution is less than 0.3� which we consider as a very217

minor.218

5.2.2. Evaporites219

Some rivers have Cl concentrations exceeding [Cl]rain, which suggests that they are influenced by halite220

dissolution. Marine evaporites deposits have been reported (salt domes) essentially in the Ucayali and Ma-221

rañón basins (Huallaga River). Chlorine concentration derived from evaporite dissolution is estimated by222

subtracting [Cl]rain to the river Cl concentration ([Cl]ev = [Cl]diss - [Cl]rain), and the concentration of Li223

derived from halite dissolution is :224

[Li]ev = [Cl]ev ×
�

Li

Na

�

ev

(3)

Assuming congruent dissolution of halite and using a mean Li/Na value of 3 × 10−5 for marine evaporites225

(Reeder et al., 1972; Kloppmann et al., 2001; Imahashi et al., 1993), we calculate a maximum contribution226

of Li deriving from evaporite dissolution of 11% for the Huallaga River and less than 1% for most of the227

other rivers. The contribution of evaporites to the dissolved Li load is thus relatively minor. In the following,228

the concentration of the element X corrected from rainwater and evaporite input is referred to [X]* ([X]* =229

[X]diss - [X]rain - [X]ev).230

5.2.3. Carbonates and silicates231

Several studies on rivers draining mixed lithologies show that the input of Li from the weathering of232

carbonates is generally negligible compared to silicate weathering inputs (Kisakurek et al., 2005; Millot233

et al., 2010c). Following Millot et al. (2010c), we can use the typical Li/Ca molar ratio in carbonates (∼ 1.5234

± 0.5 × 10−5) (Hathorne and James, 2006; Pogge von Strandmann et al., 2013), and by assuming that all235

the dissolved calcium derives from carbonate weathering, estimate the maximum proportion of Li deriving236

from carbonate weathering.237
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[Li]carb = [Ca]∗ ×
�

Li

Ca

�

carb

(4)

Altogether, our calculation shows that more than 95% of the dissolved Li is derived from silicate wea-238

thering, confirming the previous studies on large river basins with mixed lithologies and the negligible input239

of Li from carbonate weathering (Huh et al., 2001; Kisakurek et al., 2005; Millot et al., 2010c). Therefore,240

it is not necessary to correct the δ7Lidiss from non-silicated sources.241

5.3. Lithium isotope fractionation during continental weathering242

The dissolved load of the Amazon rivers is strongly fractionated toward high δ7Li values compared to243

the source rock (Fig. 2). This result is entirely consistent with Dellinger et al. (2014) who showed that the244

δ7Li values of river sands from Amazon rivers cover a range comparable to that of bedrocks while suspended245

sediments are slightly enriched in 6Li. Dissolved load and suspended load appear thus to be complementary246

reservoirs (Fig. 2). As none of the various non-silicates sources (rain, evaporites, carbonates), nor the δ7Li247

variability in the silicate bedrock can account for the range of dissolved δ7Li, we concluded that most of248

the fractionation of Li isotopes is produced by silicate weathering processes and sorting, consistently with249

previous studies on small and large basins (Huh et al., 1998; Pogge von Strandmann et al., 2006; Vigier250

et al., 2009; Millot et al., 2010c).251

5.3.1. Evidence for Li incorporation in secondary minerals252

Both experimental and field-based studies (e.g. Huh et al., 1998; Pistiner and Henderson, 2003; Vigier253

et al., 2008; Verney-Carron et al., 2011) have shown that incorporation or adsorption of Li into secondary254

weathering products (clays and iron hydroxides) is accompanied by large Li isotope fractionation. According255

to Millot et al. (2010c), the Li incorporation into secondary minerals can be revealed by comparing the256

concentration of Li with an element that is much less sensitive to this process (a conservative element) such257

as Na or Mg. Indeed, both Na and Mg are most likely released in solution at the same rate as Li during258

mineral dissolution (Verney-Carron et al., 2011). Yet, unlike Li which has a strong affinity for clay minerals259

and oxyhydroxides, Na and Mg are in most cases not significantly incorporated into secondary weathering260

products (Sawhney, 1972) We note however that significant incorporation or adsorption of Mg can occur261

(depending of the clay mineral phase) as indicated by studies on Mg isotopes (Tipper et al., 2006, 2012;262

Huang et al., 2012; Wimpenny et al., 2014, e.g.,). Another complication for the use of Mg is the influence263

or carbonates. These issue are addressed in the appendix A.264

The δ7Lidiss of Amazon rivers is negatively correlated with the dissolved (Li/Na)∗ and (Li/Mg)∗ (Fig.265

5). The most Li-depleted rivers (relative to Na and Mg) have the highest δ7Li values, and vice-versa. The266

correlation between (Li/Na)∗ and δ7Lidiss is weaker than that with (Li/Mg)∗, with the rivers draining the267

shield being shifted toward lower (Li/Na)∗ values compared to other rivers. These correlations suggest that268

in the Amazon basin, Li isotope fractionation in the dissolved load is linked to Li incorporation in solid269

weathering products. Whether Li in secondary minerals is incorporated into the mineral structure or is270

adsorbed at the mineral surface cannot be further constrained with the present dataset and in the following271

we do not distinguish between these two processes. Following Gislason et al. (1996), Georg et al. (2007) and272

Millot et al. (2010c), the proportion of Li initially dissolved remaining in solution after secondary mineral273

formation (f Lidiss), can be calculated as :274

fLidiss =
(Li/X)diss
(Li/X)0

(5)
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Where X is Na or Mg and (Li/X)0 corresponds to the initially dissolved Li/X ratio before incorporation275

of Li in secondary minerals. A f Lidiss value of 1 means that Li is not re-incorporated in secondary minerals276

after its initial dissolution (congruent dissolution) while a value of 0 indicates that all the lithium initially277

dissolved has been re-incorporated into secondary weathering products. Within the assumption that Li, Na278

and Mg are congruently dissolved from the rock sources, the (Li/X)0 ratio can be calculated by the following279

equation :280

�
Li

X

�

0

=
�

i

�
Li

X

�rock

i

γX
i (6)

Where γX
i are the mixing proportions of the element X of each rock source i contributing to the dissolved281

load and (Li/X)rocki are the (Li/X) ratio of each rock source i. In the Amazon basin, estimation of the (Li/X)0282

values is critical because the range of Li/Na and Li/Mg values in the silicate source rocks and river sands is283

very large and could at least partly explain the scatter of river data (Fig. 5). Shales are Li-rich (60-80 ppm)284

compared to granitic rocks (10-45 ppm) and volcanic rocks (5-20 ppm) (Holland, 1984; Teng et al., 2008;285

Burton and Vigier, 2011). In the next section, we discuss the different methods used to correct for source286

rock variability and calculate the (Li/X)0 ratio for each river.287

5.3.2. Determination of the (Li/X)0 ratio of each river basin288

For the Madeira and Solimões rivers, we use the riverine dissolved strontium isotope composition289

(87Sr/86Sr) to determine the (Li/X)0 of each river. Sr isotope have been extensively used as a source tracer290

in rivers (e.g. Palmer and Edmond, 1992) because (i) Sr is generally conservative in river water and (ii) the291

87Sr/86Sr ratio is "insensitive" to weathering processes (dissolution and precipitation of new mineral phases).292

In the Amazon basin, the silicate source rock comprises both igneous (mostly andesites and granodiorites)293

and sedimentary rocks (Stallard and Edmond, 1983) that have distinct 87Sr/86Sr ratio values (Petford and294

Atherton, 1996; Roddaz et al., 2005; Bryant et al., 2006). The (Sr/Na)∗ and (87Sr/86Sr)∗ ratios of the rivers295

of the Madeira basin can be explained by a mixture between carbonate and shale weathering (Fig. 6), which296

is consistent with the geology of the Madeira Basin composed exclusively of sedimentary rocks. Rivers of297

the Solimões basin plot closer to the igneous rocks - carbonates mixing line, with a variable contribution298

of shale weathering (Fig. 6). This is again in good agreement with the lithology of those basins where both299

sedimentary and igneous rocks are present in the bedrock. Collectively, it shows that the respective input of300

shales and igneous rock weathering to the dissolved load can be estimated using the dissolved 87Sr/86Sr. A301

mixing model between five end-members (atmospheric, evaporite, shale, igneous rocks and carbonate) can302

be solved using an inverse method in order to determine, for each river, the contribution of the different303

sources (Gaillardet et al., 1997). The determination of the compositional range of each end-member, as well304

as the mixing proportion of Na (γNa
i ) are detailed in appendix A.305

Results of the mixing model show that in the Madeira basin, the contribution of igneous rock weathering306

is negligible (except in the Orthon River), consistently with the scarcity of igneous rocks in the Madeira307

watershed. In the Solimões basin, we find that Nasil (i.e. dissolved Na deriving from silicate weathering) is308

mostly sourced from igneous rocks weathering for the Morona, Pastaza and Maranon at Borja (> 70%),309

while essentially derived from shale weathering for others tributaries (> 50 to 80%). Using Eq. (12) with310

the mixing proportions (γNa
i ) and the mean Li/Na ratio of the source rocks, we calculate the (Li/Na)0 for311

each river (see Appendix B).312

For the rivers draining the Brazilian and Guiana shields, the source rock corresponds essentially to shield313
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rocks which have a granodioritic composition similar to Upper Continental Crust (UCC) (Gaillardet et al.,314

1997). Because the 87Sr/86Sr ratio of shield rocks is similar to that of shales, the 87Sr/86Sr cannot be used315

to calculate the respective contribution of granitic and shale rocks weathering and estimate the (Li/X)0 of316

shield rivers. We rather use the trends between δ7Li, (Li/Mg) and (Li/Na) defined by shield rivers in Fig.317

(5) to estimate the (Li/X)0 of shield rivers (see Appendix B).318

5.3.3. Calculation of the fLidiss values and covariation with δ7Li319

With the (Li/X)0 of each river estimated in the previous section, it is possible using Eq. (5) to calculate320

the f Lidiss value for the different rivers (Table 3). For the Madeira and Solimões river basins, the f Li are321

calculated using only Na and not Mg in Eq. (5) because in those basin, a large part of the Mg is derived322

from carbonate weathering. For the rivers draining the Brazilian and Guiana shields, f Lidiss are calculated323

using both Na and Mg because (i) the contribution of carbonate weathering is low (Gaillardet et al., 1997),324

or negligible (Edmond et al., 1995) and (ii) [Na]* concentrations are very dilute and have a larger uncertainty325

than [Mg]diss* (see Appendix B for more details).326

In the Madeira basin, the calculated f Li values range from as low as 0.04 for the Mamore River to 0.69 in327

the Challana River (Table 3). In the Solimões River basin, the f Lidiss values range from 0.06 in the Huallaga328

River to 0.32 in the Ucayali River (Table 3). Finally, in the rivers draining the Amazonian shield, f Lidiss range329

from 0.17 for the Jaciparana River to 0.80 in the Negro River. No systematic variation of f Lidiss with the330

geomorphic and weathering regime is observed. The Beni River tributaries characterized by a "weathering-331

limited" regime (Moquet et al., 2011; Bouchez et al., 2014) display the same range of f Lidiss variation than332

"supply-limited" rivers draining the Amazonian plain and shield areas. These values are high indicating333

little net Li re-incoporation. The main tributaries of the Madeira River basin are characterized by a high334

proportion of Li incorporated into secondary minerals (f Li < 0.20), with the Mamore River having the335

lowest f Lidiss from all rivers studied here. In the Beni River basin, the variability of the f Lidiss values is also336

very large. The rivers draining the Eastern Cordillera with the highest relief (Tipuani, Challana, Mapiri,337

Coroico) have generally lower f Lidiss values than the rivers of the subandean zone (Alto Beni, Chepete and338

Quiquibey) indicating more net Li incorporation in the Andean zones with low relief.339

By combining the mixing proportion of sodium (γNa
i ) and the (Li/Na) ratio of the source rocks, it340

is possible to calculate the proportion of dissolved Li initially released in solution (before incorporation in341

secondary minerals) from the various sources (Table 3). Because shales are enriched in Li compared to igneous342

rocks, we find that in the Solimões River basin, the maximum proportion of Li initially dissolved from igneous343

rocks is only 20% (for the Morona and Pastaza rivers) despite the fact that the majority of the sodium in344

these rivers derives from the weathering of igneous rock. This shows that even in catchments dominantly345

underlain by igneous rocks, most of the lithium derives from the dissolution of silicate sedimentary rocks.346

In the Amazon basin, weathering of silicate sedimentary rocks exerts a significant control on the dissolved347

Li flux.348

Overall, the δ7Lidiss values are well correlated to f Lidiss at the scale of the whole Amazon River basin (Fig.349

7). The rivers that have the lowest proportion of Li incorporated into secondary minerals (f Lidiss > 0.6 for the350

Challana, Tipuani and Negro rivers) also have the lowest Li isotope composition while the highest δ7Lidiss351

values are associated with high proportion of Li incorporated into the solid (f Lidiss < 0.1). This demonstrates352

unambiguously that the first-order control on the δ7Lidiss in the Amazon basin is the proportion of Li353

incorporated in present-day products of silicate weathering. The comparison between Fig. (5) and Fig.354

(7) also emphasises the importance of considering source rock variability to quantify Li incorporation in355
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secondary minerals. An interesting observation is that major tributaries of the Madeira and Solimões rivers356

(green and red squares in Fig. 7) all lie above (higher δ7Lidiss) the trend defined by the Andean, clear and357

black waters in Fig. (7) although their waters are a mixture of waters from these different zones. This, in358

particular, shows that the δ7Lidiss of main tributaries of Madeira and Solimões basins cannot be explained359

only by the mixing of lowland and Andean tributaries. In other words, either the δ7Li is not conservative or360

a Li source is missing (see section 6.3 for further discussion).361

5.4. Modeling the Li isotope fractionation during Li incorporation in secondary minerals362

5.4.1. Dissolved load363

To assess the influence of the weathering regime on the dissolved δ7Li, the trends of the Fig. (7) can364

be modelled using a mass balance model (Johnson et al., 2004; Georg et al., 2007; Bouchez et al., 2013).365

Such a simple approach allows for the determination of field-based fractionation factors associated with366

the incorporation of Li into secondary minerals. Conceptually, we first consider the weathering zone as an367

open flow-through system in which Li is released in a dissolved form by dissolution of primary minerals368

and removed from solution by incorporation into secondary minerals. At steady state, all dissolution and369

precipitation input and output fluxes and isotope composition are balanced, and the Li isotope composition370

can be modelled as (Bouchez et al., 2013) :371

δ7Lidiss = δ7Li0 −∆sec−diss × (1− fLi) (7)

δ7Lisec = ∆sec−diss + δ7Lidiss (8)

Where δ7Li0, δ7Lidiss and δ7Lisec correspond to the Li isotope composition of the initial solution after372

dissolution, the dissolved load and the solid weathering products, respectively. With no fractionation during373

dissolution (Pistiner and Henderson, 2003), the term δ7Li0 corresponds to the mean δ7Lirock of the weathered374

rocks. The term ∆sec−diss is the isotope fractionation factor between secondary products and the dissolved375

load (∆sec−diss = δ7Lisec − δ7Lidiss = 1000 ln(αsec−diss)). The assumptions behind this steady-state model376

are extensively discussed in Bouchez et al. (2013). Large river systems have the advantage to integrate the377

spatial variability in isotope signatures and processes, and to "smooth" the temporal variability, such that378

the assumption of steady-state is most valid at this scale For the sake of simplicity in the following we refer379

to this mass balance model as the "batch" system although it should be emphasized that the mass transfer380

underlying this model is different from that of a true batch model.381

Another fractionation model is the Rayleigh distillation model, where secondary products do not re-382

dissolve. In this model, the isotope composition of the dissolved load can evolve toward higher Li isotope383

composition than in the batch model.384

δ7Lidiss = δ7Li0 +∆sec−diss × ln(fLi) (9)

The exceptionally large range of f Lidiss values in the Amazon rivers allows us to discriminate between385

these two models. At first order, both models are able to explain the variability in δ7Lidiss of Amazon basin386

rivers (Fig. 7). However, the data are better explained by two separate trends : (i) a "batch" fractionation387

curve for the Beni Andean rivers, lowlands rivers and shield tributaries and (ii) a Rayleigh distillation curve388

for the main tributaries of Madeira and Solimões basins. This difference of fractionation behaviours have389
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also been reported for the silicon isotopes in Iceland (Georg et al., 2007) and in the Amazon (Hughes et al.,390

2013).391

For the first set of rivers, the linear trend (Fig. 7) shows that as a whole, each river basin can be392

reasonably described as a single “batch” reactor (Eq. 7) with its own characteristic f Lidiss value. Therefore,393

the variability in δ7Lidiss across these rivers stems from a similar process (same αsec−diss) and type of mass394

exchange between compartments (“batch" model), but characterised by a different extent of reaction (f Lidiss).395

A linear trend as observed in Fig. (7) does not result from a mixture between end members (such mixing396

trend would be an hyperbola).397

The slope of the correlation (Fig. 7) yields a fractionation factor between dissolved and secondary pro-398

ducts αsec−diss = 0.983 ± 0.002 (n = 22, r2 = 0.86), or ∆sec−diss = -17�. This fractionation factor value399

is in very good agreement with experimental data (precipitation of smectite and basalt alteration phases at400

various temperatures) (Vigier et al., 2008; Millot et al., 2010b) and the global Li isotope fractionation trend401

compiled by Li and West (2014). We also note that a single fractionation factor is needed to explain the data402

of Andean, lowlands and shield rivers. This means that the fractionation factor is independent of the type of403

the secondary minerals phases as lowland and shield rivers transport high amounts of kaolinite and smectite404

whereas the Andean rivers sediments clay-sized are mostly composed by an illite-chlorite clay assemblage405

(Guyot et al., 2007). This observation is in good agreement with recent experimental data (Vigier et al.,406

2011).407

The second set of rivers define a specific Rayleigh trend with a fractionation factor αsec−dis of 0.991 ±408

0.002. The two different isotope fractionation factors suggest that different processes generate Li isotope409

fractionation in the Andes/shield and along the course of the Madeira River. Furthermore, the fact that the410

data along the Madeira and Solimões large tributaries are better fitted by a different mass balance model411

would suggest that the way water and sediments interact is different there from the rest of the basin (see412

section 6.3). However, unlike the rivers fitting the batch fractionation model, the Solimões and Madeira main413

tributaries Li isotope composition and f Lidiss variability could also be explained by a mixing trend between414

two end members (for example, between two end members having signature of the Mamore and Beni rivers).415

This issue is addressed in the section 6.3 of this paper.416

5.4.2. Suspended load417

The δ7Li of the suspended load can be used to test the batch fractionation model previously defined.418

For simplicity, we focus only on rivers fitting the batch fractionation model. Using the fractionation factor419

(αsec−diss) previously determined from the dissolved load, we can predict the δ7Li of the modern-day wea-420

thering products (clays and oxides) using Eq. (8) and compare them to the δ7Li measured in the suspended421

loads (Fig. 8). For a given fractionation factor, Eq. (8) predicts that δ7Lisec − δ7Lirock is linearly related to422

f Li. In this study and for most of the rivers, only surface sediments have been sampled and thus are plotted423

in Fig (8) although a large variability of sediment Li concentration and isotope composition with depth has424

been reported (Dellinger et al., 2014).425

Two different trends can be identified in Fig. (8). The first one corresponds to the lowland and shield426

rivers (except for the Rio Negro). In these rivers, the δ7Li of surface sediments plot within uncertainty on427

the predicted isotope composition of modern weathering products and are therefore in good agreement with428

the fractionation factor (αsec−diss) and f Lidiss values deduced from the study of the dissolved load. This is429

consistent with a supply-limited weathering regime where SPM is formed of secondary weathering products430

because primary minerals are completely weathered before being transported away from the weathering zone431
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(West et al., 2005). For Andean rivers, surface sediment δ7Li is systematically higher than the expected value432

for secondary minerals. Two hypotheses can explain this discrepancy (i) the batch fractionation model does433

not satisfactorily explain those data or (ii) the suspended sediments of Andean rivers is not composed only434

by the complementary phase of the dissolved load but also contains an unweathered rock component having435

Li isotope composition similar to that of shales. This conclusion is in perfect agreement with Dellinger et al.436

(2014) that showed that in the Andean rivers, the proportion of unweathered bedrock fragments in the437

suspended load of these rivers can reach 70 %.438

Finally, although it could be expected that the Rio Negro transports only secondary weathering products,439

its sediment δ7Li is different from δ7Lisec predicted by Eq. (8). The Negro River is characterized by very440

high f Lidiss values, indicating that the proportion of Li incorporated into secondary minerals is rather small441

compared to other rivers. Therefore even very small amounts of unweathered sediments transported by the442

Rio Negro could significantly increase the δ7Li of its sediments. This result would be in good agreement443

with mineralogical data showing that the Rio Negro suspended load contains only 10 to 20% clay minerals,444

with the remaining being quartz minerals and organic colloids (Brinkmann, 1986). However, we cannot445

exclude that the high δ7Lised of the Rio Negro is influenced by atmospheric dusts having higher Li isotope446

composition than secondary clays.447

6. What controls the incorporation of Li in secondary phases and the dissolved Li isotope448

composition ?449

As shown above, δ7Lidiss is controlled by the proportion of Li incorporated into secondary minerals. In450

this section we discuss the parameters which control the proportion of Li incorporated in secondary minerals,451

and thereby river dissolved δ7Li.452

6.1. Control by denudation rate and residence time in the weathering zone453

We focus in this section only on the rivers fitting the "batch" fractionation model in Fig. (9.a), i.e.454

lowland and Andean rivers. Other rivers (main tributaries of the Madeira and Solimoes rivers) will be455

discussed separately in the section 6.3. Fluid flow (e.g. Maher and Chamberlain, 2014; Wanner et al., 2014)456

and mineral residence time (Ferrier and Kirchner, 2008; Bouchez et al., 2013) are two main controls on the457

transfer of elements during weathering. We explore here the links between δ7Lidiss, the dissolved flux of Li458

and the denudation rate, as proposed by Bouchez et al. (2013). The total denudation rate (D) used here459

corresponds to the sum of the silicate chemical weathering rate (as defined by Bouchez and Gaillardet, 2014)460

and physical denudation rate. Total denudation rates are based on either long-term sediment and solute data461

(Guyot et al., 1996; Laraque et al., 2009; Filizola and Guyot, 2009; Mortatti and Probst, 2003; Moquet et al.,462

2011) or from cosmogenic nuclide concentrations in river sands (Safran et al., 2005; Wittmann et al., 2009,463

2011).464

At first order, the dissolved Li flux of the different river basins is positively correlated (r2 = 0.84) to465

both sediment gauging and cosmogenic-nuclide derived denudation rates (Fig. 9.c), while showing only a466

weak correlation to the silicate weathering rate (r2 = 0.37) and no global correlation with runoff. Rivers467

having the highest denudation rates (Beni rivers) have the highest Li fluxes while the shield rivers have the468

lowest dissolved Li flux. This correlation reflects the first-order control on the dissolved Li flux by denudation469

and show that mineral residence time rather that fluid residence time controls the dissolved Li flux in the470

Amazon basin.471

13



In the Andes, high denudation rates prevail, which lead to short residence times of solid in soils and rivers.472

Under these conditions, weathering regime is said to be "weathering-limited". The δ7Li of rivers draining the473

Bolivian Andes defines a negative correlation with cosmogenic nuclide-derived denudation rates, on which474

also fit the lowland "clear water" rivers (Fig. 9.a). On one hand, the Challana River, which has the lowest475

δ7Li among Andean rivers, also has the highest cosmogenic denudation rate. At the other end, the Tapajós476

and Orthon rivers have very low denudation rates and high δ7Li value. A similar correlation has also been477

recently observed by Pogge von Strandmann and Henderson (2015) for rivers in New Zealand. As suggested478

by Bouchez et al. (2013) on the basis of the model of Ferrier and Kirchner (2008), this correlation can be479

attributed to the kinetic limitation (resulting from high erosion rates) on secondary products precipitation.480

Very high erosion rates limit the formation of soils and the precipitation of clay minerals (high f Lidiss, Fig.481

9.b) as the residence time of solids at the Earth surface is too short (Bouchez et al., 2013). If the kinetics of482

clay mineral precipitation is too slow compared to the rate of sediment export within the basin, only small483

amounts of Li will be incorporated into secondary minerals (Fig. 9.B). As a result, weathering will appear484

to be congruent with δ7Lidiss ≈ δ7Lirock. At lower denudation rates (< 100 t.km−2.y−1), particle residence485

time becomes longer and mineral precipitation take place, leading to higher f Lidiss and hence Li isotope486

fractionation with δ7Lidiss > δ7Lirock. It is worth noting that the correlation between δ7Li and the sediment487

gauging derived denudation rate is less significant than the cosmogenic nuclide derived denudation rate,488

although the rivers having the highest "sediment gauging derived" denudation rates (except the Alto Beni489

river) have generally lower δ7Li than lowland "clear waters". This could indicate that the Li isotopes reflect490

processes occurring on the millennium time scale (corresponding to the cosmogenic-derived denudation rate)491

rather than on the decadal time scale. In this regard, the fact that the Alto Beni river does not plot on the492

correlation defined by other rivers might be due to the recent mobilization of Plio-Quaternary sediments493

(Dosseto et al., 2006b) resulting in much higher short-term denudation rates than the long-term average.494

At very low denudation rate, some rivers (Trombetas and Rio Negro rivers) also have very low δ7Li495

values (Fig. 9.a). Indeed, at these low denudation rates, clays reside in the weathering zone for a very long496

time (Mathieu et al., 1995; Dosseto et al., 2006a) and may be re-dissolved which hence results in "congruent497

weathering" conditions (Misra and Froelich, 2012; Froelich and Misra, 2014; Ryu et al., 2014) in a way that498

there is no export of isotopically fractionated Li in the solid load (Bouchez et al., 2013). The variability of499

the δ7Li values of these rivers is explored in the next section. In summary, for rivers fitting the "batch"500

fractionation model, both very high and very low denudation rates produce congruent weathering and similar501

Li isotope composition.502

6.2. Supply-limited weathering regime in the lowlands503

Lowland areas are characterized by a "supply-limited" or ("transport-limited") weathering regime (Stal-504

lard and Edmond, 1983), with some river waters having low pH and high dissolved Al, Fe and organic matter505

concentrations. In such environments, organic acids enhance dissolution rates and weathering intensity of506

silicates (Viers et al., 1997, 2000). The DOC (Dissolved Organic Carbon) concentrations were not measured507

on those samples so we use the dissolved Al concentration as a proxy for the DOC concentrations. Indeed,508

in those rivers, the dissolved Al content and pH are controlled by the amount of dissolved organic matter509

(Viers et al., 1997; Deberdt et al., 2002). The dissolved δ7Li of shield rivers is well correlated to both the510

dissolved Al/Li ratio and pH (Fig. 10). The most Al-depleted rivers correspond to the "clear water" rivers511

and have relatively high δ7Li compositions while the most Al-rich rivers have low pH values and δ7Li, and512

correspond to the "black water" rivers like the Negro River.513
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The "clear water" rivers (e.g. Tapajós River) contain lower levels of dissolved organic carbon and drain514

lateritic soils, rich in kaolinite and iron-oxides, and developed on the shield and tertiary sediments (Stallard515

and Edmond, 1983; Fritsch et al., 2011). In such environments, the formation of kaolinite during present-day516

dissolution-precipitation processes results in a limited loss of Al and Fe compared to Si (Fritsch et al., 2011).517

We suggest, similarly to the study of Ryu et al. (2014) that Li is also retained in the solid residue, and that518

this process drives the δ7Lidiss toward heavy values as a result of isotope fractionation during the formation519

of kaolinite and iron oxide. On the opposite, the "black waters" such as the Negro River are associated with520

acidic and reducing waterlogged podzolic soils where dissolution of iron oxides and clay minerals predominate521

compared to precipitation reactions (Fritsch et al., 2011). Those soils are clay-depleted and dominated by522

coarse quartz minerals (Brinkmann, 1986; Do Nascimento et al., 2004), where water is well-drained. This523

results in a net export of aluminium and iron to the river waters through the formation of organo-metallic524

complexes (Allard et al., 2011; Fritsch et al., 2011). As a result we suggest that in these areas, there is the525

net dissolution of 7Li-depleted secondary minerals (near the surface of the weathering profile) along with526

the net formation of secondary minerals (at depth). If both reactions occur at the same rate (i.e. steady-527

state), rock-like dissolved δ7Li are obtained in water draining the profile. Podzolisation in the Amazon528

basin occurs in flat and swampy areas where organic matter accumulate. There is thus an indirect control529

between topography and Li isotope composition in the plains of the Amazon basin. Such interpretation is530

in good agreement with the conclusions of Hughes et al. (2013) on the Si isotope composition of the Rio531

Negro. Furthermore, the correlation of the δ7Li with dissolved Al content is very similar to that described532

by Cardinal et al. (2010) for silicon isotopes in the Congo River basin and is interpreted in the same manner.533

To summarize, the lowlands are characterized by two distinct weathering regimes, as proposed by Bouchez534

et al. (2013) for low denudation rates setting : (i) lateritisation processes resulting in a high proportion of Li535

incorporated in secondary minerals ; (ii) podzolisation, where clay minerals previously formed are dissolved536

by organic matter, equivalent to congruent weathering of the silicate crust and leading to rock-like δ7Li537

values. The difference between these two types of weathering regimes is probably related to large contrasts538

in runoff and topographic features. Other examples of congruent weathering with no fractionation in the539

dissolved load compared to the bedrock have been reported in some other extreme weathering environments540

(Cardinal et al., 2010; Ryu et al., 2014). Supply-limited weathering regimes can produce a large range of541

δ7Li values depending of the proportion of Li incorporated in secondary products and therefore do not542

necessarily result in congruent weathering and low dissolved δ7Li as proposed by Huh et al. (2001) and543

Misra and Froelich (2012).544

6.3. The role of floodplains in setting large rivers δ7Li545

The large tributaries, that are not well described by a "batch" fractionation model in Fig. (7), do not plot546

on the correlation between denudation rates and δ7Li. Therefore their isotope composition is not controlled547

only by the mineral residence time in the soil weathering zone and another mechanism must be considered.548

These main tributaries of the Madeira and Solimões (draining both the Andes and the lowlands areas) at549

lowland locations have the highest δ7Li signatures with a proportion of Li incorporated in secondary minerals550

of more than 80-90%. The δ7Li of the Beni river increases from 8-12� at the outlet of the Andes to 16� at551

the lowland location. This is unexpected because (i) the contribution of dissolved matter from the lowland552

is small compared to that from the Andes (Gaillardet et al., 1997; Moquet et al., 2011) and (ii) the pure553

lowland rivers from the Madeira basin have lower δ7Li values (11.5 to 15.5�) than the Beni sampled in554

the lowland. Accordingly, the main tributaries of Madeira and Solimões basins either follow (a) a Rayleigh555
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mass-balance with a fractionation factor of -9�, or (b) plot on a mixing trend between an end member556

having a high f Lidiss and a low δ7Li and another end member having a low f Lidiss and a high δ7Li (Section557

5.4.1). These two observations are consistent, with respectively either (a) a process of Li removal associated558

with isotope fractionation during transfer through the floodplains or (b) an addition of high dissolved δ7Li559

source from floodplains areas in the main tributaries. Such influence of floodplains on the dissolved δ7Li has560

also been proposed by Pogge von Strandmann and Henderson (2015) to explain the high δ7Li of eastern561

rivers from New Zealand.562

These two hypotheses can be tested by comparing the net dissolved lithium fluxes transported by the563

river systems upstream and downstream the floodplain reaches. Such comparison is difficult because only564

the Andean dissolved Li flux for the Beni river basin is known. However, a first-order estimate of the Andean565

dissolved Li flux can be determined for each river by multiplying the Li/Na ratio by the dissolved Na flux566

both derived from the Andes. For this we assume that the f Lidiss value of Andean rivers is the same as567

for the Beni River upstream the floodplain, ranging between 0.2 and 0.4, and we use the mean annual568

dissolved Na flux deriving from the weathering of silicate rocks from the study of Moquet et al. (2011). This569

calculation shows that for the main tributaries there is no increase of the net Li flux downstream but rather570

a decrease, especially for the Mamoré and Huallaga rivers. These two rivers have the highest dissolved Li571

isotope composition at their mouth.572

Another approach is to use the correlation between the denudation rate and the dissolved Li flux (Fig.573

9c). At first order, the dissolved Li flux is related to the denudation rate as described in the section 6.1.574

However, as lowland reaches have low denudation rate, if there is an additional process of supply or removal575

of dissolved Li in the floodplain, the dissolved Li flux of the main tributaries should be offset (as observed for576

the Mamore and Huallaga River) compared to the global trend defined by the lowland and Andean rivers.577

Interestingly, on this figure, the Mamore and Huallaga rivers (that have the highest δ7Li) are slightly offset578

compared to the global correlation. Using the equation of the correlation of the Fig. (9c), it is possible to579

calculate the theoretical dissolved Li flux of the main tributaries and compare it with the actual measured580

flux as shown on the Fig. (11). On this figure, addition of high δ7Li lithium in the floodplain should result581

in a positive correlation. On the contrary, removal of dissolved Li should produce a negative correlation. We582

observe that all the main tributaries, except the Ucayali river, plot on the negative trend showing that the583

Amazon floodplain seems to act as a net sink of dissolved Li. This suggest a process-related fractionation584

of Li isotope rather than mixing with additional source of Li, to explain the very high δ7Li values. This585

conclusion is consistent with the observation of dissolved silicon removal inferred from changes in Si isotope586

fractionation in the seasonal floodplains of the Okavango Delta (Frings et al., 2014).587

The exact mechanism responsible for Li uptake in the floodplains can only be speculated at this stage588

but some hypotheses can be discussed. Downstream from the Andes-lowland transition, river sediments and589

waters from the main channel are temporally stored in alluvial plains (Guyot et al., 1996; Bouchez et al.,590

2012). In these environments, water and sediments interact and authigenic secondary minerals might form591

(Frings et al., 2014) and incorporate part of the dissolved Li. Floodplain lakes and groundwater systems592

isolated from the main channel during a sufficiently long period of time become closed systems, in which593

Li could evolve along a Rayleigh fractionation path if a significant amount of Li is incorporated into clay594

minerals or oxides. Water from floodplain lakes and groundwater returning to the main channel during annual595

high water stage would then contribute to the increase in δ7Li-signature of the river. Reactive-transport596

modelling have shown that subsurface residence time of water (Wanner et al., 2014) and small changes in597

aquifer conditions (Pogge von Strandmann et al., 2014) can strongly influence the Li isotope composition598
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of groundwater systems. Although there is no clear correlation between runoff and Li isotope fractionation599

in the Amazon floodplains, it is interesting to note that the Mamore River (having the highest δ7Li value)600

is characterized by the lowest runoff and higher weathering intensity among the main tributaries. This may601

indicate increasing fractionation along the course of the river, as the contact time between the water and602

the sediment increases as proposed by Wanner et al. (2014), but validation of this hypothesis would require603

further investigation of the links between fluid travel time and the evolution of the δ7Li in the floodplain.604

Altogether, this shows that Li does not behave conservatively in rivers draining both mountain ranges and605

floodplains. We estimate that for these rivers, 75 to 90% of the Li removal in secondary minerals takes place606

in the weathering zone uplands and 10 to 25% in the floodplains. For the Mamore and Huallaga Rivers, up607

to 90% of the dissolved lithium entering the floodplain reaches is removed in solid weathering products in608

the floodplain (Fig. 11). Therefore, the dissolved flux of Li is significantly reduced by incorporation of Li609

into secondary products when water travels through in the floodplains.610

6.4. Relation between δ7Li and weathering intensity611

In the Amazon basin, "white", "clear" and "black" waters corresponding to very different weathering612

regime have distinct Li isotope signatures. The Solimões, Madeira and Amazon rivers correspond to the613

mixture of these 3 types of waters. Thus, we can calculate that the δ7Li of the Amazon River at its mouth614

results from the mixture of 76% of Li deriving from the Andes/floodplains (white waters), 15% from the615

laterite-lowlands (clear waters) and 9% from the podzol (black waters). About 60% of the dissolved Li616

derived from the Andes is removed from the dissolved load in floodplains.617

We found no clear relationship between δ7Lidiss, dissolved Li fluxes and silicate weathering rates or runoff.618

Rather, the control imposed by denudation rates, floodplain processes and residence time in the weathering619

zone observed at the scale of the whole Amazon River basin results in an equivocal bell-curved relationship620

(Fig. 12) between dissolved δ7Li and the weathering intensity. The latter is defined here as W/D (Bouchez621

et al., 2014), the ratio between the chemical silicate weathering rates W (as defined by Bouchez and Gaillardet622

(2014)) and the total denudation rates D. It corresponds to the fraction of material dissolved from a given623

mass of rock and is similar to the "CDF" (Chemical Depletion Factor, i.e. Riebe et al., 2001), the "CIA"624

(Chemical Index of Alteration, i.e. Nesbitt and Young, 1982) or element-specific weathering indexes (i.e.625

Gaillardet et al., 1997). In the Amazon basin, high weathering intensity (W/D > 0.1) which characterize626

supply-limited weathering regimes produce low values of δ7Li (1-15�) and dissolved Li fluxes (Fig. 9).627

Weathering-limited regimes in the Andes having very low weathering intensity (W/D < 0.01) have also628

relatively low δ7Li similar to supply-limited settings (Fig. 12) but much higher dissolved Li fluxes (Fig. 9).629

Therefore, both high and low weathering intensity produce low δ7Li values, but at very different Li fluxes.630

Finally, main tributaries which integrate both highland and lowland area have intermediate weathering631

intensities (W/D = 0.01-0.10) with high δ7Li values (14-32�) due to secondary processes occurring in the632

floodplains.633

Other river systems for which the δ7Lidiss, along with a reliable estimate of both δ7Lirock and time-634

integrated W/D data are available (see table S2), also plot on the same bell-curved relationship as the635

Amazon rivers (Fig. 12). In this regard, apparent contradictory interpretations from past studies (Huh636

et al., 2001; Vigier et al., 2009; Pogge von Strandmann et al., 2010; Misra and Froelich, 2012; Pogge von637

Strandmann and Henderson, 2015) can be reconciled by this non-linear relationship between δ7Lidiss and638

the weathering intensity. Indeed, rivers from Iceland studied by Vigier et al. (2009) have low W/D and plot639

on the positive trend between δ7Lidiss and W/D whereas rivers from the Orinoco River from Huh et al.640
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(2001) have intermediate to high W/D (Edmond et al., 1995, 1996), and therefore plot on the negative trend641

between δ7Lidiss and W/D. We note that Andean rivers from the study of Huh et al. (2001) have been642

sampled downstream the floodplain, which may explains their very high δ7Lidiss value.643

Altogether, these relationships between δ7Li, dissolved Li flux, weathering intensity and denudation can644

be used to constrain paleo weathering and erosion conditions from past Li isotope composition records645

(Hathorne and James, 2006; Misra and Froelich, 2012; Pogge von Strandmann et al., 2013).646

7. Conclusions and global implications647

The Li isotope composition of the Amazon River dissolved load displays a large range of variation from648

+1� to +32�, in relation with the geomorphic regime. We show that the partitioning of Li between the649

dissolved load and solid weathering products (f Lidiss values) governs the Li isotope composition of the dissolved650

load. Congruent release of Li results in rock-like δ7Li values, while extensive Li incorporation (and associated651

Li isotope fractionation) in secondary weathering products drives dissolved Li isotope composition toward652

higher values. We calculate a single isotope fractionation factor αsec−dis associated with secondary mineral653

precipitation in soils of 0.983 ± 0.002. This isotope fractionation factor value does not depend on the type654

of secondary minerals formed and is in good agreement with the values from the experimental studies of655

Vigier et al. (2008) and Millot et al. (2010b).656

These conclusions are consistent with previous interpretation of the Li isotope composition in rivers and657

sedimentary archives (Misra and Froelich, 2012; Bouchez et al., 2013; Li and West, 2014). However, although658

a seawater record of Li isotope composition can be interpreted in a relatively straightforward way in terms659

of Li mass balance, we show how its translation in terms of (present or past) weathering regime is equivocal :660

– First, in the Amazon Basin, lowland rivers characterized by "supply-" or "transport-limited" regimes661

do not necessarily show congruent Li release, and hence display a large range of dissolved δ7Li values662

(from +1.2 to +16� ). Relatedly, rock-like δ7Li values are observed at both ends of the weathering663

regime spectrum, i.e. in lowland settings (e.g. Negro River) and in high mountain belts (e.g. Beni664

headwaters). This is because these radically different weathering regimes can lead to similar Li mass665

balance ("congruent weathering") from the perspective of the dissolved load. Therefore, low δ7Li values666

in sedimentary archives (as observed for the early Cenozoic ; Misra and Froelich, 2012) can in principle667

be interpreted as reflecting the predominance of supply-limited regimes or of high-erosion settings.668

In such cases, additional constraints (e.g. geological arguments or other stable isotope systems with669

different sensitivity along the spectrum of weathering regimes) are needed to distinguish between670

these two interpretations. We propose here that the dissolved Li flux can also serve for a better671

reconstruction of past denudation rates (Li and West, 2014) as high Li dissolved fluxes correspond672

only to high denudation rates.673

– Second, dissolved δ7Li signatures at the outlet of large rivers are influenced by lowland processes that674

differ drastically from those prevailing on hillslopes of eroding upland areas. Dissolved Li released by675

weathering reactions in high-erosion settings is significantly retained in floodplains through interaction676

with solid particles, resulting in Li isotope fractionation. As this process (1) traps a large fraction of677

the river dissolved Li flux and (2) obeys a Rayleigh mass balance model with a fractionation factor678

αsec−dis of 0.991, it can drive the residual dissolved δ7Li toward extremely high values. Therefore, Li679

isotope composition of large rivers at their mouth, and hence past variations in the ocean δ7Li, are680

not simply the conservative mixture of the various tributaries but might well also reflect variations681
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in the global extent and style of weathering processes affecting Li in river floodplains. The relative682

influence of hillslope and floodplain processes on the global riverine dissolved δ7Li and weathering683

rates in general remains to be quantified, for both present-day conditions and past variations.684

Appendix A : the inversion mixing model between rain, evaporites, carbonates, shales and685

igneous rocks686

The inverse mixing model used here is similar to one by Gaillardet et al. (1997) applied to the Amazon687

Basin. The main difference is that in the Madeira and Solimões tributaries, we consider two silicate end-688

members (igneous rocks and shales) instead of one as in Gaillardet et al. (1997). For each dissolved species689

(X) of a river, the following mixing equations are :690
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with X = Sr, Ca, Mg, HCO3 ; i = rain, evaporite, shale, igneous rock and carbonate and γNa
i is the691

proportion of dissolved sodium deriving from the end-member i. For example, (Sr/Na)sha is the Sr/Na ratio692

of water interacting only with shale lithology. The mixing model is solved by an inverse method similar693

to the one used by Gaillardet et al. (1997). This inverse method requires defining "a priori" values for all694

parameters and yields "a posteriori" values as a best fit between the model and parameters.695

For the rain, carbonate and evaporite end-member, we use the same Na-normalized ratios as Gaillardet696

et al. (1997) except for (Sr/Na)ev. Indeed, we note that the Huallaga River, which chemistry is dominated697

by evaporite input (Cl/Na = 1) has a Sr/Na ratio of 1 × 10−3, lower that the Sr/Na of the evaporite698

end-member of 3 × 10−3 reported by Gaillardet et al. (1997) and based on salt springs from Stallard and699

Edmond (1983). Therefore, here we use an intermediate mean (Sr/Na)ev value of 2 ± 1 × 10−3 to correct700

for Sr deriving from evaporite dissolution.701

The shale weathering end-member can be constrained using the chemical composition of the Challana702

and Chepete rivers, which only drain shales. We estimate the respective values for the shale end-member703

from the chemical composition of these two rivers, corrected from atmospheric inputs : (Ca/Na)sha = 0.4 ±704

0.2, (Mg/Na)sha = 0.5 ± 0.3, (HCO3/Na)sha = 1.5 ± 1.0, (Sr/Na)sha = 1.5 ± 0.5, (87Sr/86Sr)sha = 0.732 ±705

0.005. The error bar reflects our knowledge of the parameters.706

The igneous rocks in the Solimões basin are andesites in the north (Napo, Pastaza and Morona rivers) and707

both andesites and granodiorites in the south (Maronon, Huallaga and Ucayali). The 87Sr/86Sr of andesites708

in Ecuador display a very narrow range of values with a mean value of 0.7042 ± 0.0003 (Bryant et al., 2006).709

Similarly, the 87Sr/86Sr of Andean granodiorites (in the Solimões river Basin) has a narrow range of value710

of 0.7050 ± 0.0005 (Petford and Atherton, 1996). Therefore, we can estimate that the Sr isotope ratio of711

the igneous rock weathering end-member is (87Sr/86Sr)ign = 0.7050 ± 0.0005. Our dataset does not include712

any river draining only igneous rocks, but the chemical composition of this end-member can be constrained713

of the Coca River (Santos et al., 2014), which drains predominantly igneous rocks. Its 87Sr/86Sr is as low714

as 0.7055 (Santos et al., 2014), lower than any other published data from the Solimões basin (including our715

dataset) and very close to the value of the (87Sr/86Sr)ign end-member. According to Moquet et al. (2011) the716

contribution of evaporites and carbonate weathering to the Coca River is low but not negligible. Using the717
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results of Moquet et al. (2011), we can correct the data for the Coca river (Santos et al., 2014) from carbonate718

and evaporite inputs to estimate the composition of the pure igneous rock end-member : (Ca/Na)ign = 0.8719

± 0.3, (Mg/Na)ign = 0.3 ± 0.2, (HCO3/Na)ign = 3.7 ± 0.7 and (Sr/Na)ign = 4.8 ± 0.6.720

Appendix B : determination of the (Li/X)0 and f Li
diss values721

The fraction of Li left in solution after secondary solids formation can be calculated using Eq. (5). With722

the example of sodium, the (Li/Na)0 can be calculated by the following Equation (12) :723
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Where γNa
i are the mixing proportions of each source i calculated by the equations (10) and (11) and724

(Li/Na)rocki the ratio (Li/Na) of the rock source i.725

Na and Mg can both be used as conservative tracers, each of them presenting advantages and caveats.726

In some contexts Mg can be incorporated significantly in secondary minerals like smectite. In addition, part727

of the dissolved Mg derives from carbonate weathering (Gaillardet et al., 1997; Moquet et al., 2011) or in728

the case of some Solimões catchments from the weathering of gypsum (Moquet et al., 2011). Therefore,729

an additional correction is needed to obtain silicate-derived Mg whereas Na* can be directly used as Nasil.730

However, Li and Mg are contained in the same primary minerals phases because they have a similar ionic731

radius, and hence are most likely released stochiometrically into solution (Huh et al., 1998). Moreover, Mg732

concentrations are weakly influenced by rainwater and evaporite contribution compared to sodium. This can733

be critical in the case of very dilute waters like in rivers draining Amazonian shield where cyclic sodium734

correction results in large uncertainties in the determination of Na* (Gaillardet et al., 1997). In this study,735

we use Li/Na ratios for Anean rivers and both Li/Na and Li/Mg ratios for shield rivers.736

Estimation of the (Li/Na)0 ratio in the Madeira and Solimões river basins737

In the Madeira river basin, the lithology is uniform and corresponds almost exclusively to Paleozoic (in738

the Andes) and Tertiary (in the lowlands) sedimentary rocks having a shale-type composition (Stallard and739

Edmond, 1983; Roddaz et al., 2005). The largest database of Li concentrations in shales is from Ronov et al.740

(1970). According to Holland (1984) and based on the database of Ronov et al. (1970), the mean Li and741

sodium ([Na2O]) concentrations of the shales of the Russian Platform are respectively 80 ppm and 0.081% (N742

∼ 500) so the mean molar Li/Na ratio is 0.040 ± 0.05. This value is similar to the mean chemical composition743

of the Beni river bed sands (Li/Na = 0.041, n = 3), that integrate the bedrock variability at the scale of the744

Beni watershed (Dellinger et al., 2014). In the Solimões river basin, igneous rocks contributes significantly745

to the weathering budget. For the igneous rock end-member, the andesite median Li/Na compiled from the746

Georoc database (http ://georoc.mpch-mainz.gwdg.de/georoc/ ; Sarbas and Nohl, 2008) is 0.0014 ± 0.0003747

(2σ/
√
N , N = 1600), and the granodiorite median Li/Na is 0.0049 ± 0.0013 (2σ/

√
N , N = 60). Therefore748

we use an intermediate value of 0.0030 ± 0.0015 for the igneous rock end-member.749

Estimation of the (Li/Na)0 and (Li/Mg)0 ratio in the shield river basins750

According to Gaillardet et al. (1997), weathering of Brazilian and Guiana shields operate at steady state751

over a bedrock having a mean chemical composition similar to UCC (Taylor and McLennan, 1985) which752

has typically the composition of a granodiorite. We can use the correlations defined by the rivers draining753
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the shield rocks in the Fig. (5) to infer the (Li/Na)0, (Li/Mg)0 and δ7Li of shield rivers source rocks. The754

best correlation is obtained for the Li/Mg ratio, uncorrected for carbonate input despite evidence from the755

inversion of river chemistry that carbonates are contributing to the dissolved load (Gaillardet et al., 1997).756

However, more recent studies stated that the Mg/Na variability of rivers draining shield rock in tropical area757

is inherited from bedrock variability rather than due to mixing with Mg deriving from limestone weathering758

(Viers et al., 2000; Gurumurthy et al., 2012). Therefore, here we consider that all the Mg derives from silicate759

weathering. In the Fig. (5), the intercept between the river trend and the mixing trend between granodiorites760

and shales should give the mean composition of the source rocks. We calculate an intercept source rock δ7Li761

value of +1 ± 1�, and a Li/Mg and Li/Na values of 0.014 ± 0.003 and 0.061 ± 0.010 respectively. This762

intercept has a Li/Mg and Li/Na ratio slightly higher than the mean value for the granodiorite (Fig. 5).763

We propose that this is due to a slight input of shales weathering as some outcrops of sedimentary rocks764

has been described in the shield and the Amazon trough (Brinkmann, 1986; Stallard and Edmond, 1983).765

This corresponds to a input of 5 to 15% of total (Na)sil and (Mg)sil deriving from the weathering of shales.766

The f Lidiss values calculated with sodium ranges from 0.25 to 0.76 and with Mg from 0.16 to 1.00. There is767

generally less than 20% difference between the two estimate and therefore we use the mean value between768

the f Lidiss determined with Na and Mg.769

Acknowledgments770

This work was funded by the CNRS-INSU program Syster and the "Réseau des Bassins Versants". Parts771

of this work were also supported by IPGP multidisciplinary program PARI, and by Paris–IdF region SE-772

SAME Grant no. 12015908. We would like to thank Joshua West, Mark Torres, Jotautas Baronas, Friedhelm773

von Blanckenburg and Julien Moureau for discussions and analytical assistance. This is IPGP contribution774

XXXX.775

References776

Aalto, R., Dunne, T., Guyot, J. L., 2006. Geomorphic controls on Andean denudation rates. J. Geol. 114 (1), 85–99.777

Allard, T., Weber, T., Bellot, C., Damblans, C., Bardy, M., Bueno, G., Nascimento, N., Fritsch, E., Benedetti, M., 2011. Tracing778

source and evolution of suspended particles in the rio negro basin (brazil) using chemical species of iron. Chemical Geology779

280 (1), 79–88.780

Armijos, E., Crave, A., Vauchel, P., Fraizy, P., Santini, W., Moquet, J.-S., Arevalo, N., Carranza, J., Guyot, J.-L., 2013.781

Suspended sediment dynamics in the amazon river of peru. Journal of South American Earth Sciences 44, 75–84.782

Berner, R., 1990. Atmospheric carbon dioxide levels over Phanerozoic time. Science 249 (4975), 1382.783

Berner, R., Lasaga, A., Garrels, R., 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide784

over the past 100 million years. Am. J. Sci 283 (7), 641–683.785

Bouchez, J., Gaillardet, J., 2014. How accurate are rivers as gauges of chemical denudation of the Earth surface ? Geology786

42 (2), 171–174.787

Bouchez, J., Gaillardet, J., France-Lanord, C., Maurice, L., Dutra-Maia, P., 2011. Grain size control of river suspended sediment788

geochemistry : Clues from Amazon River depth profiles. Geochem. Geophys. Geosys. 12 (3), Q03008.789

Bouchez, J., Gaillardet, J., Lupker, M., Louvat, P., France-Lanord, C., Maurice, L., Armijos, E., Moquet, J., 2012. Floodplains790

of large rivers : Weathering reactors or simple silos ? Chemical Geology.791

Bouchez, J., Gaillardet, J., von Blanckenburg, F., 2014. Weathering intensity in lowland river basins : From the Andes to the792

Amazon mouth. Procedia Earth and Planetary Science 10, 280–286.793

Bouchez, J., von Blanckenburg, F., Schuessler, J. A., 2013. Modeling novel stable isotope ratios in the weathering zone. American794

Journal of Science 313 (4), 267–308.795

Bourgoin, L., Bonnet, M.-P., Martinez, J.-M., Kosuth, P., Cochonneau, G., Moreira-Turcq, P., Guyot, J.-L., Vauchel, P., Filizola,796

N., Seyler, P., 2007. Temporal dynamics of water and sediment exchanges between the Curuaí floodplain and the Amazon797

River, Brazil. Journal of Hydrology 335 (1), 140–156.798

21



Brinkmann, W., 1986. Particulate and dissolved materials in the Rio Negro-Amazon Basin. In : Sediments and water interac-799

tions. Springer, pp. 3–12.800

Bryant, J., Yogodzinski, G., Hall, M., Lewicki, J., Bailey, D., 2006. Geochemical constraints on the origin of volcanic rocks801

from the Andean Northern Volcanic Zone, Ecuador. Journal of Petrology 47 (6), 1147–1175.802

Burton, K., Vigier, N., 2011. Lithium isotopes as tracers in marine and terrestrial environments. Handbook of Environmental803

Isotope Geochemistry, 41–59.804

Cardinal, D., Gaillardet, J., Hughes, H., Opfergelt, S., André, L., 2010. Contrasting silicon isotope signatures in rivers from805

the Congo Basin and the specific behaviour of organic-rich waters. Geophysical Research Letters 37 (12), L12403.806

Cogez, A., Meynadier, L., Allègre, C., Limmois, D., Herman, F., Gaillardet, J., 2015. Constraints on the role of tectonic and807

climate on erosion revealed by two time series analysis of marine cores around New Zealand. Earth and Planetary Science808

Letters 410, 174–185.809

Deberdt, S., Viers, J., Dupré, B., 2002. New insights about the rare earth elements (REE) mobility in river waters. Bulletin de810

la Société Géologique de France 173 (2), 147–160.811

Dellinger, M., Gaillardet, J., Bouchez, J., Calmels, D., Galy, V., Hilton, R. G., Louvat, P., France-Lanord, C., 2014. Lithium812

isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion. Earth and Planetary813

Science Letters 401, 359–372.814

Dixon, J., von Blanckenburg, F., 2012. Soils as pacemakers and limiters of global silicate weathering. Comptes Rendus Geos-815

cience.816

Do Nascimento, N., Bueno, G., Fritsch, E., Herbillon, A., Allard, T., Melfi, A., Astolfo, R., Boucher, H., Li, Y., 2004. Pod-817

zolization as a deferralitization process : a study of an Acrisol–Podzol sequence derived from Palaeozoic sandstones in the818

northern upper Amazon Basin. European journal of soil science 55 (3), 523–538.819

Dosseto, A., Bourdon, B., Gaillardet, J., Allègre, C., Filizola, N., 2006a. Time scale and conditions of weathering under tropical820

climate : Study of the Amazon basin with U-series. Geochimica et Cosmochimica Acta 70 (1), 71–89.821

Dosseto, A., Bourdon, B., Gaillardet, J., Maurice-Bourgoin, L., Allègre, C., 2006b. Weathering and transport of sediments in822

the Bolivian Andes : time constraints from uranium-series isotopes. Earth and Planetary Science Letters 248 (3), 759–771.823

Dunne, T., Mertes, L. A., Meade, R. H., Richey, J. E., Forsberg, B. R., 1998. Exchanges of sediment between the flood plain824

and channel of the Amazon River in Brazil. Geological Society of America Bulletin 110 (4), 450–467.825

Dupré, B., Dessert, C., Oliva, P., Goddéris, Y., Viers, J., François, L., Millot, R., Gaillardet, J., 2003. Rivers, chemical weathering826

and Earth’s climate. Comptes Rendus Geoscience 335 (16), 1141–1160.827

Edmond, J., Palmer, M., Measures, C., Brown, E., Huh, Y., 1996. Fluvial geochemistry of the eastern slope of the northeastern828

andes and its foredeep in the drainage of the orinoco in colombia and venezuela. Geochimica et cosmochimica acta 60 (16),829

2949–2974.830

Edmond, J., Palmer, M., Measures, C., Grant, B., Stallard, R., 1995. The fluvial geochemistry and denudation rate of the831

Guayana Shield in Venezuela, Colombia, and Brazil. Geochimica et cosmochimica acta 59 (16), 3301–3325.832

Elbaz-Poulichet, F., Seyler, P., Maurice-Bourgoin, L., Guyot, J., Dupuy, C., 1999. Trace element geochemistry in the upper833

Amazon drainage basin (Bolivia). Chemical geology 157 (3), 319–334.834

Ferrier, K. L., Kirchner, J. W., 2008. Effects of physical erosion on chemical denudation rates : a numerical modeling study of835

soil-mantled hillslopes. Earth and Planetary Science Letters 272 (3), 591–599.836

Filizola, N., Guyot, J. L., 2009. Suspended sediment yields in the Amazon basin : an assessment using the Brazilian national837

data set. Hydrological processes 23 (22), 3207–3215.838

Frings, P. J., De La Rocha, C., Struyf, E., Van Pelt, D., Schoelynck, J., Hudson, M. M., Gondwe, M. J., Wolski, P., Mosimane,839

K., Gray, W., et al., 2014. Tracing silicon cycling in the Okavango Delta, a sub-tropical flood-pulse wetland using silicon840

isotopes. Geochimica et Cosmochimica Acta 142, 132–148.841

Fritsch, E., Balan, E., Régina Do Nascimento, N., Allard, T., Bardy, M., Bueno, G., Derenne, S., Melfi, A., Calas, G., 2011.842

Deciphering the weathering processes using environmental mineralogy and geochemistry : Towards an integrated model of843

laterite and podzol genesis in the Upper Amazon Basin. Comptes Rendus Geoscience 343 (2), 188–198.844

Froelich, F., Misra, S., 2014. Was the late paleocene-early eocene hot because earth was flat ? an ocean lithium isotope view of845

mountain building, continental weathering, carbon dioxide, and Earth’s Cenozoic climate. Oceanography 27 (1), 36–49.846

Gaillardet, J., Dupre, B., Allegre, C., Négrel, P., 1997. Chemical and physical denudation in the Amazon River Basin. Chemical847

Geology 142 (3), 141–173.848

Gaillardet, J., Dupré, B., Louvat, P., Allegre, C., 1999. Global silicate weathering and CO2 consumption rates deduced from849

the chemistry of large rivers. Chemical Geology 159 (1-4), 3–30.850

Gaillardet, J., Viers, J., Dupré, B., 2014. Trace elements in river waters. Treatise on geochemistry (second edition) 7, 195–235.851

Georg, R., Reynolds, B., West, A., Burton, K., Halliday, A., 2007. Silicon isotope variations accompanying basalt weathering852

22



in Iceland. Earth and Planetary Science Letters 261 (3), 476–490.853

Gibbs, R. J., 1967. The geochemistry of the Amazon River system : Part i. the factors that control the salinity and the854

composition and concentration of the suspended solids. Geological Society of America Bulletin 78 (10), 1203–1232.855

Gislason, S. R., Arnorsson, S., Armannsson, H., 1996. Chemical weathering of basalt in Southwest Iceland ; effects of runoff,856

age of rocks and vegetative/glacial cover. American Journal of Science 296 (8), 837–907.857

Gurumurthy, G., Balakrishna, K., Riotte, J., Braun, J.-J., Audry, S., Shankar, H., Manjunatha, B., 2012. Controls on intense858

silicate weathering in a tropical river, southwestern India. Chemical Geology 300, 61–69.859

Guyot, J. L., Fillzola, N., Quintanilla, J., Cortez, J., 1996. Dissolved solids and suspended sediment yields in the rio madeira860

basin, from the bolivian andes to the amazon. IAHS PUBLICATION, 55–64.861

Guyot, J.-L., Jouanneau, J., Soares, L., Boaventura, G., Maillet, N., Lagane, C., 2007. Clay mineral composition of river862

sediments in the amazon basin. Catena 71 (2), 340–356.863

Hathorne, E. C., James, R. H., 2006. Temporal record of lithium in seawater : A tracer for silicate weathering ? Earth and864

Planetary Science Letters 246 (3), 393–406.865

Henchiri, S., Clergue, C., Dellinger, M., Gaillardet, J., Louvat, P., Bouchez, J., 2014. The influence of hydrothermal activity866

on the Li isotopic signature of rivers draining volcanic areas. Procedia Earth and Planetary Science 10, 223–230.867

Holland, H., 1984. The chemical evolution of the atmosphere and oceans. Princeton University Press.868

Huang, K.-J., Teng, F.-Z., Wei, G.-J., Ma, J.-L., Bao, Z.-Y., 2012. Adsorption-and desorption-controlled magnesium isotope869

fractionation during extreme weathering of basalt in Hainan Island, China. Earth and Planetary Science Letters 359, 73–83.870

Hughes, H., Sondag, F., Santos, R., André, L., Cardinal, D., 2013. The riverine silicon isotope composition of the amazon basin.871

Geochimica et Cosmochimica Acta 121, 637–651.872

Huh, Y., Chan, L., Edmond, J., 2001. Lithium isotopes as a probe of weathering processes : Orinoco river. Earth and Planetary873

Science Letters 194 (1-2), 189–199.874

Huh, Y., Chan, L., Zhang, L., Edmond, J., 1998. Lithium and its isotopes in major world rivers : implications for weathering875

and the oceanic budget. Geochimica et Cosmochimica Acta 62 (12), 2039–2051.876

Imahashi, M., Takamatsu, N., Kato, N., Matsubaya, O., 1993. A geochemical study on the Hot Springs in Peru, 87–97.877

James, R. H., Palmer, M. R., 2000. The lithium isotope composition of international rock standards. Chemical Geology 166 (3),878

319–326.879

Johnson, C. M., Beard, B. L., Albarède, F., 2004. Overview and general concepts. Reviews in Mineralogy and geochemistry880

55 (1), 1–24.881

Kisakurek, B., James, R., Harris, N., 2005. Li and δ7li in Himalayan rivers : Proxies for silicate weathering ? Earth and Planetary882

Science Letters 237 (3-4), 387–401.883

Kloppmann, W., Négrel, P., Casanova, J., Klinge, H., Schelkes, K., Guerrot, C., 2001. Halite dissolution derived brines in884

the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes.885

Geochimica et Cosmochimica Acta 65 (22), 4087–4101.886

Laraque, A., Bernal, C., Bourrel, L., Darrozes, J., Christophoul, F., Armijos, E., Fraizy, P., Pombosa, R., Guyot, J.-L., 2009.887

Sediment budget of the Napo river, Amazon basin, Ecuador and Peru. Hydrological processes 23 (25), 3509–3524.888

Lemarchand, E., Chabaux, F., Vigier, N., Millot, R., Pierret, M., 2010. Lithium isotope systematics in a forested granitic889

catchment (Strengbach, Vosges Mountains, France). Geochimica et Cosmochimica Acta 74 (16), 4612–4628.890

Li, G., Elderfield, H., 2013. Evolution of carbon cycle over the past 100 million years. Geochimica et Cosmochimica Acta 103,891

11–25.892

Li, G., West, A. J., 2014. Evolution of cenozoic seawater lithium isotopes : Coupling of global denudation regime and shifting893

seawater sinks. Earth and Planetary Science Letters 401, 284–293.894

Lupker, M., France-Lanord, C., Galy, V., Lave, J., Gaillardet, J., Gajurel, A. P., Guilmette, C., Rahman, M., Singh, S. K.,895

Sinha, R., 2012. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochimica et896

Cosmochimica Acta 84, 410–432.897

Maher, K., Chamberlain, C., 2014. Hydrologic regulation of chemical weathering and the geologic carbon cycle. science898

343 (6178), 1502–1504.899

Mathieu, D., Bernat, M., Nahon, D., 1995. Short-lived U and Th isotope distribution in a tropical laterite derived from granite900

(Pitinga river basin, Amazonia, Brazil) : application to assessment of weathering rate. Earth and Planetary Science Letters901

136 (3), 703–714.902

Meade, R. H., Nordin, C. F., Curtis, W. F., Rodrigues, F. M. C., Do Vale, C. M., Edmond, J. M., 1979. Sediment loads in the903

Amazon River.904

Millot, R., Girard, J., 2007. Lithium isotope fractionation during adsorption onto mineral surfaces. In : International Meeting905

on Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, Lille, France.906

23



Millot, R., Giraud, E. P., Guerrot, C., Négrel, P., et al., 2010a. Multi-isotopic composition (delta Li-7-delta B-11-delta D-delta907

O-18) of rainwaters in France : Origin and spatio-temporal characterization. Applied Geochemistry 25 (10).908

Millot, R., Guerrot, C., Vigier, N., 2007. Accurate and High-Precision Measurement of Lithium Isotopes in Two reference909

Materials by MC-ICP-MS. Geostandards and Geoanalytical Research 28 (1), 153–159.910

Millot, R., Scaillet, B., Sanjuan, B., 2010b. Lithium isotopes in island arc geothermal systems : Guadeloupe, Martinique (French911

West Indies) and experimental approach. Geochimica et Cosmochimica Acta 74 (6), 1852–1871.912

Millot, R., Vigier, N., Gaillardet, J., 2010c. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin,913

Canada. Geochimica et Cosmochimica Acta 74 (14), 3897–3912.914

Misra, S., Froelich, P., 2012. Lithium isotope history of cenozoic seawater : Changes in silicate weathering and reverse weathering.915

Science 335 (6070), 818–823.916

Moquet, J., Crave, A., Viers, J., Seyler, P., Armijos, E., Bourrel, L., Chavarri, E., Lagane, C., Laraque, A., Casimiro, W.,917

et al., 2011. Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chemical918

Geology 287 (1), 1–26.919

Moreira-Turcq, P., Seyler, P., Guyot, J. L., Etcheber, H., 2003. Exportation of organic carbon from the Amazon River and its920

main tributaries. Hydrological Processes 17 (7), 1329–1344.921

Mortatti, J., Probst, J.-L., 2003. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated922

from river water geochemistry : seasonal and spatial variations. Chemical Geology 197 (1), 177–196.923

Nesbitt, H., Young, G., 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites.924

Nature 299 (5885), 715–717.925

Palmer, M., Edmond, J., 1992. Controls over the strontium isotope composition of river water. Geochimica et Cosmochimica926

Acta 56 (5), 2099–2111.927

Petford, N., Atherton, M., 1996. Na-rich partial melts from newly underplated basaltic crust : the Cordillera Blanca Batholith,928

Peru. Journal of Petrology 37 (6), 1491–1521.929

Pistiner, J., Henderson, G., 2003. Lithium-isotope fractionation during continental weathering processes. Earth and Planetary930

Science Letters 214 (1), 327–339.931

Pogge von Strandmann, P., Burton, K., James, R., van Calsteren, P., Gislason, S., Mokadem, F., 2006. Riverine behaviour932

of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth and Planetary Science Letters 251 (1-2),933

134–147.934

Pogge von Strandmann, P., Burton, K., James, R., Van Calsteren, P., Gislason, S., et al., 2010. Assessing the role of climate935

on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chemical Geology 270 (1-4), 227–239.936

Pogge von Strandmann, P. A., Burton, K. W., James, R. H., Van Calsteren, P., Gislason, S. R., Sigfússon, B., 2008. The937

influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth and Planetary Science Letters938

276 (1), 187–197.939

Pogge von Strandmann, P. A., Henderson, G. M., 2015. The Li isotope response to mountain uplift. Geology 43 (1), 67–70.940

Pogge von Strandmann, P. A., Jenkyns, H. C., Woodfine, R. G., 2013. Lithium isotope evidence for enhanced weathering during941

Oceanic Anoxic Event 2. Nature Geoscience 6 (8), 668–672.942

Pogge von Strandmann, P. A., Opfergelt, S., Lai, Y.-J., Sigfússon, B., Gislason, S. R., Burton, K. W., 2012. Lithium, magnesium943

and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland. Earth and944

Planetary Science Letters 339, 11–23.945

Pogge von Strandmann, P. A., Porcelli, D., James, R. H., van Calsteren, P., Schaefer, B., Cartwright, I., Reynolds, B. C., Burton,946

K. W., 2014. Chemical weathering processes in the Great Artesian Basin : Evidence from lithium and silicon isotopes. Earth947

and Planetary Science Letters 406, 24–36.948

Raymo, M., Ruddiman, W., 1992. Tectonic forcing of late Cenozoic climate. Nature 359 (6391), 117–122.949

Reeder, S., Hitchon, B., Levinson, A., 1972. Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin,950

Canada I. Factors controlling inorganic composition. Geochimica et Cosmochimica Acta 36 (8), 825–865.951

Riebe, C. S., Kirchner, J. W., Granger, D. E., Finkel, R. C., 2001. Strong tectonic and weak climatic control of long-term952

chemical weathering rates. Geology 29 (6), 511–514.953

Roddaz, M., Viers, J., Brusset, S., Baby, P., Hérail, G., 2005. Sediment provenances and drainage evolution of the Neogene954

Amazonian foreland basin. Earth and Planetary Science Letters 239 (1), 57–78.955

Ronov, A., Migdisov, A., Voskresenskaya, N., Korzina, G., 1970. Geochemistry of lithium in the sedimentary cycle.956

Ryu, J.-S., Vigier, N., Lee, S.-W., Lee, K.-S., Chadwick, O. A., 2014. Variation of lithium isotope geochemistry during basalt957

weathering and secondary mineral transformations in hawaii. Geochimica et Cosmochimica Acta 145, 103–115.958

Safran, E. B., Bierman, P. R., Aalto, R., Dunne, T., Whipple, K. X., Caffee, M., 2005. Erosion rates driven by channel network959

incision in the Bolivian Andes. Earth Surface Processes and Landforms 30 (8), 1007–1024.960

24



Santos, R. V., Sondag, F., Cochonneau, G., Lagane, C., Brunet, P., Hattingh, K., Chaves, J. G., 2014. Source area and seasonal961
87sr/86sr variations in rivers of the Amazon basin. Hydrological Processes.962

Sarbas, B., Nohl, U., 2008. The georoc database as part of a growing geoinformatics network. Geoinformatics.963

Sawhney, B., 1972. Selective sorption and fixation of cations by clay minerals : a review. Clays Clay Miner 20, 93–100.964

Stallard, R., Edmond, J., 1981. Geochemistry of the Amazon 1. Precipitation chemistry and the marine contribution to the965

dissolved load at the time of peak discharge. Journal of Geophysical Research 86 (C10), 9844–9858.966

Stallard, R., Edmond, J., 1983. Geochemistry of the Amazon 2. the influence of geology and weathering environment on the967

dissolved load. Journal of Geophysical Research 88 (C14), 9671–9688.968

Stallard, R., Edmond, J., 1987. Geochemistry of the Amazon 3. Weathering chemistry and limits to dissolved inputs. Journal969

of geophysical Research 92 (C8), 8293–8302.970

Taylor, S. R., McLennan, S. M., 1985. The continental crust : its composition and evolution.971

Teng, F.-Z., Rudnick, R. L., McDonough, W. F., Gao, S., Tomascak, P. B., Liu, Y., 2008. Lithium isotopic composition and972

concentration of the deep continental crust. Chemical Geology 255 (1), 47–59.973

Tipper, E., Calmels, D., Gaillardet, J., Louvat, P., Capmas, F., Dubacq, B., 2012. Positive correlation between Li and Mg974

isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation975

during weathering. Earth and Planetary Science Letters 333, 35–45.976

Tipper, E., Galy, A., Bickle, M., 2006. Riverine evidence for a fractionated reservoir of ca and mg on the continents : implications977

for the oceanic ca cycle. Earth and Planetary Science Letters 247 (3), 267–279.978

Torres, M. A., West, A. J., Li, G., 2014. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological979

timescales. Nature 507 (7492), 346–349.980

Verney-Carron, A., Vigier, N., Millot, R., 2011. Experimental determination of the role of diffusion on Li isotope fractionation981

during basaltic glass weathering. Geochimica et Cosmochimica Acta 75 (12), 3452–3468.982

Viers, J., Dupré, B., Braun, J.-J., Deberdt, S., Angeletti, B., Ngoupayou, J. N., Michard, A., 2000. Major and trace element983

abundances, and strontium isotopes in the Nyong basin rivers (Cameroon) : constraints on chemical weathering processes984

and elements transport mechanisms in humid tropical environments. Chemical Geology 169 (1), 211–241.985

Viers, J., Dupré, B., Polvé, M., Schott, J., Dandurand, J., Braun, J., 1997. Chemical weathering in the drainage basin of986

a tropical watershed (nsimi-zoetele site, cameroon) : comparison between organic-poor and organic-rich waters. Chemical987

Geology 140 (3), 181–206.988

Vigier, N., Decarreau, A., Millot, R., Carignan, J., Petit, S., France-Lanord, C., 2008. Quantifying Li isotope fractionation989

during smectite formation and implications for the Li cycle. Geochimica et Cosmochimica Acta 72 (3), 780–792.990

Vigier, N., Decarreau, A., Petit, S., Turpault, M., 2011. Li isotope compositions of clay minerals : what message ? In : AGU991

Fall Meeting Abstracts. Vol. 1. p. 02.992

Vigier, N., Gislason, S., Burton, K., Millot, R., Mokadem, F., 2009. The relationship between riverine lithium isotope compo-993

sition and silicate weathering rates in Iceland. Earth and Planetary Science Letters 287 (3), 434–441.994

Walker, J., Hays, P., Kasting, J., 1981. A negative feedback mechanism for the long-term stabilization of the Earth’s surface995

temperature. Journal of Geophysical Research 86 (C10), 9776–9782.996

Wang, Q.-L., Chetelat, B., Zhao, Z.-Q., Ding, H., Li, S.-L., Wang, B.-L., Li, J., Liu, X.-L., 2015. Behavior of lithium isotopes997

in the changjiang river system : Sources effects and response to weathering and erosion. Geochimica et Cosmochimica Acta998

151, 117–132.999

Wanner, C., Sonnenthal, E. L., Liu, X.-M., 2014. Seawater δ7li : A direct proxy for global CO2 consumption by continental1000

silicate weathering ? Chemical Geology 381, 154–167.1001

West, A., Galy, A., Bickle, M., 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters1002

235 (1-2), 211–228.1003

West, A. J., 2012. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering1004

and for carbon-cycle feedbacks. Geology 40 (9), 811–814.1005

West, A. J., Bickle, M. J., Collins, R., Brasington, J., 2002. Small-catchment perspective on himalayan weathering fluxes.1006

Geology 30 (4), 355–358.1007

Willenbring, J. K., Von Blanckenburg, F., 2010. Long-term stability of global erosion rates and weathering during late-cenozoic1008

cooling. Nature 465 (7295), 211–214.1009

Wimpenny, J., Colla, C. A., Yin, Q.-Z., Rustad, J. R., Casey, W. H., 2014. Investigating the behaviour of mg isotopes during1010

the formation of clay minerals. Geochimica et Cosmochimica Acta 128, 178–194.1011

Wimpenny, J., Gíslason, S. R., James, R. H., Gannoun, A., Pogge Von Strandmann, P. A., Burton, K. W., 2010a. The1012

behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochimica1013

et Cosmochimica Acta 74 (18), 5259–5279.1014

25



Wimpenny, J., James, R. H., Burton, K. W., Gannoun, A., Mokadem, F., Gíslason, S. R., 2010b. Glacial effects on weathering1015

processes : New insights from the elemental and lithium isotopic composition of West Greenland rivers. Earth and Planetary1016

Science Letters 290 (3), 427–437.1017

Wittmann, H., Von Blanckenburg, F., Guyot, J.-L., Maurice, L., Kubik, P., 2009. From source to sink : Preserving the cosmogenic1018
10be-derived denudation rate signal of the Bolivian Andes in sediment of the Beni and Mamoré foreland basins. Earth and1019

Planetary Science Letters 288 (3), 463–474.1020

Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, J.-L., Filizola, N., Kubik, P. W., 2011. Sediment production and1021

delivery in the Amazon river basin quantified by in situ–produced cosmogenic nuclides and recent river loads. Geological1022

Society of America Bulletin 123 (5-6), 934–950.1023

Zhang, L., Chan, L.-H., Gieskes, J. M., 1998. Lithium isotope geochemistry of pore waters from ocean drilling program sites1024

918 and 919, irminger basin. Geochimica et Cosmochimica Acta 62 (14), 2437–2450.1025

26



Figures1026

-8000    -6000   -4000    -2000       0        2000    4000     6000     8000
Altitude (m)

200 km

-80°     -75°     -70°     -65°     -60°     -55°     -50°     -45° 

 10°

  5°

  0°

 -5°

 -10°

 -15°

 -20°

Be
ni

Madeira

U
cayali

Pastaza AmazonNegro

Trom
betas

Orthon

Ta
pajo

s
Urucara

M
am

oré

Madre

Ya
ta

Parana

Parana do

M
aranon

H
uallaga

M
orona Solimoes

Andes

Lowlands

Shield

Shield

de Dios

Ramos

 Madeirin
ha

Andean rivers

Main tributaries

Main tributaries

Lowlands rivers

Clear waters

Black waters

Amazon 
mainstream

Madeira basin

Solimoes basin

Amazonian Shield

-14.5º

-15.5º

-68.0º -67.5º

-15.0º

20 km

(B)

Mapiri

Coroico

Cha
lla

na

Tipuani
Kaka

Alto Beni

Tuichi

QuiquibeyBe
ni

ChepeteQuendeque

Suapi

YaraAmazon River basin
Beni watershed

Figure 1: Map of the Amazon River basin with the location of river samples.
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Figure 2: Li isotope composition in Amazon river-borne material. The red marker indicates the mean isotope composition in
each component. Suspended sediment and sands data are from Dellinger et al. (2014). Reported bedrock data are global mean
δ7Li of shales (-0.5±1.9�), andesites (+4.8±1.4�) and granodiorites (+2.0±2.2�) from the literature compiled in Dellinger
et al. (2014).
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Figure 3: Li isotope composition (δ7Lidiss) as a function of the Li concentration in the dissolved load. Data from Huh et al.
(1998) of Amazon tributaries (Negro, Solimões, Madeira and Amazon) are also displayed on this figure and the following figures
of this publication.
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Figure 4: Partitioning of Li between the dissolved and particulate load. Only Li concentration measured in surface suspended
sediments was used in Eq. (1).
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Figure 5: Dissolved Li isotope composition (δ7Li) vs a) (Li/Mg)∗ and b) (Li/Na)∗ molar ratios. The superscript "*" indicates
that molar ratios are corrected for rainwater and evaporite inputs. Typical bedrock ratios and Amazon river sands are added
for comparison.

Shales

Carbonates

1 10 50

(Sr/Na)*

0.700

0.710

0.720

0.730

0.740

(8
7
S

r/
8
6
S

r)
*

Andean rivers

Main tributaries

Main tributaries

Lowlands rivers

Madeira basin

Solimoes basin

Palmer and 

Edmond (1992)

Palmer and 

Edmond (1992)

Orthon

Yara

Pastaza

Igneous rocks
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are corrected for rainwater and evaporite inputs. "Igneous rocks" refers to Andean andesites and granodiorites in the Amazon
Basin

. Data from Palmer and Edmond (1992) are also represented while rivers draining only the Brazilian and
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chemical composition of water masses draining each type of rock and defined in Appendix A.
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List of captions1027

Table 1 : Dissolved major and trace element concentrations and Li-Sr isotope composition of rivers. All1028

concentrations are in in µmol.L−1 except Al concentrations (in ppb)1029

Table 2 : Li concentration and isotope composition of Amazon tributaries surface sediments1030

Table 3 : Proportion of lithium initially dissolved from each source, and fraction of silicate-derived Li1031

incorporated in secondary minerals1032
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Table 1

Sample Rivers Location pH Surface 
SPM !7Li Li Na K Mg Ca HCO3 Cl NO3 SO4 NICB SiO2 87Sr/86Sr Sr Al

(mg/L) (‰) (ppb)

AM01-01 Huarinilla - - - 11.8 0.36 51 8 97 41 207 4 15 49 2.6 117 0.72740 0.14 17
AM01-02 Yara - - - - 0.56 44 3 34 17 - 1 16 44 - - 0.71442 0.07 15
AM01-03 Yara - - - - 0.82 90 16 120 90 197 7 24 143 2.5 149 - 0.24 22
AM01-04 Coroico Guanay 6.5 387 7.3 0.87 62 12 78 55 116 2 14 95 5.1 136 - 0.14 14
AM01-05 Tipuani Guanay 5.7 1518 5.3 0.68 31 16 28 14 9 2 5 57 0.1 101 - 0.05 4
AM01-06 Challana Guanay 6.4 1610 3.8 0.87 37 12 28 12 16 1 15 48 1.5 114 0.73331 0.05 15
AM01-07 Mapiri Guanay 7.2 1620 8.5 0.80 44 16 75 119 - 6 - 6 - 107 0.71969 0.25 10
AM01-08 Alto Beni Mouth 7.8 8399 13.4 1.62 282 57 359 416 875 25 7 443 5.1 124 0.71921 0.80 20
AM01-09 Quendeque Mouth 7.4 - - 0.10 34 24 59 228 484 2 12 67 0.2 89 0.71311 0.41 32
AM01-10 Chepete Mouth 7.2 1111 17.0 0.26 222 32 60 105 461 12 5 53 0.0 - 0.72847 0.34 8
AM01-11 Suapi Mouth 7.2 141 - 0.15 39 36 45 202 415 3 12 52 6.3 128 - - 14
AM01-12 Quiquibey Mouth 7.5 1895 17.4 0.28 106 43 80 324 821 3 10 54 1.6 - - - 11
AM01-13 Tuichi Mouth 6.4 3590 - 0.53 44 25 54 106 100 2 3 142 0.1 87 0.72103 - 8
AM01-14 Beni Rurrenabaque 7.4 5265 12.8 0.89 138 38 199 328 575 13 12 310 0.8 - 0.71816 0.61 21
AM07-04 Beni Rurrenabaque 6.4 109 8.2 1.67 164 25 204 286 520 34 7 283 3.2 159 0.71759 0.74
AM01-16 Beni Riberalta 7.0 1036 15.9 0.65 119 48 212 290 640 11 14 231 3.6 137 0.71932 0.58 28
AM07-09 Beni Riberalta 6.7 1003 15.5 0.48 87 33 125 197 442 15 9 104 11.2 129 0.71911 0.40 -
AM01-15 Madre de Dios Riberalta 6.9 950 21.5 0.24 72 30 61 171 435 3 11 57 0.6 139 0.71233 0.51 3
AM07-14 Madre de Dios Riberalta 5.9 437 21.0 0.19 77 28 63 190 451 6 10 43 9.3 130 0.71191 0.56 -
AM01-17 Orthon Mouth 6.6 460 11.5 0.31 66 41 39 62 256 4 4 3 12.9 - 0.71180 0.23 36
AM01-18 Yata Mouth 5.8 56 14.4 0.08 22 15 18 12 63 2 4 1 24.6 91 0.72643 0.06 20
AM01-19 Mamoré Guayaramerin 6.7 507 32.9 0.22 155 48 146 202 497 32 11 162 3.8 153 0.72157 0.48 8
AM07-19 Mamoré Guayaramerin 6.5 156 30.9 0.16 137 71 122 162 484 35 7 77 11.9 197 0.72258 0.45 -
AM6/1-6 Parana Madeirinha Mouth 7.2 - 15.5 0.12 108 23 45 205 510 68 - 25 0.2 - - - 4
AM6/1-11 Parana do Ramos Mouth 6.8 - 15.7 0.07 40 15 25 61 179 18 1 15 0.5 - - - 13
AM01-20 Jaciparana Mouth - - 10.4 0.06 23 28 8 12 76 4 7 2 1.5 112 0.75620 0.04 60
AM01-21 Madeira Porto Velho - - 21.5 0.29 99 38 106 173 438 14 12 123 -2.2 139 0.71718 0.45 7
AM06-35 Madeira Foz Madeira 6.9 219 19.3 0.17 58 32 58 101 274 17 12 49 1.8 125 - 0.30 5
AM05-16 Madeira Foz Madeira - 85 21.3 0.20 90 29 68 115 275 21 8 60 12.4 151 0.71816 0.27 3

AM08-33 Maranon Borja 8.1 845 21.9 0.26 185 25 100 455 773 92 11 120 15.4 176 - - -
AM08-34 Morona Mouth - 174 21.2 0.06 84 21 56 182 381 21 13 20 21.6 226 0.70629 0.58 -

Madeira Basin

Solimoes Basin



Sample Rivers Location pH Surface 
SPM !7Li Li Na K Mg Ca HCO3 Cl NO3 SO4 NICB SiO2 87Sr/86Sr Sr Al

AM08-36 Pastaza Mouth - 102 25.3 0.14 168 28 94 117 364 70 9 31 18.3 293 0.70629 0.56 -
AM08-38 Huallaga Mouth - 335 26.3 0.14 1660 32 96 653 986 1621 7 187 6.4 180 0.70904 1.52 -
AM08-40 Tigre Nueva York - 25 13.8 0.30 498 16 33 81 90 666 8 9 -5.3 159 0.71671 1.14 -
AM08-05 Amazonas Tamshiyacu 7.4 344 18.8 0.25 397 36 97 607 1010 358 8 98 14.7 176 0.70917 1.20 -
AM08-24 Maranon San Regis 7.4 177 23.6 0.12 477 29 82 502 803 445 - 76 16.3 182 0.70878 0.97 -
AM08-13 Ucayali Jenaro Herrera - 490 16.7 0.66 308 40 114 683 1109 254 16 128 15.8 153 0.70943 1.43 -
AM05-4 Solimoes Manacapuru 6.8 283 15.6 0.12 125 25 48 213 - 86 13 27 - 180 - - -
AM06-15 Solimoes Manacapuru - 333 13.4 0.16 101 20 50 188 443 71 12 34 0.4 158 0.70918 0.53 -

AM05-13 Amazonas Iracema - 47 16.3 0.12 85 21 37 136 240 49 10 22 23.6 141 - 0.38 -
AM06-63 Amazonas Obidos 6.8 127 15.4 0.12 105 21 39 165 355 64 10 22 11.6 146 - 0.44 -
AM05-37 Amazonas Obidos - 175 16.8 0.13 81 20 36 131 242 49 1 20 23.2 140 - 0.32 -
AM05-35 Amazonas Obidos - 318 16.2 0.12 86 21 38 138 241 49 4 21 26.2 144 - 0.33 -
AM05-39 Amazonas Obidos - 250 19.4 0.15 85 23 48 158 352 56 9 35 5.9 135 - 0.32 -

AM6/1-20 Tapajós Mouth 6.8 - 15.9 0.037 33 22 17.9 23.5 114 10.5 9.7 1.6 0.3 - - - -
Tapajos 19 Tapajós Mouth 6.7 6 14.7 0.039 33 21 17.0 21.0 114 12.0 - 3.0 -1.5 160 0.73317 0.10 15
AM6/1-13 Trombetas Mouth 6.3 - 9.6 0.037 39 17 7.7 11.1 71 14.9 3.3 2.2 0.6 - - - 34
Trombetas 16 Trombetas Mouth 6.1 13 8.3 0.037 31 23 9.0 11.0 39 21.0 - 4.0 27.7 103 0.73230 0.08 45
Urucara 10 Urucara Mouth 6.5 8 11.9 0.049 35 36 16.0 35.0 140 21.0 - 6.0 0.0 105 0.72358 0.15 50
AM6/1-2 Rio Negro Paricatuba 4.4 - 1.3 0.027 12 6 2.5 4.1 13 5.7 8.8 1.6 0.6 - - - 137
AM06-20 Rio Negro Paricatuba 5.0 4 6.5 0.037 19 7 6.1 - 21 12.7 6.8 3.7 - 84 - 0.08 108
AM01-22 Rio Negro Paricatuba - - 2.1 0.035 14 5 3.1 4.5 20 6.1 6.2 1.0 1.1 - - 0.03 149

Amazon river mainstream

Shield rivers



Table 2

Sample Rivers Li !7Li MES

Lowland and shield rivers ppm

AM6/1-11 Parana dos Ramos 27 -3.6
AM01-17 Orthon 59 -5.7
AM01-18 Yata 100 -5.3
AM01-27 Trombetas 20 -5.1
AM01-22 MES Negro Negro 44 -2.7
AM6/1-09 MES Urucara 43 -4.0
AM6/1-20 Tapajos Tapajos 24 -5.4
AM01-29 Tapajos 27 -6.0

Madeira basin

AM01-01 Huarinilla 89 -2.7
AM01-06 Challana 91 -6.8
AM01-08 Alto Beni 79 -1.8
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rain eva car sha ign
Madeira Basin

AM01-01 Huarinilla - 0.22 ± 0.04 0.1 0.0 0.2 99.8 0.0 -1.0
AM01-02 Yara - 0.38 ± 0.06 0.0 0.0 0.0 99.9 0.0 -1.0
AM01-03 Yara - 0.28 ± 0.05 0.0 0.0 0.2 99.8 0.0 -1.0
AM01-04 Coroico Guanay 0.42 ± 0.07 0.0 0.0 0.1 99.9 0.0 -1.0
AM01-05 Tipuani Guanay 0.67 ± 0.11 0.0 0.0 0.0 100.0 0.0 -1.0
AM01-06 Challana Guanay 0.69 ± 0.12 0.0 0.0 0.0 100.0 0.0 -1.0
AM01-07 Mapiri Guanay 0.59 ± 0.10 0.0 0.0 0.2 99.7 0.0 -0.9
AM01-08 Alto Beni Mouth 0.18 ± 0.03 0.0 0.0 0.4 99.6 0.0 -0.9
AM01-09 Quendeque Mouth 0.09 ± 0.01 0.1 0.0 3.4 96.5 0.0 -0.1
AM01-10 Chepete Mouth 0.04 ± 0.01 0.2 0.0 0.6 99.2 0.0 -0.8
AM01-11 Suapi Mouth 0.12 ± 0.02 0.1 0.0 2.0 97.9 0.0 -0.5
AM01-12 Quiquibey Mouth 0.08 ± 0.01 0.1 0.0 1.7 98.2 0.0 -0.5
AM01-13 Tuichi Mouth 0.36 ± 0.06 0.0 0.0 0.3 99.7 0.0 -0.9
AM01-14 Beni Rurrenabaque 0.20 ± 0.03 0.0 0.0 0.6 99.4 0.0 -0.9
AM07-04 Beni Rurrenabaque 0.37 ± 0.06 0.0 0.0 0.3 99.7 0.0 -0.9
AM01-16 Beni Riberalta 0.17 ± 0.03 0.1 0.0 0.7 99.3 0.0 -0.8
AM07-09 Beni Riberalta 0.19 ± 0.03 0.1 0.0 0.6 99.3 0.0 -0.8
AM01-15 Madre de Dios Riberalta 0.10 ± 0.02 0.1 0.0 1.0 98.9 0.0 -0.7
AM07-14 Madre de Dios Riberalta 0.07 ± 0.01 0.1 0.0 1.5 98.4 0.0 -0.6
AM01-17 Orthon Mouth 0.23 ± 0.04 0.0 0.0 0.0 93.3 6.7 -0.6
AM01-18 Yata Mouth 0.12 ± 0.02 0.1 0.0 0.2 99.7 0.0 -0.9
AM01-19 Mamoré Guayaramerin 0.05 ± 0.01 0.0 0.0 0.1 99.9 0.1 -1.0
AM07-19 Mamoré Guayaramerin 0.04 ± 0.01 0.0 0.0 0.1 99.9 0.1 -1.0
AM6/1-6 Parana Madeirinha Mouth 0.08 ± 0.01 0.9 0.8 2.3 96.0 0.0 -0.4
AM6/1-11 Parana do Ramos Mouth 0.08 ± 0.01 1.3 0.0 1.2 97.5 0.0 -0.7
AM01-21 Madeira Porto Velho 0.10 ± 0.02 0.1 0.0 0.9 98.9 0.0 -0.8
AM06-35 Madeira Foz Madeira 0.11 ± 0.02 0.5 0.0 0.9 98.6 0.0 -0.8
AM05-16 Madeira Foz Madeira 0.08 ± 0.01 0.5 0.0 0.8 98.7 0.0 -0.8
Madeira (Huh et al.) Madeira Foz Madeira 0.08 ± 0.01 0.4 0.0 1.1 98.5 0.0 -0.7

Solimoes Basin

AM08-33 Maranon Borja 0.12 ± 0.04 0.0 0.0 0.2 85.1 14.6 -0.1
AM08-34 Morona Mouth 0.17 ± 0.06 0.1 0.0 0.6 79.5 19.9 0.3
AM08-36 Pastaza Mouth 0.17 ± 0.07 0.1 0.1 0.1 85.1 14.7 -0.1
AM08-38 Huallaga Mouth 0.05 ± 0.03 0.0 0.6 0.1 97.3 2.0 -0.7
AM08-40 Tigre Nueva York
AM08-05 Amazonas Tamshiyacu 0.16 ± 0.06 0.0 0.2 0.5 98.0 1.3 -0.7
AM08-24 Maranon San Regis 0.12 ± 0.07 0.0 0.4 0.6 97.1 1.9 -0.6
AM08-13 Ucayali Jenaro Herrera 0.33 ± 0.11 0.0 0.1 0.5 98.2 1.2 -0.8
AM05-4 Solimoes Manacapuru 0.14 ± 0.04 0.1 0.1 0.3 92.8 6.7 -0.5
AM06-15 Solimoes Manacapuru 0.21 ± 0.07 0.1 0.1 0.3 94.9 4.6 -0.6
Solimoes (Huh et al.) Solimoes Iquitos 0.13 ± 0.04 0.0 0.1 0.5 95.8 3.6 -0.6

Shield rivers 

AM6/1-20 Tapajós Mouth 0.20 ± 0.05 1.4 0.0 0.9 30.0 67.7 1.3
Tapajos 19 Tapajós Mouth 0.22 ± 0.05 1.5 0.0 0.8 30.0 67.7 1.3
AM6/1-13 Trombetas Mouth 0.33 ± 0.09 2.0 0.0 0.4 30.0 67.6 1.2
Trombetas 15 Trombetas Mouth 0.42 ± 0.05 2.7 0.0 0.4 30.0 66.9 1.1
Urucara 10 Urucara Mouth 0.36 ± 0.11 2.0 0.0 0.9 30.0 67.0 1.3
AM6/1-2 Rio Negro Paricatuba 0.79 ± 0.17 1.1 0.0 0.1 30.0 68.8 1.1
Negro (Huh et al.) Rio Negro Paricatuba 0.47 ± 0.03 1.1 0.0 0.2 30.0 68.7 1.1
AM06-20 Rio Negro Paricatuba 0.65 ± 0.11 1.7 0.0 0.0 30.0 68.4 1.1
AM01-22 Rio Negro Paricatuba 0.81 ± 0.19 0.9 0.0 0.0 30.0 69.1 1.1
AM01-20 Jaciparana Mouth 0.17 ± 0.08 0.1 0.0 0.3 30.0 69.0 1.2

!()*+
Proportion of Li dissolved from each source (%)

Samples Rivers Location fLi
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