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ABSTRACT 

V2O5/mesoporous carbon composite has been prepared by an ultrasonically assisted method 

followed by a sintering process. The as-prepared V2O5/mesoporous carbon material containing 90 

wt% V2O5 shows better electrochemical performance, with capacity of 163 mA h g-1 after 100 

cycles at the current density of 500 mA g-1, as well as better charge/discharge rate capability for 

lithium storage than V2O5 nanoparticles. The improved electrochemical performance indicates 

that the V2O5/mesoporous carbon composite could be used as a promising cathode material for 

lithium ion batteries. 

 

Keywords: vanadium pentoxide; mesoporous carbon; cathode; lithium ion batteries 

 

1. Introduction 

Nowadays, rechargeable Li-ion batteries (LIBs) are extensively used in almost all types of 
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electronic devices, including cell phones, laptop computers, camcorders, and even electric and 

hybrid electric vehicles, due to their high energy and power density, high voltage, and long 

lifespan [1-3]. The worldwide market for lithium ion batteries is growing fast, especially for 

consumer products, and it will grow even more in the next decade. Frost & Sullivan, a business 

consulting firm, has reported that the global lithium-ion battery market in 2012 was worth $11.7 

billion, mainly for consumer applications, and this is expected to be twice as great, around $22.5 

billion, in 2016 [4]. 

Until now, LiCoO2, which was first introduced by SONY, has been the most commonly 

used cathode material in LIBs. Due to the toxicity, high cost, and safety issues of LiCoO2, 

however, many efforts have been made to develop other cathode materials, such as 

LiNi1/3Mn1/3Co1/3O2, LiMn2O4, and LiFePO4 [5-7]. These materials have shown significant 

improvements in their cycling stability and rate capability. Enhancement of their reversible 

lithium storage capacity has been limited, however, due to their intrinsic redox chemistry, which 

allows only one Li+ insertion/extraction per formula unit. Hence, new materials need to be 

developed as cathode candidates with enlarged theoretical capacity through multi-electron 

reactions per formula unit, in order to comply with the demand for LIBs with high capacity and 

fast charge capability.  

Among the many potential cathode candidates, vanadium pentoxide (V2O5) is one of the 

most promising due to its high energy density, abundance, low cost, and easy to synthesize [8-12]. 

The high theoretical capacity of V2O5 is especially attractive, around 294 mA h g-1 for the 

intercalation/deintercalation of two Li+ ions between 2.0 and 4.0 V, which is much better than 

those of conventional cathode materials, such as LiMn2O4 (148 mA h g-1) and LiFePO4 (176 mA h 

g-1). In spite of these advantages, the electrochemical performance of V2O5 is limited by its poor 

electrical conductivity (10-3 to 10-2 Ѕ cm-1) and its sluggish diffusion of lithium ions (~ 10-12 cm2 s-

1) [13-16]. Moreover, phase transitions of LixV2O5 during the charge/discharge process often 
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cause structural instability and can further degrade its cycling performance [17-19]. These 

drawbacks have limited the practical application of this material in commercial LIBs. Several 

approaches have been tried to solve these issues: fabricating nanostructures, changing the pore 

size, and modifying the electrical conductivity with a carbon matrix [11-13, 15, 18, 20-45]. 

 One approach to address these issues is modifying the V2O5 with ordered mesoporous 

carbon. Mesoporous carbon, which has pore sizes between 2 and 50 nm, will facilitate electrolyte 

diffusion into the bulk of the electrode material and hence provide fast transport channels for the 

conductive ions (i.e. Li+ ions). Carbon will also provide fast electronic transport, which may 

enhance the overall performance of lithium ion batteries. The other properties of mesoporous 

carbon, such as its high thermal stability, large surface area, uniform pore diameter, high pore 

volume, and interconnected pore structure, also increase its potential value in lithium ion batteries 

[46, 47]. Some metal oxide/mesoporous carbon composites have already been synthesized, such 

as ones containing Sn/SnO2, SnO2, Cr2O3, and TiO2, as electrode materials for lithium ion 

batteries [18-22]. V2O5-mesoporous carbon composite as an electrode material for capacitors has 

also been reported by Yu et al. [48]. In this work, we use mesoporous carbon to prepare V2O5-

mesoporous carbon composite as a cathode material for LIBs. The mesoporous structure of the 

carbon helps the diffusion of electrolyte into the bulk of the electrode and, as a result, provides 

fast transport channels for Li+ ions.  

  

2. Experimental 

Preparation of mesoporous carbon 

 The mesoporous carbon was synthesized in a similar way to the procedure reported by C. 

F. Xue et al. [49] with a slight modification. Firstly, a resol solution was prepared as the carbon 

precursor. Phenol (61 g) was melted at 42 ºC in a flask, and 20 mL 20 wt% NaOH solution was 

then slowly added under stirring over a period of 20 minutes. After that, 100 mL formalin (37 
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wt%) was added to the solution, and the mixture was heat-treated at 70 ºC for 1 h. The pH of the 

mixture was adjusted to 7.0 after cooling down to room temperature naturally. Water was then 

eliminated under vacuum at a temperature below 50 ºC, and the obtained product (resol solution) 

was dissolved in ethanol (40 wt%).  

 The mesoporous-carbon-silica composite monoliths were prepared via evaporation-

induced coating self-assembly (EISA). In a typical synthesis, 16 g F127 triblock copolymer was 

dissolved in a mixture of ethanol (82 mL) and 0.2 M HCl (10 mL), and stirred for 1 h at 40 ºC. 

Then, the resol solution was slowly added to this solution under stirring for 10 min, followed by 

the addition of 20.8 g tetraethyl orthosilicate (TEOS), and stirring was continued for 2 h at 

ambient temperature. The obtained solution was poured onto polyurethane (PU) foam. The air 

bubbles inside the PU foam were eliminated by regularly squashing the foam with a glass rod 

during the infusion process. The infused PU foam was turned constantly for 5–8 h to vaporize the 

solvent. Then, the PU foam was heated at 100 ºC for 20 h in an oven for further 

thermopolymerization. The calcination was carried out at 900 ºC for 3 h under flowing N2, with 

heating rates of 1 ºC min-1 below 600 ºC and 5 ºC min-1 above 600 ºC, so that a mesoporous 

composite was obtained. Then, the resultant composite was washed in boiled NaOH solution (2.5 

M) to remove the silica in order to obtain mesoporous carbon. Surface modification of the 

mesoporous carbon was performed in the following way: 1 g mesoporous carbon was added into 

100 mL HNO3 (20 wt%) and stirred for 3 h at 80 ºC. The resultant product was recovered by 

filtration and washed with deionized water until the filtrate pH was 7. Then, the product was 

added into 100 g of H2O2 30 wt% solution and stirred at room temperature for 30 min, after 

which, the stirring was continued at 60 oC for 1 h. Finally, the product was obtained by filtration, 

washed thoroughly with water, and dried at 80 oC for 12 h. 
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Preparation of V2O5/mesoporous carbon 

 V2O5 was prepared by the sol method by stirring 0.5 g V2O5 powder into 50 mL H2O2 (30 

wt%) for 24 h at room temperature [50]. Then, 0.2 g mesoporous carbon was dispersed into the 

V2O5 sol, and the mixture was stirred for 1 h. After that, the mixture was ultrasonicated for 3 h at 

room temperature. The precipitate was filtered and washed with distilled water and ethanol. Then, 

the solvent was removed by drying at 120 ºC for 12 h. The resultant product (denoted as V2O5/mc 

before sintering) was divided into three portions: the first portion was reserved without further 

treatment, another portion was sintered at 550 ºC in air atmosphere for 2 h with a 5 ºC min-1 

heating rate to burn away the carbon to produce V2O5 nanoparticles (denoted as V2O5 np), and the 

third portion was sintered at 300 oC for 5 h in air atmosphere (denoted as V2O5/mc). 

 

Characterisation 

 The specific surface area (determined by the Brunauer-Emmett-Teller (BET) method) and 

nitrogen adsorption-adsorption isotherms of samples of mesoporous carbon and V2O5/mc before 

sintering were measured in order to observe the effects of the insertion process on the properties 

of the mesoporous carbon. V2O5/mc before sintering was examined by transmission electron 

microscopy (TEM; JEOL 2010 and JEOL ARM-200F) in order to determine whether the insertion 

process of V2O5 into the mesoporous carbon was successful or not. 

 All the resultant products were characterised by X-ray diffraction (XRD; GBC MMA 

Diffractometer, Cu Kα radiation, λ = 1.5406 Å). The content of V2O5 in the V2O5/mc was 

investigated by thermogravimetric analysis (TGA; Mettler Toledo TGA/DSC1), which was taken 

into account in the battery testing. For electrochemical performance testing, working electrodes 

were prepared by mixing 85 wt% active material, 6 wt% conductive agent (carbon black, Super-P-

Li), and 9 wt% polyvinylidene difluoride (PVDF) binder (Sigma-Aldrich) in N-methyl-2-

pyrrolidinone (NMP) to form a homogeneous slurry. The slurry was uniformly pasted onto 
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aluminium foil and dried in a vacuum oven at 120 °C for 12 h. Electrochemical cells (CR2032 

coin type) containing the working electrode and Li foil as the counter and reference electrode 

were assembled in an Ar-filled glove box (Mbraun, Unilab, USA). 1 M LiPF6 in a 3:4:3 (v/v) 

mixture of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC), 

with 5% fluoroethylene carbonate (FEC) additive was used as the electrolyte. The galvanostatic 

charge-discharge measurements were performed on a Land CT2001A battery tester.  

 

3. Results and discussion 

 

Fig. 1 presents the nitrogen adsorption–desorption isotherms and the pore size distribution 

curves of the mesoporous carbon (mc) and V2O5/mc composites before sintering. As can be seen 

in Figure 1(a), N2 sorption isotherms of both samples show hysteresis and therefore represent 

type-IV behaviour, according to the IUPAC classification, indicating mesoporous structure. Fig. 

1(b) reveals that the main pore size of the mesoporous carbon (mc) is about 3 nm, and the pore 

size decreases to 2-3 nm after insertion of V2O5. This is consistent with the BET surface area and 

total pore volume data for the mesoporous carbon and the V2O5/mc before sintering, as 

summarized in Table 1. The BET surface area (SBET) of the V2O5/mc before sintering is decreased 

significantly compared to that of mesoporous carbon matrix alone, which are calculated to be 77.2 

and 874 m2 g-1, respectively. This clearly indicates that the V2O5 nanoparticles have filled most of 

the pores in the mesoporous carbon. The total pore volumes of the mc and the V2O5/mc composite 

are 0.76 and 0.06 cm3 g-1, respectively which also demonstrates that the V2O5 nanoparticles block 

the pore channels. 

 The TEM images and energy dispersive spectroscopy (EDS) results confirm the dispersion 

of the V2O5 particles in the pores of the mesoporous carbon. Fig. 2(a) shows the highly ordered 

mesoporous carbon in the mesoporous carbon sample. Scanning transmission electron microscope 
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(STEM) images of V2O5/mc before sintering are presented in Fig. 2(b) and (c), which are in bright 

field (BF) and annular dark field (ADF) mapping mode, respectively. Amorphous structures of 

carbon and lattice fringes of V2O5 are observed in the BF mode figure. In the ADF mapping 

mode, the dark contrast is from the pores of carbon without any V2O5 particles, while the light 

contrast reflects the very fine particles of V2O5 in the occupied pores of mesoporous carbon. The 

EDS spectrum in Fig. 2(d) of the area in Fig. 2(b) and (c) confirms the presence of V2O5 in the 

sample. 

 We have applied two strategies to prevent the coating of V2O5 on the carbon. Firstly, the 

V2O5 was dissolved in H2O2 to form a V2O5 sol. Secondly, due to the capillary effect of the 

mesopores and the applied ultrasonication, the majority of V2O5 can be sucked into the pores of 

the mesoporous carbon. BET test results have confirmed the insertion of the V2O5 particles into 

the pores of the carbon. The TEM image in Figure 2(b) shows some light contrast representing 

pores in the carbon and some dark contrast representing V2O5 in the occupied pores, confirming 

that our strategies have been successful. 

 

 

 

Figure 1. (a) Nitrogen adsorption-desorption isotherms; (b) pore size distributions of mesoporous 
carbon (mc) and V2O5/mc before sintering. 
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Table 1. BET surface area and total pore volume per gram of the mesoporous carbon and the 
V2O5/mc before sintering. 
 

Sample SBET (m2 g-1) Vpore (cm3 g-1) 

Mesoporous carbon (mc) 874 0.76 

V2O5/mc before sintering 77.2 0.06 

  

 

Figure 2. (a) TEM image of mesoporous carbon sample; (b) STEM image of V2O5/mc before 
sintering in BF mapping mode; (c) STEM image of V2O5/mc before sintering in ADF mapping 
mode (with dark contrast representing pores of carbon, light representing pores + V2O5 particles); 
(d) EDS spectrum of the area in (b) and (c) (with the Cu peak coming from the TEM sample 
holder). 
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 The reactions of V2O5 powder and H2O2 in the order used to make V2O5 sol can be 

described by the following reactions [39]: 

xV2O5  +  4xH2O2 + yH2O  →  2x[VO(O2)2]- + 2xH+ + (3x + y)H2O ……………………………(1) 

2x[VO(O2)2]- + 2xH+ + (3x + y)H2O  → (2 x- a)[VO(O2)2]- + a[VO(O2)]+ + 2(x- a)H+ +  

0.5aO2↑ + (3x + y + a)H2O ...…………………………………………………………………...(2) 

(2 x- a)[VO(O2)2]- + a[VO(O2)]+ + 2(x- a)H+ + 0.5aO2↑ + (3x + y + a)H2O   →  c[VO2]+ + 

(2x - c- 10b)[VO(O2)]+ + b[HnV10O28](6-n)- + (x + 0.5c + 5b)O2↑ +  

(4x + y - 0.5nb)H2O [n = (16b - 2x)/b] …………………………..…………………………..….(3) 

c[VO2]+ + (2x - c- 10b)[VO(O2)]+  +  b[HnV10O28](6-n)-  +  (x + 0.5c + 5b)O2↑  +  (4x + y - 

0.5nb)H2O [n = (16b - 2x)/b]     →     2x - 10d)[VO2]+  +  d[HnV10O28](6-n)- +  2xO2↑ +  (4x + y - 

0.5nd)H2O[n = (16d -  2x)/d] ………………………………………..……………………...…..(4)  

2x - 10d)[VO2]+  +  d[HnV10O28](6-n)- +  2xO2↑ +  (4x + y - 0.5nd)H2O[n = (16d -  2x)/d] →  

xV2O5·[4 + (y/x)]H2O + 2xO2 ↑  ……………………………...…………………………………(5) 
 

 
xV2O5·[4 + (y/x)]H2O represents the resulting vanadium pentoxide sol. In lithium ion battery tests, 

the resulting vanadium pentoxide sol sample will suffer from poor electrochemical performance 

due to the crystal water, and therefore, a sintering process at 300 oC for 5 h was applied to the 

V2O5/mc before sintering sample to further remove the crystal water. Fig. 3 (a) presents the XRD 

patterns of V2O5/mc, V2O5 np, and V2O5/mc before sintering. The XRD patterns of V2O5/mc and 

V2O5 np indicate that all the diffraction peaks are in good agreement with the standard pattern of 

orthorhombic V2O5 (space group: Pmnm (No. 59), a = 1.1516 nm, b = 0.3565 nm, c = 0.4372 nm, 

JCPDS card No. 41-1426). In contrast, the pattern of V2O5/mc before sintering shows two 

diffraction peaks at 26.2º and 51.3º. The weakness and broadness of the peaks indicate the poor 

crystallization and small crystallite size of the vanadium pentoxide. It can be concluded that 

ultrasonic treatment inhibits the aggregation of vanadium pentoxide.  

 The content of V2O5 in the V2O5/mc sample (after sintering) was examined by 

thermogravimetric analysis (TGA) in air (Figure 3 (b)). As illustrated in the Figure, the weight 

loss before 150 ºC can be assigned to the evaporation and removal of moisture. When the heating 
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was continued to 550 ºC, the weight loss could be determined to be carbon removal. The content 

of V2O5 in the V2O5/mc sample after sintering is 90 wt%, which was taken into account in the 

battery testing. 

 The rate capabilities of V2O5/mc and V2O5 np were measured at various current densities 

between 2 and 4 V. Figure 4(a) presents the rate capability of V2O5/mc, which is better than that 

of V2O5 np. The V2O5/mc electrode displays better performance than the V2O5 np electrode at all 

current densities. The capacities of V2O5/mc are 291, 265, and 247 mA g-1, at current densities of 

100, 250, and 500 mA g-1, respectively. In contrast, the capacity of V2O5 np rapidly decreases as 

the current density is increased. It shows the capacities of 275, 235, and 182 mA g-1 at current 

densities of 100, 250, and 500 mA g-1, respectively. After a deep cycling at 5 A g-1, the V2O5/mc 

electrode can almost recover its initial capacity when the  current density is  returned  to 100 mA 

g-1. Evidently, the V2O5/mc sample demonstrates higher capacity at every current density. The 

V2O5/mc electrode also shows improved rate capability performance compared with those of 

V2O5/rGO [40], V2O5/PEDOT/MnO2 nanowire [41], multiwalled CNT- V2O5 [39], V2O5 

nanosheet /RGO [42], and graphene nanoribbon / V2O5 [43], as shown in Table 2.  

 The cycling performances of V2O5/mc and V2O5 np samples at a current density of 500 

mA g-1 are shown in Figure 4(b). The capacity retention of V2O5/mc is considerably higher than 

that of V2O5 np. A better reversible capacity of 163 mAh g-1 is maintained after 100 cycles, which 

represents a capacity loss of 40 %, while the capacity of V2O5 np electrode declines to around 50 

% after 100 cycles. V2O5/mc with capacity of 198 mAh g-1 after 50 cycles also shows comparable 

or better performance in comparison with several V2O5/carbon composites from recently 

published works (Table 2), for example, V2O5/rGO (105 mAh g-1
 at 5700 mA g-1) [40], 

V2O5/PEDOT/MnO2 nanowire (166 mAh g-1after 40 cycles at 50 mA g-1) [41], multiwalled CNT-

V2O5 (199 mAh g-1 at 100 mA g-1) [39], V2O5 nanosheet /RGO (150 mAh g-1 at 600 mA g-1) [42], 

and graphene nanoribbon / V2O5 (230 mAhg-1 at 30 mA g-1) [43].  
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Figure 3. (a) XRD patterns of V2O5 nanoparticles (V2O5 np) and of V2O5/mesoporous carbon 
(V2O5/mc) before and after sintering; (b) TGA curve of V2O5/mesoporous carbon (V2O5/mc) after  
sintering 
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 We have also synthesized a composite of V2O5 nanoparticles and mesoporous carbon 

made by simple mixing (denoted as V2O5/mc sm) for comparison. Its rate capability  and cycling 

performance, as shown in Figure 4(a) and (b), are not as good as those of V2O5/mc produced by 

the ultrasonication technique. The lower rate capability and cycling performance indicate that the 

mesoporous structure plays an important role in Li+ ion transport that the performance will be 

improved much more by the insertion of V2O5 particles into the pores.   

 
 

 
 
 
Figure 4. (a) Rate capability of V2O5/mc, V2O5 n, and V2O5/mc sm at various current densities; 
(b) cycling performance of V2O5/mc, V2O5 np, and V2O5/mc sm in the voltage range of 2.0−4.0 V 
at the current density of 500 mA g-1; (c) charge/discharge voltage profiles of V2O5/mc at the 
current density of 100 m g-1 for the selected cycles indicated; (d) electrochemical impedance 
spectra of V2O5/mc and V2O5 np  electrodes after 5 charge/discharge cycles and the equivalent 
circuit used to fit the impedance data (inset). 
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Table 2.  Comparison of our and recently published works on V2O5/Carbon composites for 
lithium ion batteries. 
 

Electrode 
Description 

 

Rate Capability Specific Capacity after 
50 cycles 

Reference 

V2O5/rGO 220 mAh g-1 at 190 mA g-1 
180 mAh g-1 at 950 mA g-1 
 

105 mAh g-1
 at 5700 mA 

g-1 
[40] 

V2O5/PEDOT & 
MnO2 nanowire 

164 mAh g-1 at 100 mA g-1 
48 mAh g-1 at 500 mA g-1 
 

166 mAh g-1after 40 cycles 
at 50 mA g-1 

[41] 

Multiwalled CNT- 
V2O5 

250 mAh g-1 at 200 mA g-1 
221 mAh g-1 at 400 mA g-1 
193 mAh g-1 at 600 mA g-1 
 

199 mAh g-1  at 100 mA g-

1 
[39] 

V2O5 nanosheet 
/RGO  

200 mAh g-1 at 600 mA g-1 
138 mAh g-1 at 3000 mA g-1 
 

150 mAh g-1 at 600 mA g-1 [42] 

Graphene 
nanoribbon/ V2O5 
 

200 mAh g-1 at 300 mA g-1 
165 mAh g-1 at 600 mA g-1 

230 mAhg-1 at 30 mA g-1 [43] 

This work  291 mAh g-1 at 100 mA g-1 
265 mAh g-1 at 250 mA g-1 
247 mAh g-1 at 500 mA g-1 

198 mAh g-1 at 500 mA  
g-1 

 

  

 Figure 4(c) presents charge/discharge profiles of V2O5/mc at a current density of 500 mA 

g-1 in the voltage window of 2.0−4.0 V. There are three plateaus at about 3.3, 3.1, and 2.2 V in the 

first cycle, which can be attributed to the phase transitions during Li+ ion intercalation from α-

LixV2O5 (x< 0.01) to ε-LixV2O5 (0.35 < x < 0.7), from ε-LixV2O5 to δ-LixV2O5 (x < 1), and from δ-

LixV2O5 to γ-LixV2O5 (x > 1), respectively [39]. Three plateaus corresponding to the Li+ ion 

deintercalation processes are also occurred on the charge curve. Figure 4(d) shows the Nyquist 

plots of V2O5/mc and V2O5 np after five cycles. In the equivalent circuit (inset), RΩ and Rct reflect 

the ohmic resistance and the charge transfer resistance, respectively. CPE is the constant phase-

angle element, involving double layer capacitance; and W is the Warburg impedance, representing 

the solid-state diffusion of Li+ ions into the bulk of the active material. The charge transfer 

resistance, Rct, for V2O5/mc (397 Ω cm-2) is less than that for V2O5-np (604 Ω cm-2), indicating 
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improved charge transfer in the V2O5/mc electrode. The reason for the better performance of 

V2O5/mc is likely to be because the V2O5 is in a composite with mesoporous carbon, which can 

provide fast transport channels for lithium ions.  

 

4. Conclusions 

 We have successfully fabricated a V2O5/mesoporous carbon composite by using an 

ultrasound assisted method followed by sintering. The mesoporous structure of the carbon 

facilitates the electrolyte diffusion into the bulk of the electrode material and hence provides fast 

transport channels for Li+ ions. As a cathode material for LIBs, V2O5/mesoporous carbon shows 

better performance than V2O5 nanoparticles, suggesting that V2O5/mesoporous carbon composite 

could be used as a promising cathode material for lithium ion batteries. 
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