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Contrasting topoclimate, long-term macroclimatic averages, and habitat
variables for modelling ant biodiversity at landscape scales

Abstract
Spatial modelling is part of the solution for incorporating insects into conservation policy. Uptake, however,
rests on identifying robust environmental predictors. Coarse-grained climate models based on long-term
averages and similarly coarse environmental features may not be adequate, especially at regional scales where
most planning is done. Here, we test whether topoclimatic variables, which are derived from local-scale
climate forcing factors, are more important for structuring ant assemblages.

We quantified ant richness and species composition at 86 sites across a large (200 x 300 km) temperate region
of southeast Australia, and tested the explanatory power of three groups of environmental variables: (i)
topoclimatic variables, (ii) long-term climatic averages modelled from global data, and (iii) habitat features,
namely, habitat complexity, soil pH, and soil texture. Generalised Additive and Generalised Dissimilarity
Models were used to test predictors.

In univariate models, the topoclimatic estimator of maximum temperature (95maxT) explained the largest
amount of variance in both richness and compositional turnover (20% and 24% of deviance respectively). The
plot for richness indicated a positive but decelerating function of 95maxT. This was consistent for two of three
habitat types. Habitat complexity was the most important predictor in cleared habitat (28%).

While a topoclimatic variable was a strong predictor of ant biodiversity across the landscape, this was not a
'magic bullet'. Other predictors such as complexity may be more applicable in certain habitat types. We
concluded that tailored predictors are needed for landscapes with a mosaic of different land use.
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Abstract 15 

1. Spatial modelling is part of the solution for incorporating insects into conservation 16 

policy. However, uptake rests on identifying robust environmental predictors. Coarse-17 

grained climate models based on long-term averages and similarly coarse 18 

environmental features may not be adequate, especially at regional scales where most 19 

planning is done. Here we test whether topoclimatic variables, which are derived from 20 

local-scale climate forcing factors, are more important for structuring ant 21 

assemblages. 22 

2. We quantified ant richness and species composition at 86 sites across a large (200 × 23 

300km) temperate region of southeast Australia, and tested the explanatory power of 24 

three groups of environmental variables: (i) topoclimatic variables, (ii) long-term 25 

climatic averages modelled from global data, and (iii) habitat features, namely habitat 26 

complexity, soil pH and soil texture. Generalised Additive and Generalised 27 

Dissimilarity Models were used to test predictors. 28 

3. In univariate models, the topoclimatic estimator of maximum temperature (95maxT) 29 

explained the largest amount of variance in both richness and compositional turnover 30 

(20% and 24% of deviance, respectively). The plot for richness indicated a positive 31 

but decelerating function of 95maxT. This was consistent for two of three habitat 32 

types. Habitat complexity was the most important predictor in cleared habitat (28%). 33 

4. While a topoclimatic variable was a strong predictor of ant biodiversity across the 34 

landscape, this was not a ‘magic bullet’. Other predictors such as complexity may be 35 

more applicable in certain habitat types. We concluded that tailored predictors are 36 

needed for landscapes with a mosaic of different land use. 37 

Key words: climate, energy limitation hypothesis, Formicidae, Generalized Dissimilarity 38 

Modelling, habitat complexity 39 

40 
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Introduction 41 

Twenty or so years ago, advocacy for invertebrates in conservation initiatives began to build 42 

(e.g. see perspectives of Fry & Lonsdale, 1991; Kremen et al., 1993; Samways, 1993). 43 

However, while there have been a number of developments in taxonomy, statistical analysis, 44 

data compilation, and science communication, there are still impediments to incorporating 45 

invertebrates in conservation policy (Leather, 2013; Cardoso et al., 2011). Spatial modelling 46 

techniques that allow mapping in previously unsurveyed locations have been proposed as part 47 

of the solution (see Cordoso et al., 2011 and refs within). Models can then be used for 48 

conservation planning (e.g. Cabeza et al., 2010). However, the reliability of predictive 49 

mapping relies on the strength of relationships between the variable(s) of interest and 50 

climatic, land-use or other variables that are used as predictors.  51 

Predictive mapping also requires that data on predictors exist in the unsurveyed 52 

locations and that they are appropriately scaled to reflect genuine conditions experienced 53 

across the landscape of interest. Acquiring data meeting both requirements is problematic for 54 

invertebrates because most invertebrates perceive and respond to the environment at spatial 55 

and temporal scales that are far smaller than the typical scales of human perception (see 56 

Virtual Issue: ‘Scaling conservation management actions to the fine-grained ecological 57 

responses of invertebrates’ of Insect Conservation and Diversity). Conservation planning 58 

strategies using climate variables extracted from widely used and freely available coarse-59 

grained models and future climate-simulations using atmosphere-ocean general circulation 60 

models (e.g. WorldClim; www.worldclim.org) for instance may suit many plants and 61 

vertebrates (e.g. Lawler et al., 2009 although see Ashcroft et al. in press), they are likely to be 62 

ineffective for invertebrates. It is important to note that the issue is not simply ‘a scale issue’ 63 

that can simply be resolved by using a climate model with a small grid cell size. It is more 64 

that the interpolation method to derive many climate grids are often interpolated from 65 
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weather stations using only elevation and geographical location (e.g. Bioclim and 66 

WorldClim; Houlder et al., 2003; Hijmans et al., 2005). 67 

The argument for which taxa that coarse-scale grids are more appropriate for may be 68 

irrelevant because there is increasing recognition that coarse-scale bioclimatic envelope 69 

models are of limited use for environmental management as most planning decisions are 70 

made within individual regions (Ferrier et al., 2002; Lookingbill & Urban, 2003; Cabeza et 71 

al., 2010). Greater emphasis on producing fine-scale models using a broader range of 72 

ecologically relevant variables have been called for (Austin & Van Niel, 2011). One method 73 

gaining popularity for achieving this in biodiversity modelling is through the use of 74 

topoclimate, that is, climate models that consider local climate forcing factors such as 75 

exposure to prevailing winds, slope and aspect (e.g. Ashcroft et al., in press; Letten et al., 76 

2013; Ashcroft et al. 2011).  77 

Evidence to support the notion that topoclimate is key for understanding invertebrate 78 

patterns is mounting. Gollan et al., (2013) for example, found that body size of the meat ant, 79 

Iridomyrmex purpureus, was positively correlated with temperature (conforming to the so-80 

called ‘converse Bergmann cline’; Mousseau, 1997), but was not detected using coarse-81 

grained, long-term climatic averages. For butterflies in a mountainous region in central Spain, 82 

Illán et al., (2010) found that climate models that were modelled using local climate forcing 83 

factors outperformed models based purely on land cover in 72% of occurrence models and 84 

66% of abundance models. Importantly, these studies further support the premise that climate 85 

is a crucial environmental parameter for controlling species distributions, especially for 86 

ectotherms (Moreno-Rueda & Pizarro, 2007; Aragόn et al., 2010). 87 

Another important issue for any modelling lies in the choice of predictor(s). 88 

Ultimately, models should be based on an understanding of the environmental processes 89 

which control species distribution. Without careful consideration and selection of predictors 90 
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being tested, there is a risk of detecting spurious correlations with variables that play no part 91 

in environmental processes that control species distribution (Austin & Meyers, 1996). This 92 

can be challenging for species that have not been studied in detail, where distribution data is 93 

absent or sparse, or when collective properties (e.g. species richness) are used. These are the 94 

realities of many invertebrate datasets, especially the hyper-diverse groups. In the absence of 95 

detailed ecological studies for each and every species and when collective properties are 96 

used, ecological theory and principles, and empirical relationships founded in other studies or 97 

taxonomic groups can provide clues as to the important predictors and the general shape of 98 

the resulting response. 99 

With the prospect of increased climatic variability and increased temperatures in the 100 

future (IPCC, 2008), there has been recent interest in these two parameters and the theory 101 

underlying hypothesised spatial patterns. For example, at small scales, climate variability can 102 

stabilize competition and thus promote diversity by increasing the number of temporal niches 103 

available within a fixed space (Chesson, 2000). Contrarily, too much environmental 104 

variability can be detrimental to population persistence because of stochastic extinction 105 

(Boyce et al., 2006). Others have suggested a unification of these models with richness 106 

peaking at intermediate levels of variability (Adler & Drake, 2008). For absolute 107 

temperatures, hot temperatures generally mean more species, with studies on ants showing a 108 

positive correlation between richness and temperature (Sanders et al., 2007, Kaspari et al., 109 

2000a, Kaspari et al. 2000b). The positive correlation is hypothesised to be the result of 110 

energy limitation, where energy puts constraints on both the density and the number of 111 

species that can be supported (Kaspari et al., 2000b). 112 

Aside from relationships with climate, spatial patterns in diversity have also been 113 

linked to habitat characteristics, in particular habitat complexity. Attributed to MacArthur and 114 

MacArthur (1961), the habitat heterogeneity hypothesis posits that structurally diverse 115 
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habitats accommodate more species due to an increasing number of spatial niches. Numerous 116 

studies in a range of ecosystems have supported this by showing a positive relationship 117 

between diversity and habitat complexity (see review by Kovalenko et al., 2012). However, 118 

this is not always the case for terrestrial invertebrates where soil properties like hardness and 119 

texture may be more influential (e.g. Gollan et al., 2009). Links between the soil and 120 

invertebrate organisms are also appreciated for conservation (Lal, 1991), and the impacts of 121 

soil management on invertebrates are well studied (e.g. Sharley et al., 2008). 122 

In this study we took a correlative approach to investigate the predictive power of 123 

temporal climate variability, absolute temperatures and habitat characteristics on spatial 124 

patterns of ant diversity. Ants are an ideal invertebrate study group because they are 125 

ubiquitous, ecologically important and easy to sample. Furthermore, ant richness and 126 

community composition can provide insight into key ecological processes and interactions 127 

such as nutrient cycling (Andersen & Sparling, 1997) and seed dispersal (Lomov et al., 128 

2009). Because many different species can co-exist in the one place, they are the ideal model 129 

organisms for testing hypotheses in community ecology and, if strong and robust predictors 130 

can be identified, are a good bioindicator group for integrating into conservation policy and 131 

planning initiatives. Indeed, ants have been the bioindicator of choice for assessing the 132 

progress of ecological restoration and conservation strategies as part of land management 133 

more generally (Gollan et al., 2011; Majer et al., 2007; Andersen & Majer, 2004; Andersen, 134 

1997). 135 

We collected ants at 86 sites across a large (~300 km × 200 km) and topographically 136 

complex region in southeast Australia and took advantage of a topoclimatic model that had 137 

been derived from temperature data collected at the same sampling sites (Ashcroft & Gollan, 138 

2012). This novel and unique dataset allowed consideration of climatic conditions that are 139 

closer to what the ants actually experience as compared to the standardised Bureau of 140 
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Meteorology (BoM) weather stations. Indeed, BoM data for investigating biodiversity-141 

climate relationships have been criticised because: (1) instruments are sheltered in 142 

Stephenson screens at a height of 1.5–2 m and so do not reflect the conditions relevant for 143 

ground dwelling fauna, germinating seeds, tender saplings or ecological processes (Geiger 144 

1971), and (2) observations are made on largely flat, unvegetated land and do not reflect the 145 

environments (e.g. gorges/forests) that many species actually live in (Geiger 1971; Suggitt et 146 

al. 2011). The strength of relationships with topoclimate variables were contrasted against a 147 

set of long-term climate data modelled using weather station data, as well as a set of habitat 148 

variables, namely: soil pH, soil texture, elevation and habitat complexity. While we 149 

acknowledge that there may be other environmental variables limiting ant distributions such 150 

as water table depth (see Baccaro et al., 2013; Tschinkel et al., 2012), we were constrained 151 

by the availability of data for our study area. 152 

Material and Methods 153 

Study region and study sites 154 

Our 86 study sites were spread across the greater Hunter Valley region in New South Wales, 155 

Australia (32°31'16"S 150°27'50"E; Fig. 1 inset) and chosen to coincide with a previous a 156 

study that developed fine-resolution topoclimatic grids across the wider region (Ashcroft & 157 

Gollan, 2012 more detail below). Ashcroft and Gollan (2012) achieved this by placing 158 

miniature temperature loggers in a range of vegetation types and aspects in an attempt to 159 

capture the widest variation in local climate conditions. 160 

The study area as a whole (~300 km × 200 km) is topographically complex including 161 

deep gorges and rugged mountainous terrain particularly in and around Barrington Tops, 162 

Wollemi and Yengo National Parks. Low rolling hills with shallow broad valleys skirt the 163 

mountainous areas that eventually meet the relatively flat, surrounding plains and valley 164 

floors. Elevation ranges from sea level to around 1600 m in Barrington Tops National Park 165 
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(Fig. 1). Mostly on the valley floor and at low elevations, there is a wide range of production 166 

land for cattle, cropping and mining. A wide range of natural ecosystem types are also 167 

represented, including coastal forests and heathland, temperate and sub-tropical rainforests, 168 

high-elevation peat swamps and open grassy woodlands (Peake, 2003). 169 

Ant diversity 170 

Ants were sampled using five pitfall traps per site (cylindrical plastic jars, 45 mm diameter, 171 

and 105 mm deep). However, only four traps were used in analyses due to disturbance of a 172 

single trap at several sites. Trapping was conducted in January 2012 (southern hemisphere’s 173 

mid-summer) and chosen to coincide with peak ant activity. Traps at each site were 174 

positioned at least 10 m apart along a straight line transect, although traps deviated from a 175 

straight line at some sites due to obstructions by trees, boulders, fallen logs etc. In nearly all 176 

cases, the centre trap was within 2m of where the data logger was positioned (see below). All 177 

traps were: (1) one-third filled with ethylene glycol as preservative; (2) placed flush to the 178 

ground surface; and (3) covered by an upturned weigh boat held above the opening of the trap 179 

with wooden food skewers. The cover acted to protect the trap from rainwater and debris. 180 

Because of the large number of sites and distances covered, all traps could not be 181 

opened on the same day. Traps were subsequently opened in a sequence over a period of six 182 

days (between 7
th

 and 12
th

 January) and collected in the same sequence between 17
th

 and 22
nd

 183 

January. Thus all were operating for 10 days. Material was processed at laboratories at the 184 

University of Technology, Sydney, where ants were identified to genus, and then to species 185 

where possible using relevant keys (Shattuck, 2000; CSIRO 2013). Species that could not be 186 

identified were assigned a morphospecies. All taxonomic assignments are hereafter referred 187 

to as ‘species’ regardless of whether they were assigned to a species or morphospecies. Ant 188 

diversity at a site was considered using two collective properties: species richness (the 189 
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number of different species) and community composition. All specimens were deposited at 190 

the Australian Museum, Sydney. 191 

Topoclimatic variables 192 

The topoclimatic estimators of temperature extremes: (1) 95
th

 percentile of maximum 193 

temperature (hereafter ‘95maxT’) and (2) 5
th

 percentile of minimum temperature (hereafter 194 

‘5minT’), were calculated for each of the 86 sites extracted from the models of Ashcroft and 195 

Gollan (2012). In summary, these models using a 25 m resolution raster grids were produced 196 

from temperature recorded by miniature data loggers (DS1923 hygrochron iButtons by 197 

Maxim) at 150 sites for 666 days (between June 2009 and May 2011) across the study region. 198 

A regional regression approach used the local-scale forcing factors: elevation, distance to 199 

coast, canopy cover, latitude, cold-air drainage, and topographic exposure to prevailing winds 200 

as predictors. By utilising percentiles, and since these data were measured at hourly intervals 201 

over a two year period, it can be assumed that the 95maxT and 5minT captured the hottest 202 

and coldest conditions at each site (respectively), even if they did not occur simultaneously or 203 

consecutively. Consistent patterns have since been confirmed with data collection over a 204 

subsequent two year period (M.B.A. & J.R.G., unpublished data). We chose to focus on these 205 

two gradients because they are likely to have more relevancy than quantities such as mean 206 

annual temperature for ecological systems (Pimm, 2009). 95maxT was largely influenced by 207 

canopy cover and exposure. 5minT in contrast, was largely determined by cold air drainage, 208 

which is common under clear skies, low wind and anticyclonic conditions. Full details of the 209 

topoclimatic models and analytical procedures can be found in Ashcroft & Gollan (2012). 210 

 To calculate variability in each climate parameter, variation was initially partitioned 211 

into three time-scales: (1) intra-seasonal variation; (2) intra-annual variation; and (3) inter-212 

annual variation. An overall measure of variability for each (hereafter ‘v95maxT’ and 213 
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‘v5minT’) was then calculated as the average of the three time-scales. Full details of this 214 

procedure can be found in Ashcroft et al. (2012). 215 

Long-term macroclimate variables 216 

The ANUCLIM 6.1 package (Xu & Hutchinson, 2011) was used to estimate five 217 

macrorclimatic variables corresponding to the geographic location of each site using a digital 218 

elevation model (DEM) with a 25 m cell size. ANUCLIM uses decades of monthly mean 219 

temperature and rainfall values from official bureau of meteorology weather stations (30 in 220 

the study region) and uses latitude, longitude and elevation to interpolate climate variables 221 

using thin-plate smoothing splines. Hereafter, we refer to these variables as ‘macroclimate’ 222 

because local scale climate forcing factors such as aspect, canopy cover and exposure are not 223 

considered, and therefore only broad-scale trends are captured (after Stoutjesdijk and 224 

Barkman 1992). This same method is used to derive the freely available and widely used (as 225 

discussed above) variables as part of the WorldClim database (see www.worldclim.org). The 226 

variables used for analyses were: mean annual temperature (hereafter ‘BIO1’); mean diurnal 227 

range (hereafter ‘BIO2’); maximum temperature of the warmest month (hereafter ‘BIO5’); 228 

minimum temperature of the coldest month (hereafter ‘BIO6’), and mean annual rainfall 229 

(hereafter ‘BIO12’). 230 

Habitat attributes 231 

 Habitat attributes considered were two soil properties (pH and soil texture), habitat 232 

complexity and elevation. Soil pH was determined at each site from a bulked sample using a 233 

colorimetric pH test kit (Manutec Pty. Ltd.). The bulked sample was the product of 234 

thoroughly mixing the excavated material from the holes dug for the pitfall traps (as 235 

described above). Soil texture using the bulked sample was determined using the protocols of 236 

Department of Environment and Primary Industries Victoria (Anon., 2013). In brief, the 237 

method involves moistening a sample of soil, manipulating the bolus in the palm of the hand 238 
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and then comparing the feel and behaviour against a texture category. There were 21 ordinal 239 

categories ranging from sand to heavy clay with the order reflecting decreasing amounts of 240 

coarse sand particles and an increasing amount of find clay particles. The nominal categories 241 

were re-assigned the ordered nominal values to accommodate the regression analyses (see 242 

below). 243 

Habitat complexity was determined using a modification of Coops and Catling 244 

(1997). Here, eight habitat variables (amount of: rock cover, coarse woody debris, and 245 

amount of foliage in six strata [0-25cm; 25cm-1m; 1-2m; 2-5m; 5-10m and >10m]) were 246 

scored using an ordinal scoring system (0–9) where zero denoted an absence and nine was at 247 

maximum. Habitat complexity was then determined by summing the eight individual 248 

components. 249 

Statistical analyses 250 

For species richness, we produced a Generalized Additive Model (Hastie & 251 

Tibshirani, 1990) using the mgcv package (Wood, 2013) in R (R Development Core Team 252 

2008) for individual predictors. Each predictor was included as a spline with two degrees of 253 

freedom. This allowed for non-linear response shapes but did not provide enough freedom for 254 

complex responses which may lead to over-fitting. GAMs were fitted to data at all 86 sites. 255 

We then modelled species richness for individual vegetation communities to assess 256 

generalities of relationships (if any). Broad vegetation communities were identified for each 257 

site using a state-wide vegetation layer (200m × 200 m cell size) from the NSW Office of 258 

Environment and Heritage (Keith, 2002). Eight categories were initially identified. So there 259 

were enough data points for analysis some of the initial eight were reduced to three by 260 

combing some categories. ‘Dry sclerophyll forests (grassy subformation)’ and ‘Dry 261 

sclerophyll forests (shrubby subformation)’ were combined to the single category ‘Dry 262 

sclerophyll forests’ (n = 34). ‘Rainforests’, ‘Wet sclerophyll forests (Grassy subformation)’ 263 
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and ‘Wet sclerophyll forests (Shrubby subformation)’ were combined to the single category 264 

‘Wet forests’ (n = 19). The category, ‘Cleared’ (n = 29), were places where the native 265 

vegetation community had been removed or severely modified for land use like grazing and 266 

other intensive agricultural activities. Heathlands and grassy woodlands were not considered 267 

in isolation as there were insufficient data points (n = 1 and 3, respectively). Vegetation 268 

communities identified using the vegetation layer were field validated at the time traps were 269 

collected. The percent deviance explained and Akaike Information Criterion (AIC) were used 270 

to assess the strength of relationships among models. The AIC is essentially a goodness of fit 271 

measure that provides a way to compare the relative quality of a statistical model. Given a set 272 

of candidate models, the ‘preferred’ model has the smaller AIC value (Akaike, 1971).  273 

Generalized dissimilarity modelling (GDM; Ferrier et al., 2002) was used to analyse 274 

spatial patterns of turnover in community composition and to determine the relative 275 

explanatory power of each environmental variable. GDM is an extension of matrix regression 276 

but overcomes the two different types of nonlinearity commonly encountered in ecological 277 

data: (1) the curvilinear relationship between increasing ecological distance and observed 278 

compositional dissimilarity between sites; and (2) the variation in the rate of compositional 279 

turnover at different positions along environmental gradients (Ferrier et al., 2007). GDM is 280 

thus suited to invertebrate data sets that are notorious for exhibiting high levels of beta 281 

diversity (i.e. a sizeable number of sites that share no species with one another). 282 

A GDM was fitted using all predictors, which automatically removed environmental 283 

factors not significantly affecting turnover in species composition. A GDM was then 284 

produced for significant predictors independently, and the relative fit for each predictor was 285 

assessed by examining the percentage deviance explained. Response plots were examined to 286 

assess: (1) the total amount of compositional turnover associated with each predictor (as 287 

indicated by the maximum height reached on the y-axis by each function), and (2) the rate of 288 
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compositional turnover, and how this rate varied along each gradient (as indicated by the 289 

slope of each function). 290 

Compositional dissimilarity in all GDMs was calculated using the Bray-Curtis 291 

measure based on presence-absence data. Three-spline basis functions were used for each 292 

predictor. Geographical distance (straight-line) between sites was included as a model term 293 

using the latitude and longitude for each site. This assessed structuring that was potentially 294 

due to spatial autocorrelation. GDMs were produced for the entire dataset only as the sample 295 

size of each habitat type was too small. GDMs were produced using the gdmfunc.1.1 package 296 

(Ferrier & Manion, 2007) in R. 297 

Results 298 

Range in environmental predictors captured   299 

For variables capturing the warm gradients (i.e. max95T and BIO5) and the long term 300 

average temperature (i.e. BIO1), wet forest (WF) sites tended to be coolest, cleared sites 301 

generally warmest and dry sclerophyll forest (DSF) intermediate. However, the ranges 302 

captured for each variable indicated that some WF sites could be similar, or warmer than 303 

some cleared sites (Table 1). For variables capturing cool gradients (i.e. 5minT and BIO6), 304 

the average 5minT within each habitat type indicated cleared habitat tended to be coolest, 305 

WFs warmest, and DSFs intermediate. In contrast, the average of BIO6 showed that WFs 306 

were coolest, while cleared habitat and DSFs were similar. This pattern was the same for 307 

BIO12 (mean annual rainfall), where WFs were wettest and cleared and DSFs similar 308 

(Table 1). 309 

For habitat attributes, WF sites tended to be at highest elevations, while cleared and 310 

DSF sites were at similar elevation. Averages of habitat complexity indicated that complexity 311 

tended to be higher in WFs, lowest in cleared habitat, and intermediate in DSFs, though the 312 

range indicated that some cleared habitat (3 to 28) could be just as complex as WF sites (18 313 
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to 46). While the range in soil pH captured was rather broad (4.5 to 8.0), the mean was 314 

similar across all habitat types (Table 1). The distribution of all environmental variables 315 

across all sites is included as Supplementary material (S1 Figures 1–13). 316 

Species richness models using single predictors 317 

A total of 153 species and 15 016 individuals were collected in the 344 traps (86 sites, 4 traps 318 

per site). Species richness at the site-level ranged from 1 to 23 with a mean (± SD) of 11 319 

species per site (± 4). The distribution of species richness across all sites is included as 320 

Supplementary material (S1 Figures 14). 321 

 Across all habitat types combined and in single predictor GAMs, ‘95MaxT’ explained 322 

the greatest variation in ant species richness (20.3%). This was also the case for DSFs and 323 

WFs (18.3% and 38.9%, respectively). The variable reflecting the long term average of the 324 

maximum temperature of the warmest month (BIO5) was also a fairly strong predictor, 325 

explaining 3.4%, 1.4% and 0.4% less than models for all habitats, WF, and DSFs, 326 

respectively.  For all three models, the partial response plots showed that species richness 327 

increased with increasing maximum temperature (as indicated by 95MaxT) before reaching a 328 

peak with a slight decline (Fig. 2a–c). The most important single predictor in cleared habitat 329 

was ‘Habitat complexity’, which explained 27.6% of the deviance. Each of the long term 330 

climate variables explained around 9% or less of the deviance in species richness (Table 2). 331 

The partial response plot showed increasing richness with increasing values of complexity 332 

(Fig. 2d). 333 

Community composition 334 

Two local climate predictors (‘v95maxT’ and ‘5minT’) and two long term climate predictors 335 

(BIO6 and BIO12) did not significantly affect turnover in species composition and so were 336 

not considered further. The GDM the remaining 10 remaining predictors explained 29.5% of 337 

the deviance in observed species turnover. Fitted functions for individual predictor variables 338 
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showed their relative importance and shape of the response surface (Fig. 3a-j). Comparison of 339 

the maximum heights reached (i.e. y-axis range) by each function indicated that ‘95maxT’ 340 

was the most important single variable (Fig. 3e). This variable in isolation also explained the 341 

greatest percentage of the deviance in observed species turnover (24.4%). The variable 342 

explaining the second highest deviance was BIO5 (16.5%) and the response in turnover 343 

revealed that it was not as important as 95maxT. The fitted functions indicated some 344 

importance of ‘Habitat complexity’ (Fig. 3b) and ‘Elevation’ (Fig. 3f) to spatial turnover. 345 

Discussion 346 

Across a large region comprising different land-use and vegetation types, our results 347 

clearly showed that maximum temperature is an important parameter for explaining spatial 348 

patterns of ant diversity. In-conjunction with topoclimatic models derived using local-scale 349 

climate forcing factors (e.g. Ashcroft & Gollan, 2012) or freely available long-term climatic 350 

data (e.g. www.worldclim.org), the predictive models that are needed for incorporating ants 351 

into conservation planning and policy are conceivable. The finding that warmer sites had 352 

more ant species than cooler sites agrees with other studies examining environmental factors 353 

shaping ant assemblages at local (e.g. Sanders et al., 2007) and global scales (Kaspari et al., 354 

2000a) and thus we are confident that our results are not spurious. 355 

Across all habitat types, and in two of the three single habitat types, ant species 356 

richness increased with maximum temperature before reaching a peak and then decreasing. 357 

For compositional turnover, maximum temperature also had the greatest total effect. While 358 

studies on plants and zooplankton have shown that climate variability plays an important role 359 

in controlling richness gradients (e.g. Letten et al., 2013; Shurin et al., 2010), for ants at least, 360 

we found little justification for its attention when modelling diversity. While community 361 

dynamics and spatial patterns driven by climatic variability seem plausible for explaining 362 

patterns in diversity, our results, along with studies with similar objectives (e.g. Kaspari et 363 
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al., 2000b), indicate that it is questionable as to whether the predictions about variability hold 364 

for terrestrial invertebrates. For these organisms, absolute temperatures may be more 365 

important than variability because it is the available amount of energy that puts constraints on 366 

both the density and the number of species that can be supported (Kaspari et al., 2000b). 367 

Indeed, energy availability has long been considered a fundamental constraint to species 368 

richness (Hutchinson, 1959, Connell & Orias, 1964, although see Currie et al., 2004). 369 

In general, ants are described as ‘thermophiles’ because of their aversion towards cool 370 

moist conditions (Hölldobler & Wilson, 1990). So perhaps it is no surprise that maximum 371 

temperature was the most important variable for explaining patterns of ant diversity. The 372 

aversion for cool moist conditions was clear in our analysis of species richness in wet forests 373 

where maximum temperature explained almost twice the deviance (38.9%) in both dry 374 

sclerophyll forest (18.3%) and all habitats combined (20.3%). In all three cases, species 375 

richness increased with increasing temperature (Fig. 2a-c). The peak of the response varied 376 

between ~38°C and 42°C when all habitat types were combined, which could well represent 377 

the tipping point where energy starts to constrain the number of species that can be supported. 378 

Whether these values are applicable to other regions or for other invertebrate groups requires 379 

more research. Further evidence for such a tipping point could provide vital clues as to the 380 

landscape effects of global warming. With rising global temperatures predicted in the future 381 

(IPCC, 2008), a redistribution of diversity is a real potential, where the cooler areas (which 382 

tend to be species poor) become susceptible to invasion of new species under warmer 383 

conditions (Bertelsmeier et al., 2013; Roura-Pascual et al., 2009). 384 

The exception to the maximum temperature gradient being important for predicting 385 

ant biodiversity was in cleared habitat (Table 2). A poor relationship is perhaps intuitive as all 386 

cleared habitats would be expected to be warm relative to forests that have canopies that may 387 

cause greater spatial variation in thermal conditions. However, some cleared sites 388 
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experienced conditions that were just as cool (in terms of 95maxT at least) as for wet forest 389 

and dry sclerophyll forest (Table 1 and Figure 1–13 in S1). Hence, we did not simply capture 390 

a portion of the overall temperature gradient in cleared habitat. Since the temperatures range 391 

was just as wide as the gradient for wet forest and dry sclerophyll forest, it is reasonable to 392 

conclude that any one predictor may not hold across all types of habitat types. The 393 

implication of this for predictive mapping is that tailored predictors are needed for modelling 394 

within particular habitat types. 395 

The results of our study also highlight that it is more desirable to have more proximal 396 

and direct predictors (sensu Austin, 2002) of temperature rather than reliance on proxies such 397 

as elevation to explain ecological trends. Elevation is often used to infer temperature 398 

gradients when climatic data have not been measured or are otherwise unavailable (e.g. 399 

Gilbert, 2010). The relationship between long-term (50 years) mean annual temperature (as 400 

derived by BioClim; www.worldclim.org; Hijmans et al., 2005) and elevation at our 86 study 401 

sites was almost a perfect correlation (R
2
 = 0.987). As our results showed, elevation (and its 402 

equivalent at the scale of our study, mean annual temperature) was a relatively poor predictor 403 

of ant diversity compared to maximum temperatures (Table 2). Thus, the purported 404 

importance of climatic means for controlling diversity gradients at broad scales (Francis & 405 

Currie, 2003), did not hold at the regional scale of our analysis. A possible reason for this is 406 

that we used contemporary climate data which is more biologically meaningful than long-407 

term averages. If macroclimatic data are used to establish relationships between climatic 408 

parameters and diversity, there is the very real possibility of a ‘mix-match’ between the 409 

temporal scale of the climatic observations and the biological processes operating. 410 

Invertebrates, including ants, generally have short-lives with rapid turnover and so it is 411 

plausible that community dynamics are more closely tied to climatic conditions in the lead up 412 

to when they are collected or observed, rather than averages of long-term conditions. Even at 413 
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broad geographic scales this source of error could well hold. This is not to say that long-term 414 

macroclimatic averages are not informative. Indeed, BIO5 (maximum temperature of the 415 

warmest month) was the second strongest predictor for richness. But our results did show that 416 

models using small and inexpensive in-situ data loggers can explain more deviance and be a 417 

better fit than long term climatic averages. Whether this improvement is warranted will 418 

depend on the needs of the individual study.  419 
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Tables 609 

Table 1 The mean ± SD for each environmental predictor within four habitat 

types and all habitat types combined. The range (minimum – maximum) for 

each are given in parentheses. 

 Cleared 

habitat 

(n=29) 

Dry 

sclerophyll 

forests 

(n=34) 

Wet forests 

(n=19) 

All habitats  

combined 

(n=86
†
) 

95maxT 43.2 ± 4.4 

(32.0 – 48.5) 

41.2 ± 4.1 

(32.7– 48.9) 

34.2 ± 3.7 

(29.1 –42.8) 

39.0 ± 5.4 

(29.1 – 48.9) 

5minT 7.0 ± 2.6  

(1.8 – 12.8) 

9.0 ± 2.8  

(1.9 – 14.0) 

10.1 ± 3.7 

(1.3 – 15.1) 

8.3 ± 3.5  

(0.3 – 15.1) 

v95maxT 6.0 ± 0.1  

(3.8 – 7.4) 

6.0 ± 0.7  

(4.0 – 7.2) 

5.7 ± 0.7  

(3.9 – 6.4) 

5.9 ± 0.7  

(3.8 – 7.4) 

v5minT 6.1 ± 0.6  

(4.8 – 7.2) 

5.6 ± 0.8  

(4.5 – 7.9) 

5.1 ± 0.8  

(4.0 – 7.1) 

5.7 ± 0.8  

(4.0 – 7.9) 

BIO1 15.9 ± 1.7 

(11.2 – 17.5) 

15.6 ± 16.2 

(11.5 – 17.7) 

14.0 ± 2.2 

(10.3 –17.5) 

15.1 ± 2.1 

(9.9 – 17.7) 

BIO2 12.9 ± 0.1 

(11.5 – 14.1) 

12.4 ± 1.1 

(9.2 – 14.1) 

11.7 ± 10.4 

(9.9 – 13.6) 

12.3 ± 1.2 

(9.2 – 14.1) 

BIO5 28.9 ± 1.7 

(24.7 – 31.0) 

28.2 ± 1.5 

(25.2 – 31.0) 

26.0 ± 1.7 

(22.4 – 28.7) 

27.7 ± 2.2 

(22.0 – 31.0) 

BIO6 2.8 ± 1.6  

(-0.5 – 4.7) 

2.8 ± 1.9  

(-0.3 – 6.5) 

1.8 ± 2.5  

(-1.4 – 5.5) 

2.5 ± 2.1  

(-1.4 – 6.5) 

BIO12 811 ± 204 

(585 – 1213) 

835 ± 204 

(599 – 1359) 

1129 ± 270 

(703 –1663) 

916 ± 267 

(585 – 1663) 

Elevation 302 ± 278  

(2 – 1026) 

345 ± 278 

(10 – 984) 

667 ± 438 

(54 – 1388) 

433 ± 389  

(2 – 1449) 

Habitat 

complexity 

13.5 ± 6.8  

(3 – 28) 

25.1 ± 6.5  

(6 – 39) 

30.3 ± 7.0 

(18 – 46) 

22 ± 9  

(3 – 46) 

Soil pH 6.3 ± 0.5  

(5 –7) 

6.1 ± 0.6  

(5 – 7) 

6.5 ± 0.7  

(4.5 – 8) 

6.3 ± 0.6  

(4.5 – 8.0) 

Soil texture 7.7 ± 3.7  

(2 – 15) 

5.8 ± 3.2   

(2 – 11) 

8.0 ± 4.1  

(2 – 16) 

7 ± 4  

(2 – 16) 
†
Four sites not belonging to ‘Cleared habitat’, ‘Dry sclerophyll forests’, or ‘Wet 

forests’ were included in ‘All habitats combined’. 
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 611 

Table 2. Percent deviance explained in ant species richness and community composition. For 

species richness, the deviance explained is for single predictor models fitted with a Generalized 

Additive Model using a spline with two degrees of freedom. Akaike Information Criterion is 

shown in parentheses. Partial response plots for the predictor explaining the greatest deviance in 

each model are shown in Figure 2 (panels a–d). For community composition, a Generalized 

Dissimilarity Model revealed that 10 of the 14 predictors were important. Partial responses for all 

10 are shown in Figure 3 (panels a–j). 

 

Species richness Community composition 

  

Predictor 

variable 

Cleared 

habitat  

(n=29) 

Dry 

sclerophyll  

forests 

(n=34) 

Wet  

forests 

(n=19) 

All habitats 

combined  

(n=86
†
) 

All habitats  

combined  

(n=86
†
) 

     

Geographic 

distance 4.4 (177) 1.2 (207) 4.1 (109) 8.8 (509) 1.4 

95maxT 4.2 (174) 18.3 (196) 38.9 (97) 20.3 (489) 24.4 

v95maxT 6.1 (174) 1.8 (204) 1.1 (107) 2.0 (518) Not selected 

5minT 2.3 (176) 1.9 (204) 1.0 (107) 5.4 (513) Not selected 

v5minT 9.3 (172) 3.3 (204) 10.6 (105) 6.5 (511) 7.8 

Soil pH 20.8 (166) 17.6 (196) 0.8 (108) 1.3 (519) 0.7 

Soil texture  9.9 (172) 13.8 (194) 21.9 (104) 4.1 (515) 0.1 

Habitat 

complexity 27.6 (163) 0.3 (205) 6.8 (106) 7.6 (509) 4.3 

Elevation 13.3 (170) 13.0 (199) 16.2 (103) 10.5 (505) 10.3 

BIO1 18.8 (167) 9.6 (200) 16.2 (103) 7.4 (510) 8.5 

BIO2 0.9 (176) 10.6 (199) 8.4 (105) 10.0 (505) 5.2 

BIO5 14.1 (170) 17.9 (196) 37.3 (98) 16.9 (494) 16.5 

BIO6 11.2 (171) 9.4 (200) 8.3 (105) 6.8 (510) Not selected 

BIO12 5.3 (174) 9.75 (200) 22.9 (102) 16.0 (496) Not selected 
†
Four sites not belonging to ‘Cleared habitat’, ‘Dry sclerophyll forests’, or ‘Wet forests’ were 

included in ‘All habitats combined’. 
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Figure legends 613 

Fig. 1. Location of the study region in relation to Australia (inset). Larger map shows sites 614 

where ants were pitfall trapped in relation to habitat type and elevation and. Habitat types 615 

(based on maps of broad vegetation types) are: dry sclerophyll forests (triangle, n=34); wet 616 

forests (diamond, n=19); cleared habitat (circle, n=29); heathland (star, n=1) and grassy 617 

woodland (square, n=3).    618 

Fig. 2. Partial response plots (with 95% confidence intervals) of predictors that explained 619 

the largest percentage of deviance in ant species richness. Panels a, b, c and d show responses 620 

in ‘All habitats types combined (n=86)’, ‘Dry sclerophyll forests’ (n=34), ‘Wet forests 621 

(n=19)’ and ‘Cleared habitat (n=29)’, respectively. The deviance explained for all predictors 622 

in single parameter models are shown in Table 1. 623 

Fig. 3. Generalised Dissimilarity Model showing fitted functions of individual predictors 624 

(panels a–j) to ant communities from 86 sites in southeast NSW, Australia (Fig. 1). 625 

Percentage deviance explained for a given predictor is shown in Table 1.  626 
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