
University of Wollongong
Research Online

Faculty of Engineering and Information Sciences -
Papers: Part A Faculty of Engineering and Information Sciences

2015

Scaling control during membrane distillation of
coal seam gas reverse osmosis brine
Hung C. Duong
University of Wollongong, chd581@uowmail.edu.au

Stephen Gray
Victoria University

Mikel Duke
Victoria University

Tzahi Y. Cath
Colorado School of Mines

Long D. Nghiem
University of Wollongong, longn@uow.edu.au

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Duong, H. C., Gray, S., Duke, M., Cath, T. Y. & Nghiem, L. D. (2015). Scaling control during membrane distillation of coal seam gas
reverse osmosis brine. Journal of Membrane Science, 493 673-682.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eis


Scaling control during membrane distillation of coal seam gas reverse
osmosis brine

Abstract
We systematically assess the efficiency of chemical cleaning and report a simple but elegant approach to
control scaling during membrane distillation (MD) of brine from reverse osmosis (RO) treatment of coal
seam gas (CSG) produced water. Results reported here show that increased feed water salinity and the
permeation of CO2 from the feed solution resulted in only a small and gradual decrease in water flux. On the
other hand, the precipitation of sparingly soluble salts on the membrane at high water recovery (>70%) led to
a significant flux decline. Among the three chemical cleaning agents investigated, a reverse osmosis scale
cleaning agent (denoted as MC3) was the most effective at restoring the water flux; however, MC3 cleaning
was not able to completely remove scale deposits from the membrane and restore its surface hydrophobicity
to the original value because of the complexation of scalants with CSG RO brine. The remaining scalants (i.e.,
silicates) reduced the membrane surface hydrophobicity and could possibly enhance concentration
polarisation and act as seeding for further scale formation. Thus, a gradual decrease in MD performance with
respect to both water flux and salt leakage was observed after each MC3 cleaning cycle. It was noted that the
chemical cleaning agents themselves did not alter the hydrophobicity of the membrane; thus, the gradual
decline in MD performance was attributed to the remaining scale deposits on the membrane after each
cleaning cycle. Results reported here highlight the need to prevent membrane scaling and only use chemical
cleaning as the last resort during MD treatment of CSG RO brine. Moreover, membrane scaling could be
prevented by reducing concentration polarisation via limiting feed temperature and thus water flux. MD
treatment of CSG RO brine with up to 80% water recovery without any observable membrane scaling was
achieved at the feed temperature and the water flux of 35°C and 10L/m2h, respectively.
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Abstract 

We systematically assess the efficiency of chemical cleaning and report a simple but elegant 

approach to control scaling during membrane distillation (MD) of brine from reverse osmosis 

(RO) treatment of coal seam gas (CSG) produced water. Results reported here show that 

increased feed water salinity and the permeation of CO2 from the feed solution resulted in only a 

small and gradual decrease in water flux. On the other hand, the precipitation of sparingly soluble 

salts on the membrane at high water recovery (>70%) led to a significant flux decline. Among the 

three chemical cleaning agents investigated, a reverse osmosis scale cleaning agent (denoted as 

MC3) was the most effective at restoring the water flux; however, MC3 cleaning was not able to 

completely remove scale deposits from the membrane and restore its surface hydrophobicity to 

the original value because of the complexation of scalants with CSG RO brine. The remaining 

scalants (i.e., silicates) reduced the membrane surface hydrophobicity and could possibly enhance 

concentration polarisation and act as seeding for further scale formation. Thus, a gradual decrease 

in MD performance with respect to both water flux and salt leakage was observed after each 

MC3 cleaning cycle. It was noted that the chemical cleaning agents themselves did not alter the 

hydrophobicity of the membrane; thus, the gradual decline in MD performance was attributed to 

the remaining scale deposits on the membrane after each cleaning cycle. Results reported here 

highlight the need to prevent membrane scaling and only use chemical cleaning as the last resort 

during MD treatment of CSG RO brine. Moreover, membrane scaling could be prevented by 

reducing concentration polarisation via limiting feed temperature and thus water flux. MD 

treatment of CSG RO brine with up to 80% water recovery without any observable membrane 

scaling was achieved at the feed temperature and the water flux of 35 ºC and 10 L/m
2
-h, 

respectively. 

Keywords: Coal seam gas (CSG) produced water; brine management; membrane distillation 

(MD); scaling; chemical cleaning.  
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1. Introduction 

Coal seam gas (CSG), also known as coal seam methane or coal bed methane, is essentially 

methane gas trapped in coal seams together with ground water. During CSG production, both gas 

and water are extracted to the surface. Gas is commonly separated from water at the wellhead, 

and the remaining water is called CSG produced water [1]. CSG produced water is usually saline 

and dominated by sodium, bicarbonate, and chloride [2, 3]. As a result, it is not suitable for direct 

environmental discharge or beneficial reuse [2, 4, 5]. In addition, the volume of water associated 

with CSG production can vary greatly from basin to basin and can be very large. For example, in 

Queensland, Australia, the yearly CSG produced water production is expected to be 100 GL in 

2015, and is predicted to reach maximum generation of 200 GL in 2030 [1]. Therefore, cost-

effective and sustainable management of produced water is essential for the expansion of the 

CSG industry in Australia. 

In most current CSG production projects in Australia, produced water is treated by reverse 

osmosis (RO) desalination prior to environmental discharge or beneficial reuse. However, RO 

can only achieve 75–80% water recovery [2, 6-8]. In Australia, where reinjection of CSG RO 

brine to depleted coal seams is generally not permitted, brine ponds have to be used as a 

temporary solution. Thus, new treatment technologies allowing for further water extraction and 

ultimately the extraction of minerals from CSG RO brine as saleable products are being 

investigated [9-12]. One such technology, membrane distillation (MD), which combines 

thermally driven distillation and membrane separation, has shown great promise for the treatment 

of hypersaline solutions, including CSG RO brine. 

In MD, a micro-porous hydrophobic membrane is used to separate the hot saline aqueous feed 

solution from the cold distillate and facilitate the transport of water vapour through its pores [13-

15]. Unlike the RO process, which is driven by a transmembrane hydraulic pressure difference, in 

MD a partial vapour pressure difference induced by a temperature gradient across the membrane 

is the driving force. Therefore, compared to RO, the water flux in MD is not affected to the same 

extent when the salinity of the feed solution (and thus its osmotic pressure) increases. As a result, 

a potential application of MD is arguably for the treatment of hypersaline solutions, and 

specifically the brine generated during RO desalination [10, 16-18]. 

A major technical challenge to the realisation of MD for CSG RO brine management is to control 

membrane scaling. The highly saline nature of produced water, particularly CSG RO brine, and 

the desire for high water recovery (i.e., the volume ratio of fresh water to feed water) can 

significantly elevate the risk of membrane scaling [19]. Membrane scaling can cause several 

negative consequences on MD performance, including flux reduction due to surface blockage, 
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exacerbated temperature and concentration polarisation, salt leakage, and membrane damage [20-

23]. 

Given the significance of membrane scaling, there have been a large number of studies on 

membrane scaling and mitigation techniques in various MD configurations as summarised in 

recent review articles [24, 25]. These studies have identified calcium carbonate, calcium sulphate, 

magnesium carbonate, and silicate as some of the most likely scalants during MD operation [24, 

25]. In contrast to the large number of laboratory scale studies using synthetic saline feed, very 

few studies have attempted to examine the scaling potential of actual produced water. As a 

notable example, Thiel et al. [19] investigated the likely scalants in the treatment of produced 

water from Nova Scotia (Canada). In addition to calcium carbonate, calcium sulphate, 

magnesium carbonate, and silicate, the authors revealed that the precipitation of sodium chloride 

may also be a key factor that limits water recovery [19]. 

Several scaling mitigation approaches including chemical cleaning and process optimisation have 

been proposed and investigated [24]. However, none of them have been demonstrated for RO 

brine treatment. In addition, most of previous membrane scaling studies used synthetic feed water 

[23, 25-27]. Thus, the feasibility of chemical cleaning to control membrane scaling during MD 

treatment of CSG RO brine is still a subject of ongoing investigation. Using tap water as the feed, 

Gryta [26, 27] showed that calcium carbonate scaling developed in long-term operation and could 

be removed by a 25 wt% HCl solution. Curcio et al. [23] investigated membrane fouling and 

scaling using synthetic seawater, and stated that membrane cleaning by citric acid followed by 

NaOH solution could restore most of the initial flux and the membrane hydrophobicity. Nghiem 

and Cath [20] investigated the scaling of direct contact membrane distillation (DCMD) using a 

synthetic saline solution containing calcium carbonate, calcium sulphate, and silicate. Membrane 

scaling caused by calcium sulphate was the most problematic, but could be effectively controlled 

by regularly flushing the feed channels with deionized water. Hickenbottom and Cath [17] 

proposed new scaling mitigation techniques called flow and temperature reversal. They 

successfully demonstrated their proposed techniques during DCMD of the Great Salt Lake water 

[17]. The techniques proposed by Nghiem and Cath [20] and Hickenbottom and Cath [17] are 

innovative; however, they involve frequent disruption to the process for rinsing and flow or 

temperature reversal. Thus, further development is required before their practical applications for 

scaling control can be realised. 

Given the absence of viable membrane scaling mitigation techniques in the literature, and the 

high scaling propensity of CSG RO brine, this study aims to investigate the feasibility of DCMD 

for CSG RO brine treatment. Membrane scaling as well as the efficiency of membrane cleaning 
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and their subsequent impacts on the DCMD process were systematically examined. A method to 

alleviate membrane scaling was then proposed and evaluated. 

2. Materials and methods 

2.1. Materials 

2.1.1. Lab-scale DCMD system 

A schematic diagram of the lab-scale DCMD system used in this study is shown in Fig. 1. The 

membrane cell was made of acrylic and composed of two semi-cells. Each semi-cell was 

engraved to create a flow channel with depth, width, and length of 0.3, 9.5, and 14.5 cm, 

respectively. The active membrane area for mass transfer was 138 cm
2
. Two pumps (Model 

120/IEC71-B14, Micropump Inc., Vancouver, Washington, USA) were used to circulate the feed 

and distillate through each semi-cell. The circulation flow rates were monitored using two 

rotameters. 

  
Fig. 1. Schematic diagram of the lab-scale DCMD system. 

The feed solution was heated using a stainless steel heat-exchanging coil submerged in a hot 

water bath. A temperature sensor was placed immediately after the outlet of the feed channel. The 

water bath and the temperature sensor were connected to a temperature control unit to regulate 

the feed temperature. A digital balance (PB32002-S, Mettler Toledo, Inc., Hightstown, New 

Jersey, USA) connected to a computer was used to weigh the excess distillate flow for 

determining the water flux. A chiller (SC200-PC, Aqua Cooler, Sydney, New South Wales, 
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Australia) was used to control the distillate temperature through a stainless steel heat-exchanging 

coil submerged directly into the distillate reservoir. 

A flat-sheet membrane provided by Porous Membrane Technology (Ningbo, China) was used in 

this study. The membrane has a polypropylene (PP) supporting layer laminated with a 12 m-

thick polytetrafluoroethylene (PTFE) active layer. The nominal pore size and porosity of this 

membrane were 0.2 m and 70%, respectively. 

2.1.2. Saline solutions 

Three saline solutions, including CSG RO brine, synthetic CSG RO brine, and sodium chloride, 

were used. The CSG RO brine was from our previous pilot work at the Gloucester gas field (New 

South Wales, Australia). CSG produced water was pre-treated by ultrafiltration and then desalted 

by RO. Antiscalant (Osmotreat, Osmoflo, Adelaide, South Australia, Australia) was added to the 

CSG produced water prior to the RO treatment at a dose of 5 mg/L.  The water recovery of the 

pilot RO system was 75%. Further details of this pilot study are available elsewhere [28]. 

Composition of major ions of the CSG RO brine is summarised in Table 1. The total dissolved 

solids (TDS), turbidity, and pH of this CSG RO brine were 17,100 mg/L, 0.22 NTU, and 8.2, 

respectively [28]. The synthetic solution was prepared from analytical grade sodium chloride and 

sodium bicarbonate to have the same bicarbonate/chloride mass ratio and TDS as the CSG RO 

brine from the Gloucester gas field. The NaCl solution was also prepared from the analytical 

grade chemical to have conductivity similar to that of the CSG RO brine (22,300 S/cm). 

Table 1. Composition of the CSG RO brine from the Gloucester gas field. 

Ion Concentration (mg/L) 

Sodium 6,840 

Chloride 5,520 

Bicarbonate 4,740 

Silica 75 
Potassium 32 

Magnesium 17 

Calcium 14 

2.1.3. Cleaning solutions 

Tap water, 0.5 wt% HCl, and 2.5 wt% MC3 were used as membrane cleaning solutions. The 0.5 

wt% HCl solution was prepared using analytical grade HCl from VWR International Pty Ltd 

(Australia). The 2.5 wt% MC3 solution was made from a commercial cleaning agent, Floclean 

MC3 (IMCD Australia Limited, Mulgrave, Victoria, Australia), following the manufacturer 

recommendations for RO membrane cleaning, resulting in a clear liquid at pH 3. According to the 
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manufacturer, Floclean MC3 had been designed specifically to clean RO membranes scaled by 

metal hydroxides, calcium carbonate, and similar deposits. In addition, there were no surfactants 

in Floclean MC3. 

2.2. Analytical methods 

2.2.1. Contact angle measurement 

Water-membrane contact angle was used to determine the hydrophobicity of membrane. The 

contact angle measurements of the membranes were performed with a Rame-Hart Goniometer 

(Model 250, Rame-Hart, Netcong, New Jersey, USA) using the standard sessile drop method 

(i.e., with droplet volume of 12 L). Membrane samples were gently washed with Milli-Q water 

and then air-dried prior to contact angle measurements. Milli-Q water was used as the reference 

liquid. 

2.2.2. Scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) 

elemental analysis 

The morphology and composition of the surface of membranes were examined using a scanning 

electron microscope (Model JSM-6490LA, JEOL, Tokyo, Japan), with additional semi-

quantitative energy dispersive spectrometer. Prior to SEM analysis, the membrane samples were 

air-dried and subsequently sputtered with a thin layer of gold. SEM imaging was conducted at a 

voltage of 10 kV. 

2.2.3. Water quality parameters 

Electrical conductivity and pH of the feed and distillate were measured using an Orion 4-Star 

Plus pH/conductivity meter (Thermo Scientific, Waltham, Massachusetts, USA). 

2.3. Experimental protocols 

2.3.1. DCMD experiments of saline solutions 

DCMD experiments with the NaCl solution, synthetic CSG RO brine, and CSG RO brine were 

performed under the same operating conditions. The process was started with 4 L of the saline 

solution in the feed tank and 2 L of Milli-Q water as the initial distillate (condensate). Unless 

otherwise stated, the feed water and the distillate at temperatures of 50 and 25 ºC, respectively, 

were introduced to their respective membrane semi-cells at flow rates of 1 L/min (cross flow 

velocities of 0.06 m/s). The normalised flux, which is the ratio of the water flux at a given time to 

the initial flux, along with the system water recovery, pH and electrical conductivity of the feed 
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and the distillate were regularly monitored. DCMD operation was terminated when a system 

water recovery of 80% had been achieved or the normalised flux had decreased to 0.2. 

Prior to all experiments, membrane integrity was verified for 2 hours by measuring the water flux 

at the standard operating conditions described above using tap water as the feed solution. The 

membrane sample would be used for the subsequent experiment if the obtained water flux was 

between 30 and 32 L/m
2
-h. Otherwise, another membrane sample would be used. 

A set of DCMD experiments using CSG RO brine feed at a temperature of 40 and 35 ºC was also 

conducted. Except for the reduced feed temperature, all other operating conditions were as 

described above. 

2.3.2. Membrane cleaning experiments 

DCMD experiments with the CSG RO brine were conducted under the same operating conditions 

(i.e., feed temperature of 50 ºC) mentioned above. When the DCMD system achieved water 

recovery of 80% or if the normalised flux decreased to below 0.2, membrane cleaning was 

initiated. During membrane cleaning, the feed solution was replaced with 1 L of the cleaning 

solution. The cleaning solution was circulated through the feed channel at 2 L/min (cross flow 

velocity of 0.12 m/s) for one hour at room temperature (25 ºC). To avoid any hydraulic pressure 

differential across the membrane, Milli-Q water was circulated through the distillate channel at 

the same flow rate (2 L/min). After membrane cleaning, the membrane was taken out, rinsed with 

tap water, and allowed to dry overnight. Subsequently, the DCMD experiment was resumed 

using the cleaned membrane and fresh CSG RO brine. After the last chemical cleaning cycle, the 

membrane was removed for subsequent SEM and contact angle analysis. 

Additional membrane cleaning experiments were conducted to elucidate the impacts of chemical 

cleaning agents on the membrane hydrophobicity. Virgin membrane coupons were cleaned with 1 

L of 0.5 wt% HCl and 2.5 wt% MC3 solution for 6, 12, and 18 hours under the same cleaning 

conditions applied to the scaled membrane. After chemical cleaning, the membrane coupons were 

rinsed with Milli-Q water and air-dried prior to contact angle measurements. 

3. Results and discussions 

3.1. DCMD treatment of saline solutions 

As shown in Fig. 2, despite having the same salinity, the three investigated feed solutions 

exhibited notably different water flux profiles. The water flux only slightly declined when NaCl 



9 

solution was used as the feed. The observed decline in normalised water flux from 1.0 to 0.9 (at 

80% water recovery) could be attributed to the increase in viscosity [28] and the decrease in 

water activity of the feed solution as salinity increased from 17,100 to over 85,500 mg/L NaCl 

[13, 14, 29]. The viscosity of NaCl solution increases from 0.70 to 0.75 cP as the concentration 

rises from 17,100 to 85,500 mg/L [30]. It is important to note that this influence of viscosity and 

water activity on water flux during MD is much smaller than the influence imposed by the 

increase in osmotic pressure during RO [31]. 
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Fig. 2. Normalised flux and feed electrical conductivity versus water recovery in DCMD of NaCl 

solution, synthetic CSG RO brine, and CSG RO brine. Operating conditions: Tfeed = 50 ºC, 

Tdistillate = 25 ºC, Vfeed = Vdistillate = 0.06 m/s. The initial water flux was from 30 to 32 L/m
2
-h. 

Compared to the NaCl solution, water flux decline was slightly more significant when using the 

synthetic CSG RO brine as the feed to the DCMD process. The small additional flux decline 

associated with the synthetic CSG RO brine could be attributed to the migration of CO2 through 

the membrane pores, which could compete with the transport of water vapour [20, 24, 28]. As the 

feed water was heated, bicarbonate was reduced to CO2 ( OHCOCO2HCO 22

2

33  
) [32]. 

At high temperature (50 ºC), the generated CO2 might be released from the hot feed solution and 

migrate through the membrane pores to the distillate [24]. The transport of CO2 through the 

membrane can be confirmed by the reduction in pH of the distillate at the early stage of the 

operation (Fig. 3). It is noteworthy that the solubility of CO2 in water is low and carbonic acid is 
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a weak acid; thus, the decrease in the distillate pH could only be observed during the early stage 

of the DCMD experiments. 
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Fig. 3. pH and electrical conductivity of the distillate in DCMD of NaCl solution, synthetic CSG 

RO brine, and CSG RO brine. Operating conditions: Tfeed = 50 ºC, Tdistillate = 25 ºC, Vfeed = 

Vdistillate = 0.06 m/s. 

Significant flux decline was observed with the actual CSG RO brine. At low water recovery, the 

normalised flux was similar to those observed in the experiments with the synthetic CSG RO 

brine and NaCl solution. However, when water recovery exceeded 70%, in addition to the 

permeation of CO2, the precipitation of sparingly soluble salts on the membrane surface led to a 

rapid flux decline. The normalised flux decreased to 0.3 when water recovery reached 80%. SEM 

analysis of the membrane at the end of the experiment revealed a thick, amorphous layer of scale 

on the membrane surface. The scale layer increases both heat and mass transfer resistance 

through the membrane [21] and reduces its active area for water evaporation, thus reducing water 

flux. In addition, the increase in the distillate conductivity when water recovery exceeded 70% 

(Fig. 3) might be an indication of membrane pore wetting because of scaling. Membrane wetting 

contributes to the decrease in water flux as it also reduces the active membrane area. 

Distillate of high quality was recovered from the three saline solutions (Fig. 3). The distillate 

conductivity remained stable and in the range of 5 to 10 S/cm throughout the experiments with 

the synthetic CSG RO brine and the NaCl feed solutions. This confirms the absence of salt 
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leakage and possible pore wetting during these experiments. During the DCMD experiments with 

the actual CSG RO brine, the formed scale might have partially wetted the membrane; however, 

the distillate conductivity was still below 15 S/cm. 

3.2. Membrane cleaning in DCMD treatment of CSG RO brine 

3.2.1. Efficiency of various cleaning solutions 

Membrane cleaning efficiency can be evaluated based on the recovery of water flux and 

membrane surface hydrophobicity. Of the three cleaning solutions investigated in this study, the 

2.5 wt% MC3 solution showed the best cleaning efficiency (Fig. 4). Following MC3 cleaning, 

nearly 100% of the initial flux was restored and the normalised flux remained stable above 0.85 

at water recovery below 65%, before sharply declining to 0.2 as water recovery reached 80%.  In 

contrast, only 85% and 90% initial water flux restoration was achieved after cleaning the scaled 

membrane with tap water and 0.5 wt% HCl, respectively. In addition, the normalised flux after 

membrane cleaning with tap water and HCl gradually decreased throughout the experiments. 

SEM analysis of the membranes also reveals that thick layers of scale remained on the membrane 

surface after tap water and HCl cleaning while only traces of scale were observed following MC3 

cleaning (Fig. 4). The residual scale layer on the membrane worsened the intrinsic concentration 

polarisation of the MD process [21] and acted as nuclei for the precipitation of sparingly soluble 

salts, thus accelerating scale formation. As a result, the normalised flux started to gradually 

decrease at lower water recovery in the treatment of CSG RO brine following tap water and HCl 

cleaning. 

The results obtained from qualitative elemental analysis of the membrane surface and scalants 

using SEM-EDS shown in Fig. 5 support the above discussion. The spectra of the virgin and 

scaled membranes (Fig. 5A and 5B) indicate that the scale layer formed by the end of the DCMD 

process of CSG RO brine was composed of mostly calcium and, to a lower extent, magnesium as 

well as silicate salts. The composition of the scale deposit did not change significantly after tap 

water cleaning (Fig. 5C). Cleaning the scaled membrane with 0.5 wt% HCl effectively removed 

the alkaline (calcium and magnesium) scalants but it was less effective for silicate removal (Fig. 

5D). A notable amount of silica was observed after HCl cleaning. The 2.5 wt% MC3 solution 

demonstrated the best cleaning efficiency. However, traces of silica could still be seen in the EDS 

spectra (Fig. 5E). 
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Fig. 4. Normalised flux and water recovery in DCMD of CSG RO brine prior and after 

membrane cleaning using tap water, 0.5 wt% HCl, and 2.5 wt% MC3 solutions for 1 hour at 

room temperature and cross flow velocities of 0.12 m/s and SEM photos of corresponding 

membranes after cleaning. DCMD operating conditions: Tfeed = 50 ºC, Tdistillate = 25 ºC, Vfeed = 

Vdistillate = 0.06 m/s. The initial water flux was 30 L/m
2
-h.  
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Fig. 5. EDS spectra of the surface of: (A) virgin membrane, (B) scaled membrane, and scaled 

membranes after cleaning with (C) tap water, (D) 0.5 wt% HCl solution, and (E) 2.5 wt% MC3 

solution. 

Contact angle measurements of the membranes also demonstrated the variations in the efficiency 

of the three cleaning solutions (Fig. 6). The virgin membrane had high contact angle (i.e., 133º). 

After DCMD testing with tap water feed, the contact angle of the membrane slightly decreased to 

126º. The slight reduction in membrane contact angle caused by tap water observed in this study 

was consistent with results reported by Ge et al. [33]. In contrast, a significant decrease in the 
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membrane contact angle was observed at the end of the DCMD process with CSG RO brine. The 

severe precipitation of scale on the membrane surface reduced the contact angle to 50º. Cleaning 

the scaled membrane with tap water, 0.5 wt% HCl, and 2.5 wt% MC3 solutions partially restored 

the contact angle to 66º, 84º, and 98º, respectively. The contact angles of the membranes after 

chemical cleaning were lower than that of the virgin membrane. It is, however, noteworthy that 

no significant salt leakage was observed after one cycle of chemical cleaning, and the 

conductivity of the distillate was negligible (i.e., <20 S/cm) in the DCMD experiment using the 

cleaned membranes. 
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Fig. 6. Contact angles of: the virgin membrane, the membranes after DCMD of tap water and 

CSG RO brine, and the scaled membranes after cleaning with tap water, 0.5 wt% HCl, and 2.5 

wt% MC3 solutions. Milli-Q water was used as the reference. Error bars represent the standard 

deviation of 5 replicate measurements. 

3.2.2. Efficiency of repetitive membrane chemical cleaning 

Of the three investigated cleaning agents, the 2.5 wt% MC3 solution showed the highest 

membrane cleaning efficiency. Thus, it was chosen to investigate the impacts of repetitive 

chemical cleaning on the performance of the DCMD membrane for desalination of CSG RO 

brine. Cleaning efficiency of the MC3 solution gradually decreased as the membrane cleaning 

cycles were repeated. Repetitive membrane cleaning (using fresh 2.5 wt% MC3 solution) resulted 

in a decrease in initial flux restoration (Fig. 7). After the first MC3 cleaning, nearly 100% of the 

initial flux was restored, whereas a lower flux restoration (i.e., 95%) was achieved from the 
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second cleaning. Scale formation also occurred at lower water recovery in subsequent DCMD 

tests as membrane cleaning was repeated. Severe membrane scaling, indicated by rapid flux 

decline, was observed as water recovery exceeded 60% in the DCMD test after one MC3 

cleaning cycle. In contrast, following the second MC3 cleaning the flux started to rapidly decline 

when only 50% of the RO brine had been recovered to the distillate.  
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Fig. 7. Normalised flux and water recovery in the repetitive DCMD of CSG RO brine applying 

MC3 cleaning. Cleaning conditions: 1 L of 2.5 wt% MC3 solution, room temperature, cross flow 

velocities Vfeed = Vdistillate = 1.2 m/s. DCMD operating conditions: Tfeed = 50 ºC, Tdistillate = 25 ºC, 

Vfeed = Vdistillate = 0.06 m/s. Initial water flux was 30 L/m
2
-h. 

The impact of repetitive MC3 cleaning on MD performance was also demonstrated by a gradual 

increase in salt leakage – the distillate conductivity increased gradually and decreased 

conductivity rejection was observed after each chemical cleaning cycle (Fig. 8). In the DCMD 

process of CSG RO brine using the virgin membrane and the scaled membrane after the first 

MC3 cleaning, distillate of high quality (electrical conductivity below 20 S/cm) and 

conductivity rejection of above 99.9% were obtained. However, following the second MC3 

cleaning cycle, membrane pore wetting appeared to occur at the early stage of the experiment 

leading to distillate contamination. The distillate conductivity gradually increased from 10 S/cm 
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at the beginning to 110 S/cm at the end of the experiment. As a result, the conductivity rejection 

of the system significantly decreased throughout the operation. 
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Fig. 8. Distillate conductivity and conductivity rejection in DCMD of CSG RO brine using the 

virgin membrane and the membrane after one and two MC3 cleaning cycles. 

The decrease in efficiency of MC3 cleaning in the DCMD treatment of CSG RO brine might be 

attributed to the complexation of scalants with the feed water. Ion analysis of the CSG RO brine 

(Table 1) showed high concentrations of silica beside alkaline metals such as calcium and 

magnesium. The presence of calcium and magnesium was reported to catalyse the polymerisation 

of silica [34], thus accelerating silica deposition. The co-precipitation of silica and alkaline salts 

in the DCMD test of CSG RO brine was confirmed by the SEM-EDS analysis of the scale layer 

(Fig. 5B). It is widely accepted that a membrane scaled by silica is more difficult to be cleaned 

than if scaled by alkaline salts [22, 24]. In addition, unlike alkaline scalants, which tend to 

deposit on the membrane surface, silica scaling was reported to deposit deeper into the membrane 

pores [22]. Therefore, a possible explanation for the decreased cleaning efficiency and MD 

performance upon repetitive cycling is the formation of scale inside the pores that hinders the 

efficiency of chemical cleaning, and results in pore wetting in repetitive membrane cleaning [25]. 

Furthermore, the acid based cleaning reagent MC3 was not designed for silica removal. Thus, 
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silica scale can on the membrane surface causing a gradual decrease in water flux and membrane 

hydrophobicity decrease after repetitive cleaning. 

It is noteworthy that the chemical cleaning agents used in this study did not exert any discernible 

impacts on the hydrophobicity of the PTFE membrane. The contact angles of the virgin 

membrane remained unchanged after being cleaned with the 0.5 wt% HCl and 2.5 wt% MC3 

solutions for 6, 12, and 18 hours. The reported results indicate that the reduction in the membrane 

hydrophobicity observed in the repetitive DCMD testing was attributed to the remaining scalants 

on the membrane rather than the chemical cleaning agents. 

3.3. Membrane scaling control in the DCMD treatment of CSG RO brine 

Membrane scaling during DCMD of CSG RO brine at high water recovery was effectively 

mitigated by reducing feed temperature, and thus water flux (Fig. 9). When operating the system 

at feed temperature of 50 ºC (initial water flux of 30 L/m
2
-h), severe membrane scaling occurred 

as water recovery exceeded 70%, leading to a significant decline in normalised flux. At feed 

temperature of 40 ºC (initial water flux of 20 L/m
2
-h), membrane scaling started at a higher water 

recovery and was less severe. The normalised flux decreased to 0.8 as water recovery approached 

80%. In contrast, no membrane scaling occurred and stable DCMD operation was achieved at 

feed temperature of 35 ºC (initial water flux of 10 L/m
2
-h). The normalised flux only slightly 

decreased to 0.9 when 80% water recovery was achieved. 

SEM analysis of the membrane surface at the end of the experiments also confirmed the impacts 

of operating temperature and initial water flux on membrane scaling (Fig. 9). A compact and 

amorphous scale layer was formed on the membrane surface following testing with feed 

temperature of 50 ºC while a layer of well-defined angular crystals was observed when feed 

temperature was 40 ºC. In contrast, no scale deposition on the membrane could be observed after 

testing with feed temperature of 35 ºC. 

However, it is noteworthy that the calculated Langelier Saturation Index (LSI) of the DCMD feed 

solution at water recovery of 80% indicated high potential for scale formation at all three 

investigated operating feed temperatures. The LSIs of the feed solution at temperatures of 50, 40, 

and 35 ºC were 2.0, 1.8, and 1.7, respectively. These results indicate potential calcium carbonate 

scaling formation even at feed temperature of 35 ºC. Nevertheless, no scale formation was 

observed at this temperature. As noted in section 2.2, the addition of antiscalant prior to RO 

desalination [28] of the CSG produced water might helped mitigate scale formation in the DCMD 

process of CSG RO brine at low feed temperature (i.e., 35 ºC). In addition, as discussed in 
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section 3.1, the transport of carbon dioxide through the membrane might also reduced the actual 

scaling potential of the system [20, 24, 28]. 

 
Fig. 9. Normalised flux versus water recovery and SEM photos of scaled membranes in the 

DCMD process of CSG RO brine operated at feed temperatures, Tfeed, of 35, 40, and 50 ºC 

(corresponding to initial flux of 10, 20, 30 L/m
2
-h, respectively). Distillate temperature Tdistillate = 

25 ºC, feed and distillate cross flow velocity Vfeed = Vdistillate = 0.06 m/s. 

The difference in membrane scaling observed in the DCMD process of CSG RO brine at various 

operating conditions can be attributed to the extent of concentration polarisation at the membrane 

surface [35, 36]. Due to concentration polarisation, the solute concentration immediately at the 

membrane surface can be higher than the bulk solute concentration [13] as expressed by Eq. (1): 

 










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J
exp

C

C

fb

fm           (1) 

where Cfm and Cfb are the solute concentration at the membrane surface and in bulk solution in 

the feed channel, respectively, J is the water flux,  is the density of feed solution, and K is mass 

transfer coefficient. Given this relationship, an increase in the water flux results in an exponential 

increase in solute concentration at the membrane surface. As a result, operating DCMD of CSG 

RO brine at higher feed temperature and increased water flux led to more severe membrane 
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scaling at the end of the experiments. Membrane scaling also started at a lower water recovery in 

DCMD experiments conducted with higher feed temperature and water flux [17]. 

The results reported here suggest that the precipitation of scale on the membrane surface can be 

mitigated by operating the system at low feed temperature and thus low water flux. The DCMD 

treatment of CSG RO brine at 80% water recovery without any observable membrane scaling 

was feasible at feed and distillate temperatures of 35 and 25 ºC, respectively, corresponding to 

initial water flux of 10 L/m
2
-h. However, it is worth noting that lowering feed temperature, and 

hence water flux, reduces the thermal efficiency of the MD process [37-40] and increases the 

operation duration required for a specific initial brine volume. Thus, there exists a trade-off 

between membrane scaling prevention and economic efficiency in the MD treatment of CSG RO 

brine. 

4. Conclusions 

DCMD treatment of CSG RO brine for further fresh water extraction and brine minimisation was 

investigated. At high water recovery (i.e., >70%), while increased feed salinity and the migration 

of CO2 through the membrane resulted in only a small decrease in water flux, the precipitation of 

sparingly soluble salts on the membrane significantly reduced the water flux. Membrane cleaning 

using 2.5 wt% MC3 solution was the most effective at restoring the water flux and recovering the 

hydrophobicity of the membrane. However, due to the complex composition of the scalants with 

CSG RO brine, MC3 cleaning could not completely remove scale deposits (i.e., silicates) from 

the membrane and restore its surface hydrophobicity to the original value. The remaining scalants 

increased concentration polarisation, and thus the rate of subsequent scaling, and deteriorated the 

membrane surface hydrophobicity. As a result, a gradual decrease in MD performance with 

respect to both water flux and salt leakage was observed after repetitive chemical cleaning. It is 

noteworthy that the chemical cleaning agents themselves did not alter the hydrophobicity of the 

membrane; thus, the gradual decline in MD performance could be attributed to the remnants of 

scale deposits. Furthermore, by reducing concentration polarisation via lowering feed 

temperature and thus water flux, membrane scaling could be substantially alleviated, however, at 

the expense of lower thermal efficiency. Results reported here demonstrated that up to 80% water 

recovery from CSG RO brine could be achieved without any observable membrane scaling by 

limiting the feed temperature and thus the initial water flux to a sufficiently low value (i.e., 35 ºC 

and 10 L/m
2
-h, respectively).  
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