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Abstract

Containers are transported by global liner companies on regularly scheduled ship

routes. A large variety of general cargos are containerized, such as manufactured

products, food, and garment. Liner shipping services have fixed sequences of ports

of call and fixed schedules, i.e., arrival and departure times at each port of call. Liner

services are announced in advance to attract potential customers. Customers can

arrange the delivery of their cargo based on the available date of the cargo at the ori-

gin port and the expected arrival date at the destination port. Therefore, container

liner shipping is of significant importance to the global supply chain network.

Different schedules mean different sailing times between ports, which dictate

different sailing speeds. It is known in the shipping industry that the daily fuel con-

sumption of ships increases approximately proportional to the sailing speed cubed.

Therefore, schedule design affects the bunker fuel consumption and thereby air pol-

lutant emission. Reducing the fuel consumption will also improve the sustainability

of the global container transportation network.

Container shipping lines provide weekly services for transporting containers,

which means that the rotation time in terms of weeks for visiting all ports of call

on a ship route is equal to the number of ships deployed. As a consequence, each

port of call has a ship departure on the same day every week. When the speed of

ships is higher, the rotation time is shorter, and hence fewer ships are required to

maintain the weekly frequency.

The objective of this thesis is to develop mathematical models and solution

algorithms for designing the schedules of container liner shipping services. The aim

is to minimize the sum of ship cost, fuel cost and inventory cost, while ensuring that

ports are available to serve the ships on the planned days.
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First, a single ship route is investigated on which each port is visited only once

a week. The arrival time of containerships at each port of call on the ship route is

determined while considering the available berth time windows at ports. The objec-

tive minimizes the sum of ship cost, bunker cost and container inventory cost. This

problem is formulated as a nonlinear non-convex optimization model. In view of

the problem structure, we develop an efficient dynamic-programming based holistic

solution approach, which includes a space-time network model and a bounding tech-

nique for the total cost with given number of ships. The proposed solution method

is applied to a real ship route operated by a global shipping line.

Second, we generalize the ship route such that a port on it can be visited more

than once a week. As a result, more realism is captured but the resulting model

is more complex. Taking into account the problem structure, we develop a holistic

solution approach. In this approach, at first the port time window constraints are

relaxed to obtain a mixed-integer nonlinear programming model, which is subse-

quently transformed to a mixed-integer linear programming model. This mixed-

integer linear model is repeatedly solved by adding the violated port time window

constraints until a feasible solution is obtained. This feasible solution is proved to be

the global optimal solution to the problem. We have conducted extensive numerical

experiments based on a real ship route in operation.

Third, we extend the schedule design for a single ship route to that for a liner

shipping network that consists of many ship routes. The inventory cost is assumed to

be 0. Hence, the objective minimizes the sum of bunker cost and ship operating cost.

This problem is formulated as a mixed-integer nonlinear non-convex optimization

model. To address the problem, we reformulate the problem as an integer linear

optimization model and propose an iterative optimization approach. The proposed

solution method was applied to two networks, consisting of six ports and 21 ports,

operated by a global liner shipping company.

Finally, we examine a liner shipping network schedule design while including the



iv

inventory cost in the model. As a consequence, the container transshipment and the

relevant connection time must be incorporated. An elegant mathematical model is

developed. The proposed model is applied to a liner shipping network consisting of

18 ports.

In sum, new mathematical models and solution algorithms have been developed

to address the practical liner shipping service schedule design problems. The mod-

els and algorithms are helpful decision-support tools for liner shipping companies.

The numerical examples demonstrate the applicability of the models and produce a

number of useful managerial insights for liner planners.
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Chapter 1

Introduction

1.1 Preamble

During the last decade, It is observed that there is an increasing in the amount of

goods transported on maritime transportation, as well as the number of vessels used.

There are many reasons for that. Compared with other modes of transportation, it is

safe, cheap and clean (Agarwal and Ergun, 2008; IMO, 2012). According to Agarwal

and Ergun (2008), the services are provided at nearly one tenth of the air freight

rates. It is also reported that there are fewer accidents in sea cargo transportation,

and fewer pollution incidents. The amount of global trade that transported by the

sea is more than 70 per cent by value (UNCTAD, 2012). In addition, IMO (2012)

indicated that the per cent of global trade transported by sea is more than 90 by

volume. Fig. 1.1 shows the international seaborne trade loaded by million tons from

1980, 1985, · · · , 2005 then to 2012. The number was 9.6 billion tons for 2013

(UNCTAD, 2014).

1.2 Container Liner Shipping

Industrial, tramp and liner are three general modes of operation in shipping (Lawrence,

1972) (as cited in Christiansen et al., 2004; Ronen, 1983). In industrial shipping,

1
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Figure 1.1: Source: UNCTAD Review of Maritime Transport, various issues. For
2006-2012, the breakdown by type of dry cargo is based on Clarkson Research Ser-
vices Shipping Review & Outlook, various issues. Data for 2012 are based on a
forecast by Clarkson Research Services in Shipping Review & Outlook, spring 2012.

the ships are under control from the shipper or the cargo owner and it likes pri-

vate truck fleet shipping. The aim of industrial shipping is to minimize the cost.

In contrast, tramp shipping is looking for maximum profit which likes a taxi. In

tramp shipping, the ships sail to the available cargoes (Meng et al., 2015). Liner

shipping likes a bus line and it mainly involves the transportation of containerized

cargo (containers) such as manufactured products, food, and garment (Meng et al.,

2014). Unlike tramp shipping, liner shipping services have fixed sequences of ports

of call and fixed schedules, i.e., arrival and departure times at each port of call.

Liner services are announced in advance to attract potential customers. For exam-

ple, Fig. 1.2 and Fig. 1.3 show a liner service named North & Central China East

Coast Express (NCE) provided by Orient Overseas Container Line (OOCL, 2013).

The ports of call and schedule are published in the website of OOCL. Customers

can arrange the delivery of their cargo based on the available date of the cargo at
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the origin port and the expected arrival date at the destination port. For instance,

a customer that has 20 containers to be transported from Pusan to New York may

contact OOCL to transport the containers. As ships visit Pusan on Sunday, the

customer has to make sure that the containers are stacked in the container yard of

Pusan before Saturday, so that containers can be loaded to a ship when the ship

arrives. The ship will not directly transport the containers from Pusan to New York.

It will transport the containers via Qingdao, Ningbo, Shanghai, and finally to New

York. At the port of New York, the containers will be unloaded from the ship.

Figure 1.2: NCE service provided by (OOCL, 2013)

In the process of container transportation, the main role of container port is

to load and unload containers. First, a containership informs a port operator the

estimated arrival time, and then the port operator makes a plan for servicing the

ship. When the ship arrives, tug boats will tow the ship to the berth. Then the

ship will be moored, and quay cranes will start to load and unload containers for

the ship. At the same time, yard trucks will transport containers from and to the
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Figure 1.3: NCE service provided by (OOCL, 2013)

quay side. The container handling operation may take up to two days in general.

After that, the ship is unmoored, and tug boats tow the ship out of the port.

1.3 Liner Ship Route Schedule Design

Schedule design for a liner service (ship route) is a tactical-level planning decision

that is made every three to six months. To design the schedule of a ship route, the

first factor to be considered is the availability of the ports. Since a port needs to

provide services for a number of liner shipping companies and a number of ships, it

cannot guarantee the availability of services whenever a ship arrives. For instance,

a port may be able to provide services on Monday, Tuesday, and Friday, and is fully

occupied on Wednesday, Thursday, Saturday, and Sunday. We use the term “port
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time window” to refer to the time in a week that a port can provide services to

ships. Hence, schedule design is subject to the constraint of port time windows.

Moreover, because of the fast growth of container trade and the long time required

for the construction/expansion of port capacity, ports tend to be more congested.

As a result, it is important to consider the availability of ports in schedule design.

Otherwise the designed schedule may be infeasible in reality.

It should be noted that “port time window” here is different from the “time

window” in other problems, e.g., the vehicle routing problems (VPRs), as shown in

Fig. 1.4. In fact, in most other problems, time window is an interval that defines a

convex set (Wang and Lo, 2008). However, in liner ship route schedule design, port

time window defines a set of available times in a week that the port can provide

berthing services, and more often than not, the set is disconnected and non-convex.

Moreover, because of the weekly frequency of liner shipping services, the port time

window should be considered from the viewpoint of a loop rather than a line or

line segment. Take Fig. 1.5 as an example. The port time window in Fig. 1.5a is

equivalent to that in Fig. 1.5b.

Figure 1.4: Difference of time windows

The design of schedule is also influenced by other factors because different sched-

ules imply different ship costs, bunker costs, and inventory costs. Løfstedt et al.

(2010) stated that the cost of crew, maintenance and insurance are the operation
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Figure 1.5: Weekly property of port time window

cost (ship cost) of a vessel and they defined the bunker cost as “the cost of bunker,

which is the fuel deployed in container vessels”. In addition, Hsu and Hsieh (2005)

defined the inventory costs as the “opportunity cost or loss of value due to cargos

cannot be used or sold in the shipping process, and are positively correlated with

the cargo volume, the value of cargo, and the length of transit and storage time”.

Liner services are usually weekly, which means that the round-trip journey time

(weeks) of a ship route is equal to the number of ships deployed on it (Alvarez,

2009; Wang and Meng, 2012a; Wang et al., 2011). As a result, sailing at a higher

speed will reduce the round-trip journey time, thereby the number of ships required

and the ship cost. However, a higher speed implies a higher bunker cost: the daily

fuel consumption of ships increases approximately proportional to the sailing speed

(knot) cubed (Ronen, 2011; Wang et al., 2013c). At the same time, a higher speed

leads to a shorter transit time of containers from origin to destination, and thereby

a lower inventory cost (Notteboom, 2006). Consequently, in schedule design a liner

shipping company must balance the trade-off between ship cost, bunker cost, and

inventory cost, while considering port time windows.

The liner networks are extremely crucial for international trade purposes (Meng

and Wang, 2011a; Meng et al., 2012a; Wang et al., 2013a). These networks provide
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low transportation cost and optimize trade. The main objective of these ship route

schedule designs is to deliver capacity under various constraints and pressure. These

route schedule designs are also meant to provide cost effective, as well as, environ-

mental friendly solutions to ship transport problems (Stanley, 2007). In shipping

companies, managers try their best to cut the costs by utilizing all the available

resources effectively and efficiently (Kim and Moon, 2003) (as cited in (Gao et al.,

2010)). These resources include diverse types of resources e.g. human resource,

container equipment, and ships. Some of the crucial decision making variables play

a very significant role in shaping up the right way to increase profitability and ef-

fectiveness.

1.4 Objectives and Contributions

The objective of this thesis is to address the liner shipping service schedule design

problem with port time windows (SDPTW). We design the arrival time at each port

of call on each ship route that satisfies the port time window constraints while mini-

mizing the sum of ship cost, bunker cost, and inventory cost. The designed schedule

is feasible in that it takes into account port time windows. The designed schedule

is also optimal because the total cost of ships, bunker, and inventory is minimized.

Therefore, this problem is of significant value for liner shipping companies.

The contributions of the thesis to the state-of-the-art literature and practice are

three-folds: first, it takes the initiative to address the practical liner shipping service

schedule design problem with port time windows; second, it formulates models and

develops efficient solution approaches by taking advantage of problems structures.

Third, a number of interesting managerial insights from case studies are obtained

and these managerial insights provide guidelines for liner shipping companies to

make planning decisions.
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1.5 Organization of the Thesis

The thesis is organized into seven chapters. Chapter 1 includes a general introduc-

tion to shipping and then explains the container liner shipping and liner ship route

schedule design. In addition, it highlights the objectives and contributions of the

research.

Chapter 2 reviews related literature on schedule design for liner shipping net-

works with port time windows. It includes four parts. The first part reviews pre-

vious research on speed optimization. The second part is about berth allocation.

The third part focuses on schedule design. The final part summarizes the gap in the

literature.

In chapter 3, the arrival time of containerships at each port of call on a ship

route is determined while considering the available berth time windows at ports. A

single liner ship route is considered, on which a port is visited only once a week. The

objective minimizes the sum of ship cost, bunker cost and cargo inventory cost. The

model will be a mixed-integer nonlinear programming model that can be linearized

(linearly approximated), and solved by CPLEX.

Chapter 4 is generalized of the model of chapter 3. Ships on a route can visit a

port more than once a week. The model will be a mixed-integer nonlinear program-

ming model, and a holistic solution approach to obtain the global optimal solution

will be proposed.

Chapter 5 extends the previous one by considering a liner shipping network that

consists of many ship routes. Unlike Chapter 3 and Chapter 4, inventory costs are

not considered here for simplicity. The model will be a mixed-integer nonlinear

programming model, and an iterative optimization approach will be proposed to

solve the model.

Chapter 6 extends the previous one by considering inventory cost in a liner

shipping network. In addition to the fact that the resulting problem is larger, the

container transshipment and the relevant connection time are also incorporated. An
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elegant mixed-integer nonlinear programming model will be proposed.

Finally, chapter 7 summarizes the works and points out future research direc-

tions.



Chapter 2

Literature review

This chapter focuses on a critical review of the existing literature related to schedule

design for liner shipping services with port time windows. It is divided into four

sections: speed optimization in section 2.1, berth allocation in section 2.2, schedule

design in section 2.3 and finally, the literature gap in section 2.4.

2.1 Speed Optimization

Speed is a very important factor in liner ship route schedule design. Sometimes,

speed is considered to be a constant during the schedule design, but it plays an

important role and it is possible to make it a variable (Saldanha et al., 2006).

Speed has a direct or an indirect effect on the ship fleet and costs pertaining to

cargo inventory (Psaraftis and Kontovas, 2013). Optimizing or changing the speed

can lead to more efficiency and profitability and this way it becomes possible for

shipping to attract cargos from other modes of transport. In the real world scenario,

speed is not a constant and the fuel consumption per unit time can be calculated as a

function of speed. Meng et al. (2014) show that some studies keep the speed as one of

the decision variables and cost effectiveness and efficiency are achieved by optimizing

speed, e.g., Alvarez (2009), Gelareh and Meng (2010), Golias et al. (2010a), Lang

and Veenstra (2010), Meng and Wang (2011b), Cheaitou and Cariouz (2012), Yao

10
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et al. (2012), Wang et al. (2013e) and Wang et al. (2013d). In addition, the liner

shipping business is negatively affected by increasing bunker price (Notteboom and

Vernimmen (2009) as cited in (Brouer et al., 2013)).

The sailing speed is one of the reasons leading to a high total operation cost

of container ships. As a result of increasing the sailing speed, more bunker will be

consumed (Notteboom and Vernimmen, 2009). Ronen (2011) indicates that more

than 75 percent of the total operating costs of a container ship are from bunker cost.

Meng et al. (2014) state that at the strategic level, the sailing speed depends on the

size of the fleet and the flexibility of port times while it is influenced by weather

and currents at operational level. Several researchers emphasized the importance

of speed sailing and its impact on the consumption of bunker (Meng et al., 2014).

For example, Kontovas (2011) studies the relationship and suggests that using at

least of 4 of an exponent used if the sailing speed is more than 20 knots, while Du

et al. (2011) study the relationship based on different vessel classes and they used an

exponent of 4.5 for jumbo vessel, 4 for medium-sized vessel and 3.5 for feeder vessel.

In addition, Wang and Meng (2012d) study the relationship based on historical data

and they found that the exponential relationship between the sailing speed and the

bunker consumption between 2.7 and 3.3.

Ships move at a very low speed as compared to other modes of transporting

cargo like airplanes and trains. Speed is a very important decision variable in liner

ship route schedule designs. Speed and the transit time force a major challenge for

the companies involved in liner shipping business. The transit time is short in most

of the cases where time sensitive goods are involved. Time sensitive goods have to

be transported within a short span of time otherwise they cannot survive. In case

of transporting these sensitive goods, speed plays a very crucial role. Examples of

these sensitive goods include consumer goods with a short span of life and goods

like computers, fashion related goods (Notteboom, 2006).

Keeping in mind this long duration resulting from low speed, a higher speed
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might play a very crucial role. It is possible that the high speed entails added

economic value of quicker distribution of goods, less portfolio cost and more trade

overall (Notteboom, 2006). During the last couple of years, the trade within com-

panies has gone up tremendously, and this has led to a higher speed requirement.

Moreover, there are various speed models which provide a solution by minimizing

all the adverse effects of high speed and by optimizing speed giving cost effective

and efficient solutions. There are tradeoffs and correlations between high speed, fuel

price, impact on the environment, and operational costs (Saldanha et al., 2006).

2.2 Berth Allocation

Quay-side and yard-side are two main components of ports (Li et al., 2012b, 2009;

Yip et al., 2014; Zhuang et al., 2014). Berth is “the space allotted to a vessel at an-

chor or at a wharf”. Berth allocation is a very important decision making resolution,

and a lot of research is done on this topic. Research indicates that amongst all re-

sources (e.g. human resource, container equipment, berths, and container gantries),

the most important resource is berths (Gao et al., 2010). Allocation of berths plays

a very vital role in the shipping business because well designed schedules of berths

help in increasing the port during the course of business, and they also help in in-

creasing the customer satisfaction. Both these factors lead to better results with

high profitability at the ports (Imai et al., 2007).

Berth scheduling or berth allocation can be done using various mathematical

formulations. The main objective of these allocation processes is to minimize all

costs incurred from late departure of vessels, and also to minimize cost incurred from

waiting time at the terminals (Golias and Haralambides, 2011). At the same time,

the objective is to maximize revenues and efficiency by ensuring early departures

of the vessels. A good solution of the berth allocation problem (BAP) can shorten

the unproductive port time of ships, enabling liner shipping companies to make a
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Figure 2.1: Jabal Ali Port (AllportGargoServices)

higher profit.

The BAP can be classified according to different criteria. First, there are discrete

BAP (DBAP) where each berth can serve one ship at a time, and continuous BAP

(CBAP) with a long straight quay and how many ships can be accommodated at

the same time depends on the sizes of the ships. Second, BAP can be classified as

being either static (SBAP) or dynamic (DynBAP). In SBAP, all ships are already

in the port when the berth allocation is planned, whereas in DynBAP some ships

are still on the voyage to the port when the port operator allocates berths. The

SBAP is applicable when the port is highly congested. Third, BAP can occur at the

operational level (OBAP), or tactical level (TBAP). The OBAP covers a planning

horizon of usually at most one week and the TBAP aims to support port operators

to negotiate with shipping lines. If TBAP accounts for the periodicity of vessel

schedules, e.g., weekly arrival patterns of containerships, then if a vessel is serviced

at a berth on day 7 and day 8, other vessels cannot use the berth on day 1, because

day 8 and day 1 correspond to the same day in a week. The time horizon of this

type of TBAP is a cylinder whose circumference equals 1 week. Hence, the resulting

models (Moorthy and Teo, 2006; Zhen et al., 2011b) are significantly different from
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OBAP models. If in the TBAP vessels do not arrive periodically, the time horizon

is simply a rectangle with an open end and the models are very similar to OBAP

models.

Besides determining the berthing time and location, some studies on DynBAP

(either DBAP or CBAP and either TBAP or OBAP) also integrate other deci-

sion issues such as quay crane assignment, quay crane scheduling, container storage

planning at yard, and yard truck scheduling. The models on DynBAP all aim at

providing berthing and other related services at minimum cost (cost associated with

quay cranes and yard trucks). However, different models have different definitions

for service. Most studies assume that each ship has a preferred arrival time. Gial-

lombardo et al. (2010) is an exception in that it examined a TBAP and assumed that

there was no difference for shipping lines when their ships were scheduled to arrive.

The objective was to minimize the container handling time of ships by choosing

quay crane assignment profiles.

The studies considering the preference of ship arrival times can be classified into

four different lines, which are briefly summarized as follows. The first line aims to

minimize the total service time (turnaround time) of all ships, including waiting

time for berths and container handling time, or total weighted service time where

different ships have different weights, for example, Imai et al. (2008a, 2001, 2003,

2005), Cordeau et al. (2005), Moorthy and Teo (2006), Golias et al. (2010b, 2009b),

and Lee et al. (2010). Note that if the handling time is constant, minimizing the

service time is equivalent to minimizing the waiting time. Similarly, Imai et al.

(2008b) required that if a ship’s waiting time exceeded a certain limit, the ship

must be served at an external terminal, and the target is to minimize the total

service time of ships at the external terminal. Golias et al. (2009a) considered

two objectives: minimizing the total service time of preferential customers, and

minimizing the total service time of all vessels. The second line minimizes the total

tardiness cost, which is the finish operation time (real departure time) minus the
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expected departure time if the former is larger, and 0 otherwise, for instance, Kim

and Moon (2003), Chang et al. (2010), and Zhen et al. (2011b). In addition, Han

et al. (2010) proposed a proactive approach for a BAP with quay crane scheduling

and stochastic arrival and handling time. They took into account the expected

value and standard deviation of the total service time and weighted tardiness of all

ships. Chen et al. (2012) minimized the maximum relative tardiness of all ships.

The third line formulates the penalty for earliness and tardiness in greater details.

Meisel and Bierwirth (2009) investigated a CBAP with quay crane allocation. They

assumed that each ship has an expected arrival time, an earliest start operation

time, expected finish operation time, and latest allowed finish operation time. All of

these time components were included in the objective function. Zhen et al. (2011a)

developed an integrated model for the TBAP with yard operations planning. The

model minimized the weighted sum of deviation from vessels’ expected turnaround

time intervals and the operations cost associated with transshipment containers.

The fourth line incorporates the bunker cost of the vessels in the models. Golias

et al. (2010a) considered the following elements in the objective function: (i) the

total service time, (ii) the tardiness, and (iii) the emissions and fuel cost for all

vessels while in transit to their next port of call. By contrast, Du et al. (2011)

incorporated the tardiness and the fuel cost for all vessels while in transit from their

current positions to the focal port of the BAP. These berth allocation studies are

all from the points of view of port operators.

2.3 Schedule Design

The primary purpose of the scheduling models is to assign limited resources to the

given tasks over the period of time efficiently (Cai et al., 1998). Basically, schedule

design or model is a decision making process which is quite evident and popular

in many of the service systems, manufacturing systems, and information handling
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systems. The schedule design of the service line means determining the speeds of the

containerships to transporting containers from source to the destination (Meng et al.,

2014). During the last couple of years, the topic of liner ship route schedule design

has gained significant importance though. There has been a downward pressure on

organizations involved in the shipping industry because of the fluctuating oil prices

and the recent financial crisis (Besbes and Savin, 2009; Kjeldsen, 2012; UNCTAD,

2008; Wang and Meng, 2012b). In these difficult times, scheduling has become more

important because efficient and cost effective scheduling is a possible way to earn

reasonable profits. Nowadays profitability of all kinds of liner shipping companies

is heavily dependent on scheduling and tactical planning which enables efficiency

along with cost effectiveness (Wang et al., 2012).

The schedule designed for liner ship routes remains unchanged for three to six

months (Kjeldsen, 2012; Meng et al., 2014; Song and Dong, 2011; Wang and Meng,

2012b). The schedule design is extremely important because it has a direct impact

on ship cost, as well as, on the bunker cost (Wang and Meng, 2012b). The bunker

cost plays a very crucial part in this system. It contributes around twenty to sixty

(Ronen, 1993) or even more than seventy five percent of the total operating cost

when the bunker price is high (Ronen, 2011). Ship cost is also very crucial which

depends on the number of ships to deploy, determined by the length of a round trip;

the length of a round trip depends on the time spent during the sailing on the sea

and the time spent at ports. If one or both of them increases, the journey time

becomes longer and this means the companies need more ships used in this route

to achieve the weekly service. Thus, there is a trade-off between these two costs i.e.

the bunker cost and the ship cost (Meng et al., 2014; Psaraftis and Kontovas, 2013).

The route scheduling also has an effect on transit time of the containers. This

impact on transit time is from the starting port to the destination or ending port.

This transit time forces a challenge for the companies involved in this liner shipping

business (Wang and Meng, 2012b). Due to tight competition between these shipping
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companies, the transit time offered is very short (Bell and Bichou, 2008). The

transit time is short in most of the cases where time sensitive goods are involved.

Time sensitive goods are the ones which have to be transported within a short span

of time otherwise they cannot survive. Examples include consumer goods with a

short span of life and goods like computers which are time sensitive (Notteboom,

2006). Sometimes transshipment is also involved during this process. Transshipment

operation includes transference of a container from one ship to the other ship during

the time of the trip, from start to the destination port (Lachner and Boskamp, 2011).

In most of the cases, it is cheaper to ship goods, sent from the source, through

intermediate or transient nodes before reaching the final destination. Transshipment

problems are a more general form of transportation problem, where only direct

shipments are allowed from source to the destination. Petering (2011) reports that

at Port of Singapore, the transshipment containers are the most of the containers

handled.

There are some papers review on ship routing and scheduling, for instance, Ro-

nen (1983), Ronen (1993), Christiansen et al. (2004) and Meng et al. (2014). Ronen

(1983), Ronen (1993), and Christiansen et al. (2004) mainly concentrate on indus-

trial and tramp shipping. While Meng et al. (2014) is dedicated to liner shipping.

According to our extensive literature search, there are five articles most relevant to

schedule design: Mourão et al. (2001); Wang and Meng (2011); Qi and Song (2012);

Wang and Meng (2012b) and Wang and Meng (2012c).

Mourão et al. (2001) analyzed a small hub-and-spoke network at the tactical

level. The network consisted of two routes – a feeder route and a main route –

and one pair of ports. It assumed that all containers must be transshipped at the

hub port in the feeder route. The main route had two possible schedules: Monday

roster and Thursday roster. Two integer programming models were developed. The

decision variables in the first model include: number of mainline ships in each type

assigned to the Monday roster, number of mainline ships in each type assigned to
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the Thursday roster, and number of feeder ships assigned to the feeder route. In

the second model, the decision variables were: number of voyages per year of the

mainline ships in each type assigned to the Monday roster, number of voyages per

year of the mainline ships in each type assigned to the Thursday roster, and number

of voyages per year of feeder ships. The inventory costs of the containers to be

shipped were considered in the objective function. These two models were solved

by Excel.

Wang and Meng (2011) investigated the schedule design and container routing

problem in liner shipping. They considered a general liner shipping network with

many ports, many ship routes, and many origin-destination (OD) pairs. Containers

in each OD pair had more than one path to be transported from origin to destina-

tion, and these paths were assumed to be given a priori. Containers in each OD pair

had a market-level transit time to ensure that the container delivery service was

competitive. In particular, if the real transit time was longer than the market-level

transit time, a penalty was incurred; if the real transit time was shorter than the

market-level transit time, a bonus was given. It was assumed that the sailing speed

of ships and the time spent at each port of call were all fixed. Hence, the main

decision variables were when to arrive at the first port of call on each ship route.

At the same time, container routing with transshipment were incorporated. In fact,

how containers were transported affected the schedule design. Hence, schedule de-

sign and container routing were studied in a holistic manner. The formulation for

the schedule design and container routing problem was nonlinear, non-continuous

and non-convex. An efficient genetic local search heuristic was developed. Compu-

tational results showed that the genetic local search heuristic could efficiently find

good quality solutions. Moreover, the model for the container routing sub-problem

could be separately used to optimize the day-to-day container routing decisions for

the realized container shipment demand after the schedules have been designed.

Qi and Song (2012) designed an optimal containership schedule for a liner ship
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route to minimize the total expected fuel consumption. They considered uncertain

port time and weekly frequency. They defined the level of service as the probability

that the containership would arrive at a port no later than the published arrival time.

They analytically studied the special case of 100% service levels. By proving the

convexity and differentiability of the objective function, it was shown that the opti-

mal schedule could be obtained by solving a nonlinear programming problem. With

further assumption of identical distribution of the uncertain parts of port times,

they analytically derived some properties of an optimal schedule, which led to use-

ful managerial insights. For example, the shortest leg was the most problematic leg

when designing the optimal schedule to achieve 100% service level and to minimize

the emissions within the speed constraints, and therefore a liner shipping company

should plan relatively longer time for a short leg. A general optimal ship schedul-

ing problem was formulated, and the formulation was solved by simulation-based

stochastic approximation methods. They validated the model and the properties by

numerical studies. Based on a real liner case study with various scenarios analysis,

they found significant fuel savings could be achieved from their model compared

to the company’s original schedule or to the schedule based on deterministic data,

especially for the cases with larger degree of uncertainties. They also found that

the total fuel consumption could be reduced by sacrificing the service levels starting

from the shortest legs; whereas as the vessel lateness penalty increased, higher ser-

vice levels tended to be maintained and they became evener among all port-of-calls.

This would help liner companies better understand the tradeoff between the fuel

consumption and the service level.

Wang and Meng (2012c) examined the design of liner ship route schedules that

could hedge against the uncertainties in port operations, which included the uncer-

tain wait time due to port congestion and uncertain container handling time. They

assumed that if a ship arrived at a port later than planned, then the penalty cost

first increased linearly with the delay, and when the delay exceeded a particular
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threshold, the penalty cost did not change any more because the customers already

resorted to other approaches to handle the delay. They further assumed that if a

ship was delayed, it would try to catch up with the planned schedule as early as

possible by sailing at the fastest speed. The designed schedule was robust in that

uncertainties in port operations and schedule recovery by fast steaming were cap-

tured endogenously. The number of ships required to maintain a weekly frequency

was considered as a decision variable. The objective function minimized the ship

operating cost, expected bunker cost, and the penalty cost for delay. This prob-

lem was formulated as a mixed-integer nonlinear stochastic programming model.

A solution algorithm which incorporated a sample average approximation method,

linearization techniques, and a decomposition scheme, was proposed. Numerical ex-

periments based on a long-haul ship route of Maersk Line were carried out. The ship

route covered two trade lanes: trans-Pacific and trans-Atlantic, and three regions:

Asia, America, and Europe, and had the sequence of ports of call as follows: Tokyo

(1) → Kobe (2) → Chiwan (3) → Hong Kong (4) → Kaohsiung (5) → Busan (6)

→ Kobe (7)→ Tokyo (8)→ Balboa (9)→ Manzanillo (10)→ Miami (11)→ Jack-

sonville (12) → Savannah (13) → Charleston (14) → New York (15) → Antwerp

(16) → Felixstowe (17) → Bremerhaven (18) → Rotterdam (19) → Le Havre (20)

→ New York (21)→ Norfolk (22)→ Charleston (23)→ Manzanillo (24)→ Balboa

(25) → San Pedro (26) → Oakland (27) → Tokyo (1). The numerical experiments

demonstrated that the algorithm obtained near-optimal solutions with the stochastic

optimality gap less than 1.5% within reasonable time.

Wang and Meng (2012b) extended the work of Wang and Meng (2011). Both

works have studied a liner shipping network, which contrasted Qi and Song (2012)

and Wang and Meng (2012c), and both works have required a certain level of ser-

vice in terms of OD transit time. Wang and Meng (2012b) was the first attempt to

examine the optimal sailing speed function in view of sea contingency to minimize

bunker consumption. The optimality condition for the sailing speed and the optimal
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sailing speed function with time were derived. They also contributed to the line of

literature on optimization of sailing speed to control bunker consumption by provid-

ing an efficient and exact cutting-plane based solution algorithm. Moreover, they

addressed the practical schedule design problem arising in liner shipping industry

while considering port-to-port transit time with transshipment and sea contingency

and uncertain port time. The port-to-port transit time with transshipment issue

was solved with a mixed-integer programming model; sea contingency was investi-

gated in the optimality condition of sailing speed; and the uncertain port time was

addressed by proving the convexity of the expected bunker cost on each voyage leg

with regard to the inter-arrival time between the two consecutive portcalls of the leg.

The novel holistic solution algorithm exploited the special structure of the decision

problem and integrated several techniques in a nice manner. The proposed model

and algorithm were applied to an Asia-Europe-Oceania shipping network provided

by a global liner shipping company. The network had a total of 46 ports in Asia,

Europe, and Oceania. These 46 ports were served by 11 ship routes with three

types of ships. There were a total of 100 container routes in the shipping network.

The computational results demonstrated that the proposed model provided a useful

planning tool for liner shipping companies.

2.4 Literature Gap

By summarizing the most relevant articles to schedule design in Table. 2.1, we

can now identify the gap in the literature. Only two papers consider a general

liner shipping network. Some papers do not consider the speed optimization or

do not consider the inventory cost of cargos. Moreover, none of the studies have

considered the availability of ports in their schedule design. Hence, the liner service

schedule design with port time windows is a new research topic. It incorporates

both shipping operations and port operations in the planning decision and hence has
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practical significance for liner shipping companies. Addressing the problem requires

sophisticated mathematical models techniques. Although mathematical tools have

been used extensively in transportation and scheduling problems (Wu and Kumar,

2012; Wu et al., 2010; Zheng et al., 2014; Zheng and Su, 2014), most research on liner

shipping is qualitative. Therefore, new mathematical tools have to be developed to

address the liner service schedule design problem with port time windows, which is

the aim of this research.

Table 2.1: Most relevant articles to schedule design
Author One Ship

route or
network

Speed opti-
mization

Inventory
cost

Port avail-
ability

Mourão
et al. (2001)

only a feeder
and a main
route

N Y N

Wang and
Meng (2011)

network N Y N

Qi and Song
(2012)

one route Y N N

Wang
and Meng
(2012b)

one route Y Y N

Wang
and Meng
(2012c)

network Y N, but tran-
sit time is
considered

N



Chapter 3

Simple Single Ship Route

Schedule Design

3.1 Introduction

Liner shipping likes a bus line and it mainly involves the transportation of container-

ized cargo (containers) such as manufactured products, food, and garment (Øvstebø

et al., 2011 and Meng et al., 2014). Liner shipping services have fixed sequences of

ports of call and fixed schedules, i.e., arrival and departure times at each port of

call, similar to public transport operations. Liner services are announced in advance

to attract potential customers. For example, Fig. 3.1 shows a liner service named

North & Central China East Coast Express (NCE) provided by Orient Overseas

Container Line (OOCL, 2013).

This chapter examines the interaction between shipping lines and port operators

on schedule design from the viewpoint of shipping lines. Schedule design for a liner

service (ship route) is a tactical-level planning decision that is made every three to

six months. To design the schedule of a ship route, the first factor to be considered

is the availability of the ports.

The objective of this chapter is to address the liner ship route schedule design

23
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problem with port time windows (SDPTW). We assume that each port on the ship

route is visited only once in a round-trip journey. We design the arrival time at

each port of call on the ship route that satisfies the port time window constraint

while minimizing the sum of ship cost, bunker cost, and inventory cost. The de-

signed schedule is feasible in that it takes into account port time windows. The

designed schedule is also optimal because the total cost of ships, bunker, and inven-

tory is minimized. Therefore, this problem is of significant value for liner shipping

companies.

The rest of the chapter is organized as follows. Section 3.2 describes the problem.

Section 3.3 formulates a mathematical model for the problem. Section 3.4 proposes

a dynamic programming based holistic solution approach to address the problem.

Section 3.5 reports a case study based on the NCE service of OOCL. Section 3.6

presents the conclusion.

3.2 Problem Description

Figure 3.1: NCE service provided by (OOCL, 2013)

Consider a ship route such as the NCE service in Fig. 3.1. The ship route has
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a weekly service frequency which means each port of call is visited on the same

day every week (Meng and Wang, 2012; Wang et al., 2013b). The port rotation of

the ship route has a total of N ports. Define I := {1, 2, · · · , N}, which is a set

representing all the ports of call for simplifying the notation. Since the ports of call

on a ship route form a loop, we can arbitrarily choose one port as the first port of

call (Wang, 2013; Wang et al., 2014b). For instance, if we let New York be the first

port of call, the NCE service can be coded as follows: 1 (New York) → 2 (Norfolk)

→ 3 (Savannah) → 4 (Pusan) → 5 (Qingdao) → 6 (Ningbo) → 7 (Shanghai) → 1

(New York). If we let Norfolk be the first port of call, the NCE service can be coded

as follows: 1 (Norfolk) → 2 (Savannah) → 3 (Pusan) → 4 (Qingdao) → 5 (Ningbo)

→ 6 (Shanghai) → 7 (New York) → 1 (Norfolk). We let pi represent the physical

port of the ith port of call, i ∈ I. We further define the voyage from the ith port to

the (i+ 1)th as leg i; leg N is the voyage from the Nth port of call to the first one.

For instance, if we define New York to be the first port of call, then the first leg is

the journey from New York to Norfolk, the second leg is the journey from Norfolk

to Savannah, the third leg is the journey from Savannah to Pusan, the fourth leg

is the journey from Pusan to Qingdao, the fifth leg is the journey from Qingdao to

Ningbo, the sixth leg is the journey from Ningbo to Shanghai, the seventh leg is the

journey from Shanghai to New York.

We assume that pi 6= pj, i 6= j. In other words, we assume that each physical port

is visited only once during a round-trip journey. It should be noted that in reality

there are many ship routes that visit a port twice in a round-trip journey, and in

extreme cases, three times. The methods proposed in the chapter could be used for

designing schedules for these ship routes, too, but need considerable modification.

For better readability, we only consider the case that each physical port is visited

only once during a round-trip journey.
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3.2.1 Ship cost, bunker cost and inventory cost

We assume that a string of m homogeneous containerships are deployed on the ship

route to maintain a weekly service frequency. Ships are homogeneous means that

they have the same capacity, age, designed speed, and other ship specific character-

istics. In reality, two ships cannot be the same because even if they were the same

when constructed, different past operating conditions would make them different

(e.g., fuel efficiency). However, in mathematical modeling, it is convenient to model

ships with similar characteristics as identical without losing much precision. That

is why we also adopt such an approach. The highest possible sailing speed of the

ships is denoted by V max (knot). Represent by tport
i the time (h) a ship spends at

port i, and Li (n mile) the distance of leg i. The maximum speed of container-

ships is usually higher than that of bulk cargo ships and tankers. This is mainly

because containerships transport containerized cargos with higher unit value, and

hence faster delivery is more desirable. The time a ship spends at a port consists

of the time for towage, mooring and unmooring, possible wait time, and container

handling. The most significant time component is container handling. For instance,

if the average container handling efficiency is 100 containers/h, and a total of 2000

containers are loaded or unloaded, then the container handling time is 20 hours. We

assume that the container handling time is fixed. In reality, this time cannot be

exactly predicted, and hence here we can consider tport
i as already including some

buffer time.

3.2.1.1 Ship cost

Let vi be the sailing speed (knot) of ships on leg i. To maintain a weekly service

frequency, we have the relation:

∑
j∈I

Lj/vj +
∑
j∈I

tport
j = 168m (3.1)
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In Eq. (3.1), the left-hand side is the round-trip journey time (h), and the right-

hand side is the number of ships times 168 hours/week. Eq. (3.1) is the fundamental

equation defining the number of ships required to maintain a weekly frequency. For

instance, if the round-trip journey time is 336 hours (two weeks), two ships are

needed to maintain a weekly frequency. If the round-trip journey time is 8 weeks,

8 ships must be deployed to maintain a weekly frequency. If we can reduce the

round-trip journey time from 8 weeks to 7 weeks by sailing faster, skipping ports,

or shortening port time, we can save one ship. Denote by Cship (USD/week) the

fixed operating cost of a ship, which is the ship chartering cost but does not include

bunker fuel cost. Hence, the weekly operating cost of the ships deployed on the ship

route is Cshipm.

3.2.1.2 Bunker cost

As aforementioned, Eq. (3.1) implies that when the speed is higher, fewer ships need

to be deployed to maintain the same weekly service frequency. However, a higher

speed implies a larger amount of bunker consumed. To take into consideration the

bunker cost, we let gi(vi) (tons/n mile) be the bunker consumption function at the

speed vi on leg i. Based on the results in existing studies (Kontovas, 2011; Psaraftis

and Kontovas, 2010, 2013; Ronen, 2011; Wang and Meng, 2012d), we assume that

gi(vi) is a power function of the form:

gi(vi) = ai(vi)
bi , i ∈ I (3.2)

where ai and bi are two coefficients calibrated from historical operating data and

satisfy ai > 0 and bi > 1. Denote by α (USD/ton) the bunker fuel price. The weekly

bunker cost is α
∑

i∈I Ligi(vi) = α
∑

i∈I Liai(vi)
bi . It should be noted that although

we assume that the bunker consumption function has the form of Eq. (3.2), the

solution method that will be elaborated later is applicable to other forms of bunker

consumption functions, too.
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3.2.1.3 Inventory cost

Besides the ship cost and bunker cost, the inventory cost of containers should also

be incorporated. In fact, a lower speed (slow-steaming) would increase the transit

time of containers, and thereby the inventory cost. We let V̄i be the number of

containers (twenty-foot equivalent units, or TEUs) on leg i, and β be the unit

inventory cost (USD per TEU per h). Since the time spent at each port is constant,

we only consider the inventory cost associated with sailing time at sea (sea time).

Therefore, the total inventory cost is
∑

i∈I βV̄iLi/vi. It should be noted that V̄i is

actually a predicted value based on historical data. The inventory cost is included to

reflect the quality of the liner shipping company’s transport services1. Note further

that β is also predicted and our model allows β to vary with different voyage legs.

3.2.2 Liner ship route schedule

We define the time 00:00 of a certain Sunday as time 0 (h), and hence 10:00 on

Monday is time 24+10=34, and 10:00 next Tuesday is time 168+24*2+10=226.

Since we assume that the port time (tport
i ) is fixed, the time of departure (tdep

i ) at

port i is determined by the time of arrival (tarr
i ) and the port time (tport

i ), that is:

tdep
i = tarr

i + tport
i , i ∈ I (3.3)

Because of the weekly service frequency, without loss of generality, we let

0 ≤ tarr
1 < 168 (3.4)

Note that the above equation is important to eliminate symmetric solutions. Because

of the weekly frequency, there is no difference whether the first port of call is visited

at time 20 (i.e., tarr
1 = 20) or 20 + 168 (i.e., tarr

1 = 188). Hence, we only need to

1In reality the liner shipping company will not pay the customers for their inventory cost.
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consider the case where the arrival at the first port of call is between time 0 and

168.

We define the time when the ship returns to the first port of call as tarr
N+1, that

is:

tarr
N+1 := tarr

1 + 168m (3.5)

This equation implies that a ship needs tarr
N+1 − tarr

1 = 168m hours to complete a

round-trip journey. This is consistent with the weekly frequency.

The schedule of a liner ship route is the vector defined below:

(tarr
i , i ∈ I;m) (3.6)

We stress that the schedule of a liner ship route cannot be represented by (tarr
i , i ∈ I).

This is because, given (tarr
i , i ∈ I), we do not know the inter-arrival time from the

last port of call to the first. The number of ships m together with (tarr
i , i ∈ I) can

define the inter-arrival time from the last port of call to the first. Of course, the

schedule can also be uniquely determined by (tarr
i , i ∈ I; tarr

N+1).

3.2.3 Port time window

A ship cannot arrive at a port at any time because the port may be busy during some

periods of a week. Hence, we let Ωi ⊆ [0, 168) be the time in a week during which

port i is available for serving ships on the ship route, i.e., port time window. For

example, Ωi = [10, 20]∪ [96, 120] means that port i is available from 10:00 Sunday to

20:00 Sunday, and 00:00 Thursday to 00:00 Friday. Ωj = [0, 24] ∪ [144, 168) means

that port j is available from 00:00 Sunday to 00:00 Monday, and 00:00 Saturday to

00:00 Sunday. In other words, the port is available from 00:00 Saturday to 00:00

Monday next week.

We assume that the port time window at each port (which corresponds to each

port of call because we assume that each port is visited once in a round-trip journey)
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is known. In reality, a liner shipping company can obtain this port time window

from port operators, because port operators have to tell it whether it is possible to

arrive at a particular time.

A ship needs to stay at port i for tport
i hours. Therefore, we could easily compute

the feasible arrival times at port i based on Ωi. For instance, Ωi = [10, 20]∪ [96, 120]

and tport
i = 5 imply that tarr

i could be any value in [10, 15] ∪ [96, 115]. We let

Ω̂i ⊆ [0, 168) be the set of feasible arrival times at port i in a week. It should be

mentioned that because of the weekly service frequency, when Ω̂i = [10, 15]∪[96, 115],

the arrival time tarr
i = 180 (which corresponds to time 12 of the next week) is also

feasible. In fact, an arrival time is feasible if and only if (tarr
i mod 168) ∈ Ω̂i, where

the “mod” operator obtains the modulus of two integer numbers.

Therefore, the ship route schedule design problem with port time window aims to

determine the optimal arrival time at each port of call on a ship route that satisfies

the port time window to minimize the total cost including ship cost, bunker cost,

and inventory cost.

3.3 Mathematical model

Before presenting the model, we list the notation below.

Variables

m Number of ships deployed on the ship route
tarr
i Arrival time (h) at the ith port of call
tarr
N+1 The time (h) when the ship returns to the 1st port of call

tdep
i Departure time (h) from the ith port of call
vi Sailing speed (knot) on leg i

Parameters

3.3.1 Model

The SDPTW can be formulated as:



3.3. Mathematical model 31

α The bunker fuel price (USD/ton)
β The unit inventory cost (USD per TEU per h)

Ω̂i The set of feasible arrival times at the ith port of call
Cship The weekly operating cost of a ship (USD/week)
gi(vi) Bunker consumption per nautical mile at the speed vi

on leg i (tons/n mile)
I Set of legs, I = {1, 2, · · · , N}
Li Oceanic distance (n mile) of the leg i
N Number of ports on the ship route
pi The port i on the ship route
tport
i Time (h) a ship spends at port i
V̄i Number of containers (TEUs) on leg i
V max Maximum speed of the ships (knot)

[SDPTW]

minCshipm+ α
∑
i∈I

Ligi(vi) +
∑
i∈I

βV̄i
Li
vi

(3.7)

subject to: ∑
j∈I

Lj/vj +
∑
j∈I

tport
j = 168m (3.8)

tdep
i = tarr

i + tport
i , i ∈ I (3.9)

0 ≤ tarr
1 < 168 (3.10)

tarr
N+1 = tarr

1 + 168m (3.11)

vi =
Li

tarr
i+1 − t

dep
i

, i ∈ I (3.12)

(tarr
i mod 168) ∈ Ω̂i, i ∈ I (3.13)

0 ≤ vi ≤ V max, i ∈ I (3.14)
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m ∈ {1, 2, 3, · · · } (3.15)

The objective function (3.7) minimizes the sum of ship cost, bunker cost, and inven-

tory cost. The first term is the ship cost, which is proportional to the number of ships

deployed. The second term is the bunker cost, which varies nonlinearly with speed.

The third term is inventory cost, which is summed over all legs. Constraint (3.8)

requires that the service on this ship route is weekly. Constraint (3.9) defines the

departure time from each port of call. Constraint (3.10) eliminates symmetric so-

lutions. Constraint (3.11) defines the time when the ship returns to the first port

of call after one round trip. Constraint (3.12) calculates the sailing speed on each

leg. Constraint (3.13) imposes the port time window restrictions. Constraint (3.14)

enforces the lower and upper limits on the sailing speed. Constraint (3.15) indicates

that the number of ships is a positive integer.

3.4 Solution Method

The model [SDPTW] is a mixed-integer nonlinear non-convex optimization prob-

lem. It is difficult to solve because (i) it has both continuous (sailing speed) and

discrete variables (number of ships); (ii) it has nonlinear objective function (3.7)

and nonlinear constraints (3.8) and (3.12); (iii) the set Ω̂i in Eq. (3.13) may consist

of disjoint intervals, as shown in Fig. 1.4. This will lead to a non-convex domain

even without considering the discrete decision variables; moreover, even if Ω̂i is con-

vex, the “mod” operator still leads to a non-convex domain. These difficulties make

the model challenging and hard to be solved by existing commercial solvers. To

address the model, we have to develop our own solution algorithm. After carefully

examining the properties of the problem, we develop a dynamic programming based

solution method that overcomes these difficulties.
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3.4.1 Space-time network for a given number of ships

Given the number of ships m, say, m̄, the ship cost Cshipm̄ is fixed. Moreover,

the round-trip journey time is also fixed, that is, 168m̄ hours. The model can be

reformulated as

[SDPTW-m̄]

minα
∑
i∈I

Ligi(vi) +
∑
i∈I

βV̄i
Li
vi

(3.16)

subject to: ∑
j∈I

Lj/vj +
∑
j∈I

tport
j = 168m̄ (3.17)

tdep
i = tarr

i + tport
i , i ∈ I (3.18)

0 ≤ tarr
1 < 168 (3.19)

tarr
N+1 = tarr

1 + 168m̄ (3.20)

vi =
Li

tarr
i+1 − t

dep
i

, i ∈ I (3.21)

(tarr
i mod 168) ∈ Ω̂i, i ∈ I (3.22)

0 ≤ vi ≤ V max, i ∈ I (3.23)

Note that model [SDPTW-m̄] no longer has discrete variables.
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3.4.1.1 Property of the problem

As tarr
1 is between 0 and 168, we can discretize it and enumerate all possible dis-

cretized values. Given m and tarr
1 (say, m̄ and t̄arr

1 ), if the arrival time at a particular

port of call is known, then the bunker cost and inventory cost associated with the

voyage legs after the port of call depend only on its arrival time and are independent

of the arrival times at ports of call prior to it. For instance, if we know that the

arrival time at the īth port of call is t̄arr
ī , the problem can be split into two subprob-

lem: subproblem 1 determines the arrival time at each port of call 2, 3, · · · , ī − 1;

subproblem 2 determines the arrival time at each port of call ī + 1, ī + 2, · · · , N .

To be clear, we formulate the two subproblems below:

[SDPTW-m̄-subproblem 1]

minα
ī−1∑
i=1

Ligi(vi) +
ī−1∑
i=1

βV̄i
Li
vi

(3.24)

subject to:

tdep
i = tarr

i + tport
i , i = 1, 2, 3, · · · , ī− 1 (3.25)

vi =
Li

tarr
i+1 − t

dep
i

, i = 1, 2, 3, · · · , ī− 1 (3.26)

(tarr
i mod 168) ∈ Ω̂i, i = 2, 3, · · · , ī− 1 (3.27)

0 ≤ vi ≤ V max, i = 1, 2, 3, · · · , ī− 1 (3.28)

tarr
1 = t̄arr

1 (3.29)

tarr
ī = t̄arr

ī (3.30)
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[SDPTW-m̄-subproblem 2]

minα
N∑
i∈ī

Ligi(vi) +
N∑
i∈ī

βV̄i
Li
vi

(3.31)

subject to:

tdep
i = tarr

i + tport
i , i = ī, ī+ 1, · · · , N (3.32)

vi =
Li

tarr
i+1 − t

dep
i

, i = ī, ī+ 1, · · · , N (3.33)

(tarr
i mod 168) ∈ Ω̂i, i = ī+ 1, ī+ 2, · · · , N (3.34)

0 ≤ vi ≤ V max, i = ī, ī+ 1, · · · , N (3.35)

tarr
ī = t̄arr

ī (3.36)

tarr
N+1 = t̄arr

1 + 168m̄ (3.37)

Hence, the decisions about the arrival time at each port of call could be made in

a sequential manner, that is, the optimal arrival time at the next port only depends

on the arrival time at the current port (and of course m̄ and t̄arr
1 ). Exploiting

this property, we construct a space-time network and thereby develop a dynamic

programming based solution approach.



3.4. Solution Method 36

3.4.1.2 Space-time network construction method

To construct a space-time network, in view of Eq. (3.10), we only need to consider a

time horizon of 168(m+1) hours 2. In other words, the time horizon is m+1 weeks.

We discretize the time horizon into intervals, the length of each interval being 1 hour

3. To take into account the voyage from the Nth port of call to the first one, we

consider N + 1 ports in the space-axis, where the (N + 1)th port corresponds to the

returning to the first one. Each of the N+1 ports is copied 168(m+1) times. Hence,

each node (t, i) in the space-time network corresponds to a port i at a particular

time t. We define the time t as the arrival time at the port i. Therefore, node (t, i)

in the space-time network means that port i is visited at time t. For each port i, if

(t mod 168) 6∈ Ω̂i, then the port is busy at the time t. Hence, it is impossible to

visit port i at time t. Consequently, for each port i, if (t mod 168) 6∈ Ω̂i, then we

remove the node (or mark it as inactive as it will not be visited).

Moreover, from each active node (t, i), the ship may visit any active node (t′, i+1)

satisfying

t′ ≥ t+ tport
i +

Li
V max

(3.38)

In other words, from port i, a ship can only visit port i + 1 and the sailing speed

cannot exceed V max. Of course, the port time window at port i + 1 is already

implicitly considered by removing the nodes that cannot be visited.

We formally state the method for constructing the space-time network below:

Algorithm 1: Construction of space-time network G(m)4 for a given ship

number m

Step 1. (Construct nodes): Construct a space-time network with the horizontal axis

being the time (hours, starting from 0 which represents 00:00 of a particular

2If, for example, tarr1 = 167, then the ship will return to the first port of call at time 168m+167.
Therefore, the time horizon is 168(m + 1) hours rather than 168m hours.

3The precision of 1 hour is more than sufficient for liner shipping applications.
4G means “graph”.
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Sunday), and the vertical axis being the space (ports). The length of the time

axis is 168(m+1) with the discrete time points being 0, 1, 2,· · · ,168(m+1)−1.

The vertical axis has N + 1 ports, that is, the 1st port of call, the 2nd port

of call,· · · , the Nth port of call, and the (N + 1)th port of call. Note that

the (N + 1)th port of call actually represents that the ship returns to the

first port of call after a round-trip journey of 168m hours. Each of the N + 1

ports is copied 168(m+ 1) times. Now, in the space time network, there are

168(m+1)(N+1) nodes. A node can be represented by an ordered pair (time

unit, port ID), or (t, i), which means that port i is visited at time t.

Step 2. (Deactivate nodes):

Step 2.1. (Deactivate nodes that violate port time windows) For each node (t, i)

in the space-time network, if (t mod 168) 6∈ Ω̂i, the ship cannot visit

the node and hence we mark it as inactive;

Step 2.2. (Deactivate nodes that violate Eq. (3.10)) For each node (t, 1) that cor-

responds to the first port of call in the space-time network, if t ≥ 168,

the ship cannot visit the node and hence we mark it as inactive;

Step 2.3. (Deactivate nodes that violate Eq. (3.11)) For each node (t, N + 1) that

corresponds to the return to the first port of call in the space-time net-

work, if t ≤ 168m−1, the ship cannot visit the node and hence we mark

it as inactive (note that here the number of ships m is given).

Step 3. (Construct arcs):

Step 3.0. Set i = 0;

Step 3.1. Set i := i + 1. For each active node (t, i), t ∈ {0, 1, 2, · · · , 168(m +

1) − 1}, construct an arc from it to any of the active nodes (t′, i + 1)

satisfying t′ ≥ t + tport
i + Li

V max . Hence, the sailing time of the arc is

t′ − t − tport
i . Moreover, the sailing speed is also determined, which
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is vi = Li/(t
′ − t− tport

i ). Therefore, the corresponding bunker cost is

αLigi(vi) and the inventory cost of the containers is (t′− t− tport
i )βV̄i (as

aforementioned, the inventory cost associated with port time is constant,

and hence is not modeled). The cost (sum of bunker and inventory cost)

of the arc is αLigi(Li/(t
′ − t− tport

i )) + (t′ − t− tport
i )βV̄i.

Step 3.2. If i = N , Stop. Otherwise, go to Step 3.1. �

3.4.1.3 An example of space-time network construction

We use an example to demonstrate the space-time network construction method.

For the ease of presentation, we use “day” rather than “hour” in the discretization.

That is, 0 represents Sunday, 1 represents Monday, etc. If we do not use days

but use hours, there would be too many nodes in the space-time network and it

would be difficult to understand it. Suppose that there are three ports of call on

the ship route. The feasible arrival days are Ω̂1 = {2, 3, 6}, Ω̂2 = {0, 1, 5, 6}, and

Ω̂3 = {4, 5}. In addition, suppose that tport
1 + L1

V max = 4 days, tport
2 + L2

V max = 5 days,

and tport
3 + L3

V max = 1 day. The number of ships m = 2. The three steps in Algorithm

1 are shown in Fig. 3.2, Fig. 3.3, and Fig. 3.4, respectively.

Figure 3.2: Construct nodes

Let us look at Fig. 3.2 first. As m = 2 and we use “day” to discretize the time,

there are a total of 14 days in the time axis. Hence, each port should be copied
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Figure 3.3: Deactivate nodes

Figure 3.4: Construct arcs

14 times. Since there are three ports of call on the ship route, considering the loop

property of the ship route, we need to consider 4 ports, where the fourth port is

actually the return to the first port. As a result, there are a total of 4 × 14 = 56

nodes in the space-time network.

In Fig. 3.3, we deactivate nodes. In step 2.1, since Ω̂2 = {0, 1, 5, 6}, nodes corre-

sponding to port 2 are active only if t = 0, 1, 5, 6, 7, 8, 12, 13. In other words, only 8

nodes corresponding to port 2 are active. Since Ω̂3 = {4, 5}, nodes corresponding to

port 3 are active only if t = 4, 5, 11, 12. In other words, only 4 nodes corresponding

to port 3 are active. Since Ω̂1 = {2, 3, 6} and port 1 must be visited in the first

week, nodes corresponding to port 3 are active only if t = 2, 3, 6. In other words,

only 3 nodes corresponding to port 1 are active. Since Ω̂1 = {2, 3, 6} and port of

call 4 (which is the same port as port of call 1) must be visited in the second week
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(as m = 2), nodes corresponding to port 4 are active only if t = 9, 10, 13. In other

words, only 3 nodes corresponding to port 4 are active.

In Fig. 3.4, we add arcs connecting the nodes. Note that the arcs connect only

active nodes, and must respect the maximum speed of ships. For instance, both

nodes (2, 1) and (5, 2) are active. However, their time difference 5− 2 = 3 is smaller

than tport
1 + L1

V max = 4. Hence, ships cannot visit node (5, 2) from node (2, 1).

3.4.1.4 Loop property of ship route in the space-time network

It should be noted that in the space-time network, if a ship visits port 1 at time tarr
1 ,

it must return to port 1 at time tarr
1 + 168m. This constraint poses difficulties for

finding the schedule with the minimum cost. Nevertheless, we identify that the total

number of possible tarr
1 is at most 168. Therefore, we could enumerate all possible

tarr
1 . For each fixed tarr

1 , we can apply the dynamic programming approach to find the

shortest path (minimum-cost path) from node (tarr
1 , 1) to node (tarr

1 + 168m,N + 1),

denoted by c(m, tarr
1 )5. Hence, the minimum total cost with given m is Cshipm +

mintarr1 ∈{0,1,2,··· ,167} c(m, t
arr
1 ).

3.4.2 Lower bound of the number of ships

The previous sub-section provides an approach for finding the optimal schedule with

a given m. However, as m is a positive integer, we cannot enumerate all possible

values of m. To overcome this difficult, we investigate how to confine the range of

possible values of m.

According to Eq. (3.1), the minimum number of ships can be computed by:

mmin =

⌈(∑
j∈I

Lj/V
max +

∑
j∈I

tport
j

)
/168

⌉
(3.39)

5c(m, tarr1 ) = ∞ if (tarr1 , 1) is inactive or if there is no path from node (tarr1 , 1) to node (tarr1 +
168m,N + 1).
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where dxe is the smallest integer greater than or equal to x.

3.4.3 Lower bound of the total cost with given number of

ships

When the number of ships is m, a lower bound on the total cost, denoted by LB(m),

can be computed as follows. As the ship cost in Eq. (3.7) is fixed, we minimize the

sum of bunker cost and inventory cost by optimizing the speed. To facilitate the

computation of the lower bound, we relax relevant constraints and only require that

the speed is nonnegative. Using the bunker consumption function (3.2), we have:

min
vi

∑
i∈I

αLiai(vi)
bi +

∑
i∈I

βV̄i
Li
vi

(3.40)

subject to:

−vi ≤ 0, i ∈ I (3.41)

It is easy to see that the speed on different legs can be optimized independently.

Let λi ≥ 0 be the Lagrangian multiplier associated with constraint −vi ≤ 0. The

Karush-Kuhn-Tucker (KKT) condition of the above optimization problem is:

αLiaibi(vi)
bi−1 − βV̄iLi

1

(vi)2
− λi = 0 (3.42)

λi(−vi) = 0 (3.43)

−vi ≤ 0 (3.44)

λi ≥ 0 (3.45)

Apparently −vi < 0, and therefore λi = 0. Hence, we can compute the optimal

speed in the model, denoted by ṽi:

ṽi =

(
βV̄i
αaibi

) 1
bi+1

(3.46)
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Consequently, a lower bound of the total cost with m ships is:

LB(m) = Cshipm+ α
∑
i∈I

Ligi(ṽi) +
∑
i∈I

βV̄i
Li
ṽi

(3.47)

3.4.4 Overall Algorithm

Sub-section 3.4.1 develops a space-time network model that can find the optimal

schedule for a given number of ships using dynamic programming approach. Sub-

section 3.4.2 obtains a lower bound on the number of ships that are needed. Sub-

section 3.4.3 proposes a lower bound on the total cost for a given number of ships,

and this lower bound increases with m as shown in Eq. (3.47). Based on these

results, we now present the overall solution algorithm:

Algorithm 2: Solution method for the SDPTW

Step 0. Set m = mmin − 1. Denoted by C∗ := ∞ the minimum total cost obtained

(upper bound).

Step 1. Set m := m+ 1. If LB(m) ≥ C∗, we have obtained the optimal solution and

hence stop. Otherwise, construct the space-time network G(m).

Step 2. For each tarr
1 ∈ {0, 1, 2, · · · , 167}, find the shortest path from node (tarr

1 , 1) to

node (tarr
1 + 168m,N + 1) and its cost c(m, tarr

1 ). If Cshipm+ c(m, tarr
1 ) < C∗,

set C∗ := Cshipm + c(m, tarr
1 ) and record the current solution. When all the

tarr
1 have been examined, go to Step 1. �

Algorithm 2 terminates in a finite number of iterations. This is because once

a finite upper bound C∗ is found, the algorithm will stop before or when m =⌈
C∗/Cship

⌉
.
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3.5 Case Study

We choose a case study of the NCE ship route in Fig. 3.1 to evaluate the proposed

model and solution method. We assume that 5000-TEU ships are deployed on it.

We choose 5000-TEU ships because larger ships cannot transit the Panama Canal.

The operating cost Cship =500,000 USD/week, the maximum speed V max=30 knots,

the bunker price α = 400 USD/ton and the unit inventory cost β = 1 USD per TEU

per hour. The port time (h), distance (n mile), bunker consumption function gi(vi),

and volume of containers on each leg (TEUs) are shown in Table 3.1. In Table 3.1

we assume that the port time is either 1 day or 1.5 days, the bunker consumption

functions may be different for different legs, and the number of containers on each

leg implies that the ship load factor is between 2200
5000

= 44% and 4500
5000

= 90%. The

port time window at each port, i.e., Ωi, is shown in Table 3.2, which indicates that

no port is available seven days a week.

Table 3.1: Parameters in the case study
ID Port Port time Distance Bunker Function # containers
1 New York 36 261 0.001(v1)2 2200
2 Norfolk 24 436 0.001(v2)2.1 3000
3 Savannah 24 9678 0.001(v3)2.3 3500
4 Pusan 24 467 0.001(v4)2 4200
5 Qingdao 24 386 0.001(v5)2 4000
6 Ningbo 24 101 0.001(v3)2 4300
7 Shanghai 36 10553 0.001(v7)2 4500

Table 3.2: Port time windows
ID Port Sun Mon Tue Wed Thu Fri Sat
1 New York free free busy busy free free busy
2 Norfolk busy busy free busy busy busy busy
3 Savannah busy busy busy free busy busy free
4 Pusan free busy free busy busy busy busy
5 Qingdao busy busy busy busy busy busy free
6 Ningbo busy free busy busy free busy busy
7 Shanghai free free busy free free busy busy



3.5. Case Study 44

3.5.1 Impact of port time windows

Firstly, we examine the effect of port time windows on the total cost and the optimal

schedule. We assume that currently the port of Norfolk is only available on Tuesday,

as shown in Table 3.2. Both Norfolk and the liner shipping company are interested

in looking at the result if more available time is provided at Norfolk. We hence

examine the cases of one day available for service each week (Tuesday), two days

(plus Friday), three days (plus Monday), four days (plus Saturday), five days (plus

Thursday), six days (plus Sunday), and seven days (which means that Norfolk is

ready to serve ships at any time). The results of the total cost and the optimal

number of ships deployed are shown in Fig. 3.5.

It can be seen that more available days at Norfolk leads to a lower total cost:

when the number of available days is increased from 2 to 6, the total cost is reduced

by 214,639 USD per week Table 3.3. Fig. 3.5 also demonstrates that the number

of available days at a port may affect the optimal number of ships deployed. The

optimal ship schedule, i.e., arrival time at each port of call, is shown in Table 3.4,

where e.g. “Cases 1,2” means that Norfolk is available only one or two days in a

week. We observe that when the availability of Norfolk is changed, the optimal

arrival times at it and its neighboring ports may also change. However, there is no

impact on the optimal arrival times at ports that are a few voyage legs away from

Norfolk.

Table 3.3: Impact of port time windows on each type of cost
Case Ship cost Bunker cost Inventory cost

1 5000000 3108469 5802000
2 5000000 3108469 5802000
3 4500000 4098651 5131200
4 4500000 4098651 5131200
5 4500000 4098651 5131200
6 4500000 4051029 5144800
7 4500000 4051029 5144800



3.5. Case Study 45

Figure 3.5: Impact of port time windows on the total cost and the number of ships

Table 3.4: Impact of port time windows on the optimal schedule
ID Port Cases 1,2 Cases 3,4,5 Cases 6,7
1 New York 0 108 108
2 Norfolk 48 192 175
3 Savannah 144 240 240
4 Pusan 888 888 888
5 Qingdao 984 984 984
6 Ningbo 1032 1032 1032
7 Shanghai 1080 1080 1080
1 New York 1680 1620 1620

3.5.2 Consequence of port efficiency

The port time tport
i to a large extent depends on the container handling efficiency.

Therefore, port operators seek to improve efficiency by optimizing quay-side and

yard-side operations. To investigate the effect of port handling efficiency, we change

the port time at Shanghai from 12h, 18h, 24h, 30h, to 36h, and compute the optimal
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solution. We find that the optimal number of ships is always 10. The total cost

increases with the time spent at Shanghai, as shown in Fig. 3.6. In fact, a ship creates

value when it is moving cargo, whereas standing still at ports does not create value.

Moreover, when the number of ships is given, a longer port time means a shorter

sailing time, which leads to higher bunker consumption. Therefore, improving port

efficiency will reduce the total cost for liner shipping companies.

We then fix the port time at Shanghai at 36h, and change the port time at New

York from 12h, 18h, 24h, 30h, to 36h, and compute the optimal solution. The result

is shown in Fig. 3.7. It clearly shows that when the port time is increased, not

only the total cost increases, but also the optimal number of ships to deploy may

increase.

Figure 3.6: Impact of port time at Shanghai on the total cost

3.5.3 Result of bunker prices

The bunker price is volatile and hence we examine the sensitivity of the solution

with different bunker prices from 300, 400, 500, 600, 700, to 800 USD/ton. The

result is shown in Fig. 3.8 . We observe that the total cost increases almost linearly
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Figure 3.7: Impact of port time at New York on the total cost and the number of
ships

(not strictly linearly) with the bunker price. Consequently, a higher bunker price

always leads to a higher cost for liner shipping companies. In addition, Fig. 3.8

clearly shows that there is a rise in the number of vessels used when the bunker

price becomes higher. This is because when more ships are deployed, the sailing

speed can be reduced, resulting in a lower bunker consumption. A reduction in

bunker consumption is more significant when the bunker price is higher.

3.5.4 Effect of inventory cost

Finally, we investigate the effect of the unit inventory cost β on the total cost and

the optimal number of ships to deploy by changing β from 1, 1.25 through to 2. The

result is shown in Fig. 3.9, which indicates that the rise of unit inventory cost leads

to a decreasing in the number of ships and an increasing of the total cost. This

is because when the unit inventory cost is higher, containerships have to sail at a

higher speed to shorten the transit time. Therefore, the number of ships is reduced.

At the same time, the total cost inevitably becomes higher.
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Figure 3.8: Result of bunker prices on the total cost and the number of ships

Figure 3.9: Effect of unit inventory cost on the total cost and the number of ships

3.6 Conclusions

This chapter has studied the practical liner ship route schedule design problem with

port time windows. This is a significant tactical planning decision problem because

it considers the availability of ports when planning liner shipping services. As a

result, the designed schedule can be applied in practice without or with only mini-
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mum revisions. This problem is formulated as a nonlinear non-convex optimization

model. In view of the problem structure, we have developed an efficient dynamic-

programming based holistic solution approach, which includes a space-time network

model and a bounding technique for the total cost with give number of ships.

The proposed solution method is applied to the NCE service provided by OOCL.

The results demonstrate that the port time windows, port handling efficiency, bunker

price and unit inventory cost all affect the total cost, the optimal number of ships

to deploy, and also the optimal schedule. A higher availability at ports, shorter

port time, lower bunker price and larger unit inventory cost result in a lower total

cost. Moreover, shorter port time, lower bunker price and smaller unit inventory

cost lead to a smaller number of ships to deploy. Therefore, port operators can

apply the proposed method to quantify the benefits to their customers, i.e., liner

shipping companies, gained by expanding the ports’ capacity and improving the

ports’ efficiency. Liner shipping companies may need to charter in more ships if

they predict that the future bunker price will increase, or if they predict that a

particular season is coming during which the value of the cargo is generally low.



Chapter 4

General single Ship Route

Schedule Design

4.1 Introduction

In the previous chapter we have assumed that each port of call is visited only once

in a round-trip journey time. If some ports are visited twice in a round-trip journey

like the one shown in Fig. 4.1, i.e., some ports of call correspond to the same physical

port, then the port time window should be dealt with more carefully. First, in the

dynamic programming approach proposed in the previous chapter, when we analyze

the second arrival time at a port, we have to take into account the first arrival time

at the port. As a result, in each step of the dynamic programming method, i.e.,

at port of call ī, we have to record information on the arrival time at all the ports

that have been visited and are to be visited again. This, in theory, may lead to the

“curse-of-dimensionality”, because if there are n ports that are visited twice, in the

worst-case we have to record the arrival times at n ports of call, and if the possible

arrival times is e.g. 168, then the state space is 168n (without even considering the

possible arrival times at ī), which increases exponentially with n.

In reality, this problem may not be that serious. This is because on one side, the

50
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number of ports of call in a round-trip journey is not very large. On the other side,

the number of ports that are visited twice in a round-trip journey is even smaller. In

addition, some ports may be always available, especially those major transshipment

hubs such as Singapore and Hong Kong that attract transshipment containers based

on their quality of service.

Another minor issue that is worth mentioning is that when a ship route has ports

that are visited twice in a round-trip journey, the definition of port time window

at these ports should be changed. For instance, if a port is visited only once, we

only need to record the possible arrival times in a week at the port, i.e., Ω̂i, with

regard to all berths at the port. We consider a port with two berths, assuming

that both berths are available on Sunday and Monday, and the port time is 24h,

then Ω̂i = [0, 24). However, if the port is visited twice, we have to record the the

time window of each berth at the port, because different arrivals may use different

berths. Of course, this is only a minor issue in the dynamic programming algorithm,

because we actually do not need to record which berth the first arrival has used.

The rest of the chapter is organized as follows. Section 4.2 describes the problem.

Section 4.3 formulates a mathematical model for the problem. Section 4.4 proposes

a developing holistic solution approach to address the problem. Section 4.5 reports a

case study based on the AGM service of OOCL. Section 4.6 presents the conclusion.

4.2 Problem description

Consider a ship route such as the AGM service in Fig. 4.1. The port rotation of the

ship route has a total of N ports of call. Define a set I := {1, 2, · · · , N}. We can

arbitrarily choose one port of call as the first, and let pi represent the physical port

of the ith port of call, i ∈ I. For instance, if we let Le Havre be the first port of

call, the AGM service can be coded as follows: 1 (Le Havre) → 2 (Antwerp) → 3

(Rotterdam) → 4 (Bremerhaven) → 5 (Charleston) → 6 (Miami) → 7 (Veracruz)
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Figure 4.1: AGM service provided by OOCL (2013)

→ 8 (Altamira) → 9 (Houston) → 10 (Miami) → 1 (Le Havre). p6 = p10 = Miami.

We define the voyage from the ith port of call to the (i+ 1)th as leg i; leg N is the

voyage from the Nth port of call to the first one. Ships may also transit canals on

a voyage leg (Li et al., 2012a, Qu and Meng, 2012).

4.2.1 Ship cost, bunker cost and inventory cost

We assume that a string of m homogeneous containerships are deployed on the ship

route to maintain a weekly service frequency, where m is a decision variable. The

highest possible sailing speed of the ships is denoted by V max (knot). Represent

by tport
i the fixed time (day) a ship spends at port of call i (we change the unit

time from ”hour“ to ”day“ because of computational complexity (Limited computer

memory)), and Li (n mile) the length of leg i. Let vi be the sailing speed (knot) of

ships on leg i. vi is a decision variable. To maintain a weekly service frequency, we

have the relation: ∑
i∈I

Li
24vi

+
∑
i∈I

tport
i = 7m (4.1)
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In Eq. (4.1), the left-hand side is the round-trip journey time (day), and the right-

hand side is the number of ships times 7 days/week. Denote by Cship (USD/week) the

fixed operating cost of a ship, including capital cost, manning cost and consumable

but not bunker cost. Hence, the weekly operating cost of ships is Cshipm.

Eq. (4.1) implies that when the speed is higher, fewer ships need to be deployed

to maintain the same weekly service frequency. However, a higher speed implies a

larger amount of bunker consumed. To take into consideration the bunker cost, we

let gi(vi) (tons/n mile) be the bunker consumption per nautical mile at the speed vi

on leg i. Based on the results in existing studies (Bell and Bichou, 2008; Kontovas,

2011; Psaraftis and Kontovas, 2010, 2013; Ronen, 2011), we assume that gi(vi) is a

power function of the form:

gi(vi) = ai(vi)
bi , i ∈ I (4.2)

where ai and bi are two coefficients calibrated from operating data and satisfy ai > 0

and bi > 1. Denote by α (USD/ton) the bunker fuel price. The weekly bunker cost

is α
∑

i∈I Ligi(vi) = α
∑

i∈I Liai(vi)
bi .

Besides the ship cost and bunker cost, the inventory cost of containers should

also be incorporated. In fact, a lower speed (slow-steaming) would increase the

transit time of containers, and thereby the inventory cost. We let V̄i be the number

of containers (twenty-foot equivalent units, or TEUs) transported on leg i, and β be

the unit inventory cost (USD per TEU per h). Since the time spent at each port of

call is constant, we only consider the inventory cost associated with sailing time at

sea (sea time). Therefore, the total inventory cost is
∑

i∈I βV̄iLi/vi.

4.2.2 Liner ship route schedule

We use “day” as the unit for liner ship route schedule design as liner shipping

companies publish their schedules in terms of days, see Fig. 4.1. We define the time
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00:00 of a certain Sunday as time 0 (day), and hence 00:00 on Monday is time 1,

and 00:00 next Tuesday is time 7+2=9. The time of departure tdep
i at port i is

determined by the time of arrival tarr
i and the fixed port time tport

i , that is:

tdep
i = tarr

i + tport
i , i ∈ I (4.3)

Because of the weekly service frequency, without loss of generality, we let

0 6 tarr
1 6 6 (4.4)

Moreover, we define the time when the ship returns to the 1st port of call as tarr
N+1,

that is:

tarr
N+1 := tarr

1 + 7m (4.5)

The schedule of a liner ship route is the vector defined below:

(tarr
i , i ∈ I;m) (4.6)

In the above schedule, there is the number of ships m because (tarr
i , i ∈ I) cannot

define the inter-arrival time from the last port of call to the first. Of course, the

schedule can also be uniquely determined by vector (tarr
i , i ∈ I; tarr

N+1).

Because liner ship routes provide weekly services, to simplify the notation, we

define W to be a set that contains all days in a week, that is,

W := {0, 1, 2, 3, 4, 5, 6}

where 0 represents Sunday, 1 represents Monday, etc.
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4.2.3 Port time windows

To account for the availability of ports, we must consider the availability of each

berth at each port. This is because some ports are visited twice a week on a ship

route, such as the port of Miami on AGM, and a port usually has more than one

berth.

To formulate the availability of ports, first, we let I1 be the set of ports of

call, that correspond to ports that are visited only once. If a port is visited twice,

supposing that the first visit is the jth port of call, we use j′ to represent the second

visit. We further let I2 represent all the ports of call that correspond to the first call

at a port that is visited twice and I ′2 represent all the ports of call that correspond

to the second call at a port that is visited twice. Take the AGM service as an

example. We have I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, I1 = {1, 2, 3, 4, 5, 7, 8, 9}, I2 = {6},

and I ′2 = {10}. Mathematically, the following relations hold:

I ′2 = {j′ ∈ I|j ∈ I2}

I = I1 ∪ I2 ∪ I ′2

4.2.3.1 Berth time windows

A port may have several berths, and each berth has its own time window. Hence,

we let Bi be the set of berths at the physical port pi (the ith port of call) and the

available days in a week at berth b ∈ Bi (berth time window) is represented by Ωb
i ,

Ωb
i ⊆ W . For instance, Ωb

i = {1, 2, 4} means that berth b at the ith port of call is

free on Monday, Tuesday and Thursday. We further define a parameter δt
′
itarri

that

equals 1 if the ship that arrives at port of call i on day tarr
i needs to be served on

day t′, t′ ∈ W . For example, if tport
i = 2, then we have δ0

i0 = δ1
i0 = 1, δ2

i0 = 0 (a

ship that arrives on day 0, i.e., Sunday, needs to be berthed on day 0 and day 1);

δ0
i8 = 0, δ1

i8 = 1, δ2
i8 = 1 (a ship that arrives on day 8, i.e., the next Monday, needs to
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be berthed on Monday and Tuesday). Evidently, if the ship arrives on Sunday and

is served by berth b ∈ Bi, the berth must be available on both Sunday and Monday.

Mathematically, if a ship arrives at port of call i on day t, the following is the set of

days in a week that the ship needs to be served:

Πit := {t′ ∈ W |δt′it = 1}

In the above example, we have Πi0 = {0, 1} and Πi8 = {1, 2}. Not every berth can

serve ships at any time because of limited berth time windows. A berth b ∈ Bi

whose time window is Ωb
i = {1, 2, 4} cannot serve the ship if it arrives on day 0

because the berth is not available on Sunday, or Πi0 6⊆ Ωb
i . In sum, a berth b ∈ Bi

can serve a ship that arrives on day t only if the following relation holds:

Πit ⊆ Ωb
i

Therefore, the set of possible arrival days in a week at berth b of port of call i can

be written as:

Ω̂b
i = {t ∈ W |Πit ⊆ Ωb

i}, i ∈ I, b ∈ Bi

Apparently, if the port time tarr
i = 1, there will be more possible arrival days than

tarr
i = 2.

4.2.3.2 Feasible arrival days at ports and berths

For ports of call in I1, we simply let Ω̂i be the set of possible arrival days in a week

at the port of call considering all the berths. We have:

Ω̂i =
⋃
b∈Bi

Ω̂b
i , i ∈ I1

For example, suppose that the ith port of call has five berths and berths 1, 3 and 5

are busy all the time (there is no time windows) and berth 2 has the time window
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Ω2
i = {1, 2} ∪ {5} and berth 4 has Ω4

i = {4}. Suppose further that the port time

tport
i = 2. Hence, the set of possible arrival days in a week at each berth is:

Ω̂1
i = ∅, Ω̂2

i = {1}, Ω̂3
i = ∅, Ω̂4

i = ∅, Ω̂5
i = ∅

Therefore, the set of possible arrival days in a week at the port is:

Ω̂i =
⋃
b∈Bi

Ω̂b
i = {1}

We can let Ωi :=
⋃
b∈Bi

Ωb
i be the time window at port of call i. However, we cannot

use Ωi to calculate the set of possible arrival days Ω̂i. For instance, in the above

example if we use the combined port time window Ωi = {1, 2}∪{4, 5}, we will reach

the wrong conclusion that the ship can arrive either on Monday or on Thursday. In

fact, if the ship arrives on Thursday, it has to be moved from berth 4 to berth 2 on

Friday. This involves considerable cost and time that prohibit such an operation in

practice.

For ports of call j ∈ I2, Bj is the set of berths at port of call j and Bj′ is the

set of berths that correspond to the second call at the port. Bj ≡ Bj′ as pj = pj′ .

Because the port is visited twice, it may be of little value to come up with a set of

feasible arrival days similar to Ω̂i, i ∈ I1. We have to directly consider the sets Ω̂b
j

and Ω̂b
j′ , b ∈ Bj.

A berth cannot serve more than one ship at the same time. Suppose that port

of call j ∈ I2 has only one berth b ∈ Bj with Ωb
j = {1, 2, 3}. Assume that tport

j =

tport
j′ = 2. Suppose further that the ship uses the berth b when it arrives at port of

call j ∈ I2 at time tarr
j = 1 (Monday) and still uses the berth when it arrives at port

of call j′ ∈ I ′2 at time tarr
j′ = 2 + 7 = 9 (next Tuesday). Evidently, both arrivals are

feasible, because tarr
j ∈ Ω̂b

j and tarr
j′ ∈ Ω̂b

j′ . However, their combination is infeasible

because the berth cannot serve two ships on day 2. Mathematically, the combination

is infeasible because δ2
j1 = 1 and δ2

j′9 = 1. In sum, if two arrivals j and j′ use the
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same berth b ∈ Bj, the following relation must hold: δt
′
jtarrj

+ δt
′

j′tarr
j′
6 1,∀t′ ∈ W .

4.3 Mathematical model

The ship route schedule design problem with port time windows aims to determine

the optimal arrival time and the berth to use at each port of call on a ship route

that satisfies the berth time window constraints to minimize the total cost including

ship cost, bunker cost, and inventory cost. Before presenting the model, we list the

notation below.

Variables

m Number of ships deployed on the ship route

tarr
i Arrival time (day) at the ith port of call

tarr
N+1 The time (day) when the ship returns to the 1st port of call

tdep
i Departure time (day) from the ith port of call

vi Sailing speed (knot) on leg i

zbj A binary variable that equals 1 if and only if the ship uses berth b

when it arrives at port of call j ∈ I2, b ∈ Bj

zbj′ A binary variable that equals 1 if and only if the ship uses berth b

when it arrives at port of call j′ ∈ I ′2, b ∈ Bj′

Parameters

α The bunker fuel price (USD/ton)

β The unit inventory cost of containers (USD per TEU per h)

Ω̂i The set of feasible arrival days in a week at the ith port of call,

i ∈ I

Ω̂b
j The set of feasible arrival days in a week at berth b at the jth port

of call, j ∈ I2
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Ω̂b
j′ The set of feasible arrival days in a week at berth b at the second

call at the port pj

Bj The set of berths at port of call j

Bj′ The set of berths that correspond to the second call at the port pj

Cship The weekly operating cost of a ship (USD/week)

gi(vi) The bunker consumption per nautical mile at the speed vi on leg i

(tons/n mile)

I Set of ports of call, I := {1, 2, · · · , N}

I1 The set of ports of call that correspond to ports that are visited

only once

I2 The set of ports of call that correspond to the first call at a port

that is visited twice

I ′2 The set of ports of call that correspond to the second call at a port

that is visited twice

Li Length (n mile) of the leg i

N Number of ports of call on the ship route, N = |I|

pi The physical port that corresponds to the ith port of call on the

ship route

tport
i Time (day) a ship spends at port of call i

V̄i Number of containers (TEUs/week) transported on leg i

V max Maximum speed of the ships (knots)

mmax Maximum number of ships deployed on the ship route

Z+ Set of nonnegative integers

The SDPTW can be formulated as:

[SDPTW] minCshipm+ α
∑
i∈I

Ligi(vi) +
∑
i∈I

βV̄i
Li
vi

(4.7)
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subject to:

tdep
i = tarr

i + tport
i , i ∈ I (4.8)

0 6 tarr
1 6 6 (4.9)

tarr
i+1 > tarr

i + tport
i +

⌈
Li

24V max

⌉
, i ∈ I (4.10)

tarr
N+1 = tarr

1 + 7m (4.11)

vi =
Li

24(tarr
i+1 − t

dep
i )

, i ∈ I (4.12)

0 6 vi 6 V max, i ∈ I (4.13)

m ∈ {1, 2, 3, · · · ,mmax} (4.14)

tarr
i ∈ Z+, i ∈ I (4.15)

(tarr
i mod 7) ∈ Ω̂i, i ∈ I1 (4.16)

zbj = 1⇒ (tarr
j mod 7) ∈ Ω̂b

j,∀j ∈ I2,∀b ∈ Bj (4.17)

zbj′ = 1⇒ (tarr
j′ mod 7) ∈ Ω̂b

j′ ,∀j′ ∈ I ′2,∀b ∈ Bj′ (4.18)
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zbjz
b
j′ = 1⇒ δt

′

jtarrj
+ δt

′

j′tarr
j′
6 1,∀j ∈ I2,∀b ∈ Bj,∀t′ ∈ W (4.19)

∑
b∈Bj

zbj = 1,∀j ∈ I2 (4.20)

∑
b∈Bj′

zbj′ = 1, ∀j′ ∈ I ′2 (4.21)

zbj ∈ {0, 1},∀j ∈ I2,∀b ∈ Bj (4.22)

zbj′ ∈ {0, 1},∀j′ ∈ I ′2,∀b ∈ Bj′ (4.23)

The objective function (4.7) minimizes the sum of ship cost, bunker cost, and in-

ventory cost. Constraint (4.8) defines the departure time from each port of call.

Constraint (4.9) eliminates symmetric solutions. Constraint (4.10) confirms that

the sailing speed cannot exceed V max. Constraint (4.11) defines the time when the

ship returns to the 1st port of call after one round-trip. Constraint (4.12) calculates

the sailing speed on each leg. Constraint (4.13) enforces the lower and upper limits

on the sailing speed. Constraint (4.14) indicates that the number of ships is a posi-

tive integer. Constraint (4.15) indicates that the arrival time at each port of call is

a nonnegative integer. Constraint (4.16) imposes the port time window constraints

at ports that are visited once. Constraints (4.17) and (4.18) are berth time win-

dow constraints at the ports that are visited twice. Constraint (4.19) imposes that a

berth cannot serve two ships at the same time. Constraints (4.20) and (4.21) require

that a ship uses exactly one berth each time it visits a port. Constraints (4.22) and

(4.23) define zbj and zbj′ as binary variables, respectively.
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4.4 Solution method

The model [SDPTW] is a mixed-integer nonlinear non-convex optimization prob-

lem. It is difficult to solve because (i) it has both continuous and discrete variables;

(ii) it has nonlinear objective function (4.7) and constraint (4.12); (iii) the “mod”

operator leads to a disjoint domain. After carefully examining the properties of

the problem, we develop a holistic solution approach. We first relax the port time

window constraints in Subsection 4.4.1.1. The relaxed mixed-integer nonlinear pro-

gramming model is transformed to a mixed-integer linear programming model in

Subsection 4.4.1.2. We solve the mixed-integer linear programming model to obtain

the optimal solution. If the port time window constraints are violated, we add con-

straints to exclude such a solution. The above process is repeated until a feasible

solution, which is optimal, is found, as elaborated in Subsection 4.4.2.

4.4.1 Relaxed models

4.4.1.1 Relaxing port time window constraints

First, we relax the port time window constraints and obtain a relaxed problem (RP):

[RP] minCshipm+ α
∑
i∈I

Ligi(vi) +
∑
i∈I

βV̄i
Li
vi

(4.24)

subject to:

tdep
i = tarr

i + tport
i , i ∈ I (4.25)

0 6 tarr
1 6 6 (4.26)

tarr
i+1 > tarr

i + tport
i +

⌈
Li

24V max

⌉
, i ∈ I (4.27)
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tarr
N+1 = tarr

1 + 7m (4.28)

vi =
Li

24(tarr
i+1 − t

dep
i )

, i ∈ I (4.29)

0 6 vi 6 V max, i ∈ I (4.30)

m ∈ {1, 2, 3, · · · ,mmax} (4.31)

tarr
i ∈ Z+, i ∈ I (4.32)

Note that the difficult “mod” operator is relaxed. In other words, we assume that

a berth is always available whenever a ship visits a port.

4.4.1.2 An equivalent mixed-integer linear programming model

[RP] is a mixed-integer nonlinear programming (MINLP) model. In view of its

special structure, we transform it to an equivalent mixed-integer linear programming

(MILP) model and the MILP model can be solved by off-the-shelf MILP solvers. To

this end, we first define the reciprocal of the speed as a new variable:

ui :=
1

vi
, i ∈ I (4.33)

Hence, [RP] is transformed to another MINLP model:

[MINLP] minCshipm+ α
∑
i∈I

Ligi(1/ui) +
∑
i∈I

βV̄iLiui (4.34)
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subject to:

tdep
i = tarr

i + tport
i , i ∈ I (4.35)

0 6 tarr
1 6 6 (4.36)

tarr
i+1 > tarr

i + tport
i +

⌈
Li

24V max

⌉
, i ∈ I (4.37)

tarr
N+1 = tarr

1 + 7m (4.38)

ui = 24(tarr
i+1 − t

dep
i )/Li, i ∈ I (4.39)

ui > 1/V max, i ∈ I (4.40)

m ∈ {1, 2, 3, · · · ,mmax} (4.41)

tarr
i ∈ Z+, i ∈ I (4.42)

Now the only nonlinear term is gi(1/ui) in Eq. (4.34), which has the following form:

gi(1/ui) = ai(ui)
−bi (4.43)

gi(1/ui) is a convex function shown in Fig. 4.2a. Eq. (4.39) indicates that ui can

only take a limited number of values because tarr
i+1 − tdep

i is a positive integer and

is not greater than 7mmax. Hence, we obtain a tangent line at each of the possible

values of ui. In particular, as shown in Fig. 4.2b, we let uκi denote the possible values
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of ui:

uκi = 24κ/Li, κ = 1, 2, · · · , 7mmax

The tangent lines at the points are:

ai(u
κ
i )
−bi − aibi(uκi )−bi−1(ui − uκi ), κ = 1, 2, · · · , 7mmax

We use variable ḡi to represent the bunker consume on leg i for formulating the

tangent lines, and we have :

ḡi > ai(u
κ
i )
−bi − aibi(uκi )−bi−1(ui − uκi ), κ = 1, 2, · · · , 7mmax

Figure 4.2: Linerization

The model [MINLP] can be transformed to a MILP model after introducing the

intermediate variable ḡi, which is an auxilliary variable that is not smaller than the

bunker consumption per nautical mile on leg i:

[MILP] minCshipm+ α
∑
i∈I

Liḡi +
∑
i∈I

βV̄iLiui (4.44)
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subject to:

ḡi > ai(u
κ
i )
−bi − aibi(uκi )−bi−1(ui − uκi ), κ = 1, 2, · · · , 7mmax, i ∈ I (4.45)

tdep
i = tarr

i + tport
i , i ∈ I (4.46)

0 6 tarr
1 6 6 (4.47)

tarr
i+1 > tarr

i + tport
i +

⌈
Li

24V max

⌉
, i ∈ I (4.48)

tarr
N+1 = tarr

1 + 7m (4.49)

ui = 24(tarr
i+1 − t

dep
i )/Li, i ∈ I (4.50)

ui > 1/V max, i ∈ I (4.51)

m ∈ {1, 2, 3, · · · ,mmax} (4.52)

tarr
i ∈ Z+, i ∈ I (4.53)

Theorem 4.4.1 Model [RP] and model [MILP] are equivalent. In other words, if

(m∗, v∗i , t
arr∗
i ) is an optimal solution to [RP] and the optimal objective value is CRP ,

then (m̂ = m∗, ûi = 1/v∗i , t̂
arr
i = tarr∗

i , ĝi = gi(v
∗
i )) is a feasible solution to [MILP]

and the resulting objective value is equal to CRP . If (m̂, ûi, t̂
arr
i , ĝi) is an optimal
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solution to [MILP] and the optimal objective value is CMILP , then (m∗ = m̂, v∗i =

1/ûi, t
arr∗
i = t̂arr

i ) is a feasible solution to [RP] and the resulting objective value is

equal to CMILP .

Proof : The difference between model [RP] and model [MILP] is the linearization of

gi(vi) to ḡi. As we use tangent lines to approximate the nonlinear function gi(1/ui),

and the tangent lines are not above the nonlinear function, Eq. (4.45) may underes-

timate the bunker consumption but will not overestimate it. Therefore [MILP] may

underestimate the total cost, but will not overestimate it. That is, CMILP 6 CRP .

Now we prove that CMILP > CRP . If (m̂, ûi, t̂
arr
i , ĝi) is an optimal solution to

[MILP], the integrality of t̂arr
i , the integrality of the departure times, and Eq. (4.50)

imply that ûi is the same as one uκi , κ = 1, 2, · · · , 7mmax. Note that there is no ap-

proximation error caused by the tangent lines at the points uκi , κ = 1, 2, · · · , 7mmax.

In other words, at these points ḡi does not underestimate gi(vi). Hence, the result-

ing objective value to [RP] of the solution (m∗ = m̂, v∗i = 1/ûi, t
arr∗
i = t̂arr

i ) is equal

to CMILP . This means that CMILP > CRP . Consequently, model [RP] and model

[MILP] are equivalent.

4.4.2 Global optimization method

4.4.2.1 Reformulation

Still, [RP] or [MILP] is not the original model. Suppose that the optimal solution

to [RP] is denoted by (tarr∗
i , i ∈ I). If (tarr∗

i , i ∈ I) satisfies berth time windows

at all ports, then this optimal solution is also optimal to the original [SDPTW].

Otherwise, it is infeasible. Enlightened by this observation, we develop a solution

method that excludes infeasible solutions from [RP] by adding linear constraints.

First, we add to [RP] the following constraints:

t̄arr
i = tarr

i − 7ki,∀i ∈ I (4.54)
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0 6 t̄arr
i 6 6,∀i ∈ I (4.55)

ki ∈ {0, 1, 2, · · · ,m− 1},∀i ∈ I (4.56)

It is easy to see that the above constraints are equivalent to:

t̄arr
i = tarr

i mod 7,∀i ∈ I (4.57)

Note that because tarr
i and ki are defined to be integers, t̄arr

i is automatically an

integer.

Next, we rewrite t̄arr
i using binary variables:

t̄arr
i = k0

i + 2k1
i + 4k2

i ,∀i ∈ I (4.58)

k0
i , k

1
i , k

2
i ∈ {0, 1},∀i ∈ I (4.59)

It is clear that Eqs. (4.58)–(4.59) imply that given t̄arr
i , there is a unique binary

vector (k0
i , k

1
i , k

2
i ) and vice versa. For example, if t̄arr

i = 5, we have k0
i = 1, k1

i = 0,

and k2
i = 1. If k0

i = 0, k1
i = 0, k2

i = 1, we have t̄arr
i = 4. We now define a new model:

reformulated MILP problem (RMILP):

[RMILP]:

[MILP] with constraints (4.54)-(4.56) and (4.58)-(4.59).

Theorem 4.4.2 The two models [RMILP] and [MILP] are equivalent.

Proof : First, the only difference of the two models is that [RMILP] has more

constraints than [MILP]. Therefore, [RMILP] is at least as tight as [MILP]. Hence,

we only need to prove that the additional constraints in [RMILP] does not confine

the domain of [MILP]. In other words, we need to prove that for any feasible solution
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(tarr
i , i ∈ I;m) to [MILP], we can find a vector (ki, k

0
i , k

1
i , k

2
i , i ∈ I) such that all the

constraints (4.54)-(4.56) and (4.58)-(4.59) are satisfied.

As (tarr
i , i ∈ I;m) is feasible to [MILP], we have 0 6 tarr

i 6 7m− 1, i ∈ I. Now it

is easy to see that there always exists a vector (ki, k
0
i , k

1
i , k

2
i , i ∈ I) such that all the

constraints (4.54)-(4.56) and (4.58)-(4.59) are satisfied.

4.4.2.2 Linear constraints excluding infeasible solutions

Since [RMILP] is a mixed-integer linear optimization model, we can apply off-the-

shelf MILP solvers to solve it. If the resulting solution is infeasible (that is, in-

compatible with the available port time windows or berth time windows), we add

a linear constraint that excludes this solution while keeping all other solutions, and

solve [RMILP] with the added linear constraints. This process is repeated until a

feasible solution is found, and this solution is also optimal.

Suppose that (tarr∗
i , i ∈ I) is the optimal solution to [RMILP], t̄arr∗

i = tarr∗
i mod 7,

and it corresponds to (k0∗
i , k

1∗
i , k

2∗
i , i ∈ I). We now elaborate on how to check the

feasibility of (tarr∗
i , i ∈ I).

At a port of call i ∈ I1, if t̄arr∗
i ∈ Ω̂i, then tarr∗

i is feasible at the port of call;

otherwise it is infeasible. If tarr∗
i is infeasible, to exclude it as well as other infeasible

arrival times tarr
i satisfying tarr

i mod 7 = t̄arr∗
i at port of call i ∈ I1 from model

[RMILP], we add the following constraint:

k0
i (1− k0∗

i ) + (1− k0
i )k

0∗
i + k1

i (1− k1∗
i ) + (1− k1

i )k
1∗
i +

k2
i (1− k2∗

i ) + (1− k2
i )k

2∗
i > 1 (4.60)

This constraint will exclude not only solution tarr∗
i but also all tarr

i satisfying tarr
i

mod 7 = t̄arr∗
i . For example, if the ship cannot arrive on Tuesday, then tarr

i = 2 is

infeasible, and tarr
i = 2 + 7 = 9, tarr

i = 2 + 2× 7 = 16 and tarr
i = 2 + 3× 7 = 23 are all

infeasible. All these infeasible tarr
i correspond to the same t̄arr∗

i = 2, and correspond
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to the same (k0∗
i , k

1∗
i , k

2∗
i ) = (0, 1, 0). Hence, Eq. (4.60) becomes:

k0
i + (1− k1

i ) + k2
i > 1 (4.61)

Evidently, (k0
i , k

1
i , k

2
i ) = (0, 1, 0) is the only solution that violates this constraint.

At i ∈ I2∪ I ′2, if t̄arr∗
i ∈

⋃
b∈Bi

Ω̂b
i , then this arrival time tarr∗

i is feasible; otherwise

it is infeasible and we can use a constraint similar to Eq. (4.60) to exclude it from

[RMILP]. However, for j ∈ I2, even if both tarr∗
j and tarr∗

j′ are feasible, their combina-

tion may not be feasible. We need to check whether there exists a berth allocation

plan such that the combination (tarr∗
j , tarr∗

j′ ) is feasible. Similar to the above analysis,

checking the feasibility of (tarr∗
j , tarr∗

j′ ) is actually checking the feasiblity of (t̄arr∗
j , t̄arr∗

j′ ).

Algorithm 1: Check feasibility of (t̄arr∗j , t̄arr∗j′ )

Step 1. Set b1 = 1.

Step 2. If b1 > |Bj|, (t̄arr∗
j , t̄arr∗

j′ ) is infeasible, return. If t̄arr∗
j 6∈ Ω̂b1

j , set b1 = b1 + 1 and

go to Step 2.

Step 3. Set b2 = 1.

Step 4. If b2 > |Bj|, set b1 = b1 + 1 and go to Step 2. Else if t̄arr∗
j′ 6∈ Ω̂b2

j , set b2 = b2 + 1

and go to Step 4. Else go to Step 5.

Step 5. If b1 6= b2, (t̄arr∗
j , t̄arr∗

j′ ) is feasible, return. Else

Step 5.0. Set t′ = 1;

Step 5.1. If t′ > 7, (t̄arr∗
j , t̄arr∗

j′ ) is feasible, return. Else if δt
′

jtarr∗j
+ δt

′

j′tarr∗
j′

= 2, the

berth cannot serve two ships on day t′, and hence set b2 = b2 + 1 and go

to Step 4. Else set t′ = t′ + 1 and go to Step 5.1. �

Note that in Algorithm 1, we have at most |Bj|2 possible berth allocation plans.

Hence it is not difficult to check the feasibility of (t̄arr∗
j , t̄arr∗

j′ ).
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If we cannot find a berth allocation plan such that (t̄arr∗
j , t̄arr∗

j′ ) is feasible, then we

exclude the solution (t̄arr∗
j , t̄arr∗

j′ ) from [RMILP] by adding the following constraint:

k0
j (1− k0∗

j ) + (1− k0
j )k

0∗
j + k1

j (1− k1∗
j ) + (1− k1

j )k
1∗
j +

k2
j (1− k2∗

j ) + (1− k2
j )k

2∗
j + k0

j′(1− k0∗
j′ ) + (1− k0

j′)k
0∗
j′ +

k1
j′(1− k1∗

j′ ) + (1− k1
j′)k

1∗
j′ + k2

j′(1− k2∗
j′ ) + (1− k2

j′)k
2∗
j′ > 1 (4.62)

Similar to constraint (4.60), this constraint excludes all the arrival times (tarr
j , tarr

j′ )

satisfying tarr
j mod 7 = t̄arr∗

j and tarr
j′ mod 7 = t̄arr∗

j′ .

4.4.2.3 Overall algorithm

We now elaborate on the overall solution algorithm that obtains the global optimal

solution to model [SDPTW].

Algorithm 2: Overall global optimization algorithm

Step 0. Define set Ψ1 := ∅ that will contain constraints (4.60) and set Ψ2 := ∅ that

will contain constraints (4.62).

Step 1. Solve [RMILP] with constraints (4.60) defined by set Ψ1 and constraints (4.62)

defined by set Ψ2. The optimal solution is denoted by (m∗, v∗i , t
arr∗
i , t̄arr∗

i , k∗i , k
0∗
i , k

1∗
i , k

2∗
i , i ∈

I).

Step 2. Check each port i ∈ I = I1 ∪ I2 ∪ I ′2. If tarr∗
i is infeasible, add to set Ψ1 the

constraint (4.60), go to Step 1;

Step 3. Check each port j ∈ I2. If the combination of arrival times (tarr∗
j , tarr∗

j′ ) is

infeasible, add to set Ψ2 the constraint (4.62), go to Step 1;

Step 4. The solution (m∗, v∗i , t
arr∗
i , i ∈ I) is a feasible and optimal solution to [SDPTW].

Stop. �

Theorem 4.4.3 Algorithm 2 terminates in a finite number of iterations.
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Proof : In each iteration of Algorithm 2, we either exclude one t̄arr∗
i , or a combi-

nation of (t̄arr∗
j , t̄arr∗

j′ ). The total number of t̄arr∗
i and combinations of (t̄arr∗

j , t̄arr∗
j′ ) does

not exceed 7|I| + 72|I2|, which is finite. Hence, Algorithm 2 terminates in a finite

number of iterations.

Theorem 4.4.4 The feasible solution (m∗, v∗i , t
arr∗
i , i ∈ I) obtained in Step 4 of

Algorithm 2 is optimal to [SDPTW].

Proof : Model [RMILP] is a relaxed problem of the original model [SDPTW]

in that some constraints (i.e. port time window constraints) are removed but the

objective function does not change. We add more and more constraints (4.60) and

(4.62) in each iteration of Algorithm 2. However, these constraints do not exclude

any feasible solution. Hence, the feasible solution (m∗, v∗i , t
arr∗
i , i ∈ I) obtained in

Step 4 of Algorithm 2, which by definition is optimal to [RMILP] with the generated

constraints (4.60) and (4.62), and by definition is feasible to port time window

constraints, is also optimal to [SDPTW].

4.5 Case study

We carry out case studies based on the AGM ship route in Fig. 4.1 to evaluate the

applicability of the proposed models and algorithms. The AGM ship route consists

of 10 ports of call in a round trip. The port of Miami is visited twice and hence

there are a total of 9 physical ports. We assume that these 9 ports have a total of

30 berths, whose available times are shown in Table 4.1.

We assume that 5000-TEU ships are deployed on the ship route. The operating

cost Cship =500,000 USD/week. The max speed V max=30 knots, the bunker price

α = 400 USD/ton, the unit inventory cost β = 1 USD per TEU per hour and the

maximum number of ships mmax = 20 ships. The port time, length, bunker con-

sumption function gi(vi), and container number on each leg are shown in Table 4.2.
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Table 4.1: Available time at each port
Port ID Port Berth Sun Mon Tue Wed Thu Fri Sat

1 Le Havre
1 free free free free
2 free
3 free free

2 Antwerp
1 free free free
2 free

3 Rotterdam
1 free free free
2 free free free free

4 Bremerhaven
1 free free free free
2 free
3 free free

5 Charleston

1 free free
2 free free free free
3 free free
4 free free free free

6 Miami

1 free free free free
2 free
3 free free
4 free free
5 free
6 free free

7 Veracruz
1 free free free free
2 free free
3 free free

8 Altamira

1 free free
2 free free free free
3 free
4 free free free free

9 Houston
1 free free
2 free free free free
3 free

4.5.1 Performance of the solution algorithm

We apply the proposed global optimization algorithm (Algorithm 2) to design the

schedule of the AGM ship route of OOCL. The models are all solved by matlab

calling CPLEX 12.2 on a 3.2 GHz Dual Core laptop with 4 GB of RAM. The

algorithm finds the optimal solution after 26 iterations in about 1 minute. Hence,

the algorithm is efficient for addressing problems of realistic scales.

The number of ships and the total cost in each iteration are shown in Fig. 4.3. As
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Table 4.2: Parameters in the case study
Port of call Port Port time Length Bunker function # containers

1 Le Havre 2 days 252 0.001(v1)2 3500
2 Antwerp 1 day 149 0.001(v2)2.1 3600
3 Rotterdam 1 day 225 0.001(v3)2.3 3900
4 Bremerhaven 1 day 4014 0.001(v4)2 5000
5 Charleston 2 days 435 0.001(v5)2 4900
6 Miami 2 days 1012 0.001(v6)2 4000
7 Veracruz 1 day 233 0.001(v7)2 3500
8 Altamira 1 day 512 0.001(v8)2.1 3800
9 Houston 1 day 970 0.001(v9)2.3 4100
10 Miami 2 days 3922 0.001(v10)2 4950

more and more constraints are added, the optimal objective value (the total cost)

is non-decreasing. It is interesting to notice that the total cost does not change

in the first seven iterations. This is because of “symmetrical solutions” as follows.

In the first iteration, the optimal solution of (t̄arr
i , i ∈ I) is (3, 6, 1, 3, 6, 2, 6, 1, 3, 0)

(of course, it is infeasible to the original problem). Since t̄arr
1 = 3 is infeasible,

constraint (4.60) excludes it and solution (4, 0, 2, 4, 0, 3, 0, 2, 4, 1) is obtained in the

second iteration (of course, it is still infeasible to the original problem). Comparing

these two solutions, we find that the second solution differs from the first one in

that the arrival times at all ports of call are postponed by one day. Hence, the ship

cost, bunker cost, and inventory cost do not change. Similarly, the solution obtained

in the third iteration simply postpones the arrival times at all ports of call by two

days. Repeating in a similar manner, the optimal number of ships and the total cost

in the first seven iterations are the same.

In the eighth iteration, the solution of (t̄arr
i , i ∈ I) is (0, 4, 6, 1, 3, 6, 3, 5, 0, 4). We

observe that in this solution, the inter-arrival times between two adjacent ports

of call are different from the previous seven solutions. For example, in the eighth

solution, t̄arr
2 − t̄arr

1 = 4, which means that tarr
2 − tarr

1 is equal to 4 plus an integer

number of weeks. However, in the first seven solutions, t̄arr
2 − t̄arr

1 = 3. Consequently,

in the eighth solution, the sailing speed and the inventory cost on leg 1 are changed.

In the first 22 iterations, exactly one constraint (4.60) is added to the model
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Figure 4.3: Number of ships and total cost in each iteration

in Step 2 of Algorithm 2. The solution of (t̄arr
i , i ∈ I) in the 23rd iteration is

(4, 1, 3, 5, 3, 0, 4, 6, 2, 0). The arrival time at each single port of call all satisfies the

port time windows. However, the arrival times at the 6th and 10th ports of call,

which correspond to the same physical port, i.e., Miami, are both Sunday. As

tport
6 = tport

10 = 2, both calls must use berth 1 of the port according to Table 4.1.

As a result, their combination is infeasible, and hence in Step 3 of Algorithm 2,

one constraint (4.62) is added to exclude such a combination. The solution in

the 24th iteration is (0, 6, 1, 3, 3, 0, 4, 6, 1, 5). Now t̄arr
10 = 5 is infeasible. Hence,

one constraint (4.60) in Step 2 of Algorithm 2 is added to exclude the solution.

In the 25th iteration, the solution is (4, 1, 3, 5, 0, 4, 2, 4, 0, 4), and the combination

(t̄arr
6 = 4, t̄arr

10 = 4) is again infeasible and therefore one constraint (4.62) is added.

In the 26th iteration, the solution of (t̄arr
i , i ∈ I) is (0, 6, 1, 3, 3, 0, 4, 6, 1, 4), which

does not violate any port time window constraint. Hence, this solution is opti-

mal to the original problem. The optimal solution of (tarr
i , i ∈ I ∪ {N + 1}) is

(0, 6, 8, 10, 17, 21, 25, 27, 29, 32, 42).

The number of ships in each iteration does not show any trend in Fig. 4.3. The

optimal number of ships to deploy is 6.
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4.5.2 Impact of port time windows

In this section, we examine the impact of the availability of a port on the optimal

schedule and the total cost. We take the example of the port of Miami, which is

visited twice a week with tport
6 = tport

10 = 2. Both Miami and the liner shipping

company are interested in looking at the result if more available time is provided at

Miami. We hence examine 7 berth availability cases of Miami, as shown in Table 4.3.

Note that a berth is not included in a case of Table 4.3 if it is busy the whole week.

From case 1 to case 7, more and more available times are provided. For example, in

case 1 we must have t̄arr
6 = 0, t̄arr

10 = 0; in case 2 either t̄arr
6 or t̄arr

10 can be 5; in case 3

it is further possible that either t̄arr
6 or t̄arr

10 is 6, etc.

Table 4.3: Different cases of available time at Miami
Case Berth Sun Mon Tue Wed Thur Fri Sat

1
1 free free
4 free free

2
1 free free
3 free free
4 free free

3
1 free free
3 free free
4 free free free

4

1 free free
2 free free
3 free free
4 free free free

5

1 free free
2 free free
3 free free
4 free free free free

6

1 free free free free
2 free free
3 free free
4 free free free free

7

1 free free free free
2 free free
3 free free
4 free free free free
6 free free
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The results of the total cost and optimal number of ships deployed for the 7 berth

availability cases are shown in Fig. 4.4. More available days at Miami leads to a

lower total cost: the total cost is reduced by 603,738 USD/week from case 2 to case

6 Table 4.4. Fig. 4.4 also demonstrates that the number of available days at a port

may affect the optimal number of ships deployed. The optimal ship route schedule

is shown in Table 4.5. We observe that the optimal arrival time at Miami and its

neighboring ports may change if the time windows at the port of Miami change.

Figure 4.4: Impact of port time windows

Table 4.4: Impact of port time windows on each type of cost
Case Ship cost Bunker cost Inventory cost

1 3500000 3826800 1227456
2 3500000 3781200 1213322
3 3500000 3804000 1150038
4 3000000 2966400 2447227
5 3000000 3060000 2103630
6 3000000 3040800 1909718
7 3000000 3040800 1909718
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Table 4.5: Impact of port time window on the optimal schedule
Port of call Port Cases 1 Case 2 Cases 3 Case 4 Case 5 Cases 6,7

1 Le Havre 4 4 4 0 4 4
2 Antwerp 7 7 7 6 7 7
3 Rotterdam 10 10 10 8 10 10
4 Bremerhaven 12 12 12 10 12 12
5 Charleston 24 23 23 17 21 21
6 Miami 28 26 26 20 25 24
7 Veracruz 32 32 31 24 29 28
8 Altamira 34 34 33 26 31 30
9 Houston 37 37 36 28 33 32
10 Miami 42 42 41 32 36 36
1 Le Havre 53 53 53 42 46 46

4.5.3 Consequence of port efficiency

The port time tport
i to a large extent depends on the container handling efficiency.

Therefore, port operators seek to improve efficiency by optimizing quay-side and

yard-side operations. To investigate the effect of port handling efficiency, we change

the port time at Miami to generate four scenarios. In the first scenario, we assume

both two visits use the port for only one day. The second scenario assumes the

port time for the first visit (coming from Charleston) is one day and the second

visit (coming from Houston) is two days. In the third scenario, the first visit needs

two days to serve and one day is needed for the second visit. The last scenario

is generated by assuming both visits need two days to serve which is the same as

subsections 4.5.1 and 4.5.2. Table 4.6 shows the four port time scenarios.

Table 4.6: The scenarios of port times of the two calls at Miami
Port time (day)

Scenario 1st visit 2nd visit
1-1 1 1
1-2 1 2
2-1 2 1
2-2 2 2

We carry out numerical experiments for each combination of the 7 berth avail-
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ability cases of Miami in Table 4.3 and the 4 scenarios of port time in Table 4.6.

Hence, we have a total of 28 experiments, and the total costs and the number of

ships to deploy are shown in Fig. 4.5 and Fig. 4.6, respectively. Consistent with the

previous subsection, Fig. 4.5 indicates that the total cost always decreases when the

port has more available days. Fig. 4.6 shows that the number of ships is reduced

with more available days at Miami. Generally, by comparing the 4 port time sce-

narios, we find that improving port efficiency may reduce the total cost for liner

shipping companies. However, because we do not include the inventory cost of con-

tainers associated with port time in objective functions of the models, a higher port

efficiency may lead to a higher total cost if the reduced port time does not help to

reduce the round-trip time of the ship route (at least by one week). For example,

in berth availability case 2, the total cost of scenario 1-2 (the first visit is one day

and the second visit is two days) is larger than the total cost of scenario 2-2 (both

visits are two days). The reduced one day port time moves from the port time to

sailing time on leg 4, which leads to more inventory cost at sea without reducing

the round-trip time of the ship route. This result can be seen in Table 4.7, which

reports the optimal schedules of the 4 scenarios under berth availability case 2 and

the sailing time on each leg i, i.e., tarr
i+1 − t

dep
i . It should be noted that if we include

the inventory cost of containers associated with port time, then the total cost of

scenario 1-2 is always lower than that of scenario 2-2.

Finally, we note that the reduction of the round-trip time of the ship route

is always an integer number of weeks, which corresponds to the reduction in the

number of ships to deploy. In some cases, reducing port time leads to a smaller

number of ships deployed, for example, under berth availability case 2, the optimal

number of ships is 6 in scenario 1-1 and the number is 7 in scenario 2-2, as shown

in Fig. 4.6.
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Figure 4.5: Impact of port time at Miami on the total cost

Figure 4.6: Impact of port time at Miami on the number of ships

4.5.4 Result of bunker prices

The bunker price is volatile and hence we examine the sensitivity of the solution

with different bunker prices (USD/ton) from 300, 400, 500, 600, 700, to 800. The

parameters are the same as Table 4.1 and Table 4.2. The results are shown in

Fig. 4.7 . We observe that a higher bunker price always leads to a higher total cost

for liner shipping companies. In addition, Fig. 4.7 shows that there is a rise in the

number of ships used when the bunker price becomes higher. This is because when
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Table 4.7: Optimal schedules of the 4 scenarios under berth availability case 2

Arrival time tarr
i Sailing days on leg i

Port of call 1-1 1-2 2-1 2-2 1-1 1-2 2-1 2-2

1 4 4 0 4 1 1 4 1
2 7 7 6 7 2 2 1 2
3 10 10 8 10 1 1 1 1
4 12 12 10 12 10 11 6 10
5 23 24 17 23 1 1 2 1
6 26 27 21 26 2 4 2 4
7 29 32 25 32 1 1 1 1
8 31 34 27 34 1 2 1 2
9 33 37 29 37 2 4 3 4
10 36 42 33 42 9 9 8 9
1 46 53 42 53

Total 30 36 29 35

more ships are deployed, the sailing speed can be lower, resulting in lower bunker

consumption, which is more significant when the bunker price is higher.

Figure 4.7: Result of bunker prices on the total cost and the number of ships
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4.5.5 Effect of inventory cost

Finally, the unit inventory cost β may affect the ship route schedule and then the

total cost. We change β from 1, 1.2 through to 2 and the results of 6 experiments are

shown in Fig. 4.8. The number of ships decreases when the unit inventory cost rises.

This shows that when the cargos in the containers are more valuable, ships should

sail at a higher speed. The total cost increases almost linearly (not strictly linearly)

when the unit inventory cost rises. This indicates that as a result of increase in the

unit inventory cost, the total cost of a liner shipping company is higher.

Figure 4.8: Effect of unit inventory cost on the total cost and the number of ships
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4.6 Conclusions

This chapter has generalized the model of chapter 3, which is the practical liner

ship route schedule design problem with port time windows, by allowing a port to

be visited more than once in a round trip. This is a significant tactical planning

decision problem for liner shipping companies because it considers the availability

of ports when planning liner shipping services. As a result, the designed schedule

can be applied in practice without or with only minimum revisions. This problem is

formulated as a mixed-integer nonlinear non-convex optimization model. In view of

the problem structure, we developed a holistic solution approach. In this approach,

at first the port time window constraints are relaxed to obtain a mixed-integer

nonlinear programming model, which is subsequently transformed to a mixed-integer

linear programming model. This mixed-integer linear model is repeatedly solved by

adding the violated port time window constraints until a feasible solution is obtained.

This feasible solution is proved to be the global optimal solution to the problem.

We have conducted extensive numerical experiments based on the AGM ship

route of OOCL. According to the results, the solution approach could efficiently find

the optimal solution, which demonstrates its applicability to realistic problems. The

availability of ports affects the the total cost of liner shipping companies, the optimal

number of ships deployed, and the ship route schedule. Therefore, it is important for

liner shipping companies to consider port time windows in liner ship route schedule

design. In addition, due to the importance of some of the parameters on the sailing

schedule, we conducted sensitivity analysis of port efficiency, bunker price and unit

inventory cost. Useful managerial insights are obtained. Firstly, improving port

efficiency generally will reduce the total cost for liner shipping companies. However,

because of the weekly service of a ship route, improving port efficiency may but

does not necessarily lead to a reduction of the round-trip time of a ship route and

thereby a smaller number of ships deployed. Secondly, increasing bunker price leads

to a higher total cost and a rise in the number of ships deployed. Third, the number
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of ships to deploy drops and the total cost increases with a rise in the unit inventory

cost.



Chapter 5

Schedule Design for Liner

Shipping Networks without

Considering Inventory Cost

5.1 Introduction

Container liner shipping is a significant importance to the global supply chain net-

work. A container liner shipping network consists of many ship routes, and a ship-

ping line has to determine the schedule for each ship route. In this chapter, we

extend the previous schedule design problems by considering a liner shipping net-

work that consists of many ship routes.

The main contribution of the chapter is that it takes the initiative to address a

practical liner shipping network schedule design problem with port time windows

(NSDPTW). The designed schedules are preferable as the sum of ship cost and

fuel cost is minimized. The schedules are feasible because the availability of berths

at each port on each day is explicitly considered in the model. The results from

the model need no or very little modification before put to use. Hence, this study

provides a useful decision-support tool for liner shipping companies to plan their

85
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services.

The remainder of the chapter is organized as follows. Section 5.2 describes

the problem and formulates a mathematical model. Section 5.3 proposes a tailored

solution approach to address the problem. Section 5.4 reports two case studies based

on two networks consisting of three and five service routes. Section 5.5 presents the

conclusion.

5.2 Problem Description

Figure 5.1: SWX service operated by APL (2014)

Consider a liner container shipping company that operates a number of ship

routes, denoted by the set R, regularly serving a group of ports denoted by the set

P Meng and Wang (2011a) and Meng et al. (2012a). The port rotation of a ship
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route r ∈ R can be expressed as:

pr1 → pr2 → . . .→ prNr → pr1 (5.1)

where Nr is the number of ports of call on the ship route and pri ∈ P is the physical

port corresponding to ith port of call. Let Ir be the set of ports of call of ship route

r ∈ R, i.e., Ir = {1, 2, · · · , Nr}. For brevity, we define < r, i > as the port of call i

on ship route r. Defining pr,Nr+1 = pr1, the voyage from pri to pr,i+1 is called leg i,

i ∈ Ir. Fig. 5.2 shows a liner shipping network with three ship routes operated by

APL (2014), where ship route 1 is SWX in Fig. 5.1, ship route 2 is Surabaya Feeder

Service (SUR) and ship route 3 is Semarang Feeder Service (SEM):

r = 1, Nr = 4 : pr1(SG)→ pr2(KR)→ pr3(NS)→ pr4(CB)→ pr1(SG)

r = 2, Nr = 2 : pr1(SG)→ pr2(SB)→ pr1(SG)

r = 3, Nr = 2 : pr1(SG)→ pr2(SR)→ pr1(SG)→ pr1(CB)

Figure 5.2: A liner shipping network with three ship routes

We further define Rp as the set of ship routes that visit port p ∈ P , and define

Irp as the set of ports of call on ship route r ∈ Rp that correspond to port p. In the

above example, RSG = {1, 2, 3}, I1,CB = {4}, I2,SG = {1}, and I3,CB = ∅.
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5.2.1 Weekly service and schedules

A string of homogeneous ships are deployed on each ship route r ∈ R to maintain

a weekly service frequency Wang et al. (2013f) and Wang et al. (2013a). Let Lri

(n mile) be the voyage distance of the ith leg of route r ∈ R, tport
ri ∈ {1, 2} be the

fixed time (day) a ship spends at port of call i on ship route r ∈ R for container

handling, mr be the number of ships deployed on ship route r ∈ R, and tri be the

sailing time (day) on the ith leg of ship route r ∈ R. We then have the relation:

∑
i∈Ir

(
tri + tport

ri

)
= 7mr,∀r ∈ R

where 7 is the number of days in a week. Represent by Cship
r the fixed cost (USD/week)

associated with a ship on route r ∈ R. Cship
r includes the capital cost and the oper-

ating cost. The fixed cost associated with all the ships is:

∑
r∈R

Cship
r mr

Define the beginning of a particular Sunday as day 0, and let tarr
ri be the arrival

time (day) at port of call i on ship route r. For instance, tarr
ri = 13 means that ships

arrive at < r, i > at the beginning of next Saturday. The time components of a ship

route have the relation

tarr
r,i+1 = tarr

ri + tport
ri + tri, r ∈ R, i ∈ Ir

We assume that the sailing time on a leg has a minimum required value, denoted

by tmin
ri . Hence,

tri > tmin
ri , r ∈ R, i ∈ Ir

Note that tmin
ri can be used to incorporate potential buffer time. For instance, if a

leg is short, and the container handling time at port of call i is unreliable, then tmin
ri
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should be much larger than Lri

24V max
r

so as to hedge against potential delay by fast

steaming, where V max
r is the maximum speed (knots) of ships deployed on ship route

r.

Because liner ship routes provide weekly services, to simplify the notation, we

define W to be a set of all days in a week, that is,

W := {0, 1, 2, 3, 4, 5, 6}

where 0 represents Sunday, 1 represents Monday, etc. Without loss of generality, we

require

tarr
r1 ∈ W, r ∈ R

In fact, there is no difference between tarr
r1 = 2 and tarr

r1 = 9 due to the weekly

frequency of liner services. Hence, the schedule of ship routes in the liner shipping

network can be defined by the following vector

(tarr
ri , r ∈ R, i ∈ Ir;mr, r ∈ R) (5.2)

The number of ships mr is essential in the above vector, because without it the

sailing time on leg Nr cannot be determined. The weekly service implies that

tarr
r,Nr+1 = tarr

r1 + 7mr, r ∈ R

Therefore, we can also define the schedule as

(tarr
ri , r ∈ R, i ∈ Ir ∪ {Nr + 1}) (5.3)

which is equivalent to the schedule defined by (5.2).

The arrival time tarr
ri at a port of call corresponds to day tarr

ri mod 7 of a week.

To be more specific, we let zwri be a binary variable which equals 1 if and only if
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ships arrive on day w ∈ W of a week at < r, i >. Mathematically

tarr
ri mod 7 = w′ ⇐⇒


zw
′

ri = 1

zwri = 0, w ∈ W\{w′}

5.2.2 Port time windows

A port may have more than one berth. Hence, we let Bp be the set of berths at the

port p ∈ P . A berth may not always be available in a week because a port needs

to serve more than one liner shipping company. Therefore, we define the parameter

δwb which equals 1 if berth b ∈ ∪p∈PBp is free on day w ∈ W and 0 otherwise.

A ship uses exactly one berth when it visits a port of call and a berth cannot

serve more than one ship at the same time. To formulate this constraint, let zbwri be

a binary variable which equals 1 if and only if ships use berth b ∈ Bpri when visiting

< r, i > on day w. For notational convenience, we define zb,−1
ri := zb,6ri . We have

∑
r∈Rp

∑
i∈Irp,tportri =1

zbwri +
∑
r∈Rp

∑
i∈Irp,tportri =2

(zb,w−1
ri +zb,wri ) ≤ δwb , p ∈ P , b ∈ Bp, w ∈ W (5.4)

The first term on the left-hand side means that a ship uses the berth on day w if

tport
ri = 1 and the arrival day is w. The second term on the left-hand side means

that a ship uses the berth on day w if tport
ri = 2 and the arrival day is w − 1 or w.

The overall constraint indicates that an available berth cannot serve more than one

ship on the same day.

We assume further that each port has a premium berth b̄, which is always avail-

able and can accommodate any number of ships. However, the liner shipping com-

pany needs to pay a high penalty cost Cb̄ each time the berth is used.
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5.2.3 Bunker consumption

Represent by gri(v) the bunker consumption (tons/n mile) function with regard to

the speed v on leg i of ship route r. Based on the results in existing studies, we

assume that gri(v) is a power function of the form:

gri(v) = ariv
bri , ari > 0, bri > 2 (5.5)

Hence, we let Qri(tri) be the bunker consumption on leg i of ship route r, and it can

calculated by:

Qri(tri) = Lrigri(Lri/tri)

5.2.4 Model

Before presenting the model, we list the notation below.

Variables

mr Number of ships deployed on the ship route r ∈ R

tarr
ri Arrival time (day) at port of call i on ship route r

tarr
r,Nr+1 The time (day) when the ship returns to the 1st port of call on ship

route r

tri Sailing time (day) on the ith leg of ship route r ∈ R

kri An integer that is associated with the arrivall time at the port of

call i on ship route r, r ∈ R, i ∈ Ir

zbri A binary variable which equals 1 if and only if ships use berth

b when visiting the port of call i on ship route r including the

premium berth b̄

zb̄ri A binary variable which equals 1 if and only if ships use a premium

berth b̄ when visiting the port of call i on ship route r
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zwri A binary variable that equals 1 if and only if ships arrive on day

w ∈ W of a week at the port of call i on ship route r

zbwri A binary variable that equals 1 if and only if ships arrive on day

w ∈ W of a week at the berth b at the port of call i on ship route r

Parameters

α The bunker fuel price (USD/ton)

δwb A parameter that equals 1 if berth b ∈ ∪p∈PBp is free on day w ∈ W

and 0 otherwise

ari A coefficient calibrated from operating data and satisfy ari > 0

bri A coefficient calibrated from operating data and satisfy bri > 1

Bp The set of berths at the port p ∈ P

Cship
r The weekly operating cost of a ship deployed on ship route r

Cb̄ The penalty cost of using a premium berth b̄

Ir The set of ports of call on ship route r

Lri Oceanic distance (n mile) of the ith leg of route r

Nr Number of ports on the ship route r

pri The physical port that corresponds to the ith port of call on the

ship route r

tport
ri Time (day) a ship spends at port of call i on the ship route r

tmin
ri A minimum required value of the sailing time on the ith leg of route

r

V̄ri Number of containers (TEUs) on leg i on the ship route r

V max
r Maximum speed of the ships on the ship route r

mmax
r Maximum number of ships deployed on the ship route r

Z+ Set of nonnegative integers

The NSDPTW can be formulated as an optimization model below. The objective

function is:
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[NSDPTW]

min
∑
r∈R

Cship
r mr + α

∑
r∈R

∑
i∈Ir

Lriari(Lri/(24tri))
bri + Cb̄

∑
r∈R

∑
i∈Ir

zb̄ri (5.6)

which aims to minimize the sum of ship cost and fuel cost while penalizing the

violation of berth time windows.

The NSDPTW is subject to a number of constraints. The first set is the basic

logical constraints in the schedule:

0 6 tarr
r1 6 6, r ∈ R (5.7)

tri >

{
tmin
ri ,

⌈
Lri

24V max
r

⌉}
, r ∈ R, i ∈ Ir (5.8)

tarr
r,i+1 = tarr

ri + tport
ri + tri, r ∈ R, i ∈ Ir (5.9)

tarr
r,Nr+1 = tarr

r1 + 7mr, r ∈ R (5.10)

mr ∈ {1, 2, 3, · · · ,mmax
r }, r ∈ R (5.11)

tarr
ri ∈ Z+, r ∈ R, i ∈ Ir (5.12)

The objective function (5.6) minimizes the sum of ship cost, bunker cost and penalty

cost. Constraint (5.7) eliminates symmetric solutions. Constraint (5.8) confirms

that the sailing time on a leg is not less than a minimum required value and ships

cannot sail at a speed that exceeds V max
r . Constraint (5.9) defines the relation of

different time components in a round-trip journey. Constraint (5.10) defines the time

when the ship returns to the 1st port of call after one round-trip. Constraint (5.11)
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indicates that the number of ships is a positive integer that does not exceed a pre-

specified maximum value. Constraint (5.12) indicates that the arrival time at each

port of call is a nonnegative integer.

The second set of constraints formulates the day of a week for arrival at each

port of call in the network:

∑
w∈W

wzwri = tarr
ri − 7kri, r ∈ R, i ∈ Ir (5.13)

∑
w∈W

zwri = 1, r ∈ R, i ∈ Ir (5.14)

zwri ∈ {0, 1}, r ∈ R, i ∈ Ir, w ∈ W (5.15)

kri ∈ {0, 1, 2, · · · ,mr − 1}, r ∈ R, i ∈ Ir (5.16)

Constraint (5.13) defines the arrival day of a week at each port call on the route.

Constraint (5.14) requires that a ship arrives exactly once a week at each port of

call. Constraint (5.15) defines zwri as a binary variable. Constraint (5.16) defines the

auxiliary variable kri as a nonnegative integer.

The third set of constraints considers the availability of berths:

∑
r∈Rp

∑
i∈Irp,tportri =1

zbwri +
∑
r∈Rp

∑
i∈Irp,tportri =2

(zb,w−1
ri +zbwri ) 6 δwb , p ∈ P , b ∈ Bp, w ∈ W (5.17)

∑
b∈Bpri∪{b̄}

zbri = 1, r ∈ R, i ∈ Ir (5.18)

zbwri 6 zbri, r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W (5.19)
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zbwri 6 zwri, r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W (5.20)

zbwri > zbri + zwri − 1, r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W (5.21)

zbwri ∈ {0, 1}, r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W (5.22)

zbri ∈ {0, 1}, r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄} (5.23)

Constraint (5.17) indicates that an available berth cannot serve more than one ship

on the same day. Constraint (5.18) requires that a ship uses exactly one berth each

time it visits a port including the premium berth b̄. Constraints (5.19) , (5.20) and

(5.21) impose that a ship uses a berth at a port of call once a week. Constraints (5.22)

and (5.23) define zbwri and zbri as binary variables.

5.3 Solution Method

The model [NSDPTW] is a mixed-integer nonlinear non-convex optimization prob-

lem. It is difficult to solve because (i) it has a large number of discrete variables; and

(ii) it has nonlinear objective function. After carefully examining the properties of

the problem, we develop a tailored solution method that overcomes these difficulties.

5.3.1 Linearization of the objective function

The nonlinear term t−briri in the objective function (5.6) can be linearized due to the

following property.

Proposition 5.3.1 The optimal tri can be determined by the optimal zwri and zwr,i+1,

w ∈ W .
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Proof : Given zwri and zwr,i+1, w ∈ W , tri can only take values as follows:
∑

w∈W wzwr,i+1−∑
w∈W wzwri−t

port
ri ,

∑
w∈W wzwr,i+1−

∑
w∈W wzwri−t

port
ri +7,

∑
w∈W wzwr,i+1−

∑
w∈W wzwri−

tport
ri +14, etc., while satisfying constraint (5.8). The possible values of tri differ from

each other by an integer number of weeks. As a result, different tri impact the bunker

cost on the leg and the number of ships to deploy on the ship route, and do not

affect other components of the model. Hence, given
∑

w∈W wzwr,i+1−
∑

w∈W wzwri, we

can find the best tri. �

We use an example to demonstrate the proposition. Suppose that z2
ri = 1 (arrival

on Tuesday), z3
r,i+1 = 1 (arrival on Wednesday), tport

ri = 2, α = 500, Lri = 12, 000,

ari = 0.001, bri = 2, Cship
r = 500, 000. Suppose further that the minimum value of

tri determined by constraint (5.8) is 15. Then tri can take the value of 20, 27, 34,

etc. Table 5.1 reports the bunker cost on the leg, the additional ship cost compared

with the minimum possible tri = 20, and the total cost. Hence, the optimal value

of tri is 34.

Table 5.1: Impact of different tri on the costs (million USD/week)

tri 20 27 34 41 48 55 62
Bunker cost 3.75 2.06 1.30 0.89 0.65 0.50 0.39

Ship cost 0.00 0.50 1.00 1.50 2.00 2.50 3.00
Total cost 3.75 2.56 2.30 2.39 2.65 3.00 3.39

Based on Proposition 5.3.1, we can linearize the objective function (5.6). We

define binary variables ywri to be 1 if and only if the difference of the arrival times

at < r, i + 1 > and < r, i > is w days, w ∈ W . We represent by tw∗ri the optimal

value of tri when the difference of the arrival times at < r, i + 1 > and < r, i >

is w days. We stress here that tw∗ri can be computed a priori and is not a decision

variable. We further define auxiliary binary variables k̄ri. The model [NSDPTW]

can be transformed to the following integer linear programming (ILP) model:
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[NSDPTW-ILP]

min
∑
r∈R

Cship
r mr + α

∑
r∈R

∑
i∈Ir

Lriari(Lri/24)bri
∑
w∈W

(tw∗ri )−briywri

+Cb̄
∑

r∈R
∑

i∈Ir z
b̄
ri (5.24)

with constraints

tri =
∑
w∈W

tw∗ri y
w
ri, r ∈ R, i ∈ Ir (5.25)

∑
w∈W

wywri =
∑
w∈W

wzwr,i+1 −
∑
w∈W

wzwri − t
port
ri + 7k̄ri, r ∈ R, i ∈ Ir (5.26)

∑
w∈W

ywri = 1, r ∈ R, i ∈ Ir (5.27)

ywri ∈ {0, 1}, r ∈ R, i ∈ Ir, w ∈ W (5.28)

k̄ri ∈ {0, 1, 2}, r ∈ R, i ∈ Ir (5.29)

and constraints from (5.7) to (5.23).

Constraint (5.25) defines tw∗ri which is the optimal value of tri when the difference of

the arrival times at < r, i + 1 > and < r, i > is w days. Constraint (5.26) defines

the difference of the arrival times between ports. Constraint (5.27) requires that

the difference of the arrival times is a fix number between 0 and 6 at each port of

call. Constraint (5.28) defines ywri as a binary variable. Constraint (5.29) defines the

auxiliary variable k̄ri as a nonnegative integer.

5.3.2 Iterative optimization approach

Model [NSDPTW-ILP] is an integer linear programming formulation. Small-scale

instances can be solved by off-the-shelf solvers. To solve large-scale instances, we



5.3. Solution Method 98

propose an iterative optimization approach below:

Algorithm 1: Iterative optimization approach

Step 0. (Initialization): We define vector (mr = m∗r, r ∈ R; tarr
ri = tarr∗

ri , r ∈ R, i ∈

Ir; z
bw
ri = zbw∗ri , r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W ) as the best solution

obtained (for brevity, we use (m∗r, t
arr∗
ri , zbw∗ri ) to represent the vector). Note

that we do not need to record the values of the variables tri, z
w
ri, kri, z

b
ri,

ywri, or k̄ri, because they can be derived from (m∗r, t
arr∗
ri , zbw∗ri ). Find a feasible

(m∗r, t
arr∗
ri , zbw∗ri ). Since there is a premium berth at each port, such a feasible

schedule always exists. The total cost can be calculated and is represented

by C∗.

Step 1. (Ship route schedule optimization): Define C0 = C∗.

Step 1.0. Set r̄ = 1. Define C1 = C∗.

Step 1.1. (Optimize the schedule for ship route r̄) Fix the schedule of all ship

routes r ∈ R\ {r̄} and optimize schedule for ship route r̄. That is, we

solve model [NSDPTW-ILP] with the following constraints:

mr = m∗r, r ∈ R \ {r̄} (5.30)

tarr
ri = tarr∗

ri , r ∈ R \ {r̄}, i ∈ Ir (5.31)

zbwri = zbw∗ri , r ∈ R \ {r̄}, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W (5.32)

Update (m∗r̄, t
arr∗
r̄i , zbw∗r̄i ) using the corresponding optimal solution ob-

tained. The resulting total cost is denoted by Ĉ∗. Note that Ĉ∗ 6 C∗.

Set C∗ = Ĉ∗.

Step 1.2. If r̄ < |R|, set r̄ = r̄ + 1 and go to Step 1.1.
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Step 1.3. If C1 > C∗, go to Step 1.0.

Step 1.4. Go to Step 2.0.

Step 2. (Port arrival time optimization):

Step 2.0. Set p̄ = 1. Define C2 = C∗.

Step 2.1. (Optimize the arrival times at port p̄) Fix the schedule of all ports

p ∈ P\{p̄} and optimize schedule at port p̄. That is, we solve model

[NSDPTW-ILP] with the following constraints:

mr = m∗r, r ∈ R (5.33)

tarr
ri = tarr∗

ri , r ∈ R, i ∈ Ir \ Irp̄ (5.34)

zbwri = zbw∗ri , r ∈ R, i ∈ Ir \ Irp̄, b ∈ Bpri ∪ {b̄}, w ∈ W (5.35)

Update (tarr∗
ri , zbw∗ri , r ∈ Rp̄, i ∈ Irp̄) using the corresponding optimal

solution obtained. The resulting total cost is denoted by Ĉ∗. Note

that Ĉ∗ 6 C∗. Set C∗ = Ĉ∗.

Step 2.2. If p̄ < |P|, set p̄ = p̄+ 1 and go to Step 2.1.

Step 2.3. If C2 > C∗, go to Step 2.0.

Step 2.4. If C0 > C∗, go to Step 1.

Step 2.5. Stop (It means we cannot improve the solution by optimizing the sched-

ule for one route or optimizing the arrival times at one port). �
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5.4 Case Studies

5.4.1 A six-port case study

We conduct a case study based on the ocean carrier APL to evaluate the applicability

of the proposed models and methods. The network has a total of 6 ports, as shown in

Fig. 5.2. There are 3 types of ship and 3 ship routes, as shown in Table 5.2, which

also shows the daily bunker consumption functions related to the sailing speed v

(knot). The port time at each port of call (day) and distance on each leg (n mile)

are shown in Table 5.3. We assume that these 6 ports have a total of 10 berths,

whose available times are shown in Table 5.4 and the bunker price α = 400 USD/ton.

Table 5.2: Ship fleet
Ship type (TEUs) 1200 2600 6500
Weekly cost (USD) 94829 159621 267393
Max speed (knot) 18.3 20.9 20.9
Bunker consumption (ton/day) 0.000287v2 0.000358v2 0.000559v2

Table 5.3: Parameters of the three ship routes
Route Port of call Port Port ID Port time Distance

1 1 Singapore 1 2 2895
2 Karachi 2 2 509
3 Nhava Sheva 3 1 891
4 Colombo 4 1 1575

2 1 Singapore 1 1 767
1 Surabaya 5 2 767

3 1 Singapore 1 1 668
2 Semarang 6 1 668

5.4.1.1 Impact of port time windows

Firstly, we examine the effect of port time windows on the total cost and the optimal

schedule. We consider the example of the port of Singapore, which is visited three

times a week on all the ship routes in the network. Both the operator of the port of
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Table 5.4: Available time at each port
Port ID Port Berth Sun Mon Tue Wed Thu Fri Sat

1 Singapore
1 free free free free
2 free free

2 Karachi
1 free free free free free free free
2 free

3 Nhava Sheva
1 free free free
2 free free free free

4 Colombo 1 free free free free
5 Surabaya 1 free free free free

6 Semarang
1 free free free free
2 free

Singapore and the liner shipping company that operates the network are interested

in looking at the result if more available berth time is provided at Singapore. We

hence examine 7 berth availability cases of Singapore, as shown in Table 5.5. The

two berths at Singapore have more and more available days from case 1 to case 7.

Table 5.5: Different cases of available time at Singapore
Case Berth Sun Mon Tue Wed Thu Fri Sat

1
1 free
2 free free free

2
1 free free
2 free free free

3
1 free free free
2 free free free

4
1 free free free
2 free free free free

5
1 free free free free
2 free free free free

6
1 free free free free
2 free free free free free

7
1 free free free free free
2 free free free free free

The results of the 7 berth availability cases are shown in Fig. 5.3. It can be seen

that more available days at Singapore leads to a lower total cost: from case 1 to

case 7, the total cost is reduced by 194,969 USD/week due to the increase of the

number of available days at berth Table 5.6. Fig. 5.3 also demonstrates that the

number of available days at a port may affect the optimal number of ships deployed.
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In particular, when there are not many available days for berthing, more ships have

to be deployed to satisfy the stringent port time window constraints.

Figure 5.3: Impact of port time windows

Table 5.6: Impact of port time windows on each type of cost
Case Ship cost Bunker cost

1 1311079 415193
2 1311079 414905
3 1216250 433058
4 1056629 481543
5 1056629 474674
6 1056629 474674
7 1056629 474674

The optimal ship route schedules for the 7 berth availability cases are shown in

Table 5.7, which reports the day of arrival at each port of call. We observe that

the time windows at the port of Singapore affect the optimal arrival times at all the

ports of call in the liner shipping network.
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Table 5.7: Impact of port time window on the optimal schedule
Route Port of call Port Cases 1 Case 2 Cases 3 Case 4 Case 5 Cases 6 Case 7

1 1 Singapore 0 0 0 4 1 1 1
2 Karachi 8 8 8 12 11 11 11
3 Nhava Sheva 11 11 11 15 15 15 15
4 Colombo 15 15 15 19 18 18 18

2 1 Singapore 4 4 4 0 0 0 0
5 Surabaya 10 10 10 3 3 3 3

3 1 Singapore 4 6 2 2 1 1 2
6 Semarang 12 13 6 5 5 5 5

5.4.1.2 Consequence of port efficiency

It is important for port operators to improve the container handling efficiency, i.e.,

reducing tport
i . To investigate the effect of port handling efficiency, we compare the

default parameter settings with the situation of reducing the port time at Singapore

on ship route 1 from two days to one day. We find that the optimal number of

ships and the total cost increase with the time spent at Singapore, as shown in

Fig. 5.4 and Fig. 5.5, in all the 7 cases of available days at Singapore. These results

demonstrate that it is of significant importance for port operators to improve the

container handling efficiency.

Figure 5.4: Impact of port time at Singapore on ship route 1 on the number of ships
deployed
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Figure 5.5: Impact of port time at Singapore on ship route 1 on the total cost

5.4.1.3 Result of bunker prices

In this section, we study the impact of the bunker price on the total cost and the

number of ships deployed in the liner shipping network. We increase the bunker

price from 300, 400, 500, 600, 700, to 800 and the other parameters are the same as

Table 5.2, Table 5.3 and Table 5.4. The results are shown in Fig. 5.6 . We observe

that a higher bunker price always leads to a higher total cost for liner shipping

companies and there is a rise in the number of ships used when the bunker price

becomes higher. This is because when the bunker price is higher, the sailing speed

is reduced by deploying more ships to make the bunker consumption lower. Overall,

the total cost increases concavely with the increase of bunker price.

5.4.2 A 21-port case study

We examine another case study based on the ocean carrier APL to evaluate the

applicability of the proposed models and methods. The network has a total of 21

ports, as shown in Fig. 5.7. There are 3 types of ship and 3 ship routes, as shown

in Table 5.2, which also shows the daily bunker consumption functions related to
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Figure 5.6: Result of bunker prices on the total cost and the number of ships deployed

the sailing speed v (knot). The port time at each port of call (day) and distance

on each leg (n mile) are shown in Table 5.8. We assume that these 21 ports have

a total of 44 berths, whose available times are shown in Table 5.9 and the bunker

price α = 400 USD/ton.

5.4.2.1 Impact of port time windows

Firstly, we examine the effect of port time windows on the total cost and the optimal

schedule. We consider the example of the port of Shanghai, which is visited one time

a week on in this network. We hence examine 7 berth availability cases of Shanghai

as shown in Table 5.10. The berths at Shanghai have more and more available days

from case 1 to case 7.

The results of the 7 berth availability cases are shown in Fig. 5.8. It can be seen

that more available days at Shanghai leads to a lower total cost: from case 1 to case

7, the total cost is reduced by 222,675 USD/week due to the increase of the number

of available days at berth Table 5.11. Fig. 5.8 also demonstrates that the number

of available days at a port may affect the optimal number of ships deployed. In
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Figure 5.7: A liner shipping network with five ship routes

particular, when there are not many available days for berthing, more ships have to

be deployed to satisfy the stringent port time window constraints.

5.4.2.2 Consequence of port efficiency

It is important for port operators to improve the container handling efficiency, i.e.,

reducing tport
i . To investigate the effect of port handling efficiency, we compare the

default parameter settings with the situation of reducing the port time at Shanghai

on ship route 1 from two days to one day. We find that the optimal number of
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Table 5.8: Parameters of the Five ship routes
Route Port of call Port Port time Distance

1 1 Singapore 2 2895
2 Karachi 1 509
3 Nhava Sheva 1 891
4 Colombo 1 1575

2 5 Shanghai 2 101
6 Ningbo 1 693
7 Hong Kong 1 25
8 Shekou 1 1422
1 Singapore 1 3428
9 Jebal Ali 2 280
10 Dammam 2 2480
11 Port Klang 2 193
1 Singapore 1 1422
8 Shekou 2 791

3 1 Singapore 1 193
11 Port Klang 1 2359
12 Fremantle 1 2115
13 Sydney 1 547
14 Melbourne 1 448
15 Adelaide 1 1327
12 Fremantle 1 2183

4 1 Singapore 2 193
11 Port Klang 1 3830
16 Brisbane 1 419
13 Sydney 1 1253
17 Auckland 1 107
18 Tauranga 1 1351
16 Brisbane 1 3642

5 11 Port Klang 1 193
1 Singapore 2 3642
16 Brisbane 1 1283
17 Auckland 1 635
19 Lyttelton 1 169
20 Wellington 1 196
21 Napier 1 237
18 Tauranga 1 5110

ships and the total cost increase with the time spent at Shanghai, as shown in

Fig. 5.9 and Fig. 5.10, in all the 7 cases of available days at Shanghai. These results

demonstrate that it is of significant importance for port operators to improve the

container handling efficiency.
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Table 5.9: Available time at each port
Port ID Port Berth Sun Mon Tue Wed Thu Fri Sat

1 Singapore

1 free free free free
2 free free
3 free free free free free free free
4 free

2 Karachi
1 free free free
2 free free free free

3 Nhava Sheva 1 free free free free

4 Colombo
1 free free free free
2 free free free free

5 Shanghai
1 free
2 free free free free

6 Ningbo
1 free free
2 free free free free free free free

7 Hong Kong
1 free
2 free free free

8 Shekou
1 free free free free
2 free free free free
3 free free free free

9 Jebal Ali 1 free free free free

10 Dammam
1 free
2 free free free free

11 Port Klang
1 free free
2 free free free free free free free
3 free

12 Fremantle
1 free free free
2 free free free free
3 free free free free

13 Sydney
1 free free free free
2 free free free free

14 Melbourne
1 free
2 free free free free

15 Adelaide 1 free free

16 Brisbane
1 free free free free free free free
2 free
3 free free free

17 Auckland
1 free free free free
2 free free free free

18 Tauranga
1 free free free free
2 free free free free

19 Lyttelton
1 free
2 free free free free

20 Wellington
1 free
2 free free free free

21 Napier 1 free free free free free free free
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Table 5.10: Different cases of available time at Shanghai
Case Berth Sun Mon Tue Wed Thu Fri Sat

1
1 free
2 free free

2
1 free free
2 free free

3
1 free free
2 free free free

4
1 free free free free
2 free free free

5
1 free free free free
2 free free free free free

6
1 free free free free free
2 free free free free free

7
1 free free free free free free
2 free free free free free

Figure 5.8: Impact of port time windows

5.4.2.3 Result of bunker prices

In this section, we study the impact of the bunker price on the total cost and the

number of ships deployed in the liner shipping network. We increase the bunker

price from 300, 400, 500, 600, 700, to 800. The results are shown in Fig. 5.11 .

We observe that a higher bunker price always leads to a higher total cost for liner
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Table 5.11: Impact of port time windows on each type of cost
Case Ship cost Bunker cost

1 5007604 1380569
2 5007604 1380569
3 4740211 1495628
4 4740211 1486908
5 4740211 1473271
6 4740211 1425287
7 4740211 1425287

Figure 5.9: Impact of port time at Shanghai on ship route 2 on the number of ships
deployed

shipping companies and there is a rise in the number of ships used when the bunker

price becomes higher. This is because when the bunker price is higher, the sailing

speed is reduced by deploying more ships to make the bunker consumption lower.

Overall, the total cost increases concavely with the increase of bunker price.

5.5 Conclusions

This chapter has studied the practical liner shipping network schedule design prob-

lem with port time windows. This is a significant tactical planning decision problem

because it considers the availability of ports when planning liner shipping services.
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Figure 5.10: Impact of port time at Shanghai on ship route 2 on the total cost

Figure 5.11: Result of bunker prices on the total cost and the number of ships
deployed

As a result, the designed schedule can be applied in practice without or with only

minimum revisions. This problem is formulated as a mixed-integer nonlinear non-

convex optimization model. In view of the problem structure, we reformulated the

problem as an integer linear optimization model and proposed an iterative optimiza-

tion approach.
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The proposed solution method was applied to two networks, consisting of six

ports and 21 ports, operated by APL. The results demonstrate that the port time

windows, port handling efficiency, and bunker price all affect the total cost, the

optimal number of ships to deploy, and the optimal schedule. Higher availability at

ports, shorter port time, and lower bunker price result in a lower total cost and a

smaller number of ships to deploy. Therefore, port operators can apply the proposed

method to quantify whether the benefits to liner shipping companies are worthwhile

compared to the cost of expanding the ports’ capacity and improving their efficiency.

Liner shipping companies may need to charter in more ships if they predict that the

future bunker price will increase.



Chapter 6

Schedule Design for Liner

Shipping Networks Considering

Inventory Cost

6.1 Introduction

In this chapter, we extend the previous schedule design for liner shipping networks

with port time windows by considering the inventory cost. The main contribution of

the chapter is to address a practical liner shipping network schedule design problem

with port time windows considering inventory cost (NSDPTW2). The designed

schedules are preferable as the sum of ship cost, fuel cost and inventory cost is

minimized. The schedules are feasible because the availability of berths at each

port on each day is explicitly considered in the model. Moreover, considering the

inventory cost makes the schedule more reasonable.

The remainder of the chapter is organized as follows. Section 6.2 describes the

problem and formulates a mathematical model. Section 6.4 proposes a solution

approach to address the problem. Section 6.5 reports a case study based on a

network consisting of four service routes. Section 6.6 presents the conclusion. To

113
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keep this chapter self-contained, we repeat some description from chapter 5.

6.2 Problem Description

Consider a liner container shipping company that operates a number of ship routes,

denoted by the set R, regularly serving a group of ports denoted by the set P . The

port rotation of a ship route r ∈ R can be expressed as:

pr1 → pr2 → . . .→ prNr → pr1 (6.1)

where Nr is the number of ports of call on the ship route and pri ∈ P is the physical

port corresponding to ith port of call. Let Ir be the set of ports of call of ship route

r ∈ R, i.e., Ir = {1, 2, · · · , Nr}. For brevity, we define < r, i > as the port of call i

on ship route r. Defining pr,Nr+1 = pr1, the voyage from pri to pr,i+1 is called leg i,

i ∈ Ir. Fig. 5.2 shows a liner shipping network with three ship routes operated by

APL (2014), where ship route 1 is SWX in Fig. 5.1, ship route 2 is Surabaya Feeder

Service (SUR) and ship route 3 is Semarang Feeder Service (SEM):

r = 1, Nr = 4 : pr1(SG)→ pr2(KR)→ pr3(NS)→ pr4(CB)→ pr1(SG)

r = 2, Nr = 2 : pr1(SG)→ pr2(SB)→ pr1(SG)

r = 3, Nr = 2 : pr1(SG)→ pr2(SR)→ pr1(SG)→ pr1(CB)

We further define Rp as the set of ship routes that visit port p ∈ P , and define

Irp as the set of ports of call on ship route r ∈ Rp that correspond to port p. In the

above example, RSG = {1, 2, 3}, I1,CB = {4}, I2,SG = {1}, and I3,CB = ∅.

6.2.1 Weekly service and schedules

A string of homogeneous ships are deployed on each ship route r ∈ R to maintain

a weekly service frequency. Let Lri (n mile) be the voyage distance of the ith leg
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of route r ∈ R, tport
ri ∈ {1, 2} be the fixed time (day) a ship spends at port of call

i on ship route r ∈ R for container handling, mr be the number of ships deployed

on ship route r ∈ R, and tri be the sailing time (day) on the ith leg of ship route

r ∈ R. We then have the relation:

∑
i∈Ir

(
tri + tport

ri

)
= 7mr,∀r ∈ R

where 7 is the number of days in a week. Represent by Cship
r the fixed cost (USD/week)

associated with a ship on route r ∈ R. Cship
r includes the capital cost and the oper-

ating cost. The fixed cost associated with all the ships is:

∑
r∈R

Cship
r mr

Define the beginning of a particular Sunday as day 0, and let tarr
ri be the arrival

time (day) at port of call i on ship route r. For instance, tarr
ri = 13 means that ships

arrive at < r, i > at the beginning of next Saturday. The time components of a ship

route have the relation

tarr
r,i+1 = tarr

ri + tport
ri + tri, r ∈ R, i ∈ Ir

We assume that the sailing time on a leg has a minimum required value, denoted

by tmin
ri . Hence,

tri > tmin
ri , r ∈ R, i ∈ Ir

Note that tmin
ri can be used to incorporate potential buffer time. For instance, if a

leg is short, and the container handling time at port of call i is unreliable, then tmin
ri

should be much larger than Lri

24V max
r

so as to hedge against potential delay by fast

steaming, where V max
r is the maximum speed (knots) of ships deployed on ship route

r.

Because liner ship routes provide weekly services (Wang and Meng (2013), Wang
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and Meng (2014), Liu et al. (2014), Wang (2014), Wang et al. (2014a), Wang et al.

(2015a) and Wang et al. (2015b)), to simplify the notation, we define W to be a set

of all days in a week, that is,

W := {0, 1, 2, 3, 4, 5, 6}

where 0 represents Sunday, 1 represents Monday, etc. Without loss of generality, we

require

tarr
r1 ∈ W, r ∈ R

In fact, there is no difference between tarr
r1 = 2 and tarr

r1 = 9 due to the weekly

frequency of liner services. Hence, the schedule of ship routes in the liner shipping

network can be defined by the following vector

(tarr
ri , r ∈ R, i ∈ Ir;mr, r ∈ R) (6.2)

The number of ships mr is essential in the above vector, because without it the

sailing time on leg Nr cannot be determined. The weekly service implies that

tarr
r,Nr+1 = tarr

r1 + 7mr, r ∈ R

Therefore, we can also define the schedule as

(tarr
ri , r ∈ R, i ∈ Ir ∪ {Nr + 1}) (6.3)

which is equivalent to the schedule defined by (6.2).

The arrival time tarr
ri at a port of call corresponds to day tarr

ri mod 7 of a week.

To be more specific, we let zwri be a binary variable which equals 1 if and only if



6.2. Problem Description 117

ships arrive on day w ∈ W of a week at < r, i >. Mathematically

tarr
ri mod 7 = w′ ⇐⇒


zw
′

ri = 1

zwri = 0, w ∈ W\{w′}

6.2.2 Port time windows

A port may have more than one berth. Hence, we let Bp be the set of berths at the

port p ∈ P . A berth may not always be available in a week because a port needs

to serve more than one liner shipping company. Therefore, we define the parameter

δwb which equals 1 if berth b ∈ ∪p∈PBp is free on day w ∈ W and 0 otherwise.

A ship uses exactly one berth when it visits a port of call and a berth cannot

serve more than one ship at the same time. To formulate this constraint, let zbwri be

a binary variable which equals 1 if and only if ships use berth b ∈ Bpri when visiting

< r, i > on day w. For notational convenience, we define zb,−1
ri := zb,6ri . We have

∑
r∈Rp

∑
i∈Irp,tportri =1

zbwri +
∑
r∈Rp

∑
i∈Irp,tportri =2

(zb,w−1
ri +zb,wri ) ≤ δwb , p ∈ P , b ∈ Bp, w ∈ W (6.4)

The first term on the left-hand side means that a ship uses the berth on day w if

tport
ri = 1 and the arrival day is w. The second term on the left-hand side means

that a ship uses the berth on day w if tport
ri = 2 and the arrival day is w − 1 or w.

The overall constraint indicates that an available berth cannot serve more than one

ship on the same day.

We assume further that each port has a premium berth b̄, which is always avail-

able and can accommodate any number of ships. However, the liner shipping com-

pany needs to pay a high penalty cost Cb̄ each time the berth is used.
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6.2.3 Container inventory cost

A higher sailing speed implies a shorter transit time of containers, which leads to

a lower inventory cost. Therefore we let β̄ be the unit inventory cost of containers

(USD per TEU per day), and V̄ri be the volume of containers (TEUs) transported

on leg i of ship route r. Since the inventory cost of containers at ports is constant

(excluding transshipment containers), we are concerned about the inventory cost at

sea, the sum of which can be calculated as:

∑
r∈R

∑
i∈Ir

β̄V̄ritri

6.2.4 Container transshipment

Container transshipment operations at a particular port can occur only when this

port is visited by ships at least twice a week. Given the set of ship routes R, all

the possible container transshipment operations can be represented by the following

set:

Q := {< r, s, i, j > | r ∈ R, s ∈ R, i ∈ Ir, j ∈ Is|pri = psj,

and at least one of the two inequalities is true: r 6= s, i 6= j}

A quadruplet < r, s, i, j >∈ Q represents a container transshipment operation from

one ship on ship route r to another ship on ship route s at their common calling

port pri = psj. The set Q can be easily identified.

For example, the set of transshipment quadruplets for the network shown in

Fig. 5.2 is:

Q :=


< 1, 2, 1, 1 >,< 1, 3, 1, 1 >,

< 2, 3, 1, 1 >,< 3, 2, 1, 1 >,

< 2, 1, 1, 1 >,< 3, 1, 1, 1 >


where all of transshipments are at Singapore.
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Represent by V̄rsij the volume of containers transshipped from < r, i > to <

s, j >. We assume that V̄rsij is determined by a separate container routing model and

hence is fixed for the schedule design problem. The inventory cost of the containers

with volume V̄rsij at the transshipment port pri is related to the difference of the

arrival day of a week at < r, i > and the arrival day at < s, j > (the latter minus the

former). Let xwrsij ∈ {0, 1} equal 1 if and only if the difference of the arrival days of a

week at < r, i > and < s, j > is w, w ∈ W . For instance, if the former is Wednesday

(day 3 or equivalently z3
ri = 1) and the latter is Thursday (day 4 or equivalently

z4
sj = 1), x1

rsij = 1. If the former is Thursday and the latter is Wednesday, then

their difference is 3− 4 + 7 = 6 (because of weekly services) and x6
rsij = 1.

At a port p ∈ P , the minimum connection time is denoted by t̄min
p days. If the

arrival day of ship A at < r, i > is at least t̄min
p days earlier than the departure day

of ship B at < s, j >, < r, s, i, j >∈ Q, then the containers can be transshipped

from ship A to ship B. Otherwise, the containers have to wait for the ship (ship C)

that arrives at < s, j > one week later than ship B. We define t̄wrsij as the number

of days the transshipment containers from < r, i > to < s, j > spend at the port

if the arrival time difference is w days. t̄wrsij is the time interval from the arrival of

ship A to the departure of ship B (or ship C). Therefore, the total inventory cost

associated with container transshipment is

β̄
∑

<r,s,i,j>∈Q

V̄rsij
∑
w∈W

t̄wrsijx
w
rsij

Note that t̄wrsij is a known parameter. For instance, if w = 6 (e.g., z4
ri = 1, z3

sj =

1), tport
ri = 1, tport

sj = 1, then we have t̄1rsij = 7, which is from the arrival at the

beginning Thursday to the departure at the end of Wednesday. If w = 1 (e.g.,

z3
ri = 1, z4

sj = 1), tport
ri = 1, tport

sj = 1, we have t̄1rsij = 2, which is from the arrival at

the beginning Wednesday to the departure at the end of Thursday. t̄wrsij depends on

w, t̄min
p and tport

sj , as summarized in Table 6.1.
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Table 6.1: Connection time at a transshipment port

t̄min
p tport

sj w = 0 w = 1 w = 2 w = 3 w = 4 w = 5 w = 6

1 1 1 2 3 4 5 6 7
1 2 2 3 4 5 6 7 1
2 1 8 2 3 4 5 6 7
2 2 2 3 4 5 6 7 8

6.2.5 Bunker consumption

Represent by gri(v) the bunker consumption (tons/n mile) function with regard to

the speed v on leg i of ship route r. Based on the results in existing studies, we

assume that gri(v) is a power function of the form:

gri(v) = ariv
bri , ari > 0, bri > 2 (6.5)

Hence, we let Qri(tri) be the bunker consumption on leg i of ship route r, and it can

calculated by:

Qri(tri) = Lrigri(Lri/tri)

6.3 Mathematical Model

Before presenting the model, we list the notation below.

Variables

mr Number of ships deployed on the ship route r ∈ R

tarr
ri Arrival time (day) at port of call i on ship route r

tarr
r,Nr+1 The time (day) when the ship returns to the 1st port of call on ship

route r

tri Sailing time (day) on the ith leg of ship route r ∈ R

kri An integer that is associated with the arrival time at the port of

call i on ship route r, r ∈ R, i ∈ Ir
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krsij An integer that is associated with the arrival time at the port of

call i on ship route r and at the port of call j on ship route s, r

and s ∈ R, i ∈ Ir and j ∈ Is

xwrsij A binary variable which equals 1 if and only if the difference of the

arrival days of a week at < r, i > and < s, j > is w, w ∈ W

zbri A binary variable which equals 1 if and only if ships use berth

b when visiting the port of call i on ship route r including the

premium berth b̄

zb̄ri A binary variable which equals 1 if and only if ships use a premium

berth b̄ when visiting the port of call i on ship route r

zwri A binary variable that equals 1 if and only if ships arrive on day

w ∈ W of a week at the port of call i on ship route r

zbwri A binary variable that equals 1 if and only if ships arrive on day

w ∈ W of a week at the berth b at the port of call i on ship route r

Parameters

α The bunker fuel price (USD/ton)

β̄ The unit inventory cost of containers (USD per TEU per day)

δwb A parameter that equals 1 if berth b ∈ ∪p∈PBp is free on day w ∈ W

and 0 otherwise

ari A coefficient calibrated from operating data and satisfy ari > 0

bri A coefficient calibrated from operating data and satisfy bri > 1

Bp The set of berths at the port p ∈ P

Cship
r The weekly operating cost of a ship deployed on ship route r

Cb̄ The penalty cost of using a premium berth b̄

Ir The set of ports of call on ship route r

Lri Oceanic distance (n mile) of the ith leg of route r

Nr Number of ports on the ship route r
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pri The physical port that corresponds to the ith port of call on the

ship route r

tport
ri Time (day) a ship spends at port of call i on the ship route r

tmin
ri A minimum required value of the sailing time on the ith leg of route

r

V̄ri Number of containers (TEUs) on leg i on the ship route r

V̄rsij The volume of containers transshipped from < r, i > to < s, j >

V max
r Maximum speed of the ships on the ship route r

mmax
r Maximum number of ships deployed on the ship route r

Z+ Set of nonnegative integers

The NSDPTW2 can be formulated as an optimization model below. The objective

function is:

[NSDPTW2]

min
∑
r∈R

Cship
r mr + α

∑
r∈R

∑
i∈Ir

Lriari(Lri/(24tri))
bri + β̄

∑
r∈R

∑
i∈Ir

V̄ritri

+β̄
∑

<r,s,i,j>∈Q

V̄rsij
∑
w∈W

t̄wrsijx
w
rsij + Cb̄

∑
r∈R

∑
i∈Ir

zb̄ri (6.6)

which aims to minimize the sum of ship cost, inventory cost and fuel cost while

penalizing the violation of berth time windows.

The NSDPTW2 is subject to a number of constraints. The first set is the basic

logical constraints in the schedule:

0 6 tarr
r1 6 6, r ∈ R (6.7)

tri >

{
tmin
ri ,

⌈
Lri

24V max
r

⌉}
, r ∈ R, i ∈ Ir (6.8)

tarr
r,i+1 = tarr

ri + tport
ri + tri, r ∈ R, i ∈ Ir (6.9)
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tarr
r,Nr+1 = tarr

r1 + 7mr, r ∈ R (6.10)

mr ∈ {1, 2, 3, · · · ,mmax
r }, r ∈ R (6.11)

tarr
ri ∈ Z+, r ∈ R, i ∈ Ir (6.12)

The objective function (6.6) minimizes the sum of ship cost, bunker cost and penalty

cost. Constraint (6.7) eliminates symmetric solutions. Constraint (6.8) confirms

that the sailing time on a leg is not less than a minimum required value and ships

cannot sail at a speed that exceeds V max
r . Constraint (6.9) defines the relation of

different time components in a round-trip journey. Constraint (6.10) defines the time

when the ship returns to the 1st port of call after one round-trip. Constraint (6.11)

indicates that the number of ships is a positive integer that does not exceed a pre-

specified maximum value. Constraint (6.12) indicates that the arrival time at each

port of call is a nonnegative integer.

The second set of constraints formulates the day of a week for arrival at each

port of call in the network:

∑
w∈W

wzwri = tarr
ri − 7kri, r ∈ R, i ∈ Ir (6.13)

∑
w∈W

zwri = 1, r ∈ R, i ∈ Ir (6.14)

zwri ∈ {0, 1}, r ∈ R, i ∈ Ir, w ∈ W (6.15)

kri ∈ {0, 1, 2, · · · ,mr − 1}, r ∈ R, i ∈ Ir (6.16)
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Constraint (6.13) defines the arrival day of a week at each port call on the route.

Constraint (6.14) requires that a ship arrives exactly once a week at each port of

call. Constraint (6.15) defines zwri as a binary variable. Constraint (6.16) defines the

auxiliary variable kri as a nonnegative integer.

The third set of constraints formulates xwrsij:

∑
w∈W

wzwri −
∑
w∈W

wzwsj + 7krsij =
∑
w∈W

wxwrsij, < r, s, i, j >∈ Q (6.17)

∑
w∈W

xwrsij = 1, < r, s, i, j >∈ Q (6.18)

xwrsij ∈ {0, 1}, < r, s, i, j >∈ Q, w ∈ W (6.19)

krsij ∈ {0, 1}, < r, s, i, j >∈ Q (6.20)

Constraint (6.17) defines the different of the arrival days of a week at each port call

between two routes. Constraint (6.18) requires that a transshipment happens exactly

once a week at each port of call. Constraint (6.19) defines xwrsij as a binary variable.

Constraint (6.20) defines the auxiliary variable krsij as a nonnegative integer.

The fourth set of constraints considers the availability of berths:

∑
r∈Rp

∑
i∈Irp,tportri =1

zbwri +
∑
r∈Rp

∑
i∈Irp,tportri =2

(zb,w−1
ri +zbwri ) 6 δwb , p ∈ P , b ∈ Bp, w ∈ W (6.21)

∑
b∈Bpri∪{b̄}

zbri = 1, r ∈ R, i ∈ Ir (6.22)

zbwri 6 zbri, r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W (6.23)
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zbwri 6 zwri, r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W (6.24)

zbwri > zbri + zwri − 1, r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W (6.25)

zbwri ∈ {0, 1}, r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W (6.26)

zbri ∈ {0, 1}, r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄} (6.27)

Constraint (6.21) indicates that an available berth cannot serve more than one ship

on the same day. Constraint (6.22) requires that a ship uses exactly one berth each

time it visits a port including the premium berth b̄. Constraints (6.23) , (6.24) and

(6.25) impose that a ship uses a berth at a port of call once a week. Constraints (6.26)

and (6.27) define zbwri and zbri as binary variables.

6.4 Solution Method

The model [NSDPTW2] is a mixed-integer nonlinear non-convex optimization prob-

lem. It is difficult to solve because (i) it has a large number of discrete variables;

and (ii) it has nonlinear objective function. We use the solution method developed

in the previous chapter with some modification to address the problem.

6.4.1 Linearization of the objective function

Similar to proposition (5.3.1) nonlinear term t−briri in the objective function (6.6) can

be linearized due to the following property.

Proposition 6.4.1 The optimal tri can be determined by the optimal zwri and zwr,i+1,

w ∈ W .
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Based on Proposition 6.4.1, we can linearize the objective function (6.6). We

define binary variables ywri to be 1 if and only if the difference of the arrival times

at < r, i + 1 > and < r, i > is w days, w ∈ W . We represent by tw∗ri the optimal

value of tri when the difference of the arrival times at < r, i + 1 > and < r, i >

is w days. We stress here that tw∗ri can be computed a priori and is not a decision

variable. We further define auxiliary binary variables k̄ri. The model [NSDPTW2]

can be transformed to the following integer linear programming (ILP) model:

[NSDPTW2-ILP]

min
∑
r∈R

Cship
r mr + α

∑
r∈R

∑
i∈Ir

Lriari(Lri/24)bri
∑
w∈W

(tw∗ri )−briywri + β̄
∑
r∈R

∑
i∈Ir

V̄ritri

+β̄
∑

<r,s,i,j>∈Q

V̄rsij
∑
w∈W

t̄wrsijx
w
rsij + Cb̄

∑
r∈R

∑
i∈Ir

zb̄ri (6.28)

with constraints

tri =
∑
w∈W

tw∗ri y
w
ri, r ∈ R, i ∈ Ir (6.29)

∑
w∈W

wywri =
∑
w∈W

wzwr,i+1 −
∑
w∈W

wzwri − t
port
ri + 7k̄ri, r ∈ R, i ∈ Ir (6.30)

∑
w∈W

ywri = 1, r ∈ R, i ∈ Ir (6.31)

ywri ∈ {0, 1}, r ∈ R, i ∈ Ir, w ∈ W (6.32)

k̄ri ∈ {0, 1, 2}, r ∈ R, i ∈ Ir (6.33)

and constraints from (6.7) to (6.27).
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6.4.2 Iterative optimization approach

Model [NSDPTW2-ILP] is an integer linear programming formulation. Small-scale

instances can be solved by off-the-shelf solvers. To solve large-scale instances, we

use an iterative optimization approach similar to the one in chapter 5:

Algorithm 2: Iterative optimization approach

Step 0. (Initialization): We define vector (mr = m∗r, r ∈ R; tarr
ri = tarr∗

ri , r ∈ R, i ∈

Ir; z
bw
ri = zbw∗ri , r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W ) as the best solution

obtained (for brevity, we use (m∗r, t
arr∗
ri , zbw∗ri ) to represent the vector). Note

that we do not need to record the values of the variables tri, z
w
ri, kri, z

b
ri,

ywri, or k̄ri, because they can be derived from (m∗r, t
arr∗
ri , zbw∗ri ). Find a feasible

(m∗r, t
arr∗
ri , zbw∗ri ). Since there is a premium berth at each port, such a feasible

schedule always exists. The total cost can be calculated and is represented

by C∗.

Step 1. (Ship route schedule optimization): Define C0 = C∗.

Step 1.0. Set r̄ = 1. Define C1 = C∗.

Step 1.1. (Optimize the schedule for ship route r̄) Fix the schedule of all ship

routes r ∈ R\ {r̄} and optimize schedule for ship route r̄. That is, we

solve model [NSDPTW2-ILP] with the following constraints:

mr = m∗r, r ∈ R \ {r̄} (6.34)

tarr
ri = tarr∗

ri , r ∈ R \ {r̄}, i ∈ Ir (6.35)

zbwri = zbw∗ri , r ∈ R \ {r̄}, i ∈ Ir, b ∈ Bpri ∪ {b̄}, w ∈ W (6.36)

Update (m∗r̄, t
arr∗
r̄i , zbw∗r̄i ) using the corresponding optimal solution ob-



6.4. Solution Method 128

tained. The resulting total cost is denoted by Ĉ∗. Note that Ĉ∗ 6 C∗.

Set C∗ = Ĉ∗.

Step 1.2. If r̄ < |R|, set r̄ = r̄ + 1 and go to Step 1.1.

Step 1.3. If C1 > C∗, go to Step 1.0.

Step 1.4. Go to Step 2.0.

Step 2. (Port arrival time optimization):

Step 2.0. Set p̄ = 1. Define C2 = C∗.

Step 2.1. (Optimize the arrival times at port p̄) Fix the schedule of at all ports

p ∈ P\{p̄} and optimize schedule at port p̄. That is, we solve model

[NSDPTW2-ILP] with the following constraints:

mr = m∗r, r ∈ R (6.37)

tarr
ri = tarr∗

ri , r ∈ R, i ∈ Ir \ Irp̄ (6.38)

zbwri = zbw∗ri , r ∈ R, i ∈ Ir \ Irp̄, b ∈ Bpri ∪ {b̄}, w ∈ W (6.39)

Update (tarr∗
ri , zbw∗ri , r ∈ Rp̄, i ∈ Irp̄) using the corresponding optimal

solution obtained. The resulting total cost is denoted by Ĉ∗. Note

that Ĉ∗ 6 C∗. Set C∗ = Ĉ∗.

Step 2.2. If p̄ < |P|, set p̄ = p̄+ 1 and go to Step 2.1.

Step 2.3. If C2 > C∗, go to Step 2.0.

Step 2.4. If C0 > C∗, go to Step 1.

Step 2.5. Stop. �
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6.5 Case Study

We conduct a case study based on the ocean carrier APL to evaluate the applicability

of the proposed models and methods. The network has a total of 18 ports, as shown

in Fig. 6.1. There are 3 types of ship and 4 ship routes, as shown in Table 6.2, which

also shows the daily bunker consumption functions related to the sailing speed v

(knot). The port time at each port of call (day) and distance on each leg (n mile)

are shown in Table 6.3. We assume that these 18 ports have a total of 39 berths,

whose available times are shown in Table 6.4, the bunker price α = 400 USD/ton

and the unit inventory cost β = 1 USD per TEU per hour.

Figure 6.1: A liner shipping network with eighteen ports
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Table 6.2: Ship fleet
Ship type (TEUs) 1200 2600 6500
Weekly cost (USD) 94829 159621 267393
Max speed (knot) 18.3 20.9 20.9
Bunker consumption (ton/day) 0.000287v2 0.000358v2 0.000559v2

Table 6.3: Parameters of the four ship routes
Route Port of call Port Port time Distance

1 1 Singapore 2 2895
2 Karachi 1 509
3 Nhava Sheva 1 891
4 Colombo 1 1575

2 5 Shanghai 2 101
6 Ningbo 1 693
7 Hong Kong 1 25
8 Shekou 1 1422
1 Singapore 1 3428
9 Jebal Ali 2 280
10 Dammam 2 2480
11 Port Klang 2 193
1 Singapore 1 1422
8 Shekou 2 791

3 1 Singapore 1 193
11 Port Klang 1 2359
12 Fremantle 1 2115
13 Sydney 1 547
14 Melbourne 1 448
15 Adelaide 1 1327
12 Fremantle 1 2183

4 1 Singapore 2 193
11 Port Klang 1 3830
16 Brisbane 1 419
13 Sydney 1 1253
17 Auckland 1 107
18 Tauranga 1 1351
16 Brisbane 1 3642

6.5.1 Impact of port time windows

Firstly, we examine the effect of port time windows on the total cost and the optimal

schedule. We consider the example of the port of Singapore, which is visited five

times a week on all the ship routes in the network. Both the operator of the port of

Singapore and the liner shipping company that operates the network are interested
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Table 6.4: Available time at each port
Port ID Port Berth Sun Mon Tue Wed Thu Fri Sat

1 Singapore

1 free free free free
2 free free
3 free free free free free free free
4 free

2 Karachi
1 free free free
2 free free free free

3 Nhava Sheva 1 free free free free

4 Colombo
1 free free free free
2 free free free free

5 Shanghai
1 free
2 free free free free

6 Ningbo
1 free free
2 free free free free free free free

7 Hong Kong
1 free
2 free free free

8 Shekou
1 free free free free
2 free free free free
3 free free free free

9 Jebal Ali 1 free free free free

10 Dammam
1 free
2 free free free free

11 Port Klang
1 free free
2 free free free free free free free
3 free

12 Fremantle
1 free free free
2 free free free free
3 free free free free

13 Sydney
1 free free free free
2 free free free free

14 Melbourne
1 free
2 free free free free

15 Adelaide 1 free free

16 Brisbane
1 free free free free free free free
2 free
3 free free free

17 Auckland
1 free free free free
2 free free free free

18 Tauranga
1 free free free free
2 free free free free

in looking at the result if more available berth time is provided at Singapore. We

hence examine 7 berth availability cases of Singapore, as shown in Table 6.5. The
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four berths at Singapore have more and more available days from case 1 to case 7.

Table 6.5: Different cases of available time at Singapore
Case Berth Sun Mon Tue Wed Thu Fri Sat

1

1 free free
2 free free free
3 free free
4 free

2

1 free free free
2 free free free
3 free free
4 free

3

1 free free free
2 free free free free
3 free free
4 free

4

1 free free free
2 free free free free free
3 free free
4 free

5

1 free free free
2 free free free free free
3 free free free free
4 free

6

1 free free free
2 free free free free free
3 free free free free
4 free free

7

1 free free free free
2 free free free free free
3 free free free free
4 free free

The results of the 7 berth availability cases are shown in Fig. 6.2. It can be seen

that more available days at Singapore leads to a lower total cost: from case 1 to

case 7, the total cost is reduced by 1,367,497 USD/week due to the increase of the

number of available days at berth Table 6.6. Fig. 6.2 also demonstrates that the

number of available days at a port may affect the optimal number of ships deployed.

In particular, when there are not many available days for berthing, more ships have

to be deployed to satisfy the stringent port time window constraints.
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Figure 6.2: Impact of port time windows

Table 6.6: Impact of port time windows on each type of cost
Case Ship cost Bunker cost Inventory cost

1 3648183 994469 8371200
2 3488562 1167070 7178400
3 3488562 1167070 7178400
4 3393733 1202230 7111200
5 3393733 1225422 7027200
6 3393733 1225422 7027200
7 3393733 1225422 7027200

6.5.2 Consequence of port efficiency

It is important for port operators to improve the container handling efficiency, i.e.,

reducing tport
i . To investigate the effect of port handling efficiency, we compare the

default parameter settings with the situation of reducing the port time at Singapore

on all ship routes to be one day. We find that the optimal number of ships and the

total cost increase with the time spent at Singapore, as shown in Fig. 6.3 and Fig. 6.4,

in all the 7 cases of available days at Singapore. These results demonstrate that it

is of significant importance for port operators to improve the container handling
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efficiency.

Figure 6.3: Impact of port time at Singapore on ship route 1 on the number of ships
deployed

Figure 6.4: Impact of port time at Singapore on ship route 1 on the total cost
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6.5.3 Result of bunker prices

In this section, we study the impact of the bunker price on the total cost and the

number of ships deployed in the liner shipping network. We increase the bunker

price from 300, 400, 500, 600, 700, to 800 and the other parameters are the same as

Table 6.2, Table 6.3 and Table 6.4. The results are shown in Fig. 6.5 . We observe

that a higher bunker price always leads to a higher total cost for liner shipping

companies and there is a rise in the number of ships used when the bunker price

becomes higher. This is because when the bunker price is higher, the sailing speed

is reduced by deploying more ships to make the bunker consumption lower. Overall,

the total cost increases concavely with the increase of bunker price.

Figure 6.5: Result of bunker prices on the total cost and the number of ships deployed

6.5.4 Effect of inventory cost

Finally, the unit inventory cost β may affect the ship route schedule and then the

total cost. We change β from 1, 1.2 through to 2 and the results of 6 experiments are

shown in Fig. 6.6. The number of ships may not change when the unit inventory cost

rises. The total cost increases almost linearly (not strictly linearly) when the unit

inventory cost rises. This indicates that as a result of increase in the unit inventory

cost, the total cost of a liner shipping company is higher. This shows that when the

cargos in the containers are more valuable, ships should sail at a higher speed.
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Figure 6.6: Effect of unit inventory cost on the total cost and the number of ships

6.6 Conclusions

This chapter has studied the practical liner shipping network schedule design prob-

lem with port time windows while considering the inventory cost. This is a significant

tactical planning decision problem because it considers the availability of ports when

planning liner shipping services. As a result, the designed schedule can be applied

in practice without or with only minimum revisions. This problem is formulated as

a mixed-integer nonlinear non-convex optimization model. In view of the problem

structure, we reformulated the problem as an integer linear optimization model and

used an iterative optimization approach.

The solution method was applied to a network, consisting of 18 ports, operated by

APL. The results demonstrate that the port time windows, port handling efficiency,

bunker price, and inventory cost all affect the total cost, the optimal number of

ships to deploy, and the optimal schedule. Higher availability at ports, shorter port

time, lower bunker price, and lower the inventory cost result in a lower total cost

and a smaller number of ships to deploy. Therefore, port operators can apply the

proposed method to quantify whether the benefits to liner shipping companies are
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worthwhile compared to the cost of expanding the ports’ capacity and improving

their efficiency. Liner shipping companies may need to charter in more ships if they

predict that the future bunker price will increase. Moreover, the higher inventory

cost leads to an increase in the total cost without any change of the number of ships

used in the case study.



Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis we have addressed liner shipping service schedule design problems.

The aim is to minimize the sum of ship cost, fuel cost and inventory cost, while

ensuring that ports are available to serve the ships on the planned days. These

problems are realistic decisions frequently encountered by liner planners. The main

contributions of the thesis are: (i) identifying the practical problems and formu-

lating them as mathematical models; (ii) developing efficient solution algorithms

to address the problems by taking advantage of the problem structures; and (iii)

conducting extensive numerical experiments to test the models and algorithms and

obtain managerial insights.

In chapter 3, a single ship route is investigated on which each port is visited

only once a week. The arrival time of containerships at each port of call on the

ship route is determined while considering the available berth time windows at

ports. As a result, the designed schedule can be applied in practice without or with

only minimum revisions. This problem is formulated as a nonlinear non-convex

optimization model. In view of the problem structure, we have developed an efficient

dynamic-programming based holistic solution approach, which includes a space-time
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network model and a bounding technique for the total cost with give number of ships.

The proposed solution method is applied to the NCE service provided by OOCL.

Chapter 4 is generalization of Chapter 3 in that a port on a ship route can

be visited more than once a week. As a result, more realism is captured but the

resulting model is more complex. In view of the problem structure, we developed

a holistic solution approach. In this approach, at first the port time window con-

straints are relaxed to obtain a mixed-integer nonlinear programming model, which

is subsequently transformed to a mixed-integer linear programming model. This

mixed-integer linear model is repeatedly solved by adding the violated port time

window constraints until a feasible solution is obtained. This feasible solution is

proved to be the global optimal solution to the problem. We have conducted exten-

sive numerical experiments based on the AGM ship route of OOCL.

Chapter 5 extends the previous two chapters by considering a liner shipping

network that consists of many ship routes. The inventory cost is assumed to be

0. Hence, the objective minimizes the sum of bunker cost and ship operating cost.

This problem is formulated as a mixed-integer nonlinear non-convex optimization

model. In view of the problem structure, we reformulated the problem as an integer

linear optimization model and proposed an iterative optimization approach. The

proposed solution method was applied to two networks, consisting of six ports and

21 ports, operated by APL.

Chapter 6 also examines a liner shipping network, but the inventory cost is

included in the model. As a consequence, the container transshipment and the

relevant connection time must be incorporated. This problem is formulated as a

mixed-integer nonlinear non-convex optimization model. In view of the problem

structure, we reformulated the problem as an integer linear optimization model and

proposed an iterative optimization approach. The proposed solution method was

applied to a network, consisting of 18 ports, operated by APL.
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7.1.1 Impact of port time windows

We examine the effect of port time windows on the total cost and the optimal

schedule. Both the operator of the port and the liner shipping company that operates

the service are interested in looking at the result if more available berth time is

provided at the port. We examined several cases in which the berths at the port

have more and more available days. The results show that more available days at

the port leads to a lower total cost. Moreover, the results demonstrate that the

number of available days at a port may affect the optimal number of ships deployed.

In particular, when there are not many available days for berthing, more ships have

to be deployed to satisfy the stringent port time window constraints.

7.1.2 Consequence of port efficiency

It is important for port operators to improve the container handling efficiency, i.e.,

reducing the time a ship spends at port. To investigate the effect of port handling

efficiency, we looked at the results when the port time is reduced. We find that the

optimal number of ships and the total cost increase with the time spent at the port.

Hence, it is of significant importance for port operators to improve the container

handling efficiency.

7.1.3 Result of bunker prices

We studied the impact of the bunker price on the total cost and the number of ships

deployed on the liner shipping service. The results show that a higher bunker price

always leads to a higher total cost for liner shipping companies and there is a rise

in the number of ships used when the bunker price becomes higher. This is because

when the bunker price is higher, the sailing speed is reduced by deploying more ships

to make the bunker consumption lower. Overall, the total cost increases concavely

with the increase of bunker price. Therefore, liner shipping companies may need to
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charter in more ships if they predict that the future bunker price will increase.

7.1.4 Effect of inventory cost

The unit inventory cost of cargos may affect the ship route schedule and then the

total cost. The results show that the number of ships may not change when the unit

inventory cost rises and the total cost increases almost linearly (not strictly linearly)

when the unit inventory cost rises. This indicates that as a result of increase in the

unit inventory cost, the total cost for a liner shipping company is higher. This

shows that when the cargos in the containers are more valuable, ships should sail at

a higher speed. Another insight is, liner shipping companies may need to charter in

more ships if they predict that a particular season is coming during which the value

of the cargo is generally low.

7.2 Future Research

Uncertainty is a major challenge in liner shipping Meng et al. (2012b) and Wang et al.

(2013g). In this thesis the port time and sea time are assumed to be deterministic,

and possible uncertainty is incorporated by adding some “buffer” time. Such an

engineering-based approach may not lead to optimal decisions. A worthwhile avenue

is to capture port time and sea time uncertainty endogenously. This problem is

complex because a natural problem that cannot be circumvented is: what should

a ship do if it is delayed? In reality, the ship may speed up (Qi and Song, 2012;

Wang and Meng, 2012b,c), may skip ports of call (Brouer et al., 2013), may swap

ports of call (Brouer et al., 2013) and may leave a port early without loading all

containers. The handling of delay itself is a challenging topic, even when the planned

schedule is given. To deal with uncertainty, we could develop two-stage stochastic

programs with recourse. In the first stage, the schedules are designed; and in the

second stage, the additional fuel cost in view of uncertainty should be calculated.
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To solve such a two-stage stochastic program, we can employ the sample average

approximation method. The challenge is that the scale (number of decision variables

and constraints) may be too large. Hence, some tailored heuristic algorithms should

be developed.

A second worthwhile research direction is to plan the network and design the

schedule in a holistic manner. This thesis has assumed that the port rotations

are designed and the type of ships to deploy on each ship route is also given. In

other words, it is assumed that planners first design the port rotations and ship

deployment, and then determine the speeds and schedules. From the optimization

point of view, a single model that optimizes all of the decisions could lead to better

solutions in terms of the total costs. To address this problem, new formulations and

solution techniques have to be proposed.
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