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A decline in Arctic Ocean mercury suggested by differences in decadal
trends of atmospheric mercury between the Arctic and northern
midlatitudes

Abstract
Atmospheric mercury (Hg) in the Arctic shows much weaker or insignificant annual declines relative to
northern midlatitudes over the past decade (2000-2009) but with strong seasonality in trends. We use a global
ocean-atmosphere model of Hg (GEOS-Chem) to simulate these observed trends and determine the driving
environmental variables. The atmospheric decline at northern midlatitudes can largely be explained by
decreasing North Atlantic oceanic evasion. The midlatitude atmospheric signal propagates to the Arctic but is
countered by rapid Arctic warming and declining sea ice, which suppresses deposition and promotes oceanic
evasion over the Arctic Ocean. The resulting simulation implies a decline of Hg in the Arctic surface ocean
that we estimate to be −0.67% yr−1 over the study period. Rapid Arctic warming and declining sea ice are
projected for future decades and would drive a sustained decline in Arctic Ocean Hg, potentially alleviating
the methylmercury exposure risk for northern populations.
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Abstract Atmospheric mercury (Hg) in the Arctic shows much weaker or insignificant annual declines
relative to northern midlatitudes over the past decade (2000–2009) but with strong seasonality in trends.
We use a global ocean-atmosphere model of Hg (GEOS-Chem) to simulate these observed trends and
determine the driving environmental variables. The atmospheric decline at northern midlatitudes can largely
be explained by decreasing North Atlantic oceanic evasion. The midlatitude atmospheric signal propagates
to the Arctic but is countered by rapid Arctic warming and declining sea ice, which suppresses deposition and
promotes oceanic evasion over the Arctic Ocean. The resulting simulation implies a decline of Hg in the Arctic
surface ocean that we estimate to be �0.67% yr�1 over the study period. Rapid Arctic warming and
declining sea ice are projected for future decades and would drive a sustained decline in Arctic Ocean Hg,
potentially alleviating the methylmercury exposure risk for northern populations.

1. Introduction

Anthropogenic releases of mercury (Hg) to the environment from coal combustion, mining, and use of Hg in
commercial products and manufacturing processes have increased the global Hg loading in the surface
ocean by an order of magnitude over natural levels [Amos et al., 2013, 2014; Horowitz et al., 2014].
Transport of Hg on a global scale takes place in the atmosphere via emission of elemental Hg0, which
has an atmospheric lifetime on the order of 0.5 years against oxidation to divalent HgII and subsequent
deposition [Lindberg et al., 2007; Corbitt et al., 2011]. After deposition to the ocean, Hg can be methylated
to toxic methylmercury which bioaccumulates and biomagnifies in marine food webs [Mergler et al., 2007].
Hg pollution is of particular concern in the Arctic where populations rely heavily on marine-based diets
[Arctic Monitoring and Assessment Programme (AMAP), 2011]. Here we examine trends in Arctic atmospheric
Hg over the past decade (2000–2009) to better understand the factors controlling the sources of Hg in this
part of the world.

Significant declines of atmospheric Hg have been observed at northern midlatitude regions over the past
decade, including a decline of �2.5% yr�1 over the North Atlantic during 1990–2009 [Soerensen et al.,
2012]; �1.6 to �2.0% yr�1 at Mace Head, Ireland, during 1996–2009 [Ebinghaus et al., 2011]; and an average
decline of �2.0% yr�1 at four eastern Canadian sites during 2000–2009 [Cole et al., 2013]. The decreasing
North Atlantic oceanic evasion was speculated to compensate for the strongly increasing [Streets et al.,
2011] or relatively constant [Wilson et al., 2010] anthropogenic emissions and subsequently explain these
observed declining trends [Soerensen et al., 2012]. Arctic atmospheric Hg shows a weaker decrease, and
trends are more seasonally variable than at northern midlatitudes. For instance, weak annual declines
(�0.6% yr�1 during 1995–2007; �0.9% yr�1 during 2000–2009) with significant increases in May and July
were observed at Alert, Canada [Cole and Steffen, 2010; Cole et al., 2013]. Atmospheric Hg at Zeppelin,
Svalbard Island, was reported to have no overall annual trend but significantly increased in May, August,
September, and October during 2000–2009 [Berg et al., 2013].
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The weaker and more seasonally vari-
able trends suggest that Arctic atmo-
spheric Hg is influenced not only by
long-range transport from northern
midlatitudes but also by its fast chan-
ging climate in recent decades [Cole
et al., 2013]. Surface air temperature in
the Arctic has increased at a rate nearly
2 times faster than the global average
[Bekryaev et al., 2010], which could
decrease the frequency and intensity
of atmospheric mercury depletion
events (AMDEs) in springtime and the
subsequent deposition to the ocean
[Pöhler et al., 2010]. Sea ice extent
over the Arctic Ocean has decreased
by approximately 5–10% per decade
[Parkinson and Cavalieri, 2008]. This
increases the evasion of Hg0 from the
surface ocean, which is supersaturated
relative to the atmosphere [Andersson
et al., 2008]. The increasingmobilization
of Hg from thawing permafrost in the

pan-Arctic regions [Rydberg et al., 2010] along with the increasing freshwater discharge [Shiklomanov and
Lammers, 2009] increases riverine Hg into the ocean [Fisher et al., 2012].

Hypotheses have been proposed to explain the Arctic atmospheric Hg trends and interannual variability [Cole
et al., 2013; Fisher et al., 2013], but how andwhat environmental variables drive the Hg trends and bring about
the differences between the Arctic and northern midlatitudes are still not understood. Here we use a global
ocean-atmosphere model of Hg (Goddard Earth Observing System Chemistry (GEOS-Chem)) to simulate the
observed trends and determine the driving environmental variables.

2. Data and Model
2.1. Observational Sites

We use six northern midlatitude terrestrial sites and two Arctic sites (Alert and Zeppelin) with available
observations during the last decade (2000–2009) from Canadian and European atmospheric mercury
measurement networks (Canadian Atmospheric Mercury Measurement Network (CAMNet), 2014, http://www.
ec.gc.ca/natchem/; European Monitoring and Evaluation Programme (EMEP), 2014, http://www.nilu.no/pro-
jects/ccc/) for trend analysis (Figure 1). Although the time series at Alert is longer (1995–2009), we use the data
during 2000–2009 to keep consistency among sites. Taking the study period into account, we have limitation on
location of Arctic sites.

Total gaseous mercury (TGM) (defined as the sum of Hg0 and gaseous phase HgII) or Hg0 is measured at these
sites. However, they are not distinguished here because Hg0 makes up approximately 95–99% of TGM
in remote air [Gustin and Jaffe, 2010]. Daily values are used for calculation of observed monthly trends with
nonparametric Mann-Kendall test and Sen’s nonparametric estimator of slope [Gilbert, 1987]. Monthly
values generated from the model are used to calculate simulated monthly trends with least squares linear
regression. The frequencies of AMDEs over the Arctic sites are calculated as the fraction of hours with TGM
concentrations below 1.0 ngm�3 [Cobbett et al., 2007].

2.2. Model Description

We use the GEOS-Chem Hgmodel v9-01-02 (http://geos-chem.org) to simulate the atmospheric Hg trends in
the Arctic and northern midlatitudes over the period 2000–2009. The GEOS-Chem Hg model includes a 3-D
atmosphere model coupled to a 2-D surface slab ocean and a 2-D soil reservoir [Holmes et al., 2010; Soerensen

Figure 1. Mean total gaseous mercury (TGM) concentrations in 2000–2009
observed at long-term measurement sites (circles) (Arctic sites in blue
and others in black) and simulated by the GEOS-Chem model in surface
air (background).

Geophysical Research Letters 10.1002/2015GL064051
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et al., 2010]. The model has 4° × 5° horizontal resolution and 47 vertical levels from the surface to 0.01 hPa.
The model is driven by NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA)
assimilated meteorological data [Rienecker et al., 2011]. The model tracks two Hg species in the atmosphere,
Hg0 and HgII, with oxidation of Hg0 by Br atoms and photoreduction of HgII in cloud droplets [Holmes et al.,
2010]. High Br atom concentrations cause fast oxidation of Hg0 to HgII and subsequent loss by deposition
(i.e., AMDEs) in polar springtime [Fisher et al., 2012].

The 2-D oceanmixed layer receives atmospheric HgII deposition and interacts with the atmosphere by air-sea
exchange of Hg0. There is also exchange with the subsurface ocean through particle settling and vertical
transport [Soerensen et al., 2010]. We specify the North Atlantic subsurface seawater Hg concentrations by
yearly decreasing values from Soerensen et al. [2012] with imposed seasonal variability [Mason et al., 2001;
Laurier et al., 2004]. Fixed concentrations are specified for other ocean basins [Soerensen et al., 2010].
The model includes an ice/snow module as described by Fisher et al. [2012] and considers the interannual
variability of riverine Hg [Fisher et al., 2013].

The model is driven by Arctic Monitoring and Assessment Programme/United Nations Environment
Programme anthropogenic emission inventories for the years 2000, 2005, and 2010 with linear interpolation
for individual years. Global emissions slightly increased over the past decade (1819, 1921, and 1960Mg for
2000, 2005, and 2010, respectively), with increase in Asia and decrease in North America and Europe
[Wilson et al., 2010; AMAP/United Nations Environment Programme, 2013].

2.3. Sensitivity Simulations

We determine the driving factors for the Arctic atmospheric Hg trends by evaluating a range of variables,
including surface air temperature, sea surface temperature, sea ice fraction, sea ice lead occurrence, planetary
boundary layer (PBL) depth, net shortwave radiation, surface wind speed, freshwater discharge, and net
primary productivity (Table 1). For each variable, we run a sensitivity simulation in which the decadal trend
of this variable is removed by repeating the data in the year 2000 for the entire simulation (2000–2009) over
the Arctic region (68°N–90°N). We calculate the contribution of each variable by comparing with a base
simulation without the trend removal.

3. Results and Discussion
3.1. Differences in Decadal Trends Between the Arctic and Northern Midlatitudes

Differences in atmospheric Hg trends between the Arctic and northern midlatitudes are illustrated in Figure 2.
The observedmonthly trends are consistently negative at midlatitude sites (six-site mean:�0.030ngm�3 yr�1),

Table 1. Selected Climatological Variables and Their Decadal Trends Over the Period 2000–2009a

Variablesb Unit

Decadal Trends of Variables (% yr�1)

November–March April–May June–July August–October

Surface air temperature K +0.06c +0.08 +0.02 +0.06
Sea surface temperature K +0.24 +0.10 �0.02 +0.06
Sea ice fraction — +0.06 0 �0.08 �2.49
Sea ice lead occurrence h +0.85 +0.84 +0.84 �0.66
Planetary boundary layer (PBL) depth m �0.76 �1.29 �0.92 +0.30
Net shortwave radiation Wm�2 +0.14 +0.49 �0.46 +0.12
Surface wind speed m s�1 �0.37 �0i26 �0.72 +0.38
Freshwater discharge m3 s�1 — �1.78 +0.27 +2.23
Net primary productivity (NPP) Tg C a�1 +2.18d

aTrends are calculated based on the average data over the Arctic Ocean.
bVariables which are chosen for sensitivity simulations are derived from Fisher et al. [2013], andmore details are shown

in that study. Sea ice lead occurrence is used as proxy for sea ice threshold occurrence from Fisher et al. [2013].
Climatological variables are from the MERRA assimilated data [Rienecker et al., 2011]. Freshwater discharge and net
primary productivity are from the Arctic-Rapid Integrated Monitoring System (2014, http://rims.unh.edu/) and the
NPP-sea ice extent relationship in Arrigo and van Dijken [2011], respectively.

c“+” indicates increasing trends and “�” indicates declining trends. Significant trends are indicated in normal fonts
(p< 0.1), while insignificant trends are indicated in italics.

dOnly annual data are available for NPP.
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and the seasonal variability is small
(standard deviation: 0.006ngm�3 yr�1).
Themodel predicts themonthly variabil-
ity well (R2 =0.79; p< 0.05). Similar to
Soerensen et al. [2012], themodel simula-
tion suggests that the declining trends
at northern midlatitudes can be largely
explained by the decreasing evasion
that is caused by the declining subsur-
face seawater Hg concentrations in the
North Atlantic. The decreasing anthro-
pogenic emissions in North America
and Europe may not be the cause as it
is insufficient to compensate for the rise
of emissions in Asia. The trends at midla-
titude sites show a late winter maximum
and a summer minimum in both obser-
vations and the model, mainly caused
by the faster decreasing evasion rates
from the North Atlantic in wintertime,
when the surface ocean is more influ-
enced by the subsurface ocean due
to elevated entrainment and Ekman
pumping [Soerensen et al., 2010].

The observed annual trends at Alert
and Zeppelin are �0.007 ± 0.019 and
0.003 ± 0.012 ngm�3 yr�1, respectively,
which are not significantly different
from zero (i.e., no annual trends) but
significantly smaller than at midlatitude
sites (p< 0.05). Significant increases are
observed in May and July at Alert and
May, August, September, and October
at Zeppelin, consistent with Cole et al.
[2013], which suggests more variable

monthly trends. The model captures the magnitudes of the observed trends as well as most of their seasonal
variability at these sites, especially the increasing trends in spring and fall (R2 = 0.52; p< 0.05).

The model fails to reproduce the significant increasing trends in July at Alert and October at Zeppelin due to
some existent model bias of Arctic cryospheric processes. Themobilization of Hgwhile thawing permafrost in
some watersheds [Rydberg et al., 2010] that contributes to riverine Hg in summer still remains unknown,
including its magnitude and historical trends. Preliminary data are used to estimate the magnitude of
snow/ice Hg reservoir (see section 3.2) but with large uncertainties [St. Louis et al., 2007; Beattie et al.,
2014]. These uncertainties would contribute to the discrepancies in summer and fall.

Figure 3 maps the spatial distribution of the simulated trends of TGM north of 30°N for different seasons. The
12months are grouped into four seasons based on the feature of seasonal variability in trends at the Arctic sites.
The simulated increase in Asia reflects increasing regional anthropogenic emissions. The decrease over the North
Atlantic is driven by the decreasing oceanic evasion. The simulation shows an obvious difference in trends
between the Arctic and northern midlatitudes, particularly in spring and fall, with positive trends along the coast
and center of the Arctic Ocean in April–May and August–October, respectively, consistent with observations.

3.2. Climatological Variables Driving the Unique Trends in the Arctic

Figure 4 shows the contributions from different environmental variables to the atmospheric Hg trends at the
two Arctic sites. The atmospheric Hg decline signal at northern midlatitudes propagates to the Arctic.

Figure 2. Monthly trends in total gaseous mercury (TGM) concentrations at
(a) northern midlatitude sites (six-site mean) and (b and c) two Arctic sites
over the period 2000–2009. The simulated values are sampled at the grid box
containing the location of the site (accounting for latitude, longitude, and
elevation). Standard deviations of the trends are shown as vertical bars.

Geophysical Research Letters 10.1002/2015GL064051
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Figure 3. Trends in total gaseous mercury (TGM) north of 30°N for different seasons over the period 2000–2009. Contours
show GEOS-Chem simulated values and circles show observations.

Figure 4. Trends of atmospheric Hg concentrations contributed by different environmental variables at the Arctic sites. The
dashed line boxes represent contributions from other insignificant variables, changes of meteorology outside the Arctic,
and interactions among variables.

Geophysical Research Letters 10.1002/2015GL064051
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Decreasing oceanic evasion from lower latitudes causes consistently declining trends (average
�0.017 ngm�3 yr�1), especially in November–March. Changes to global anthropogenic emissions on the
other hand show consistently positive contributions (average +0.003 ngm�3 yr�1). The different Arctic Hg
trends are largely caused by climatological variables including surface air temperature, sea ice fraction, sea
ice lead occurrence, PBL depth, and surface wind speed. The increasing trends observed in April–May
and August–October are mainly associated with increasing surface air temperature and declining sea ice
fraction, respectively. The trends would be negative throughout the year, which is consistent with northern
midlatitudes, if the contributions from climatological variables were absent.

For April–May, increasing surface air temperature suppresses Hg deposition through decreasing the frequency of
AMDEs and subsequently promotes the increase of atmospheric Hg, while increasing sea ice lead occurrence
plays the opposite role. These two variables largely determine the frequency of AMDEs. We simulate the
frequency of AMDEs of 34.9% and 22.0% at Alert and Zeppelin, respectively, consistent with observations
(35.6% and 14.9%, respectively). The increasing surface air temperature (+0.08%yr�1) results in the decreasing
frequency of AMDEs (�3.15%yr�1), which causes a�1.36%yr�1 (�0.72Mgyr�1) decrease of total Hg deposition
over the Arctic Ocean and a subsequent +0.43% yr�1 increase of surface air TGM concentrations (Table 2).
Conversely, the increasing sea ice lead occurrence (+0.84% yr�1) increases the frequency of AMDEs
(+2.24% yr�1), which causes a +0.61%yr�1 (+0.32Mgyr�1) increase of total Hg deposition and a subsequent
�0.19%yr�1 decrease of surface air TGM concentrations.

For August–October, declining sea ice fraction decreases the barrier for air-sea exchange [Hirdman et al., 2009]
and promotes oceanic evasion, which subsequently increases atmospheric Hg. Fisher et al. [2013] suggested this
effect in June–July during 1979–2008. Due to the weak trend of sea ice fraction in these 2months over the
period 2000–2009 (Table 1), the contribution from sea ice fraction to oceanic evasion and atmospheric Hg is
not found for June–July in this study. Instead, we find this effect in August–October, where the declining sea
ice fraction (�2.49%yr�1) results in increasing oceanic evasion (+1.80%yr�1; +0.65Mgyr�1) and subsequently
increasing surface air TGM concentrations (+0.44%yr�1; not significant) (Table 2). In addition, the melting of
multiyear sea ice and snow releases Hg to ocean water that is readily reducible and available for evasion
[Fisher et al., 2012]. Based on the observed Hg concentrations in multiyear sea ice (average 7.4 pM [Beattie
et al., 2014]) and Hg loads on snow over sea ice (5.18mgha�1 [St. Louis et al., 2007]), we estimate approximately
50Mg of Hg in this reservoir. The accelerated shrinking of this reservoir (�0.60%yr�1;�0.3Mgyr�1) contributes
little to atmospheric Hg trends due to its small contribution to trends in oceanic evasion (+0.21%yr�1;
+0.08Mgyr�1; not significant) (Table 2).

The signs of contributions from PBL depth and surface wind speed vary in different months (Figure 4),
resulting from the variation of decadal trends of these variables in different seasons (Table 1). Fisher et al.
[2013] found increasing wind speed in spring and early summer resulted in enhanced atmospheric turbulence
over large sea ice coverage, which promoted deposition and caused a decline of surface air Hg concentrations.
However, we find that this effect is offset by the increasing oceanic evasion in fall when sea ice coverage is
small. The increasing wind speed results in larger piston velocity and ultimately increases surface air Hg
concentrations in fall.

Table 2. Influence of Climatological Variables With Significant Contributions on Hg Cycle in Spring and Fall Over the Arctic Oceana

Seasons
Influencing
Variables

Decadal Trends of
Variables (% yr�1)

Decadal Trends of Processes Related to Hg Cycle (% yr�1)

Frequency
of AMDEs

Total Hg
Deposition

Oceanic
Evasion

Surface air TGM
Concentrations

Surface ocean
Hg Concentrations

April–May Surface air temperature +0.08 �3.15 �1.36 +0.43 �0.08
April–May Sea ice lead occurrence +0.84 +2.24 +0.61 �0.19 +0.02b

August–October Sea ice fraction (barrier)c �2.49 +1.80 +0.44 �0.81
Sea ice fraction (reservoir) �0.60d +0.21 +0.04 +0.20

Total: �0.67

aTrends are calculated based on the average data over the Arctic Ocean.
bSignificant trends are indicated in normal fonts (p< 0.1), while insignificant trends are indicated in italics.
cTwo roles for sea ice influence on Hg cycle in August–October, including as a barrier for air-sea exchange and as a reservoir of Hg.
dThe accelerated shrinking amount is simulated by the model which is based on the declining sea ice fraction and reservoir amount of 50Mg we estimated.
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4. Implications and Summary

The weaker and more variable trends of atmospheric Hg in the Arctic relative to northern midlatitudes reflect
a combination of decreasing Hg deposition (�0.40Mg yr�1) in spring and increasing oceanic evasion
(+0.73Mg yr�1) in fall driven by climatological variables (specifically surface air temperature and sea ice
fraction). This implies a decline of Hg in the Arctic surface ocean that we estimate to be �0.67% yr�1 over
the period 2000–2009 (Table 2).

Future forcing scenarios [Intergovernmental Panel on Climate Change, 2007, 2013] suggest that some climate
warming signals, such as high surface air temperatures, low sea ice extent, and strong warming in spring will
intensify in future decades. This would drive a sustained increase in Arctic atmospheric Hg and decline in
Arctic Ocean Hg, as the ocean is expected to remain supersaturated relative to the atmosphere in future
decades [Andersson et al., 2008]. This “turbulence” caused by climatological variables will result in synergistic
effects with Hg policies on the Arctic Hg pollution. Policies on climate warming controls may slow down the
decline in surface ocean Hg, which calls for stricter policies on Hg emission controls. Bilateral cooperation will
be strengthened between Hg and climate change groups to address the pollution.

Changing climatological variables could affect processes such as methylation, demethylation, and
bioaccumulation [Point et al., 2011; Braune et al., 2015]. The decline in surface ocean Hg could not necessarily
imply a reduction of Hg in Arctic biota, as suggested by the increasing trends found in Arctic marine mammals
from previous studies [Riget et al., 2011]. More detailed studies with Hg methylation and its trophic transfer in
the Arctic are thus needed. The Arctic Hg budget is still under debate in literatures [Dastoor and Durnford, 2013],
as summarized by AMAP [2011], which suggested differences in simulated flux from different models. However,
the effects of increasing air temperature and decreasing sea ice extent on the Arctic Hg cycle are consistent.
Alternative hypothesis have also been proposed [Slemr et al., 2011; Horowitz et al., 2014] for the decline of
atmospheric Hg in northern midlatitudes. Although the exact reason driving this trend is beyond the scope
of this study, their effects on the Arctic Hg trends are similar.

Overall, this study suggests that climatological variables drive the unique atmospheric Hg trends in the Arctic
relative to northern midlatitudes. The driving processes suggest that Arctic Ocean Hg is declining and is
expected to continue to decline due to rapid Arctic warming and declining sea ice in future decades.
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