
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part A

Faculty of Engineering and Information
Sciences

1-1-2015

On transformation of query scheduling strategies in distributed and On transformation of query scheduling strategies in distributed and

heterogeneous database systems heterogeneous database systems

Janusz R. Getta
University of Wollongong, jrg@uow.edu.au

- Handoko
University of Wollongong, h629@uowmail.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Getta, Janusz R. and Handoko, -, "On transformation of query scheduling strategies in distributed and
heterogeneous database systems" (2015). Faculty of Engineering and Information Sciences - Papers: Part
A. 4177.
https://ro.uow.edu.au/eispapers/4177

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37024425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F4177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F4177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F4177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/4177?utm_source=ro.uow.edu.au%2Feispapers%2F4177&utm_medium=PDF&utm_campaign=PDFCoverPages

On transformation of query scheduling strategies in distributed and On transformation of query scheduling strategies in distributed and
heterogeneous database systems heterogeneous database systems

Abstract Abstract
This work considers a problem of optimal query processing in heterogeneous and distributed database
systems. A global query sub- mitted at a local site is decomposed into a number of queries processed at
the remote sites. The partial results returned by the queries are in- tegrated at a local site. The paper
addresses a problem of an optimal scheduling of queries that minimizes time spend on data integration
of the partial results into the final answer. A global data model defined in this work provides a unified view
of the heterogeneous data structures located at the remote sites and a system of operations is defined to
ex- press the complex data integration procedures. This work shows that the transformations of an
entirely simultaneous query processing strate- gies into a hybrid (simultaneous/sequential) strategy may
in some cases lead to significantly faster data integration. We show how to detect such cases, what
conditions must be satisfied to transform the schedules, and how to transform the schedules into the
more efficient ones.

Keywords Keywords
query, transformation, heterogeneous, distributed, systems, strategies, database, scheduling

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Getta, J. R. & Handoko, (2015). On transformation of query scheduling strategies in distributed and
heterogeneous database systems. Lecture Notes in Computer Science, 9011 139-148.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/4177

https://ro.uow.edu.au/eispapers/4177

On Transformation of Query Scheduling

Strategies in Distributed and Heterogeneous

Database Systems

Janusz R. Getta1 and Handoko1

School of Computer Science and Software Engineering,
University of Wollongong, Australia

{jrg,h629}@uow.edu.au

Abstract. This work considers a problem of optimal query processing
in heterogeneous and distributed database systems. A global query sub-
mitted at a local site is decomposed into a number of queries processed
at the remote sites. The partial results returned by the queries are in-
tegrated at a local site. The paper addresses a problem of an optimal
scheduling of queries that minimizes time spend on data integration of
the partial results into the final answer. A global data model defined in
this work provides a unified view of the heterogeneous data structures
located at the remote sites and a system of operations is defined to ex-
press the complex data integration procedures. This work shows that
the transformations of an entirely simultaneous query processing strate-
gies into a hybrid (simultaneous/sequential) strategy may in some cases
lead to significantly faster data integration. We show how to detect such
cases, what conditions must be satisfied to transform the schedules, and
how to transform the schedules into the more efficient ones.

Keywords: distributed heterogenous database systems, data integration, opti-
mization of query processing

1 Introduction

Efficient data processing in the distributed and heterogeneous database systems
is a critical factor for the successful implementations of global information sys-
tems. Performance of distributed applications strongly depends on the efficient
algorithms that organize data processing in the distributed and heterogenous
database systems. For instance, in the MapReduce programming model a user
application that accesses data distributed over a number of remote sites simul-
taneously submits all of its sub-tasks to the remotes sites and later on integrates
the partial results at a central site [4]. The simultaneous processing of sub-tasks
makes MapReduce an efficient strategy when the amounts of processing and the
amounts of data transmitted from the remote sites are more or less the same
for all its sub-tasks. Unfortunately, a simultaneous processing strategy does not

2 J. R. Getta, Handoko

(a) (b)time time
send process send processreturn return

q3

q2

q’1

q3

q2

q1

Fig. 1. Simultaneous (a) versus sequential (b) processing of tasks q1 and q2

provide the best performance when one of the sub-tasks returns significantly
larger amounts of data and/or when transmission speed is significantly lower
than for the other sub-tasks. For example, consider the time diagrams in Fig. 1
when a global query has been decomposed into the queries q1, q2, and q3 simul-
taneously processed at the remote sites. In the first case (a) data transmission of
the results of q1 dominates the total processing time. However, if some of data
obtained from the processing of q2 can be used to modify q1 into q′1 such that
more processing can be done at a remote site then transmission of the results of
q′1 may take less time despite that processing of q′1 follows processing of q2, see
case (b).

A partial order in which the individual queries are processed at the remote
sites is called as a query scheduling strategy. In an entirely sequential strategy

processing of a query at a remote site precedes processing of another query and
the result of the first query can be used to modify the succeeding queries. In
an entirely simultaneous strategy all queries are simultaneously submitted and
processed at the remote sites. The efficiency of both strategies depends on the
computational complexities of the individual tasks, computational power at a
central and at the remote sites, amount of data transmitted over the networks,
and data transmission speed of the networks used. Intuitively, a simultaneous
strategy seems to be more efficient when the majority of query processing can
be done at the remote sites and the amounts of data transmitted to a central
site are small. A sequential strategy is more efficient when one or more tasks
transmit the large amounts of data to a central site and it is possible to use
the results of the other tasks to reduce the amounts of data to be transmitted
later on. As usual the best solution is a hybrid one when some of the tasks are
processed sequentially while the others simultaneously. Additional factors that
significantly complicate data processing in distributed systems are a high level of
autonomy and heterogeneity of the remote sites. The administrators of remote
sites are usually very strict about performance and security of the managed
systems and because of that they restrict external access to a read only mode
without the rights to create and use the local data containers. It simply means
that a central site cannot send a container with data to a remote site such that
the container can be used for data processing there. Heterogeneity of remote
sites means that organization of data, software and hardware used each at each
site are different, which further limits any possible cooperation.

In this work we consider an environment of a heterogeneous and distributed
database system where a user application issued at a central site accesses data

On Transformation of Query Scheduling Strategies ... 3

at the remote sites. Then, it brings the partial results from the remote sites to a
central site to integrate it into the final outcomes. In this work, we do not impose
any restrictions on the compatibility of structures and contents of data containers
at a central and the remote sites and we do not impose any assumptions about
any level of “cooperation” between the sites. The only assumption is that the
remote sites “display” a unified view of their data containers to the external user
applications and are able to process the queries over the unified view. A global
query issued at a central site is transformed into a set of queries q1, . . . , qn such
that that each one of the queries accesses data from only one remote site. An
expression e(q1, . . . , qn) integrates the partial results returned from the remote
sites. Objective of this work is to find the formal backgrounds for the algorithms
that schedule processing of the queries q1, . . . , qn at the remote sites and minimize
the total processing time of e(q1, . . . , qn). In particular, we attempt to answers
the questions when a sequential strategy is possible, when it is more efficient than
a simultaneous strategy, what transformations of the queries must be applied to
find a sequential strategy, what hybrid (simultaneous/sequential) strategies are
possible for a given global query, and how to evaluate hybrid strategies.

The paper is organized in the following way. The next section overviews
the previous works related to data processing in distributed systems. Section
3 present a model of query processing in a distributed system. and section 4
defines a global data model. The transformations of data processing strategies
are presented in section 5 and evaluation of the strategies is explained in section
6. Section 7 concludes the paper.

2 Previous work

Optimization of data processing in distributed systems has its roots in opti-
mization of query processing in multidatabase and federated database systems
[12]. One of the recent solutions to speed up distributed query processing in
distributed systems considers the contents of cache in the remote systems and
prediction of cache contents [11]. Wireless networks and mobile devices triggered
research in mobile data services and in particular in location-dependent queries
that amalgamate the features of both distributed and mobile systems [7]. An
adaptive distributed query processing architecture is introduced at [14] where
fluctuations in selectivity of operations, transmission speeds, and workloads of
remote systems affect an order of distributed query processing.

In [15] the query sampling methods is used to estimated the query pro-
cessing costs at the local systems. Query scheduling strategy in a grid-enabled
distributed database proposed in [3] takes under the consideration so called ”site
reputation” for ranking response time of the remote systems. A new approach
to estimation of workload completion time based on sampling the query interac-
tions has been proposed in [1] and in [2]. Query monitoring can be used to collect
information about expected database load, resource allocation, and expected size
of the results [10].

4 J. R. Getta, Handoko

1q q2 q3
q

q1

2

q3

q1 q2

q3

Fig. 2. The sample partial orders of processing the subqueries q1, q2, q3

The reviews of research on query scheduling and data integration are included
in [8], [16]. The implementations of experimental data integration systems based
on application of ontologies and data sharing are described in [13] and [6].

3 Query processing in distributed systems

We consider a distributed and heterogeneous data base system where the data
containers in the various formats like for example, relational, XML, object-
relational, key-value, etc., are distributed over a number of highly autonomous
remote sites. Each site “publishes” to all other sites a global view of data lo-
cated at a site. A user application originated at a central site accesses data
at the remote sites through a global query like q(s1:di, . . . , sn:dn) where di
is a data container located at a remote site si. A global query is decomposed
into k queries q1, . . . , qk such that each query is processed at only one remote
site and it is transformed into a data integration expression e(q1, . . . , qk). Let
Q = {�,⊥, q1, . . . , qk} be a set where � is a start of processing symbol and ⊥
is an end of processing symbol. We define a partial order P ⊆ Q×Q such that
〈qi, qj〉 ∈ P if a query qi is processed before a query qj . Then, < Q, P > is a
lattice where sup(P) = � and inf(P) = ⊥ that represents a partial order of
processing the queries q1, . . . , qk at the remote sites.

For instance, the lattices given in a Fig. 2 represent an entirely simultaneous
strategy, entirely sequential strategy, and hybrid strategy where the queries q1

and q2 are processed simultaneously before q3.

4 Global data model

A global data model provides a unified view of data stored at the remote sites. It
amalgamates the contradictory requirements of generality with the very precise
specifications of the basic operations.

A data object is defined as a pair 〈id, t〉 where id is a unique object identifier
at a given remote site and t is a description of the object. A description is
defined as a mapping t : S → dom(A) where S is a set of access paths to
the values of attributes, e.g. address.street.house.flat. Let p.a be a path to a
value of an attribute a. Then, a mapping t satisfies a condition t(p.a) ∈ dom(a)
where dom(a) denotes a domain of attribute a. A set of all access paths S in
a description of an object is called as a schema of an object and dom(A) =⋃
a∈A dom(a). A data container d is a set of data objects. A schema of a data

container is a union of all schemas of all objects included in the container.

On Transformation of Query Scheduling Strategies ... 5

A set of operations on data containers includes the unary operations of se-

lection and app extraction, and binary operations of union, composition, semi-

and anti-composition, and substitution.

Let d be a data container. An access term is defined as a triple d.p.a. A
selection condition φ is defined as a well-formed formula of prepositional calcu-
lus built from the access terms, relational operators, Boolean operators (and,
or, not), constants, and brackets. Additionally, all access terms in a selection

condition must start from a name of the same data container.

Let di and dj be the data containers. A unary selection operation σ on an
argument di is defined as σφ(di) = {〈id, t〉 : ∃〈idi, t〉 ∈ di and eval(φ, 〈idi, t〉)}
where a function eval evaluates a selection condition φ against the contents of
a data object 〈idi, t〉 into true or false. Note, that in a result of selection each
object in a result of selection obtains a new identifier.

Let Si be a schema of a data container di and let S ⊆ Si. A unary projection

operation π of a data container di on a schema S is defined as πS(di) = {〈id, t〉:
∃〈idi, ti〉 ∈ di t = ti[S]} where ti[S] means restriction of a description ti to the
access paths in S.

A binary union operation ∪ on the arguments di and dj is defined as di∪dj =
{〈id, t〉 : ∃〈idi, t〉 ∈ di or 〈idi, t〉 ∈ dj}.

A constructor operation θ is defined as θ : di× dj → dij such that θ(〈idi, ti〉,
〈idj , tj〉) = 〈idij , tij〉 where idij is an identifier of a new object and tij = f(ti, tj)
where f is an expression that combines the descriptions ti and tj into a descrip-
tion tij of a new object.

A matching condition ψ is defined as a well-formed formula of prepositional
calculus built from the access terms, relational operators, Boolean operators
(and, or, not), constants, and brackets. Additionally, a matching condition con-
sists only of the comparisons between the access terms that related to the dif-
ferent data containers.

A binary composition operation ⊗ψθ on the arguments di and dj is defined as
di⊗ψθdj = {〈idij , tij〉 : ∃〈idi, ti〉 ∈ di and ∃〈idj , tj〉 ∈ dj eval(ψ, 〈idi, ti〉, 〈idj , tj〉)
and 〈idij , tij〉 = θ(〈idi, ti〉, 〈idj , tj〉)}.

We say that operation di ⊗ψθ dj is semi-reversible if πSi(di ⊗ψθ dj) ⊆ di and
πSj (di ⊗ψθ dj) ⊆ dj . In the rest of this paper we consider only the composition
operations which are semi-reversible on the schemas of its both arguments.

A semi-composition operation ⊕ψ on the arguments di and dj is defined as
di ⊕ψ dj = {〈id, ti〉 : ∃〈idi, ti〉 ∈ di and ∃〈idj , tj〉 ∈ dj eval(ψ, 〈idi, ti〉, 〈idj , tj〉)}.

An anti-composition operation ψ on the arguments di and dj is defined as
diψdj = {〈id, ti〉 : ∃〈idi, ti〉 ∈ di and ∀〈idj , tj〉 ∈ dj not eval(ψ, 〈idi, ti〉, 〈idj , tj〉)}.

Consider a data container dj = {〈id1, t1〉, . . . , 〈idk, tk〉} and a matching con-
dition ψ(di.p1.a1, . . . , di.pm.am, dj .p1.b1, . . . , dj .pn.bn). A substitution operator
is denoted by ψ ← dj and it is defined as
ψ(di.p1.a1, . . . , di.pm.am, dj .p1.b1, . . . , dj .pn.bn) ← dj =
ψ(di.p1.a1, . . . , di.pm.am, t1(p1.b1), . . . , t1(pn.bn)) or . . . or
ψ(di.p1.a1, . . . , di.pm.am, tk(p1.b1), . . . , tk(pn.bn)).

6 J. R. Getta, Handoko

A substitution operator replaces all instances of access terms dj .s1.b1, . . . ,
dj .sn.bn in a matching condition ψ with the values of all attributes taken from
all objects in a data container dj and creates disjunction of all terms after the
replacements. For example if dj = {〈id1, t1〉, 〈id2, t2〉} and t1(s1.name) = James

and t2(s1.name) = Mary then application of substitution operator (di.s1.name =
dj .s1.name)← dj returns a matching formula di.s1.name = James or di.s1.name

= Mary.
The following equations hold for any data containers di, dj and any matching

condition ψ.

di ⊕ψ dj = σψ←dj (di) (1)

di ψ dj = σnot(ψ←dj)(di) (2)

The equations listed above mean that the operations of semi- and anti-composition

can always be replaced with a filter operation on the first argument while a re-

placement operation is applied to the second argument in a matching formula.
If an expression di⊕ψ dj must be computed at a remote site that contains only a
data container di and a data container dj cannot be sent to the remote site then
the computations of an expression with σψ←dj (di) replaces the computations of
anti-composition at a remote site.

5 Transformations

We start from the simple transformations of simultaneous query scheduling
strategies where two queries are simultaneously processed at the remote sites
and their results are integrated with one of the arguments of composition op-
eration. Next, we consider the complex transformations of the strategies where
many queries are processed simultaneously and their results are integrated by
an expression over many composition operations.

5.1 Simple transformations

We consider simple a data integration expression qi ⊗ψθ qj where qi and qj
are the queries to be processed at two different remote sites. If we expect that
transmission of the results of qj will be significantly longer than transmission
of the results of qi then it is worth to change a simultaneous schedule into
sequential where qi is processed first and a part of it denoted by x will be
involved in processing of qj . To find x we rewrite a data integration expression
into qi ⊗ψθ (qj ⊕ψ x) where x is an unknown data container that must be sent
to a remote site where qj supposed to be processed.

We expect that a subexpression (qj ⊕ψ x), when computed at a remote site,
returns the results much smaller than the results of qi. On the other hand, the
results of the data integration expression must not change. Hence, to find x we
solve an equation

qi ⊗ψθ qj = qi ⊗ψθ (qj ⊕ψ x) (3)

On Transformation of Query Scheduling Strategies ... 7

There exists many solutions of an equation (3) above, e.g. x equal to the results
of qj or any superset of the results of qj satisfies the equation. We look for the
smallest solution of the equation because we would like to minimize the amount
of transmission to a remote site. An equation (3) can be transformed into an
equivalent fixpoint equation and its fixpoint solution can be found using Kleene
fix-point theorem [5].

x = x ∪ πsψ (qi ⊗ψθ qj − qi ⊗ψθ (qj ⊕ψ x)) ∪ (qi ⊗ψθ (qj ⊕ψ x)− qi ⊗ψθ qj) (4)

A projection πsψ on a schema sψ of a matching condition ψ is necessary because
a schema of a data container x does not need to include more attributes than it
is used in a matching condition ψ. The solution of an equation (4) is obtained
through the iterations starting from an empty data container x(1) = ∅ and union
of the results from each iteration. The smallest solution of the equation is equal to
xmin = πsψ (qi) which is consistent with our expectations. Then, the right hand
side of equation (3) can be transformed into qi ⊗ψθ (qj ⊕ψ πsψ (qi)) and finally
after application of equation (1) we obtain the final data integration expression
qi⊗ψθ(σψ←πsψ (qi)(qj)). The expression is transformed into the following sequence

of computations: r1 := qi; r2 := σψ←πsψ (r1)(qj); result := r1 ⊗ψθ r2.

If in the computations of data integration expression with semi-composition

qi⊕ψ qj the results of qi are large and the results of qj are small then it is possible
to compute r1 := πsψ (qj) first and then apply an equation (1) to replace the
composition with result := σψ←r1(qi) computed at a remote site. In the opposite
case we obtain r1 := πsψ (qi); r2 := σψ←r1(πsψ (qj)); result := σψ←r2(qi).

If in the computations of anti-composition qi qj the results of qi are large
and the results of qj are small then it is possible to compute r1 := πsψ (qj)
first and then apply an equation (2) to replace the composition with result :=
σnot(ψ←r1)(di) computed at a remote site. In the opposite case we obtain a plan:
r1 := πsψ (qi); r2 := σψ←r1(πsψ (qj)); result := σnot(ψ←r2)(qi).

5.2 Complex transformations

The simple transformations of two-argument data integration expressions de-
scribed in the previous section can be systematically applied to find the complex
transformations of n-argument data integration expressions. Consider a data
integration expression e(q1, . . . , qn) = f(q1, . . . , qk) αψθ g(qk+1, . . . , qn) where
α ∈ {⊗,⊕,}. Let qf = f(q1, . . . , qk), qg = g(qk+1, . . . , qn)

Then, it is possible to determine whether a transformation from a simulta-
neous schedule to a sequential schedule is possible for qf and gg and if it is so,
it is possible to find such transformation through systematic decomposition of
the data integration expression into subexpression and find the transformations
at each level of decomposition.

Without a significant loss of generality we consider an operation αψθ to be a
composition qg ⊗ψθ qf and we transform a simultaneous schedule of processing
qg and qf into a sequential one accordingly to the rules described earlier into
qj := πSψ(qg) and qf := σψ←qj (qf). It means that in a sequential schedule an

8 J. R. Getta, Handoko

entire expression g(qk+1, . . . , qn) must be computed before a modified expression
σψ←qj (f(q1, . . . , qk)).

The further transformations depend on a distributivity of f(q1, . . . , qk) over
an operation of selection and distributivity of g(qk+1, . . . , qn) over an operation
of projection. If it is possible to transform πSψ(g(qk+1, . . . , qn)) into q′g αψ′θ′ q′′g
such that q′g = πSψ (g′(qk+1, . . . , qm)) and q′′g = πSψ (g′′(qm+1, . . . , qn)) then its is
possible to transform again the computations of q′g and q′′g from the simultaneous
into the sequential ones.

In the same way if it is possible to transform σψ←qg (f(q1, . . . , qk)) into
q′fαψ′θ′q

′′

f such that q′f = σψ←qg (f
′(q1, . . . , qi) and q′′f = σψ←qg (f

′′(qi+1, . . . , qk))
then its is possible to transform again the computations of q′g and q′′g from the
simultaneous into the sequential ones.

A process described above is recursively applied to to each subexpression of
data integration expression until the operations of selection and projection are
directly applied to the arguments.

As a simple example consider a data integration expression (q1⊗ψ1θ q2)⊕ψ2
q3

where it is expected that the queries q2 and q3 return much smaller results than
a query q1. A simple transformation can be applied to change the processing of
q1 and q2 from a simultaneous to a sequential one. It leads to a transformation
of q1 into σψ1←πSψ1

(q2)(q1). The second transformation can be obtained from the

processing q3 before q1. An initial transformation σψ2←πSψ2
(q3)(q1⊗ψ1θq2) applies

to a result of composition of q1 and q2. Assuming, that in this case selection
is distributive over composition we obtain the following second transformation
σψ2←πSψ2

(q3)(q1). The outcomes of both transformation can be merged into a

single expression σψ2←πSψ2
(q3) and ψ2←πSψ2

(q2)(q1). It leads to a query scheduling

strategy where q2 and q3 are simultaneously processed before q1.

6 Evaluation of query scheduling strategies

If in the example above distributivity of selection over composition in σψ2←πSψ2
(q3)

(q1 ⊗ψ1θ q2) applies to both arguments of composition then is also possible to
transform q2 to σψ2←πSψ2

(q3)(q2). It means that it is possible to get more than one

data integration plan where q3 is processed before q1 and q3 is processed before
q2. To find an optimal processing plan we need information about the amounts
of data to be transmitted over a network, transmission speed, amounts of time
needed to process the queries at the remote sites and a cost function to calculate
the total costs for each data integration plan represented by a lattice of queries.
The total costs of processing a query qi can be estimated as ti = tsi + tpi + tri
where tsi is time needed to send a query qi to a remote site, tpi is time needed
to process the query there, and tri is time needed to transmit the results to a
central site. Each one of the parameters depend on the information listed above.
When the queries q1, . . . , qn are processed simultaneously then their total pro-
cessing time is equal to max(t1, . . . , tn). If the queries are processed sequentially
and the results of a query qi are used to transform a query qi+1 the the total

On Transformation of Query Scheduling Strategies ... 9

processing time is equal to t1 + t′2 + . . . + t′n where t′i are the processing times
of transformed queries. If a data integration strategy is represented by a lattice
< Q, P > then a cost formula is derived in the following way. Let pi be a path
from � to ⊥ symbol in a lattice and passing through the nodes labeled with
qi1 , . . . qik . Then the costs of processing along a path pi is equal to ti1 + . . .+ tik .
The costs of processing along all paths p1, . . . pn from � to ⊥ symbol in a lattice
is equal to max(tp1 , . . . , tpn). Then, an equality max(a+b, a+c) = a+max(b, c)
can be use to simplify a cost formula. For example, a cost formula derived for a
data integration schedule in Fig. (2, case 3) max(t1+t3, t2+t3) can be simplified
to t3 + max(t1, t2).

7 Summary and conclusions

This work is based on an observation that a significant difference between the
amounts of data transmitted from the remote sites to a central site may have
a negative impact on an overall time of data integration at a central site when
a simultaneous query scheduling strategy is applied. Then, a transformation of
a simultaneous strategy into a sequential or hybrid one speeds up data inte-
gration at a central site. This work shows when the transformations of query
scheduling strategies are possible, how to perform it, when the transformations
are beneficial, and how to evaluate the results.

Another interesting outcome of this work is a technique that embeds data into
the queries through application of substitution operation. Substitution operation
eliminates to some extent a problem of high level of autonomy of the remote
sites that usually stop external users from transmitting data into the site and
processing it there. A substitution operation allows for a safe processing of data
obtained from another remote sites.

A system of operations proposed in this work allows for processing of any data
containers as long as the access paths to the values of data items are provided
and implemented by the owners of data. An interesting property of the system
of operations is that it reduces to a standard relational algebra when the data
containers include only homogeneous tuples or it reduces to XML algebra when
the data containers include only XML documents, etc. For any structure of data
objects included in data containers a system of operations needs the operations
that select the objects that satisfy a given condition, operation that project
the objects on a given sub-schema, union operation, operation that compares
all pairs of objects and constructs new object from each pair, operation that
compares objects from two containers and picks from one container the objects
that match/do not match objects in the other container.

The transformation of query scheduling strategies mainly depend on the al-
gebraic properties of a data integration expression and on the properties of com-
position operation. A composition operation must be semi-reversible such that it
is possible to restore the subsets of the arguments from a result of an operation.
A fixpoint equation (4) which is the basis for finding simple transformations is
solvable when a function on its right hand side is monotonic. The complex trans-

10 J. R. Getta, Handoko

formations are possible when the subexpressions of data integration expression
are distributive over the operations of selection and projection.

References

1. Ahmad, M., Aboulnaga, A., Babu, S., Query interactions in database workloads.In:
Proceedings of the Second International Workshop on Testing Database Systems,
1–6, (2009)

2. Ahmad, M., Duan, S., Aboulnaga, A., Babu, S., Predicting completion times of
batch query workloads using interaction-aware models and simulation. In: Proceed-
ings of the 14th International Conference on Extending Database Technology, 449–
460, (2011)

3. Costa, R.L-C., Furtado, P., Runtime Estimations, Reputation and Elections for
Top Performing Distributed Query Scheduling. In: Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid, 28–35,
(2009)

4. Dean, J., Ghemawat, S., MapReduce: Simplified Data Processing on Large Clusters.
In: Proceedings of the 6th Symposium on Operating Systems Design and Implemen-
tation, (2004)

5. Granas, A., Dugundji, J., Fixed Point Theory. Springer-Verlag (2003)
6. Ives, Z.G., Green, T.J., Karvounarakis, G., Taylor, N.E., Tannen, V., Talukdar, P.P.,

Jacob, M., Pereira F., The ORCHESTRA Collaborative Data Sharing System. In:
SIGMOD Record, (2008)

7. Ilarri, S., Mena, E., Illarramendi, A., Location-dependent query processing: Where
we are and where we are heading. In: ACM Computing Surveys, vol. 42, no. 3, 1–73,
(2010)

8. Lenzerini, M., Data Integration: A Theoretical Perspective. (2002)
9. Liu L., Pu, C., A Dynamic Query Scheduling Framework for Distributed and Evolv-

ing Information Systems. In: Proceedings of the 17th International Conference on
Distributed Computing Systems, (1997)

10. Mishra, C., Koudas, N., The design of a query monitoring system. In: ACM Trans-
actions on Database Systems, vol. 34, no. 1, 1–51, (2009)

11. Nam, B., Shin, M., Andrade H., Sussman, A.,Multiple query scheduling for dis-
tributed semantic caches. In: Journal of Parallel and Distributed Computing, vol.70,
no. 5, 598–611, (2010)

12. Ozcan, F., Nural, S., Koksal, P., Evrendilek, C., Dogac, A.: Dynamic Query Op-
timization in Multidatabases. In: Bulletin of the Technical Committee on Data
Engineering, vol. 20, no. 3, 38–45 (1997)

13. Thain, D. Tannenbaum, T., Livny, M., Distributed computing in practice: the
Condor experience: Research Articles. In: Concurrency Computing: Practice and
Experience. vol. 17, no. 2-4, 323–356, (2005)

14. Zhou, Y., Ooi, B.C., Tan, K-L., Tok, W. H., An adaptable distributed query pro-
cessing architecture. In: Data and Knowledge Engineering,vol. 53, no. 3, 283–309,
(2005)

15. Zhu, Q., Larson, P.A.: Solving Local Cost Estimation Problem for Global Query
Optimization in Multidatabase Systems. Distributed and Parallel Databases, vol. 6,
no. 4, 373–420 (1998)

16. Ziegler, P., Three Decades of Data Integration - All problems Solved ? In: 18th
IFIP World Computer Congress, vol. 12, (2004)

	On transformation of query scheduling strategies in distributed and heterogeneous database systems
	Recommended Citation

	On transformation of query scheduling strategies in distributed and heterogeneous database systems
	Abstract
	Keywords
	Disciplines
	Publication Details

	ACIIDS2015.dvi

